Youngstown MAP, Ohio. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.
1982-05-10
Air Weather Service ( MAC ) SCuOL2., IL 6222 R- UmmRm m "PJ M MOP Fr 4 JUN SURFACE WEATHER OSVAIWJ YOUNGSTOWN MAP OH MC #725250 N 41 16 W 080 40 ELD...percentage frequency of distribution tables OHIO YOUNGSTIOWN M "P, OHIO 20. and dew point temperatures and relative humidity); and (F) Pressure Summnary...p.ouIwuIis P i o m Qm 1 ---- .0 YN - :, 7 -AL CLIMATOLO’Y RA"CH 7 .I*.T 7C WEATHER CONDITIONS .ATH’p SEPVICE/mAC CNIIN -, JN,.S7 %N MAP OH 73-81 A U G
Weather Measurements around Your School. Mapping Variations in Temperature and Humidity.
ERIC Educational Resources Information Center
Smith, David R.; And Others
1991-01-01
Presented is an activity where students conduct a micrometeorological study in their neighborhood using temperature, humidity measurements, and mapping skills. Included are a discussion of surface weather observations, the experiment, and directions. (KR)
Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion
Cudahy, Thomas; Caccetta, Mike; Thomas, Matilda; Hewson, Robert; Abrams, Michael; Kato, Masatane; Kashimura, Osamu; Ninomiya, Yoshiki; Yamaguchi, Yasushi; Collings, Simon; Laukamp, Carsten; Ong, Cindy; Lau, Ian; Rodger, Andrew; Chia, Joanne; Warren, Peter; Woodcock, Robert; Fraser, Ryan; Rankine, Terry; Vote, Josh; de Caritat, Patrice; English, Pauline; Meyer, Dave; Doescher, Chris; Fu, Bihong; Shi, Pilong; Mitchell, Ross
2016-01-01
The Earth’s surface comprises minerals diagnostic of weathering, deposition and erosion. The first continental-scale mineral maps generated from an imaging satellite with spectral bands designed to measure clays, quartz and other minerals were released in 2012 for Australia. Here we show how these satellite mineral maps improve our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map shows how kaolinite has developed over tectonically stable continental crust in response to deep weathering during northwardly migrating tropical conditions from 45 to 10 Ma. The same clay composition map, in combination with one sensitive to water content, enables the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust such as the Lake Eyre Basin. Cutting across these clay patterns are sandy deserts that developed <10 Ma and are well mapped using another satellite product sensitive to the particle size of silicate minerals. This product can also be used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The accuracy and information content of these satellite mineral maps are validated using published data. PMID:27025192
A visual analytical approach to rock art panel condition assessment
NASA Astrophysics Data System (ADS)
Vogt, Brandon J.
Rock art is a term for pecked, scratched, or painted symbols found on rock surfaces, most typically joint faces called rock art panels. Because rock art exists on rock at the atmosphere interface, it is highly susceptible to the destructive processes of weathering. Thus, rock weathering scientists, including those that study both natural and cultural surfaces, play a key role towards understanding rock art longevity. The mapping of weathering forms on rock art panels serves as a basis from which to assess overall panel instability. This work examines fissures, case hardened surfaces, crumbly disintegration, and lichen. Knowledge of instability, as measured through these and other weathering forms, provides integral information to land managers and archaeological conservators required to prioritize panels for remedial action. The work is divided into five chapters, three of which are going to be submitted as a peer-reviewed journal manuscript. The second chapter, written as a manuscript for International Newsletter on Rock Art, describes a specific set of criteria that lead to the development of a mapping tool for weathering forms, called 'mapping weathering forms in three dimensions' (MapWeF). The third chapter, written as a manuscript for Remote Sensing of Environment, presents the methodology used to develop MapWeF. The chapter incorporates terrestrial laser scanning, a geographic information system (GIS), geovisualization, image analysis, and exploratory spatial data analysis (ESDA) to identify, map, and quantify weathering features known to cause instability on rock art panels. The methodology implemented in the third chapter satisfies the criteria described in Chapter Two. In the fourth chapter, prepared as a manuscript for Geomorphology, MapWeF is applied to a site management case study, focusing on a region---southeastern Colorado---with notoriously weak and endangered sandstone rock art panels. The final conclusions chapter describes contributions of the work to GIScience and rock weathering, and discusses how MapWeF, as a diagnostic tool, fits into a larger national vision by linking existing rock art stability characterizations to cultural resource management-related conservation action.
Surface pressure maps from scatterometer data
NASA Technical Reports Server (NTRS)
Brown, R. A.; Levy, Gad
1991-01-01
The ability to determine surface pressure fields from satellite scatterometer data was shown by Brown and Levy (1986). The surface winds are used to calculate the gradient winds above the planetary boundary layer, and these are directly related to the pressure gradients. There are corrections for variable stratification, variable surface roughness, horizontal inhomogeneity, humidity and baroclinity. The Seasat-A Satellite Scatterometer (SASS) data have been used in a systematic study of 50 synoptic weather events (regions of approximately 1000 X 1000 km). The preliminary statistics of agreement with national weather service surface pressure maps are calculated. The resulting surface pressure maps can be used together with SASS winds and Scanning Multichannel Microwave Radiometer (SMMR) water vapor and liquid water analyses to provide good front and storm system analyses.
A New Perspective on Surface Weather Maps
ERIC Educational Resources Information Center
Meyer, Steve
2006-01-01
A two-dimensional weather map is actually a physical representation of three-dimensional atmospheric conditions at a specific point in time. Abstract thinking is required to visualize this two-dimensional image in three-dimensional form. But once that visualization is accomplished, many of the meteorological concepts and processes conveyed by the…
A synoptic climatology for forest fires in the NE US and future implications for GCM simulations
Yan Qing; Ronald Sabo; Yiqiang Wu; J.Y. Zhu
1994-01-01
We studied surface-pressure patterns corresponding to reduced precipitation, high evaporation potential, and enhanced forest-fire danger for West Virginia, which experienced extensive forest-fire damage in November 1987. From five years of daily weather maps we identified eight weather patterns that describe distinctive flow situations throughout the year. Map patterns...
WPC 48-Hour Surface Weather Forecast
Summaries Heat Index Tropical Products Daily Weather Map GIS Products Current Watches/ Warnings Satellite and Radar Imagery GOES-East Satellite GOES-West Satellite National Radar Product Archive WPC
WPC 12-Hour Surface Weather Forecast
Summaries Heat Index Tropical Products Daily Weather Map GIS Products Current Watches/ Warnings Satellite and Radar Imagery GOES-East Satellite GOES-West Satellite National Radar Product Archive WPC
WPC 36-Hour Surface Weather Forecast
Summaries Heat Index Tropical Products Daily Weather Map GIS Products Current Watches/ Warnings Satellite and Radar Imagery GOES-East Satellite GOES-West Satellite National Radar Product Archive WPC
WPC 24-Hour Surface Weather Forecast
Summaries Heat Index Tropical Products Daily Weather Map GIS Products Current Watches/ Warnings Satellite and Radar Imagery GOES-East Satellite GOES-West Satellite National Radar Product Archive WPC
REAL-TIME high-resolution urban surface water flood mapping to support flood emergency management
NASA Astrophysics Data System (ADS)
Guan, M.; Yu, D.; Wilby, R.
2016-12-01
Strong evidence has shown that urban flood risks will substantially increase because of urbanisation, economic growth, and more frequent weather extremes. To effectively manage these risks require not only traditional grey engineering solutions, but also a green management solution. Surface water flood risk maps based on return period are useful for planning purposes, but are limited for application in flood emergencies, because of the spatiotemporal heterogeneity of rainfall and complex urban topography. Therefore, a REAL-TIME urban surface water mapping system is highly beneficial to increasing urban resilience to surface water flooding. This study integrated numerical weather forecast and high-resolution urban surface water modelling into a real-time multi-level surface water mapping system for Leicester City in the UK. For rainfall forecast, the 1km composite rain radar from the Met Office was used, and we used the advanced rainfall-runoff model - FloodMap to predict urban surface water at both city-level (10m-20m) and street-level (2m-5m). The system is capable of projecting 3-hour urban surface water flood, driven by rainfall derived from UK Met Office radar. Moreover, this system includes real-time accessibility mapping to assist the decision-making of emergency responders. This will allow accessibility (e.g. time to travel) from individual emergency service stations (e.g. Fire & Rescue; Ambulance) to vulnerable places to be evaluated. The mapping results will support contingency planning by emergency responders ahead of potential flood events.
NASA Technical Reports Server (NTRS)
1995-01-01
WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.
NASA Astrophysics Data System (ADS)
DY, C. Y.; Fung, J. C. H.
2016-08-01
A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.
Development of flood-inundation maps for the Mississippi River in Saint Paul, Minnesota
Czuba, Christiana R.; Fallon, James D.; Lewis, Corby R.; Cooper, Diane F.
2014-01-01
Digital flood-inundation maps for a 6.3-mile reach of the Mississippi River in Saint Paul, Minnesota, were developed through a multi-agency effort by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and in collaboration with the National Weather Service. The inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the National Weather Service Advanced Hydrologic Prediction Service site at http://water.weather.gov/ahps/inundation.php, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgage at the Mississippi River at Saint Paul (05331000). The National Weather Service forecasted peak-stage information at the streamgage may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the Mississippi River by means of a one-dimensional step-backwater model. The hydraulic model was calibrated using the most recent stage-discharge relation at the Robert Street location (rating curve number 38.0) of the Mississippi River at Saint Paul (streamgage 05331000), as well as an approximate water-surface elevation-discharge relation at the Mississippi River at South Saint Paul (U.S. Army Corps of Engineers streamgage SSPM5). The model also was verified against observed high-water marks from the recent 2011 flood event and the water-surface profile from existing flood insurance studies. The hydraulic model was then used to determine 25 water-surface profiles for flood stages at 1-foot intervals ranging from approximately bankfull stage to greater than the highest recorded stage at streamgage 05331000. The simulated water-surface profiles were then combined with a geographic information system digital elevation model, derived from high-resolution topography data, to delineate potential areas flooded and to determine the water depths within the inundated areas for each stage at streamgage 05331000. The availability of these maps along with information regarding current stage at the U.S. Geological Survey streamgage and forecasted stages from the National Weather Service provides enhanced flood warning and visualization of the potential effects of a forecasted flood for the city of Saint Paul and its residents. The maps also can aid in emergency management planning and response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.
Space Weathering on Icy Satellites in the Outer Solar System
NASA Technical Reports Server (NTRS)
Clark, R. N.; Perlman, Z.; Pearson, N.; Cruikshank, D. P.
2014-01-01
Space weathering produces well-known optical effects in silicate minerals in the inner Solar System, for example, on the Moon. Space weathering from solar wind and UV (ultraviolet radiation) is expected to be significantly weaker in the outer Solar System simply because intensities are low. However, cosmic rays and micrometeoroid bombardment would be similar to first order. That, combined with the much higher volatility of icy surfaces means there is the potential for space weathering on icy outer Solar System surfaces to show optical effects. The Cassini spacecraft orbiting Saturn is providing evidence for space weathering on icy bodies. The Cassini Visible and Infrared Mapping Spectrometer (VIMS) instrument has spatially mapped satellite surfaces and the rings from 0.35-5 microns and the Ultraviolet Imaging Spectrograph (UVIS) instrument from 0.1 to 0.2 microns. These data have sampled a complex mixing space between H2O ice and non-ice components and they show some common spectral properties. Similarly, spectra of the icy Galilean satellites and satellites in the Uranian system have some commonality in spectral properties with those in the Saturn system. The UV absorber is spectrally similar on many surfaces. VIMS has identified CO2, H2 and trace organics in varying abundances on Saturn's satellites. We postulate that through the spatial relationships of some of these compounds that they are created and destroyed through space weathering effects. For example, the trapped H2 and CO2 observed by VIMS in regions with high concentrations of dark material may in part be space weathering products from the destruction of H2O and organic molecules. The dark material, particularly on Iapetus which has the highest concentration in the Saturn system, is well matched by space-weathered silicates in the .4 to 2.6 micron range, and the spectral shapes closely match those of the most mature lunar soils, another indicator of space weathered material.
Satellite freeze forecast system: Executive summary
NASA Technical Reports Server (NTRS)
Martsolf, J. D. (Principal Investigator)
1983-01-01
A satellite-based temperature monitoring and prediction system consisting of a computer controlled acquisition, processing, and display system and the ten automated weather stations called by that computer was developed and transferred to the national weather service. This satellite freeze forecasting system (SFFS) acquires satellite data from either one of two sources, surface data from 10 sites, displays the observed data in the form of color-coded thermal maps and in tables of automated weather station temperatures, computes predicted thermal maps when requested and displays such maps either automatically or manually, archives the data acquired, and makes comparisons with historical data. Except for the last function, SFFS handles these tasks in a highly automated fashion if the user so directs. The predicted thermal maps are the result of two models, one a physical energy budget of the soil and atmosphere interface and the other a statistical relationship between the sites at which the physical model predicts temperatures and each of the pixels of the satellite thermal map.
Climate Prediction Center - Monitoring and Data Index
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News ; Atmospheric Monitoring and Data Monitoring Weather & Climate in Realtime Climate Diagnostics Bulletin Preliminary Climate Diagnostics Bulletin Figures Monthly Atmospheric & Sea Surface Temperature Indices
NASA Astrophysics Data System (ADS)
Moore, Leah; Nicholson, Allan; Cook, Wayne; Sweeney, Margaret
2014-05-01
In the Greater Launceston Area (GLA) in northern Tasmania, Australia, there is a widespread urban salinity problem with severe impacts on urban/peri-urban infrastructure in localised areas. Salinity patterns in the landscape (elevated flux to waterways; salt efflorescence at the land surface) could be related to: the underlying rock type, the thickness of regolith materials and hence the volume of the salt store, the landforms present and the amount of water passing over and through the landscape. In northern Tasmania secondary mineralogy on dolerite typically includes formation of Fe/Ca smectite phases (e.g. nontronite, saponite) and Fe-Ti oxides/sesquioxides (e.g. hematite, goethite) with some primary phases (e.g. Ca-plagioclase feldspar, augite) weathering through to a suite dominated by kaolinite clay and Fe-Ti oxides/sesquioxides. Deeply weathered profiles in the GLA have weathered to the kaolintite-clay dominant mineralogy and in places there are gibbsite/beidellite/hematite/goethite bauxites developed. Most existing salinity mapping emphasises salt manifestation over paleo-estuarine sediments of the Paleogene Tamar-Esk River system, so incorporation of deeply weathered Jurassic dolerite materials into the salt budget considerably augments the estimated potential hazard. Rapid stream surveys provide a snapshot of stream electrical conductivity (EC) over the study area at regular intervals allowing a broad evaluation of salt flux patterns in surfaces waters. Higher EC readings were obtained from selected streams draining: deeply weathered dolerite profiles (0.37 1.86 dS/m) and deeply weathered Paleogene paleo-estuarine sediments (0.49 to 1.16 dS/m). Lower values were measured on up-faulted dolerite blocks (<0.10 dS/m); moderately weathered, high relief dolerite (<0.03 dS/m), and in incised streams flowing over a rocky dolerite substrate (<0.03 dS/m). The patterns of stream EC reflect the nature of the regolith materials the streams drain, and match mapped patterns for distribution of deeply weathered Jurassic dolerite and moderately to deeply weathered bedded paleo-estuarine sediments of the Paleogene Tamar-Esk river system, some Quaternary terrace deposits along the Tamar and Esk Rivers; and some Holocene estuarine sediments. Recent geomorphic mapping has enabled development of a more comprehensive and consistent landscape evolution model that builds on existing knowledge. This model describes the influence of a progressively incising Tamar-Esk river system in response to episodic lowering of the local base level, with multiple episodes of valley widening as the river system stabilised after incision. Successive lowering events dissected earlier landforms, but locally remnant surfaces are preserved that represent former fluvial plain and terrace features. These processes were partially controlled by the structural configuration and contrasting resistance of the underlying lithologies, influencing the planform geometries of the rivers, and consequently the potential to preserve paleo-fluvial features. Because the Tamar River is an estuarine system, some of the lowermost preserved surfaces are likely to reflect marine processes (e.g. 5-7m; 10-12m ASL). The geomorphic mapping was conducted independently of the hydrogeological landscape (HGL) characterisation in the GLA, but there is strong correlation between the areas identified as having elevated salinity hazard (HGL) and newly mapped remnant surfaces in this landscape. This work complements HGL research and supports development of an increasingly rigorous evidence-based framework for GLA salinity hazard management.
Rapid Semi-Quantitative Surface Mapping of Airborne-Dispersed Chemicals Using Mass Spectrometry
Chemicals can be dispersed accidentally, deliberately, or by weather-related events. Rapid mapping of contaminant distributions is necessary to assess exposure risks and to plan remediation, when needed. Ten pulverized aspirin or NoDozTM tablets containing caffeine wer...
The GOES-R/JPSS Approach for Identifying Hazardous Low Clouds: Overview and Operational Impacts
NASA Astrophysics Data System (ADS)
Calvert, Corey; Pavolonis, Michael; Lindstrom, Scott; Gravelle, Chad; Terborg, Amanda
2017-04-01
Low ceiling and visibility is a weather hazard that nearly every forecaster, in nearly every National Weather Service (NWS) Weather Forecast Office (WFO), must regularly address. In addition, national forecast centers such as the Aviation Weather Center (AWC), Alaska Aviation Weather Unit (AAWU) and the Ocean Prediction Center (OPC) are responsible for issuing low ceiling and visibility related products. As such, reliable methods for detecting and characterizing hazardous low clouds are needed. Traditionally, hazardous areas of Fog/Low Stratus (FLS) are identified using a simple stand-alone satellite product that is constructed by subtracting the 3.9 and 11 μm brightness temperatures. However, the 3.9-11 μm brightness temperature difference (BTD) has several major limitations. In an effort to address the limitations of the BTD product, the GOES-R Algorithm Working Group (AWG) developed an approach that fuses satellite, Numerical Weather Prediction (NWP) model, Sea Surface Temperature (SST) analyses, and other data sets (e.g. digital surface elevation maps, surface emissivity maps, and surface type maps) to determine the probability that hazardous low clouds are present using a naïve Bayesian classifier. In addition, recent research has focused on blending geostationary (e.g. GOES-R) and low earth orbit (e.g. JPSS) satellite data to further improve the products. The FLS algorithm has adopted an enterprise approach in that it can utilize satellite data from a variety of current and future operational sensors and NWP data from a variety of models. The FLS products are available in AWIPS/N-AWIPS/AWIPS-II and have been evaluated within NWS operations over the last four years as part of the Satellite Proving Ground. Forecaster feedback has been predominantly positive and references to these products within Area Forecast Discussions (AFD's) indicate that the products are influencing operational forecasts. At the request of the NWS, the FLS products are currently being transitioned to NOAA/NESDIS operations, which will ensure that users have long-term access to these products. This paper will provide an overview of the FLS products and illustrate how they are being used to improve transportation safety and efficiency.
Branches Global Climate & Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Contact EMC , state and local government Web resources and services. Real-time, global, sea surface temperature (RTG_SST_HR) analysis For a regional map, click the desired area in the global SST analysis and anomaly maps
WMS and WFS Standards Implementation of Weather Data
NASA Astrophysics Data System (ADS)
Armstrong, M.
2005-12-01
CustomWeather is private weather company that delivers global weather data products. CustomWeather has built a mapping platform according to OGC standards. Currently, both a Web Mapping Service (WMS) and Web Feature Service (WFS) are supported by CustomWeather. Supporting open geospatial standards has lead to number of positive changes internally to the processes of CustomWeather, along with those of the clients accessing the data. Quite a number of challenges surfaced during this process, particularly with respect to combining a wide variety of raw modeling and sensor data into a single delivery platform. Open standards have, however, made the delivery of very different data products rather seamless. The discussion will address the issues faced in building an OGC-based mapping platform along with the limitations encountered. While the availability of these data products through open standards is still very young, there have already been many adopters in the utility and navigation industries. The discussion will take a closer look at the different approach taken by these two industries as they utilize interoperability standards with existing data. Insight will be given in regards to applications already taking advantage of this new technology and how this is affecting decision-making processes. CustomWeather has observed considerable interest and potential benefit in this technology from developing countries. Weather data is a key element in disaster management. Interoperability is literally opening up a world of data and has the potential to quickly enable functionality that would otherwise take considerable time to implement. The discussion will briefly touch on our experience.
NASA Astrophysics Data System (ADS)
Julià Selvas, Núria; Ninyerola Casals, Miquel
2015-04-01
It has been implemented an automatic system to predict the fire risk in the Principality of Andorra, a small country located in the eastern Pyrenees mountain range, bordered by Catalonia and France, due to its location, his landscape is a set of a rugged mountains with an average elevation around 2000 meters. The system is based on the Fire Weather Index (FWI) that consists on different components, each one, measuring a different aspect of the fire danger calculated by the values of the weather variables at midday. CENMA (Centre d'Estudis de la Neu i de la Muntanya d'Andorra) has a network around 10 automatic meteorological stations, located in different places, peeks and valleys, that measure weather data like relative humidity, wind direction and speed, surface temperature, rainfall and snow cover every ten minutes; this data is sent daily and automatically to the system implemented that will be processed in the way to filter incorrect measurements and to homogenizer measurement units. Then this data is used to calculate all components of the FWI at midday and for the level of each station, creating a database with the values of the homogeneous measurements and the FWI components for each weather station. In order to extend and model this data to all Andorran territory and to obtain a continuous map, an interpolation method based on a multiple regression with spline residual interpolation has been implemented. This interpolation considerer the FWI data as well as other relevant predictors such as latitude, altitude, global solar radiation and sea distance. The obtained values (maps) are validated using a cross-validation leave-one-out method. The discrete and continuous maps are rendered in tiled raster maps and published in a web portal conform to Web Map Service (WMS) Open Geospatial Consortium (OGC) standard. Metadata and other reference maps (fuel maps, topographic maps, etc) are also available from this geoportal.
Thresholds for soil cover and weathering in mountainous landscapes
NASA Astrophysics Data System (ADS)
Dixon, Jean; Benjaram, Sarah
2017-04-01
The patterns of soil formation, weathering, and erosion shape terrestrial landscapes, forming the foundation on which ecosystems and human civilizations are built. Several fundamental questions remain regarding how soils evolve, especially in mountainous landscapes where tectonics and climate exert complex forcings on erosion and weathering. In these systems, quantifying weathering is made difficult by the fact that soil cover is discontinuous and heterogeneous. Therefore, studies that attempt to measure soil weathering in such systems face a difficult bias in measurements towards more weathered portions of the landscape. Here, we explore current understanding of erosion-weathering feedbacks, and present new data from mountain systems in Western Montana. Using field mapping, analysis of LiDAR and remotely sensed land-cover data, and soil chemical analyses, we measure soil cover and surface weathering intensity across multiple spatial scales, from the individual soil profile to a landscape perspective. Our data suggest that local emergence of bedrock cover at the surface marks a landscape transition from supply to kinetic weathering regimes in these systems, and highlights the importance of characterizing complex critical zone architecture in mountain landscapes. This work provides new insight into how landscape morphology and erosion may drive important thresholds for soil cover and weathering.
Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy
Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy
Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy
Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy
Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy
Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by TrueWind Solutions using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy
RAPID SPATIAL MAPPING OF CHEMICALS DISPERSED ACROSS SURFACES USING AN AUTOSAMPLER/DART/TOFMS
Rapid identification and semi-quantitation of chemicals spatially dispersed and
deposited on surfaces by accidental, deliberate, or weather-related events requires analysis of
hundreds of samples, usually obtained by sampling with wipes. Hand-held devices used on-si...
Modeling Weather Impact on Ground Delay Programs
NASA Technical Reports Server (NTRS)
Wang, Yao; Kulkarni, Deepak
2011-01-01
Scheduled arriving aircraft demand may exceed airport arrival capacity when there is abnormal weather at an airport. In such situations, Federal Aviation Administration (FAA) institutes ground-delay programs (GDP) to delay flights before they depart from their originating airports. Efficient GDP planning depends on the accuracy of prediction of airport capacity and demand in the presence of uncertainties in weather forecast. This paper presents a study of the impact of dynamic airport surface weather on GDPs. Using the National Traffic Management Log, effect of weather conditions on the characteristics of GDP events at selected busy airports is investigated. Two machine learning methods are used to generate models that map the airport operational conditions and weather information to issued GDP parameters and results of validation tests are described.
Relationships between nocturnal winter road slipperiness, cloud cover and surface temperature
NASA Astrophysics Data System (ADS)
Grimbacher, T.; Schmid, W.
2003-04-01
Ice and Snow are important risks for road traffic. In this study we show several events of slipperiness in Switzerland, mainly caused by rain or snow falling on a frozen surface. Other reasons for slippery conditions are frost or freezing dew in clear nights and nocturnal clearing after precipitation, which goes along with radiative cooling. The main parameters of road weather forecasts are precipitation, cloudiness and surface temperature. Precipitation is well predictable with weather radars and radar nowcasting algorithms. Temperatures are often taken from numerical weather prediction models, but because of changes in cloud cover these model values are inaccurate in terms of predicting the onset of freezing. Cloudiness, especially the advection, formation and dissipation of clouds and their interaction with surface temperatures, is one of the major unsolved problems of road weather forecasts. Cloud cover and the temperature difference between air and surface temperature are important parameters of the radiation balance. In this contribution, we show the relationship between them, proved at several stations all over Switzerland. We found a quadratic correlation coefficient of typically 60% and improved it considering other meteorological parameters like wind speed and surface water. The acquired relationship may vary from one station to another, but we conclude that temperature difference is a signature for nocturnal cloudiness. We investigated nocturnal cloudiness for two cases from winters 2002 and 2003 in the canton of Lucerne in central Switzerland. There, an ultra-dense combination of two networks with together 55 stations within 50x50 km^2 is operated, measuring air and surface temperature, wind and other road weather parameters. With the aid of our equations, temperature differences detected from this network were converted into cloud maps. A comparison between precipitation seen by radar, cloud maps and surface temperatures shows that there are similar structures in all data. Depending on the situation, we also identified additional effects influencing the temperature differences, for instance the advection of could air or the influence of melting heat at or after a snow event. All these findings help to further understand the phenomena, and hence will contribute to a better predictability of winter road slipperiness.
Chemicals are dispersed by numerous accidental, deliberate, or weather-related events. Often, rapid analyses are desired to identify dispersed chemicals and to delineate areas of contamination. Hundreds of wipe samples might be collected from outdoor surfaces or building interi...
Seismic imaging of the Sun's far hemisphere and its applications in space weather forecasting
NASA Astrophysics Data System (ADS)
Lindsey, Charles; Braun, Douglas
2017-06-01
The interior of the Sun is filled acoustic waves with periods of about 5 min. These waves, called "p modes," are understood to be excited by convection in a thin layer beneath the Sun's surface. The p modes cause seismic ripples, which we call "the solar oscillations." Helioseismic observatories use Doppler observations to map these oscillations, both spatially and temporally. The p modes propagate freely throughout the solar interior, reverberating between the near and far hemispheres. They also interact strongly with active regions at the surfaces of both hemispheres, carrying the signatures of said interactions with them. Computational analysis of the solar oscillations mapped in the Sun's near hemisphere, applying basic principles of wave optics to model the implied p modes propagating through the solar interior, gives us seismic maps of large active regions in the Sun's far hemisphere. These seismic maps are useful for space weather forecasting. For the past decade, NASA's twin STEREO spacecraft have given us full coverage of the Sun's far hemisphere in electromagnetic (EUV) radiation from the far side of Earth's orbit about the Sun. We are now approaching a decade during which the STEREO spacecraft will lose their farside vantage. There will occur significant periods from thence during which electromagnetic coverage of the Sun's far hemisphere will be incomplete or nil. Solar seismology will make it possible to continue our monitor of large active regions in the Sun's far hemisphere for the needs of space weather forecasters during these otherwise blind periods.
Seismic imaging of the Sun's far hemisphere and its applications in space weather forecasting.
Lindsey, Charles; Braun, Douglas
2017-06-01
The interior of the Sun is filled acoustic waves with periods of about 5 min. These waves, called " p modes," are understood to be excited by convection in a thin layer beneath the Sun's surface. The p modes cause seismic ripples, which we call "the solar oscillations." Helioseismic observatories use Doppler observations to map these oscillations, both spatially and temporally. The p modes propagate freely throughout the solar interior, reverberating between the near and far hemispheres. They also interact strongly with active regions at the surfaces of both hemispheres, carrying the signatures of said interactions with them. Computational analysis of the solar oscillations mapped in the Sun's near hemisphere, applying basic principles of wave optics to model the implied p modes propagating through the solar interior, gives us seismic maps of large active regions in the Sun's far hemisphere. These seismic maps are useful for space weather forecasting. For the past decade, NASA's twin STEREO spacecraft have given us full coverage of the Sun's far hemisphere in electromagnetic (EUV) radiation from the far side of Earth's orbit about the Sun. We are now approaching a decade during which the STEREO spacecraft will lose their farside vantage. There will occur significant periods from thence during which electromagnetic coverage of the Sun's far hemisphere will be incomplete or nil. Solar seismology will make it possible to continue our monitor of large active regions in the Sun's far hemisphere for the needs of space weather forecasters during these otherwise blind periods.
Evaluation of Ten Methods for Initializing a Land Surface Model
NASA Technical Reports Server (NTRS)
Rodell, M.; Houser, P. R.; Berg, A. A.; Famiglietti, J. S.
2005-01-01
Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the stocks and fluxes of water (including soil moisture, snow, evaporation, and runoff) and energy (including the temperature of and sensible heat released from the soil) after they arrive on the land surface as precipitation and sunlight. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy and space-time resolution. Hence LSMs have been developed to integrate the available observations with our understanding of the physical processes involved, using powerful computers, in order to map these stocks and fluxes as they change in time. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth"s water cycle and climate variability. NASA"s Global Land Data Assimilation System (GLDAS) project facilitates testing of several different LSMs with a variety of input datasets (e.g., precipitation, plant type).
The Global ASTER Geoscience and Mineralogical Maps
NASA Astrophysics Data System (ADS)
Abrams, M.
2017-12-01
In 2012, Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) released 17 Geoscience mineral maps for the continent of Australia We are producing the CSIRO Geoscience data products for the entire land surface of the Earth. These maps are created from Advanced Spacecraft Thermal Emission and Reflection Radiometer (ASTER) data, acquired between 2000 and 2008. ASTER, onboard the United States' Terra satellite, is part of NASA's Earth Observing System. This multispectral satellite system has 14 spectral bands spanning: the visible and near-infrared (VNIR) @ 15 m pixel resolution; shortwave-infrared (SWIR) @ 30 m pixel resolution; and thermal infrared (TIR) @ 90 m pixel resolution. In a polar-orbit, ASTER acquires a 60 km swath of data.The CSIRO maps are the first continental-scale mineral maps generated from an imaging satellite designed to measure clays, quartz and other minerals. Besides their obvious use in resource exploration, the data have applicability to climatological studies. Over Australia, these satellite mineral maps improved our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map showed how kaolinite has developed over tectonically stable continental crust in response to deep weathering. The same clay composition map, in combination with one sensitive to water content, enabled the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust. This product was also used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The two-year project is undertaken by JPL with collaboration from CSIRO. JPL has in-house the entire ASTER global archive of Level 1B image data—more than 1,500,000 scenes. This cloud-screened and vegetation-masked data set will be the basis for creation of the suite of global Geoscience products using all of ASTER's 14 VNIR-SWIR-TIR spectral bands resampled to 100 m pixel resolution. We plan a staged release of the geoscience products through NASA's LPDAAC.
Development of a Graphical User Interface to Visualize Surface Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, R.L.
1998-07-13
Thousands of worldwide observing stations provide meteorological information near the earth's surface as often as once each hour. This surface data may be plotted on geographical maps to provide the meteorologist useful information regarding weather patterns for a region of interest. This report describes the components and applications of a graphical user interface which have been developed to visualize surface observations at any global location and time of interest.
NASA Astrophysics Data System (ADS)
Ashley, J. W.; Herkenhoff, K. E.; Golombek, M. P.; Johnson, J. R.
2012-12-01
Meteorites found on Mars provide valuable insights into martian surface processes. During the course of Mars Exploration Rover (MER) extended missions, Spirit and Opportunity have identified 17 confirmed and candidate meteorites on Mars, most of which are irons. The iron meteorites exhibit morphologies and coatings that communicate complex post-fall exposure histories relevant to an understanding of climate near the martian equator [1-4]. Both chemical and mechanical weathering effects are represented. Among the more significant of these are: 1) cm-scale hollowing, 2) surficial rounding, 3) mass excavation/dissolution and removal, 4) differential etching of kamacite plates and taenite lamellae, revealing Widmanstätten patterns, 5) discontinuous iron oxide coatings, and 6) the effects of cavernous weathering, which often penetrate to rock interiors. Determining the nature, magnitude, and timing of each process and its associated features is a complex problem that will be aided by laboratory experiments, image processing, and careful surface evaluation. Because some features appear to superpose others in ways analogous to stratigraphic relationships, Microscopic Imager (MI) mosaics are useful for sketching "geologic maps" of meteorite surfaces. Employing the techniques of conventional planetary mapping [5], each map was drafted manually using full-resolution MI mosaics and Adobe Photoshop software. Units were selected to represent the oxide coating, dust-coated surfaces, sand-coated surfaces, taenite lamellae, and uncoated metal. Also included are areas in shadow, and regions of blooming caused by specular reflection of metal. Regmaglypt rim crests are presented as lineations. As with stratigraphic relationships, noting embayments and other cross-cutting relationships assists with establishing the relative timing for observed weathering effects. In addition to suggesting alternating sequences of wind and water exposure [1], patterns in oxide coating occurrence show evidence that coating deposition (interpreted as a result of water interaction) was geologically recent: Because the margins of many oxide coating deposits are concentric to and slightly removed from regmaglypt rim crests, the latest cycle is interpreted as a time of coating removal, not deposition, with these topographic high points representing zones of greatest erosional attack. Assuming the oxide coating has a low to moderate hardness, this observation implies relative geologic youth for the coating. However, it is unknown whether oxide deposits are stable or actively eroded by free basaltic sand grains [e.g., 6] in the modern epoch. The high science return from ongoing meteorite studies at MER landing sites supports their consideration if meteorites are also encountered by the Mars Science Laboratory Curiosity rover in Gale Crater.
NASA Technical Reports Server (NTRS)
Saunders, R. S.; Spear, A. J.; Allin, P. C.; Austin, R. S.; Berman, A. L.; Chandlee, R. C.; Clark, J.; Decharon, A. V.; De Jong, E. M.; Griffith, D. G.
1992-01-01
Magellan started mapping the planet Venus on September 15, 1990, and after one cycle (one Venus day or 243 earth days) had mapped 84 percent of the planet's surface. This returned an image data volume greater than all past planetary missions combined. Spacecraft problems were experienced in flight. Changes in operational procedures and reprogramming of onboard computers minimized the amount of mapping data lost. Magellan data processing is the largest planetary image-processing challenge to date. Compilation of global maps of tectonic and volcanic features, as well as impact craters and related phenomena and surface processes related to wind, weathering, and mass wasting, has begun. The Magellan project is now in an extended mission phase, with plans for additional cycles out to 1995. The Magellan project will fill in mapping gaps, obtain a global gravity data set between mid-September 1992 and May 1993, acquire images at different view angles, and look for changes on the surface from one cycle to another caused by surface activity such as volcanism, faulting, or wind activity.
Noah-MP-Crop: Enhancing cropland representation in the community land surface modeling system
NASA Astrophysics Data System (ADS)
Liu, X.; Chen, F.; Barlage, M. J.; Zhou, G.; Niyogi, D.
2015-12-01
Croplands are important in land-atmosphere interactions and in modifying local and regional weather and climate. Despite their importance, croplands are poorly represented in the current version of the coupled Weather Research and Forecasting (WRF)/ Noah land-surface modeling system, resulting in significant surface temperature and humidity biases across agriculture- dominated regions of the United States. This study aims to improve the WRF weather forecasting and regional climate simulations during the crop growing season by enhancing the representation of cropland in the Noah-MP land model. We introduced dynamic crop growth parameterization into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at both the field and regional scales with multiple crop biomass datasets, surface fluxes and soil moisture/temperature observations. We also integrated a detailed cropland cover map into WRF, enabling the model to simulate corn and soybean field across the U.S. Great Plains. Results show marked improvement in the Noah-MP-Crop performance in simulating leaf area index (LAI), crop biomass, soil temperature, and surface fluxes. Enhanced cropland representation is not only crucial for improving weather forecasting but can also help assess potential impacts of weather variability on regional hydrometeorology and crop yields. In addition to its applications to WRF, Noah-MP-Crop can be applied in high-spatial-resolution regional crop yield modeling and drought assessments
NASA Astrophysics Data System (ADS)
Nigro, M. A.; Cassano, J. J.; Wille, J.; Bromwich, D. H.; Lazzara, M. A.
2015-12-01
An accurate representation of the atmospheric boundary layer in numerical weather prediction models is important for predicting turbulence and energy exchange in the atmosphere. This study uses two years of observations from a 30-m automatic weather station (AWS) installed on the Ross Ice Shelf, Antarctica to evaluate forecasts from the Antarctic Mesoscale Prediction System (AMPS), a numerical weather prediction system based on the polar version of the Weather Research and Forecasting (Polar WRF) model that uses the MYJ planetary boundary layer scheme and that primarily supports the extensive aircraft operations of the U.S. Antarctic Program. The 30-m AWS has six levels of instrumentation, providing vertical profiles of temperature, wind speed, and wind direction. The observations show the atmospheric boundary layer over the Ross Ice Shelf is stable approximately 80% of the time, indicating the influence of the permanent ice surface in this region. The observations from the AWS are further analyzed using the method of self-organizing maps (SOM) to identify the range of potential temperature profiles that occur over the Ross Ice Shelf. The SOM analysis identified 30 patterns, which range from strong inversions to slightly unstable profiles. The corresponding AMPS forecasts were evaluated for each of the 30 patterns to understand the accuracy of the AMPS near surface layer under different atmospheric conditions. The results indicate that under stable conditions AMPS with MYJ under predicts the inversion strength by as much as 7.4 K over the 30-m depth of the tower and over predicts the near surface wind speed by as much as 3.8 m s-1. Conversely, under slightly unstable conditions, AMPS predicts both the inversion strength and near surface wind speeds with reasonable accuracy.
NASA Technical Reports Server (NTRS)
Clark, Roger N.; Swayze, Gregg A.; Gallagher, Andrea
1992-01-01
The sedimentary sections exposed in the Canyonlands and Arches National Parks region of Utah (generally referred to as 'Canyonlands') consist of sandstones, shales, limestones, and conglomerates. Reflectance spectra of weathered surfaces of rocks from these areas show two components: (1) variations in spectrally detectable mineralogy, and (2) variations in the relative ratios of the absorption bands between minerals. Both types of information can be used together to map each major lithology and the Clark spectral features mapping algorithm is applied to do the job.
Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)
NASA Technical Reports Server (NTRS)
Blake, D. F.; Sarrazin, P.; Bristow, T.
2014-01-01
Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.
A teaching-learning sequence about weather map reading
NASA Astrophysics Data System (ADS)
Mandrikas, Achilleas; Stavrou, Dimitrios; Skordoulis, Constantine
2017-07-01
In this paper a teaching-learning sequence (TLS) introducing pre-service elementary teachers (PET) to weather map reading, with emphasis on wind assignment, is presented. The TLS includes activities about recognition of wind symbols, assignment of wind direction and wind speed on a weather map and identification of wind characteristics in a weather forecast. Sixty PET capabilities and difficulties in understanding weather maps were investigated, using inquiry-based learning activities. The results show that most PET became more capable of reading weather maps and assigning wind direction and speed on them. Our results also show that PET could be guided to understand meteorology concepts useful in everyday life and in teaching their future students.
Geomorphic Processes and Remote Sensing Signatures of Alluvial Fans in the Kun Lun Mountains, China
NASA Technical Reports Server (NTRS)
Farr, Tom G.; Chadwick, Oliver A.
1996-01-01
The timing of alluvial deposition in arid and semiarid areas is tied to land-surface instability caused by regional climate changes. The distribution pattern of dated deposits provides maps of regional land-surface response to past climate change. Sensitivity to differences in surface roughness and composition makes remote sensing techniques useful for regional mapping of alluvial deposits. Radar images from the Spaceborne Radar Laboratory and visible wavelength images from the French SPOT satellite were used to determine remote sensing signatures of alluvial fan units for an area in the Kun Lun Mountains of northwestern China. These data were combined with field observations to compare surface processes and their effects on remote sensing signatures in northwestern China and the southwestern United States. Geomorphic processes affecting alluvial fans in the two areas include aeolian deposition, desert varnish, and fluvial dissection. However, salt weathering is a much more important process in the Kun Lun than in the southwestern United States. This slows the formation of desert varnish and prevents desert pavement from forming. Thus the Kun Lun signatures are characteristic of the dominance of salt weathering, while signatures from the southwestern United States are characteristic of the dominance of desert varnish and pavement processes. Remote sensing signatures are consistent enough in these two regions to be used for mapping fan units over large areas.
Hydrology of the Reelfoot Lake basin, Obion and Lake counties, northwestern Tennessee
Robbins, C.H.
1985-01-01
Nine maps describe the following water resources aspects of the Reelfoot Lake watershed: Map 1-Surface water gaging stations, lake level, and locations of observation wells, rainfall stations and National Weather Service rainfall stations; Maps 2 and 3-water level contours, river stage, groundwater movement; Maps 4 and 5-grid blocks simulating constant head on the Mississippi River, Reelfoot Lake, Running Reelfoot Bayou, Reelfoot Creek, and Running Slough; Maps 6 and 7-difference between model calculated and observed water levels; and Maps 8 and 9-line of equal groundwater level increase and approximate lake area at pool elevation. (Lantz-PTT)
New Frontiers Science at Venus from Orbit plus Atmospheric Gas Sampling
NASA Astrophysics Data System (ADS)
Smrekar, Suzanne; Dyar, Melinda; Hensley, Scott; Helbert, Joern; VOX Science and Engineering Teams
2017-10-01
Venus remains the most Earth-like body in terms of size, composition, surface age, and insulation. Venus Origins Explorer (VOX) determines how Earth’s twin diverged, and enables breakthroughs in our understanding of rocky planet evolution and habitability. At the time of the Decadal Survey the ability to map mineralogy from orbit (Helbert et al.) and present-day radar techniques to detect active deformation were not fully appreciated. VOX leverages these methods and in-situ noble gases to answer New Frontiers science objectives:1. Atmospheric physics/chemistry: noble gases and isotopes to constrain atmospheric sources, escape processes, and integrated volcanic outgassing; global search for current volcanically outgassed water.2. Past hydrological cycles: global tessera composition to determine the role of volatiles in crustal formation.3. Crustal physics/chemistry: global crustal mineralogy/chemistry, tectonic processes, heat flow, resolve the catastrophic vs. equilibrium resurfacing debate, active geologic processes and possible crustal recycling.4. Crustal weathering: surface-atmosphere weathering reactions from redox state and the chemical equilibrium of the near-surface atmosphere.5. Atmospheric properties/winds: map cloud particle modes and their temporal variations, and track cloud-level winds in the polar vortices.6. Surface-atmosphere interactions: chemical reactions from mineralogy; weathering state between new, recent and older flows; possible volcanically outgassed water.VOX’s Atmosphere Sampling Vehicle (ASV) dips into and samples the well-mixed atmosphere, using Venus Original Constituents Experiment (VOCE) to measure noble gases. VOX’s orbiter carries the Venus Emissivity Mapper (VEM) and the Venus Interferometric Synthetic Aperture Radar (VISAR), and maps the gravity field using Ka-band tracking.VOX is the logical next mission to Venus because it delivers: 1) top priority atmosphere, surface, and interior science; 2) key global data for comparative planetology; 3) high-resolution topography, composition, and imaging to optimize future landers; 4) opportunities for revolutionary discoveries with a 3-year long mission, proven implementation and 44 Tb of data.
ERIC Educational Resources Information Center
Ruth, Amy, Ed.
1996-01-01
This theme issue of "The Goldfinch" focuses on weather in Iowa and weather lore. The bulletin contains historical articles, fiction, activities, and maps. The table of contents lists: (1) "Wild Rosie's Map"; (2) "History Mystery"; (3) "Iowa's Weather History"; (4) "Weather Wonders"; (6)…
Storm Prediction Center Fire Weather Forecasts
Archive NOAA Weather Radio Research Non-op. Products Forecast Tools Svr. Tstm. Events SPC Publications SPC Composite Maps Fire Weather Graphical Composite Maps Forecast and observational maps for various fire
NASA Technical Reports Server (NTRS)
Anyamba, Assaf; Small, Jennifer L.; Britch, Seth C.; Tucker, Compton J.; Pak, Edwin W.; Reynolds, Curt A.; Crutchfield, James; Linthicum, Kenneth J.
2014-01-01
We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010-2012 period. We utilized 2000-2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused,10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations.
Anyamba, Assaf; Small, Jennifer L; Britch, Seth C; Tucker, Compton J; Pak, Edwin W; Reynolds, Curt A; Crutchfield, James; Linthicum, Kenneth J
2014-01-01
We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010-2012 period. We utilized 2000-2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused ∼10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations.
Vesta Mineralogy: VIR maps Vesta's surface
NASA Technical Reports Server (NTRS)
Coradina, A.; DeSanctis, M.; Ammannito, E.; Capaccioni, F.; Capria, T.; Carraro, F.; Cartacci, M.; Filacchione, G.; Fonte, S.; Magni, G.;
2011-01-01
The Dawn mission will have completed Survey orbit around 4 Vesta by the end of August 2011. We present a preliminary analysis of data acquired by the Visual and InfraRed Spectrometer (VIR) to map Vesta mineralogy. Thermal properties and mineralogical data are combined to provide constraints on Vesta's formation and thermal evolution. delivery of exogenic materials, space weathering processes, and origin of the howardite. eucrite, and diogenite (HED) meteorites.
NASA Astrophysics Data System (ADS)
Börker, J.; Hartmann, J.; Amann, T.; Romero-Mujalli, G.
2018-04-01
Mapped unconsolidated sediments cover half of the global land surface. They are of considerable importance for many Earth surface processes like weathering, hydrological fluxes or biogeochemical cycles. Ignoring their characteristics or spatial extent may lead to misinterpretations in Earth System studies. Therefore, a new Global Unconsolidated Sediments Map database (GUM) was compiled, using regional maps specifically representing unconsolidated and quaternary sediments. The new GUM database provides insights into the regional distribution of unconsolidated sediments and their properties. The GUM comprises 911,551 polygons and describes not only sediment types and subtypes, but also parameters like grain size, mineralogy, age and thickness where available. Previous global lithological maps or databases lacked detail for reported unconsolidated sediment areas or missed large areas, and reported a global coverage of 25 to 30%, considering the ice-free land area. Here, alluvial sediments cover about 23% of the mapped total ice-free area, followed by aeolian sediments (˜21%), glacial sediments (˜20%), and colluvial sediments (˜16%). A specific focus during the creation of the database was on the distribution of loess deposits, since loess is highly reactive and relevant to understand geochemical cycles related to dust deposition and weathering processes. An additional layer compiling pyroclastic sediment is added, which merges consolidated and unconsolidated pyroclastic sediments. The compilation shows latitudinal abundances of sediment types related to climate of the past. The GUM database is available at the PANGAEA database (https://doi.org/10.1594/PANGAEA.884822).
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Christian, H. J.; Boccippio, D. J.; Koshak, W. J.; Cecil, D. J.; Arnold, James E. (Technical Monitor)
2002-01-01
The ThOR mission uses a lightning mapping sensor in geostationary Earth orbit to provide continuous observations of thunderstorm activity over the Americas and nearby oceans. The link between lightning activity and cloud updrafts is the basis for total lightning observations indicating the evolving convective intensification and decay of storms. ThOR offers a national operational demonstration of the utility of real-time total lightning mapping for earlier and more reliable identification of potentially severe and hazardous storms. Regional pilot projects have already demonstrated that the dominance in-cloud lightning and increasing in-cloud lash rates are known to precede severe weather at the surface by tens of minutes. ThOR is currently planned for launch in 2005 on a commercial or research satellite. Real-time data will be provided to selected NWS Weather Forecast Offices and National Centers (EMC/AWC/SPC) for evaluation.
InSAR imaging of volcanic deformation over cloud-prone areas - Aleutian islands
Lu, Zhong
2007-01-01
Interferometric synthetic aperture radar (INSAR) is capable of measuring ground-surface deformation with centimeter-tosubcentimeter precision and spatial resolution of tens-of meters over a relatively large region. With its global coverage and all-weather imaging capability, INSAR is an important technique for measuring ground-surface deformation of volcanoes over cloud-prone and rainy regions such as the Aleutian Islands, where only less than 5 percent of optical imagery is usable due to inclement weather conditions. The spatial distribution of surface deformation data, derived from INSAR images, enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper reviews the basics of INSAR for volcanic deformation mapping and the INSAR studies of ten Aleutian volcanoes associated with both eruptive and noneruptive activity. These studies demonstrate that all-weather INSAR imaging can improve our understanding of how the Aleutian volcanoes work and enhance our capability to predict future eruptions and associated hazards.
NASA Astrophysics Data System (ADS)
Friebele, Elaine
Another weather-disrupting El Niño may be brewing in the Pacific Ocean, according to ocean measurements taken by NASA instruments on two orbiting satellites. Sea-surface height measurements taken by the radar altimeter on board the joint U.S.-French TOPEX/Poseidon satellite and wind data collected by the NASA scatterometer on Japan's Advanced Earth Observing Satellite (ADEOS) have been used together for the first time to predict changing weather conditions in the tropical Pacific Ocean.El Niño occurs when steady westward blowing trade winds weaken and reverse direction, moving the mass of warm water near Australia eastward to the coast of South America. The displacement of the warm water mass alters the atmospheric jet stream and weather patterns around the world. The TOPEX/Poseidon satellite uses an altimeter to bounce radar signals off the ocean's surface to make precise measurements of the distance between the satellite and sea surface. Researchers then map the barely perceptible hills and valleys of the sea surface by combining these data with measurements pinpointing the satellite's exact location in space.
NASA Astrophysics Data System (ADS)
Tominaga, M.; Beinlich, A.; Tivey, M.; Andrade Lima, E.; Weiss, B. P.
2012-12-01
The contribution of lower oceanic crust and upper mantle to marine magnetic anomalies has long been recognized, but the detailed magnetic character of this non-volcanic source layer remains to be fully defined. Here, we report preliminary results of a magnetic survey and source characterization of a "carbonated" oceanic Moho (petrological "Mohorovicic discontinuity") sequence observed at the Linnajavri Serpentinite Complex (LSC), northern Norway. The LSC is located at 67° 36'N and 16° 24'E within the upper Allochthon of the Norwegian Caledonides and represents a dismembered ophiolite. Particularly in the southern ("Ridoalggicohkka") area of the LSC, gabbro, serpentinite and its talc-carbonate (soapstone) and quartz-carbonate (listvenite) altered equivalents are extraordinarily well-exposed [1]. An intact oceanic Moho is exposed here, despite its complex tectonic setting. The small degree of arctic rock weathering (≤ 2 mm weathering surface) allowed for detailed regional-scale surface magnetic mapping across alteration fronts (serpentinite-soapstone; soapstone-listvenite) and lithological contacts (soapstone-gabbro). Magnetic mapping was conducted using a handheld 3-axis magnetometer, surface-towed resistivity meter and Teka surface magnetic susceptometer with sample spacing of 1 m. Geophysical field mapping was combined with petrological observations and scanning SQUID microscopy (SM) mapping conducted on thin sections from rock samples that were drilled along the survey lines. Regional scale magnetic mapping indicates that the total magnetic field across both the "carbonated" Moho and the soapstone-serpentinite interfaces show higher frequency changes in their magnetic anomaly character and amplitudes than the surface-towed resistivity data. SQUID microscopy mapping of both natural remanence magnetization (NRM) and anhysteretic remanence magnetization (ARM) on gabbro, serpentinite, soapstone, and listvenite samples, with a sensor-sample separation of ˜190 μm, show that the distribution of microscopically measurable ferromagnetic and possibly sulfide minerals produces a different bulk intensity for each of the rock types. SM vector magnetic field maps of these samples also reveal that the magnetization associated with these grains (observed as dipole-like fields in SM maps) is variable in direction from grain to grain, which may result from different alteration histories for each grain. These complex magnetization patterns acquired through thermal and chemical alteration history may explain the short wavelength magnetic anomalies observed along our traverse lines. [1] Beinlich, A., Plümper, O., Hövelmann, J., Austrheim, H. and Jamtveit, B. (2012), Terra Nova, in press.
NASA Astrophysics Data System (ADS)
Yahi, H.; Marticorena, B.; Thiria, S.; Chatenet, B.; Schmechtig, C.; Rajot, J. L.; Crepon, M.
2013-12-01
work aims at assessing the capability of passive remote-sensed measurements such as aerosol optical depth (AOD) to monitor the surface dust concentration during the dry season in the Sahel region (West Africa). We processed continuous measurements of AODs and surface concentrations for the period (2006-2010) in Banizoumbou (Niger) and Cinzana (Mali). In order to account for the influence of meteorological condition on the relationship between PM10 surface concentration and AOD, we decomposed the mesoscale meteorological fields surrounding the stations into five weather types having similar 3-dimensional atmospheric characteristics. This classification was obtained by a clustering method based on nonlinear artificial neural networks, the so-called self-organizing map. The weather types were identified by processing tridimensional fields of meridional and zonal winds and air temperature obtained from European Centre for Medium-Range Weather Forecasts (ECMWF) model output centered on each measurement station. Five similar weather types have been identified at the two stations. Three of them are associated with the Harmattan flux; the other two correspond to northward inflow of the monsoon flow at the beginning or the end of the dry season. An improved relationship has been found between the surface PM10 concentrations and the AOD by using a dedicated statistical relationship for each weather type. The performances of the statistical inversion computed on the test data sets show satisfactory skills for most of the classes, much better than a linear regression. This should permit the inversion of the mineral dust concentration from AODs derived from satellite observations over the Sahel.
Publication_Date: April, 2002 Title: pnw_50mwindnouma Geospatial_Data_Presentation_Form: vector digital data and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants. Abstract: Annual
Publication_Date: January, 2003 Title: midatl_50mwind Geospatial_Data_Presentation_Form: vector digital data historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants. Description: Abstract: Annual
Publication_Date: January, 2003 Title: ca_50mwind Geospatial_Data_Presentation_Form: vector digital data and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants. Description: Abstract
Climate-induced variations in global wildfire danger from 1979 to 2013
Jolly, W. Matt; Cochrane, Mark A.; Freeborn, Patrick H.; Holden, Zachary A.; Brown, Timothy J.; Williamson, Grant J.; Bowman, David M. J. S.
2015-01-01
Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have lengthened across 29.6 million km2 (25.3%) of the Earth's vegetated surface, resulting in an 18.7% increase in global mean fire weather season length. We also show a doubling (108.1% increase) of global burnable area affected by long fire weather seasons (>1.0 σ above the historical mean) and an increased global frequency of long fire weather seasons across 62.4 million km2 (53.4%) during the second half of the study period. If these fire weather changes are coupled with ignition sources and available fuel, they could markedly impact global ecosystems, societies, economies and climate. PMID:26172867
NASA Technical Reports Server (NTRS)
Mercanti, E. P.
1974-01-01
In less than two years of operation ERTS-1 is shown to have successfully completed its experimental mission and to be delivering an ever-increasing roster of benefits. The widening ERTS applications reviewed include air quality and weather modification, aid to oil exploration, ore-deposit exploration, short-lived event observation, flood area assessment and flood-plain mapping, land and water quality assessment, soil association mapping, crop production measurements, wildlife resources, drought and desertification studies, ground-water exploration, watershed surveys, snow and ice monitoring, surface water mapping, and iceberg surveys. Future projects and developments are also briefly reviewed.
NASA Technical Reports Server (NTRS)
Vaughan, Greg R.; Calvin, Wendy M.
2005-01-01
To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of acidic drainage that were identified remotely.
Power Class Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants. Description: Abstract: Annual average
NASA Astrophysics Data System (ADS)
Teng, W. L.; Shannon, H. D.
2013-12-01
The USDA World Agricultural Outlook Board (WAOB) is responsible for monitoring weather and climate impacts on domestic and foreign crop development. One of WAOB's primary goals is to determine the net cumulative effect of weather and climate anomalies on final crop yields. To this end, a broad array of information is consulted, including maps, charts, and time series of recent weather, climate, and crop observations; numerical output from weather and crop models; and reports from the press, USDA attachés, and foreign governments. The resulting agricultural weather assessments are published in the Weekly Weather and Crop Bulletin, to keep farmers, policy makers, and commercial agricultural interests informed of weather and climate impacts on agriculture. Because both the amount and timing of precipitation significantly affect crop yields, WAOB has often, as part of its operational process, used historical time series of surface-based precipitation observations to visually identify growing seasons with similar (analog) weather patterns as, and help estimate crop yields for, the current growing season. As part of a larger effort to improve WAOB estimates by integrating NASA remote sensing observations and research results into WAOB's decision-making environment, a more rigorous, statistical method for identifying analog years was developed. This method, termed the analog index (AI), is based on the Nash-Sutcliffe model efficiency coefficient. The AI was computed for five study areas and six growing seasons of data analyzed (2003-2007 as potential analog years and 2008 as the target year). Previously reported results compared the performance of AI for time series derived from surface-based observations vs. satellite-retrieved precipitation data. Those results showed that, for all five areas, crop yield estimates derived from satellite-retrieved precipitation data are closer to measured yields than are estimates derived from surface-based precipitation observations. Subsequent work has compared the relative performance of AI for time series derived from satellite-retrieved surface soil moisture data and from root zone soil moisture derived from the assimilation of surface soil moisture data into a land surface model. These results, which also showed the potential benefits of satellite data for analog year analyses, will be presented.
Anyamba, Assaf; Small, Jennifer L.; Britch, Seth C.; Tucker, Compton J.; Pak, Edwin W.; Reynolds, Curt A.; Crutchfield, James; Linthicum, Kenneth J.
2014-01-01
We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010–2012 period. We utilized 2000–2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused ∼10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations. PMID:24658301
National Centers for Environmental Prediction (NCEP)
Tropical Marine Fire Weather Forecast Maps Unified Surface Analysis Climate Climate Prediction Climate forecasts of hazardous flight conditions at all levels within domestic and international air space. Climate Prediction Center monitors and forecasts short-term climate fluctuations and provides information on the
NASA Astrophysics Data System (ADS)
Retherford, K. D.; Greathouse, T. K.; Mandt, K.; Gladstone, R.; Liu, Y.; Hendrix, A. R.; Hurley, D.; Cahill, J. T.; Stickle, A. M.; Egan, A.; Kaufmann, D. E.; Grava, C.; Pryor, W. R.
2016-12-01
Far ultraviolet reflectance measurements of the Moon, icy satellites, comets, and asteroids obtained within the last decade have ushered in a new era of scientific advancement for UV surface investigations. The Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) has demonstrated an innovative nightside observing technique, putting a new light on permanently shadowed regions (PSRs) and other features on the Moon. Dayside far-UV albedo maps complement the nightside data, and LRO's polar orbit and high data downlink capabilities enable searches for diurnal variations in spectral signals. We'll discuss the strengths of the far-UV reflectance imaging spectroscopy technique with respect to several new LAMP results. Detections of water frost and hydration signatures near 165 nm, for example, provide constraints on composition that complement infrared spectroscopy, visible imaging, neutron spectroscopy, radar, and other techniques. At far-UV wavelengths a relatively blue spectral slope is diagnostic of space weathering, which is opposite of the spectral reddening indicator of maturity at wavelengths longward of 180 nm. By utilizing natural diffuse illumination sources on the nightside the far-UV technique is able to identify relative increases in porosity within the PSRs, and provides an additional tool for determining relative surface ages. Prospects for future studies are further enabled by a new, more sensitive dayside operating mode enacted during the present LRO mission extension.
NASA Astrophysics Data System (ADS)
Dumont, Marc; Join, Jean-Lambert; Wendling, Valentin; Aunay, Bertrand
2017-04-01
Shield volcano islands come from the succession of constructive phases and destructive phases. In this complex geological setting, weathering and paleo-weathering profiles have a major impact on the critical zone hydrology. Nevertheless those underground structures are difficult to characterize, which leads to a leak of understanding of the water balance, infiltration, and ground water flows. Airborne transient electromagnetic method, as SkyTEM dispositive, allows to proceed regional 3D resistivity mapping with almost no topographic and vegetation limitations with an investigation depth higher than 300 m. Electromagnetics results are highly sensitive to conductive layers depending of clay content, water content and water mineralization. Skytem investigations are useful to characterize the thickness of the weathering profile and its lateral variations among large areas. In addition, it provides precise information about buried valleys and paleo-weathering of older lavas flows which control preferential groundwater flows. The French Geological Survey (BRGM) conducted a SkyTEM survey over Reunion Island (2500 km2). This survey yields on a dense 3D resistivity mapping. This continuous information is used to characterize the critical zone of the experimental watershed of Rivière des Pluies. A wide range of weathering profiles has been identified. Their variations are highly dependent of lava flow ages. Furthermore, 3D resistivity model highlights buried valleys characterized by specific weathering due to groundwater flows. Hydrogeological implication is a partitioning of groundwater flows in three different reservoirs: (i) deep basal aquifer, (ii) perched aquifers and (iii) superficial flows. The two latter behaviors have been characterized and mapped above our experimental watershed. The 3D manner of airborne electromagnetics results allows describing the continuity of weathering and alteration structures. The identification of specific groundwater flow paths provides a better understanding of the relation between the surface hydrology, the unsaturated medium and the basal aquifer. This study underlines the key role of volcanic underground structures in the critical zone flows.
Upgrade Summer Severe Weather Tool in MIDDS
NASA Technical Reports Server (NTRS)
Wheeler, Mark M.
2010-01-01
The goal of this task was to upgrade the severe weather database from the previous phase by adding weather observations from the years 2004 - 2009, re-analyze the data to determine the important parameters, make adjustments to the index weights depending on the analysis results, and update the MIDDS GUI. The added data increased the period of record from 15 to 21 years. Data sources included local forecast rules, archived sounding data, surface and upper air maps, and two severe weather event databases covering east-central Florida. Four of the stability indices showed increased severe weather predication. The Total Threat Score (TTS) of the previous work was verified for the warm season of 2009 with very good skill. The TTS Probability of Detection (POD) was 88% and the False alarm rate (FAR) of 8%. Based on the results of the analyses, the MIDDS Severe Weather Worksheet GUI was updated to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters and synoptic-scale dynamics.
Smart Cameras for Remote Science Survey
NASA Technical Reports Server (NTRS)
Thompson, David R.; Abbey, William; Allwood, Abigail; Bekker, Dmitriy; Bornstein, Benjamin; Cabrol, Nathalie A.; Castano, Rebecca; Estlin, Tara; Fuchs, Thomas; Wagstaff, Kiri L.
2012-01-01
Communication with remote exploration spacecraft is often intermittent and bandwidth is highly constrained. Future missions could use onboard science data understanding to prioritize downlink of critical features [1], draft summary maps of visited terrain [2], or identify targets of opportunity for followup measurements [3]. We describe a generic approach to classify geologic surfaces for autonomous science operations, suitable for parallelized implementations in FPGA hardware. We map these surfaces with texture channels - distinctive numerical signatures that differentiate properties such as roughness, pavement coatings, regolith characteristics, sedimentary fabrics and differential outcrop weathering. This work describes our basic image analysis approach and reports an initial performance evaluation using surface images from the Mars Exploration Rovers. Future work will incorporate these methods into camera hardware for real-time processing.
A Teaching-Learning Sequence about Weather Map Reading
ERIC Educational Resources Information Center
Mandrikas, Achilleas; Stavrou, Dimitrios; Skordoulis, Constantine
2017-01-01
In this paper a teaching-learning sequence (TLS) introducing pre-service elementary teachers (PET) to weather map reading, with emphasis on wind assignment, is presented. The TLS includes activities about recognition of wind symbols, assignment of wind direction and wind speed on a weather map and identification of wind characteristics in a…
NOAA/NWS Storm Prediction Center
Thunderstorm/Tornado Watches Mesoscale Discussions Convective Outlooks Thunderstorm Outlook Fire Weather Analysis Sounding Climatology Upper-Air Maps HREF HRRR Browser SREF SREF Plumes Fire Weather Composite Maps Convective Outlook. Critical fire weather conditions are forecast today. See details... Critical fire weather
The Nimbus satellites - Pioneering earth observers
NASA Technical Reports Server (NTRS)
White, Carolynne
1990-01-01
The many scientific achievements of the Nimbus series of seven satellites for low-altitude atmospheric research and global weather surveillance are reviewed. The series provides information on fishery resources, weather modeling, atmospheric pollution monitoring, earth's radiation budget, ozone monitoring, ocean dynamics, and the effects of cloudiness. Data produced by the forty-eight instruments and sensors flown on the satellites are applied in the fields of oceanography, hydrology, geology, geomorphology, geography, cartography, agriculture and meteorology. The instruments include the Coastal Zone Color Scanner (which depicts phytoplankton concentrations in coastal areas), the Scanning Multichannel Microwave Radiometer (which measures sea-surface temperatures and sea-surface wind-speed), and the Total Ozone Mapping Spectrometer (which provides information on total amounts of ozone in the earth's atmosphere).
Dawn Maps the Surface Composition of Vesta
NASA Technical Reports Server (NTRS)
Prettyman, T.; Palmer, E.; Reedy, R.; Sykes, M.; Yingst, R.; McSween, H.; DeSanctis, M. C.; Capaccinoni, F.; Capria, M. T.; Filacchione, G.;
2011-01-01
By 7-October-2011, the Dawn mission will have completed Survey orbit and commenced high altitude mapping of 4-Vesta. We present a preliminary analysis of data acquired by Dawn's Framing Camera (FC) and the Visual and InfraRed Spectrometer (VIR) to map mineralogy and surface temperature, and to detect and quantify surficial OH. The radiometric calibration of VIR and FC is described. Background counting data acquired by GRaND are used to determine elemental detection limits from measurements at low altitude, which will commence in November. Geochemical models used in the interpretation of the data are described. Thermal properties, mineral-, and geochemical-data are combined to provide constraints on Vesta s formation and thermal evolution, the delivery of exogenic materials, space weathering processes, and the origin of the howardite, eucrite, and diogenite (HED) meteorites.
Classification of surface types using SIR-C/X-SAR, Mount Everest Area, Tibet
Albright, Thomas P.; Painter, Thomas H.; Roberts, Dar A.; Shi, Jiancheng; Dozier, Jeff; Fielding, Eric
1998-01-01
Imaging radar is a promising tool for mapping snow and ice cover in alpine regions. It combines a high-resolution, day or night, all-weather imaging capability with sensitivity to hydrologic and climatic snow and ice parameters. We use the spaceborne imaging radar-C/X-band synthetic aperture radar (SIR-C/X-SAR) to map snow and glacial ice on the rugged north slope of Mount Everest. From interferometrically derived digital elevation data, we compute the terrain calibration factor and cosine of the local illumination angle. We then process and terrain-correct radar data sets acquired on April 16, 1994. In addition to the spectral data, we include surface slope to improve discrimination among several surface types. These data sets are then used in a decision tree to generate an image classification. This method is successful in identifying and mapping scree/talus, dry snow, dry snow-covered glacier, wet snow-covered glacier, and rock-covered glacier, as corroborated by comparison with existing surface cover maps and other ancillary information. Application of the classification scheme to data acquired on October 7 of the same year yields accurate results for most surface types but underreports the extent of dry snow cover.
NASA Technical Reports Server (NTRS)
Abrams, Michael; Abbott, Elsa; Kahle, Anne
1991-01-01
The weathering of Hawaiian basalts is accompanied by chemical and physical changes of the surfaces. These changes have been mapped using remote sensing data from the visible and reflected infrared and thermal infrared wavelength regions. They are related to the physical breakdown of surface chill coats, the development and erosion of silica coatings, the oxidation of mafic minerals, and the development of vegetation cover. These effects show systematic behavior with age and can be mapped using the image data and related to relative ages of pahoehoe and aa flows. The thermal data are sensitive to silica rind development and fine structure of the scene; the reflectance data show the degree of oxidation and differentiate vegetation from aa and cinders. Together, data from the two wavelength regions show more than either separately. The combined data potentially provide a powerful tool for mapping basalt flows in arid to semiarid volcanic environments.
Developing flood-inundation maps for Johnson Creek, Portland, Oregon
Stonewall, Adam J.; Beal, Benjamin A.
2017-04-14
Digital flood-inundation maps were created for a 12.9‑mile reach of Johnson Creek by the U.S. Geological Survey (USGS). The flood-inundation maps depict estimates of water depth and areal extent of flooding from the mouth of Johnson Creek to just upstream of Southeast 174th Avenue in Portland, Oregon. Each flood-inundation map is based on a specific water level and associated streamflow at the USGS streamgage, Johnson Creek at Sycamore, Oregon (14211500), which is located near the upstream boundary of the maps. The maps produced by the USGS, and the forecasted flood hydrographs produced by National Weather Service River Forecast Center can be accessed through the USGS Flood Inundation Mapper Web site (http://wimcloud.usgs.gov/apps/FIM/FloodInundationMapper.html).Water-surface elevations were computed for Johnson Creek using a combined one-dimensional and two‑dimensional unsteady hydraulic flow model. The model was calibrated using data collected from the flood of December 2015 (including the calculated streamflows at two USGS streamgages on Johnson Creek) and validated with data from the flood of January 2009. Results were typically within 0.6 foot (ft) of recorded or measured water-surface elevations from the December 2015 flood, and within 0.8 ft from the January 2009 flood. Output from the hydraulic model was used to create eight flood inundation maps ranging in stage from 9 to 16 ft. Boundary condition hydrographs were identical in shape to those from the December 2015 flood event, but were scaled up or down to produce the amount of streamflow corresponding to a specific water-surface elevation at the Sycamore streamgage (14211500). Sensitivity analyses using other hydrograph shapes, and a version of the model in which the peak flow is maintained for an extended period of time, showed minimal variation, except for overbank areas near the Foster Floodplain Natural Area.Simulated water-surface profiles were combined with light detection and ranging (lidar) data collected in 2014 to delineate water-surface extents for each of the eight modeled stages. The availability of flood-inundation maps in conjunction with real-time data from the USGS streamgages along Johnson Creek and forecasted hydrographs from the National Weather Service Northwest River Forecast Center will provide residents of the watershed and emergency management personnel with valuable information that may aid in flood response, including potential evacuations, road closures, and mitigation efforts. In addition, these maps may be used for post-flood recovery efforts.
NASA Astrophysics Data System (ADS)
Todeschini, Ilaria; Di Napoli, Claudia; Pretto, Ilaria; Merler, Giacomo; Cavaliere, Roberto; Apolloni, Roberto; Antonacci, Gianluca; Piazza, Andrea; Benedetti, Guido
2016-08-01
During the winter period ice is likely to form on roads, making pavement surfaces slippery and increasing accident risk. Road surface temperature (RST) is one of the most important parameters in ice formation. The LIFE+ "CLEANROADS" project aims to forecast RSTs in advance in order to support road maintenance services in the timely and effective preparation of preventive anti-icing measures. This support is provided through a novel MDSS (Maintenance Decision Support System). The final goal of the project is to quantitatively demonstrate that the implemented MDSS is capable to minimize the consumption of chemical anti-icing reagents (e.g. sodium chloride) and the associated environmental (water and air) impact while maintaining the current high levels of road safety. In the CLEAN-ROADS system RSTs have been forecast by applying the numerical model METRo (Model of the Environment and Temperature of Roads) to a network of RWIS (Road Weather Information System) stations installed on a test route in the Adige Valley (Italy). This forecast is however local and does not take into account typical peculiarities along road network, such as the presence of road sections that are particularly prone to ice formation. Thermal mapping, i.e. the acquisition of mobile RST measurements through infrared thermometry, permits to (i) identify and map those sections, and (ii) extend the forecast from a RWIS station to adjacent areas. The processing of thermal mapping signals is however challenging because of random variations in the road surface emissivity. To overcome this we have acquired several thermal mapping traces along the test route during winter seasons 2014-2015 and 2015-2016. We have then defined a "characteristic" thermal fingerprint as a function of all its historical thermal mapping signals, and used it to spatialize local METRo forecasts. Preliminary results suggest the high potential of such a technique for winter road applications.
Communist China. Section 23. Weather and Climate. Part 3 - North China
1964-06-01
Introduction 1 2. Climatic controls 2 a. General circulation and air masses 2 b. Migratory pressure systems and fronts 3 (1) Extratropical ...Sea-level pressure and surface airflow, January (map) 2 Fig. 2 Sea-level pressure and surface airflow, July (mop) 2 Fig. 3 Tracks of extratropical ...become weaker and less frequent as those of the invading monsoon become more prevalent. b. MIGRATORY PRESSURE SYSTEMS AND FRONTS (1) Extratropical
Global Ocean Forecast System (GOFS) Version 2.6. User’s Manual
2010-03-31
odimens.D, which takes the rivers.dat flow levels, inputs an SST and sea surface salinity (SSS) climatology from GDEM , and outputs the orivs_1.D...Center for Medium-range Weather Forecast GB GigaByte GDEM Global Digital Elevation Map GOFS Global Ocean Forecast System HPCMP High Performance
NASA Technical Reports Server (NTRS)
Kabuchanga, Eric; Flores, Africa; Malaso, Susan; Mungai, John; Sakwa, Vincent; Shaka, Ayub; Limaye, Ashutosh
2014-01-01
Frost is a major challenge across Eastern Africa, severely impacting agricultural farms. Frost damages have wide ranging economic implications on tea and coffee farms, which represent a major economic sector. Early monitoring and forecasting will enable farmers to take preventive actions to minimize the losses. Although clearly important, timely information on when to protect crops from freezing is relatively limited. MODIS Land Surface Temperature (LST) data, derived from NASA's Terra and Aqua satellites, and 72-hr weather forecasts from the Kenya Meteorological Service's operational Weather Research Forecast model are enabling the Regional Center for Mapping of Resources for Development (RCMRD) and the Tea Research Foundation of Kenya to provide timely information to farmers in the region. This presentation will highlight an ongoing collaboration among the Kenya Meteorological Service, RCMRD, and the Tea Research Foundation of Kenya to identify frost events and provide farmers with potential frost forecasts in Eastern Africa.
NASA Technical Reports Server (NTRS)
Gottschalck, Jon; Meng, Jesse; Rodel, Matt; Houser, paul
2005-01-01
Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the stocks and fluxes of water (including soil moisture, snow, evaporation, and runoff) and energy (including the temperature of and sensible heat released from the soil) after they arrive on the land surface as precipitation and sunlight. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy and space-time resolution. Hence LSMs have been developed to integrate the available observations with our understanding of the physical processes involved, using powerful computers, in order to map these stocks and fluxes as they change in time. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth's water cycle and climate variability. NASA's Global Land Data Assimilation System (GLDAS) project facilitates testing of several different LSMs with a variety of input datasets (e.g., precipitation, plant type). Precipitation is arguably the most important input to LSMs. Many precipitation datasets have been produced using satellite and rain gauge observations and weather forecast models. In this study, seven different global precipitation datasets were evaluated over the United States, where dense rain gauge networks contribute to reliable precipitation maps. We then used the seven datasets as inputs to GLDAS simulations, so that we could diagnose their impacts on output stocks and fluxes of water. In terms of totals, the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) had the closest agreement with the US rain gauge dataset for all seasons except winter. The CMAP precipitation was also the most closely correlated in time with the rain gauge data during spring, fall, and winter, while the satellitebased estimates performed best in summer. The GLDAS simulations revealed that modeled soil moisture is highly sensitive to precipitation, with differences in spring and summer as large as 45% depending on the choice of precipitation input.
Space Weathering on 4 Vesta: Processes and Products
NASA Technical Reports Server (NTRS)
Pieters, C. M.; Blewett, D. T.; Gaffey, M.; Mittlefehldt, D. W.; De Sanctis, M. C.; Reddy, V.; Nathues, A.; Denevi, B. W.; Li, J. Y.; McCord, T. B.;
2012-01-01
The bulk properties of Vesta have previously been linked directly to the howardite, eucrite, and diogenite (HED) meteorites through remote mineral characterization of its surface from Earth-based spectroscopy [e.g., 1]. A long-standing enigma has been why does Vesta s surface appear to have suffered so little alteration from the space environment, whereas materials exposed on the Moon and some S-type asteroids are significantly changed (grains develop rims containing nano-phase opaques [e.g. 2]). The Dawn spacecraft is well suited to address this issue and is half through its extended mapping phase of this remarkable proto-planet [3]. On a local scale Dawn sees evidence of recent exposures at craters, but distinctive surface materials blend into background at older craters. The presence of space weathering processes are thus evident at Vesta, but the character and form are controlled by the unique environment and geologic history of this small body.
Peper, John D.; McCartan, Lucy; Horton, J. Wright; Reddy, James E.
2001-01-01
This preliminary experimental lithogeochemical map shows the distribution of rock types in the Virginia and Maryland parts of the Chesapeake Bay watershed. The map was produced digitally by classifying geologic-map units according to composition, mineralogy, and texture; rather than by age and stratigraphic relationships as shown on traditional geologic maps. This map differs from most lithologic maps in that the lithogeochemical unit classification distinguishes those rock units having key water-reactive minerals that may induce acid neutralization, or reduction, of hosted water at the weathering interface. The validity of these rock units, however, is independent of water chemistry, because the rock units are derived from geologic maps and rock descriptions. Areas of high soil carbon content, and sulfide metal deposits are also shown. Water-reactive minerals and their weathering reactions yield five lithogeochemical unit classes: 1) carbonate rock and calcareous rocks and sediments, the most acid-neutralizing; 2)carbonaceous-sulfidic rocks and sediments, oxygen-depleting and reducing; 3) quartzofeldspathic rocks and siliciclastic sediments, relatively weakly reactive with water; 4) mafic silicate rocks/sediments, oxygen consuming and high solute-load delivering; and, 5) the rarer calcareous-sulfidic (carbonaceous) rocks, neutralizing and reducing. Earlier studies in some parts of the map area have related solute loads in ground and stream waters to some aspects of bedrock lithology. More recent preliminary tests of relationships between four of the classes of mapped lithogeochemical units and ground water chemistry, in the Mid-Atlantic area using this map, have focused on and verified the nitrate-reducing and acid-neutralizing properties of some bedrock and unconsolidated aquifer rock types. Sulfide mineral deposits and their mine-tailings effects on waters are beginning to be studied by others. Additional testing of relationships among the lithogeochemical units and aspects of ground and surface water chemistry could help to refine the lithogeochemical classification, and this map. The testing could also improve the usefulness of the map for assessing aquifer reactivity and the transport properties of reactive contaminants such as acid rain, and nitrate from agricultural sources, in the Chesapeake Bay watershed.
Self-Organizing Maps-based ocean currents forecasting system.
Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir
2016-03-16
An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training.
Self-Organizing Maps-based ocean currents forecasting system
Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir
2016-01-01
An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training. PMID:26979129
NASA Technical Reports Server (NTRS)
Carroll, Mark; Wooten, Margaret; DiMiceli, Charlene; Sohlberg, Robert; Kelly, Maureen
2016-01-01
The availability of a dense time series of satellite observations at moderate (30 m) spatial resolution is enabling unprecedented opportunities for understanding ecosystems around the world. A time series of data from Landsat was used to generate a series of three maps at decadal time step to show how surface water has changed from 1991 to 2011 in the high northern latitudes of North America. Previous attempts to characterize the change in surface water in this region have been limited in either spatial or temporal resolution, or both. This series of maps was generated for the NASA Arctic and Boreal Vulnerability Experiment (ABoVE), which began in fall 2015. These maps show a nominal extent of surface water by using multiple observations to make a single map for each time step. This increases the confidence that any detected changes are related to climate or ecosystem changes not simply caused by short duration weather events such as flood or drought. The methods and comparison to other contemporary maps of the region are presented here. Initial verification results indicate 96% producer accuracy and 54% user accuracy when compared to 2-m resolution World View-2 data. All water bodies that were omitted were one Landsat pixel or smaller, hence below detection limits of the instrument.
2012-08-04
This global map of Mars was acquired on Oct. 28, 2008, by the Mars Color Imager instrument on NASA MRO. One global map is generated each day to forecast weather conditions for the entry, descent and landing of NASA Curiosity rover.
Forensic analysis of rockfall scars
NASA Astrophysics Data System (ADS)
de Vilder, Saskia J.; Rosser, Nick J.; Brain, Matthew J.
2017-10-01
We characterise and analyse the detachment (scar) surfaces of rockfalls to understand the mechanisms that underpin their failure. Rockfall scars are variously weathered and comprised of both discontinuity release surfaces and surfaces indicative of fracturing through zones of previously intact rock, known as rock bridges. The presence of rock bridges and pre-existing discontinuities is challenging to quantify due to the difficulty in determining discontinuity persistence below the surface of a rock slope. Rock bridges form an important control in holding blocks onto rockslopes, with their frequency, extent and location commonly modelled from the surface exposure of daylighting discontinuities. We explore an alternative approach to assessing their role, by characterising failure scars. We analyse a database of multiple rockfall scar surfaces detailing the areal extent, shape, and location of broken rock bridges and weathered surfaces. Terrestrial laser scanning and gigapixel imagery were combined to record the detailed texture and surface morphology. From this, scar surfaces were mapped via automated classification based on RGB pixel values. Our analysis of the resulting data from scars on the North Yorkshire coast (UK) indicates a wide variation in both weathering and rock bridge properties, controlled by lithology and associated rock mass structure. Importantly, the proportion of rock bridges in a rockfall failure surface does not increase with failure size. Rather larger failures display fracturing through multiple rock bridges, and in contrast smaller failures fracture occurs only through a single critical rock bridge. This holds implications for how failure mechanisms change with rockfall size and shape. Additionally, the location of rock bridges with respect to the geometry of an incipient rockfall is shown to determine failure mode. Weathering can occur both along discontinuity surfaces and previously broken rock bridges, indicating the sequential stages of progressively detaching rockfall. Our findings have wider implications for hazard assessment where rock slope stability is dependent on the nature of rock bridges, how this is accounted for in slope stability modelling, and the implications of rock bridges on long-term rock slope evolution.
CPC - Monitoring & Data: Rest of the World Climate Data
produces maps and time series for precipitation and surface temperatures for Africa, Asia, Europe, South - The CPC monitors weather and climate in real time with the aid of satellite animations, conventional , intraseasonal, seasonal and annual time scales are highlighted. The CPC also collects time series of accumulated
2012-08-10
This global map of Mars was acquired on Aug. 5, 2012, by the Mars Color Imager instrument on NASA MRO. One global map is generated each day to forecast weather conditions for the entry, descent and landing of NASA Curiosity rover.
Demonstrating the Alaska Ocean Observing System in Prince William Sound
NASA Astrophysics Data System (ADS)
Schoch, G. Carl; McCammon, Molly
2013-07-01
The Alaska Ocean Observing System and the Oil Spill Recovery Institute developed a demonstration project over a 5 year period in Prince William Sound. The primary goal was to develop a quasi-operational system that delivers weather and ocean information in near real time to diverse user communities. This observing system now consists of atmospheric and oceanic sensors, and a new generation of computer models to numerically simulate and forecast weather, waves, and ocean circulation. A state of the art data management system provides access to these products from one internet portal at http://www.aoos.org. The project culminated in a 2009 field experiment that evaluated the observing system and performance of the model forecasts. Observations from terrestrial weather stations and weather buoys validated atmospheric circulation forecasts. Observations from wave gages on weather buoys validated forecasts of significant wave heights and periods. There was an emphasis on validation of surface currents forecasted by the ocean circulation model for oil spill response and search and rescue applications. During the 18 day field experiment a radar array mapped surface currents and drifting buoys were deployed. Hydrographic profiles at fixed stations, and by autonomous vehicles along transects, were made to acquire measurements through the water column. Terrestrial weather stations were the most reliable and least costly to operate, and in situ ocean sensors were more costly and considerably less reliable. The radar surface current mappers were the least reliable and most costly but provided the assimilation and validation data that most improved ocean circulation forecasts. We describe the setting of Prince William Sound and the various observational platforms and forecast models of the observing system, and discuss recommendations for future development.
Simulation and Data Analytics for Mobile Road Weather Sensors
NASA Astrophysics Data System (ADS)
Chettri, S. R.; Evans, J. D.; Tislin, D.
2016-12-01
Numerous algorithmic and theoretical considerations arise in simulating a vehicle-based weather observation network known as the Mobile Platform Environmental Data (MoPED). MoPED integrates sensor data from a fleet of commercial vehicles (about 600 at last count, with thousands more to come) as they travel interstate, state and local routes and metropolitan areas throughout the conterminous United States. The MoPED simulator models a fleet of anywhere between 1000-10,000 vehicles that travel a highway network encoded in a geospatial database, starting and finishing at random times and moving at randomly-varying speeds. Virtual instruments aboard these vehicles interpolate surface weather parameters (such as temperature and pressure) from the High-Resolution Rapid Refresh (HRRR) data series, an hourly, coast-to-coast 3km grid of weather parameters modeled by the National Centers for Environmental Prediction. Whereas real MoPED sensors have noise characteristics that lead to drop-outs, drift, or physically unrealizable values, our simulation introduces a variety of noise distributions into the parameter values inferred from HRRR (Fig. 1). Finally, the simulator collects weather readings from the National Weather Service's Automated Surface Observation System (ASOS, comprised of over 800 airports around the country) for comparison, validation, and analytical experiments. The simulator's MoPED-like weather data stream enables studies like the following: Experimenting with data analysis and calibration methods - e.g., by comparing noisy vehicle data with ASOS "ground truth" in close spatial and temporal proximity (e.g., 10km, 10 min) (Fig. 2). Inter-calibrating different vehicles' sensors when they pass near each other. Detecting spatial structure in the surface weather - such as dry lines, sudden changes in humidity that accompany severe weather - and estimating how many vehicles are needed to reliably map these structures and their motion. Detecting bottlenecks in the MoPED data infrastructure to ensure real-time data filtering and dissemination as number of vehicles scales up; or tuning the data structures needed to keep track of individual sensor calibrations. Expanding the analytical and data management approach to other mobile weather sensors such as smartphones.
Severe Weather Forecast Decision Aid
NASA Technical Reports Server (NTRS)
Bauman, William H., III; Wheeler, Mark M.; Short, David A.
2005-01-01
This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.
Mars Weather Map, Aug. 2, 2012
2012-08-04
This global map of Mars was acquired on Aug. 2, 2012, by the Mars Color Imager instrument on NASA Mars Reconnaissance Orbiter. One global map is generated each day to forecast weather conditions for the entry, descent and landing of NASA Curiosity.
NASA Technical Reports Server (NTRS)
Halpern, D.; Zlotnicki, V.; Newman, J.; Brown, O.; Wentz, F.
1991-01-01
Monthly mean global distributions for 1988 are presented with a common color scale and geographical map. Distributions are included for sea surface height variation estimated from GEOSAT; surface wind speed estimated from the Special Sensor Microwave Imager on the Defense Meteorological Satellite Program spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer on NOAA spacecrafts; and the Cartesian components of the 10m height wind vector computed by the European Center for Medium Range Weather Forecasting. Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.
Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping
NASA Astrophysics Data System (ADS)
Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.
2017-12-01
Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.
Weather or Not To Teach Junior High Meteorology.
ERIC Educational Resources Information Center
Knorr, Thomas P.
1984-01-01
Presents a technique for teaching meteorology allowing students to observe and analyze consecutive weather maps and relate local conditions; a model illustrating the three-dimensional nature of the atmosphere is employed. Instructional methods based on studies of daily weather maps to trace systems sweeping across the United States are discussed.…
Kelly, Brian P.; Huizinga, Richard J.
2008-01-01
In the interest of improved public safety during flooding, the U.S. Geological Survey, in cooperation with the city of Kansas City, Missouri, completed a flood-inundation study of the Blue River in Kansas City, Missouri, from the U.S. Geological Survey streamflow gage at Kenneth Road to 63rd Street, of Indian Creek from the Kansas-Missouri border to its mouth, and of Dyke Branch from the Kansas-Missouri border to its mouth, to determine the estimated extent of flood inundation at selected flood stages on the Blue River, Indian Creek, and Dyke Branch. The results of this study spatially interpolate information provided by U.S. Geological Survey gages, Kansas City Automated Local Evaluation in Real Time gages, and the National Weather Service flood-peak prediction service that comprise the Blue River flood-alert system and are a valuable tool for public officials and residents to minimize flood deaths and damage in Kansas City. To provide public access to the information presented in this report, a World Wide Web site (http://mo.water.usgs.gov/indep/kelly/blueriver) was created that displays the results of two-dimensional modeling between Hickman Mills Drive and 63rd Street, estimated flood-inundation maps for 13 flood stages, the latest gage heights, and National Weather Service stage forecasts for each forecast location within the study area. The results of a previous study of flood inundation on the Blue River from 63rd Street to the mouth also are available. In addition the full text of this report, all tables and maps are available for download (http://pubs.usgs.gov/sir/2008/5068). Thirteen flood-inundation maps were produced at 2-foot intervals for water-surface elevations from 763.8 to 787.8 feet referenced to the Blue River at the 63rd Street Automated Local Evaluation in Real Time stream gage operated by the city of Kansas City, Missouri. Each map is associated with gages at Kenneth Road, Blue Ridge Boulevard, Kansas City (at Bannister Road), U.S. Highway 71, and 63rd Street on the Blue River, and at 103rd Street on Indian Creek. The National Weather Service issues peak stage forecasts for Blue Ridge Boulevard, Kansas City (at Bannister Road), U.S. Highway 71, and 63rd Street during floods. A two-dimensional depth-averaged flow model simulated flooding within a hydraulically complex, 5.6-mile study reach of the Blue River between Hickman Mills Drive and 63rd Street. Hydraulic simulation of the study reach provided information for the estimated flood-inundation maps and water-velocity magnitude and direction maps. Flood profiles of the upper Blue River between the U.S. Geological Survey streamflow gage at Kenneth Road and Hickman Mills Drive were developed from water-surface elevations calculated using Federal Emergency Management Agency flood-frequency discharges and 2006 stage-discharge ratings at U.S. Geological Survey streamflow gages. Flood profiles between Hickman Mills Drive and 63rd Street were developed from two-dimensional hydraulic modeling conducted for this study. Flood profiles of Indian Creek between the Kansas-Missouri border and the mouth were developed from water-surface elevations calculated using current stage-discharge ratings at the U.S. Geological Survey streamflow gage at 103rd Street, and water-surface slopes derived from Federal Emergency Management Agency flood-frequency stage-discharge relations. Mapped flood water-surface elevations at the mouth of Dyke Branch were set equal to the flood water-surface elevations of Indian Creek at the Dyke Branch mouth for all Indian Creek water-surface elevations; water-surface elevation slopes were derived from Federal Emergency Management Agency flood-frequency stage-discharge relations.
Wet Snow Mapping in Southern Ontario with Sentinel-1A Observations
NASA Astrophysics Data System (ADS)
Chen, H.; Kelly, R. E. J.
2017-12-01
Wet snow is defined as snow with liquid water present in an ice-water mix. It is can be an indicator for the onset of the snowmelt period. Knowledge about the extent of wet snow area can be of great importance for the monitoring of seasonal snowmelt runoff with climate-induced changes in snowmelt duration having implications for operational hydrological and ecological applications. Spaceborne microwave remote sensing has been used to observe seasonal snow under all-weather conditions. Active microwave observations of snow at C-band are sensitive to wet snow due to the high dielectric contrast with non-wet snow surfaces and synthetic aperture radar (SAR) is now openly available to identify and map the wet snow areas globally at relatively fine spatial resolutions ( 100m). In this study, a semi-automated workflow is developed from the change detection method of Nagler et al. (2016) using multi-temporal Sentinel-1A (S1A) dual-polarization observations of Southern Ontario. Weather station data and visible-infrared satellite observations are used to refine the wet snow area estimates. Wet snow information from National Operational Hydrologic Remote Sensing Center (NOHRSC) is used to compare with the S1A estimates. A time series of wet snow maps shows the variations in backscatter from wet snow on a pixel basis. Different land cover types in Southern Ontario are assessed with respect to their impacts on wet snow estimates. While forests and complex land surfaces can impact the ability to map wet snow, the approach taken is robust and illustrates the strong sensitivity of the approach to wet snow backscattering characteristics. The results indicate the feasibility of the change detection method on non-mountainous large areas and address the usefulness of Sentinel-1A data for wet snow mapping.
NASA Astrophysics Data System (ADS)
Bailey, S. W.; Ross, D. S.
2015-12-01
Primary mineral dissolution (i.e. weathering) is a critical process in forested catchments as an important consumer of acidity and CO2, the principle source of nutrients such as Ca, K, and P, as well as the source of toxic cations such as Al. Two common limitations of weathering studies are inadequate determination of mineralogic composition and insufficient sampling depth to determine location and advancement of weathering reactions. We determined mineral stocks through EPMA mapping of Al, Ca, Fe, P, and Si content of soil samples and development of an image analysis routine that assigned mineral composition based on the content of these five elements. Portions of the classified maps were confirmed by optical petrography and full elemental analysis by SEM-EDS. Samples were analyzed for soil profiles >2m depth (~1.5m past the upper boundary of the "unweathered" C horizon). Study sites spanned a range of weatherability found in catchments in glaciated northeastern USA including Winnisook, NY (sandstone parent material, 100 ppm Ca), Hubbard Brook, NH (granite, 0.9% Ca), and Sleepers River, VT (calcareous granulite, 3.5% Ca). All profiles exhibited a weathering front, or threshold above which the most reactive minerals (calcite, apatite) have been depleted. However, in all cases this threshold was below the rooting zone, and in many profiles, it was well below the C horizon interface. Catchment scale Ca exports reflect this deeper weathering source while rooting zone exchangeable Ca was highly variable, probably reflecting spatial patterns of hydrologic flowpaths which bring deeper weathering products to the surface only in certain landscape positions. These results suggest that nutrient cycling and critical loads models, which assume that ecologically relevant weathering is confined to the rooting zone, need to be refined to account for deeper weathering and spatial patterns of lateral and upward hydrologic fluxes. Similarly, recovery from cultural acidification may be limited in portions of catchments where hydrologic connections do not provide a vehicle for weathering products to recharge the biologically active portion of the subsurface.
Ohio River backwater flood-inundation maps for the Saline and Wabash Rivers in southern Illinois
Murphy, Elizabeth A.; Sharpe, Jennifer B.; Soong, David T.
2012-01-01
Digital flood-inundation maps for the Saline and Wabash Rivers referenced to elevations on the Ohio River in southern Illinois were created by the U.S. Geological Survey (USGS). The inundation maps, accessible through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Ohio River at Old Shawneetown, Illinois-Kentucky (station number 03381700). Current gage height and flow conditions at this USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?03381700. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That NWS forecasted peak-stage information, also shown on the Ohio River at Old Shawneetown inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, eight water-surface elevations were mapped at 5-foot (ft) intervals referenced to the streamgage datum ranging from just above the NWS Action Stage (31 ft) to above the maximum historical gage height (66 ft). The elevations of the water surfaces were compared to a Digital Elevation Model (DEM) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage heights from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
Roland, Mark A.; Hoffman, Scott A.
2011-01-01
Streamflow data, water-surface-elevation profiles derived from a Hydrologic Engineering Center River Analysis System hydraulic model, and geographical information system digital elevation models were used to develop a set of 18 flood-inundation maps for an approximately 5-mile reach of the West Branch Susquehanna River near the Borough of Jersey Shore, Pa. The inundation maps were created by the U.S. Geological Survey in cooperation with the Susquehanna River Basin Commission and Lycoming County as part of an ongoing effort by the National Oceanic and Atmospheric Administration's National Weather Service to focus on continued improvements to the flood forecasting and warning abilities in the Susquehanna River Basin and to modernize flood-forecasting methodologies. The maps, ranging from 23.0 to 40.0 feet in 1-foot increments, correspond to river stage at the U.S. Geological Survey streamgage 01549760 at Jersey Shore. The electronic files used to develop the maps were provided to the National Weather Service for incorporation into their Advanced Hydrologic Prediction Service website. The maps are displayed on this website, which serves as a web-based floodwarning system, and can be used to identify areas of predicted flood inundation associated with forecasted flood-peak stages. During times of flooding or predicted flooding, these maps can be used by emergency managers and the public to take proactive steps to protect life and reduce property damage caused by floods.
NASA Technical Reports Server (NTRS)
1975-01-01
The Viking program, its characteristics, goals, and investigations are described. The program consists of launching two spacecraft to Mars in 1975 to soft-land on the surface and test for signs of life. Topics discussed include the launch, the journey through space, tracking, Mars orbit and landing, experiments on the search for life, imaging systems, lander camera, water detection experiments, thermal mapping, and a possible weather station on Mars.
Math on a Sphere: Making Use of Public Displays in Education
ERIC Educational Resources Information Center
Eisenberg, Michael; Basman, Antranig; Hsi, Sherry
2013-01-01
Science on a Sphere (SoS) is a compelling educational display installed at numerous museums and planetariums around the world; essentially the SoS display is a large spherical surface on which multicolor high-resolution depictions of (e.g.) planetary weather maps may be depicted. Fascinating as the SoS display is, however, it is in practice…
Comparing morphologies of drainage basins on Mars and Earth using integral-geometry and neural maps
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Coradetti, S.
2004-01-01
We compare morphologies of drainage basins on Mars and Earth in order to confine the formation process of Martian valley networks. Basins on both planets are computationally extracted from digital topography. Integral-geometry methods are used to represent each basin by a circularity function that encapsulates its internal structure. The shape of such a function is an indicator of the style of fluvial erosion. We use the self-organizing map technique to construct a similarity graph for all basins. The graph reveals systematic differences between morphologies of basins on the two planets. This dichotomy indicates that terrestrial and Martian surfaces were eroded differently. We argue that morphologies of Martian basins are incompatible with runoff from sustained, homogeneous rainfall. Fluvial environments compatible with observed morphologies are discussed. We also construct a similarity graph based on the comparison of basins hypsometric curves to demonstrate that hypsometry is incapable of discriminating between terrestrial and Martian basins. INDEX TERMS: 1824 Hydrology: Geomorphology (1625); 1886 Hydrology: Weathering (1625); 5415 Planetology: Solid Surface Planets: Erosion and weathering; 6225 Planetology: Solar System Objects Mars. Citation: Stepinski, T. F., and S. Coradetti (2004), Comparing morphologies of drainage basins on Mars and Earth using integral-ge
CPC - Monitoring & Data: Pacific Island Climate Data
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > Monitoring and Data > Pacific Islands Climate Data & Maps island stations. NOAA/ National Weather Service NOAA Center for Weather and Climate Prediction Climate
Managing an archive of weather satellite images
NASA Technical Reports Server (NTRS)
Seaman, R. L.
1992-01-01
The author's experiences of building and maintaining an archive of hourly weather satellite pictures at NOAO are described. This archive has proven very popular with visiting and staff astronomers - especially on windy days and cloudy nights. Given access to a source of such pictures, a suite of simple shell and IRAF CL scripts can provide a great deal of robust functionality with little effort. These pictures and associated data products such as surface analysis (radar) maps and National Weather Service forecasts are updated hourly at anonymous ftp sites on the Internet, although your local Atsmospheric Sciences Department may prove to be a more reliable source. The raw image formats are unfamiliar to most astronomers, but reading them into IRAF is straightforward. Techniques for performing this format conversion at the host computer level are described which may prove useful for other chores. Pointers are given to sources of data and of software, including a package of example tools. These tools include shell and Perl scripts for downloading pictures, maps, and forecasts, as well as IRAF scripts and host level programs for translating the images into IRAF and GIF formats and for slicing & dicing the resulting images. Hints for displaying the images and for making hardcopies are given.
Flood-inundation maps for the Tippecanoe River near Delphi, Indiana
Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.
2013-01-01
Digital flood-inundation maps for an 11-mile reach of the Tippecanoe River that extends from County Road W725N to State Road 18 below Oakdale Dam, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03333050, Tippecanoe River near Delphi, Ind. Current conditions at the USGS streamgages in Indiana may be obtained online at http://waterdata.usgs.gov/in/nwis/current/?type=flow. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at USGS streamgage 03333050, Tippecanoe River near Delphi, Ind., and USGS streamgage 03332605, Tippecanoe River below Oakdale Dam, Ind. The hydraulic model was then used to simulate 13 water-surface profiles for flood stages at 1-foot intervals reference to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. A flood inundation map was generated for each water-surface profile stage (13 maps in all) so that, for any given flood stage, users will be able to view the estimated area of inundation. The availability of these maps, along with current stage from USGS streamgages and forecasted stream stages from the NWS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
NASA Technical Reports Server (NTRS)
Kahle, Anne B.; Gillespie, Alan R.; Abbott, Elsa A.; Abrams, Michael J.; Walker, Richard E.
1988-01-01
The weathering of Hawaiian basalts in arid and semiarid environments is accompanied by changes in their thermal infrared emittance spectra. The spectral differences can be measured and mapped with multispectral imaging systems. The differences appear to be related to the degree of development, preservation, and alteration of glassy crusts; the oxidation of iron; and the accretion of silica-rich surface veneers. Because the measurements are quantitative and in image format, they are useful for estimating relative ages in geologic mapping of lava flows. In Hawaii this technique is most diagnostic for distinguishing among sparsely vegetated flows less than 1.5 ka in age.
Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014
Peters, Arin J.; Studley, Seth E.
2016-01-25
Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The simulated water-surface profiles were then combined in a geographic information system with a digital elevation model derived from light detection and ranging data (having a 0.429-foot vertical and 0.228-foot horizontal accuracy) to delineate the area flooded at each water level.The availability of these maps, along with Web information regarding current stage from the U.S. Geological Survey streamgages and forecasted high-flow stages from the National Weather Service, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations, road closures, and postflood recovery efforts.
Hail Size Distribution Mapping
NASA Technical Reports Server (NTRS)
2008-01-01
A 3-D weather radar visualization software program was developed and implemented as part of an experimental Launch Pad 39 Hail Monitor System. 3DRadPlot, a radar plotting program, is one of several software modules that form building blocks of the hail data processing and analysis system (the complete software processing system under development). The spatial and temporal mapping algorithms were originally developed through research at the University of Central Florida, funded by NASA s Tropical Rainfall Measurement Mission (TRMM), where the goal was to merge National Weather Service (NWS) Next-Generation Weather Radar (NEXRAD) volume reflectivity data with drop size distribution data acquired from a cluster of raindrop disdrometers. In this current work, we adapted these algorithms to process data from a cluster of hail disdrometers positioned around Launch Pads 39A or 39B, along with the corresponding NWS radar data. Radar data from all NWS NEXRAD sites is archived at the National Climatic Data Center (NCDC). That data can be readily accessed at
National Maps - Pacific - NOAA's National Weather Service
select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News
TOPEX/POSEIDON - Mapping the ocean surface
NASA Technical Reports Server (NTRS)
Yamarone, C. A.; Rosell, S.; Farless, D. L.
1986-01-01
Global efforts are under way to model the earth as a complete planet so that weather patterns may be predicted on time scales of months and years. A major limitation in developing models of global weather is the inability to model the circulation of the oceans including the geostrophic surface currents. NASA will soon be initiating a satellite program to correct this deficiency by directly measuring these currents using the science of radar altimetry. Measurement of the ocean topography with broad, frequent coverage of all ocean basins for a long period of time will allow the derivation of the spatial and temporal behavior of surface ocean currents. The TOPEX/POSEIDON mission is a cooperative effort between NASA and the French Centre National d'Etudes Spatiales. This paper describes the goals of this research mission, the data type to be acquired, the satellite and sensors to be used to acquire the data, and the methods by which the data are to be processed and utilized.
NASA Technical Reports Server (NTRS)
Conel, J. E.
1983-01-01
NS-001 multispectral scanner data (0.45-2.35 micron) combined as principal components were utilized to map distributions of surface oxidation/weathering in Precambrian granitic rocks at Copper Mountain, Wyoming. Intense oxidation is found over granitic outcrops in partly exhumed pediments along the southern margin of the Owl Creek uplift, and along paleodrainages higher in the range. Supergene(?) uranium mineralization in the granites is localized beneath remnant Tertiary sediments covering portions of the pediments. The patterns of mineralization and oxidation are in agreement, but the genetic connections between the two remain in doubt.
Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin
Massada, Avi Bar; Radeloff, Volker C.; Stewart, Susan I.; Hawbaker, Todd J.
2009-01-01
The rapid growth of housing in and near the wildland–urban interface (WUI) increases wildfirerisk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfirerisk to a 60,000 ha WUI area in northwesternWisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfirerisk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfirerisk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfirerisk and those most vulnerable under extreme weather conditions.
NASA Astrophysics Data System (ADS)
Leverington, D. W.
2008-12-01
The use of remote-sensing techniques in the discrimination of rock and soil classes in northern regions can help support a diverse range of activities including environmental characterization, mineral exploration, and the study of Quaternary paleoenvironments. Images of low spectral resolution can commonly be used in the mapping of lithological classes possessing distinct spectral characteristics, but hyperspectral databases offer greater potential for discrimination of materials distinguished by more subtle reflectance properties. Orbiting sensors offer an especially flexible and cost-effective means for acquisition of data to workers unable to conduct airborne surveys. In an effort to better constrain the utility of hyperspectral datasets in northern research, this study undertook to investigate the effectiveness of EO-1 Hyperion data in the discrimination and mapping of surface classes at a study area on Melville Island, Nunavut. Bedrock units in the immediate study area consist of late-Paleozoic clastic and carbonate sequences of the Sverdrup Basin. Weathered and frost-shattered felsenmeer, predominantly taking the form of boulder- to pebble-sized clasts that have accumulated in place and that mantle parent bedrock units, is the most common surface material in the study area. Hyperion data were converted from at-sensor radiance to reflectance, and were then linearly unmixed on the basis of end-member spectra measured from field samples. Hyperion unmixing results effectively portray the general fractional cover of six end members, although the fraction images of several materials contain background values that in some areas overestimate surface exposure. The best separated end members include the snow, green vegetation, and red-weathering sandstone classes, whereas the classes most negatively affected by elevated fraction values include the mudstone, limestone, and 'other' sandstone classes. Local overestimates of fractional cover are likely related to the shared lithological and weathering characteristics of several clastic and carbonate units, and may also be related to the lower radiometric precision characteristic of Hyperion data. Despite these issues, the databases generated in this study successfully provide useful complementary information to that provided by maps of local bedrock geology.
The Synoptic Climatology of Severe Thunderstorms in Manitoba.
NASA Astrophysics Data System (ADS)
Ladochy, Stephen Eugene Gabriel
The thesis presents the climatologies for Manitoba thunderstorms, hailstorms and tornadoes as well as investigates the synoptic weather conditions conducive for their development. The study not only uses standard meteorological information, but also various kinds of proxy data, in the form of damage reports. These damage reports complement the meteorological data by providing a higher resolution of observations, particularly in the sparsely populated regions. The synoptic conditions are relatively similar for all forms of severe thunderstorms, though the upper level jet stream (ULJ) is stronger for tornadoes, in general. Composite charts, drawn for 50 larger, more damaging hail days and 48 tornado days in the 1970's, helped identify important surface and upper air weather parameters and their inter -relationships with each other and the location of the storm. Time sequence composite charts were used to also show the development process in severe weather occurrences. From the composites, a synoptic weather type classification was devised with 10 categories to identify each storm by type. The most common pattern for severe weather has a strong southwesterly ULJ, with the storm occurring ahead of an advancing cold front. The ULJ patterns were drawn for each synoptic type days, showing differences between categories. The average conditions during tornado touchdowns were also seen from composite maps of surface and upper air isobaric charts. While severe thunderstorms are seen to occur under the "ideal" conditions, often described for U.S. severe weather, they can also be produced under other weather patterns and combinations of atmospheric parameters thought less favorable. The ULJ and LLJ (low-level jet stream) models used in U.S. studies do not always fit Manitoba storms, however, less favorable jet positions, at specific levels, can be compensated for by low-level advection of warm, and moist air.
Mars Weather Map, Aug. 4, 2012
2012-08-05
This global map of Mars was acquired on Aug. 4, 2012, by the Mars Color Imager instrument on NASA Mars Reconnaissance Orbiter to forecast weather conditions for the entry, descent and landing of NASA Curiosity rover.
NASA Astrophysics Data System (ADS)
Greenwood, William; Clark, Marin; Zekkos, Dimitrios; Von Voigtlander, Jennifer; Bateman, Julie; Lowe, Katherine; Hirose, Mitsuhito; Anderson, Suzanne; Anderson, Robert; Lynch, Jerome
2016-04-01
A field and laboratory experimental study was conducted to assess the influence of weathering on the mechanical properties of basalts in the region of the Kohala volcano on the island of Hawaii. Through the systematic characterization of the weathering profiles developed in different precipitation regimes, we aim to explain the regional pattern of stability of slopes in layered basalts that were observed during the 2006 Mw 6.7 Kiholo Bay earthquake. While deeper weathering profiles on the wet side of the island might be expected to promote more and larger landslides, the distribution of landslides during the Kiholo Bay earthquake did not follow this anticipated trend. Landslide frequency (defined as number of landslides divided by total area) was similar on the steepest slopes (> 50-60) for both the dry and the wet side of the study area suggesting relatively strong ground materials irrespective of weathering. The study location is ideally suited to investigate the role of precipitation, and more broadly of climate, on the mechanical properties of the local rock units because the presence of the Kohala volcano produces a significant precipitation gradient on what are essentially identical basaltic flows. Mean annual precipitation (MAP) varies by more than an order of magnitude, from 200 mm/year on the western side of the volcano to 4000 mm/year in the eastern side. We will present results of measured shear wave velocities using a seismic surface wave methodology. These results were paired with laboratory testing on selected basalt specimens that document the sample-scale shear wave velocity and unconfined compressive strength of the basaltic rocks. Shear wave velocity and unconfined strength of the rocks are correlated and are both significantly lower in weathered rocks near the ground surface than at depth. This weathering-related reduction in shear wave velocity extends to greater depths in areas of high precipitation compared to areas of lower precipitation, as expected, with a pronounced transition occurring at about 1000 mm/yr MAP. We speculate that relatively stiff, sub-horizontal layers that are interbedded with weathered material, may explain the discrepancy between both lower seismic velocities (in the field and the laboratory) and lower unconfined compressive strength, and the interpreted high strength exhibited by the seismic slope response during the Kiholo Bay earthquake. This observation has important consequences on the type of landslides observed in the 2006 earthquake, as well as the landslides that can be expected in future earthquakes.
NASA Technical Reports Server (NTRS)
2006-01-01
Attu, the westernmost Aleutian island, is nearly 1760 km from the Alaskan mainland and 1200 km northeast of the northernmost of the Japanese Kurile Islands. Attu is about 32 by 56 km in size, and is today the home of a small number of U. S. Coast Guard personnel operating a Loran station. The weather on Attu is typical of Aleutian weather in general...cloudy, rain, fog, and occasional high winds. The weather becomes progressively worse as you travel from the easternmost islands to the west. On Attu, five or six days a week are likely to be rainy, with hardly more than eight or ten clear days a year. The image was acquired July 4, 2000, covers an area of 31.2 by 61.1 km, and is centered near 52.8 degrees north latitude, 173 degrees east longitude. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 31.2 by 61.1 kilometers (19.3 by 37.9 miles) Location: 52.8 degrees North latitude, 173 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: July 4, 2000NASA Astrophysics Data System (ADS)
Teng, W. L.; Shannon, H. D.
2011-12-01
The USDA World Agricultural Outlook Board (WAOB) is responsible for monitoring weather and climate impacts on domestic and foreign crop development. One of WAOB's primary goals is to determine the net cumulative effect of weather and climate anomalies on final crop yields. To this end, a broad array of information is consulted, including maps, charts, and time series of recent weather, climate, and crop observations; numerical output from weather and crop models; and reports from the press, USDA attachés, and foreign governments. The resulting agricultural weather assessments are published in the Weekly Weather and Crop Bulletin, to keep farmers, policy makers, and commercial agricultural interests informed of weather and climate impacts on agriculture. Because both the amount and timing of precipitation significantly impact crop yields, WAOB often uses precipitation time series to identify growing seasons with similar weather patterns and help estimate crop yields for the current growing season, based on observed yields in analog years. Although, historically, these analog years are identified through visual inspection, the qualitative nature of this methodology sometimes precludes the definitive identification of the best analog year. One goal of this study is to introduce a more rigorous, statistical approach for identifying analog years. This approach is based on a modified coefficient of determination, termed the analog index (AI). The derivation of AI will be described. Another goal of this study is to compare the performance of AI for time series derived from surface-based observations vs. satellite-based measurements (NASA TRMM and other data). Five study areas and six growing seasons of data were analyzed (2003-2007 as potential analog years and 2008 as the target year). Results thus far show that, for all five areas, crop yield estimates derived from satellite-based precipitation data are closer to measured yields than are estimates derived from surface-based precipitation measurements. Work is continuing to include satellite-based surface soil moisture data and model-assimilated root zone soil moisture. This study is part of a larger effort to improve WAOB estimates by integrating NASA remote sensing observations and research results into WAOB's decision-making environment.
NASA Technical Reports Server (NTRS)
Mcbride, J. H.; Fielding, E. J.; Isacks, B. L.
1987-01-01
Landsat Thematic Mapper (TM) images of portions of the Central Andean Puna-Altiplano volcanic belt have been tested for the feasibility of discriminating individual volcanic flows using supervised classifications. This technique distinguishes volcanic rock classes as well as individual phases (i.e., relative age groups) within each class. The spectral signature of a volcanic rock class appears to depend on original texture and composition and on the degree of erosion, weathering, and chemical alteration. Basalts and basaltic andesite stand out as a clearly distinguishable class. The age dependent degree of weathering of these generally dark volcanic rocks can be correlated with reflectance: older rocks have a higher reflectance. On the basis of this relationship, basaltaic lava flows can be separated into several subclasses. These individual subclasses would correspond to mappable geologic units on the ground at a reconnaissance scale. The supervised classification maps are therefore useful for establishing a general stratigraphic framework for later detailed surface mapping of volcanic sequences.
2011-09-06
CAPE CANAVERAL, Fla. – Joel Tumbiolo, launch weather officer, 45th Weather Squadron, Cape Canaveral Air Force Station, Fla., participates in the Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. GRAIL is scheduled to launch Sept. 8 aboard a United Launch Alliance Delta II Heavy rocket from Cape Canaveral Air Force Station in Florida. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
Space-weathering processes and products on volatile-rich asteroids
NASA Astrophysics Data System (ADS)
Britt, D.; Schelling, P.; Consolmagno, G.; Bradley, T.
2014-07-01
Space weathering is a generic term for the effects on atmosphereless solid bodies in the solar system from a range of processes associated with direct exposure to the space environment. These include impact processes (shock, vaporization, fragmentation, heating, melting, and ejecta formation), radiation damage (from galactic and solar cosmic rays), solar-wind effects (irradiation, ion implantation, and sputtering), and the chemical reactions driven by these processes. The classic example of space weathering is the formation of the lunar spectral red slope associated with the production of nanophase Fe (npFe0) in the dusty lunar regolith (C.R. Chapman, 2004, Annual Review of Earth & Planet. Sci. 32, C.M. Pieters, 2000, MAPS 35). Similar npFe0 has been recovered from asteroid (25143) Itokawa and some asteroid classes do exhibit modest spectral red slopes (T. Noguchi, 2011, Science 333). Space weathering can be thought of as driven by a combination of the chemical environment of space (hard vacuum, low oxygen fugacity, solar-wind implantation of hydrogen) along with thermal energy supplied by micrometeorite impacts. The forward modeling of space weathering as thermodynamically-driven decomposition of common rock-forming minerals suggests the production of a range of daughter products: (1) The silicate products typically lose oxygen, other volatile elements (i.e., sulfur and sodium), and metallic cations, producing minerals that are typically more disordered and less optically active than the original parent materials. (2) The decomposed metallic cations form in nano-sized blebs including npFe0, on the surfaces or in condensing rims of mineral grains. This creates a powerful optical component as seen in the lunar red slope. Surfaces with exposed npFe0 are an ideal environment for catalyzing further reactions. (3) The liberated volatile elements and gases (O, S, Na) may form an observable exosphere (e.g., Moon and Mercury) and can either escape from the body or recombine with available solar-wind-implanted hydrogen to form trace amounts of water and OH. Mineral decomposition can be thought of as the first stage of space weathering. It produces weathered surfaces somewhat depleted in volatile elements, creates a predictable set of minor or trace minerals, and leaves the surfaces with catalytic species, primarily npFe0. However, a second stage of further reactions and weathering depends upon the presence of ''feed-stock'' components that can participate in catalyzed chemical reactions on exposed surfaces. For volatile-rich small bodies, the available materials are not only silicates, but a volatile feedstock that can include water, carbon monoxide, ammonia, to name a few. Thermodynamically-driven decomposition of silicates will produce trace amounts of npFe0 which are ideal sites for Fischer-Tropsch type (FTT) catalytic reactions that can produce organics in situ on the asteroids including alkanes, polyaromatic hydrocarbons, and amino acids (J.E. Elsila, 2012, MAPS 47). The mix and range of products depends on the composition and morphology of the mineral surface, energy inputs produced by the micrometeorite impacts or other processes, and the composition of the input volatile feedstock. FFT reactions generate long-chain carbon compounds and amino acids. Secondary reactions that generate more complex carbon compounds and amino acids are likely to occur as the organic material matures. Weathering maturity can be thought of as a function of the abundance and diversity of the weathering products. Since the npFe0 is not destroyed in the reaction, continued micrometeorite bombardment would result in continuing processing and recombination of the existing organic feedstock. More weathering would result in progressively longer-chain carbon compounds as well as more complex and diverse amino acids, and eventually the kerogen-like insoluble-organic matter that forms a large fraction of carbonaceous meteorites. This insight has several major implications for our planetary science and, potentially, the formation of the precursors of life. First, the range of weathering products seen in remotely-sensed data, meteorites, and returned samples are not random, but the predictable outcome of the source region's mineral kinetics and chemical feedstock. Weathering products do not have to be optically active like the npFe0 that produces the lunar red slope; on the contrary, probably most weathering products are spectrally neutral or even suppress an object's near-IR reflectance spectrum. In the case of volatile-rich parent bodies, a major weathering product is a range of carbon-rich compounds. But an additional result of considerable interest is the generation of pre-biotic compounds as a routine and predictable byproduct of common space-weathering processes. Any atmosphereless body around any star with mafic silicate mineral compositions and volatile feedstocks should create amino acids as a standard byproduct of space weathering. The precursors of life are probably abundant in any space-weathered asteroid belt, in any solar system, and only wait being accreted to a hospitable environment.
Geoelectrical characterisation of basement aquifers: the case of Iberekodo, southwestern Nigeria
NASA Astrophysics Data System (ADS)
Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.
2018-03-01
Basement aquifers, which occur within the weathered and fractured zones of crystalline bedrocks, are important groundwater resources in tropical and subtropical regions. The development of basement aquifers is complex owing to their high spatial variability. Geophysical techniques are used to obtain information about the hydrologic characteristics of the weathered and fractured zones of the crystalline basement rocks, which relates to the occurrence of groundwater in the zones. The spatial distributions of these hydrologic characteristics are then used to map the spatial variability of the basement aquifers. Thus, knowledge of the spatial variability of basement aquifers is useful in siting wells and boreholes for optimal and perennial yield. Geoelectrical resistivity is one of the most widely used geophysical methods for assessing the spatial variability of the weathered and fractured zones in groundwater exploration efforts in basement complex terrains. The presented study focuses on combining vertical electrical sounding with two-dimensional (2D) geoelectrical resistivity imaging to characterise the weathered and fractured zones in a crystalline basement complex terrain in southwestern Nigeria. The basement aquifer was delineated, and the nature, extent and spatial variability of the delineated basement aquifer were assessed based on the spatial variability of the weathered and fractured zones. The study shows that a multiple-gradient array for 2D resistivity imaging is sensitive to vertical and near-surface stratigraphic features, which have hydrological implications. The integration of resistivity sounding with 2D geoelectrical resistivity imaging is efficient and enhances near-surface characterisation in basement complex terrain.
Flood-inundation maps for Cedar Creek at 18th Street at Auburn, Indiana
Fowler, Kathleen K.
2018-02-27
Digital flood-inundation maps for a 1.9-mile reach of Cedar Creek at Auburn, Indiana (Ind.), from the First Street bridge, downstream to the streamgage at 18th Street, then ending approximately 1,100 feet (ft) downstream of the Baltimore and Ohio railroad, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science web site at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on Cedar Creek at 18th Street at Auburn, Ind. (station number 04179520). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, although forecasts of flood hydrographs are not available at this site (ABBI3).Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at the Cedar Creek at 18th Street at Auburn, Ind. streamgage and the documented high-water marks from the flood of March 11, 2009. The calibrated hydraulic model was then used to compute seven water-surface profiles for flood stages referenced to the streamgage datum and ranging from 7 ft, or near bankfull, to 13 ft, in 1-foot increments. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each water level.The availability of these maps, along with internet information regarding current stage from the USGS streamgage at Cedar Creek at 18th Street at Auburn, Ind., and stream information from the National Weather Service, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for postflood recovery efforts.
NASA Technical Reports Server (NTRS)
Teng, William; Shannon, Harlan; deJeu, Richard; Kempler, Steve
2012-01-01
The USDA World Agricultural Outlook Board (WAOB) is responsible for monitoring weather and climate impacts on domestic and foreign crop development. One of WAOB's primary goals is to determine the net cumulative effect of weather and climate anomalies on final crop yields. To this end, a broad array of information is consulted. The resulting agricultural weather assessments are published in the Weekly Weather and Crop Bulletin, to keep farmers, policy makers, and commercial agricultural interests informed of weather and climate impacts on agriculture. The goal of the current project is to improve WAOB estimates by integrating NASA satellite precipitation and soil moisture observations into WAOB's decision making environment. Precipitation (Level 3 gridded) is from the TRMM Multi-satellite Precipitation Analysis (TMPA). Soil moisture (Level 2 swath and Level 3 gridded) is generated by the Land Parameter Retrieval Model (LPRM) and operationally produced by the NASA Goddard Earth Sciences Data and Information Services Center (GBS DISC). A root zone soil moisture (RZSM) product is also generated, via assimilation of the Level 3 LPRM data by a land surface model (part of a related project). Data services to be available for these products include GeoTIFF, GDS (GrADS Data Server), WMS (Web Map Service), WCS (Web Coverage Service), and NASA Giovanni. Project benchmarking is based on retrospective analyses of WAOB analog year comparisons. The latter are between a given year and historical years with similar weather patterns and estimated crop yields. An analog index (AI) was developed to introduce a more rigorous, statistical approach for identifying analog years. Results thus far show that crop yield estimates derived from TMPA precipitation data are closer to measured yields than are estimates derived from surface-based precipitation measurements. Work is continuing to include LPRM surface soil moisture data and model-assimilated RZSM.
Biologically-Mediated Weathering of Minerals From Nanometre Scale to Environmental Systems
NASA Astrophysics Data System (ADS)
Brown, D. J.; Banwart, S. A.; Smits, M. M.; Leake, J. R.; Bonneville, S.; Benning, L. G.; Haward, S. J.; Ragnarsdottir, K.
2007-12-01
The Weathering Science Consortium is a multi-disciplinary project that aims to create a step change in understanding how biota control mineral weathering and soil formation (http://www.wun.ac.uk/wsc). Our hypothesis is that rates of biotic weathering are driven by the energy supply from plants to the organisms, controlling their biomass, surface area of contact with minerals and their capacity to interact chemically with minerals. Symbiotic fungal mycorrhiza of 90% of plant species are empowered with an available carbohydrate supply from plants that is unparalleled amongst soil microbes. They develop extensive mycelial networks that intimately contact minerals, which they weather aggressively. We hypothesise that mycorrhiza play a critical role through their focussing of photosynthate energy from plants into sub-surface weathering environments. Our work identifies how these fungal cells, and their secretions, interact with mineral surfaces and affect the rates of nutrient transfer from minerals to the organism. Investigating these living systems allows us to create new concepts and mathematical models that can describe biological weathering and be used in computer simulations of soil weathering dynamics. We are studying these biochemical interactions at 3 levels of observation: 1. At the molecular scale to understand interactions between living cells and minerals and to quantify the chemistry that breaks down the mineral structure; 2. At the soil grain scale to quantify the activity and spatial distribution of the fungi, roots and other organisms (e.g. bacteria) and their effects on the rates at which minerals are dissolved to release nutrients; 3. At soil profile scale to test models for the spatial distribution of active fungi and carbon energy and their seasonal variability and impact on mineral dissolution rates. Here we present early results from molecular and soil grain scale experiments. We have grown pure culture (Suillus bovinus, Paxillus involutus) mycorrhizal mycelial networks associated with pine trees in otherwise sterile (agar) and also non-sterile (peat) microcosms, which include mineral sections and powders of biotite, apatite and quartz. 14C labelling has been used to map C flux through the microcosms and to determine the transfer of photosynthate energy into the weathering arenas. We have used Vertical Scanning Interferometry (VSI) to assess volumetric alteration of mineral substrates in contact with fungi. Focused Ion Beam (FIB)- Transmission Electron Microscope (TEM) work provides evidence for increased mechanical forcing and possible alteration of biotite surfaces with greater fungi contact time. We also present real-time in situ observations of mineral-organic acid and mineral-exudate interactions using Atomic Force Microscopy (AFM).
Research notes : rainfall maps for the 21st century.
DOT National Transportation Integrated Search
2007-12-01
The report and included maps represent an update of the information contained in the precipitation-frequency atlas, published by the National Weather Service in 1973 (NOAA Atlas 2). Data collection for the National Weather Service (NWS) study ended i...
NASA Astrophysics Data System (ADS)
Kayode, J. S.; Adelusi, A. O.; Nawawi, M. N. M.; Bawallah, M.; Olowolafe, T. S.
2016-07-01
This paper presents a geophysical surveying for groundwater identification in a resistive crystalline basement hard rock in Isuada area, Southwestern Nigeria. Very low frequency (VLF) electromagnetic and electrical resistivity geophysical techniques combined with well log were used to characterize the concealed near surface conductive structures suitable for groundwater accumulation. Prior to this work; little was known about the groundwater potential of this area. Qualitative and semi-quantitative interpretations of the data collected along eight traverses at 20 m spacing discovered conductive zones suspected to be fractures, faults, and cracks which were further mapped using Vertical Electrical Sounding (VES) technique. Forty VES stations were utilized using Schlumberger configurations with AB/2 varying from 1 to 100 m. Four layers i.e. the top soil, the weathered layer, the partially weathered/fractured basement and the fresh basement were delineated from the interpreted resistivity curves. The weathered layers constitute the major aquifer unit in the area and are characterized by moderately low resistivity values which ranged between about 52 Ωm and 270 Ωm while the thickness varied from 1 to 35 m. The depth to the basement and the permeable nature of the weathered layer obtained from both the borehole and the hand-dug wells was used to categorize the groundwater potential of the study area into high, medium and low ratings. The groundwater potential map revealed that about 45% of the study area falls within the low groundwater potential rating while about 10% constitutes the medium groundwater potential and the remaining 45% constitutes high groundwater potential. The low resistivity, thick overburden, and fractured bedrock constitute the aquifer units and the series of basement depressions identified from the geoelectric sections as potential conductive zones appropriate for groundwater development.
Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin
Bar-Massada, A.; Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J.
2009-01-01
The rapid growth of housing in and near the wildland-urban interface (WUI) increases wildfire risk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfire risk to a 60,000 ha WUI area in northwestern Wisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfire risk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfire risk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfire risk and those most vulnerable under extreme weather conditions. ?? 2009 Elsevier B.V.
Roland, Mark A.; Hoffman, Scott A.
2014-01-01
Digital flood-inundation maps for an approximate 8-mile reach of the West Branch Susquehanna River from approximately 2 miles downstream from the Borough of Lewisburg, extending upstream to approximately 1 mile upstream from the Borough of Milton, Pennsylvania, were created by the U.S. Geological Survey (USGS) in cooperation with the Susquehanna River Basin Commission (SRBC). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict the estimated areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 01553500, West Branch Susquehanna River at Lewisburg, Pa. In addition, the information has been provided to the Susquehanna River Basin Commission (SRBC) for incorporation into their Susquehanna Inundation Map Viewer (SIMV) flood warning system (http://maps.srbc.net/simv/). The National Weather Service (NWS) forecasted peak-stage information (http://water.weather.gov/ahps) for USGS streamgage 01553500, West Branch Susquehanna River at Lewisburg, Pa., may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. Calibration of the model was achieved using the most current stage-discharge relations (rating number 11.1) at USGS streamgage 01553500, West Branch Susquehanna River at Lewisburg, Pa., a documented water-surface profile from the December 2, 2010, flood, and recorded peak stage data. The hydraulic model was then used to determine 26 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum ranging from 14 feet (ft) to 39 ft. Modeled flood stages, as defined by NWS, include Action Stage, 14 ft; Flood Stage, 18 ft; Moderate Flood Stage, 23 ft; and Major Flood Stage, 28 ft. Geographic information system (GIS) technology was then used to combine the simulated water-surface profiles with a digital elevation model (DEM) derived from light detection and ranging (lidar) data to delineate the area flooded at each water level. The availability of these maps, along with World Wide Web information regarding current stage from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.
Flood-inundation maps for the Big Blue River at Shelbyville, Indiana
Fowler, Kathleen K.
2017-02-13
Digital flood-inundation maps for a 4.1-mile reach of the Big Blue River at Shelbyville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The floodinundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at https://water. usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Big Blue River at Shelbyville, Ind. (station number 03361500). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata. usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at https://water.weather.gov/ ahps/, which also forecasts flood hydrographs at this site (SBVI3). Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at the Big Blue River at Shelbyville, Ind., streamgage. The calibrated hydraulic model was then used to compute 12 water-surface profiles for flood stages referenced to the streamgage datum and ranging from 9.0 feet, or near bankfull, to 19.4 feet, the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-foot vertical accuracy and 4.9-foot horizontal resolution) to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage at the Big Blue River at Shelbyville, Ind., and forecasted stream stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.
Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2.
NASA Astrophysics Data System (ADS)
Devarakonda, R.
2014-12-01
Daymet: Daily Surface Weather Data and Climatological Summaries provides gridded estimates of daily weather parameters for North America, including daily continuous surfaces of minimum and maximum temperature, precipitation occurrence and amount, humidity, shortwave radiation, snow water equivalent, and day length. The current data product (Version 2) covers the period January 1, 1980 to December 31, 2013 [1]. Data are available on a daily time step at a 1-km x 1-km spatial resolution in Lambert Conformal Conic projection with a spatial extent that covers the North America as meteorological station density allows. Daymet data can be downloaded from 1) the ORNL Distributed Active Archive Center (DAAC) search and order tools (http://daac.ornl.gov/cgi-bin/cart/add2cart.pl?add=1219) or directly from the DAAC FTP site (http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1219) and 2) the Single Pixel Tool (http://daymet.ornl.gov/singlepixel.html) and THREDDS (Thematic Real-time Environmental Data Services) Data Server (TDS) (http://daymet.ornl.gov/thredds_mosaics.html). The Single Pixel Data Extraction Tool [2] allows users to enter a single geographic point by latitude and longitude in decimal degrees. A routine is executed that translates the (lon, lat) coordinates into projected Daymet (x,y) coordinates. These coordinates are used to access the Daymet database of daily-interpolated surface weather variables. The Single Pixel Data Extraction Tool also provides the option to download multiple coordinates programmatically. The ORNL DAAC's TDS provides customized visualization and access to Daymet time series of North American mosaics. Users can subset and download Daymet data via a variety of community standards, including OPeNDAP, NetCDF Subset service, and Open Geospatial Consortium (OGC) Web Map/Coverage Service. References: [1] Thornton, P. E., Thornton, M. M., Mayer, B. W., Wilhelmi, N., Wei, Y., Devarakonda, R., & Cook, R. (2012). "Daymet: Daily surface weather on a 1 km grid for North America, 1980-2008". Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center for Biogeochemical Dynamics (DAAC), 1. [2] Devarakonda R., et al. 2012. Daymet: Single Pixel Data Extraction Tool. Available [http://daymet.ornl.go/singlepixel.html].
Boldt, Justin A.
2018-01-16
A two-dimensional hydraulic model and digital flood‑inundation maps were developed for a 30-mile reach of the Wabash River near the Interstate 64 Bridge near Grayville, Illinois. The flood-inundation maps, which can be accessed through the U.S. Geological Survey (USGS) Flood Inundation Mapping Science web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Wabash River at Mount Carmel, Ill (USGS station number 03377500). Near-real-time stages at this streamgage may be obtained on the internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS AHPS site MCRI2). The NWS AHPS forecasts peak stage information that may be used with the maps developed in this study to show predicted areas of flood inundation.Flood elevations were computed for the Wabash River reach by means of a two-dimensional, finite-volume numerical modeling application for river hydraulics. The hydraulic model was calibrated by using global positioning system measurements of water-surface elevation and the current stage-discharge relation at both USGS streamgage 03377500, Wabash River at Mount Carmel, Ill., and USGS streamgage 03378500, Wabash River at New Harmony, Indiana. The calibrated hydraulic model was then used to compute 27 water-surface elevations for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from less than the action stage (9 ft) to the highest stage (35 ft) of the current stage-discharge rating curve. The simulated water‑surface elevations were then combined with a geographic information system digital elevation model, derived from light detection and ranging data, to delineate the area flooded at each water level.The availability of these maps, along with information on the internet regarding current stage from the USGS streamgage at Mount Carmel, Ill., and forecasted stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood-response activities such as evacuations and road closures, as well as for postflood recovery efforts.
Space Weather Activities of IONOLAB Group: TEC Mapping
NASA Astrophysics Data System (ADS)
Arikan, F.; Yilmaz, A.; Arikan, O.; Sayin, I.; Gurun, M.; Akdogan, K. E.; Yildirim, S. A.
2009-04-01
Being a key player in Space Weather, ionospheric variability affects the performance of both communication and navigation systems. To improve the performance of these systems, ionosphere has to be monitored. Total Electron Content (TEC), line integral of the electron density along a ray path, is an important parameter to investigate the ionospheric variability. A cost-effective way of obtaining TEC is by using dual-frequency GPS receivers. Since these measurements are sparse in space, accurate and robust interpolation techniques are needed to interpolate (or map) the TEC distribution for a given region in space. However, the TEC data derived from GPS measurements contain measurement noise, model and computational errors. Thus, it is necessary to analyze the interpolation performance of the techniques on synthetic data sets that can represent various ionospheric states. By this way, interpolation performance of the techniques can be compared over many parameters that can be controlled to represent the desired ionospheric states. In this study, Multiquadrics, Inverse Distance Weighting (IDW), Cubic Splines, Ordinary and Universal Kriging, Random Field Priors (RFP), Multi-Layer Perceptron Neural Network (MLP-NN), and Radial Basis Function Neural Network (RBF-NN) are employed as the spatial interpolation algorithms. These mapping techniques are initially tried on synthetic TEC surfaces for parameter and coefficient optimization and determination of error bounds. Interpolation performance of these methods are compared on synthetic TEC surfaces over the parameters of sampling pattern, number of samples, the variability of the surface and the trend type in the TEC surfaces. By examining the performance of the interpolation methods, it is observed that both Kriging, RFP and NN have important advantages and possible disadvantages depending on the given constraints. It is also observed that the determining parameter in the error performance is the trend in the Ionosphere. Optimization of the algorithms in terms of their performance parameters (like the choice of the semivariogram function for Kriging algorithms and the hidden layer and neuron numbers for MLP-NN) mostly depend on the behavior of the ionosphere at that given time instant for the desired region. The sampling pattern and number of samples are the other important parameters that may contribute to the higher errors in reconstruction. For example, for all of the above listed algorithms, hexagonal regular sampling of the ionosphere provides the lowest reconstruction error and the performance significantly degrades as the samples in the region become sparse and clustered. The optimized models and coefficients are applied to regional GPS-TEC mapping using the IONOLAB-TEC data (www.ionolab.org). Both Kriging combined with Kalman Filter and dynamic modeling of NN are also implemented as first trials of TEC and space weather predictions.
Efficient transfer of weather information to the pilot in flight
NASA Technical Reports Server (NTRS)
Mcfarland, R. H.
1982-01-01
Efficient methods for providing weather information to the pilot in flight are summarized. Use of discrete communications channels in the aeronautical, VHF band or subcarriers in the VOR navigation band are considered the best possibilities. Data rates can be provided such that inputs to the ground based transmitters from 2400 band telephone lines are easily accommodated together with additional data. The crucial weather data considered for uplinking are identified as radar reflectivity patterns relating to precipitation, spherics data, hourly sequences, nowcasts, forecasts, cloud top heights with freezing and icing conditions, the critical weather map and satellite maps. NEXRAD, the ground based, Doppler weather radar which will produce an improved weather product also encourages use of an uplink to fully utilize its capability to improve air safety.
NASA Astrophysics Data System (ADS)
Kang, S. L.; Chun, J.; Kumar, A.
2015-12-01
We study the spatial variability impact of surface sensible heat flux (SHF) on the convective boundary layer (CBL), using the Weather Research and Forecasting (WRF) model in large eddy simulation (LES) mode. In order to investigate the response of the CBL to multi-scale feature of the surface SHF field over a local area of several tens of kilometers or smaller, an analytic surface SHF map is crated as a function of the chosen feature. The spatial variation in the SHF map is prescribed with a two-dimensional analytical perturbation field, which is generated by using the inverse transform technique of the Fourier series whose coefficients are controlled, of which spectrum to have a particular slope in the chosen range of wavelength. Then, the CBL responses to various SHF heterogeneities are summarized as a function of the spectral slope, in terms of mean structure, turbulence statistics and cross-scale processes. The range of feasible SHF heterogeneities is obtained from the SHF maps produced by a land surface model (LSM) of the WRF system. The LSM-derived SHF maps are a function of geographical data on various resolutions. Based on the numerical experiment results with the surface heterogeneities in the range, we will discuss the uncertainty in the SHF heterogeneity and its impact on the atmosphere in a numerical model. Also we will present the range of spatial scale of the surface SHF heterogeneity that significantly influence on the whole CBL. Lastly, we will report the test result of the hypothesis that the spatial variability of SHF is more representative of surface thermal heterogeneity than is the latent heat flux over the local area of several tens of kilometers or smaller.
NASA Astrophysics Data System (ADS)
Arca, B.; Salis, M.; Bacciu, V.; Duce, P.; Pellizzaro, G.; Ventura, A.; Spano, D.
2009-04-01
Although in many countries lightning is the main cause of ignition, in the Mediterranean Basin the forest fires are predominantly ignited by arson, or by human negligence. The fire season peaks coincide with extreme weather conditions (mainly strong winds, hot temperatures, low atmospheric water vapour content) and high tourist presence. Many works reported that in the Mediterranean Basin the projected impacts of climate change will cause greater weather variability and extreme weather conditions, with drier and hotter summers and heat waves. At long-term scale, climate changes could affect the fuel load and the dead/live fuel ratio, and therefore could change the vegetation flammability. At short-time scale, the increase of extreme weather events could directly affect fuel water status, and it could increase large fire occurrence. In this context, detecting the areas characterized by both high probability of large fire occurrence and high fire severity could represent an important component of the fire management planning. In this work we compared several fire probability and severity maps (fire occurrence, rate of spread, fireline intensity, flame length) obtained for a study area located in North Sardinia, Italy, using FlamMap simulator (USDA Forest Service, Missoula). FlamMap computes the potential fire behaviour characteristics over a defined landscape for given weather, wind and fuel moisture data. Different weather and fuel moisture scenarios were tested to predict the potential impact of climate changes on fire parameters. The study area, characterized by a mosaic of urban areas, protected areas, and other areas subject to anthropogenic disturbances, is mainly composed by fire-prone Mediterranean maquis. The input themes needed to run FlamMap were input as grid of 10 meters; the wind data, obtained using a computational fluid-dynamic model, were inserted as gridded file, with a resolution of 50 m. The analysis revealed high fire probability and severity in most of the areas, and therefore a high potential danger. The FlamMap outputs and the derived fire probability maps can be used in decision support systems for fire spread and behaviour and for fire danger assessment with actual and future fire regimes.
Mapping the Iron Oxidation State in Martian Meteorites
NASA Technical Reports Server (NTRS)
Martin, A. M.; Treimann, A. H.; Righter, K.
2017-01-01
Several types of Martian igneous meteorites have been identified: clinopyroxenites (nakhlites), basaltic shergottites, peridotitic shergottites, dunites (chassignites) and orthopyroxenites [1,2]. In order to constrain the heterogeneity of the Martian mantle and crust, and their evolution through time, numerous studies have been performed on the iron oxidation state of these meteorites [3,4,5,6,7,8,9]. The calculated fO2 values all lie within the FMQ-5 to FMQ+0.5 range (FMQ representing the Fayalite = Magnetite + Quartz buffer); however, discrepancies appear between the various studies, which are either attributed to the choice of the minerals/melts used, or to the precision of the analytical/calculation method. The redox record in volcanic samples is primarily related to the oxidation state in the mantle source(s). However, it is also influenced by several deep processes: melting, crystallization, magma mixing [10], assimilation and degassing [11]. In addition, the oxidation state in Martian meteorites is potentially affected by several surface processes: assimilation of sediment/ crust during lava flowing at Mars' surface, low temperature micro-crystallization [10], weathering at the surface of Mars and low temperature reequilibration, impact processes (i.e. high pressure phase transitions, mechanical mixing, shock degassing and melting), space weathering, and weathering on Earth (at atmospheric conditions different from Mars). Decoding the redox record of Martian meteorites, therefore, requires large-scale quantitative analysis methods, as well as a perfect understanding of oxidation processes.
NASA Technical Reports Server (NTRS)
Teng, William; Shannon, Harlan
2011-01-01
The USDA World Agricultural Outlook Board (WAOB) is responsible for monitoring weather and climate impacts on domestic and foreign crop development. One of WAOB's primary goals is to determine the net cumulative effect of weather and climate anomalies on final crop yields. To this end, a broad array of information is consulted, including maps, charts, and time series of recent weather, climate, and crop observations; numerical output from weather and crop models; and reports from the press, USDA attach s, and foreign governments. The resulting agricultural weather assessments are published in the Weekly Weather and Crop Bulletin, to keep farmers, policy makers, and commercial agricultural interests informed of weather and climate impacts on agriculture. Because both the amount and timing of precipitation significantly affect crop yields, WAOB often uses precipitation time series to identify growing seasons with similar weather patterns and help estimate crop yields for the current growing season, based on observed yields in analog years. Historically, these analog years are visually identified; however, the qualitative nature of this method sometimes precludes the definitive identification of the best analog year. Thus, one goal of this study is to derive a more rigorous, statistical approach for identifying analog years, based on a modified coefficient of determination, termed the analog index (AI). A second goal is to compare the performance of AI for time series derived from surface-based observations vs. satellite-based measurements (NASA TRMM and other data).
NASA Astrophysics Data System (ADS)
Retherford, K. D.; Greathouse, T. K.; Mandt, K. E.; Gladstone, R.; Hendrix, A.; Cahill, J. T.; Liu, Y.; Grava, C.; Hurley, D.; Egan, A.; Kaufmann, D. E.; Raut, U.; Byron, B. D.; Magana, L. O.; Stickle, A. M.; Wyrick, D. Y.; Pryor, W. R.
2017-12-01
Far ultraviolet reflectance measurements of the Moon, icy satellites, comets, and asteroids have proven surprisingly useful for advancing our understanding of planetary surfaces. This new appreciation for planetary far-UV imaging spectroscopy is provided in large part thanks to nearly a decade of investigations with the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP). LAMP has demonstrated an innovative nightside observing technique, putting a new light on permanently shadowed regions (PSRs) and other features on the Moon. Dayside far-UV albedo maps complement the nightside data, enabling comparisons of direct and hemispheric (diffuse) illumination derived albedos. We'll discuss the strengths of the far-UV reflectance imaging spectroscopy technique with respect to several new LAMP results. Detections of water frost and hydration signatures near 165 nm, for example, provide constraints on composition that complement infrared spectroscopy, visible imaging, neutron spectroscopy, radar, and other techniques. LRO's polar orbit and high data downlink capabilities enable searches for diurnal variations in spectral signals. At far-UV wavelengths a relatively blue spectral slope is diagnostic of space weathering, which is opposite of the spectral reddening indicator of maturity at wavelengths longward of 180 nm. By utilizing natural diffuse illumination sources on the nightside the far-UV technique is able to identify relative increases in porosity within the PSRs, and provides an additional tool for determining relative surface ages. On October 6, 2016 LAMP enacted a new, more sensitive dayside operating mode that expands its ability to search for diurnally varying hydration signals associated with different regions and features.
Using rock art as an alternative science pedagogy
NASA Astrophysics Data System (ADS)
Allen, Casey D.
College-level and seventh-grade science students were studied to understand the power of a field index, the Rock Art Stability Index (RASI), for student learning about complex biophysical environmental processes. In order to determine if the studied population was representative, 584 college and seventh-grade students undertook a concept mapping exercise after they had learned basic weathering science via in-class lecture. Of this large group, a subset of 322 college students and 13 seventh-grade students also learned RASI through a field experience involving the analysis of rock weathering associated with petroglyphs. After learning weathering through RASI, students completed another concept map. This was a college population where roughly 46% had never taken a "lab science" course and nearly 22% were from minority (non-white) populations. Analysis of student learning through the lens of actor-network theory revealed that when landscape is viewed as process (i.e. many practices), science education embodies both an alternative science philosophy and an alternative materialistic worldview. When RASI components were analyzed after only lecture, student understanding of weathering displayed little connection between weathering form and weathering process. After using RASI in the field however, nearly all students made illustrative concept maps rich in connections between weathering form and weathering process for all subcomponents of RASI. When taken as an aggregate, and measured by an average concept map score, learning increased by almost 14%, Among college minority students, the average score increase approached 23%. Among female students, the average score increase was 16%. For seventh-grade students, scores increased by nearly 36%. After testing for normalcy with Kolmogorov-Smirnov, t-tests reveal that all of these increases were highly statistically significant at p<0.001. The growth in learning weathering science by minority students, as compared to non-minority students, was also statistically significant at p<0.01. These findings reveal the power of field work through RASI to strengthen cognitive linkages between complex biophysical processes and the corresponding rock weathering forms.
The North Alabama Lightning Mapping Array: Recent Severe Storm Observations and Future Prospects
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Blakeslee, R.; Christian, H.; Koshak, W.; Bailey, J.; Hall, J.; McCaul, E.; Buechler, D.; Darden, C.; Burks, J.
2004-01-01
The North Alabama Lightning Mapping Array became operational in November 2001 as a principal component of a severe weather test bed to infuse new science and technology into the short-term forecasting of severe and hazardous weather, principally within nearby National Weather Service forecast offices. Since the installation of the LMA, it has measured the total lightning activity of a large number of severe weather events, including three supercell tornado outbreaks, two supercell hailstorm events, and numerous microburst-producing storms and ordinary non-severe thunderstorms. The key components of evolving storm morphology examined are the time rate-of-change (temporal trending) of storm convective and precipitation characteristics that can be diagnosed in real-time using NEXRAD WSR-88D Doppler radar (echo growth and decay, precipitation structures and velocity features, outflow boundaries), LMA (total lightning flash rate and its trend) and National Lightning Detection Network (cloud-to- ground lightning, its polarity and trends). For example, in a transitional season supercell tornado outbreak, peak total flash rates for typical supercells in Tennessee reached 70-100/min, and increases in the total flash rate occurred during storm intensification as much as 20-25 min prior to at least some of the tornadoes. The most intense total flash rate measured during this outbreak (over 800 flashes/min) occurred in a storm in Alabama. In the case of a severe summertime pulse thunderstorm in North Alabama, the peak total flash rate reached 300/min, with a strong increase in total lightning evident some 9 min before damaging winds were observed at the surface. In this paper we provide a sampling of LMA observations and products during severe weather events to illustrate the capability of the system, and discuss the prospects for improving the short-term forecasting of convective weather using total lightning data.
A global cloud map of the nearest known brown dwarf.
Crossfield, I J M; Biller, B; Schlieder, J E; Deacon, N R; Bonnefoy, M; Homeier, D; Allard, F; Buenzli, E; Henning, Th; Brandner, W; Goldman, B; Kopytova, T
2014-01-30
Brown dwarfs--substellar bodies more massive than planets but not massive enough to initiate the sustained hydrogen fusion that powers self-luminous stars--are born hot and slowly cool as they age. As they cool below about 2,300 kelvin, liquid or crystalline particles composed of calcium aluminates, silicates and iron condense into atmospheric 'dust', which disappears at still cooler temperatures (around 1,300 kelvin). Models to explain this dust dispersal include both an abrupt sinking of the entire cloud deck into the deep, unobservable atmosphere and breakup of the cloud into scattered patches (as seen on Jupiter and Saturn). However, hitherto observations of brown dwarfs have been limited to globally integrated measurements, which can reveal surface inhomogeneities but cannot unambiguously resolve surface features. Here we report a two-dimensional map of a brown dwarf's surface that allows identification of large-scale bright and dark features, indicative of patchy clouds. Monitoring suggests that the characteristic timescale for the evolution of global weather patterns is approximately one day.
Satellite Data Visualization, Processing and Mapping using VIIRS Imager Data
NASA Astrophysics Data System (ADS)
Phyu, A. N.
2016-12-01
A satellite is a manmade machine that is launched into space and orbits the Earth. These satellites are used for various purposes for examples: Environmental satellites help us monitor and protect our environment; Navigation (GPS) satellites provides accurate time and position information: and Communication satellites allows us the interact with each other over long distances. Suomi NPP is part of the constellation of Joint Polar Satellite System (JPSS) fleet of satellites which is an Environmental satellite that carries the Visual Infrared Imaging Radiometer Suite (VIIRS) instrument. VIIRS is a scanning radiometer that takes high resolution images of the Earth. VIIRS takes visible, infrared and radiometric measurements of the land, oceans, atmosphere and cryosphere. These high resolution images provide information that helps weather prediction and environmental forecasting of extreme events such as forest fires, ice jams, thunder storms and hurricane. This project will describe how VIIRS instrument data is processed, mapped, and visualized using variety of software and application. It will focus on extreme events like Hurricane Sandy and demonstrate how to use the satellite to map the extent of a storm. Data from environmental satellites such as Suomi NPP-VIIRS is important for monitoring climate change, sea level rise, land surface temperature changes as well as extreme weather events.
Monitoring and characterizing natural hazards with satellite InSAR imagery
Lu, Zhong; Zhang, Jixian; Zhang, Yonghong; Dzurisin, Daniel
2010-01-01
Interferometric synthetic aperture radar (InSAR) provides an all-weather imaging capability for measuring ground-surface deformation and inferring changes in land surface characteristics. InSAR enables scientists to monitor and characterize hazards posed by volcanic, seismic, and hydrogeologic processes, by landslides and wildfires, and by human activities such as mining and fluid extraction or injection. Measuring how a volcano’s surface deforms before, during, and after eruptions provides essential information about magma dynamics and a basis for mitigating volcanic hazards. Measuring spatial and temporal patterns of surface deformation in seismically active regions is extraordinarily useful for understanding rupture dynamics and estimating seismic risks. Measuring how landslides develop and activate is a prerequisite to minimizing associated hazards. Mapping surface subsidence or uplift related to extraction or injection of fluids during exploitation of groundwater aquifers or petroleum reservoirs provides fundamental data on aquifer or reservoir properties and improves our ability to mitigate undesired consequences. Monitoring dynamic water-level changes in wetlands improves hydrological modeling predictions and the assessment of future flood impacts. In addition, InSAR imagery can provide near-real-time estimates of fire scar extents and fire severity for wildfire management and control. All-weather satellite radar imagery is critical for studying various natural processes and is playing an increasingly important role in understanding and forecasting natural hazards.
NASA Astrophysics Data System (ADS)
Jawak, S. D.; Luis, A. J.
2017-12-01
Estimating mass loss of the Antarctic ice sheet caused by iceberg calving is a challenging job. Antarctica is surrounded by a variety of large, medium and small sized ice shelves, glacier tongues and coastal areas without offshore floating ice masses. It is possible to monitor surface structures on the continental ice and the ice shelves as well as calved icebergs using NASA-ISRO synthetic aperture radar (NISAR) satellite images in future. The NISAR, which is planned to be launched in 2020, can be used as an all-weather and all-season system to classify the coastline of Antarctica to map patterns of surface structures close to the calving front. Additionally, classifying patterns and density of surface structures distributed over the ice shelves and ice tongues can be a challenging research where NISAR can be of a great advantage. So this work explores use of NISAR to map surface structures visible on ice shelves which can provide advisories to field teams. The ice shelf fronts has been categorized into various classes based on surface structures relative to the calving front within a 30 km-wide seaward strip. The resulting map of the classified calving fronts around Antarctica and their description would provide a detailed representation of crevasse formation and dominant iceberg in the southern ocean which pose a threat to navigation of Antarctic bound ships.
ERIC Educational Resources Information Center
Kohler, Fred E.
The document describes the use of weather maps and data in teaching introductory college courses in synoptic meteorology. Students examine weather changes at three-hour intervals from data obtained from the "Monthly Summary of Local Climatological Data." Weather variables in the local summary include sky cover, air temperature, dew point, relative…
Weather Fundamentals: Meteorology. [Videotape].
ERIC Educational Resources Information Center
1998
The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) looks at how meteorologists gather and interpret current weather data collected from sources…
The Polygon-Ellipse Method of Data Compression of Weather Maps
1994-03-28
Report No. DOT’•FAAJRD-9416 Pr•oject Report AD-A278 958 ATC-213 The Polygon-Ellipse Method of Data Compression of Weather Maps ELDCT E J.L. GerIz 28...a o means must he- found to Compress this image. The l’olygion.Ellip.e (PE.) encoding algorithm develop.ed in this report rt-premrnt. weather regions...severely compress the image. For example, Mode S would require approximately a 10-fold compression . In addition, the algorithms used to perform the
Rapid weather information dissemination in Florida
NASA Technical Reports Server (NTRS)
Martsolf, J. D.; Heinemann, P. H.; Gerber, J. F.; Crosby, F. L.; Smith, D. L.
1984-01-01
The development of the Florida Agricultural Services and Technology (FAST) plan to provide ports for users to call for weather information is described. FAST is based on the Satellite Frost Forecast System, which makes a broad base of weather data available to its users. The methods used for acquisition and dissemination of data from various networks under the FAST plan are examined. The system provides color coded IR or thermal maps, precipitation maps, and textural forecast information. A diagram of the system is provided.
Flood-inundation maps for the Iroquois River at Rensselaer, Indiana
Fowler, Kathleen K.; Bunch, Aubrey R.
2013-01-01
Digital flood-inundation maps for a 4.0-mile reach of the Iroquois River at Rensselaer, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 05522500, Iroquois River at Rensselaer, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at (http://waterdata.usgs.gov/in/nwis/uv?site_no=05522500). In addition, the National Weather Service (NWS) forecasts flood hydrographs at the Rensselaer streamgage. That forecasted peak-stage information, also available on the Internet (http://water.weather.gov/ahps/), may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the Iroquois River reach by means of a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current (June 27, 2012) stage-discharge relations at USGS streamgage 05522500, Iroquois River at Rensselaer, Ind., and high-water marks from the flood of July 2003. The calibrated hydraulic model was then used to determine nine water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage at Rensselaer, Ind., and forecasted stream stages from the NWS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.
2012-01-01
Digital flood-inundation maps for a 9-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the Lake County Stormwater Management Commission and the Villages of Lincolnshire and Riverwoods. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Des Plaines River at Lincolnshire, Illinois (station no. 05528100). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05528100. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. The NWS forecasted peak-stage information, also shown on the Des Plaines River at Lincolnshire inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was then used to determine seven water-surface profiles for flood stages at roughly 1-ft intervals referenced to the streamgage datum and ranging from the 50- to 0.2-percent annual exceedance probability flows. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection And Ranging (LiDAR) data) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage height from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
Flood-inundation maps for the DuPage River from Plainfield to Shorewood, Illinois, 2013
Murphy, Elizabeth A.; Sharpe, Jennifer B.
2013-01-01
Digital flood-inundation maps for a 15.5-mi reach of the DuPage River from Plainfield to Shorewood, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the Will County Stormwater Management Planning Committee. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights or stages) at the USGS streamgage at DuPage River at Shorewood, Illinois (sta. no. 05540500). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05540500. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. The NWS-forecasted peak-stage information, also shown on the DuPage River at Shorewood inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was then used to determine nine water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from NWS Action stage of 6 ft to the historic crest of 14.0 ft. The simulated water-surface profiles were then combined with a Digital Elevation Model (DEM) (derived from Light Detection And Ranging (LiDAR) data) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage height from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for postflood recovery efforts.
New Mexico climate manual: solar and weather data. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, W.S.; Haggard, K.W
This manual contains extensive solar and weather data for the state of New Mexico in tabular, map, and graphic formats. It is particularly relevant to design of energy efficient buildings and renewable energy systems, but is also broad enough to provide useful information to many other disciplines. Maps of the state show monthly values of insolation for horizontal, south-facing latitude-tilted and vertical surfaces, as well as mean temperatures. Climatic summaries given for 63 sites include monthly temperature and precipitation data as well as heating/cooling degree-days and design temperatures. For nine locations (Albuquerque, Clayton, Farmington, Los Alamos, Roswell, T or C,more » Tucumcari, Zuni, and El Paso, Texas) most of the following comprehensive data sets are also presented: design temperatures with mean coincident wet bulb and wind values; HDD/CDD values to 12 base temperatures; day/night wind data; typical and clear-day values of incident and transmitted solar radiation for 97 orientations and tilts; and temperature distribution data in 2/sup 0/F bins for six daily time periods. Extensive explanatory text with referencing to the data is provided.« less
NASA Astrophysics Data System (ADS)
Doehne, E.; Pinchin, S.
2009-12-01
Evaluating stone weathering rates and their relationship to environmental fluctuations is an important challenge in understanding the critical zone and also in efforts to prevent the loss of important cultural heritage in stone, such as monuments, sculpture and archaeological sites. Repeat photography has been widely used to evaluate geological processes such as the retreat of glaciers and the weathering of stone surfaces. However, a fundamental difficulty is that the images are often shot under differing lighting conditions, making the interpretation of stone surface loss particularly challenging. Two developments in photographic documentation show promise for improving the situation. One is the use of digital time-lapse methods to provide more frequent images to correlate stone surface loss with ongoing environmental changes. The other is a relatively new method known as polynomial transform mapping (PTM), which integrates multiple photographs taken at different angles to document more comprehensively the texture of stone surfaces. Using Java-based software, the viewer can control the precise angle of the light source in an interpolated, high-quality image. PTM can produce raking light images from any angle, as well as images with ‘normal’ illumination. We present here results based on several years of macro-photography, time-lapse imaging, and PTM imaging of rapidly eroding stone surfaces at the site of Howden Minster in Yorkshire, UK, which suffers from salt weathering. The images show that surface loss is episodic rather than continuous and in some cases is related to unusual environmental conditions, such as high winds and condensation events. Damage was also found to be synchronous, with surface change (flaking, granular disintegration, and loss of flakes) occurring at the same time in different stone blocks. Crystallization pressure from phase transitions in magnesium sulfate salts appears to be the main cause of the loss of stone surfaces.
Expert system-based mineral mapping using AVIRIS
NASA Technical Reports Server (NTRS)
Kruse, Fred A.; Lefkoff, A. B.; Dietz, J. B.
1992-01-01
Integrated analysis of imaging spectrometer data and field spectral measurements were used in conjunction with conventional geologic field mapping to characterize bedrock and surficial geology at the northern end of Death Valley, California and Nevada. A knowledge-based expert system was used to automatically produce image maps from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data showing the principal surface mineralogy. The imaging spectrometer data show the spatial distribution of spectrally distinct minerals occurring both as primary rock-forming minerals and as alteration and weathering products. Field spectral measurements were used to verify the mineral maps and field mapping was used to extend the remote sensing results. Geographically referenced image-maps produced from these data form new base maps from which to develop improved understanding of the processes of deposition and erosion affecting the present land surface. The 'northern Grapevine Mountains' (NGM) study area was reported on in numerous papers. This area is an unnamed northwestward extension of the range. Most of the research here has concentrated on mapping of Jurassic-age plutons and associated hydrothermal alteration, however, the nature and scope of these studies is much broader, pertaining to the geologic history and development of the entire Death Valley region. AVIRIS data for the NGM site were obtained during May 1989. Additional AVIRIS data were acquired during September 1989 as part of the Geologic Remote Sensing Field Experiment (GRSFE). The area covered by these data overlaps slightly with the May 1989 data. Three and one-half AVIRIS scenes total were analyzed.
Forecasting Tools Point to Fishing Hotspots
NASA Technical Reports Server (NTRS)
2009-01-01
Private weather forecaster WorldWinds Inc. of Slidell, Louisiana has employed satellite-gathered oceanic data from Marshall Space Flight Center to create a service that is every fishing enthusiast s dream. The company's FishBytes system uses information about sea surface temperature and chlorophyll levels to forecast favorable conditions for certain fish populations. Transmitting the data to satellite radio subscribers, FishBytes provides maps that guide anglers to the areas they are most likely to make their favorite catch.
Linking Teleconnections and Iowa's Climate
NASA Astrophysics Data System (ADS)
Rowe, S. T.; Villarini, G.; Lavers, D. A.; Scoccimarro, E.
2013-12-01
In recent years Iowa and the U.S. Midwest has experienced both extreme drought and flood periods. With a drought in 2012 bounded by major floods in 2011 and 2013, the rapid progression from one extreme to the next is on the forefront of the public mind. Given that Iowa is a major agricultural state, extreme weather conditions can have severe socioeconomic consequences. In this research we investigate the large-scale climate processes that occurred concurrently and before a range of dry/wet and cold/hot periods to improve process understanding of these events. It is essential to understand the large-scale climate processes, as these can then provide valuable insight toward the development of long-term climate forecasts for Iowa. In this study monthly and seasonal surface temperature and precipitation over 1950-2012 across Iowa are used. Precipitation and surface temperature data are retrieved from the Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group at Oregon State University. The large-scale atmospheric fields are obtained from the National Center for Environmental Prediction (NCEP) / National Center for Atmospheric Research (NCAR) Reanalysis 1 Project. Precipitation is stratified according to wet, normal, and dry conditions, while temperature according to hot, average, and cold periods. Different stratification criteria based on the precipitation and temperature distributions are examined. Mean sea-level pressure and sea-surface temperature composite maps for the northern hemisphere are then produced for the wet/dry conditions, and cold/hot conditions. Further analyses include correlation, anomalies, and assessment of large-scale planetary wave activity, shedding light on the differences and similarities among the opposite weather conditions. The results of this work will highlight regional weather patterns that are related to the climate over Iowa, providing valuable insight into the mechanisms controlling the occurrence of potentially extreme weather conditions over this area.
Weather Fundamentals: Climate & Seasons. [Videotape].
ERIC Educational Resources Information Center
1998
The videos in this educational series for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes), describes weather patterns and cycles around the globe. The various types of climates around…
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Box, Jason E.; Koenig, Lora S.; DiGirolamo, Nicolo E.; Comiso, Josefino C.; Shuman, Christopher A.
2011-01-01
Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented since 1981. We extended and refined this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. We developed a daily and monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using an ice-surface temperature (1ST) algorithm developed for use with MODIS data. Validation of this CDR is ongoing. MODIS Terra swath data are projected onto a polar stereographic grid at 6.25-km resolution to develop binary, gridded daily and mean-monthly 1ST maps. Each monthly map also has a color-coded image map that is available to download. Also included with the monthly maps is an accompanying map showing number of days in the month that were used to calculate the mean-monthly 1ST. This is important because no 1ST decision is made by the algorithm for cells that are considered cloudy by the internal cloud mask, so a sufficient number of days must be available to produce a mean 1ST for each grid cell. Validation of the CDR consists of several facets: 1) comparisons between ISTs and in-situ measurements; 2) comparisons between ISTs and AWS data; and 3) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer (ASTER) and Enhanced Thematic Mapper Plus (ETM+). Previous work shows that Terra MODIS ISTs are about 3 C lower than in-situ temperatures measured at Summit Camp, during the winter of 2008-09 under clear skies. In this work we begin to compare surface temperatures derived from AWS data with ISTs from the MODIS CDR.
Climate Prediction Center - Outlooks: Current UV Index Forecast Map
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Service NOAA Center for Weather and Climate Prediction Climate Prediction Center 5830 University Research Court College Park, Maryland 20740 Page Author: Climate Prediction Center Internet Team Disclaimer
Venus Surface Composition Constrained by Observation and Experiment
NASA Astrophysics Data System (ADS)
Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne
2017-11-01
New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ˜1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently. High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus' oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions. Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to the rarity of wollastonite and instability of carbonate at the Venus surface. Sulfur in the Venus atmosphere has been shown experimentally to react with Ca in surface minerals to produce anhydrite. The extent of this SO2 buffer is constrained by the Ca content of surface rocks and sulfur content of the atmosphere, both of which are likely variable, perhaps due to active volcanism. Experimental work on a range of semiconductor and ferroelectric minerals is placing constraints on the cause(s) of Venus' anomalously radar bright highlands.
Flood-inundation maps for the Mississinewa River at Marion, Indiana, 2013
Coon, William F.
2014-01-01
Digital flood-inundation maps for a 9-mile (mi) reach of the Mississinewa River from 0.75 mi upstream from the Pennsylvania Street bridge in Marion, Indiana, to 0.2 mi downstream from State Route 15 were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Mississinewa River at Marion (station number 03326500). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site. Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the current stage-discharge relation at the Mississinewa River streamgage, in combination with water-surface profiles from historic floods and from the current (2002) flood-insurance study for Grant County, Indiana. The hydraulic model was then used to compute seven water-surface profiles for flood stages at 1-fo (ft) intervals referenced to the streamgage datum and ranging from 10 ft, which is near bankfull, to 16 ft, which is between the water levels associated with the estimated 10- and 2-percent annual exceedance probability floods (floods with recurrence interval between 10 and 50 years) and equals the “major flood stage” as defined by the NWS. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging (lidar) data having a 0.98 ft vertical accuracy and 4.9 ft horizontal resolution) to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
NASA Astrophysics Data System (ADS)
Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Gao, Mao-Fang; Huo, Hong-Yuan
2017-09-01
Soil moisture has long been recognized as one of the essential variables in the water cycle and energy budget between Earth's surface and atmosphere. The present study develops a practical approach for deriving all-weather soil moisture using combined satellite images and gridded meteorological products. In this approach, soil moisture over the Moderate Resolution Imaging Spectroradiometer (MODIS) clear-sky pixels are estimated from the Vegetation Index/Temperature (VIT) trapezoid scheme in which theoretical dry and wet edges were determined pixel to pixel by China Meteorological Administration Land Data Assimilation System (CLDAS) meteorological products, including air temperature, solar radiation, wind speed and specific humidity. For cloudy pixels, soil moisture values are derived by the calculation of surface and aerodynamic resistances from wind speed. The approach is capable of filling the soil moisture gaps over remaining cloudy pixels by traditional optical/thermal infrared methods, allowing for a spatially complete soil moisture map over large areas. Evaluation over agricultural fields indicates that the proposed approach can produce an overall generally reasonable distribution of all-weather soil moisture. An acceptable accuracy between the estimated all-weather soil moisture and in-situ measurements at different depths could be found with an Root Mean Square Error (RMSE) varying from 0.067 m3/m3 to 0.079 m3/m3 and a slight bias ranging from 0.004 m3/m3 to -0.011 m3/m3. The proposed approach reveals significant potential to derive all-weather soil moisture using currently available satellite images and meteorological products at a regional or global scale in future developments.
ERIC Educational Resources Information Center
Hegarty, Mary; Canham, Matt S.; Fabrikant, Sara I.
2010-01-01
Three experiments examined how bottom-up and top-down processes interact when people view and make inferences from complex visual displays (weather maps). Bottom-up effects of display design were investigated by manipulating the relative visual salience of task-relevant and task-irrelevant information across different maps. Top-down effects of…
NASA Technical Reports Server (NTRS)
Noble, Sarah
2011-01-01
Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.
NASA Astrophysics Data System (ADS)
Engel, Jacqueline M.; Ma, Lin; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.
2016-12-01
Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite. Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds. This is the first time that multiple weathering clasts from the same watershed were analyzed for U-series isotope disequlibrian and show consistent results. The U-series disequilibria allowed for the determination of rind formation ages and weathering advance rates with a U-series mass balance model. The weathering advance rates generally decreased with decreasing curvature: ∼0.17 ± 0.10 mm/kyr for high curvature, ∼0.12 ± 0.05 mm/kyr for medium curvature, and ∼0.11 ± 0.04, 0.08 ± 0.03, 0.06 ± 0.03 mm/kyr for low curvature locations. The observed positive correlation between the curvature and the weathering rates is well supported by predictions of weathering models, i.e., that the curvature of the rind-core boundary controls the porosity creation and weathering advance rates at the clast scale. At the watershed scale, the new weathering advance rates derived on the low curvature transects for the relatively dry Deshaies watershed (average rate of 0.08 mm/kyr; MAP = 1800 mm and MAT = 23 °C) are ∼60% slower than the rind formation rates previously determined in the much wetter Bras David watershed (∼0.18 mm/kyr, low curvature transect; MAP = 3400 mm and MAT = 23 °C) also on Basse-Terre Island. Thus, a doubling of MAP roughly correlates with a doubling of weathering advance rate. The new rind study highlights the effect of precipitation on weathering rates over a time scale of ∼100 kyr. Weathering rinds are thus a suitable system for investigating long-term chemical weathering across environmental gradients, complementing short-term riverine solute fluxes.
Flood-inundation maps for the Leaf River at Hattiesburg, Mississippi
Storm, John B.
2012-01-01
Digital flood-inundation maps for a 1.7-mile reach of the Leaf River were developed by the U.S. Geological Survey (USGS) in cooperation with the City of Hattiesburg, City of Petal, Forrest County, Mississippi Emergency Management Agency, Mississippi Department of Homeland Security, and the Emergency Management District. The Leaf River study reach extends from just upstream of the U.S. Highway 11 crossing to just downstream of East Hardy/South Main Street and separates the cities of Hattiesburg and Petal, Mississippi. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water-surface elevations (stages) at the USGS streamgage at Leaf River at Hattiesburg, Mississippi (02473000). Current conditions at the USGS streamgage may be obtained through the National Water Information System Web site at http://waterdata.usgs.gov/ms/nwis/uv/?site_no=02473000&PARAmeter_cd=00065,00060. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. The forecasted peak-stage information, available on the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at the Leaf River at Hattiesburg, Mississippi, streamgage and documented high-water marks from recent and historical floods. The hydraulic model was then used to determine 13 water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water-surface elevation at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model [derived from Light Detection and Ranging (LiDAR) data having a 0.6-foot vertical accuracy and 9.84-foot horizontal resolution] in order to delineate the area flooded at each 1-foot increment of stream stage. The availability of these maps, when combined with real-time stage information from USGS streamgages and forecasted stream stage from the NWS, provides emergency management personnel and residents with critical information during flood-response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.
Flight Deck Technologies to Enable NextGen Low Visibility Surface Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence (Lance) J., III; Arthur, Jarvis (Trey) J.; Kramer, Lynda J.; Norman, Robert M.; Bailey, Randall E.; Jones, Denise R.; Karwac, Jerry R., Jr.; Shelton, Kevin J.; Ellis, Kyle K. E.
2013-01-01
Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) . replicating the capacity and safety of today.s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual operational concept. This operational concept envisions an .equivalent visual. paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an operational credit for conducting safe low visibility surface operations by use of the flight deck technologies.
Flood-inundation maps for the Yellow River at Plymouth, Indiana
Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.
2016-11-16
Digital flood-inundation maps for a 4.9-mile reach of the Yellow River at Plymouth, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 05516500, Yellow River at Plymouth, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=05516500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http:/water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many sites that are often collocated with USGS streamgages, including the Yellow River at Plymouth, Ind. NWS AHPS-forecast peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood and forecasts of flood hydrographs at this site.For this study, flood profiles were computed for the Yellow River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the current stage-discharge relations at the Yellow River streamgage, in combination with the flood-insurance study for Marshall County (issued in 2011). The calibrated hydraulic model was then used to determine eight water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The 1-percent annual exceedance probability flood profile elevation (flood elevation with recurrence intervals within 100 years) is within the calibrated water-surface elevations for comparison. The simulated water-surface profiles were then used with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [lidar]) in order to delineate the area flooded at each water level.The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 05516500, Yellow River at Plymouth, Ind., and forecast stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for postflood recovery efforts.
Software for Generating Troposphere Corrections for InSAR Using GPS and Weather Model Data
NASA Technical Reports Server (NTRS)
Moore, Angelyn W.; Webb, Frank H.; Fishbein, Evan F.; Fielding, Eric J.; Owen, Susan E.; Granger, Stephanie L.; Bjoerndahl, Fredrik; Loefgren, Johan; Fang, Peng; Means, James D.;
2013-01-01
Atmospheric errors due to the troposphere are a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging. This software generates tropospheric delay maps that can be used to correct atmospheric artifacts in InSAR data. The software automatically acquires all needed GPS (Global Positioning System), weather, and Digital Elevation Map data, and generates a tropospheric correction map using a novel algorithm for combining GPS and weather information while accounting for terrain. Existing JPL software was prototypical in nature, required a MATLAB license, required additional steps to acquire and ingest needed GPS and weather data, and did not account for topography in interpolation. Previous software did not achieve a level of automation suitable for integration in a Web portal. This software overcomes these issues. GPS estimates of tropospheric delay are a source of corrections that can be used to form correction maps to be applied to InSAR data, but the spacing of GPS stations is insufficient to remove short-wavelength tropospheric artifacts. This software combines interpolated GPS delay with weather model precipitable water vapor (PWV) and a digital elevation model to account for terrain, increasing the spatial resolution of the tropospheric correction maps and thus removing short wavelength tropospheric artifacts to a greater extent. It will be integrated into a Web portal request system, allowing use in a future L-band SAR Earth radar mission data system. This will be a significant contribution to its technology readiness, building on existing investments in in situ space geodetic networks, and improving timeliness, quality, and science value of the collected data
Weather Education/Outreach - NOAA's National Weather Service
select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News
Careers in Weather - NOAA's National Weather Service
select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News
LaWen Hollingsworth; James Menakis
2010-01-01
This project mapped wildland fire potential (WFP) for the conterminous United States by using the large fire simulation system developed for Fire Program Analysis (FPA) System. The large fire simulation system, referred to here as LFSim, consists of modules for weather generation, fire occurrence, fire suppression, and fire growth modeling. Weather was generated with...
Flood-inundation maps for North Fork Salt Creek at Nashville, Indiana
Martin, Zachary W.
2017-11-13
Digital flood-inundation maps for a 3.2-mile reach of North Fork Salt Creek at Nashville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding that correspond to selected water levels (stages) at the North Fork Salt Creek at Nashville, Ind., streamgage (USGS station number 03371650). Real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also shows observed USGS stages at the same site as the USGS streamgage (NWS site NFSI3).Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current (2015) stage-discharge rating at the USGS streamgage 03371650, North Fork Salt Creek at Nashville, Ind. The hydraulic model was then used to compute 12 water-surface profiles for flood stages at 1-foot (ft) intervals, except for the highest profile of 22.9 ft, referenced to the streamgage datum ranging from 12.0 ft (the NWS “action stage”) to 22.9 ft, which is the highest stage of the current (2015) USGS stage-discharge rating curve and 1.9 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability of these maps, along with information regarding current stage from the USGS streamgage, will provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for postflood recovery efforts.
Space Weathering of Lunar Rocks
NASA Technical Reports Server (NTRS)
Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.
2012-01-01
All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.
NASA Astrophysics Data System (ADS)
D'Amore, M.; Le Scaon, R.; Helbert, J.; Maturilli, A.
2017-12-01
Machine-learning achieved unprecedented results in high-dimensional data processing tasks with wide applications in various fields. Due to the growing number of complex nonlinear systems that have to be investigated in science and the bare raw size of data nowadays available, ML offers the unique ability to extract knowledge, regardless the specific application field. Examples are image segmentation, supervised/unsupervised/ semi-supervised classification, feature extraction, data dimensionality analysis/reduction.The MASCS instrument has mapped Mercury surface in the 400-1145 nm wavelength range during orbital observations by the MESSENGER spacecraft. We have conducted k-means unsupervised hierarchical clustering to identify and characterize spectral units from MASCS observations. The results display a dichotomy: a polar and equatorial units, possibly linked to compositional differences or weathering due to irradiation. To explore possible relations between composition and spectral behavior, we have compared the spectral provinces with elemental abundance maps derived from MESSENGER's X-Ray Spectrometer (XRS).For the Vesta application on DAWN Visible and infrared spectrometer (VIR) data, we explored several Machine Learning techniques: image segmentation method, stream algorithm and hierarchical clustering.The algorithm successfully separates the Olivine outcrops around two craters on Vesta's surface [1]. New maps summarizing the spectral and chemical signature of the surface could be automatically produced.We conclude that instead of hand digging in data, scientist could choose a subset of algorithms with well known feature (i.e. efficacy on the particular problem, speed, accuracy) and focus their effort in understanding what important characteristic of the groups found in the data mean. [1] E Ammannito et al. "Olivine in an unexpected location on Vesta's surface". In: Nature 504.7478 (2013), pp. 122-125.
Preisler, H.K.; Burgan, R.E.; Eidenshink, J.C.; Klaver, Jacqueline M.; Klaver, R.W.
2009-01-01
The current study presents a statistical model for assessing the skill of fire danger indices and for forecasting the distribution of the expected numbers of large fires over a given region and for the upcoming week. The procedure permits development of daily maps that forecast, for the forthcoming week and within federal lands, percentiles of the distributions of (i) number of ignitions; (ii) number of fires above a given size; (iii) conditional probabilities of fires greater than a specified size, given ignition. As an illustration, we used the methods to study the skill of the Fire Potential Index an index that incorporates satellite and surface observations to map fire potential at a national scale in forecasting distributions of large fires. ?? 2009 IAWF.
DOT National Transportation Integrated Search
2000-07-14
This is a draft document for the Surface Transportation Weather Decision Support Requirements (STWDSR) project. The STWDSR project is being conducted for the FHWAs Office of Transportation Operations (HOTO) Road Weather Management Program by Mitre...
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Box, Jason E.; Koenig, Lora S.; DiGirolamo, Nicolo E.; Comiso, Josefino C.; Shuman, Christopher A.
2011-01-01
Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented since 1981. We extended and refined this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. We developed a daily and monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using an ice-surface temperature (1ST) algorithm developed for use with MODIS data. Validation of this CDR is ongoing. MODIS Terra swath data are projected onto a polar stereographic grid at 6.25-km resolution to develop binary, gridded daily and mean-monthly 1ST maps. Each monthly map also has a color-coded image map that is available to download. Also included with the monthly maps is an accompanying map showing number of days in the month that were used to calculate the mean-monthly 1ST. This is important because no 1ST decision is made by the algorithm for cells that are considered cloudy by the internal cloud mask, so a sufficient number of days must be available to produce a mean 1ST for each grid cell. Validation of the CDR consists of several facets: 1) comparisons between ISTs and in-situ measurements; 2) comparisons between ISTs and AWS data; and 3) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer (ASTER) and Enhanced Thematic Mapper Plus (ETM+). Previous work shows that Terra MODIS ISTs are about 3 C lower than in-situ temperatures measured at Summit Camp, during the winter of 2008-09 under clear skies. In this work we begin to compare surface temperatures derived from AWS data with ISTs from the MODIS CDR. The Greenland Ice Sheet 1ST CDR will be useful for monitoring surface-temperature trends and can be used as input or for validation of climate models. The CDR can be extended into the future using MODIS Terra, Aqua and NPOESS Preparatory Project Visible Infrared Imager Radiometer Suite (VII RS) data.
Wynn, J.; Williamson, M.; Urquhart, S.; Fleming, J.
2011-01-01
A towed-streamer technology has been developed for mapping placer heavy minerals and dispersed hydrocarbon plumes in the open ocean. The approach uses induced polarization (IP), an electrical measurement that encompasses several different surface-reactive capacitive and electrochemical phenomena, and thus is ideally suited for mapping dispersed or disseminated targets. The application is operated at sea by towing active electrical geophysical streamers behind a ship; a wide area can be covered in three dimensions by folding tow-paths over each other in lawn-mower fashion. This technology has already been proven in laboratory and ocean settings to detect IP-reactive titanium-and rare-earth (REE) minerals such as ilmenite and monazite. By extension, minerals that weather and accumulate/concentrate by a similar mechanism, including gold, platinum, and diamonds, may be rapidly detected and mapped indirectly even when dispersed and covered with thick, inert sediment. IP is also highly reactive to metal structures such as pipelines and cables. ?? 2011 MTS.
NASA Astrophysics Data System (ADS)
Love, J. J.
2016-12-01
Magnetic-storm induction of geoelectric fields in the Earth's electrically conducting crust, lithosphere, mantle, and ocean can interfere with the operations of electric-power grid systems. The future occurrence of an extremely intense magnetic storm might even result in continental-scale failure of electric-power distribution. Such an event would entail significant deleterious consequence for the economy and international security. Building on a project established by the President's National Science and Technology Council and the Office of Science and Technology Policy for assessing space-weather induction hazards, we develop a series of geoelectric hazard maps. These are constructed using an empirical parameterization of induction: local estimates of Earth-surface impedance, obtained from EarthScope and USGS magnetotelluric survey data, are convolved with latitude-dependent statistical maps of extreme-value geomagnetic activity, obtained from decades magnetic observatory data. Geoelectric hazard maps are constructed for both north-south and east-west geomagnetic variation, and for both 240-s and 1200-s sinusoidal variation -- periods of interest to the power-grid industry. The maps cover about half of the continental United States. They depict the threshold level that geoelectric amplitude can be expected to exceed, on average, once per century at discrete geographic sites in response to extreme-intensity geomagnetic activity. Of the regions where magnetotelluric data are available, the greatest induction hazards are found in Minnesota, Wisconsin, and Iowa - this being the result of both high-latitude geomagntic activity and complex subsurface conductivity structure. At some sites in the continental United States, once-per-century geoelectric amplitudes can exceed the 1.7 V/km realized in Quebec during the March 1989 storm. This work highlights the importance of geophysical surveys and ground-level monitoring data for assessing space-weather induction hazards.
Finding past weather...Fast - Public Affairs - NOAA's National Weather
government web resources and services. Home >>Climate Data Finding past weather...Fast Climate data Weather Forecast Offices (WFOs). First, find the location you need climate data for on the following map the left side of the page there will be a section called Climate in yellow-colored text. You may have
Probabilistic Forecasting of Surface Ozone with a Novel Statistical Approach
NASA Technical Reports Server (NTRS)
Balashov, Nikolay V.; Thompson, Anne M.; Young, George S.
2017-01-01
The recent change in the Environmental Protection Agency's surface ozone regulation, lowering the surface ozone daily maximum 8-h average (MDA8) exceedance threshold from 75 to 70 ppbv, poses significant challenges to U.S. air quality (AQ) forecasters responsible for ozone MDA8 forecasts. The forecasters, supplied by only a few AQ model products, end up relying heavily on self-developed tools. To help U.S. AQ forecasters, this study explores a surface ozone MDA8 forecasting tool that is based solely on statistical methods and standard meteorological variables from the numerical weather prediction (NWP) models. The model combines the self-organizing map (SOM), which is a clustering technique, with a step wise weighted quadratic regression using meteorological variables as predictors for ozone MDA8. The SOM method identifies different weather regimes, to distinguish between various modes of ozone variability, and groups them according to similarity. In this way, when a regression is developed for a specific regime, data from the other regimes are also used, with weights that are based on their similarity to this specific regime. This approach, regression in SOM (REGiS), yields a distinct model for each regime taking into account both the training cases for that regime and other similar training cases. To produce probabilistic MDA8 ozone forecasts, REGiS weighs and combines all of the developed regression models on the basis of the weather patterns predicted by an NWP model. REGiS is evaluated over the San Joaquin Valley in California and the northeastern plains of Colorado. The results suggest that the model performs best when trained and adjusted separately for an individual AQ station and its corresponding meteorological site.
NASA Technical Reports Server (NTRS)
Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.
1993-01-01
The following monthly mean global distributions for 1990 are proposed with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (US) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components on the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation values are displayed. Annual mean distributions are displayed.
NASA Technical Reports Server (NTRS)
Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.
1993-01-01
The following monthly mean global distributions for 1991 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free-drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components of the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.
Weather Fundamentals: Hurricanes & Tornadoes. [Videotape].
ERIC Educational Resources Information Center
1998
The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) features information on the deadliest and most destructive storms on Earth. Through satellite…
Designing a better weather display
NASA Astrophysics Data System (ADS)
Ware, Colin; Plumlee, Matthew
2012-01-01
The variables most commonly displayed on weather maps are atmospheric pressure, wind speed and direction, and surface temperature. But they are usually shown separately, not together on a single map. As a design exercise, we set the goal of finding out if it is possible to show all three variables (two 2D scalar fields and a 2D vector field) simultaneously such that values can be accurately read using keys for all variables, a reasonable level of detail is shown, and important meteorological features stand out clearly. Our solution involves employing three perceptual "channels", a color channel, a texture channel, and a motion channel in order to perceptually separate the variables and make them independently readable. We conducted an experiment to evaluate our new design both against a conventional solution, and against a glyph-based solution. The evaluation tested the abilities of novice subjects both to read values using a key, and to see meteorological patterns in the data. Our new scheme was superior especially in the representation of wind patterns using the motion channel, and it also performed well enough in the representation of pressure using the texture channel to suggest it as a viable design alternative.
Quantification of Local Warming Trend: A Remote Sensing-Based Approach
Rahaman, Khan Rubayet; Hassan, Quazi K.
2017-01-01
Understanding the warming trends at local level is critical; and, the development of relevant adaptation and mitigation policies at those levels are quite challenging. Here, our overall goal was to generate local warming trend map at 1 km spatial resolution by using: (i) Moderate Resolution Imaging Spectroradiometer (MODIS)-based 8-day composite surface temperature data; (ii) weather station-based yearly average air temperature data; and (iii) air temperature normal (i.e., 30 year average) data over the Canadian province of Alberta during the period 1961–2010. Thus, we analysed the station-based air temperature data in generating relationships between air temperature normal and yearly average air temperature in order to facilitate the selection of year-specific MODIS-based surface temperature data. These MODIS data in conjunction with weather station-based air temperature normal data were then used to model local warming trends. We observed that almost 88% areas of the province experienced warming trends (i.e., up to 1.5°C). The study concluded that remote sensing technology could be useful for delineating generic trends associated with local warming. PMID:28072857
NASA Astrophysics Data System (ADS)
Moroz, Lyuba V.; Starukhina, Larissa V.; Rout, Surya Snata; Sasaki, Sho; Helbert, Jörn; Baither, Dietmar; Bischoff, Addi; Hiesinger, Harald
2014-06-01
To investigate effects of micrometeorite bombardment on optical spectra and composition of planetary and asteroid regoliths with low Fe contents, we irradiated samples of a Fe-poor plagioclase feldspar (andesine-labradorite) using a nanosecond pulsed laser. We measured reflectance spectra of irradiated and non-irradiated areas of the samples (pressed pellets) between 0.5 and 18 μm and performed SEM/EDS and TEM studies of the samples. Bulk FeO content of 0.72 wt.% in the samples is comparable, for example, to FeO content in silicates on the surface of Mercury, that was recently mapped by NASA's MESSENGER mission and will be spectrally mapped by remote sensing instruments MERTIS and SYMBIO-SYS on board the ESA BepiColombo spacecraft. We also employed theoretical spectral modeling to characterize optical alteration caused by formation of nano- and submicrometer Fe0 inclusions within space-weathered surface layers and grain rims of a Fe-poor regolith. The laser-irradiated surface layer of plagioclase reveals significant melting, while reflectance spectra show mild darkening and reddening in the visible and near-infrared (VNIR). Our spectral modeling indicates that the optical changes observed in the visible require reduction of bulk FeO (including Fe from mineral impurities found in the sample) and formation of nanophase (np) Fe0 within the glassy surface layer. A vapor deposit, if present, is optically too thin to contribute to optical modification of the investigated samples or to cause space weathering-induced optical alteration of Fe-poor regoliths in general. Due to low thickness of vapor deposits, npFe0 formation in the latter can cause darkening and reddening only for a regolith with rather high bulk Fe content. Our calculations show that only a fraction of bulk Fe is likely to be converted to npFe0 in nanosecond laser irradiation experiments and probably in natural regolith layers modified by space weathering. The previously reported differences in response of different minerals to laser irradiation, and probably to space weathering-induced heating are likely controlled by their differences in electrical conductivities and melting points. For a given mineral grain, its susceptibility to melting/vaporization is also affected by electric conductivities of adjacent grains of other minerals in the regolith. Published nanosecond laser irradiation experiments simulate optical alteration of immature regoliths, since only the uppermost surface layer of an irradiated pellet is subject to heating. According to our calculations, if regolith particles due to impact-induced turnover are mantled with npFe0-bearing rims of the same thickness, then even low contents of Fe similar to our sample or Mercury' surface can cause significant darkening and reddening, provided a melt layer, rather than a thin vapor deposit is involved into npFe0 formation. All spectral effects observed in the thermal infrared (TIR) after irradiation of our feldspar sample are likely to be associated with textural changes. We expect that mineralogical interpretation of the BepiColombo MERTIS infrared spectra of Mercury between 7 and 17 μm will be influenced mostly by textural effects (porosity, comminution) and impact glass formation rather than formation of npFe0 inclusions.
Comparison of Weather Shows in Eastern Europe
NASA Astrophysics Data System (ADS)
Najman, M.
2009-09-01
Comparison of Weather Shows in Eastern Europe Television weather shows in Eastern Europe have in most cases in the high graphical standard. There is though a wast difference in duration and information content in the weather shows. There are few signs and regularities by which we can see the character of the weather show. The main differences are mainly caused by the income structure of the TV station. Either it is a fully privately funded TV relying on the TV commercials income. Or it is a public service TV station funded mainly by the national budget or fixed fee structure/tax. There are wast differences in duration and even a graphical presentation of the weather. Next important aspect is a supplier of the weather information and /or the processor. Shortly we can say, that when the TV show is produced by the national met office, the TV show consists of more scientific terms, synoptic maps, satellite imagery, etc. If the supplier is the private meteorological company, the weather show is more user-friendly, laical with less scientific terms. We are experiencing a massive shift in public weather knowledge and demand for information. In the past, weather shows consisted only of maps with weather icons. In todaýs world, even the laic weather shows consist partly of numerical weather model outputs - they are of course designed to be understandable and graphically attractive. Outputs of the numerical weather models used to be only a part of daily life of a professional meteorologist, today they are common part of life of regular people. Video samples are a part of this presentation.
Numerical Study of the Effect of Urbanization on the Climate of Desert Cities
NASA Astrophysics Data System (ADS)
Kamal, Samy
This study uses the Weather Research and Forecasting (WRF) model to simulate and predict the changes in local climate attributed to the urbanization for five desert cities. The simulations are performed in the fashion of climate downscaling, constrained by the surface boundary conditions generated from high resolution land-use maps. For each city, the land-use maps of 1985 and 2010 from Landsat satellite observation, and a projected land-use map for 2030, are used to represent the past, present, and future. An additional set of simulations for Las Vegas, the largest of the five cities, uses the NLCD 1992 and 2006 land-use maps and an idealized historical land-use map with no urban coverage for 1900. The study finds that urbanization in Las Vegas produces a classic urban heat island (UHI) at night but a minor cooling during the day. A further analysis of the surface energy balance shows that the decrease in surface Albedo and increase effective emissivity play an important role in shaping the local climate change over urban areas. The emerging urban structures slow down the diurnal wind circulation over the city due to an increased effective surface roughness. This leads to a secondary modification of temperature due to the interaction between the mechanical and thermodynamic effects of urbanization. The simulations for the five desert cities for 1985 and 2010 further confirm a common pattern of the climatic effect of urbanization with significant nighttime warming and moderate daytime cooling. This effect is confined to the urban area and is not sensitive to the size of the city or the detail of land cover in the surrounding areas. The pattern of nighttime warming and daytime cooling remains robust in the simulations for the future climate of the five cities using the projected 2030 land-use maps. Inter-city differences among the five urban areas are discussed.
Weather Fundamentals: Rain & Snow. [Videotape].
ERIC Educational Resources Information Center
1998
The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) gives concise explanations of the various types of precipitation and describes how the water…
Weather Fundamentals: Wind. [Videotape].
ERIC Educational Resources Information Center
1998
The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) describes the roles of the sun, temperature, and air pressure in creating the incredible power…
NOAA Weather Radio - All Hazards
Station Search Coverage Maps Outages View Outages Report Outages Information General Information Receiver Information Reception Problems NWR Alarms Automated Voices FIPS Codes NWR - Special Needs SAME USING SAME SAME Weather Service (NWS) warnings, watches, forecasts and other non-weather related hazard information 24
extent of snow cover. In addition, satellite sensors detect ice fields and map the movement of sea and greater danger near shore or any shallow waters? NATIONAL WEATHER SERVICE SATELLITE PRODUCTS NOAA's operational weather satellite system is composed of two types of satellites: geostationary operational
Weather Fundamentals: Clouds. [Videotape].
ERIC Educational Resources Information Center
1998
The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) discusses how clouds form, the different types of clouds, and the important role they play in…
Flood-inundation maps for the Wabash River at Lafayette, Indiana
Kim, Moon H.
2018-05-10
Digital flood-inundation maps for an approximately 4.8-mile reach of the Wabash River at Lafayette, Indiana (Ind.) were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science web site at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 03335500, Wabash River at Lafayette, Ind. Current streamflow conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the internet at https://waterdata.usgs.gov/in/nwis/uv?site_no=03335500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (https://water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the Wabash River at Lafayette, Ind. NWS AHPS-forecast peak-stage information may be used with the maps developed in this study to show predicted areas of flood inundation.For this study, flood profiles were computed for the Wabash River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 03335500, Wabash River at Lafayette, Ind., and high-water marks from the flood of July 2003 (U.S. Army Corps of Engineers [USACE], 2007). The calibrated hydraulic model was then used to determine 23 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system digital elevation model derived from light detection and ranging to delineate the area flooded at each water level. The availability of these maps, along with internet information regarding current stage from the USGS streamgage 03335500, Wabash River at Lafayette, Ind., and forecasted high-flow stages from the NWS AHPS, will provide emergency management personnel and residents with information that is critical for flood-response activities such as evacuations and road closures, and for postflood recovery efforts.
Flood-inundation maps for the North Branch Elkhart River at Cosperville, Indiana
Kim, Moon H.; Johnson, Esther M.
2014-01-01
Digital flood-inundation maps for a reach of the North Branch Elkhart River at Cosperville, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers, Detroit District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 04100222, North Branch Elkhart River at Cosperville, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=04100222. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the North Branch Elkhart River at Cosperville, Ind. NWS AHPS-forecast peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the North Branch Elkhart River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 04100222, North Branch Elkhart River at Cosperville, Ind., and preliminary high-water marks from the flood of March 1982. The calibrated hydraulic model was then used to determine four water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [LiDAR]) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 04100222, North Branch Elkhart River at Cosperville, Ind., and forecast stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
Flood-inundation maps for the Driftwood River and Sugar Creek near Edinburgh, Indiana
Fowler, Kathleen K.; Kim, Moon H.; Menke, Chad D.
2012-01-01
Digital flood-inundation maps for an 11.2 mile reach of the Driftwood River and a 5.2 mile reach of Sugar Creek, both near Edinburgh, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Camp Atterbury Joint Maneuver Training Center, Edinburgh, Indiana. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at the USGS streamgage 03363000 Driftwood River near Edinburgh, Ind. Current conditions at the USGS streamgage in Indiana may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/current/?type=flow. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system at http://water.weather.gov/ahps/. The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at the USGS streamgage 03363000 Driftwood River near Edinburgh, Ind. The hydraulic model was then used to determine elevations throughout the study reaches for nine water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from bankfull to nearly the highest recorded water level at the USGS streamgage 03363000 Driftwood River near Edinburgh, Ind. The simulated water-surface profiles were then combined with a geospatial digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The availability of these maps along with real-time information available online regarding current stage from USGS streamgages and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.
Flood-inundation maps for the East Fork White River at Columbus, Indiana
Lombard, Pamela J.
2013-01-01
Digital flood-inundation maps for a 5.4-mile reach of the East Fork White River at Columbus, Indiana, from where the Flatrock and Driftwood Rivers combine to make up East Fork White River to just upstream of the confluence of Clifty Creek with the East Fork White River, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. Current conditions at the USGS streamgage may be obtained on the Internet from the USGS National Water Information System (http://waterdata.usgs.gov/in/nwis/uv/?site_no=03364000&agency_cd=USGS&). The National Weather Service (NWS) forecasts flood hydrographs for the East Fork White River at Columbus, Indiana at their Advanced Hydrologic Prediction Service (AHPS) flood warning system Website (http://water.weather.gov/ahps/), that may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. The calibrated hydraulic model was then used to determine 15 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data), having a 0.37-ft vertical accuracy and a 1.02 ft horizontal accuracy), in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage at Columbus, Indiana, and forecasted stream stages from the NWS will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.
Flood-inundation maps for the Wabash River at Terre Haute, Indiana
Lombard, Pamela J.
2013-01-01
Digital flood-inundation maps for a 6.3-mi reach of the Wabash River from 0.1 mi downstream of the Interstate 70 bridge to 1.1 miles upstream of the Route 63 bridge, Terre Haute, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to select water levels (stages) at the USGS streamgage Wabash River at Terre Haute (station number 03341500). Current conditions at the USGS streamgage may be obtained on the Internet from the USGS National Water Information System (http://waterdata.usgs.gov/in/nwis/uv/?site_no=03341500&agency_cd=USGS&p"). In addition, the same data are provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps//). Within this system, the NWS forecasts flood hydrographs for the Wabash River at Terre Haute that may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the Wabash River at the Terre Haute streamgage. The hydraulic model was then used to compute 22 water-surface profiles for flood stages at 1-ft interval referenced to the streamgage datum and ranging from bank-full to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data having a 0.37-ft vertical accuracy and a 1.02-ft horizontal accuracy) to delineate the area flooded at each water level. The availability of these maps along with Internet information regarding the current stage from the USGS streamgage and forecasted stream stages from the NWS can provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.
Flood-inundation maps for the East Fork White River near Bedford, Indiana
Fowler, Kathleen K.
2014-01-01
Digital flood-inundation maps for an 1.8-mile reach of the East Fork White River near Bedford, Indiana (Ind.) were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selectedwater levels (stages) at USGS streamgage 03371500, East Fork White River near Bedford, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=03371500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the East Fork White River near Bedford, Ind. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the East Fork White River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 03371500, East Fork White River near Bedford, Ind., and documented high-water marks from the flood of June 2008. The calibrated hydraulic model was then used to determine 20 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging (LiDAR) data having a 0.593-foot vertical accuracy) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage near Bedford, Ind., and forecasted stream stages from the NWS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for postflood recovery eforts.
Flood-inundation maps for the Elkhart River at Goshen, Indiana
Strauch, Kellan R.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the Indiana Office of Community and Rural Affairs, created digital flood-inundation maps for an 8.3-mile reach of the Elkhart River at Goshen, Indiana, extending from downstream of the Goshen Dam to downstream from County Road 17. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to nine selected water levels (stages) at the USGS streamgage at Elkhart River at Goshen (station number 04100500). Current conditions for the USGS streamgages in Indiana may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, stream stage data have been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the Elkhart River at Goshen streamgage. The hydraulic model was then used to compute nine water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from approximately bankfull (5 ft) to greater than the highest recorded water level (13 ft). The simulated water-surface profiles were then combined with a geographic information system (GIS) digital-elevation model (DEM), derived from Light Detection and Ranging (LiDAR) data having a 0.37-ft vertical accuracy and 3.9-ft horizontal resolution in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for postflood recovery efforts.
Assessment of oil slick hazard and risk at vulnerable coastal sites.
Melaku Canu, Donata; Solidoro, Cosimo; Bandelj, Vinko; Quattrocchi, Giovanni; Sorgente, Roberto; Olita, Antonio; Fazioli, Leopoldo; Cucco, Andrea
2015-05-15
This work gives an assessment of the hazard faced by Sicily coasts regarding potential offshore surface oil spill events and provides a risk assessment for Sites of Community Importance (SCI) and Special Protection Areas (SPA). A lagrangian module, coupled with a high resolution finite element three dimensional hydrodynamic model, was used to track the ensemble of a large number of surface trajectories followed by particles released over 6 selected areas located inside the Sicily Channel. The analysis was carried out under multiple scenarios of meteorological conditions. Oil evaporation, oil weathering, and shore stranding are also considered. Seasonal hazard maps for different stranding times and seasonal risk maps were then produced for the whole Sicilian coastline. The results highlight that depending on the meteo-marine conditions, particles can reach different areas of the Sicily coast, including its northern side, and illustrate how impacts can be greatly reduced through prompt implementation of mitigation strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Over-the-horizon radar research consortium formed
NASA Astrophysics Data System (ADS)
One casualty of shrinking military budgets and the disappearance of Cold War threats has been the U.S. Air Force's over-the-horizon or ionospheric radar system known as OTH-B. For the scientific community this is not all bad news: The vast potential of the six powerful 5-28-MHz radars for geophysical monitoring may soon be available to anyone who can afford to run and maintain them.To reap civilian benefits from the billiondollar investment in these radars, the 1994 defense appropriation directed the Air Force to “fully cooperate with efforts of other governmental agencies to utilize the dual-use capabilities of this system for remote environmental and weather monitoring and other purposes.” So far, only the National Oceanic and Atmospheric Administration (NOAA) has tapped the radars' environmental monitoring potential. Since 1991, it has conducted tests to map surface wind direction over basin-scale ocean areas and track ocean storms, including Hurricane Andrew. Recent tests show the radar can be used to map ocean surface currents as well.
Seasonal Surface Spectral Emissivity Derived from Terra MODIS Data
NASA Technical Reports Server (NTRS)
Sun-Mack, Sunny; Chen, Yan; Minnis, Patrick; Young, DavidF.; Smith, William J., Jr.
2004-01-01
The CERES (Clouds and the Earth's Radiant Energy System) Project is measuring broadband shortwave and longwave radiances and deriving cloud properties form various images to produce a combined global radiation and cloud property data set. In this paper, simultaneous data from Terra MODIS (Moderate Resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 11.0, and 12.0 m are used to derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of clear sky temperature in each channel determined by scene classification during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7- m radiances. A set of simultaneous equations is then solved to derive the emissivities. Global monthly emissivity maps are derived from Terra MODIS data while numerical weather analyses provide soundings for correcting the observed radiances for atmospheric absorption. These maps are used by CERES and other cloud retrieval algorithms.
Mapping the impact of climate change on surface recession of carbonate buildings in Europe.
Bonazza, Alessandra; Messina, Palmira; Sabbioni, Cristina; Grossi, Carlota M; Brimblecombe, Peter
2009-03-01
Climate change is currently attracting interest at both research and policy levels. However, it is usually explored in terms of its effect on agriculture, water, industry, energy, transport and health and as yet has been insufficiently addressed as a factor threatening cultural heritage. Among the climate parameters critical to heritage conservation and expected to change in the future, precipitation plays an important role in surface recession of stone. The Lipfert function has been taken under consideration to quantify the annual surface recession of carbonate stone, due to the effects of clean rain, acid rain and dry deposition of pollutants. The present paper provides Europe-wide maps showing quantitative predictions of surface recession on carbonate stones for the 21st century, combining a modified Lipfert function with output from the Hadley global climate model. Chemical dissolution of carbonate stones, via the karst effect, will increase with future CO(2) concentrations, and will come to dominate over sulfur deposition and acid rain effects on monuments and buildings in both urban and rural areas. During the present century the rainfall contribution to surface recession is likely to have a small effect, while the increase in atmospheric CO(2) concentration is shown to be the main factor in increasing weathering via the karst effect.
NASA Astrophysics Data System (ADS)
Chaney, Nathaniel W.; Herman, Jonathan D.; Ek, Michael B.; Wood, Eric F.
2016-11-01
With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of model parameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (rs,min), the Zilitinkevich empirical constant (Czil), and the bare soil evaporation exponent (fxexp). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.
Ionosphere-related products for communication and navigation
NASA Astrophysics Data System (ADS)
Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.
2011-12-01
Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is developing and producing commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. The global, CONUS, Europe, Asia, South America, and other regional sectors are run with a 15-minute cadence. These operational runs enable SWC to calculate and report the global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders, especially during the Japan Great Earthquake and tsunami recovery period. SWC has established its first fully commercial enterprise called Q-up as a result of this activity. GPS uncertainty maps are produced by SWC to improve single-frequency GPS applications. SWC also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.
NASA Astrophysics Data System (ADS)
Rigden, Angela J.; Salvucci, Guido D.
2015-04-01
A novel method of estimating evapotranspiration (ET), referred to as the ETRHEQ method, is further developed, validated, and applied across the U.S. from 1961 to 2010. The ETRHEQ method estimates the surface conductance to water vapor transport, which is the key rate-limiting parameter of typical ET models, by choosing the surface conductance that minimizes the vertical variance of the calculated relative humidity profile averaged over the day. The ETRHEQ method, which was previously tested at five AmeriFlux sites, is modified for use at common weather stations and further validated at 20 AmeriFlux sites that span a wide range of climates and limiting factors. Averaged across all sites, the daily latent heat flux RMSE is ˜26 W·m-2 (or 15%). The method is applied across the U.S. at 305 weather stations and spatially interpolated using ANUSPLIN software. Gridded annual mean ETRHEQ ET estimates are compared with four data sets, including water balance-derived ET, machine-learning ET estimates based on FLUXNET data, North American Land Data Assimilation System project phase 2 ET, and a benchmark product that integrates 14 global ET data sets, with RMSEs ranging from 8.7 to 12.5 cm·yr-1. The ETRHEQ method relies only on data measured at weather stations, an estimate of vegetation height derived from land cover maps, and an estimate of soil thermal inertia. These data requirements allow it to have greater spatial coverage than direct measurements, greater historical coverage than satellite methods, significantly less parameter specification than most land surface models, and no requirement for calibration.
NASA Astrophysics Data System (ADS)
Ramirez-Lopez, Leonardo; Alexandre Dematte, Jose
2010-05-01
There is consensus in the scientific community about the great need of spatial soil information. Conventional mapping methods are time consuming and involve high costs. Digital soil mapping has emerged as an area in which the soil mapping is optimized by the application of mathematical and statistical approaches, as well as the application of expert knowledge in pedology. In this sense, the objective of the study was to develop a methodology for the spatial prediction of soil classes by using soil spectroscopy methodologies related with fieldwork, spectral data from satellite image and terrain attributes in simultaneous. The studied area is located in São Paulo State, and comprised an area of 473 ha, which was covered by a regular grid (100 x 100 m). In each grid node was collected soil samples at two depths (layers A and B). There were extracted 206 samples from transect sections and submitted to soil analysis (clay, Al2O3, Fe2O3, SiO2 TiO2, and weathering index). The first analog soil class map (ASC-N) contains only soil information regarding from orders to subgroups of the USDA Soil Taxonomy System. The second (ASC-H) map contains some additional information related to some soil attributes like color, ferric levels and base sum. For the elaboration of the digital soil maps the data was divided into three groups: i) Predicted soil attributes of the layer B (related to the soil weathering) which were obtained by using a local soil spectral library; ii) Spectral bands data extracted from a Landsat image; and iii) Terrain parameters. This information was summarized by a principal component analysis (PCA) in each group. Digital soil maps were generated by supervised classification using a maximum likelihood method. The trainee information for this classification was extracted from five toposequences based on the analog soil class maps. The spectral models of weathering soil attributes shown a high predictive performance with low error (R2 0.71 to 0.90). The spatial prediction of these attributes also showed a high performance (validations with R2> 0.78). These models allowed to increase spatial resolution of soil weathering information. On the other hand, the comparison between the analog and digital soil maps showed a global accuracy of 69% for the ASC-N map and 62% in the ASC-H map, with kappa indices of 0.52 and 0.45 respectively.
CPC - Monitoring & Data: Regional Climate Maps
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News Information CPC Web Team HOME > Monitoring and Data > Global Climate Data & Maps > Global Regional Climate Maps Regional Climate Maps Banner The Monthly regional analyses products are usually
Summaries Heat Index Tropical Products Daily Weather Map GIS Products Current Watches/ Warnings Satellite and Radar Imagery GOES-East Satellite GOES-West Satellite National Radar Product Archive WPC
NASA Technical Reports Server (NTRS)
Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.
1995-01-01
The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.
Amarillo MAP, Texas. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.
1981-12-02
9 7,7 0 70&8 70, ? Dog 70*8 70,8 7Q,8 70o8 70,8 70o8 70. 70,8 70 >’AOMC 69. 70.6 71. I1.1 71.’ 71.4 71.4 71.4 71.4 71.4 71.4 71.4 71.4 7 4 71.4 71.4 a...TH.IS PORN ^ *S. . T - - -- -- -- --- - - - - - - - --- - - --- -------- V- GLOBAL CLIMATOLOGY BRANCH Ll:SAF E T AC CE~5ILIG VE SU VISIBILITY Ai
Globe Browsing: Contextualized Spatio-Temporal Planetary Surface Visualization.
Bladin, Karl; Axelsson, Emil; Broberg, Erik; Emmart, Carter; Ljung, Patric; Bock, Alexander; Ynnerman, Anders
2017-08-29
Results of planetary mapping are often shared openly for use in scientific research and mission planning. In its raw format, however, the data is not accessible to non-experts due to the difficulty in grasping the context and the intricate acquisition process. We present work on tailoring and integration of multiple data processing and visualization methods to interactively contextualize geospatial surface data of celestial bodies for use in science communication. As our approach handles dynamic data sources, streamed from online repositories, we are significantly shortening the time between discovery and dissemination of data and results. We describe the image acquisition pipeline, the pre-processing steps to derive a 2.5D terrain, and a chunked level-of-detail, out-of-core rendering approach to enable interactive exploration of global maps and high-resolution digital terrain models. The results are demonstrated for three different celestial bodies. The first case addresses high-resolution map data on the surface of Mars. A second case is showing dynamic processes, such as concurrent weather conditions on Earth that require temporal datasets. As a final example we use data from the New Horizons spacecraft which acquired images during a single flyby of Pluto. We visualize the acquisition process as well as the resulting surface data. Our work has been implemented in the OpenSpace software [8], which enables interactive presentations in a range of environments such as immersive dome theaters, interactive touch tables, and virtual reality headsets.
14 CFR Appendix B to Part 63 - Flight Navigator Training Course Requirements
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Hazards. Air masses. Front weather. Fog. Thunderstorms. Icing. World weather and climate. Weather maps and... required standards, but the period between inspections shall not exceed 12 months. (j) Change of ownership, name, or location—(1) Change of ownership. Approval of a flight navigator course shall not be continued...
14 CFR Appendix B to Part 63 - Flight Navigator Training Course Requirements
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Hazards. Air masses. Front weather. Fog. Thunderstorms. Icing. World weather and climate. Weather maps and... required standards, but the period between inspections shall not exceed 12 months. (j) Change of ownership, name, or location—(1) Change of ownership. Approval of a flight navigator course shall not be continued...
14 CFR Appendix B to Part 63 - Flight Navigator Training Course Requirements
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Hazards. Air masses. Front weather. Fog. Thunderstorms. Icing. World weather and climate. Weather maps and... required standards, but the period between inspections shall not exceed 12 months. (j) Change of ownership, name, or location—(1) Change of ownership. Approval of a flight navigator course shall not be continued...
14 CFR Appendix B to Part 63 - Flight Navigator Training Course Requirements
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Hazards. Air masses. Front weather. Fog. Thunderstorms. Icing. World weather and climate. Weather maps and... required standards, but the period between inspections shall not exceed 12 months. (j) Change of ownership, name, or location—(1) Change of ownership. Approval of a flight navigator course shall not be continued...
Flood-inundation maps for the Flatrock River at Columbus, Indiana, 2012
Coon, William F.
2013-01-01
Digital flood-inundation maps for a 5-mile reach of the Flatrock River on the western side of Columbus, Indiana, from County Road 400N to the river mouth at the confluence with Driftwood River, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the Federal Flood Inundation Mapper Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Flatrock River at Columbus (station number 03363900). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service, which also presents the USGS data, at http:/water.weather.gov/ahps/. Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at the Flatrock River streamgage, high-water marks that were surveyed following the flood of June 7, 2008, and water-surface profiles from the current flood-insurance study for the City of Columbus. The hydraulic model was then used to compute 12 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 9 ft or near bankfull to 20 ft, which exceeds the stages that correspond to both the estimated 0.2-percent annual exceedance probability flood (500-year recurrence interval flood) and the maximum recorded peak flow. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from Light Detection and Ranging (LiDAR) data having a 0.37 ft vertical accuracy and 3.9 ft horizontal resolution) to delineate the area flooded at each water level. The availability of these maps on the USGS Federal Flood Inundation Mapper Web site, along with Internet information regarding current stage from the USGS streamgage, will provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.
NASA Technical Reports Server (NTRS)
Douglas, C.; Wright, I. P.; Bell, J. B.; Morris, R. V.; Golden, D. C.; Pillinger, C. T.
1993-01-01
Spectroscopic observations of the Martian surface in the invisible to near infrared (0.4-1.0 micron), coupled with measurements made by Viking, have shown that the surface is composed of a mixture of fine-grained weathered and nonweathered minerals. The majority of the weathered components are thought to be materials like smectite clays, scapolite, or palagonite. Until materials are returned for analysis there are two possible ways of proceeding with an investigation of Martian surface processes: (1) the study of weathering products in meteorites that have a Martian origin (SNC's), and (2) the analysis of certain terrestrial weathering products as analogs to the material found in SNC's, or predicted to be present on the Martian surface. We describe some preliminary measurements of the carbon chemistry of terrestrial palagonite samples that exhibit spectroscopic similarities with the Martian surface. The data should aid the understanding of weathering in SNC's and comparisons between terrestrial palagonites and the Martian surface.
Overseas trip report, CV 990 underflight mission. [Norwegian Sea, Greenland ice sheet, and Alaska
NASA Technical Reports Server (NTRS)
Gloersen, P.; Crawford, J.; Hardis, L.
1980-01-01
The scanning microwave radiometer-7 simulator, the ocean temperature scanner, and an imaging scatterometer/altimeter operating at 14 GHz were carried onboard the NASA CV-990 over open oceans, sea ice, and continental ice sheets to gather surface truth information. Data flights were conducted over the Norwegian Sea to map the ocean polar front south and west of Bear Island and to transect several Nimbus-7 footprints in a rectangular pattern parallel to the northern shoreline of Norway. Additional flights were conducted to obtain correlative data on the cryosphere parameters and characteristics of the Greenland ice sheet, and study the frozen lakes near Barrow. The weather conditions and flight path way points for each of the nineteen flights are presented in tables and maps.
Great Lakes Maps - NOAA's National Weather Service
Coastal Forecast System) Waves (GLERL Great Lakes Coastal Forecast System) Ice Cover (GLERL Great Lakes Coastal Forecast System) NOAA's National Weather Service Central Region Headquarters Regional Office 7220
WPC Excessive Rainfall and Winter Weather Forecasts
Summaries Heat Index Tropical Products Daily Weather Map GIS Products Current Watches/ Warnings Satellite and Radar Imagery GOES-East Satellite GOES-West Satellite National Radar Product Archive WPC
Exploring the Cloud Icy Early Mars Hypothesis Through Geochemistry and Mineralogy
NASA Technical Reports Server (NTRS)
Niles, P. B.; Michalski, J. R.
2015-01-01
While ancient fluvial channels have long been considered strong evidence for early surface water on Mars, many aspects of the fluvial morphology and occurrence suggest that they formed in relatively water limited conditions (com-pared to Earth) and that climatic excursions allowing for surface water might have been short-lived. Updated results mapping valley networks at higher resolution have changed this paradigm, showing that channels are much more abundant and wide-spread, and of higher order than was previously recognized, suggesting that Mars had a dense enough atmosphere and warm enough climate to allow channel formation up to 3.6-3.8 Ga. This revised view of the ancient martian climate might be broadly consistent with a climate history of Mars devised from infrared remote sensing of surface minerals, suggesting that widespread clay minerals formed in the Noachian, giving way to a sulfur-dominated surface weathering system by approx. 3.7 Ga.
Michael A. Velbel; Charles L. Basso; Michael J. Zieg
1996-01-01
Mineral surface-textures on naturally weathered crystals of staurolite [monoclinic, pseudo-orthorhombic; Fe4Al18Si8O46(OH)2] indicate that staurolite weathering is generally interface-limited. Etch pits on naturally weathered staurolites are disk-shaped,...
NASA Astrophysics Data System (ADS)
Block, J.; Crawl, D.; Artes, T.; Cowart, C.; de Callafon, R.; DeFanti, T.; Graham, J.; Smarr, L.; Srivas, T.; Altintas, I.
2016-12-01
The NSF-funded WIFIRE project has designed a web-based wildfire modeling simulation and visualization tool called FireMap. The tool executes FARSITE to model fire propagation using dynamic weather and fire data, configuration settings provided by the user, and static topography and fuel datasets already built-in. Using GIS capabilities combined with scalable big data integration and processing, FireMap enables simple execution of the model with options for running ensembles by taking the information uncertainty into account. The results are easily viewable, sharable, repeatable, and can be animated as a time series. From these capabilities, users can model real-time fire behavior, analyze what-if scenarios, and keep a history of model runs over time for sharing with collaborators. Firemap runs FARSITE with national and local sensor networks for real-time weather data ingestion and High-Resolution Rapid Refresh (HRRR) weather for forecasted weather. The HRRR is a NOAA/NCEP operational weather prediction system comprised of a numerical forecast model and an analysis/assimilation system to initialize the model. It is run with a horizontal resolution of 3 km, has 50 vertical levels, and has a temporal resolution of 15 minutes. The HRRR requires an Environmental Data Exchange (EDEX) server to receive the feed and generate secondary products out of it for the modeling. UCSD's EDEX server, funded by NSF, makes high-resolution weather data available to researchers worldwide and enables visualization of weather systems and weather events lasting months or even years. The high-speed server aggregates weather data from the University Consortium for Atmospheric Research by way of a subscription service from the Consortium called the Internet Data Distribution system. These features are part of WIFIRE's long term goals to build an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. Although Firemap is a research product of WIFIRE, developed in collaboration with a number of fire departments, the tool is operational in pilot form for providing big data-driven predictive fire spread modeling. Most recently, FireMap was used for situational awareness in the July 2016 Sand Fire by LA City and LA County Fire Departments.
The New Era in Operational Forecasting
NASA Astrophysics Data System (ADS)
Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.; Eccles, J. V.; Rice, D. D.; Bouwer, D.; Bailey, J. J.; Knipp, D. J.; Blake, J. B.; Rex, J.; Fuschino, R.; Mertens, C. J.; Gersey, B.; Wilkins, R.; Atwell, W.
2012-12-01
Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere, thermosphere, and even troposphere are key regions that are affected. The Utah State University (USU) Space Weather Center (SWC) and Space Environment Technologies (SET) are developing and producing commercial space weather applications. Key systems for providing timely information about the effects of space weather are SWC's Global Assimilation of Ionospheric Measurements (GAIM) system, SET's Magnetosphere Alert and Prediction System (MAPS), and SET's Automated Radiation Measurements for Aviation Safety (ARMAS) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. These operational runs enable the reporting of global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders via the http://q-upnow.com website. MAPS provides a forecast Dst index out to 6 days through the data-driven Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. ARMAS is demonstrating a prototype flight of microdosimeters on aircraft to capture the "weather" of the radiation environment for air-crew and passenger safety. It assimilates real-time radiation dose and dose rate data into the global NAIRAS radiation system to correct the global climatology for more accurate radiation fields along flight tracks. This team also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe recent forecasting advances for moving space weather information through automated systems into operational, derivative products for communications, aviation, and satellite operations uses.
NASA Astrophysics Data System (ADS)
Kraft, M. D.; Rogers, D.; Fergason, R. L.; Michalski, J. R.; Sharp, T. G.
2009-12-01
While much attention has been given to chemical alteration and the state of water on early Mars, it remains important to understand aqueous processes throughout Martian history, including the recent geologic past. It has been suggested that the Amazonian was marked primarily by anhydrous, oxidative weathering because Amazonian surfaces, such as the northern plains, lack hydration features in near-infrared spectra [1]. But high-silica materials (Surface Type 2, ST2) discovered by the Thermal Emission Spectrometer [2] that occur in the northern plains attest to aqueous alteration of silicate minerals. The questions are when did this occur and by what process? ST2 correlates spatially with outflow sediments and high-silica materials may have formed in large amounts of water related to outflow flooding events of the late Hesperian [3,4]. ST2 also may correspond to global ice-rich mantles, indicating formation in icy environments related to geologically recent climate fluctuations [3]. Can these very different mechanisms and environments be discerned? In a global study of TES spectra, Rogers et al. (2007) [5] found significant spectral differences between ST2 surfaces in northern and southern Acidalia Planitia that occur near 40-50° N. Several geomorphic transitions occur across latitudes, and many of these are directly or potentially related to Amazonian periglacial activity and occur in the 40-50° N range. This potential link between composition and periglacial morphology needs further exploration. We examined this relationship from 40-50° N in Acidalia Planitia, using Thermal Emission Imaging System (THEMIS) multispectral data to measure the local spectral properties of the surface. We identified a boundary between two surface spectral types that match closely the spectra of north and south Acidalia derived by Rogers et al. [2007]. This boundary is diffuse, occurring between 47-48° N in our study region in western Acidalia, and correlates with observed morphologic and thermophysical differences. Close examination of those surfaces with High Resolution Imaging Science Experiment (HiRISE) images shows that the area north of the boundary is a modified version of the southern surface, subdued and overprinted by periglacial polygonal ground. Thus, we think that ground ice has modified the surface morphology and, furthermore, that periglacial processing also modified the silicate composition of the northern surface materials. Weathering that created the northern Acidalia composition involved ground ice, and was likely similar to weathering in Antarctic soils, in which silica is mobilized by thin water films and deposited as gels [6]. By this mechanism, aqueous weathering on Mars has probably persisted into, and throughout, the Amazonian. References: [1] Bibring et al. (2006) Science, 312, 400-404. [2] Bandfield et al. (2000) Science, 287, 1626-1630. [3] Wyatt et al. (2004) Geology, 32, 645-648. [4] Tanaka et al. (2005) USGS Sci. Invest. Map 2888. [5] Rogers et al. (2007) J. Geophys. Res.,112, E02004. [6] Ugolini and Anderson (1973), Soil Sci., 105, 461-470.
Thomas, C. S.; Skinner, P. W.; Fox, A. D.; Greer, C. A.; Gubler, W. D.
2002-01-01
Ground-based weather, plant-stage measurements, and remote imagery were geo-referenced in geographic information system (GIS) software using an integrated approach to determine insect and disease risk and crop cultural requirements. Weather forecasts and disease weather forecasts for agricultural areas were constructed with elevation, weather, and satellite data. Models for 6 insect pests and 12 diseases of various crops were calculated and presented daily in georeferenced maps for agricultural areas in northern California and Washington. Grape harvest dates and yields also were predicted with high accuracy. The data generated from the GIS global positioning system (GPS) analyses were used to make management decisions over a large number of acres in California, Washington, Oregon, Idaho, and Arizona. Information was distributed daily over the Internet as regional weather, insect, and disease risk maps as industry-sponsored or subscription-based products. Use of GIS/GPS technology for semi-automated data analysis is discussed. PMID:19265934
North Atlantic weather regimes: A synoptic study of phase space. M.S. Thesis
NASA Technical Reports Server (NTRS)
Orrhede, Anna Karin
1990-01-01
In the phase space of weather, low frequency variability (LFV) of the atmosphere can be captured in a large scale subspace, where a trajectory connects consecutive large scale weather maps, thus revealing flow changes and recurrences. Using this approach, Vautard applied the trajectory speed minimization method (Vautard and Legras) to atmospheric data. From 37 winters of 700 mb geopotential height anomalies over the North Atlantic and the adjacent land masses, four persistent and recurrent weather patterns, interpreted as weather regimes, were discernable: a blocking regime, a zonal regime, a Greenland anticyclone regime, and an Atlantic regime. These regimes are studied further in terms of maintenance and transitions. A regime survey unveils preferences regarding event durations and precursors for the onset or break of an event. The transition frequencies between regimes vary, and together with the transition times, suggest the existence of easier transition routes. These matters are more systematically studied using complete synoptic map sequences from a number of events.
Musser, Jonathan W.
2012-01-01
Digital flood-inundation maps for a 6.9-mile reach of Suwanee Creek, from the confluence of Ivy Creek to the Noblin Ridge Drive bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with Gwinnett County, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Suwanee Creek at Suwanee, Georgia (02334885). Current stage at this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Suwanee Creek at Suwanee (02334885), available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers HEC-RAS software for Suwanee Creek and was used to compute flood profiles for a 6.9-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Suwanee Creek at Suwanee streamgage (02334885). The hydraulic model was then used to determine 19 water-surface profiles for flood stages at the Suwanee Creek streamgage at 0.5-foot intervals referenced to the streamgage. The profiles ranged from just above bankfull stage (7.0 feet) to approximately 1.7 feet above the highest recorded water level at the streamgage (16.0 feet). The simulated water-surface profiles were then combined with a geographic information system digital elevation model - derived from light detection and ranging (LiDAR) data having a 5.0-foot horizontal resolution - to delineate the area flooded for each 0.5-foot increment of stream stage. The availability of these maps, when combined with real-time stage information from USGS streamgages and forecasted stream stage from the NWS, provides emergency management personnel and residents with critical information during flood-response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.
Flood-inundation maps for the East Fork White River at Shoals, Indiana
Boldt, Justin A.
2016-05-06
Digital flood-inundation maps for a 5.9-mile reach of the East Fork White River at Shoals, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the East Fork White River at Shoals, Ind. (USGS station number 03373500). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS AHPS site SHLI3). NWS AHPS forecast peak stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.Flood profiles were computed for the East Fork White River reach by means of a one-dimensional, step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the current stage-discharge relation (USGS rating no. 43.0) at USGS streamgage 03373500, East Fork White River at Shoals, Ind. The calibrated hydraulic model was then used to compute 26 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from approximately bankfull (10 ft) to the highest stage of the current stage-discharge rating curve (35 ft). The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM), derived from light detection and ranging (lidar) data, to delineate the area flooded at each water level. The areal extent of the 24-ft flood-inundation map was verified with photographs from a flood event on July 20, 2015.The availability of these maps, along with information on the Internet regarding current stage from the USGS streamgage at East Fork White River at Shoals, Ind., and forecasted stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
An expanded model: flood-inundation maps for the Leaf River at Hattiesburg, Mississippi, 2013
Storm, John B.
2014-01-01
Digital flood-inundation maps for a 6.8-mile reach of the Leaf River at Hattiesburg, Mississippi (Miss.), were created by the U.S. Geological Survey (USGS) in cooperation with the City of Hattiesburg, City of Petal, Forrest County, Mississippi Emergency Management Agency, Mississippi Department of Homeland Security, and the Emergency Management District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Leaf River at Hattiesburg, Miss. (station no. 02473000). Current conditions for estimating near-real-time areas of inundation by use of USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relations at the Leaf River at Hattiesburg, Miss. streamgage (02473000) and documented high-water marks from recent and historical floods. The hydraulic model was then used to determine 13 water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM, derived from light detection and ranging (lidar) data having a 0.6-foot vertical and 9.84-foot horizontal resolution) in order to delineate the area flooded at each water level. Development of the estimated flood inundation maps as described in this report update previously published inundation estimates by including reaches of the Bouie and Leaf Rivers above their confluence. The availability of these maps along with Internet information regarding current stage from USGS streamgages and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.
Asian Dust Weather Categorization with Satellite and Surface Observations
NASA Technical Reports Server (NTRS)
Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen
2011-01-01
This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.
NASA Astrophysics Data System (ADS)
Bernardi, Tony
2014-05-01
Influence of geology, regolith and soil on fluid flow pathways in an upland catchment in central NSW, Australia. Tony Bernardi and Leah Moore Dryland Salinity Hazard Mitigation Program (DSHMP), University of Canberra, ACT 2601, AUSTRALIA The diversity of salt expression in central NSW has defied classification because salt expression, mobilisation and transport is highly variable and is typically site specific. Hydrological models are extensively used to simulate possible outcomes for a range of land use changes to mitigate the mobilisation and transport of salt into the streams or across the land surface. The ability of these models to mimic reality can be variable thereby reducing the confidence in the models outputs and uptake of strategic management changes by the community. This study focuses on a 250 ha semi-arid sub-catchment of Little River catchment in central west NSW in the Murray-Darling Basin, Australia. We propose that an understanding the structure of the landforms and configuration of rock, regolith and soil materials at the study site influences fluid flow pathways in the landscape and can be related to observed variations in the chemical composition and salinity of surface and aquifer water. Preliminary geological mapping of the site identified the dominant rock type as a pink and grey dacite and in localised mid-slope areas, a coarsely crystalline biotite-phyric granodiorite. Samples were taken at regular intervals from natural exposures in eroded stream banks and in excavations made during the installation of neutron moisture meter tubes. In order to establish mineral weathering pathways, samples were taken from the relatively unweathered core to the outer weathered 'onion skins' of corestones on both substrates, and then up through the regolith profile, including the soil zone, to the land surface. X-ray diffraction (XRD) analysis and X-ray fluorescence (XRF) was conducted on the rock and soil/saprock samples. Electromagnetic induction (EMI) profile data were compiled from previous work with colleagues in this area. Preliminary interpretation of the mapping and the geophysics is that there is a three-layer framework for groundwater modelling: fractured granitic rock with an irregular upper surface, finer-grained (volcanic) rock that has either mantled the older granite or has been intruded into, and a weathering profile developed in relation to the land surface. More careful interpretation of the intervals that shallow and deep piezometers and shallow and deep bores are sampling indicates that variability in water chemistry between holes can, in part, be explained because they are sampling different materials in the sub-surface geology/regolith geology. Quartz is a relatively resistant phase throughout the profiles. For both substrates there is a decrease in the feldspar in increasingly weathered regolith materials, with a corresponding increase in kaolinite clay. There is increased homogenisation of the profile, and some horizonation due to pedogenic processes (e.g. bioturbation, illuviation of fines down profile) nearer the land surface. This results in a concentration of more resistant phases (quartz and remnant primary feldspar as sands) at the land surface over the granitic substrate, however kaolinite persists in the profile over the finer substrate. The presence of measurable ferruginous oxides and sesquioxides relates to localised percolation of oxidising fluids through the profiles. Understanding the configuration and composition of rocks and regolith materials in the Baldry catchment facilitates interpretation of observed patterns in hydrological analyses.
NASA Astrophysics Data System (ADS)
Berhane, Gebremedhin; Amare, Mogos; Gebreyohannes, Tesfamichael; Walraevens, Kristine
2017-05-01
Water resources are essential to human development activities and to eradicate extreme poverty and hunger. Geological problems of two water harvesting Micro-Dam Reservoirs (MDRs) were evaluated from leakage perspectives in the northern part of Ethiopia, East Africa. Conventional geological mapping, discontinuity and weathering descriptions, test pits and geophysical methods were used to characterize the hydrogeological features of the MDRs. Vertical Electrical Sounding (VES) and Electrical Profiling (EP), were executed using Terrameter SAS (signal averaging system) 1000 manufactured by ABEM, Sweden, with Schlumberger and Wenner array configuration respectively. It was concluded that the foundations of both MDRs, except the right abutment for Adishuhu which is partly composed of dolerite, are pervious due to the presence of thin bedding planes, joints, weathered materials and fault. The presence of water in the downstream toe of the MDRs, at depressions, existing test pits and test pits excavated during the present study which lie within the seepage zone demarcated during surface geological mapping, correspond with the electrical resistivity study. The results of the electrical resistivity survey (EP and VES) were merged with the geological and structural mapping and the observation of seepage zones, for the delineation of weak zones responsible for leakage. Monitoring of the leakage (reservoir water and groundwater levels), both manually and using automatic divers, is recommended, along with monitoring of the stability of the embankments and the discharge or flow downstream of the MDRs.
NASA Astrophysics Data System (ADS)
Hayakawa, Y. S.; Obanawa, H.
2015-12-01
Bedrock knickpoints (waterfalls) often act as erosional front in bedrock rivers, whose geomorphological processes are various. In waterfalls with vertical cliffs, both fluvial erosion and mass movement are feasible to form the landscape. Although morphological changes of such steep cliffs are sometimes visually observed, quantitative and precise measurements of their spatiotemporal distribution have been limited due to poor accessibility to such cliffs. For the clarification of geomorphological processes in such cliffs, multi-temporal mapping of the cliff face at a high resolution can be advantaged by short-range remote sensing approaches. Here we carry out multi-temporal terrestrial laser scanning (TLS), as well as structure-from-motion multi-view stereo (SfM-MVS) photogrammetry based on unmanned aerial system (UAS) for accurate topographic mapping of cliffs around a waterfall. The study site is Kegon Falls in central Japan, having a vertical drop of surface water from top of its overhanging cliff and groundwater outflows from its lower portions. The bedrock consists of alternate layers of jointed andesite lava and conglomerates. The latest major rockfall in 1986 caused approximately 8-m recession of the waterfall lip. Three-dimensional changes of the rock surface were detected by multi-temporal measurements by TLS over years, showing the portions of small rockfalls and surface lowering in the bedrock. Erosion was frequently observed in relatively weak the conglomerates layer, whereas small rockfalls were often found in the andesite layers. Wider areas of the waterfall and cliff were also measured by UAS-based SfM-MVS photogrammetry, improving the mapping quality of the cliff morphology. Point clouds are also projected on a vertical plane to generate a digital elevation model (DEM), and cross-sectional profiles extracted from the DEM indicate the presence of a distinct, 5-10-m deep depression in the cliff face. This appears to have been formed by freeze-thaw and/or wet-dry weathering following the recession in 1986. The long-term development of the waterfall cliff face is then discussed comprising various processes of rockfalls, water pressure and weathering.
Flood inundation maps for the Wabash and Eel Rivers at Logansport, Indiana
Fowler, Kathleen K.
2014-01-01
Digital flood-inundation maps for an 8.3-mile reach of the Wabash River and a 7.6-mile reach of the Eel River at Logansport, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage Wabash River at Logansport, Ind. (sta. no. 03329000) and USGS streamgage Eel River near Logansport, Ind. (sta. no. 03328500). Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system http:/water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgages 03329000, Wabash River at Logansport, Ind., and 03328500, Eel River near Logansport, Ind. The calibrated hydraulic model was then used to determine five water-surface profiles for flood stage at 1-foot intervals referenced to the Wabash River streamgage datum, and four water-surface profiles for flood stages at 1-foot intervals referenced to the Eel River streamgage datum. The stages range from bankfull to approximately the highest stages that have occurred since 1967 when three flood control dams were built upstream of Logansport, Ind. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [lidar] data having a 0.37-foot vertical accuracy and 3.9-foot horizontal resolution) in order to delineate the area flooded at each stage. The availability of these maps, along with information available on the Internet regarding current stages from the USGS streamgages at Logansport, Ind., and forecasted stream stages from the NWS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post flood recovery efforts.
NASA Astrophysics Data System (ADS)
Karki, A.; Kargel, J. S.
2017-12-01
Landslides and ice avalanches kill >5000 people annually (D. Petley, 2012, Geology http://dx.doi.org/10.1130/G33217.1); destroy or damage homes and infrastructure; and create secondary hazards, such as flooding due to blocked rivers. Critical roles of surface slope, earthquake shaking, soil characteristics and saturation, river erosional undercutting, rainfall intensity, snow loading, permafrost thaw, freeze-thaw and frost shattering, debuttressing of unstable masses due to glacier thinning, and vegetation burn or removal are well-known factors affecting landslides and avalanches. Lithology-dependent bedrock physicochemical-mechanical properties—especially brittle elastic and shear strength, and chemical weathering properties that affect rock strength, are also recognized controls on landsliding and avalanching, but are not commonly considered in detail in landslide susceptibility assessment. Lithology controls the formation of weakened, weathered bedrock; the formation and accumulation of soils; soil saturation-related properties of grain size distribution, porosity, and permeability; and soil creep related to soil wetting-drying and freeze-thaw. Lithology controls bedrock abrasion and glacial erosion and debris production rates, the formation of rough or smoothed bedrock surface by glaciation, fluvial, and freeze-thaw processes. Lithologic variability (e.g., bedding; fault and joint structure) affects contrasts in chemical weathering rates, porosity, and susceptibility to frost shattering and chemical weathering, hence formation of overhanging outcrops and weakened slip planes. The sudden failure of bedrock or sudden slip of ice on bedrock, and many other processes depend on rock lithology, microstructure (porosity and permeability), and macrostructure (bedding; faults). These properties are sometimes considered in gross terms for landslide susceptibility assessment, but in detailed applications to specific development projects, and in detailed mapping over large areas, the details of rock lithology, weathering state, and structure are rarely considered. We have initiated a geological and rock mechanical properties approach to landslide susceptibility assessments in areas of high concern for human and infrastructure safety.
Optical sensors for mapping temperature and winds in the thermosphere from a CubeSat platform
NASA Astrophysics Data System (ADS)
Sullivan, Stephanie Whalen
The thermosphere is the region between approximately 80 km and 320 or more km above the earth's surface. While many people consider this elevation to be space rather than atmosphere, there is a small quantity of gasses in this region. The behavior of these gasses influences the orbits of satellites, including the International Space Station, causes space weather events, and influences the weather closer to the surface of the earth. Due to the location and characteristics of the thermosphere, even basic properties such as temperature are very difficult to measure. High spatial and temporal resolution data on temperatures and winds in the thermosphere are needed by both the space weather and earth climate modeling communities. To address this need, Space Dynamics Laboratory (SDL) started the Profiling Oxygen Emissions of the Thermosphere (POET) program. POET consists of a series of sensors designed to fly on sounding rockets, CubeSats, or larger platforms, such as IridiumNEXT SensorPODS. While each sensor design is different, they all use characteristics of oxygen optical emissions to measure space weather properties. The POET program builds upon the work of the RAIDS, Odin, and UARS programs. Our intention is to dramatically reduce the costs of building, launching, and operating spectrometers in space, thus allowing for more sensors to be in operation. Continuous long-term data from multiple sensors is necessary to understand the underlying physics required to accurately model and predict weather in the thermosphere. While previous spectrometers have been built to measure winds and temperatures in the thermosphere, they have all been large and expensive. The POET sensors use new focal plane technology and optical designs to overcome these obstacles. This thesis focuses on the testing and calibration of the two POET sensors: the Oxygen Profiling of the Atmospheric Limb (OPAL) temperature sensor and the Split-field Etalon Doppler Imager (SEDI) wind sensor.
ScienceCast 105: Big Weather on Hot Jupiters
2013-05-24
Astronomers using NASA's Spitzer Space Telescope are making weather maps of an exotic class of exoplanets called "hot Jupiters." What they're finding is wilder than anything we experience here in our own solar system.
Doppler Radar National Mosaic - NOAA's National Weather Service
Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings
Forecasts - NOAA's National Weather Service
select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News
Observations - NOAA's National Weather Service
select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News
Warnings/Watches - NOAA's National Weather Service
select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News
NREPS Applications for Water Supply and Management in California and Tennessee
NASA Technical Reports Server (NTRS)
Gatlin, P.; Scott, M.; Carery, L. D.; Petersen, W. A.
2011-01-01
Management of water resources is a balancing act between temporally and spatially limited sources and competitive needs which can often exceed the supply. In order to manage water resources over a region such as the San Joaquin Valley or the Tennessee River Valley, it is pertinent to know the amount of water that has fallen in the watershed and where the water is going within it. Since rain gauge networks are typically sparsely spaced, it is typical that the majority of rainfall on the region may not be measured. To mitigate this under-sampling of rainfall, weather radar has long been employed to provide areal rainfall estimates. The Next-Generation Weather Radars (NEXRAD) make it possible to estimate rainfall over the majority of the conterminous United States. The NEXRAD Rainfall Estimation Processing System (NREPS) was developed specifically for the purpose of using weather radar to estimate rainfall for water resources management. The NREPS is tailored to meet customer needs on spatial and temporal scales relevant to the hydrologic or land-surface models of the end-user. It utilizes several techniques to mitigate artifacts in the NEXRAD data from contaminating the rainfall field. These techniques include clutter filtering, correction for occultation by topography as well as accounting for the vertical profile of reflectivity. This presentation will focus on improvements made to the NREPS system to map rainfall in the San Joaquin Valley for NASA s Water Supply and Management Project in California, but also ongoing rainfall mapping work in the Tennessee River watershed for the Tennessee Valley Authority and possible future applications in other areas of the continent.
Surface Transportation Weather Decision Support Requirements - Executive Summary, Version 1.0
DOT National Transportation Integrated Search
1999-12-16
WEATHER: IT AFFECTS THE VISIBILITY, TRACTABILITY, MANEUVERABILITY, VEHICLE STABILITY, EXHAUST EMISSIONS AND STRUCTURAL INTEGRITY OF THE SURFACE TRANSPORTATION SYSTEM. THEREBY WEATHER AFFECTS THE SAFETY, MOBILITY, PRODUCTIVITY AND ENVIRONMENTAL IMPACT...
Use of ERTS-1 pictures in coastal oceanography in British Columbia
NASA Technical Reports Server (NTRS)
Gower, J. F. R.
1973-01-01
The ERTS-1 color composite picture of the Vancouver-Victoria region illustrates the value of ERTS data for coastal oceanography. The water of the Fraser River plume which is so clearly visible in the center of the scene has been of interest to oceanographers on the west coast of Canada for a long time as an easily visible tracer of surface water circulation in the strait of Georgia. Maps of the plume at different states of the tide and with different river flow and weather were compiled from oblique aerial photographs in 1950 and used in the siting of sewage and other outfalls in the Vancouver area. More recently high level aerial photomosaics have been used to map the plume area, but the plume can spread over distances of 30 to 40 miles and many photographs, with the uneven illumination inherent in wide angle coverage, are needed for the mosaic. The ERTS satellite gives the first complete view of the plume area. Electronic enhancement of the images shows that the satellite's narrow angle coverage allows very weak surface turbidity features to be made visible to give information on surface currents over a wide area.
Seismic Forecasting of Solar Activity
NASA Technical Reports Server (NTRS)
Braun, Douglas; Lindsey, Charles
2001-01-01
We have developed and improved helioseismic imaging techniques of the far-side of the Sun as part of a synoptic monitor of solar activity. In collaboration with the MIDI team at Stanford University we are routinely applying our analysis to images within 24 hours of their acquisition by SOHO. For the first time, real-time seismic maps of large active regions on the Sun's far surface are publicly available. The synoptic images show examples of active regions persisting for one or more solar rotations, as well as those initially detected forming on the solar far side. Until recently, imaging the far surface of the Sun has been essentially blind to active regions more than about 50 degrees from the antipode of disk center. In a paper recently accepted for publication, we have demonstrated how acoustic travel-time perturbations may be mapped over the entire hemisphere of the Sun facing away from the Earth, including the polar regions. In addition to offering significant improvements to ongoing space weather forecasting efforts, the procedure offers the possibility of local seismic monitoring of both the temporal and spatial variations in the acoustic properties of the Sun over the entire far surface.
Ionospheric TEC Weather Map Over South America
NASA Astrophysics Data System (ADS)
Takahashi, H.; Wrasse, C. M.; Denardini, C. M.; Pádua, M. B.; de Paula, E. R.; Costa, S. M. A.; Otsuka, Y.; Shiokawa, K.; Monico, J. F. Galera; Ivo, A.; Sant'Anna, N.
2016-11-01
Ionospheric weather maps using the total electron content (TEC) monitored by ground-based Global Navigation Satellite Systems (GNSS) receivers over South American continent, TECMAP, have been operationally produced by Instituto Nacional de Pesquisas Espaciais's Space Weather Study and Monitoring Program (Estudo e Monitoramento Brasileiro de Clima Especial) since 2013. In order to cover the whole continent, four GNSS receiver networks, (Rede Brasileiro de Monitoramento Contínuo) RBMC/Brazilian Institute for Geography and Statistics, Low-latitude Ionospheric Sensor Network, International GNSS Service, and Red Argentina de Monitoreo Satelital Continuo, in total 140 sites, have been used. TECMAPs with a time resolution of 10 min are produced in 12 h time delay. Spatial resolution of the map is rather low, varying between 50 and 500 km depending on the density of the observation points. Large day-to-day variabilities of the equatorial ionization anomaly have been observed. Spatial gradient of TEC from the anomaly trough (total electron content unit, 1 TECU = 1016 el m-2 (TECU) <10) to the crest region (TECU > 80) causes a large ionospheric range delay in the GNSS positioning system. Ionospheric plasma bubbles, their seeding and development, could be monitored. This plasma density (spatial and temporal) variability causes not only the GNSS-based positioning error but also radio wave scintillations. Monitoring of these phenomena by TEC mapping becomes an important issue for space weather concern for high-technology positioning system and telecommunication.
NASA Technical Reports Server (NTRS)
Lindamood, Glenn; Martzaklis, Konstantinos Gus; Hoffler, Keith; Hill, Damon; Mehrotra, Sudhir C.; White, E. Richard; Fisher, Bruce D.; Crabill, Norman L.; Tucholski, Allen D.
2006-01-01
The Pilot Weather Advisor (PWA) system is an automated satellite radio-broadcasting system that provides nearly real-time weather data to pilots of aircraft in flight anywhere in the continental United States. The system was designed to enhance safety in two distinct ways: First, the automated receipt of information would relieve the pilot of the time-consuming and distracting task of obtaining weather information via voice communication with ground stations. Second, the presentation of the information would be centered around a map format, thereby making the spatial and temporal relationships in the surrounding weather situation much easier to understand
Weathering and vegetation effects in early stages of soil formation
Jonathan D. Phillips; Alice V. Turkington; Daniel A. Marion
2008-01-01
Bedrock surfaces in the Ouachita Mountains, Arkansas, exposed by spillway construction and which had not previously been subjected to surface weathering environments, developed 15?20 cm thick soil covers in less than three decades. All open bedrock joints showed evidence of weathering and biological activity. Rock surfaces and fragments also showed evidence of...
NASA Astrophysics Data System (ADS)
Akip Tan, S. N. Mohd; Dan, M. F. Md; Edy Tonnizam, M.; Saad, R.; Madun, A.; Hazreek, Z. A. M.
2018-04-01
2-D resistivity technique and pole-dipole array with spacing of 2 m electrode and total spacing of 80 m were adopted to map and characterize the shallow subsurface in a sedimentary area at Nusajaya, Johor. Geological field mapping and laboratory testing were conducted to determine weathering grades. Res2Dinv software was used to generate the inversion model resistivity. The result shows sandstone contains iron mineral (30-1000ohm-m) and weathered sandstone (500-1000 ohm-m). The lowest layer represents sandstone and siltstone with the highest range from 1500 through 5000 ohm-m. The weathering grade IV and V of sandstone in the actual profile indicates the range from 30 to 1000 ohm-m, whereas grade II and III in ground mass matched the higest range. Overall, the increase of weathering grade influenced both the physical properties and strength of rocks.
NASA Astrophysics Data System (ADS)
Zhao, C.; Huang, M.; Fast, J. D.; Berg, L. K.; Qian, Y.; Guenther, A. B.; Gu, D.; Shrivastava, M. B.; Liu, Y.; Walters, S.; Jin, J.
2014-12-01
Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect secondary organic aerosol (SOA) formation and ultimately aerosol radiative forcing. These uncertainties result from many factors, including coupling strategy between biogenic emissions and land-surface schemes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (VOCs). In this study, sensitivity experiments are conducted using the Weather Research and Forecasting model with chemistry (WRF-Chem) to examine the sensitivity of simulated VOCs and ozone to land surface processes and vegetation distributions in California. The measurements collected during the California Nexus of Air Quality and Climate Experiment (CalNex) and the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted during May and June of 2010 provide a good opportunity to evaluate the simulations. First, the biogenic VOC emissions in the WRF-Chem simulations with the two land surface schemes, Noah and CLM4, are estimated by the Model of Emissions of Gases and Aerosols from Nature version one (MEGANv1), which has been publicly released and widely used with WRF-Chem. The impacts of land surface processes on estimating biogenic VOC emissions and simulating VOCs and ozone are investigated. Second, in this study, a newer version of MEGAN (MEGANv2.1) is coupled with CLM4 as part of WRF-Chem to examine the sensitivity of biogenic VOC emissions to the MEGAN schemes used and determine the importance of using a consistent vegetation map between a land surface scheme and the biogenic VOC emission scheme. Specifically, MEGANv2.1 is embedded into the CLM4 scheme and shares a consistent vegetation map for estimating biogenic VOC emissions. This is unlike MEGANv1 in WRF-Chem that uses a standalone vegetation map that differs from what is used in land surface schemes. Furthermore, we examine the impact of vegetation distribution on simulating VOCs and ozone by comparing coupled WRF-Chem-CLM-MEGANv2.1 simulations using multiple vegetation maps.
Comparative Science and Space Weather Around the Heliosphere
NASA Astrophysics Data System (ADS)
Grande, Manuel; Andre, Nicolas; COSPAR/ILWS Roadmap Team
2016-10-01
Space weather refers to the variable state of the coupled space environment related to changing conditions on the Sun and in the terrestrial atmosphere. The presentation will focus on the critical missing knowledge or observables needed to significantly advance our modelling and forecasting capabilities throughout the solar system putting these in perspective to the recommendations in the recent COSPAR/ILWS roadmap. The COSPAR/ILWS RoadMap focuses on high-priority challenges in key areas of research leading to a better understanding of the space environment and a demonstrable improvement in the provision of timely, reliable information pertinent to effects on civilian space- and ground-based systems, for all stakeholders around the world. The RoadMap prioritizes those advances that can be made on short, intermediate and decadal time scales, identifying gaps and opportunities from a predominantly, but not exclusively, geocentric perspective. While discussion of space weather effects has so far largely been concerned to the near-Earth environment, there are significant present and future applications to the locations beyond, and to other planets. Most obviously, perhaps, are the radiation hazards experienced by astronauts on the way to, and on the surface of, the Moon and Mars. Indeed, the environment experienced by planetary spacecraft in transit and at their destinations is of course critical to their design and successful operation. The case of forthcoming missions to Jupiter and Europa is an extreme example. Moreover, such craft can provide information which in turn increases our understanding of geospace. One initiative is that under Horizon 2020, Europlanet RI will set up a Europlanet Planetary Space Weather Service (PSWS). PSWS will make five entirely new `toolkits' accessible to the research community and to industrial partners planning for space missions: - a General planetary space weather toolkit; Mars (in support of the ESA ExoMars missions to be launched in 2016 and 2018); comets (building on the success of the ESA Rosetta mission); outer planets (in preparation for the ESA JUICE mission to be launched in 2022), as well as a novel "event-diary" toolkit aiming at predicting and detecting planetary events like meteor impacts
Comparative science and space weather around the heliosphere
NASA Astrophysics Data System (ADS)
Grande, Manuel
2016-07-01
Space weather refers to the variable state of the coupled space environment related to changing conditions on the Sun and in the terrestrial atmosphere. The presentation will focus on the critical missing knowledge or observables needed to significantly advance our modelling and forecasting capabilities throughout the solar system putting these in perspective to the recommendations in the recent COSPAR/ILWS roadmap. The COSPAR/ILWS RoadMap focuses on high-priority challenges in key areas of research leading to a better understanding of the space environment and a demonstrable improvement in the provision of timely, reliable information pertinent to effects on civilian space- and ground-based systems, for all stakeholders around the world. The RoadMap prioritizes those advances that can be made on short, intermediate and decadal time scales, identifying gaps and opportunities from a predominantly, but not exclusively, geocentric perspective. While discussion of space weather effects has so far largely been confined to the near-Earth environment, there are significant present and future applications to the locations beyond, and to other planets. Most obviously, perhaps, are the radiation hazards experienced by astronauts on the way to, and on the surface of, the Moon and Mars. Indeed, the environment experienced by planetary spacecraft in transit and at their destinations is of course critical to their design and successful operation. The case of forthcoming missions to Jupiter and Europa is an extreme example. Moreover, such craft can provide information which in turn increases our understanding of geospace. One initiative is that under Horizon 2020, Europlanet RI will set up a Europlanet Planetary Space Weather Service (PSWS). PSWS will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: - a General planetary space weather toolkit; Mars (in support of the ESA ExoMars missions to be launched in 2016 and 2018); comets (building on the success of the ESA Rosetta mission); outer planets (in preparation for the ESA JUICE mission to be launched in 2022), as well as a novel "event-diary" toolkit aiming at predicting and detecting planetary events like meteor impacts
Were Chloride-Bearing Lakes on Mars Fed by Deep-Sourced Groundwater?
NASA Astrophysics Data System (ADS)
Melwani Daswani, M.; Kite, E. S.
2016-12-01
Chloride (probably halite)-bearing deposits have been identified by orbital spectroscopy in paleolakes and other geological settings on Mars. The origin of the saline fluids that formed the deposits remains largely unconstrained; chloride-rich inverted channels suggest surface runoff-fed ponds, alternatively, the abundance of chloride ( 10-25 wt. %) and absence of associated evaporites (carbonates, sulfates) are consistent with late-stage groundwater upwelling. We use HiRISE DTMs and THEMIS decorrelation stretched images to map a set of chloride-bearing deposits and calculate their volume, and a geochemical reaction-transport modeling code (CHIM-XPT) to test possible sources of the chlorine: groundwater chlorine would derive from deep igneous chlorapatite in basalt, whereas chlorine in surface runoff would derive mainly from volcanic Cl-phases deposited on top of Mars soil/dust. For a short duration (< 1 Mars yr) warming event (above freezing point), chlorapatite dissolution cannot provide sufficient Cl- to satisfy mass balance. High water-to-rock ratios (W/R) are also ruled out because sulfates would be transported into the lakes and precipitate close to or with the chlorides. If the source of chlorine was the weathering of volcanic Cl-phases (e.g. perchlorate), long warm events are not required, since the volcanic Cl-phases only reside in the top-most meters of soil/dust. For a 1.4 ×1011 kg NaCl deposit near Miyamoto Crater in Meridiani Planum, surface water in equilibrium with a possible early Hesperian pHCl = 1.2 × 10-4 bar atmosphere would have been too dilute ( 4 × 10-3 g Cl L-1) to form the deposit. However, chlorapatite weathering across the 1.2 ×109 m2 basin could form the deposit but the depth of weathering required ( 15 m) would be inconsistent with seasonal melting.
NASA Astrophysics Data System (ADS)
Dauteuil, Olivier; Bessin, Paul; Guillocheau, François
2015-03-01
We reconstruct the history of topographic growth in southern Africa on both sides of the Orange River valley from an integrated analysis of erosion surfaces, crustal deformation and climate change. First, we propose an inventory of erosion surfaces observed in the study area and classify them according to their most likely formative process, i.e. chemical weathering or mechanical erosion. Among the various land units observed we define a new class of landform: the pedivalley, which corresponds to a wide valley with a flat erosional floor. In the Orange River valley, we mapped three low-relief erosion surfaces, each bevelling a variety of lithologies. The oldest and most elevated is (1) a stripped etchplain evolving laterally into (2) a stepped pediplain bearing residual inselbergs; (3) a younger pediplain later formed in response to a more recent event of crustal deformation. These are all Cenozoic landforms: the etchplain is associated with a late Palaeocene to middle Eocene weathering event, and the two pediplains are older than the middle Miocene alluvial terraces of the Orange River. Landscape evolution was first driven by slow uplift (10 m/Ma), followed by a second interval of uplift involving a cumulative magnitude of at least 200 m. This event shaped the transition between the two pediplains and modified the drainage pattern. A final phase of uplift (magnitude: 60 m) occurred after the Middle Miocene and drove the incision of the lower terraces of the Orange River. Climate exerted a major control over the denudation process, and involved very humid conditions responsible for lateritic weathering, followed by more arid conditions, which promoted the formation of pedivalleys. Collectively, these produce pediplains.
Spaceborne imaging radar research in the 90's
NASA Technical Reports Server (NTRS)
Elachi, Charles
1986-01-01
The imaging radar experiments on SEASAT and on the space shuttle (SIR-A and SIR-B) have led to a wide interest in the use of spaceborne imaging radars in Earth and planetary sciences. The radar sensors provide unique and complimentary information to what is acquired with visible and infrared imagers. This includes subsurface imaging in arid regions, all weather observation of ocean surface dynamic phenomena, structural mapping, soil moisture mapping, stereo imaging and resulting topographic mapping. However, experiments up to now have exploited only a very limited range of the generic capability of radar sensors. With planned sensor developments in the late 80's and early 90's, a quantum jump will be made in our ability to fully exploit the potential of these sensors. These developments include: multiparameter research sensors such as SIR-C and X-SAR, long-term and global monitoring sensors such as ERS-1, JERS-1, EOS, Radarsat, GLORI and the spaceborne sounder, planetary mapping sensors such as the Magellan and Cassini/Titan mappers, topographic three-dimensional imagers such as the scanning radar altimeter and three-dimensional rain mapping. These sensors and their associated research are briefly described.
A new high resolution permafrost map of Iceland from Earth Observation data
NASA Astrophysics Data System (ADS)
Barnie, Talfan; Conway, Susan; Balme, Matt; Graham, Alastair
2017-04-01
High resolution maps of permafrost are required for ongoing monitoring of environmental change and the resulting hazards to ecosystems, people and infrastructure. However, permafrost maps are difficult to construct - direct observations require maintaining networks of sensors and boreholes in harsh environments and are thus limited in extent in space and time, and indirect observations require models or assumptions relating the measurements (e.g. weather station air temperature, basal snow temperature) to ground temperature. Operationally produced Land Surface Temperature maps from Earth Observation data can be used to make spatially contiguous estimates of mean annual skin temperature, which has been used a proxy for the presence of permafrost. However these maps are subject to biases due to (i) selective sampling during the day due to limited satellite overpass times, (ii) selective sampling over the year due to seasonally varying cloud cover, (iii) selective sampling of LST only during clearsky conditions, (iv) errors in cloud masking (v) errors in temperature emissivity separation (vi) smoothing over spatial variability. In this study we attempt to compensate for some of these problems using a bayesian modelling approach and high resolution topography-based downscaling.
Flood-inundation maps for the Patoka River in and near Jasper, southwestern Indiana
Fowler, Kathleen K.
2018-01-23
Digital flood-inundation maps for a 9.5-mile reach of the Patoka River in and near the city of Jasper, southwestern Indiana (Ind.), from the streamgage near County Road North 175 East, downstream to State Road 162, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science web site at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage Patoka River at Jasper, Ind. (station number 03375500). The Patoka streamgage is located at the upstream end of the 9.5-mile river reach. Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, although flood forecasts and stages for action and minor, moderate, and major flood stages are not currently (2017) available at this site (JPRI3).Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at the Patoka River at Jasper, Ind., streamgage and the documented high-water marks from the flood of April 30, 2017. The calibrated hydraulic model was then used to compute five water-surface profiles for flood stages referenced to the streamgage datum ranging from 15 feet (ft), or near bankfull, to 19 ft. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging [lidar] data having a 0.98 ft vertical accuracy and 4.9 ft horizontal resolution) to delineate the area flooded at each water level.The availability of these flood-inundation maps, along with real-time stage from the USGS streamgage at the Patoka River at Jasper, Ind., will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for postflood recovery efforts.
Flood-inundation maps for the White River at Noblesville, Indiana
Martin, Zachary W.
2017-11-02
Digital flood-inundation maps for a 7.5-mile reach of the White River at Noblesville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the White River at Noblesville, Ind., streamgage (USGS station number 03349000). Real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at the same site as the USGS streamgage (NWS site NBLI3).Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current (2016) stage-discharge rating at the USGS streamgage 03349000, White River at Noblesville, Ind., and documented high-water marks from the floods of September 4, 2003, and May 6, 2017. The hydraulic model was then used to compute 15 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 10.0 ft (the NWS “action stage”) to 24.0 ft, which is the highest stage interval of the current (2016) USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability of these maps, along with internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for postflood recovery efforts.
Flood inundation maps for the Wabash River at New Harmony, Indiana
Fowler, Kathleen K.
2016-10-11
Digital flood-inundation maps for a 3.68-mile reach of the Wabash River extending 1.77 miles upstream and 1.91 miles downstream from streamgage 03378500 at New Harmony, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Wabash River at New Harmony, Ind. (station 03378500). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NHRI3).Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at the Wabash River at New Harmony, Ind., streamgage and the documented high-water marks from the flood of April 27–28, 2013. The calibrated hydraulic model was then used to compute 17 water-surface profiles for flood stages at approximately 1-foot intervals referenced to the streamgage datum and ranging from 10.0 feet, or near bankfull, to 25.4 feet, the highest stage of the stage-discharge rating curve used in the model. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging (lidar) data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each water level.The availability of these maps along with Internet information regarding current stage from the USGS streamgage at Wabash River at New Harmony, Ind., and forecasted stream stages from the NWS will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
Watson, Kara M.; Niemoczynski, Michal J.
2014-01-01
Digital flood-inundation maps for a 5.4-mile reach of the Saddle River in New Jersey from Hollywood Avenue in Ho-Ho-Kus Borough downstream through the Village of Ridgewood and Paramus Borough to the confluence with Hohokus Brook in the Village of Ridgewood were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Saddle River at Ridgewood, New Jersey (station 01390500). Current conditions for estimating near real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/nwis/uv?site_no=01390500 or at the National Weather Services (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps2/hydrograph.php?wfo=okx&gage=rwdn4. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation (March 11, 2011) at the USGS streamgage 01390500, Saddle River at Ridgewood, New Jersey. The hydraulic model was then used to compute 10 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum, North American Vertical Datum of 1988 (NAVD 88), and ranging from 5 ft, the NWS “action and minor flood stage”, to 14 ft, which is the maximum extent of the stage-discharge rating and 0.6 ft higher than the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system 3-meter (9.84-ft) digital elevation model derived from Light Detection and Ranging (lidar) data in order to delineate the area flooded at each water level. The availability of these maps along with information on the Internet regarding current stage from the USGS streamgage provides emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures as well as for post-flood recovery efforts.
Flood-inundation maps for the St. Joseph River at Elkhart, Indiana
Martin, Zachary W.
2017-02-01
Digital flood-inundation maps for a 6.6-mile reach of the St. Joseph River at Elkhart, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 04101000, St. Joseph River at Elkhart, Ind. Real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at https://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site EKMI3).Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 04101000, St. Joseph River at Elkhart, Ind., and the documented high-water marks from the flood of March 1982. The hydraulic model was then used to compute six water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 23.0 ft (the NWS “action stage”) to 28.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 1 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution, resampled to a 10-ft grid) to delineate the area flooded at each stage.The availability of these maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
Flood-Inundation Maps for Sugar Creek at Crawfordsville, Indiana
Martin, Zachary W.
2016-06-06
Digital flood-inundation maps for a 6.5-mile reach of Sugar Creek at Crawfordsville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site CRWI3).Flood profiles were computed for the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., reach by means of a one-dimensional step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., and high-water marks from the flood of April 19, 2013, which reached a stage of 15.3 feet. The hydraulic model was then used to compute 13 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 4.0 ft (the NWS “action stage”) to 16.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar]) data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability of these maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
Climate-induced variations in global wildfire danger from 1979 to 2013
W. Matt Jolly; Mark A. Cochrane; Patrick H. Freeborn; Zachary A. Holden; Timothy J. Brown; Grant J. Williamson; David M. J. S. Bowman
2015-01-01
Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have...
Exploring the Martian Highlands using a Rover-Deployed Ground Penetrating Radar
NASA Technical Reports Server (NTRS)
Grant, J. A.; Schutz, A. E.; Campbell, B. A.
2001-01-01
The Martian highlands record a long and often complex history of geologic activity that has shaped the planet over time. Results of geologic mapping and new data from the Mars Global Surveyor spacecraft reveal layered surfaces created by multiple processes that are often mantled by eolian deposits. Knowledge of the near-surface stratigraphy as it relates to evolution of surface morphology will provide critical context for interpreting rover/lander remote sensing data and for defining the geologic setting of a highland lander. Rover-deployed ground penetrating radar (GPR) can directly measure the range and character of in situ radar properties, thereby helping to constrain near-surface geology and structure. As is the case for most remote sensing instruments, a GPR may not detect water unambiguously on Mars. Nevertheless, any local, near-surface occurrence of liquid water will lead to large, easily detected dielectric contrasts. Moreover, definition of stratigraphy and setting will help in evaluating the history of aqueous activity and where any water might occur and be accessible. GPR data can also be used to infer the degree of any post-depositional pedogenic alteration or weathering, thereby enabling assessment of pristine versus secondary morphology. Most importantly perhaps, GPR can provide critical context for other rover and orbital instruments/data sets. Hence, rover-deployment of a GPR deployment should enable 3-D mapping of local stratigraphy and could guide subsurface sampling.
New NASA Maps Show Flooding Changes In Aftermath of Hurricane Harvey
2017-09-13
Data from NASA's Soil Moisture Active Passive (SMAP) satellite have been used to create new surface flooding maps of Southeast Texas and the Tennessee Valley following Hurricane Harvey. The SMAP observations detect the proportional cover of surface water within the satellite sensor's field of view. This sequence of images shows changes in the extent of surface flooding from successive five-day SMAP observation composite images. Widespread flooding can be seen in the Houston metropolitan area on Aug. 27 following record rainfall from the Category 4 hurricane, which made landfall on Aug. 25th, 2017 (left image). Flood waters around Houston had substantially receded by Aug. 31 (middle image), while flooding had increased across Louisiana, eastern Arkansas, and western Tennessee as then Tropical Storm Harvey passed over the area. The far right image shows the change in flooded area between Aug. 27 and Aug. 31, with regions showing the most flooding recession depicted in yellow and orange shades and those where flooding had increased depicted in blue shades. The SMAP satellite has a low-frequency (L-band) microwave radiometer with enhanced capabilities for detecting surface water changes in nearly all weather conditions and under low-to-moderate vegetation cover. SMAP provides global coverage with one-to-three-day repeat sampling that is well suited for global monitoring of inland surface water cover dynamics. https://photojournal.jpl.nasa.gov/catalog/PIA21951
Use of VIIRS DNB Data to Monitor Power Outages and Restoration for Significant Weather Events
NASA Technical Reports Server (NTRS)
Jedlovec, Gary; Molthan, Andrew
2008-01-01
NASA fs Short-term Prediction Research and Transition (SPoRT) project operates from NASA's Marshall Space Flight Center in Huntsville, Alabama. The team provides unique satellite data to the National Weather Service (NWS) and other agencies and organizations for weather analysis. While much of its work is focused on improving short-term weather forecasting, the SPoRT team supported damage assessment and response to Hurricane Superstorm Sandy by providing imagery that highlighted regions without power. The team used data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite. The VIIRS low-light sensor, known as the day-night-band (DNB), can detect nighttime light from wildfires, urban and rural communities, and other human activity which emits light. It can also detect moonlight reflected from clouds and surface features. Using real time VIIRS data collected by our collaborative partner at the Space Science and Engineering Center of the University of Wisconsin, the SPoRT team created composite imagery to help detect power outages and restoration. This blackout imagery allowed emergency response teams from a variety of agencies to better plan and marshal resources for recovery efforts. The blackout product identified large-scale outages, offering a comprehensive perspective beyond a patchwork GIS mapping of outages that utility companies provide based on customer complaints. To support the relief efforts, the team provided its imagery to the USGS data portal, which the Federal Emergency Management Agency (FEMA) and other agencies used in their relief efforts. The team fs product helped FEMA, the U.S. Army Corps of Engineers, and U.S. Army monitor regions without power as part of their disaster response activities. Disaster responders used the images to identify possible outages and effectively distribute relief resources. An enhanced product is being developed and integrated into a web mapping service (WMS) for dissemination and use by a broader end user community.
ERIC Educational Resources Information Center
Summers, R. Joe
1982-01-01
Describes an inexpensive (about $1,500) direct-readout ground station for use in secondary school science/mathematics programs. Includes suggested activities including, among others, developing map overlays, operating station equipment, interpreting satellite data, developing weather forecasts, and using microcomputers for data storage, orbit…
Conceptual Models of Frontal Cyclones.
ERIC Educational Resources Information Center
Eagleman, Joe R.
1981-01-01
This discussion of weather models uses maps to illustrate the differences among three types of frontal cyclones (long wave, short wave, and troughs). Awareness of these cyclones can provide clues to atmospheric conditions which can lead toward accurate weather forecasting. (AM)
York, James; Wilson, Frederic H.; Gamble, Bruce M.
1985-01-01
The tectonic evolution of the Alaska Peninsula makes it a likely area for the discovery of significant mineral deposits. However, because of problems associated with remoteness and poor weather, little detailed mineral exploration work has been carried on there. This study focuses on using Landsat multispectral scanner data for the Port Moller, Stepovak Bay, and Simeon of Island Quadrangles to detect surface alteration, probably limonitic (iron oxide staining) and(or) argillic (secondary clay minerals) in character, that could be indicative of mineral deposits. The techniques used here are useful for mapping deposits that have exposed surface alteration of at least an hectare, the approximate spatial resolution of the Landsat data. Virtually cloud-free Landsat coverage was used, but to be detected, the alteration area must also be unobscured by vegetation. Not all mineral deposits will be associated with surface alteration, and not all areas of surface alteration will have valuable mineral deposits.
Lunar and Planetary Science XXXV: Mars: Surface Coatings, Mineralogy, and Surface Properties
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Mars: Surface Coatings, Mineralogy, and Surface Properties" contained the following reports:High-Silica Rock Coatings: TES Surface-Type 2 and Chemical Weathering on Mars; Old Desert Varnish-like Coatings and Young Breccias at the Mars Pathfinder Landing Site; Analyses of IR-Stealthy and Coated Surface Materials: A Comparison of LIBS and Reflectance Spectra and Their Application to Mars Surface Exploration; Contrasting Interpretations of TES Spectra of the 2003 Rover:Opportunity-Landing Site: Hematite Coatings and Gray Hematite; A New Hematite Formation Mechanism for Mars; Geomorphic and Diagenetic Analogs to Hematite Regions on Mars: Examples from Jurassic Sandstones of Southern Utah, USA; The Geologic Record of Early Mars: A Layered, Cratered, and "Valley-"ed: Volume; A Simple Approach to Estimating Surface Emissivity with THEMIS; A Large Scale Topographic Correction for THEMIS Data; Thermophysical Properties of Meridiani Planum, Mars; Thermophysical and Spectral Properties of Gusev, the MER-Spirit Landing Site on Mars; Determining Water Content of Geologic Materials Using Reflectance Spectroscopy; and Global Mapping of Martian Bound Water at 6.1 Microns Based on TES Data: Seasonal Hydration.
NASA Technical Reports Server (NTRS)
1976-01-01
An orbiter and a multiprobe spacecraft will be sent to Venus in 1978 to conduct a detailed examination of the planet's atmosphere and weather. The spin-stabilized multiprobe spacecraft consists of a bus, a large probe and three identical small probes, each carrying a complement of scientific instruments. The large probe will conduct a detailed sounding of the lower atmosphere, obtaining measurements of the clouds, atmospheric structure, wind speed, and atmospheric composition. Primary emphasis will be placed on the planet's energy balance and clouds. The three small probes will provide information on the circulation pattern of the lower atmosphere. The probe bus will provide data on the upper atmosphere and ionosphere down to an altitude of about 120 km. The orbiter is designed to globally map the atmosphere, ionosphere, and the solar wind/ionosphere interaction. In addition, it will utilize radar mapping techniques to study the surface.
NREL: International Activities - Afghanistan Resource Maps
facilities, load centers, terrain conditions, and land use. The high-resolution (1-km) annual wind power maps . The high-resolution (10-km) annual and seasonal solar resource maps were developed using weather -km Resolution Annual Maps (Direct) Low-Res (JPG 104 KB) | High-Res (ZIP 330 KB) 40-km Resolution
Climate Prediction Center - Expert Assessments Index
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > Monitoring and Data > Global Climate Data & Maps > ; Global Regional Climate Maps Regional Climate Maps Banner The Monthly regional analyses products are
NASA Technical Reports Server (NTRS)
Bounoua, L.; Zhang, P.; Imhoff, M.; Santanello, J.; Kumar, S.; Shepherd, M.; Quattrochi, D.; Silva, J.; Rosenzweigh, C.; Gaffin, S.;
2013-01-01
Urbanization is one of the most important and long lasting forms of land transformation. Urbanization affects the surface climate in different ways: (1) by reduction of the vegetation fraction causing subsequent reduction in photosynthesis and plant s water transpiration, (2) by alternation of surface runoff and infiltration and their impacts on soil moisture and the water table, (3) by change in the surface albedo and surface energy partitioning, and (4) by transformation of the surface roughness length and modification of surface fluxes. Land cover and land use change maps including urban areas have been developed and will be used in a suite of land surface models of different complexity to assess the impacts of urbanization on the continental US surface climate. These maps and datasets based on a full range of available satellite data and ground observations will be used to characterize distant-past (pre-urban), recent-past (2001), present (2010), and near future (2020) land cover and land use changes. The main objective of the project is to assess the impacts of these land transformation on past, current and near-future climate and the potential feedbacks from these changes on the atmospheric, hydrologic, biological, and socio-economic properties beyond the immediate metropolitan regions of cities and their near suburbs. The WRF modeling system will be used to explore the nature and the magnitude of the two-way interactions between urban lands and the atmosphere and assess the overall regional dynamic effect of urban expansion on the northeastern US weather and climate
GIM-TEC adaptive ionospheric weather assessment and forecast system
NASA Astrophysics Data System (ADS)
Gulyaeva, T. L.; Arikan, F.; Hernandez-Pajares, M.; Stanislawska, I.
2013-09-01
The Ionospheric Weather Assessment and Forecast (IWAF) system is a computer software package designed to assess and predict the world-wide representation of 3-D electron density profiles from the Global Ionospheric Maps of Total Electron Content (GIM-TEC). The unique system products include daily-hourly numerical global maps of the F2 layer critical frequency (foF2) and the peak height (hmF2) generated with the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, upgraded by importing the daily-hourly GIM-TEC as a new model driving parameter. Since GIM-TEC maps are provided with 1- or 2-days latency, the global maps forecast for 1 day and 2 days ahead are derived using an harmonic analysis applied to the temporal changes of TEC, foF2 and hmF2 at 5112 grid points of a map encapsulated in IONEX format (-87.5°:2.5°:87.5°N in latitude, -180°:5°:180°E in longitude). The system provides online the ionospheric disturbance warnings in the global W-index map establishing categories of the ionospheric weather from the quiet state (W=±1) to intense storm (W=±4) according to the thresholds set for instant TEC perturbations regarding quiet reference median for the preceding 7 days. The accuracy of IWAF system predictions of TEC, foF2 and hmF2 maps is superior to the standard persistence model with prediction equal to the most recent ‘true’ map. The paper presents outcomes of the new service expressed by the global ionospheric foF2, hmF2 and W-index maps demonstrating the process of origin and propagation of positive and negative ionosphere disturbances in space and time and their forecast under different scenarios.
Parham, Walter E.
1969-01-01
Weathering products formed on surfaces of both potassium and plagioclase feldspar (An70), which were continuously leached in a Soxhlet extraction apparatus for 140 days with 7.21 of distilled water per day at a temperature of approximately 78°C, are morphologically identical to natural products developed on potassium feldspars weathered under conditions of good drainage in the humid tropics. The new products, which first appear as tiny bumps on the feldspar surface, start to develop mainly at exposed edges but also at apparently random sites on flat cleavage surfaces. As weathering continues, the bumps grow outward from the feldspar surface to form tapered projections, which then develop into wide-based thin films or sheets. The thin sheets of many projections merge laterally to form one continuous flame-shaped sheet. The sheets formed on potassium feldspars may then roll to form tubes that are inclined at a high angle to the feldspar surface. Etch pits of triangular outline on the artificially weathered potassium feldspars serve as sites for development of continuous, non-rolled, hollow tubes. It is inferred from its morphology that this weathering product is halloysite or its primitive form. The product of naturally weathered potassium feldspars is halloysite . 4H2O.The flame-shaped films or sheets formed on artificially weathered plagioclase feldspar do not develop into hollow tubes, but instead give rise to a platy mineral that is most probably boehmite. These plates form within the flame-shaped films, and with continued weathering are released as the film deteriorates. There is no indication from this experiment that platy pseudohexagonal kaolinite forms from any of these minerals under the initial stage of weathering.
Age discrimination among basalt flows using digitally enhanced LANDSAT imagery. [Saudi Arabia
NASA Technical Reports Server (NTRS)
Blodget, H. W.; Brown, G. F.
1984-01-01
Digitally enhanced LANDSAT MSS data were used to discriminate among basalt flows of historical to Tertiary age, at a test site in Northwestern Saudi Arabia. Spectral signatures compared favorably with a field-defined classification that permits discrimination among five groups of basalt flows on the basis of geomorphic criteria. Characteristics that contributed to age definition include: surface texture, weathering, color, drainage evolution, and khabrah development. The inherent gradation in the evolution of geomorphic parameters, however, makes visual extrapolation between areas subjective. Therefore, incorporation of spectrally-derived volcanic units into the mapping process should produce more quantitatively consistent age groupings.
Earth Remote Sensing for Weather Forecasting and Disaster Applications
NASA Technical Reports Server (NTRS)
Molthan, Andrew; Bell, Jordan; Case, Jonathan; Cole, Tony; Elmer, Nicholas; McGrath, Kevin; Schultz, Lori; Zavodsky, Brad
2016-01-01
NASA's constellation of current missions provide several opportunities to apply satellite remote sensing observations to weather forecasting and disaster response applications. Examples include: Using NASA's Terra and Aqua MODIS, and the NASA/NOAA Suomi-NPP VIIRS missions to prepare weather forecasters for capabilities of GOES-R; Incorporating other NASA remote sensing assets for improving aspects of numerical weather prediction; Using NASA, NOAA, and international partner resources (e.g. ESA/Sentinel Series); and commercial platforms (high-res, or UAV) to support disaster mapping.
Landslide Detection in the Carlyon Beach, WA Peninsula: Analysis Of High Resolution DEMs
NASA Astrophysics Data System (ADS)
Fayne, J.; Tran, C.; Mora, O. E.
2017-12-01
Landslides are geological events caused by slope instability and degradation, leading to the sliding of large masses of rock and soil down a mountain or hillside. These events are influenced by topography, geology, weather and human activity, and can cause extensive damage to the environment and infrastructure, such as the destruction of transportation networks, homes, and businesses. It is therefore imperative to detect early-warning signs of landslide hazards as a means of mitigation and disaster prevention. Traditional landslide surveillance consists of field mapping, but the process is expensive and time consuming. This study uses Light Detection and Ranging (LiDAR) derived Digital Elevation Models (DEMs) and k-means clustering and Gaussian Mixture Model (GMM) to analyze surface roughness and extract spatial features and patterns of landslides and landslide-prone areas. The methodology based on several feature extractors employs an unsupervised classifier on the Carlyon Beach Peninsula in the state of Washington to attempt to identify slide potential terrain. When compared with the independently compiled landslide inventory map, the proposed algorithm correctly classifies up to 87% of the terrain. These results suggest that the proposed methods and LiDAR-derived DEMs can provide important surface information and be used as efficient tools for digital terrain analysis to create accurate landslide maps.
Flood-inundation maps for the St. Marys River at Fort Wayne, Indiana
Menke, Chad D.; Kim, Moon H.; Fowler, Kathleen K.
2012-01-01
Digital flood-inundation maps for a 9-mile reach of the St. Marys River that extends from South Anthony Boulevard to Main Street at Fort Wayne, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Fort Wayne. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. Current conditions at the USGS streamgages in Indiana may be obtained from the National Water Information System: Web Interface. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system. The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. The hydraulic model was then used to simulate 11 water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. A flood inundation map was generated for each water-surface profile stage (11 maps in all) so that for any given flood stage users will be able to view the estimated area of inundation. The availability of these maps along with current stage from USGS streamgages and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.
Using the Quantile Mapping to improve a weather generator
NASA Astrophysics Data System (ADS)
Chen, Y.; Themessl, M.; Gobiet, A.
2012-04-01
We developed a weather generator (WG) by using statistical and stochastic methods, among them are quantile mapping (QM), Monte-Carlo, auto-regression, empirical orthogonal function (EOF). One of the important steps in the WG is using QM, through which all the variables, no matter what distribution they originally are, are transformed into normal distributed variables. Therefore, the WG can work on normally distributed variables, which greatly facilitates the treatment of random numbers in the WG. Monte-Carlo and auto-regression are used to generate the realization; EOFs are employed for preserving spatial relationships and the relationships between different meteorological variables. We have established a complete model named WGQM (weather generator and quantile mapping), which can be applied flexibly to generate daily or hourly time series. For example, with 30-year daily (hourly) data and 100-year monthly (daily) data as input, the 100-year daily (hourly) data would be relatively reasonably produced. Some evaluation experiments with WGQM have been carried out in the area of Austria and the evaluation results will be presented.
NASA Astrophysics Data System (ADS)
Fortin, V.; Durnford, D.; Gaborit, E.; Davison, B.; Dimitrijevic, M.; Matte, P.
2016-12-01
Environment and Climate Change Canada has recently deployed a water cycle prediction system for the Great Lakes and St. Lawrence River. The model domain includes both the Canadian and US portions of the watershed. It provides 84-h forecasts of weather elements, lake level, lake ice cover and surface currents based on two-way coupling of the GEM numerical weather prediction (NWP) model with the NEMO ocean model. Streamflow of all the major tributaries of the Great Lakes and St. Lawrence River are estimated by the WATROUTE routing model, which routes the surface runoff forecasted by GEM's land-surface scheme and assimilates streamflow observations where available. Streamflow forecasts are updated twice daily and are disseminated through an OGC compliant web map service (WMS) and a web feature service (WFS). In this presentation, in addition to describing the system and documenting its forecast skill, we show how it is being used by clients for various environmental prediction applications. We then discuss the importance of two-way coupling, land-surface and hillslope modelling and the impact of horizontal resolution on hydrological prediction skill. In the second portion of the talk, we discuss plans for implementing a similar system at the national scale, using what we have learned in the Great Lakes and St. Lawrence watershed. Early results obtained for the headwaters of the Saskatchewan River as well as for the whole Nelson-Churchill watershed are presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-28
... Technical Standard Order (TSO)-C63d, Airborne Weather Radar Equipment. The objective is to leverage the..., Airborne Weather and Ground Mapping Pulsed Radars. The FAA and industry collaborated on the end-to-end...
NASA Technical Reports Server (NTRS)
Wiley, Scott
2007-01-01
This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.
Lant, Jeremiah G.
2016-09-19
Digital flood inundation maps for a 17-mile reach of Licking River and 4-mile reach of South Fork Licking River near Falmouth, Kentucky, were created by the U.S. Geological Survey (USGS) in cooperation with Pendleton County and the U.S. Army Corps of Engineers–Louisville District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Licking River at Catawba, Ky., (station 03253500) and the USGS streamgage on the South Fork Licking River at Hayes, Ky., (station 03253000). Current conditions (2015) for the USGS streamgages may be obtained online at the USGS National Water Information System site (http://waterdata.usgs.gov/nwis). In addition, the streamgage information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The flood hydrograph forecasts provided by the NWS are usually collocated with USGS streamgages. The forecasted peak-stage information, also available on the NWS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, flood profiles were computed for the Licking River reach and South Fork Licking River reach by using a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current (2015) stage-discharge relations for the Licking River at Catawba, Ky., and the South Fork Licking River at Hayes, Ky., USGS streamgages. The calibrated model was then used to calculate 60 water-surface profiles for a sequence of flood stages, at 2-foot intervals, referenced to the streamgage datum and ranging from an elevation near bankfull to the elevation associated with a major flood that occurred in the region in 1997. To delineate the flooded area at each interval flood stage, the simulated water-surface profiles were combined with a digital elevation model of the study area by using geographic information system software.The availability of these flood inundation maps for Falmouth, Ky., along with online information regarding current stages from the USGS streamgages and forecasted stages from the NWS, provides emergency management personnel and local residents with information that is critical for flood response activities such as evacuations, road closures, and post-flood recovery efforts.
Benedict, Stephen T.; Caldwell, Andral W.; Clark, Jimmy M.
2013-01-01
Digital flood-inundation maps for a 3.95-mile reach of the Saluda River from approximately 815 feet downstream from Old Easley Bridge Road to approximately 150 feet downstream from Saluda Lake Dam near Greenville, South Carolina, were developed by the U.S. Geological Survey (USGS). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Saluda River near Greenville, South Carolina (station 02162500). Current conditions at the USGS streamgage may be obtained through the National Water Information System Web site at http://waterdata.usgs.gov/sc/nwis/uv/?site_no=02162500&PARAmeter_cd=00065,00060,00062. The National Weather Service (NWS) forecasts flood hydrographs at many places that are often collocated with USGS streamgages. Forecasted peak-stage information is available on the Internet at the NWS Advanced Hydrologic Prediction Service (AHPS) flood-warning system Web site (http://water.weather.gov/ahps/) and may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-streamflow relations at USGS streamgage station 02162500, Saluda River near Greenville, South Carolina. The hydraulic model was then used to determine water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from approximately bankfull to 2 feet higher than the highest recorded water level at the streamgage. The simulated water-surface profiles were then exported to a geographic information system, ArcGIS, and combined with a digital elevation model (derived from Light Detection and Ranging [LiDAR] data with a 0.6-foot vertical Root Mean Square Error [RMSE] and a 3.0-foot horizontal RMSE), using HEC-GeoRAS tools in order to delineate the area flooded at each water level. The availability of these maps, along with real-time stage data from the USGS streamgage station 02162500 and forecasted stream stages from the NWS, can provide emergency management personnel and residents with information that is critical during flood-response and flood-recovery activities, such as evacuations, road closures, and disaster declarations.
NASA Astrophysics Data System (ADS)
Steffensen Schmidt, Louise; Aðalgeirsdóttir, Guðfinna; Guðmundsson, Sverrir; Langen, Peter L.; Pálsson, Finnur; Mottram, Ruth; Gascoin, Simon; Björnsson, Helgi
2017-04-01
The evolution of the surface mass balance of Vatnajökull ice cap, Iceland, from 1981 to the present day is estimated by using the Regional Climate Model HIRHAM5 to simulate the surface climate. A new albedo parametrization is used for the simulation, which describes the albedo with an exponential decay with time. In addition, it utilizes a new background map of the ice albedo created from MODIS data. The simulation is validated against observed daily values of weather parameters from five Automatic Weather Stations (AWSs) from 2001-2014, as well as mass balance measurements from 1995-2014. The modelled albedo is overestimated at the AWS sites in the ablation zone, which we attribute to an overestimation of the thickness of the snow layer and the model not accounting for dust and ash deposition during dust storms and volcanic eruptions. A comparison with the specific summer, winter, and annual mass balance for all Vatnajökull from 1995-2014 shows a good overall fit during the summer, with the model underestimating the balance by only 0.04 m w. eq. on average. The winter balance, on the other hand, is overestimated by 0.5 m w. eq. on average, mostly due to an overestimation of the precipitation at the highest areas of the ice cap. A simple correction of the accumulation at these points reduced the error to 0.15 m w. eq. The model captures the evolution of the specific mass balance well, for example it captures an observed shift in the balance in the mid-1990s, which gives us confidence in the results for the entire model run. Our results show the importance of bare ice albedo for modelled mass balance and that processes not currently accounted for in RCMs, such as dust storms, are an important source of uncertainty in estimates of the snow melt rate.
SpaceTime Environmental Image Information for Scene Understanding
2016-04-01
public Internet resources such as Google,65 MapQuest,66 Bing,67 and Yahoo Maps.68 Approved for public release; distribution unlimited. 9 Table 3...azimuth angle 3 Terrain and location: USACE AGC — Satellite/aerial imagery and terrain analysis 4 Terrain and location: Google, MapQuest, Bing, Yahoo ...Maps. [accessed 2015 Dec]. https://www.bing.com/maps/. 68. YAHOO ! Maps. [accessed 2015 Dec]. https://maps.yahoo.com/b/. 69. 557th Weather Wing. US
Alteration of Lunar Rock Surfaces through Interaction with the Space Environment
NASA Technical Reports Server (NTRS)
Frushour, A. M.; Noble, S. K; Christoffersen, R.; Keller, L P.
2014-01-01
Space weathering occurs on all ex-posed surfaces of lunar rocks, as well as on the surfaces of smaller grains in the lunar regolith. Space weather-ing alters these exposed surfaces primarily through the action of solar wind ions and micrometeorite impact processes. On lunar rocks specifically, the alteration products produced by space weathering form surface coatings known as patina. Patinas can have spectral reflectance properties different than the underlying rock. An understanding of patina composition and thickness is therefore important for interpreting re-motely sensed data from airless solar system bodies. The purpose of this study is to try to understand the physical and chemical properties of patina by expanding the number of patinas known and characterized in the lunar rock sample collection.
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Crow, Wade T.; Koster, Randal D.; Kimball, John
2012-01-01
The Soil Moisture Active and Passive (SMAP; [1]) mission is being implemented by NASA for launch in October 2014. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high-resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. The Soil Moisture and Ocean Salinity (SMOS; [2]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. In this paper we describe our use of SMOS brightness temperature observations to generate a prototype of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product [5].
NASA Astrophysics Data System (ADS)
McLaughlin, W. I.
1991-05-01
The Magellan mission to Venus is reviewed. The scientific investigations conducted by 243-day cycles encompass mapping with a constant incidence angle for the radar, observing surface changes from one cycle to the next, and targeting young-looking volcanos. The topography of Venus is defined by the upper boundary of the crust and upwelling from lower domains. Tectonic features such as rift zones, linear mountain belts, ridge belts, and tesserae are described. The zones of tesserae are unique to the planet. Volcanism accounts for about 80 percent of the observed surface, the remainder being volcanic deposits which have been reworked by tectonism or impacts. Magellan data reveal about 900 impact craters with flow-like ejecta resulting from the fall of meteoroids. It is concluded that the age of the Venusian surface varies between 0 and 800 million years. Tectonic and volcanic activities dominate the formation of the Venus topography; such processes as weathering and erosion are relatively unimportant on Venus.
AEGIS: a wildfire prevention and management information system
NASA Astrophysics Data System (ADS)
Kalabokidis, K.; Ager, A.; Finney, M.; Athanasis, N.; Palaiologou, P.; Vasilakos, C.
2015-10-01
A Web-GIS wildfire prevention and management platform (AEGIS) was developed as an integrated and easy-to-use decision support tool (http://aegis.aegean.gr). The AEGIS platform assists with early fire warning, fire planning, fire control and coordination of firefighting forces by providing access to information that is essential for wildfire management. Databases were created with spatial and non-spatial data to support key system functionalities. Updated land use/land cover maps were produced by combining field inventory data with high resolution multispectral satellite images (RapidEye) to be used as inputs in fire propagation modeling with the Minimum Travel Time algorithm. End users provide a minimum number of inputs such as fire duration, ignition point and weather information to conduct a fire simulation. AEGIS offers three types of simulations; i.e. single-fire propagations, conditional burn probabilities and at the landscape-level, similar to the FlamMap fire behavior modeling software. Artificial neural networks (ANN) were utilized for wildfire ignition risk assessment based on various parameters, training methods, activation functions, pre-processing methods and network structures. The combination of ANNs and expected burned area maps produced an integrated output map for fire danger prediction. The system also incorporates weather measurements from remote automatic weather stations and weather forecast maps. The structure of the algorithms relies on parallel processing techniques (i.e. High Performance Computing and Cloud Computing) that ensure computational power and speed. All AEGIS functionalities are accessible to authorized end users through a web-based graphical user interface. An innovative mobile application, AEGIS App, acts as a complementary tool to the web-based version of the system.
Surface chemistry associated with the cooling and subaerial weathering of recent basalt flows
White, A.F.; Hochella, M.F.
1992-01-01
The surface chemistry of fresh and weathered historical basalt flows was characterized using surface-sensitive X-ray photoelectron spectroscopy (XPS). Surfaces of unweathered 1987-1990 flows from the Kilauea Volcano, Hawaii, exhibited variable enrichment in Al, Mg, Ca, and F due to the formation of refractory fluoride compounds and pronounced depletion in Si and Fe from the volatilization of SiF4 and FeF3 during cooling. These reactions, as predicted from shifts in thermodynamic equilibrium with temperature, are induced by diffusion of HF from the flow interiors to the cooling surface. The lack of Si loss and solid fluoride formation for recent basalts from the Krafla Volcano, Iceland, suggest HF degassing at higher temperatures. Subsequent short-term subaerial weathering reactions are strongly influenced by the initial surface composition of the flow and therefore its cooling history. Successive samples collected from the 1987 Kilauea flow demonstrated that the fluoridated flow surfaces leached to a predominantly SiO2 composition by natural weathering within one year. These chemically depleted surfaces were also observed on Hawaiian basalt flows dating back to 1801 AD. Solubility and kinetic models, based on thermodynamic and kinetic data for crystalline AlF3, MgF2, and CaF2, support observed elemental depletion rates due to chemical weathering. Additional loss of alkalis from the Hawaiian basalt occurs from incongruent dissolution of the basalt glass substrate during weathering. ?? 1992.
Interpreting ground conditions from geologic maps
,
1949-01-01
Intelligent planning for heavy construction, water supply, or other land utilization requires advance knowledge of ground conditions in the area. It is essential to know:the topography, that is, the configuration of the land surface;the geology and soils, that is, the deposits that compose the land and its weathered surface; andthe hydrology, that is, the occurrence of water whether under or on the ground.These elements usually are considered in planning land developments that involve much investment; detailed surveys generally are made of the topography, geology, soils, and hydrology at the site selected for development. Such detailed surveys are essential, but equally essential and often overlooked is the need for general surveys prior to site selection.Only if the general surveys have been made is it possible to know that a particular site is most suitable for the purpose and that no situations in the tributary areas that might affect the project have been overlooked. Moreover, the general regional relations must be known in order to properly interpret the geology, soils, and hydrology at a particular locality. In brief, both the general and the specific are needed in order to avoid costly mistakes either during or after development.The accompanying maps illustrate how a general geologic map can be used for interpreting grc .d conditions during a planning stage prior to site selection. The topographic and geologic maps, which provide the basic data, have been simplified from some existing ones. The interpretive sheets are intended to provide some examples of the kinds of information that trained persons can read from such basic maps.
WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model
Janice L. Coen; Marques Cameron; John Michalakes; Edward G. Patton; Philip J. Riggan; Kara M. Yedinak
2012-01-01
A wildland fire behavior module (WRF-Fire) was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and used, with fuel properties...
Large Scale Meteorological Pattern of Extreme Rainfall in Indonesia
NASA Astrophysics Data System (ADS)
Kuswanto, Heri; Grotjahn, Richard; Rachmi, Arinda; Suhermi, Novri; Oktania, Erma; Wijaya, Yosep
2014-05-01
Extreme Weather Events (EWEs) cause negative impacts socially, economically, and environmentally. Considering these facts, forecasting EWEs is crucial work. Indonesia has been identified as being among the countries most vulnerable to the risk of natural disasters, such as floods, heat waves, and droughts. Current forecasting of extreme events in Indonesia is carried out by interpreting synoptic maps for several fields without taking into account the link between the observed events in the 'target' area with remote conditions. This situation may cause misidentification of the event leading to an inaccurate prediction. Grotjahn and Faure (2008) compute composite maps from extreme events (including heat waves and intense rainfall) to help forecasters identify such events in model output. The composite maps show large scale meteorological patterns (LSMP) that occurred during historical EWEs. Some vital information about the EWEs can be acquired from studying such maps, in addition to providing forecaster guidance. Such maps have robust mid-latitude meteorological patterns (for Sacramento and California Central Valley, USA EWEs). We study the performance of the composite approach for tropical weather condition such as Indonesia. Initially, the composite maps are developed to identify and forecast the extreme weather events in Indramayu district- West Java, the main producer of rice in Indonesia and contributes to about 60% of the national total rice production. Studying extreme weather events happening in Indramayu is important since EWEs there affect national agricultural and fisheries activities. During a recent EWE more than a thousand houses in Indramayu suffered from serious flooding with each home more than one meter underwater. The flood also destroyed a thousand hectares of rice plantings in 5 regencies. Identifying the dates of extreme events is one of the most important steps and has to be carried out carefully. An approach has been applied to identify the dates involving observations from multiple sites (rain gauges). The approach combines the POT (Peaks Over Threshold) with 'declustering' of the data to approximate independence based on the autocorrelation structure of each rainfall series. The cross correlation among sites is considered also to develop the event's criteria yielding a rational choice of the extreme dates given the 'spotty' nature of the intense convection. Based on the identified dates, we are developing a supporting tool for forecasting extreme rainfall based on the corresponding large-scale meteorological patterns (LSMPs). The LSMPs methodology focuses on the larger-scale patterns that the model are better able to forecast, as those larger-scale patterns create the conditions fostering the local EWE. Bootstrap resampling method is applied to highlight the key features that statistically significant with the extreme events. Grotjahn, R., and G. Faure. 2008: Composite Predictor Maps of Extraordinary Weather Events in the Sacramento California Region. Weather and Forecasting. 23: 313-335.
A preliminary look at AVE-SESAME 3 conducted on 25-26 April 1979
NASA Technical Reports Server (NTRS)
Williams, S. F.; Horvath, N.; Turner, R. E.
1980-01-01
General weather conditions, including synoptic maps, radar reports, satellite photographs, precipitation areas and amounts, and a summary of severe weather reports are presented. These data provide researchers a preliminary look at conditions during the AVE-SESAME 3 period.
On the dual nature of lichen-induced rock surface weathering in contrasting micro-environments.
Marques, Joana; Gonçalves, João; Oliveira, Cláudia; Favero-Longo, Sergio E; Paz-Bermúdez, Graciela; Almeida, Rubim; Prieto, Beatriz
2016-10-01
Contradictory evidence from biogeomorphological studies has increased the debate on the extent of lichen contribution to differential rock surface weathering in both natural and cultural settings. This study, undertaken in Côa Valley Archaeological Park, aimed at evaluating the effect of rock surface orientation on the weathering ability of dominant lichens. Hyphal penetration and oxalate formation at the lichen-rock interface were evaluated as proxies of physical and chemical weathering, respectively. A new protocol of pixel-based supervised image classification for the analysis of periodic acid-Schiff stained cross-sections of colonized schist revealed that hyphal spread of individual species was not influenced by surface orientation. However, hyphal spread was significantly higher in species dominant on northwest facing surfaces. An apparently opposite effect was noticed in terms of calcium oxalate accumulation at the lichen-rock interface; it was detected by Raman spectroscopy and complementary X-ray microdiffraction on southeast facing surfaces only. These results suggest that lichen-induced physical weathering may be most severe on northwest facing surfaces by means of an indirect effect of surface orientation on species abundance, and thus dependent on the species, whereas lichen-induced chemical weathering is apparently higher on southeast facing surfaces and dependent on micro-environmental conditions, giving only weak support to the hypothesis that lichens are responsible for the currently observed pattern of rock-art distribution in Côa Valley. Assumptions about the drivers of open-air rock-art distribution patterns elsewhere should also consider the micro-environmental controls of lichen-induced weathering, to avoid biased measures of lichen contribution to rock-art deterioration. © 2016 by the Ecological Society of America.
Gillon, K.A.; Wooten, R.M.; Latham, R.L.; Witt, A.W.; Douglas, T.J.; Bauer, J.B.; Fuemmeler, S.J.
2009-01-01
Landslide hazard maps of Watauga County identify >2200 landslides, model debris flow susceptibility, and evaluate a 14km x 0.5km zone of existing and potential rock slope instability (ZEPRSI) near the Town of Boone. The ZEPRSI encompasses west-northwest trending (WNWT) topographic ridges where 14 active/past-active rock/weathered rock slides occur mainly in rocks of the Grandfather Mountain Window (GMW). The north side of this ridgeline is the GMW / Linville Falls Fault (LFF) contact. Sheared rocks of the Linville Falls Shear Zone (LFSZ) occur along the ridge and locally in the valley north of the contact. The valley is underlain principally by layered granitic gneiss comprising the Linville Falls/Beech Mountain/Stone Mountain Thrust Sheet. The integration of ArcGIS??? - format digital geologic and lineament mapping on a 6m LiDAR (Light Detecting and Ranging) digital elevation model (DEM) base, and kinematic analyses of site specific rock slope data (e.g., presence and degree of ductile and brittle deformation fabrics, rock type, rock weathering state) indicate: WNWT lineaments are expressions of a regionally extensive zone of fractures and faults; and ZEPRSI rock slope failures concentrate along excavated, north-facing LFF/LFSZ slopes where brittle fabrics overprint older metamorphic foliations, and other fractures create side and back release surfaces. Copyright 2009 ARMA, American Rock Mechanics Association.
Verification of the WFAS Lightning Efficiency Map
Paul Sopko; Don Latham; Isaac Grenfell
2007-01-01
A Lightning Ignition Efficiency map was added to the suite of daily maps offered by the Wildland Fire Assessment System (WFAS) in 1999. This map computes a lightning probability of ignition (POI) based on the estimated fuel type, fuel depth, and 100-hour fuel moisture interpolated from the Remote Automated Weather Station (RAWS) network. An attempt to verify the...
Automated Detection of Fronts using a Deep Learning Convolutional Neural Network
NASA Astrophysics Data System (ADS)
Biard, J. C.; Kunkel, K.; Racah, E.
2017-12-01
A deeper understanding of climate model simulations and the future effects of global warming on extreme weather can be attained through direct analyses of the phenomena that produce weather. Such analyses require these phenomena to be identified in automatic, unbiased, and comprehensive ways. Atmospheric fronts are centrally important weather phenomena because of the variety of significant weather events, such as thunderstorms, directly associated with them. In current operational meteorology, fronts are identified and drawn visually based on the approximate spatial coincidence of a number of quasi-linear localized features - a trough (relative minimum) in air pressure in combination with gradients in air temperature and/or humidity and a shift in wind, and are categorized as cold, warm, stationary, or occluded, with each type exhibiting somewhat different characteristics. Fronts are extended in space with one dimension much larger than the other (often represented by complex curved lines), which poses a significant challenge for automated approaches. We addressed this challenge by using a Deep Learning Convolutional Neural Network (CNN) to automatically identify and classify fronts. The CNN was trained using a "truth" dataset of front locations identified by National Weather Service meteorologists as part of operational 3-hourly surface analyses. The input to the CNN is a set of 5 gridded fields of surface atmospheric variables, including 2m temperature, 2m specific humidity, surface pressure, and the two components of the 10m horizontal wind velocity vector at 3-hr resolution. The output is a set of feature maps containing the per - grid cell probabilities for the presence of the 4 front types. The CNN was trained on a subset of the data and then used to produce front probabilities for each 3-hr time snapshot over a 14-year period covering the continental United States and some adjacent areas. The total frequencies of fronts derived from the CNN outputs matches very well with the truth dataset. There is a slight underestimate in total numbers in the CNN results but the spatial pattern is a close match. The categorization of front types by CNN is best for cold and occluded and worst for warm. These initial results from our ongoing development highlight the great promise of this technology.
Orbital identification of carbonate-bearing rocks on Mars
Ehlmann, B.L.; Mustard, J.F.; Murchie, S.L.; Poulet, F.; Bishop, J.L.; Brown, A.J.; Calvin, W.M.; Clark, R.N.; Des Marais, D.J.; Milliken, R.E.; Roach, L.H.; Roush, T.L.; Swayze, G.A.; Wray, J.J.
2008-01-01
Geochemical models for Mars predict carbonate formation during aqueous alteration. Carbonate-bearing rocks had not previously been detected on Mars' surface, but Mars Reconnaissance Orbiter mapping reveals a regional rock layer with near-infrared spectral characteristics that are consistent with the presence of magnesium carbonate in the Nili Fossae region. The carbonate is closely associated with both phyllosilicate-bearing and olivine-rich rock units and probably formed during the Noachian or early Hesperian era from the alteration of olivine by either hydrothermal fluids or near-surface water. The presence of carbonate as well as accompanying clays suggests that waters were neutral to alkaline at the time of its formation and that acidic weathering, proposed to be characteristic of Hesperian Mars, did not destroy these carbonates and thus did not dominate all aqueous environments.
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.
2018-02-01
Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.
NASA Astrophysics Data System (ADS)
Laiti, Lavinia; Zardi, Dino; de Franceschi, Massimiliano; Rampanelli, Gabriele
2013-04-01
Manned light aircrafts and remotely piloted aircrafts represent very valuable and flexible measurement platforms for atmospheric research, as they are able to provide high temporal and spatial resolution observations of the atmosphere above the ground surface. In the present study the application of a geostatistical interpolation technique called Residual Kriging (RK) is proposed for the mapping of airborne measurements of scalar quantities over regularly spaced 3D grids. In RK the dominant (vertical) trend component underlying the original data is first extracted to filter out local anomalies, then the residual field is separately interpolated and finally added back to the trend; the determination of the interpolation weights relies on the estimate of the characteristic covariance function of the residuals, through the computation and modelling of their semivariogram function. RK implementation also allows for the inference of the characteristic spatial scales of variability of the target field and its isotropization, and for an estimate of the interpolation error. The adopted test-bed database consists in a series of flights of an instrumented motorglider exploring the atmosphere of two valleys near the city of Trento (in the southeastern Italian Alps), performed on fair-weather summer days. RK method is used to reconstruct fully 3D high-resolution fields of potential temperature and mixing ratio for specific vertical slices of the valley atmosphere, integrating also ground-based measurements from the nearest surface weather stations. From RK-interpolated meteorological fields, fine-scale features of the atmospheric boundary layer developing over the complex valley topography in connection with the occurrence of thermally-driven slope and valley winds, are detected. The performance of RK mapping is also tested against two other commonly adopted interpolation methods, i.e. the Inverse Distance Weighting and the Delaunay triangulation methods, comparing the results of a cross-validation procedure.
NASA Astrophysics Data System (ADS)
Ameli, Ali; Erlandsson, Martin; Beven, Keith; Creed, Irena; McDonnell, Jeffrey; Bishop, Kevin
2017-04-01
The permeability architecture of the critical zone exerts a major influence on the hydrogeochemistry of the critical zone. Water flowpath dynamics drive the spatio-temporal pattern of geochemical evolution and resulting streamflow concentration-discharge (C-Q) relation, but these flowpaths are complex and difficult to map quantitatively. Here, we couple a new integrated flow and particle tracking transport model with a general reversible Transition-State-Theory style dissolution rate-law to explore theoretically how C-Q relations and concentration in the critical zone respond to decline in saturated hydraulic conductivity (Ks) with soil depth. We do this for a range of flow rates and mineral reaction kinetics. Our results show that for minerals with a high ratio of equilibrium concentration to intrinsic weathering rate, vertical heterogeneity in Ks enhances the gradient of weathering-derived solute concentration in the critical zone and strengthens the inverse stream C-Q relation. As the ratio of equilibrium concentration to intrinsic weathering rate decreases, the spatial distribution of concentration in the critical zone becomes more uniform for a wide range of flow rates, and stream C-Q relation approaches chemostatic behaviour, regardless of the degree of vertical heterogeneity in Ks. These findings suggest that the transport-controlled mechanisms in the hillslope can lead to chemostatic C-Q relations in the stream while the hillslope surface reaction-controlled mechanisms are associated with an inverse stream C-Q relation. In addition, as the ratio of equilibrium concentration to intrinsic weathering rate decreases, the concentration in the critical zone and stream become less dependent on groundwater age (or transit time)
NASA Astrophysics Data System (ADS)
Boehm, Johannes; Werl, Birgit; Schuh, Harald
2006-02-01
In the analyses of geodetic very long baseline interferometry (VLBI) and GPS data the analytic form used for mapping of the atmosphere delay from zenith to the line of site is most often a three-parameter continued fraction in 1/sin(elevation). Using the 40 years reanalysis (ERA-40) data of the European Centre for Medium-Range Weather Forecasts for the year 2001, the b and c coefficients of the continued fraction form for the hydrostatic mapping functions have been redetermined. Unlike previous mapping functions based on data from numerical weather models (isobaric mapping functions (Niell, 2000) and Vienna mapping functions (VMF) (Boehm and Schuh, 2004)), the new c coefficients are dependent on the day of the year, and unlike the Niell mapping functions (Niell, 1996) they are no longer symmetric with respect to the equator (apart from the opposite phase for the two hemispheres). Compared to VMF, this causes an effect on the VLBI or GPS station heights that is constant and as large as 2 mm at the equator and that varies seasonally between 4 mm and 0 mm at the poles. The updated VMF, based on these new coefficients and called VMF1 hereinafter, yields slightly better baseline length repeatabilities for VLBI data. The hydrostatic and wet mapping functions are applied in various combinations with different kinds of a priori zenith delays in the analyses of all VLBI International VLBI Service for Geodesy and Astrometry (IVS)-R1 and IVS-R4 24-hour sessions of 2002 and 2003; the investigations concentrate on baseline length repeatabilities, as well as on absolute changes of station heights.
NASA Astrophysics Data System (ADS)
Palma, J. L.; Rodrigues, C. V.; Lopes, A. S.; Carneiro, A. M. C.; Coelho, R. P. C.; Gomes, V. C.
2017-12-01
With the ever increasing accuracy required from numerical weather forecasts, there is pressure to increase the resolution and fidelity employed in computational micro-scale flow models. However, numerical studies of complex terrain flows are fundamentally bound by the digital representation of the terrain and land cover. This work assess the impact of the surface description on micro-scale simulation results at a highly complex site in Perdigão, Portugal, characterized by a twin parallel ridge topography, densely forested areas and an operating wind turbine. Although Coriolis and stratification effects cannot be ignored, the study is done under neutrally stratified atmosphere and static inflow conditions. The understanding gained here will later carry over to WRF-coupled simulations, where those conditions do not apply and the flow physics is more accurately modelled. With access to very fine digital mappings (<1m horizontal resolution) of both topography and land cover (roughness and canopy cover, both obtained through aerial LIDAR scanning of the surface) the impact of each element of the surface description on simulation results can be individualized, in order to estimate the resolution required to satisfactorily resolve them. Starting from the bare topographic description, in its coursest form, these include: a) the surface roughness mapping, b) the operating wind turbine, c) the canopy cover, as either body forces or added surface roughness (akin to meso-scale modelling), d) high resolution topography and surface cover mapping. Each of these individually will have an impact near the surface, including the rotor swept area of modern wind turbines. Combined they will considerably change flow up to boundary layer heights. Sensitivity to these elements cannot be generalized and should be assessed case-by-case. This type of in-depth study, unfeasible using WRF-coupled simulations, should provide considerable insight when spatially allocating mesh resolution for accurate resolution of complex flows.
Traces of Old Glaciations in East-central Alaska
NASA Astrophysics Data System (ADS)
Duk-Rodkin, A.; Barendregt, R. W.; Weber, F.
2001-12-01
The East-central Alaska record of glaciations is similar to that preserved in the west-central Yukon. Surficial geologic mapping of the Yukon-Tanana upland has indicated at least 5 glacial periods including at least one early Holocene. The two earliest glaciations are of pre-Mid Pleistocene age and followed regional erosion and renewed uplift ca.4 Ma. The earliest glaciation of west-central Yukon occurred between 2.6 and 2.9 Ma, forming a continuous carapace of ice covering all the mountain ranges except for a small part of the Dawson Range. This first glaciation was also the most extensive in the region, and resulted in the NW diversion of Yukon River into Alaska by the Cordilleran Ice Sheet. Stratigraphic evidence of 6 glaciations of pre-Mid Pleistocene age is preserved in the western Canadian sector of the Tintina Trench. The limits of these glaciations have been mapped in Yukon on the basis of glacial landforms and the distribution of erratics. Although morphological features of older glaciations (Plio-Pleistocene) are generally not well preserved, there is relatively good control on the distribution of glacial features for two of the older glaciations in Mt.Harper, Alaska. Stratigraphic evidence of at least 3 older glaciations is found in the Goodpastor River. An initial magnetostratigraphic study of three sites in east-central Alaska have yielded normal magnetic polarities only. The sites are:(1) a relatively weathered lowermost till outcropping along Goodpastor River on the Yukon-Tanana upland,(2) an extremely weathered high level moraine (609m) on the western side of the Gerstle River, near Granite Mt.in the Alaska Range and (3)ca.914m pediment containing glacial erratics and a luvisol at its surface, located on Tok River, Tanana Valley, Alaska Range. The normal polarity of the first site likely indicates a Brunhes age rather than a normal subchron within the Matuyama Reversed Chron based on the modest degree of weathering of the till and lack of any reversed overprint. The second site may be related to an older glacial event based on the high degree of clast weathering (>90%) and the presence of a luvisol over 1m depth. Clasts at the third site are better preserved suggesting the normal magnetization of these sediments may be Brunhes age. Deeply weathered clasts and red soils (Wounded Moose Paleosol)are found on pre-Mid Pleistocene glacial drift surfaces in west-central Yukon and appear also to be present on the older drift surfaces in east-central Alaska (for example, the well developed paleosol exposed in a borrow pit at the Tok town site). The presence of relatively old (early Brunhes) glacial deposits at high elevations (third site) could be explained by tectonic uplift, however a minimum of 300m of post depositional uplift would be required to account for the present elevation of these surfaces. Evidence for the diversion of the Yukon River by the first glaciation is seen near Circle, Alaska where lower fluvial gravels free of argillites of eastern (Ogilvie Mountains) provenance, are overlain by glacial outwash gravels containing approximately 8% argillites. The lower gravels are considered Late Pliocene (Gauss) based on plant macro fossils and normal polarity, and based on the absence of argillites, are clearly preglacial. Normally magnetized Late Pliocene pre-glacial fluvial gravels, the White Channel gravels, are found in the Tintina Trench and Klondike Plateau, which are conformably overlain by the Klondike outwash gravels associated with the first glaciation.
NASA Astrophysics Data System (ADS)
Liu, Z.; Rajib, M. A.; Jafarzadegan, K.; Merwade, V.
2015-12-01
Application of land surface/hydrologic models within an operational flood forecasting system can provide probable time of occurrence and magnitude of streamflow at specific locations along a stream. Creating time-varying spatial extent of flood inundation and depth requires the use of a hydraulic or hydrodynamic model. Models differ in representing river geometry and surface roughness which can lead to different output depending on the particular model being used. The result from a single hydraulic model provides just one possible realization of the flood extent without capturing the uncertainty associated with the input or the model parameters. The objective of this study is to compare multiple hydraulic models toward generating ensemble flood inundation extents. Specifically, relative performances of four hydraulic models, including AutoRoute, HEC-RAS, HEC-RAS 2D, and LISFLOOD are evaluated under different geophysical conditions in several locations across the United States. By using streamflow output from the same hydrologic model (SWAT in this case), hydraulic simulations are conducted for three configurations: (i) hindcasting mode by using past observed weather data at daily time scale in which models are being calibrated against USGS streamflow observations, (ii) validation mode using near real-time weather data at sub-daily time scale, and (iii) design mode with extreme streamflow data having specific return periods. Model generated inundation maps for observed flood events both from hindcasting and validation modes are compared with remotely sensed images, whereas the design mode outcomes are compared with corresponding FEMA generated flood hazard maps. The comparisons presented here will give insights on probable model-specific nature of biases and their relative advantages/disadvantages as components of an operational flood forecasting system.
Angular Distributions of Discrete Mesoscale Mapping Functions
NASA Astrophysics Data System (ADS)
Kroszczyński, Krzysztof
2015-08-01
The paper presents the results of analyses of numerical experiments concerning GPS signal propagation delays in the atmosphere and the discrete mapping functions defined on their basis. The delays were determined using data from the mesoscale non-hydrostatic weather model operated in the Centre of Applied Geomatics, Military University of Technology. A special attention was paid to investigating angular characteristics of GPS slant delays for low angles of elevation. The investigation proved that the temporal and spatial variability of the slant delays depends to a large extent on current weather conditions.
Aurorasaurus: Citizen Scientists Experiencing Extremes of Space Weather
NASA Astrophysics Data System (ADS)
MacDonald, E.; Hall, M.; Tapia, A.
2013-12-01
Aurorasaurus is a new citizen science mapping platform to nowcast the visibility of the Northern Lights for the public in the current solar maximum, the first with social media. As a recently funded NSF INSPIRE program, we have joint goals among three research disciplines: space weather forecasting, the study of human-computer interactions, and informal science education. We will highlight results from the prototype www.aurorasaurus.org and outline future efforts to motivate online participants and crowdsource viable data. Our citizen science effort is unique among space programs as it includes both reporting observations and data analysis activities to engage the broadest participant network possible. In addition, our efforts to improve space weather nowcasting by including real-time mapping of ground truth observers for rare, sporadic events are a first in the field.
Weather forecasting with open source software
NASA Astrophysics Data System (ADS)
Rautenhaus, Marc; Dörnbrack, Andreas
2013-04-01
To forecast the weather situation during aircraft-based atmospheric field campaigns, we employ a tool chain of existing and self-developed open source software tools and open standards. Of particular value are the Python programming language with its extension libraries NumPy, SciPy, PyQt4, Matplotlib and the basemap toolkit, the NetCDF standard with the Climate and Forecast (CF) Metadata conventions, and the Open Geospatial Consortium Web Map Service standard. These open source libraries and open standards helped to implement the "Mission Support System", a Web Map Service based tool to support weather forecasting and flight planning during field campaigns. The tool has been implemented in Python and has also been released as open source (Rautenhaus et al., Geosci. Model Dev., 5, 55-71, 2012). In this presentation we discuss the usage of free and open source software for weather forecasting in the context of research flight planning, and highlight how the field campaign work benefits from using open source tools and open standards.
NASA Technical Reports Server (NTRS)
Horgan, B.; Rutledge, A.; Rampe, E. B.
2015-01-01
Surface weathering on Earth is driven by precipitation (rain/snow melt). Here we summarize the influence of climate on minerals produced during surface weathering, based on terrestrial literature and our new laboratory analyses of weathering products from glacial analog sites. By comparison to minerals identified in likely surface environments on Mars, we evaluate the implications for early martian climate.
Environmental Education Tips: Weather Activities.
ERIC Educational Resources Information Center
Brainard, Audrey H.
1989-01-01
Provides weather activities including questions, on weather, heating the earth's surface, air, tools of the meteorologist, clouds, humidity, wind, and evaporation. Shows an example of a weather chart activity. (RT)
Identifying Severe Weather Impacts and Damage with Google Earth Engine
NASA Astrophysics Data System (ADS)
Molthan, A.; Burks, J. E.; Bell, J. R.
2015-12-01
Hazards associated with severe convective storms can lead to rapid changes in land surface vegetation. Depending upon the type of vegetation that has been impacted, their impacts can be relatively short lived, such as damage to seasonal crops that are eventually removed by harvest, or longer-lived, such as damage to a stand of trees or expanse of forest that require several years to recover. Since many remote sensing imagers provide their highest spatial resolution bands in the red and near-infrared to support monitoring of vegetation, these impacts can be readily identified as short-term and marked decreases in common vegetation indices such as NDVI, along with increases in land surface temperature that are observed at a reduced spatial resolution. The ability to identify an area of vegetation change is improved by understanding the conditions that are normal for a given time of year and location, along with a typical range of variability in a given parameter. This analysis requires a period of record well beyond the availability of near real-time data. These activities would typically require an analyst to download large volumes of data from sensors such as NASA's MODIS (aboard Terra and Aqua) or higher resolution imagers from the Landsat series of satellites. Google's Earth Engine offers a "big data" solution to these challenges, by providing a streamlined API and option to process the period of record of NASA MODIS and Landsat products through relatively simple Javascript coding. This presentation will highlight efforts to date in using Earth Engine holdings to produce vegetation and land surface temperature anomalies that are associated with damage to agricultural and other vegetation caused by severe thunderstorms across the Central and Southeastern United States. Earth Engine applications will show how large data holdings can be used to map severe weather damage, ascertain longer-term impacts, and share best practices learned and challenges with applying Earth Engine holdings to the analysis of severe weather damage. Other applications are also demonstrated, such as use of Earth Engine to prepare pre-event composites that can be used to subjectively identify other severe weather impacts. Future extension to flooding and wildfires is also proposed.
AWE: Aviation Weather Data Visualization
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Lodha, Suresh K.
2001-01-01
The two official sources for aviation weather reports both require the pilot to mentally visualize the provided information. In contrast, our system, Aviation Weather Environment (AWE) presents aviation specific weather available to pilots in an easy to visualize form. We start with a computer-generated textual briefing for a specific area. We map this briefing onto a grid specific to the pilot's route that includes only information relevant to his flight route that includes only information relevant to his flight as defined by route, altitude, true airspeed, and proposed departure time. By modifying various parameters, the pilot can use AWE as a planning tool as well as a weather briefing tool.
The role of synoptic weather variability in Greenland ice sheet dynamics
NASA Astrophysics Data System (ADS)
Walker, J. M.; Radic, V.
2017-12-01
Much of the large uncertainty in predictions of future global sea level rise is due to our limited understanding of Greenland ice sheet (GrIS) motion and its interactions with climate. Over the next century, climate models predict that the GrIS will experience not only gradual warming, but also changes in atmospheric circulation, hydrology, and weather, including a northward shift of the North Atlantic storm track, with greater frequency and intensity of rain storms over the GrIS. Recent studies of GrIS dynamics have focused on the effects of increased seasonal mean meltwater on ice velocities, finding only a modest impact due to compensation by subglacial drainage systems, but subglacial hydraulic theory indicates that variability on shorter timescales is also relevant: short-term surges in meltwater or rainfall can overload drainage systems at rates faster than they can adjust, leading to water pressure spikes and ice acceleration. If the magnitude or frequency of these transient ice accelerations increase substantially as synoptic weather patterns change over the next century, there could be a significant cumulative impact on seasonal mean ice velocities. However, this issue has not been addressed in the literature and represents a major source of uncertainty. In this study, we investigate the role of synoptic weather variability in GrIS dynamics, with the ultimate goal of evaluating the relationships between extreme weather events and ice sheet flow in different seasons and regions of the GrIS. As a first step, we apply the machine learning technique of self-organizing maps to atmospheric reanalysis data to categorize the predominant synoptic weather systems over the GrIS domain, evaluating atmospheric moisture transport and rainfall to assess the impacts of each weather system on GrIS surface hydrology. The preliminary results presented here will be used in conjunction with ice velocity satellite measurements in future work, to identify any correlations between seasonal mean GrIS velocities and the frequency or intensity of storms during the season.
Validation of the MODIS "Clear-Sky" Surface Temperature of the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Koenig, L. S.; DiGirolamo, N. E.; Comiso, J.; Shuman, C. A.
2011-01-01
Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented from 1981 to present. We extend and refine this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. To permit changes to be observed over time, we are developing a well-characterized monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using data from both the Terra and Aqua satellites. We use the MODIS ice-surface temperature (IST) algorithm. Validation of the CDR consists of several facets: 1) comparisons between the Terra and Aqua IST maps; 2) comparisons between ISTs and in-situ measurements; 3) comparisons between ISTs and AWS data; and 4) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer. In this work, we focus on 1) and 2) above. Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented from 1981 to present. We extend and refine this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. To permit changes to be observed over time, we are developing a well-characterized monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using data from both the Terra and Aqua satellites. We use the MODIS ice-surface temperature (IST) algorithm. Validation of the CDR consists of several facets: 1) comparisons between the Terra and Aqua IST maps; 2) comparisons between ISTs and in-situ measurements; 3) comparisons between ISTs and AWS data; and 4) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer. In this work, we focus on 1) and 2) above. First we provide comparisons between Terra and Aqua swath-based ISTs at approximately 14:00 Local Solar Time, reprojected to 12.5 km polar stereographic cells. Results show good correspondence when Terra and Aqua data were acquired within 2 hrs of each other. For example, for a cell centered over Summit Camp (72.58 N, 38.5 W), the average agreement between Terra and Aqua ISTs is 0.74 K (February 2003), 0.47 K (April 2003), 0.7 K (August 2003) and 0.96 K (October 2003) with the Terra ISTs being generally lower than the Aqua ISTs. More precise comparisons will be calculated using pixel data at the swath level, and correspondence between Terra and Aqua IST is expected to be closer. (Because of cloud cover and other considerations, only a few common cloud-free swaths are typically available for each month for comparison.) Additionally, previous work comparing land-surface temperatures (LSTs) from the standard MODIS LST product and in-situ surface-temperature data at Summit Camp on the Greenland Ice Sheet show that Terra MODIS LSTs are about 3 K lower than in-situ temperatures at Summit Camp, during the winter of 2008-09. This work will be repeated using both Terra and Aqua IST pixel data (in place of LST data). In conclusion, we demonstrate that the uncertainties in the CDR will be well characterized as we work through the various facets of its validation.
AIRS Detection of Dust: Global Map for July 2003
NASA Technical Reports Server (NTRS)
2007-01-01
The averaged brightness temperature differences between the 961 and 1231 cm-1 AIRS channels for July 2003, reveal long range transport of Sahara Dust across the Atlantic. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.NASA Astrophysics Data System (ADS)
Uno, Itsushi; Satake, Shinsuke; Carmichael, Gregory R.; Tang, Youhua; Wang, Zifa; Takemura, Toshihiko; Sugimoto, Nobuo; Shimizu, Atsushi; Murayama, Toshiyuki; Cahill, Thomas A.; Cliff, Steven; Uematsu, Mitsuo; Ohta, Sachio; Quinn, Patricia K.; Bates, Timothy S.
2004-10-01
The regional-scale aerosol transport model Chemical Weather Forecasting System (CFORS) is used for analysis of large-scale dust phenomena during the Asian Pacific Regional Characterization Experiment (ACE-Asia) intensive observation. Dust modeling results are examined with the surface weather reports, satellite-derived dust index (Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI)), Mie-scattering lidar observation, and surface aerosol observations. The CFORS dust results are shown to accurately reproduce many of the important observed features. Model analysis shows that the simulated dust vertical loading correlates well with TOMS AI and that the dust loading is transported with the meandering of the synoptic-scale temperature field at the 500-hPa level. Quantitative examination of aerosol optical depth shows that model predictions are within 20% difference of the lidar observations for the major dust episodes. The structure of the ACE-Asia Perfect Dust Storm, which occurred in early April, is clarified with the help of the CFORS model analysis. This storm consisted of two boundary layer components and one elevated dust (>6-km height) feature (resulting from the movement of two large low-pressure systems). Time variation of the CFORS dust fields shows the correct onset timing of the elevated dust for each observation site, but the model results tend to overpredict dust concentrations at lower latitude sites. The horizontal transport flux at 130°E longitude is examined, and the overall dust transport flux at 130°E during March-April is evaluated to be 55 Tg.
ERIC Educational Resources Information Center
Reynolds, Karen
1996-01-01
Presents ideas on the use of rainy weather for activities in the earth, life, and physical sciences. Topics include formation and collision of raindrops, amount and distribution of rain, shedding of water by plants, mapping puddles and potholes, rainbow formation, stalking storms online, lightning, and comparing particles in the air before and…
2015-02-01
WRF ) Model using a Geographic Information System (GIS) by Jeffrey A Smith, Theresa A Foley, John W Raby, and Brian Reen...ARL-TR-7212 ● FEB 2015 US Army Research Laboratory Investigating Surface Bias Errors in the Weather Research and Forecasting ( WRF ) Model...SUBTITLE Investigating surface bias errors in the Weather Research and Forecasting ( WRF ) Model using a Geographic Information System (GIS) 5a
2011-09-06
CAPE CANAVERAL, Fla. – A Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference is held in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. From left are George Diller, NASA Public Affairs; Ed Weiler, NASA associate administrator, Science Mission Directorate; Tim Dunn, NASA launch director for the agency’s Launch Services Program; Vernon Thorp, program manager, NASA Missions, United Launch Alliance; David Lehman, GRAIL project manager, NASA’s Jet Propulsion Laboratory; John Henk, GRAIL program manager, Lockheed Martin Space Systems, Denver, Colo.; and Joel Tumbiolo, launch weather officer, 45th Weather Squadron, Cape Canaveral Air Force Station, Fla. GRAIL is scheduled to launch Sept. 8 aboard a United Launch Alliance Delta II Heavy rocket from Cape Canaveral Air Force Station in Florida. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
2011-09-06
CAPE CANAVERAL, Fla. – News media participate in the Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference held in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. On the dais, panelist from left are Ed Weiler, NASA associate administrator, Science Mission Directorate; Tim Dunn, NASA launch director for the agency’s Launch Services Program; Vernon Thorp, program manager, NASA Missions, United Launch Alliance; David Lehman, GRAIL project manager, NASA’s Jet Propulsion Laboratory; John Henk, GRAIL program manager, Lockheed Martin Space Systems, Denver, Colo.; and Joel Tumbiolo, launch weather officer, 45th Weather Squadron, Cape Canaveral Air Force Station, Fla. GRAIL is scheduled to launch Sept. 8 aboard a United Launch Alliance Delta II Heavy rocket from Cape Canaveral Air Force Station in Florida. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
Evaluation of CMAQ and CAMx Ensemble Air Quality Forecasts during the 2015 MAPS-Seoul Field Campaign
NASA Astrophysics Data System (ADS)
Kim, E.; Kim, S.; Bae, C.; Kim, H. C.; Kim, B. U.
2015-12-01
The performance of Air quality forecasts during the 2015 MAPS-Seoul Field Campaign was evaluated. An forecast system has been operated to support the campaign's daily aircraft route decisions for airborne measurements to observe long-range transporting plume. We utilized two real-time ensemble systems based on the Weather Research and Forecasting (WRF)-Sparse Matrix Operator Kernel Emissions (SMOKE)-Comprehensive Air quality Model with extensions (CAMx) modeling framework and WRF-SMOKE- Community Multi_scale Air Quality (CMAQ) framework over northeastern Asia to simulate PM10 concentrations. Global Forecast System (GFS) from National Centers for Environmental Prediction (NCEP) was used to provide meteorological inputs for the forecasts. For an additional set of retrospective simulations, ERA Interim Reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF) was also utilized to access forecast uncertainties from the meteorological data used. Model Inter-Comparison Study for Asia (MICS-Asia) and National Institute of Environment Research (NIER) Clean Air Policy Support System (CAPSS) emission inventories are used for foreign and domestic emissions, respectively. In the study, we evaluate the CMAQ and CAMx model performance during the campaign by comparing the results to the airborne and surface measurements. Contributions of foreign and domestic emissions are estimated using a brute force method. Analyses on model performance and emissions will be utilized to improve air quality forecasts for the upcoming KORUS-AQ field campaign planned in 2016.
Map Database for Surficial Materials in the Conterminous United States
Soller, David R.; Reheis, Marith C.; Garrity, Christopher P.; Van Sistine, D. R.
2009-01-01
The Earth's bedrock is overlain in many places by a loosely compacted and mostly unconsolidated blanket of sediments in which soils commonly are developed. These sediments generally were eroded from underlying rock, and then were transported and deposited. In places, they exceed 1000 ft (330 m) in thickness. Where the sediment blanket is absent, bedrock is either exposed or has been weathered to produce a residual soil. For the conterminous United States, a map by Soller and Reheis (2004, scale 1:5,000,000; http://pubs.usgs.gov/of/2003/of03-275/) shows these sediments and the weathered, residual material; for ease of discussion, these are referred to as 'surficial materials'. That map was produced as a PDF file, from an Adobe Illustrator-formatted version of the provisional GIS database. The provisional GIS files were further processed without modifying the content of the published map, and are here published.
DOT National Transportation Integrated Search
2000-01-24
The Federal Highway Administration (FHWA) of the U.S. Department of Transportation (USDOT) : has a responsibility to coordinate and promote projects that will bring the best information on weather to decision makers, in order to improve performance o...
Evaluation of several finishes on severely weathered wood
R. Sam Williams; Peter Sotos; William Feist
1999-01-01
Alkyd-, oil-modified-latex-, and latex-based finishes were applied to severely weathered western redcedar and redwood boards that did not have any surface treatment to ameliorate the weathered surface prior to painting. Six finishes were evaluated annually for 11 years for cracking, flaking, erosion, mildew growth, discoloration, and general appearance. Low-solids-...
Michael J. Erickson; Joseph J. Charney; Brian A. Colle
2016-01-01
A fire weather index (FWI) is developed using wildfire occurrence data and Automated Surface Observing System weather observations within a subregion of the northeastern United States (NEUS) from 1999 to 2008. Average values of several meteorological variables, including near-surface temperature, relative humidity, dewpoint, wind speed, and cumulative daily...
Surface characterization of weathered wood-plastic composites produced from modified wood flour
James S. Fabiyi; Armando G. McDonald; Nicole M. Stark
2007-01-01
The effects of weathering on the surface properties of wood-plastic composites (WPC) were examined. High-density polyethylene (HDPE) based WPCs made from modified wood flour (untreated, extractives free, and holocellulose (delignified) fibers) were subjected to accelerated (xenon-arc) weathering. Colorimetry and Fourier-transform infrared spectroscopy were employed to...
Spectral decomposition of asteroid Itokawa based on principal component analysis
NASA Astrophysics Data System (ADS)
Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho
2018-01-01
The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (< a few million years) for Itokawa, consistent with the cosmic-ray-exposure time of returned samples from Itokawa. The Itokawa PC score distribution exhibits asymmetry along the evolution track, strongly suggesting that space weathering has begun saturated on this young asteroid. The freshest spectrum found on Itokawa exhibits a clear sign for space weathering, indicating again that space weathering occurs very rapidly on this body. We also conducted PCA on Itokawa spectra alone and compared the results with space-weathering experiments. The obtained results indicate that the first principal component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News with the new address. NOAA/ National Weather Service National Centers for Environmental Prediction Climate Prediction Center 5200 Auth Road Camp Springs, Maryland 20746 Climate Prediction Center Web Team
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News address. NOAA/ National Weather Service National Centers for Environmental Prediction Climate Prediction Center 5200 Auth Road Camp Springs, Maryland 20746 Page Author: Climate Prediction Center Internet Team
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News bookmarks with the new address. NOAA/ National Weather Service National Centers for Environmental Prediction Climate Prediction Center 5830 University Research Court College Park, Maryland 20740 Page Author: Climate
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News bookmarks with the new address. NOAA/ National Weather Service National Centers for Environmental Prediction Climate Prediction Center 5200 Auth Road Camp Springs, Maryland 20746 Page Author: Climate Prediction
Flynn, Robert H.; Johnston, Craig M.; Hays, Laura
2012-01-01
Digital flood-inundation maps for a 16.5-mile reach of the Suncook River in Epsom, Pembroke, Allenstown, and Chichester, N.H., from the confluence with the Merrimack River to U.S. Geological Survey (USGS) Suncook River streamgage 01089500 at Depot Road in North Chichester, N.H., were created by the USGS in cooperation with the New Hampshire Department of Homeland Security and Emergency Management. The inundation maps presented in this report depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Suncook River at North Chichester, N.H. (station 01089500). The current conditions at the USGS streamgage may be obtained on the Internet (http://waterdata.usgs.gov/nh/nwis/uv/?site_no=01089500&PARAmeter_cd=00065,00060). The National Weather Service forecasts flood hydrographs at many places that are often collocated with USGS streamgages. Forecasted peak-stage information is available on the Internet at the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) flood-warning system site (http://water.weather.gov/ahps/) and may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. These maps along with real-time stream stage data from the USGS Suncook River streamgage (station 01089500) and forecasted stream stage from the NWS will provide emergency management personnel and residents with information that is critical for flood-response activities, such as evacuations, road closures, disaster declarations, and post-flood recovery. The maps, along with current stream-stage data from the USGS Suncook River streamgage and forecasted stream-stage data from the NWS, can be accessed at the USGS Flood Inundation Mapping Science Web site http://water.usgs.gov/osw/flood_inundation/.
COSMIC Payload in NCAR-NASPO GPS Satellite System for Severe Weather Prediction
NASA Astrophysics Data System (ADS)
Lai-Chen, C.
Severe weather, such as cyclones, heavy rainfall, outburst of cold air, etc., results in great disaster all the world. It is the mission for the scientists to design a warning system, to predict the severe weather systems and to reduce the damage of the society. In Taiwan, National Satellite Project Office (NSPO) initiated ROCSAT-3 program at 1997. She scheduled the Phase I conceptual design to determine the mission for observation weather system. Cooperating with National Center of Atmospheric Research (NCAR), NSPO involved an international cooperation research and operation program to build a 32 GPS satellites system. NCAR will offer 24 GPS satellites. The total expanse will be US 100 millions. NSPO also provide US 80 millions for launching and system engineering operation. And NCAR will be responsible for Payload Control Center and Fiducial Network. The cooperative program contract has been signed by Taiwan National Science Council, Taipei Economic Cultural Office of United States and American Institute in Taiwan. One of the payload is COSMIC, Constellation Observation System for Meteorology, Ionosphere and Climate. It is a GPS meteorology instrument system. The system will observe the weather information, e. g. electron density profiles, horizontal and vertical TEC and CFT scintillation and communication outage maps. The mission is to obtain the weather data such as vertical temperature profiles, water vapor distribution and pressure distribution over the world for global weather forecasting, especially during the severe weather period. The COSMIC Conference held on November, 1998. The export license was also issued by Department of Commerce of Unites States at November, 1998. Recently, NSPO begun to train their scientists to investigate the system. Scientists simulate the observation data to combine the existing routine satellite infrared cloud maps, radar echo and synoptic weather analysis for severe weather forecasting. It is hopeful to provide more accurate weather analysis for forecasting and decreasing the damage of the disasters over the area concerned.
NASA Technical Reports Server (NTRS)
Gulden, L. E.; Rosero, E.; Yang, Z.-L.; Rodell, Matthew; Jackson, C. S.; Niu, G.-Y.; Yeh, P. J.-F.; Famiglietti, J. S.
2007-01-01
Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the storage and movement of water (including soil moisture, snow, evaporation, and runoff) after it falls to the ground as precipitation. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy. Hence LSMs have been developed to integrate the available information, including satellite observations, using powerful computers, in order to track water storage and redistribution. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth's water cycle and climate variability. Recently, the models have begun to simulate groundwater storage. In this paper, we compare several possible approaches, and examine the pitfalls associated with trying to estimate aquifer parameters (such as porosity) that are required by the models. We find that explicit representation of groundwater, as opposed to the addition of deeper soil layers, considerably decreases the sensitivity of modeled terrestrial water storage to aquifer parameter choices. We also show that approximate knowledge of parameter values is not sufficient to guarantee realistic model performance: because interaction among parameters is significant, they must be prescribed as a harmonious set.
Accumulation mechanisms and the weathering of Antarctic equilibrated ordinary chondrites
NASA Astrophysics Data System (ADS)
Benoit, P. H.; Sears, D. W. G.
1999-06-01
Induced thermoluminescence (TL) is used to quantitatively evaluate the degree of weathering of meteorites found in Antarctica. We find a weak correlation between TL sensitivity and descriptions of weathering in hand specimens, the highly weathered meteorites having lower TL sensitivity than unweathered meteorites. Analysis of samples taken throughout large meteorites shows that the heterogeneity in TL sensitivity within meteorite finds is not large relative to the range exhibited by different weathered meteorites. The TL sensitivity values can be restored by minimal acid washing, suggesting the lower TL sensitivities of weathered meteorites reflects thin weathering rims on mineral grains or coating of these grains by iron oxides produced by hydration and oxidation of metal and sulfides. Small meteorites may tend to be more highly weathered than large meteorites at the Allan Hills ice fields. We find that meteorite fragments >150 g may take up to 300,000 years to reach the highest degrees of weathering, while meteorites <150 g require <40,000 years. However, at other fields, local environmental conditions and variability in terrestrial history are more important in determining weathering than size alone. Weathering correlates poorly with surface exposure duration, presumably because weathering occurs primarily during interglacial periods. The Allan Hills locality has served as a fairly stable surface over the last 100,000 years or so and has efficiently preserved both small and large meteorites. Meteorites from Lewis Cliff, however, have experienced extensive weathering, probably because of increased surface melt water from nearby outcrops. Meteorites from the Elephant Moraine locality tend to exhibit only minor degrees of weathering, but small meteorites are less weathered than large meteorites, which we suggest is due to the loss of small meteorites by aeolian transport.
Mineralogy and evolution of the surface of Mars: A review
NASA Astrophysics Data System (ADS)
Chevrier, V.; Mathé, P. E.
2007-02-01
We review the mineralogy of the surface of Mars, using data from various sources, including in situ characterisations performed by landers, remote observations from orbit, and studies of the SNC meteorites. We also discuss the possible alteration processes and the factor controlling them, and try to relate the mineralogical observations to the chemical evolution of the surface materials on Mars in order to identify the dominant process(es). Then we try to describe a possible chemical and mineralogical evolution of the surface materials, resulting from weathering driven by the abundance and activity of water. Even if weathering is the dominant process responsible for the surface evolution, all observations suggest that it is strongly affected locally in time and space by various other processes including hydrothermalism, volcanism, evaporites, meteoritic impacts and aeolian erosion. Nevertheless, the observed phases on the surface of Mars globally depend on the evolution of the weathering conditions. This hypothesis, if confirmed, could give a new view of the evolution of the martian surface, roughly in three steps. The first would correspond to clay-type weathering process in the Noachian, under a probable thick H 2O/CO 2-rich atmosphere. Then, during the Hesperian when water became scarcer and its activity sporadic, linked to volcanic activity, sulfate-type acidic weathering process would have been predominant. The third period would be like today, a very slow weathering by strongly oxidising agents (H 2O 2, O 2) in cold and dry conditions, through solid-gas or solid-films of water resulting frost-thaw and/or acid fog. This would favour poorly crystalline phases, mainly iron (oxy) hydroxides. But in this scenario many questions remain about the transition between these processes, and about the factors affecting the evolution of the weathering process.
Flood-inundation maps for the Wabash River at Memorial Bridge at Vincennes, Indiana
Fowler, Kathleen K.; Menke, Chad D.
2017-08-23
Digital flood-inundation maps for a 10.2-mile reach of the Wabash River from Sevenmile Island to 3.7 mile downstream of Memorial Bridge (officially known as Lincoln Memorial Bridge) at Vincennes, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 03343010, Wabash River at Memorial Bridge at Vincennes, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at this site.For this study, flood profiles were computed for the Wabash River reach by means of a one-dimensional stepbackwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 03343010, Wabash River at Memorial Bridge at Vincennes, Ind., and preliminary high-water marks from a high-water event on April 27, 2013. The calibrated hydraulic model was then used to determine 19 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from 10 feet (ft) or near bankfull to 28 ft, the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [lidar] data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) in order to delineate the area flooded at each water level.The availability of these maps—along with Internet information regarding current stage from the USGS streamgage 03343010, and forecast stream stages from the NWS AHPS—provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
Raman mapping study of the pigments in the dancheong of Korean traditional buildings
NASA Astrophysics Data System (ADS)
Ji, Jeong-Eun; Han, Kiok; Nam, Jiyeon; Kim, Seung; Kang, Dai-Ill; Park, Min-Jung; Lee, Han-Hyoung; Yang, In-Sang
2017-04-01
Korea experienced a tragic loss of most of the Sungnyemun building in an arson attack in 2008. Few scientific records of the pigments originally used in the Korean national treasure exist, thus, the restoration of Sungnyemun was a serious failure. Because the Raman spectroscopic method has the advantage of analyzing the pigment phases in a simple, nondestructive, and noncontact way, it is becoming more important in scientific research on the colors present in cultural assets. In this study, Raman mapping measurements of the pigments in several "dancheong" - color decorations of the surfaces of the wood structure of Korean buildings - samples from Bongjeongsa Geukrakjeon and Sunglimsa Bogwangjeon are presented. The distribution of the pigments, which is difficult to observe with the naked eye, can be found in detail through a high-resolution Raman mapping image. A change of Raman spectrum due to the powderization of some pigments in the colored layer is also observed. The powderization of the pigments is considered to be due to weathering. Our Raman study will be helpful for the preservation and restoration of cultural heritage in general.
Selective weathering of shocked minerals and chondritic enrichment of the Martian fines
NASA Technical Reports Server (NTRS)
Boslough, M. B.
1987-01-01
In a recent paper, Boslough and Cygan reported the observation of shock-enhanced chemical weathering kinetics of three silicate minerals. Based on the experimental data and on those of Tyburczy and Ahrens for enhanced dehydration kinetics of shocked serpentine, a mechnaism is proposed by which shock-activated minerals are selectively weathered on the surface of Mars. The purpose of the present abstract is to argue on the basis of relative volumes of shocked materials that, as a direct consequence of selective weathering, the composition of the weathered surface units on Mars should be enriched in meteoritic material.
NASA Astrophysics Data System (ADS)
Shavers, E. J.; Ghulam, A.; Encarnacion, J. P.
2016-12-01
Spectroscopic reflectance in the visible to short-wave infrared region is an important tool for remote geologic mapping and is applied at scales from satellite to field measurements. Remote geologic mapping is challenging in regions subject to significant surficial weathering. Here we identify absorption features found in altered volcanic pipes and dikes in the Avon Volcanic District, Missouri, that are inherited from the original ultramafic and carbonatite lithology. Alteration ranges from small degree hydrothermal alteration to extensive laterization. The absorption features are three broad minima centered near 690, 890, and 1100 nm. Features in this region are recognized to be caused by ferric and ferrous Fe minerals including olivine, carbonates, chlorite, and goethite all of which are found among the Avon pipes and dikes that are in various stages of alteration. Iron-related intervalence charge transfer and crystal field perturbations of ions are the principal causes of the spectroscopic features in the visible to near-infrared region yet spectra are also distorted by factors like texture and the presence of opaque minerals known to reduce overall reflectance. In the Avon samples, Fe oxide content can reach >15 wt% leading to prominent absorption features even in the less altered ultramafics with reflectance curve maxima as low as 5%. The exaggerated minima allow the altered intrusive rocks to stand out among other weathered lithologies that will often have clay features in the region yet have lower iron concentration. The absorption feature centered near 690 nm is particularly noteworthy. Broad mineral-related absorption features centered at this wavelength are rare but have been linked to Ti3+ in octahedral coordination. The reduced form of Ti is not common in surface lithologies. Titanium-rich andradite has Ti3+ in the octahedral position, is resistant to weathering, is found among the Avon lithologies including ultramafic, carbonatite, and carbonated breccia, and is identified here as the cause of the 690 nm absorption feature. The Ti3+ absorption feature centered near 690 nm and strong Fe absorption features at 890 and 1100 nm may be useful indicators of rare intrusive lithologies in remote geologic mapping.
Linking animals aloft with the terrestrial landscape
Buler, Jeffrey J.; Barrow, Wylie; Boone, Matthew; Dawson, Deanna K.; Diehl, Robert H.; Moore, Frank R.; Randall, Lori A.; Schreckengost, Timothy; Smolinsky, Jaclyn A.
2018-01-01
Despite using the aerosphere for many facets of their life, most flying animals (i.e., birds, bats, some insects) are still bound to terrestrial habitats for resting, feeding, and reproduction. Comprehensive broad-scale observations by weather surveillance radars of animals as they leave terrestrial habitats for migration or feeding flights can be used to map their terrestrial distributions either as point locations (e.g., communal roosts) or as continuous surface layers (e.g., animal densities in habitats across a landscape). We discuss some of the technical challenges to reducing measurement biases related to how radars sample the aerosphere and the flight behavior of animals. We highlight a recently developed methodological approach that precisely and quantitatively links the horizontal spatial structure of birds aloft to their terrestrial distributions and provides novel insights into avian ecology and conservation across broad landscapes. Specifically, we present case studies that (1) elucidate how migrating birds contend with crossing ecological barriers and extreme weather events, (2) identify important stopover areas and habitat use patterns of birds along their migration routes, and (3) assess waterfowl response to wetland habitat management and restoration. These studies aid our understanding of how anthropogenic modification of the terrestrial landscape (e.g., urbanization, habitat management), natural geographic features, and weather (e.g., hurricanes) can affect the terrestrial distributions of flying animals.
Climate Prediction Center - Forecasts & Outlook Maps, Graphs and Tables
moisture, and a forecast for daily ultraviolet (UV) radiation index. Many of the outlook maps have an watches and warnings to protect life and property from acute short-term threats due to severe weather
Lunar and Planetary Science XXXV: Moon and Mercury
NASA Technical Reports Server (NTRS)
2004-01-01
The session" Moon and Mercury" included the following reports:Helium Production of Prompt Neutrinos on the Moon; Vapor Deposition and Solar Wind Implantation on Lunar Soil-Grain Surfaces as Comparable Processes; A New Lunar Geologic Mapping Program; Physical Backgrounds to Measure Instantaneous Spin Components of Terrestrial Planets from Earth with Arcsecond Accuracy; Preliminary Findings of a Study of the Lunar Global Megaregolith; Maps Characterizing the Lunar Regolith Maturity; Probable Model of Anomalies in the Polar Regions of Mercury; Parameters of the Maximum of Positive Polarization of the Moon; Database Structure Development for Space Surveying Results by Moon -Zond Program; CM2-type Micrometeoritic Lunar Winds During the Late Heavy Bombardment; A Comparison of Textural and Chemical Features of Spinel Within Lunar Mare Basalts; The Reiner Gamma Formation as Characterized by Earth-based Photometry at Large Phase Angles; The Significance of the Geometries of Linear Graben for the Widths of Shallow Dike Intrusions on the Moon; Lunar Prospector Data, Surface Roughness and IR Thermal Emission of the Moon; The Influence of a Magma Ocean on the Lunar Global Stress Field Due to Tidal Interaction Between the Earth and Moon; Variations of the Mercurian Photometric Relief; A Model of Positive Polarization of Regolith; Ground Truth and Lunar Global Thorium Map Calibration: Are We There Yet?;and Space Weathering of Apollo 16 Sample 62255: Lunar Rocks as Witness Plates for Deciphering Regolith Formation Processes.
Hall, A.M.; Phillips, W.M.
2006-01-01
Weathering pits 1-140 cm deep occur on granite surfaces in the Cairngorms associated with a range of landforms, including tors, glacially exposed slabs, large erratics and blockfields. Pit depth is positively correlated with cosmogenic exposure age, and both measures show consistent relationships on individual rock landforms. Rates of pit deepening are non-linear and a best fit is provided by the sigmoidal function D = b1+ exp(b2+b3/t). The deepest pits occur on unmodified tor summits, where 10 Be exposure ages indicate that surfaces have been exposed to weathering for a minimum of 52-297 ka. Glacially exposed surfaces with pits 10-46 cm deep have given 10 Be exposure durations of 21-79 ka, indicating exposure by glacial erosion before the last glacial cycle. The combination of cosmogenic exposure ages with weathering pit depths greatly extends the area over which inferences can be made regarding the ages of granite surfaces in the Cairngorms. Well-developed weathering pits on glacially exposed surfaces in other granite areas are potential indicators of glacial erosion before the Last Glacial Maximum. ?? Swedish Society for Anthropology and Geography.
PLS Road surface temperature forecast for susceptibility of ice occurrence
NASA Astrophysics Data System (ADS)
Marchetti, Mario; Khalifa, Abderrhamen; Bues, Michel
2014-05-01
Winter maintenance relies on many operational tools consisting in monitoring atmospheric and pavement physical parameters. Among them, road weather information systems (RWIS) and thermal mapping are mostly used by service in charge of managing infrastructure networks. The Data from RWIS and thermal mapping are considered as inputs for forecasting physical numerical models, commonly in place since the 80s. These numerical models do need an accurate description of the infrastructure, such as pavement layers and sub-layers, along with many meteorological parameters, such as air temperature and global and infrared radiation. The description is sometimes partially known, and meteorological data is only monitored on specific spot. On the other hand, thermal mapping is now an easy, reliable and cost effective way to monitor road surface temperature (RST), and many meteorological parameters all along routes of infrastructure networks, including with a whole fleet of vehicles in the specific cases of roads, or airports. The technique uses infrared thermometry to measure RST and an atmospheric probes for air temperature, relative humidity, wind speed and global radiation, both at a high resolution interval, to identify sections of the road network prone to ice occurrence. However, measurements are time-consuming, and the data from thermal mapping is one input among others to establish the forecast. The idea was to build a reliable forecast on the sole data from thermal mapping. Previous work has established the interest to use principal component analysis (PCA) on the basis of a reduced number of thermal fingerprints. The work presented here is a focus on the use of partial least-square regression (PLS) to build a RST forecast with air temperature measurements. Roads with various environments, weather conditions (clear, cloudy mainly) and seasons were monitored over several months to generate an appropriate number of samples. The study was conducted to determine the minimum number of samples to get a reliable forecast, considering inputs for numerical models do not exceed five thermal fingerprints. Results of PLS have shown that the PLS model could have a R² of 0.9562, a RMSEP of 1.34 and a bias of -0.66. The same model applied to establish a forecast on past event indicates an average difference between measurements and forecasts of 0.20 °C. The advantage of such approach is its potential application not only to winter events, but also the extreme summer ones for urban heat island.
Nano- to Formation-Scale Estimates of Mineral-Specific Reactive Surface Area
NASA Astrophysics Data System (ADS)
Cole, D. R.; Swift, A.; Sheets, J.; Anovitz, L. M.
2017-12-01
Predictions of changes in fluid composition, coupled with the evolution of the solid matrix, include the generation and testing of reactive transport models. However, translating a heterogeneous natural system into physical and chemical model parameters, including the critical but poorly-constrained metric of fluid-accessible surface area, continues to challenge Earth scientists. Studies of carbon storage capacity, permeability, rock strain due to mineral dissolution and precipitation, or the prediction of rock evolution through diagenesis and weathering each consider macroscale outcomes of processes that often are critically impacted by rock surface geometry at the nanoscale. The approach taken here is to consider the whole vertical extent of a saline reservoir and then to address two questions. First, what is the accessible surface area for each major mineral, and for all adjacent pore sizes from <2 nm on up, within each major lithofacies in that formation? Second, with the formation thus divided into units of analysis, parameterized, and placed into geologic context, what constraints can be placed on reactive surface area as a function of mineral composition? A complex sandstone covering a substantial fraction of the quartz-K-feldspar-illite ternary is selected and mineral-specific surface area quantified using neutron scattering, nitrogen and mercury porosimetry, multi-signal high-resolution mineral mapping, and other techniques. For neutron scattering, scale-specific pore geometries enable more accurate translation of volume into surface area. By applying this workflow to all end-member lithologies of this reservoir formation, equations and maps of surface area as a function of position on a quartz-feldspar-clay ternary plot are developed for each major mineral. Results from this work therefore advance our ability to parameterize models not just for the particular formation studied, but for similar geologic units as well.
Remote sensing with spaceborne synthetic aperture imaging radars: A review
NASA Technical Reports Server (NTRS)
Cimino, J. B.; Elachi, C.
1983-01-01
A review is given of remote sensing with Spaceborne Synthetic Aperture Radars (SAR's). In 1978, a spaceborne SA was flown on the SEASAT satellite. It acquired high resulution images over many regions in North America and the North Pacific. The acquired data clearly demonstrate the capability of spaceborne SARs to: image and track polar ice floes; image ocean surface patterns including swells, internal waves, current boundaries, weather boundaries and vessels; and image land features which are used to acquire information about the surface geology and land cover. In 1981, another SAR was flown on the second shuttle flight. This Shuttle Imaging Radar (SIR-A) acquired land and ocean images over many areas around the world. The emphasis of the SIR-A experiment was mainly toward geologic mapping. Some of the key results of the SIR-A experiment are given.
Effect of processing method on surface and weathering characteristics of wood-flour/HDPE composites
Nicole M. Stark; Laurent M. Matuana; Craig M. Clemons
2004-01-01
Wood-plastic lumber is promoted as a low maintenance high-durability product. When exposed to accelerated weathering, however, wood-plastic composites may experience a color change and/or loss in mechanical properties. Different methods of manufacturing wood-plastic composites lead to different surface characteristics, which can influence weathering, In this study, 50...
Weather Information Processing
NASA Technical Reports Server (NTRS)
1991-01-01
Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.
NASA Astrophysics Data System (ADS)
Manore, C.; Conrad, J.; Del Valle, S.; Ziemann, A.; Fairchild, G.; Generous, E. N.
2017-12-01
Mosquito-borne diseases such as Zika, dengue, and chikungunya viruses have dynamics coupled to weather, ecology, human infrastructure, socio-economic demographics, and behavior. We use time-varying remote sensing and weather data, along with demographics and ecozones to predict risk through time for Zika, dengue, and chikungunya outbreaks in Brazil. We use distributed lag methods to quantify the lag between outbreaks and weather. Our statistical model indicates that the relationships between the variables are complex, but that quantifying risk is possible with the right data at appropriate spatio-temporal scales.
NASA Astrophysics Data System (ADS)
Betancourt, J. L.; Biondi, F.; Bradford, J. B.; Foster, J. R.; Betancourt, J. L.; Foster, J. R.; Biondi, F.; Bradford, J. B.; Henebry, G. M.; Post, E.; Koenig, W.; Hoffman, F. M.; de Beurs, K.; Hoffman, F. M.; Kumar, J.; Hargrove, W. W.; Norman, S. P.; Brooks, B. G.
2016-12-01
Vegetated ecosystems exhibit unique phenological behavior over the course of a year, suggesting that remotely sensed land surface phenology may be useful for characterizing land cover and ecoregions. However, phenology is also strongly influenced by temperature and water stress; insect, fire, and weather disturbances; and climate change over seasonal, interannual, decadal and longer time scales. Normalized difference vegetation index (NDVI), a remotely sensed measure of greenness, provides a useful proxy for land surface phenology. We used NDVI for the conterminous United States (CONUS) derived from the Moderate Resolution Spectroradiometer (MODIS) every eight days at 250 m resolution for the period 2000-2015 to develop phenological signatures of emergent ecological regimes called phenoregions. We employed a "Big Data" classification approach on a supercomputer, specifically applying an unsupervised data mining technique, to this large collection of NDVI measurements to develop annual maps of phenoregions. This technique produces a prescribed number of prototypical phenological states to which every location belongs in any year. To reduce the impact of short-term disturbances, we derived a single map of the mode of annual phenological states for the CONUS, assigning each map cell to the state with the largest integrated NDVI in cases where multiple states tie for the highest frequency of occurrence. Since the data mining technique is unsupervised, individual phenoregions are not associated with an ecologically understandable label. To add automated supervision to the process, we applied the method of Mapcurves, developed by Hargrove and Hoffman, to associate individual phenoregions with labeled polygons in expert-derived maps of biomes, land cover, and ecoregions. We will present the phenoregions methodology and resulting maps for the CONUS, describe the "label-stealing" technique for ascribing biome characteristics to phenoregions, and introduce a new polar plotting scheme for processing NDVI data by localized seasonality.
The North Alabama Lightning Mapping Array: Recent Results and Future Prospects
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Blakeslee, R.; Christian, H.; Boccippio, D.; Koshak, W.; Bailey, J.; Hall, J.; Bateman, M.; McCaul, E.; Buechler, D.
2002-01-01
The North Alabama Lightning Mapping Array became operational in November 2001 as a principal component of a severe weather test bed to infuse new science and technologies into the short-term forecasting of severe and hazardous weather and the warning decision-making process. The LMA project is a collaboration among NASA scientists, National Weather Service (NWS) weather forecast offices (WFOs), emergency managers, and other partners. The time rate-of-change of storm characteristics and life-cycle trending are accomplished in real-time through the second generation Lightning Imaging Sensor Data Applications Display (LISDAD II) system, initially developed in T997 through a collaboration among NASA/MSFC, MIT/Lincoln Lab and the Melbourne, FL WFO. LISDAD II is now a distributed decision support system with a JAVA-based display application that allows anyone, anywhere to track individual storm histories within the Tennessee Valley region of the southeastern U.S. Since the inauguration of the LMA there has been an abundance of severe weather. During 23-24 November 2001, a major tornado outbreak was monitored by LMA in its first data acquisition effort (36 tornadoes in Alabama). Since that time the LMA has collected a vast amount of data on hailstorms and damaging wind events, non-tornadic supercells, and ordinary non-severe thunderstorms. In this paper we provide an overview of LMA observations and discuss future prospects for improving the short-term forecasting of convective weather.
NASA Technical Reports Server (NTRS)
Dominque, Deborah L.; Chapman, Clark R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Orlando, Thomas M.; Schriver, David;
2011-01-01
Understanding the composition of Mercury's crust is key to comprehending the formation of the planet. The regolith, derived from the crustal bedrock, has been altered via a set of space weathering processes. These processes are the same set of mechanisms that work to form Mercury's exosphere, and are moderated by the local space environment and the presence of an intrinsic planetary magnetic field. The alterations need to be understood in order to determine the initial crustal compositions. The complex interrelationships between Mercury's exospheric processes, the space environment, and surface composition are examined and reviewed. The processes are examined in the context of our understanding of these same processes on the lunar and asteroid regoliths. Keywords: Mercury (planet) Space weathering Surface processes Exosphere Surface composition Space environment 3
Weathering phases recorded by gnammas developed since last glaciation at Serra da Estrela, Portugal
NASA Astrophysics Data System (ADS)
Domínguez-Villar, David; Razola, Laura; Carrasco, Rosa M.; Jennings, Carrie E.; Pedraza, Javier
2009-09-01
The morphometrical analysis of gnammas (weathering pits) in granite landscapes has been used to establish the relative chronology of recent erosive surfaces and to provide the weathering history in a region. To test the validity of gnammas as relative chronometer indicators, and the reliability of the obtained weathering record, two sites have been studied in Serra da Estrela, Portugal. The first site is within the limits of the glacier that existed in these mountains during the last glaciation, whereas the second site is located in an unglaciated sector of the mountains, which preserves a longer record of weathering in the bedrock surface. The number of gnamma weathering phases recorded in the latter site (8) is larger than those from the former (6). Correlation between both measurement stations based on morphometrical criteria is excellent for the younger six weathering phases (1 to 6). Consequently, the parameter used for relative chronology ( δ-value) has been verified to be age dependent, although absolute values are modulated by microclimate due to altitude variations. The weathering record was essentially duplicated once the surfaces at both sites were exposed, demonstrating the reliability of gnamma evolution as a post-glacial environmental indicator for the region.
Advancing land surface model development with satellite-based Earth observations
NASA Astrophysics Data System (ADS)
Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo
2017-04-01
The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628
NASA Astrophysics Data System (ADS)
Chabas, A.; Jeannette, D.; Lefèvre, R. A.
Far from the ground moisture zone, marble remains of Delos archaeological site have undergone an extensive weathering through contour scaling and granular disintegration. Comparison of the analytical results from analytical scanning electron microscopy examination of surface samples of weathered marble and air filtration membranes confirms the atmospheric transport of marine salts and their deposition on stone surface. A laboratory experiment emphasizes the role of these atmospheric salts in the weathering process of marbles in coastal environment.
Surface Exposure Ages of Space-Weathered Grains from Asteroid 25143 Itokawa
NASA Technical Reports Server (NTRS)
Keller, L. P.; Berger, E. L.; Christoffersen, R.
2015-01-01
Space weathering processes such as solar wind ion irradiation and micrometeorite impacts are widely known to alter the properties of regolith materials exposed on airless bodies. The rates of space weathering processes however, are poorly constrained for asteroid regoliths, with recent estimates ranging over many orders of magnitude. The return of surface samples by JAXA's Hayabusa mission to asteroid 25143 Itokawa, and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering processes on airless bodies.
Active and Passive Remote Sensing Data Time Series for Flood Detection and Surface Water Mapping
NASA Astrophysics Data System (ADS)
Bioresita, Filsa; Puissant, Anne; Stumpf, André; Malet, Jean-Philippe
2017-04-01
As a consequence of environmental changes surface waters are undergoing changes in time and space. A better knowledge of the spatial and temporal distribution of surface waters resources becomes essential to support sustainable policies and development activities. Especially because surface waters, are not only a vital sweet water resource, but can also pose hazards to human settlements and infrastructures through flooding. Floods are a highly frequent disaster in the world and can caused huge material losses. Detecting and mapping their spatial distribution is fundamental to ascertain damages and for relief efforts. Spaceborne Synthetic Aperture Radar (SAR) is an effective way to monitor surface waters bodies over large areas since it provides excellent temporal coverage and, all-weather day-and-night imaging capabilities. However, emergent vegetation, trees, wind or flow turbulence can increase radar back-scatter returns and pose problems for the delineation of inundated areas. In such areas, passive remote sensing data can be used to identify vegetated areas and support the interpretation of SAR data. The availability of new Earth Observation products, for example Sentinel-1 (active) and Sentinel-2 (passive) imageries, with both high spatial and temporal resolution, have the potential to facilitate flood detection and monitoring of surface waters changes which are very dynamic in space and time. In this context, the research consists of two parts. In the first part, the objective is to propose generic and reproducible methodologies for the analysis of Sentinel-1 time series data for floods detection and surface waters mapping. The processing chain comprises a series of pre-processing steps and the statistical modeling of the pixel value distribution to produce probabilistic maps for the presence of surface waters. Images pre-processing for all Sentinel-1 images comprise the reduction SAR effect like orbit errors, speckle noise, and geometric effects. A modified Split Based Approach (MSBA) is used in order to focus on surface water areas automatically and facilitate the estimation of class models for water and non-water areas. A Finite Mixture Model is employed as the underlying statistical model to produce probabilistic maps. Subsequently, bilateral filtering is applied to take into account spatial neighborhood relationships in the generation of final map. The elimination of shadows effect is performed in a post-processing step. The processing chain is tested on three case studies. The first case is a flood event in central Ireland, the second case is located in Yorkshire county / Great Britain, and the third test case covers a recent flood event in northern Italy. The tests showed that the modified SBA step and the Finite Mixture Models can be applied for the automatic surface water detection in a variety of test cases. An evaluation again Copernicus products derived from very-high resolution imagery was performed, and showed a high overall accuracy and F-measure of the obtained maps. This evaluation also showed that the use of probability maps and bilateral filtering improved the accuracy of classification results significantly. Based on this quantitative evaluation, it is concluded that the processing chain can be applied for flood mapping from Sentinel-1 data. To estimate robust statistical distributions the method requires sufficient surface waters areas in the observed zone and sufficient contrast between surface waters and other land use classes. Ongoing research addresses the fusion of Sentinel-1 and passive remote sensing data (e.g. Sentinel-2) in order to reduce the current shortcomings in the developed processing chain. In this work, fusion is performed at the feature level to better account for the difference image properties of SAR and optical sensors. Further, the processing chain is currently being optimized in terms of calculation time for a further integration as a flood mapping service on the A2S (Alsace Aval Sentinel) high-performance computing infrastructure of University of Strasbourg.
Prototype methodology for obtaining cloud seeding guidance from HRRR model data
NASA Astrophysics Data System (ADS)
Dawson, N.; Blestrud, D.; Kunkel, M. L.; Waller, B.; Ceratto, J.
2017-12-01
Weather model data, along with real time observations, are critical to determine whether atmospheric conditions are prime for super-cooled liquid water during cloud seeding operations. Cloud seeding groups can either use operational forecast models, or run their own model on a computer cluster. A custom weather model provides the most flexibility, but is also expensive. For programs with smaller budgets, openly-available operational forecasting models are the de facto method for obtaining forecast data. The new High-Resolution Rapid Refresh (HRRR) model (3 x 3 km grid size), developed by the Earth System Research Laboratory (ESRL), provides hourly model runs with 18 forecast hours per run. While the model cannot be fine-tuned for a specific area or edited to provide cloud-seeding-specific output, model output is openly available on a near-real-time basis. This presentation focuses on a prototype methodology for using HRRR model data to create maps which aid in near-real-time cloud seeding decision making. The R programming language is utilized to run a script on a Windows® desktop/laptop computer either on a schedule (such as every half hour) or manually. The latest HRRR model run is downloaded from NOAA's Operational Model Archive and Distribution System (NOMADS). A GRIB-filter service, provided by NOMADS, is used to obtain surface and mandatory pressure level data for a subset domain which greatly cuts down on the amount of data transfer. Then, a set of criteria, identified by the Idaho Power Atmospheric Science Group, is used to create guidance maps. These criteria include atmospheric stability (lapse rates), dew point depression, air temperature, and wet bulb temperature. The maps highlight potential areas where super-cooled liquid water may exist, reasons as to why cloud seeding should not be attempted, and wind speed at flight level.
NASA Astrophysics Data System (ADS)
Snyder, R. L.; Mancosu, N.; Spano, D.
2014-12-01
This study derived the summer (June-August) reference evapotranspiration distribution map for Sardinia (Italy) based on weather station data and use of the geographic information system (GIS). A modified daily Penman-Monteith equation from the Food and Agriculture Organization of the United Nations (UN-FAO) and the American Society of Civil Engineers Environmental and Water Resources Institute (ASCE-EWRI) was used to calculate the Standardized Reference Evapotranspiration (ETos) for all weather stations having a "full" set of required data for the calculations. For stations having only temperature data (partial stations), the Hargreaves-Samani equation was used to estimate the reference evapotranspiration for a grass surface (ETo). The ETos and ETo results were different depending on the local climate, so two methods to estimate ETos from the ETo were tested. Substitution of missing solar radiation, wind speed, and humidity data from a nearby station within a similar microclimate was found to give better results than using a calibration factor that related ETos and ETo. Therefore, the substitution method was used to estimate ETos at "partial" stations having only temperature data. The combination of 63 full and partial stations was sufficient to use GIS to map ETos for Sardinia. Three interpolation methods were studied, and the ordinary kriging model fitted the observed data better than a radial basis function or the inverse distance weighting method. Using station data points to create a regional map simplified the zonation of ETos when large scale computations were needed. Making a distinction based on ETos classes allows the simulation of crop water requirements for large areas and it can potentially lead to improved irrigation management and water savings. It also provides a baseline to investigate possible impact of climate change.
Estimated flood-inundation maps for Cowskin Creek in western Wichita, Kansas
Studley, Seth E.
2003-01-01
The October 31, 1998, flood on Cowskin Creek in western Wichita, Kansas, caused millions of dollars in damages. Emergency management personnel and flood mitigation teams had difficulty in efficiently identifying areas affected by the flooding, and no warning was given to residents because flood-inundation information was not available. To provide detailed information about future flooding on Cowskin Creek, high-resolution estimated flood-inundation maps were developed using geographic information system technology and advanced hydraulic analysis. Two-foot-interval land-surface elevation data from a 1996 flood insurance study were used to create a three-dimensional topographic representation of the study area for hydraulic analysis. The data computed from the hydraulic analyses were converted into geographic information system format with software from the U.S. Army Corps of Engineers' Hydrologic Engineering Center. The results were overlaid on the three-dimensional topographic representation of the study area to produce maps of estimated flood-inundation areas and estimated depths of water in the inundated areas for 1-foot increments on the basis of stream stage at an index streamflow-gaging station. A Web site (http://ks.water.usgs.gov/Kansas/cowskin.floodwatch) was developed to provide the public with information pertaining to flooding in the study area. The Web site shows graphs of the real-time streamflow data for U.S. Geological Survey gaging stations in the area and monitors the National Weather Service Arkansas-Red Basin River Forecast Center for Cowskin Creek flood-forecast information. When a flood is forecast for the Cowskin Creek Basin, an estimated flood-inundation map is displayed for the stream stage closest to the National Weather Service's forecasted peak stage. Users of the Web site are able to view the estimated flood-inundation maps for selected stages at any time and to access information about this report and about flooding in general. Flood recovery teams also have the ability to view the estimated flood-inundation map pertaining to the most recent flood. The availability of these maps and the ability to monitor the real-time stream stage through the U.S. Geological Survey Web site provide emergency management personnel and residents with information that is critical for evacuation and rescue efforts in the event of a flood as well as for post-flood recovery efforts.
1982-09-20
SURFACE WEATHER OBSERVATIONS 2 2 SEP W ISJRLSURT FLD FL MSC #747770 E 30 26 w o86 41 FLU ELEV 38 FT FRT PARTS A-F POR FROM HOURLY OBS: JAN 67 - DEC 70...amounts and extreme valuesl; C) Surface winds; (D) Ceiling versus Visibility; Sky Cover; ( E )-Psychrometric Summaries (daily maximum and minimum...for this station: PART A WEATHER CONDITIONS PART E DAILY MAX, MIN, & MEAN TEMP ATMOSPHERIC PHENOMENA EXTREME MAX & MIN TEMP PART I PRECIPITATION
Collins, W.D.
1925-01-01
The importance of water supply as a limiting factor in industrial development is becoming more evident each year. The limitation in a particular instance may be the quantity of water available, the quality determined by the mineral matter in solution or in suspension or by organic pollution, or the temperature of the water. Generally it is a combination of two or more of these factors.Many publications of the Geological Survey give data in regard to the quantity of surface water and ground water obtainable at different points. Other publications of this Survey and of other organizations give data on the quality of waters available for industrial use. The temperature of these waters is discussed in the present report.Data in regard to ground water have been obtained from Geological Survey water-supply papers, from the publications indicated in footnotes, and from an unpublished compilation of temperature records prepared by C. E. Van Orstrand, of the Geological Survey, in connection with studies of deep earth temperature. Data on temperature of surface water have been obtained mainly from officials of waterworks, as noted in the accompanying table. Data on air temperature have been obtained from reports of the United States Weather Bureau. The maps showing temperature of ground water and surface water (Pls. VIII and IX) are taken directly from Weather Bureau charts of temperature distribution.
NASA Astrophysics Data System (ADS)
Lefèvre, Roger; Ionescu, Anda; Desplat, Julien; Kounkou-Arnaud, Raphaëlle; Perrussel, Olivier; Languille, Baptiste
2016-04-01
Quantitative impact of the recent abatement of air pollution on the weathering of stone and glass of the UNESCO List in Paris R.-A. Lefèvre1, A. Ionescu1, J. Desplat2, R. Kounkou-Arnaud2, O. Perrussel3, B. Languille4 At the beginning of the 21st century air pollution in Paris continued to considerably decrease. An evident visual consequence was the replacement of thick gypseous black crusts by thin grey coverings on the façades. A quantitative approach of this phenomenon was taken by measurement in the field, followed by calculation using Dose-Response Functions (DRF) and mapping the geographic distribution on a grid of 100m x100m of: 1) The total surface of façades of buildings and monuments in the part of Paris inscribed on the UNESCO List between the Ile Saint-Louis and the Concorde Square; 2) The surface of limestone and window glass present on each façade; 3) The distribution of SO2, NO2 and PM10 concentration every year from 1997 to 2014; 4) The response of materials to climatic and pollution doses; 5) The effective damage to limestone and window glass. Results of measurements in the field: 1) The 772 buildings and monuments inventoried have 20 674 m in length and 414 811 m2 in façade surface: they are representative of the centre of Paris; 2) Limestone occupies 348 268 m2 and window glass 207 394 m2; 3) The mean annual concentration in SO2 dropped from 20 to less than 3 μg m-3; NO2 from 60 to 40 μg m-3 and PM10 from 30 to 20 μg m-3. Results by application of DRF: 4) Limestone recession was divided by 5 in 18 years, from 10 to 2 μm y-1, but with only a spatial variation of 2%; 5) Limestone reflectance increased from 70.5 to 72.5 %; 6) The annual mass of deposited and neo-formed particles on window glass decreased from 100 to 20 μg cm-2; 7) The annual haze of window glass decreased from 8 to 3.5%. Effective damage to stone and glass: 8) The mean annual mass of limestone eroded on the façades decreased according to time but with an irregular geographic distribution from 348 to 22 kg by cell of the map; 9) The mean annual mass of particles deposited or neo-formed on window glass decreased according to time but with an irregular geographic distribution from 4.7 to 0.1 kg by cell of the map. Conclusion. The abatement of air pollution observed in Paris at the beginning of the 21st century had a direct consequence on the weathering of stone and glass. It is quantitatively highlighted in this study.
Directable weathering of concave rock using curvature estimation.
Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew
2010-01-01
We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.
AWE: Aviation Weather Data Visualization Environment
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Lodha, Suresh K.
2000-01-01
The two official sources for aviation weather reports both provide weather information to a pilot in a textual format. A number of systems have recently become available to help pilots with the visualization task by providing much of the data graphically. However, two types of aviation weather data are still not being presented graphically. These are airport-specific current weather reports (known as meteorological observations, or METARs) and forecast weather reports (known as terminal area forecasts, or TAFs). Our system, Aviation Weather Environment (AWE), presents intuitive graphical displays for both METARs and TAFs, as well as winds aloft forecasts. We start with a computer-generated textual aviation weather briefing. We map this briefing onto a cartographic grid specific to the pilot's area of interest. The pilot is able to obtain aviation-specific weather for the entire area or for his specific route. The route, altitude, true airspeed, and proposed departure time can each be modified in AWE. Integral visual display of these three elements of weather reports makes AWE a useful planning tool, as well as a weather briefing tool.
Climate Prediction Center - Forecasts & Outlook Maps, Graphs and Tables
moisture, and a forecast for daily ultraviolet (UV) radiation index. Many of the outlook maps have an acute short-term threats due to severe weather events. Another of the many products available is the GFS
Rapid Semi-Quantitative Mapping of Dispersed Caffeine Using an Autosampler/DART/TOFMS
Introduction: Rapid mapping of contaminant distributions is necessary to assess exposure risksand to plan remediation, when chemicals are dispersed accidentally, deliberately, or by weather-related events. Described previously (Grange, Environ. Forensics, 9, 125-141) were anaut...
Comparative analysis of aerosols elemental distribution in some Romanian regions
NASA Astrophysics Data System (ADS)
Amemiya, Susumu; Masuda, Toshio; Popa-Simil, Liviu; Mateescu, Liviu
1996-04-01
The study's main aim is obtaining aerosols particulate elemental distribution and mapping it for some Romanian regions, in order to obtain preliminary information regarding the concentrations of aerosol particles and networking strategy versus local conditions. For this we used the mobile sampling strategy, but taking care on all local specific conditions and weather. In the summer of 1993, in July we took about 8 samples on a rather large territory of SE Romania which were analysed and mapped. The regions which showed an interesting behaviour or doubts such as Bucharest and Dobrogea were zoomed in near the same period of 1994, for comparing the new details with the global aspect previously obtained. An attempt was made to infer the minimum necessary number of stations in a future monitoring network. A mobile sampler was used, having tow polycarbonate filter posts of 8 and 0.4 μm. PIXE elemental analysis was performed on a 2.5 MV Van de Graaff accelerator, by using a proton beam. More than 15 elements were measured. Suggestive 2D and 3D representations were drawn, as well as histogram charts for the concentrations' distribution in the specific regions at the specified times. In spite of the poor samples from the qualitative point of view the experiment surprised us by the good coincidence (good agreement) with realities in terrain known by other means long time ago, and highlighted the power of PIXE methods in terms of money and time. Conclusions over the link between industry, traffic, vegetation, wether, surface waters, soil composition, power plant exhaust and so on, on the one hand, and surface concentration distribution, on the other, were drawn. But the method's weak points were also highlighted; these are weather dependencies (especially air masses movement and precipitation), local relief, microclimate and vegetation, and of course localisation of the sampling point versus the pollution sources and their regime. The paper contains a synthesis of the whole of the maps and graphs we made, intended in its turn to demonstrate the necessity of a national integrated network for monitoring aerosols.
Climate Products and Services to Meet the Challenges of Extreme Events
NASA Astrophysics Data System (ADS)
McCalla, M. R.
2008-12-01
The 2002 Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM1)-sponsored report, Weather Information for Surface Transportation: National Needs Assessment Report, addressed meteorological needs for six core modes of surface transportation: roadway, railway, transit, marine transportation/operations, pipeline, and airport ground operations. The report's goal was to articulate the weather information needs and attendant surface transportation weather products and services for those entities that use, operate, and manage America's surface transportation infrastructure. The report documented weather thresholds and associated impacts which are critical for decision-making in surface transportation. More recently, the 2008 Climate Change Science Program's (CCSP) Synthesis and Assessment Product (SAP) 4.7 entitled, Impacts of Climate Change and Variability on Transportation Systems and Infrastructure: Gulf Coast Study, Phase I, included many of the impacts from the OFCM- sponsored report in Table 1.1 of this SAP.2 The Intergovernmental Panel on Climate Change (IPCC) reported that since 1950, there has been an increase in the number of heat waves, heavy precipitation events, and areas of drought. Moreover, the IPCC indicated that greater wind speeds could accompany more severe tropical cyclones.3 Taken together, the OFCM, CCSP, and IPCC reports indicate not only the significance of extreme events, but also the potential increasing significance of many of the weather thresholds and associated impacts which are critical for decision-making in surface transportation. Accordingly, there is a real and urgent need to understand what climate products and services are available now to address the weather thresholds within the surface transportation arena. It is equally urgent to understand what new climate products and services are needed to address these weather thresholds, and articulate what can be done to fill the gap between the existing federal climate products and services and the needed federal climate products and services which will address these weather thresholds. Just as important, as we work to meet the needs, a robust education and outreach program is essential to take full advantage of new products, services and capabilities. To ascertain what climate products and services currently exist to address weather thresholds relative to surface transportation, what climate products and services are needed to address these weather thresholds, and how to bridge the gap between what is available and what is needed, the OFCM surveyed the federal meteorological community. Consistent with the extreme events highlighted in the IPCC report, the OFCM survey categorized the weather thresholds associated with surface transportation into the following extreme event areas: (a) excessive heat, (b) winter precipitation, (c) summer precipitation, (d) high winds, and (e) flooding and coastal inundation. The survey results, the gap analysis, as well as OFCM's planned, follow-on activities with additional categories (i.e., in addition to surface transportation) and weather thresholds will be shared with meeting participants. 1 The OFCM is an interdepartmental office established in response to Public Law 87-843 with the mission to ensure the effective use of federal meteorological resources by leading the systematic coordination of operational weather and climate requirements, products, services, and supporting research among the federal agencies. 2 http://www.climatescience.gov/Library/sap/sap4-7/final-report/sap4-7-final-ch1.pdf 3 http://www.gcrio.org/ipcc/ar4/wg1/faq/ar4wg1faq-3-3.pdf
NOAA Weather Radio - Voice of NWS
Station Search Coverage Maps Outages View Outages Report Outages Information General Information Receiver Information Reception Problems NWR Alarms Automated Voices FIPS Codes NWR - Special Needs SAME USING SAME SAME information 24 hours a day. Known as the "voice of the National Weather Service," NWR is provided as
Total Lightning as an Indicator of Mesocyclone Behavior
NASA Technical Reports Server (NTRS)
Stough, Sarah M.; Carey, Lawrence D.; Schultz, Christopher J.
2014-01-01
Apparent relationship between total lightning (in-cloud and cloud to ground) and severe weather suggests its operational utility. Goal of fusion of total lightning with proven tools (i.e., radar lightning algorithms. Preliminary work here investigates circulation from Weather Suveilance Radar- 1988 Doppler (WSR-88D) coupled with total lightning data from Lightning Mapping Arrays.
National Maps - NOAA's National Weather Service
information, select area of interest and click on the image below. National Weather Outlook Northeast Michigan Boston and Surrounding Areas Western New York - Buffalo Northern Vermont and New York Southern Maine California and Northwestern Arizona - Las Vegas South Central California Los Angeles Area San Francisco Area
USDA-ARS?s Scientific Manuscript database
Evapotranspiration estimates for scheduling irrigation must be field specific and real time. Weather station networks provide daily reference ET values, but users need to select crop coefficients for their particular crop and field. A prototype system has been developed that combines satellite image...
Flood-inundation maps for a 6.5-mile reach of the Kentucky River at Frankfort, Kentucky
Lant, Jeremiah G.
2013-01-01
Digital flood-inundation maps for a 6.5-mile reach of Kentucky River at Frankfort, Kentucky, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Frankfort Office of Emergency Management. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage Kentucky River at Lock 4 at Frankfort, Kentucky (station no. 03287500). Current conditions for the USGS streamgage may be obtained online at the USGS National Water Information System site (http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=03287500). In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated at USGS streamgages. The forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the Kentucky River reach by using HEC–RAS, a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current (2013) stage-discharge relation for the Kentucky River at Lock 4 at Frankfort, Kentucky, in combination with streamgage and high-water-mark measurements collected for a flood event in May 2010. The calibrated model was then used to calculate 26 water-surface profiles for a sequence of flood stages, at 1-foot intervals, referenced to the streamgage datum and ranging from a stage near bankfull to the elevation that breached the levees protecting the City of Frankfort. To delineate the flooded area at each interval flood stage, the simulated water-surface profiles were combined with a digital elevation model (DEM) of the study area by using geographic information system software. The DEM consisted of bare-earth elevations within the study area and was derived from a Light Detection And Ranging (LiDAR) dataset having a 5.0-foot horizontal resolution and an accuracy of 0.229 foot. The availability of these maps, along with Internet information regarding current stages from USGS streamgages and forecasted stages from the NWS, provides emergency management personnel and local residents with critical information for flood response activities such as evacuations, road closures, and postflood recovery efforts.
Flood-inundation maps for an 8.9-mile reach of the South Fork Little River at Hopkinsville, Kentucky
Lant, Jeremiah G.
2013-01-01
Digital flood-inundation maps for an 8.9-mile reach of South Fork Little River at Hopkinsville, Kentucky, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Hopkinsville Community Development Services. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at South Fork Little River at Highway 68 By-Pass at Hopkinsville, Kentucky (station no. 03437495). Current conditions for the USGS streamgage may be obtained online at the USGS National Water Information System site (http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=03437495). In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. The forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the South Fork Little River reach by using HEC-RAS, a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current (2012) stage-discharge relation at the South Fork Little River at Highway 68 By-Pass at Hopkinsville, Kentucky, streamgage and measurements collected during recent flood events. The calibrated model was then used to calculate 13 water-surface profiles for a sequence of flood stages, most at 1-foot intervals, referenced to the streamgage datum and ranging from a stage near bank full to the estimated elevation of the 1.0-percent annual exceedance probability flood at the streamgage. To delineate the flooded area at each interval flood stage, the simulated water-surface profiles were combined with a Digital Elevation Model (DEM) of the study area by using Geographic Information System (GIS) software. The DEM consisted of bare-earth elevations within the study area and was derived from a Light Detection And Ranging (LiDAR) dataset having a 3.28-foot horizontal resolution. These flood-inundation maps, along with online information regarding current stages from USGS streamgage and forecasted stages from the NWS, provide emergency management and local residents with critical information for flood response activities such as evacuations, road closures, and post-flood recovery efforts.
AEGIS: a wildfire prevention and management information system
NASA Astrophysics Data System (ADS)
Kalabokidis, Kostas; Ager, Alan; Finney, Mark; Athanasis, Nikos; Palaiologou, Palaiologos; Vasilakos, Christos
2016-03-01
We describe a Web-GIS wildfire prevention and management platform (AEGIS) developed as an integrated and easy-to-use decision support tool to manage wildland fire hazards in Greece (http://aegis.aegean.gr). The AEGIS platform assists with early fire warning, fire planning, fire control and coordination of firefighting forces by providing online access to information that is essential for wildfire management. The system uses a number of spatial and non-spatial data sources to support key system functionalities. Land use/land cover maps were produced by combining field inventory data with high-resolution multispectral satellite images (RapidEye). These data support wildfire simulation tools that allow the users to examine potential fire behavior and hazard with the Minimum Travel Time fire spread algorithm. End-users provide a minimum number of inputs such as fire duration, ignition point and weather information to conduct a fire simulation. AEGIS offers three types of simulations, i.e., single-fire propagation, point-scale calculation of potential fire behavior, and burn probability analysis, similar to the FlamMap fire behavior modeling software. Artificial neural networks (ANNs) were utilized for wildfire ignition risk assessment based on various parameters, training methods, activation functions, pre-processing methods and network structures. The combination of ANNs and expected burned area maps are used to generate integrated output map of fire hazard prediction. The system also incorporates weather information obtained from remote automatic weather stations and weather forecast maps. The system and associated computation algorithms leverage parallel processing techniques (i.e., High Performance Computing and Cloud Computing) that ensure computational power required for real-time application. All AEGIS functionalities are accessible to authorized end-users through a web-based graphical user interface. An innovative smartphone application, AEGIS App, also provides mobile access to the web-based version of the system.
Soil chemical weathering under morphologic and climatic controls in the Northern Rockies, Montana
NASA Astrophysics Data System (ADS)
Benjaram, S. S.; Dixon, J. L.
2015-12-01
Climate influences soil weathering via moisture availability and temperatures, but globally physical erosion rate appears to be a more important control on weathering rate than climate. Understanding these links requires investigation into landscapes where the climate's influence on weathering is discernable despite the signal of physical erosion rate—in kinetically limited regimes. However, in these systems, rapid erosion rates and complex morphologies add complexity and heterogeneity to soil weathering. To investigate the dual controls of landscape morphology and climate on chemical weathering, we quantify soil distribution, thickness, and weathering extent by focusing on catchments within two adjacent mountain ranges in the Northern Rockies. The Bitterroot Mtns present previously-glaciated valleys with steep ridges and high present-day MAP, which contrast with the drier and more gentle, nonglaciated hillslopes of the Sapphire Mtns to the east. We use field and remotely sensed data to quantify soil distribution and thickness, and elemental geochemistry to measure the variability of chemical weathering across these systems.Mean slopes in the Bitterroots are ~1.3x higher than those in our Sapphire catchment, leading to large differences in soil distribution. Initial mapping of soils using remotely sensed data and rock exposure indices (REI) indicate that ~50% of the Bitterroot system is bare of soil, compared to <5% in the Sapphire system. REIs are distinct between these systems, with ~10˚ difference in slope thresholds for soil cover. Additionally, field data indicate that sparse soils of the Bitterroots are significantly thinner than those in Sapphire system (B=17±2cm, n=161; S=32±3, n=31). Initial XRF data suggest soil weathering intensity is more than two times greater in the Sapphires. These results suggest that the morphologic landscape legacy left by now-extinct glaciers imposes a kinetic limitation on soil weathering, even despite high modern moisture availability.
Jason R. Price; Debra S. Bryan-Ricketts; Diane Anderson; Michael A. Velbel
2013-01-01
Secondary surface layers form by replacement of almandine garnet during chemical weathering. This study tested the hypothesis that the kinetic role of almandine's weathering products, and the consequent relationships of primary-mineral surface texture and specific assemblages of secondary minerals, both vary with the solid-solution-controlled variations in Fe and...
Soils and landforms from Fildes Peninsula and Ardley Island, Maritime Antarctica
NASA Astrophysics Data System (ADS)
Michel, Roberto F. M.; Schaefer, Carlos E. G. R.; López-Martínez, Jerónimo; Simas, Felipe N. B.; Haus, Nick W.; Serrano, Enrique; Bockheim, James G.
2014-11-01
Fildes Peninsula (F.P.) and Ardley Island (A.I.) are among the first ice-free areas in Maritime Antarctica. Since the last glacial retreat in this part of Antarctica (8000 to 5000 years BP), the landscape in these areas evolved under paraglacial to periglacial conditions, with pedogenesis marked by cryogenic processes. We carried out a detailed soil and geomorphology survey, with full morphological and analytical description for both areas; forty-eight soil profiles representing different landforms were sampled, analyzed and classified according to the U.S. Soil Taxonomy and the World Reference Base for Soil Resources (WRB). Soils are mostly turbic, moderately developed, with podzolization and strong phosphatization (chemical weathering of rock minerals and formation of amorphous Al and Fe minerals) in former ornithogenic sites while in areas with poor vegetation show typical features of cryogenic weathering. Nivation, solifluction, cryoturbation, frost weathering, ablation and surface erosion are widespread. The most represented landform system by surface in Fildes Peninsula is the periglacial one, and 15 different periglacial landforms types have been identified and mapped. These features occupy about 30% of the land surface, in which patterned ground and stone fields are the most common landforms. Other significant landforms as protalus lobes, rock glaciers or debris lobes indicate the extensive presence of permafrost. Soil variability was high, in terms of morphological, physical and chemical properties, due to varying lithic contributions and mixing of different rocks, as well as to different degrees of faunal influence. Three soil taxonomy orders were identified, whereas thirty four individual pedons were differentiated. Fildes Peninsula experiences a south-north gradient from periglacial to paraglacial conditions, and apparently younger soils and landforms are located close to the Collins Glacier. Arenosols/Entisols and Cryosols/Gelisols (frequently cryoturbic) are the most important soil classes; Leptosols/Entisols, Gleysols/Aquents and Cambisols/Inceptisols also occur, all with gelic properties, and with varying faunal influences. Both soil classification systems are adequate to distinguish the local pedogenesis processes. The WRB system is broader, since it was designed to be applied in all Polar Regions; the family classes adopted by the ST were effective in separating soils with important differences with regard to texture and gravel content, all important attributes accounting for the ecological succession and periglacial processes. An altitudinal organization of landforms and processes can be recognized from geomorphological mapping. Periglacial features are dominant above 50 m a.s.l. although are present at lower altitude.
Mapping Wintering Waterfowl Distributions Using Weather Surveillance Radar
Buler, Jeffrey J.; Randall, Lori A.; Fleskes, Joseph P.; Barrow, Wylie C.; Bogart, Tianna; Kluver, Daria
2012-01-01
The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998–1999 and 1999–2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of −5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998–1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents. PMID:22911816
Mapping wintering waterfowl distributions using weather surveillance radar.
Buler, Jeffrey J; Randall, Lori A; Fleskes, Joseph P; Barrow, Wylie C; Bogart, Tianna; Kluver, Daria
2012-01-01
The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998-1999 and 1999-2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of -5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998-1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents.
Urban decay of trachyte: correlating crust composition with air quality
NASA Astrophysics Data System (ADS)
Germinario, Luigi; Maritan, Lara; Mazzoli, Claudio; Siegesmund, Siegfried
2017-04-01
Decay of trachyte in the urban built environment was investigated on the Renaissance city walls of Padua, in northern Italy. They were raised by the Republic of Venice Serenissima in the 16th century for defending its most important mainland center, using trachyte of the Euganean Hills as building stone, a subvolcanic porphyritic rock quarried nearby. Weathering crusts and patinas were sampled on trachyte exposed surfaces and analyzed by optical microscopy, SEM, EDS mapping, XRD and LA-ICPMS, in order to determine their mineralogical and microstructural features, and major- and trace-element chemical composition. The results were placed in direct correlation with quantitative environmental parameters, in particular concerning air quality and anthropogenic emission of pollutants, either measured or modelled. Influence of the specific composition of trachyte and other neighboring materials was explored as well. The weathering layers on trachyte turned out to be mainly originated by exogenous processes. The enrichment in carbon and heavy metals (lead, arsenic, chromium, nickel, cadmium, antimony, bismuth etc.) is traced back to deposition of particulate matter from road traffic and domestic combustion of woody biomass; a secondary source is industrial processes in Padua and Venice-Porto Marghera, one of the biggest coastal industrial zones in Europe. The crystalline matrix of the crusts and patinas is typically formed by carbonates, especially calcite: since their concentration is negligible in the host rock, their near-surface abundance can be explained mostly by leaching of calcium from neighboring lime-mortar joints, and its mobilization and reprecipitation on trachyte according to local pH fluctuations. It is worth noting that the calcite layers may even promote growth of gypsum crusts, but their occurrence is seldom though. The sole significant intrinsic factor of trachyte alteration is related to dissolution of iron from biotite and other Fe-bearing phases, which then migrates to surface forming brown-reddish patinas. Generally, composition of the weathering crusts and patinas of Euganean trachyte proves to be an informative marker for the relevant environmental conditions and their evolution.
Yager, Douglas B.; Johnson, Raymond H.; Rockwell, Barnaby W.; Caine, Jonathan S.; Smith, Kathleen S.
2013-01-01
Hydrothermally altered bedrock in the Silverton mining area, southwest Colorado, USA, contains sulfide minerals that weather to produce acidic and metal-rich leachate that is toxic to aquatic life. This study utilized a geographic information system (GIS) and statistical approach to identify watershed-scale geologic variables in the Silverton area that influence water quality. GIS analysis of mineral maps produced using remote sensing datasets including Landsat Thematic Mapper, advanced spaceborne thermal emission and reflection radiometer, and a hybrid airborne visible infrared imaging spectrometer and field-based product enabled areas of alteration to be quantified. Correlations between water quality signatures determined at watershed outlets, and alteration types intersecting both total watershed areas and GIS-buffered areas along streams were tested using linear regression analysis. Despite remote sensing datasets having varying watershed area coverage due to vegetation cover and differing mineral mapping capabilities, each dataset was useful for delineating acid-generating bedrock. Areas of quartz–sericite–pyrite mapped by AVIRIS have the highest correlations with acidic surface water and elevated iron and aluminum concentrations. Alkalinity was only correlated with area of acid neutralizing, propylitically altered bedrock containing calcite and chlorite mapped by AVIRIS. Total watershed area of acid-generating bedrock is more significantly correlated with acidic and metal-rich surface water when compared with acid-generating bedrock intersected by GIS-buffered areas along streams. This methodology could be useful in assessing the possible effects that alteration type area has in either generating or neutralizing acidity in unmined watersheds and in areas where new mining is planned.
NASA Astrophysics Data System (ADS)
Kuldeep, K.; Garg, P. K.; Garg, R. D.
2017-12-01
The frequent occurrence of repeated flood events in many regions of the world causing damage to human life and property has augmented the need for effective flood risk management. Microwave satellite data is becoming an indispensable asset for monitoring of many environmental and climatic applications as numerous space-borne synthetic aperture radar (SAR) sensors are offering the data with high spatial resolutions and multi-polarization capabilities. The implementation and execution of Flood mapping, monitoring and management applications has become easier with the availability of SAR data which has obvious advantages over optical data due to its all weather, day and night capabilities. In this study, the exploitation of the SAR dataset for hydraulic modelling and disaster management has been highlighted using feature extraction techniques for water area identification and water level extraction within the floodplain. The availability of high precision digital elevation model generated from the Cartosat-1 stereo pairs has enhanced the capability of retrieving the water depth maps by incorporating the SAR derived flood extent maps. This paper illustrates the flood event on June 2013 in Yamuna River, Haryana, India. The water surface profile computed by combining the topographic data with the RISAT-1 data accurately reflects the true water line. Water levels that were computed by carrying out the modelling using hydraulic model in HECRAS also suggest that the water surface profiles provided by the combined use of topographic data and SAR accurately reflect the true water line. The proposed approach has also been found better in extraction of inundation within vegetated areas.
USDA-ARS?s Scientific Manuscript database
The objective of the paper is to study the temporal variations of the subsurface soil properties due to seasonal and weather effects using a combination of a new seismic surface method and an existing acoustic probe system. A laser Doppler vibrometer (LDV) based multi-channel analysis of surface wav...
Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan
NASA Astrophysics Data System (ADS)
Meyer, Kevin J.; Carey, Anne E.; You, Chen-Feng
2017-10-01
Chemical weathering source provenance changes associated with Typhoon Mindulle (2004) were identified for the Choshui River Watershed in west-central Taiwan using radiogenic Sr isotope (87Sr/86Sr) and major ion chemistry analysis of water samples collected before, during, and following the storm event. Storm water sampling over 72 h was conducted in 3 h intervals, allowing for novel insight into weathering regime changes in response to intense rainfall events. Chemical weathering sources were determined to be bulk silicate and disseminated carbonate minerals at the surface and silicate contributions from deep thermal waters. Loss on ignition analysis of collected rock samples indicate disseminated carbonate can compose over 25% by weight of surface mineralogy, but typically makes up ∼2-3% of watershed rock. 87Sr/86Sr and major element molar ratios indicate that Typhoon Mindulle caused a weathering regime switch from normal flow incorporating a deep thermal signature to that of a system dominated by surface weathering. The data suggest release of silicate solute rich soil pore waters during storm events, creating a greater relative contribution of silicate weathering to the solute load during periods of increased precipitation and runoff. Partial depletion of this soil solute reservoir and possible erosion enhanced carbonate weathering lead to increased importance of carbonates to the weathering regime as the storm continues. Major ion data indicate that complex mica weathering (muscovite, biotite, illite, chlorite) may represent an important silicate weathering pathway in the watershed. Deep thermal waters represent an important contribution to river solutes during normal non-storm flow conditions. Sulfuric acid sourced from pyrite weathering is likely a major weathering agent in the Choshui River watershed.
NASA Astrophysics Data System (ADS)
Steffensen Schmidt, Louise; Aðalgeirsdóttir, Guðfinna; Guðmundsson, Sverrir; Langen, Peter L.; Pálsson, Finnur; Mottram, Ruth; Gascoin, Simon; Björnsson, Helgi
2017-07-01
A simulation of the surface climate of Vatnajökull ice cap, Iceland, carried out with the regional climate model HIRHAM5 for the period 1980-2014, is used to estimate the evolution of the glacier surface mass balance (SMB). This simulation uses a new snow albedo parameterization that allows albedo to exponentially decay with time and is surface temperature dependent. The albedo scheme utilizes a new background map of the ice albedo created from observed MODIS data. The simulation is evaluated against observed daily values of weather parameters from five automatic weather stations (AWSs) from the period 2001-2014, as well as in situ SMB measurements from the period 1995-2014. The model agrees well with observations at the AWS sites, albeit with a general underestimation of the net radiation. This is due to an underestimation of the incoming radiation and a general overestimation of the albedo. The average modelled albedo is overestimated in the ablation zone, which we attribute to an overestimation of the thickness of the snow layer and not taking the surface darkening from dirt and volcanic ash deposition during dust storms and volcanic eruptions into account. A comparison with the specific summer, winter, and net mass balance for the whole of Vatnajökull (1995-2014) shows a good overall fit during the summer, with a small mass balance underestimation of 0.04 m w.e. on average, whereas the winter mass balance is overestimated by on average 0.5 m w.e. due to too large precipitation at the highest areas of the ice cap. A simple correction of the accumulation at the highest points of the glacier reduces this to 0.15 m w.e. Here, we use HIRHAM5 to simulate the evolution of the SMB of Vatnajökull for the period 1981-2014 and show that the model provides a reasonable representation of the SMB for this period. However, a major source of uncertainty in the representation of the SMB is the representation of the albedo, and processes currently not accounted for in RCMs, such as dust storms, are an important source of uncertainty in estimates of snow melt rate.
Weather Forecasting Systems and Methods
NASA Technical Reports Server (NTRS)
Mecikalski, John (Inventor); MacKenzie, Wayne M., Jr. (Inventor); Walker, John Robert (Inventor)
2014-01-01
A weather forecasting system has weather forecasting logic that receives raw image data from a satellite. The raw image data has values indicative of light and radiance data from the Earth as measured by the satellite, and the weather forecasting logic processes such data to identify cumulus clouds within the satellite images. For each identified cumulus cloud, the weather forecasting logic applies interest field tests to determine a score indicating the likelihood of the cumulus cloud forming precipitation and/or lightning in the future within a certain time period. Based on such scores, the weather forecasting logic predicts in which geographic regions the identified cumulus clouds will produce precipitation and/or lighting within during the time period. Such predictions may then be used to provide a weather map thereby providing users with a graphical illustration of the areas predicted to be affected by precipitation within the time period.
NASA Astrophysics Data System (ADS)
Yu, Dapeng; Guan, Mingfu; Wilby, Robert; Bruce, Wright; Szegner, Mark
2017-04-01
Emergency services (such as Fire & Rescue, and Ambulance) can face the challenging tasks of having to respond to or operate under extreme and fast changing weather conditions, including surface water flooding. UK-wide, return period based surface water flood risk mapping undertaken by the Environment Agency provides useful information about areas at risks. Although these maps are useful for planning purposes for emergency responders, their utility to operational response during flood emergencies can be limited. A street-level, high resolution, real-time, surface water flood nowcasting system, has been piloted in the City of Leicester, UK to assess emergency response resilience to surface water flooding. Precipitation nowcasting over 7- and 48-hour horizons are obtained from the UK Met Office and used as inputs to the system. A hydro-inundation model is used to simulate urban surface water flood depths/areas at both the city and basin scale, with a 20 m and 3 m spatial resolution respectively, and a 15-minute temporal resolution, 7-hour and 48-hour in advance. Based on this, we evaluate both the direct and indirect impacts of potential surface water flood events on emergency responses, including: (i) identifying vulnerable populations (e.g. care homes and schools) at risk; and (ii) generating novel metrics of accessibility (e.g. travel time from service stations to vulnerable sites; spatial coverage with certain legislative timeframes) in real-time. In doing so, real-time information on potential risks and impacts of emerging flood incidents arising from intense rainfall can be communicated via a dedicated web-based platform to emergency responders thereby improving response times and operational resilience.
NASA Astrophysics Data System (ADS)
Zhao, Chun; Huang, Maoyi; Fast, Jerome D.; Berg, Larry K.; Qian, Yun; Guenther, Alex; Gu, Dasa; Shrivastava, Manish; Liu, Ying; Walters, Stacy; Pfister, Gabriele; Jin, Jiming; Shilling, John E.; Warneke, Carsten
2016-05-01
Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect atmospheric chemistry and secondary aerosol formation that ultimately influences air quality and aerosol radiative forcing. These uncertainties result from many factors, including uncertainties in land surface processes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (BVOCs). In this study, the latest version of Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) is coupled within the land surface scheme CLM4 (Community Land Model version 4.0) in the Weather Research and Forecasting model with chemistry (WRF-Chem). In this implementation, MEGAN v2.1 shares a consistent vegetation map with CLM4 for estimating BVOC emissions. This is unlike MEGAN v2.0 in the public version of WRF-Chem that uses a stand-alone vegetation map that differs from what is used by land surface schemes. This improved modeling framework is used to investigate the impact of two land surface schemes, CLM4 and Noah, on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. The measurements collected during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the California Nexus of Air Quality and Climate Experiment (CalNex) conducted in June of 2010 provided an opportunity to evaluate the simulated BVOCs. Sensitivity experiments show that land surface schemes do influence the simulated BVOCs, but the impact is much smaller than that of vegetation distributions. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models in terms of simulating BVOCs, oxidant chemistry and, consequently, secondary organic aerosol formation.
Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Kokaly, Raymond F.; Sutley, Steve J.; Dalton, J. Brad; McDougal, Robert R.; Gent, Carol A.
2003-01-01
Imaging spectroscopy is a tool that can be used to spectrally identify and spatially map materials based on their specific chemical bonds. Spectroscopic analysis requires significantly more sophistication than has been employed in conventional broadband remote sensing analysis. We describe a new system that is effective at material identification and mapping: a set of algorithms within an expert system decision‐making framework that we call Tetracorder. The expertise in the system has been derived from scientific knowledge of spectral identification. The expert system rules are implemented in a decision tree where multiple algorithms are applied to spectral analysis, additional expert rules and algorithms can be applied based on initial results, and more decisions are made until spectral analysis is complete. Because certain spectral features are indicative of specific chemical bonds in materials, the system can accurately identify and map those materials. In this paper we describe the framework of the decision making process used for spectral identification, describe specific spectral feature analysis algorithms, and give examples of what analyses and types of maps are possible with imaging spectroscopy data. We also present the expert system rules that describe which diagnostic spectral features are used in the decision making process for a set of spectra of minerals and other common materials. We demonstrate the applications of Tetracorder to identify and map surface minerals, to detect sources of acid rock drainage, and to map vegetation species, ice, melting snow, water, and water pollution, all with one set of expert system rules. Mineral mapping can aid in geologic mapping and fault detection and can provide a better understanding of weathering, mineralization, hydrothermal alteration, and other geologic processes. Environmental site assessment, such as mapping source areas of acid mine drainage, has resulted in the acceleration of site cleanup, saving millions of dollars and years in cleanup time. Imaging spectroscopy data and Tetracorder analysis can be used to study both terrestrial and planetary science problems. Imaging spectroscopy can be used to probe planetary systems, including their atmospheres, oceans, and land surfaces.
NASA Astrophysics Data System (ADS)
Tobiska, W.; Knipp, D. J.; Burke, W. J.; Bouwer, D.; Bailey, J. J.; Hagan, M. P.; Didkovsky, L. V.; Garrett, H. B.; Bowman, B. R.; Gannon, J. L.; Atwell, W.; Blake, J. B.; Crain, W.; Rice, D.; Schunk, R. W.; Fulgham, J.; Bell, D.; Gersey, B.; Wilkins, R.; Fuschino, R.; Flynn, C.; Cecil, K.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, S. I.; Wiley, S.; Holland, M.; Malone, K.
2013-12-01
Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the magnetosphere, thermosphere, and even troposphere are key regions that are affected. Space Environment Technologies (SET) has developed and is producing innovative space weather applications. Key operational systems for providing timely information about the effects of space weather on these domains are SET's Magnetosphere Alert and Prediction System (MAPS), LEO Alert and Prediction System (LAPS), and Automated Radiation Measurements for Aviation Safety (ARMAS) system. MAPS provides a forecast Dst index out to 6 days through the data-driven, redundant data stream Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. LAPS is the SET fully redundant operational system providing recent history, current epoch, and forecast solar and geomagnetic indices for use in operational versions of the JB2008 thermospheric density model. The thermospheric densities produced by that system, driven by the LAPS data, are forecast to 72-hours to provide the global mass densities for satellite operators. ARMAS is a project that has successfully demonstrated the operation of a micro dosimeter on aircraft to capture the real-time radiation environment due to Galactic Cosmic Rays and Solar Energetic Particles. The dose and dose-rates are captured on aircraft, downlinked in real-time via the Iridium satellites, processed on the ground, incorporated into the most recent NAIRAS global radiation climatology data runs, and made available to end users via the web and smart phone apps. ARMAS provides the 'weather' of the radiation environment to improve air-crew and passenger safety. Many of the data products from MAPS, LAPS, and ARMAS are available on the SpaceWx smartphone app for iPhone, iPad, iPod, and Android professional users and public space weather education. We describe recent forecasting advances for moving the space weather information from these automated systems into operational, derivative products for communications, aviation, and satellite operations uses.
A surface analysis nudging scheme coupling atmospheric and land surface thermodynamic parameters has been implemented into WRF v3.8 (latest version) for use with retrospective weather and climate simulations, as well as for applications in air quality, hydrology, and ecosystem mo...
Code of Federal Regulations, 2013 CFR
2013-04-01
... of State Route 90 with State Route 326. (3) Then south along the primary, all-weather, hard surface.../southeast along State Route 90 until it intersects the light-duty, all-weather, hard or improved surface..., hard or improved surface road, approximately 4 miles, until it intersects State Route 34B, just south...
Code of Federal Regulations, 2014 CFR
2014-04-01
... of State Route 90 with State Route 326. (3) Then south along the primary, all-weather, hard surface.../southeast along State Route 90 until it intersects the light-duty, all-weather, hard or improved surface..., hard or improved surface road, approximately 4 miles, until it intersects State Route 34B, just south...
Code of Federal Regulations, 2012 CFR
2012-04-01
... of State Route 90 with State Route 326. (3) Then south along the primary, all-weather, hard surface.../southeast along State Route 90 until it intersects the light-duty, all-weather, hard or improved surface..., hard or improved surface road, approximately 4 miles, until it intersects State Route 34B, just south...
History of surface weather observations in the United States
NASA Astrophysics Data System (ADS)
Fiebrich, Christopher A.
2009-04-01
In this paper, the history of surface weather observations in the United States is reviewed. Local weather observations were first documented in the 17th Century along the East Coast. For many years, the progression of a weather observation from an initial reading to dissemination remained a slow and laborious process. The number of observers remained small and unorganized until agencies including the Surgeon General, Army, and General Land Office began to request regular observations at satellite locations in the 1800s. The Smithsonian was responsible for first organizing a large "network" of volunteer weather observers across the nation. These observers became the foundation for today's Cooperative Observer network. As applications of weather data continued to grow and users required the data with an ever-decreasing latency, automated weather networks saw rapid growth in the later part of the 20th century. Today, the number of weather observations across the U.S. totals in the tens of thousands due largely to privately-owned weather networks and amateur weather observers who submit observations over the internet.
Puccetti, G; Thompson, W
2017-04-01
Hair sprays apply fixative ingredients to provide hold to a hair style as well as weather resistance and optical properties such as shine. Generally, sprays distribute fine particles containing polymeric ingredients to form a thin film on the surface of hair. Different hair types require different strengths of the formed deposit on the hair surface. The present study shows how sprays also alter the visibility of the hair colour by altering the surface topology of the hair fibres. Hyperspectral imaging is used to map spectral characteristics of hair on mannequins and panelists over the curvature of heads. Spectral and spatial characteristics are measured before and after hair spray applications. The hair surface is imaged by SEM to visualize the degree of cuticle coverage. Finally, the perception of hair colour was evaluated on red-coloured mannequins by consumer questionnaire. Hair sprays deposit different degrees of fixatives, which lead to a progressive leveling of the cuticle natural tilt angle with respect to the fibre axis. As a result, shine is progressively shifting towards the region of hair colour visibility and decreases the perceived colour of hair seen by consumers. Lighter sprays show thinner film formation on the hair surface and less of a shine shift than strong hold hair sprays. Hair sprays are generally employed for hair style hold and weather resistance and considered without effect on hair colour. Our approach shows that spray-deposited films can affect colour perception by altering the microstructure of the hair surface. Thin films deposited on the hair fibre surface can partially fill gaps between cuticles, which reduces the cuticle natural angle. This partial erasure results in a angle shift of the shine regions towards the angle of internal reflection, thus decreasing the perceived hair colour regions as experienced by a group of consumers. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
SUVI Thematic Maps: A new tool for space weather forecasting
NASA Astrophysics Data System (ADS)
Hughes, J. M.; Seaton, D. B.; Darnel, J.
2017-12-01
The new Solar Ultraviolet Imager (SUVI) instruments aboard NOAA's GOES-R series satellites collect continuous, high-quality imagery of the Sun in six wavelengths. SUVI imagers produce at least one image every 10 seconds, or 8,640 images per day, considerably more data than observers can digest in real time. Over the projected 20-year lifetime of the four GOES-R series spacecraft, SUVI will provide critical imagery for space weather forecasters and produce an extensive but unwieldy archive. In order to condense the database into a dynamic and searchable form we have developed solar thematic maps, maps of the Sun with key features, such as coronal holes, flares, bright regions, quiet corona, and filaments, identified. Thematic maps will be used in NOAA's Space Weather Prediction Center to improve forecaster response time to solar events and generate several derivative products. Likewise, scientists use thematic maps to find observations of interest more easily. Using an expert-trained, naive Bayesian classifier to label each pixel, we create thematic maps in real-time. We created software to collect expert classifications of solar features based on SUVI images. Using this software, we compiled a database of expert classifications, from which we could characterize the distribution of pixels associated with each theme. Given new images, the classifier assigns each pixel the most appropriate label according to the trained distribution. Here we describe the software to collect expert training and the successes and limitations of the classifier. The algorithm excellently identifies coronal holes but fails to consistently detect filaments and prominences. We compare the Bayesian classifier to an artificial neural network, one of our attempts to overcome the aforementioned limitations. These results are very promising and encourage future research into an ensemble classification approach.
NASA Astrophysics Data System (ADS)
Akgün, Aykut; Türk, Necdet
2011-09-01
Erosion is one of the most important natural hazard phenomena in the world, and it poses a significant threat to Turkey in terms of land degredation and desertification. To cope with this problem, we must determine which areas are erosion-prone. Many studies have been carried out and different models and methods have been used to this end. In this study, we used a logistic regression to prepare an erosion susceptibility map for the Ayvalık region in Balıkesir (NW Turkey). The following were our assessment parameters: weathering grades of rocks, slope gradient, structural lineament density, drainage density, land cover, stream power index (SPI) and profile curvature. These were processed by Idrisi Kilimanjaro GIS software. We used logistic regression analysis to relate predictor variables to the occurrence or non-occurrence of gully erosion sites within geographic cells, and then we used this relationship to produce a probability map for future erosion sites. The results indicate that lineament density, weathering grades of rocks and drainage density are the most important variables governing erosion susceptibility. Other variables, such as land cover and slope gradient, were revealed as secondary important variables. Highly weathered basalt, andesite, basaltic andesite and lacustrine sediments were the units most susceptible to erosion. In order to calculate the prediction accuracy of the erosion susceptibility map generated, we compared it with the map showing the gully erosion areas. On the basis of this comparison, the area under curvature (AUC) value was found to be 0.81. This result suggests that the erosion susceptibility map we generated is accurate.
Flood-inundation maps for the Meramec River at Valley Park and at Fenton, Missouri, 2017
Dietsch, Benjamin J.; Sappington, Jacob N.
2017-09-29
Two sets of digital flood-inundation map libraries that spanned a combined 16.7-mile reach of the Meramec River that extends upstream from Valley Park, Missouri, to downstream from Fenton, Mo., were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers, St. Louis Metropolitan Sewer District, Missouri Department of Transportation, Missouri American Water, and Federal Emergency Management Agency Region 7. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the cooperative USGS streamgages on the Meramec River at Valley Park, Mo., (USGS station number 07019130) and the Meramec River at Fenton, Mo. (USGS station number 07019210). Near-real-time stage data at these streamgages may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites (listed as NWS sites vllm7 and fnnm7, respectively).Flood profiles were computed for the stream reaches by means of a calibrated one-dimensional step-backwater hydraulic model. The model was calibrated using a stage-discharge relation at the Meramec River near Eureka streamgage (USGS station number 07019000) and documented high-water marks from the flood of December 2015 through January 2016.The calibrated hydraulic model was used to compute two sets of water-surface profiles: one set for the streamgage at Valley Park, Mo. (USGS station number 07019130), and one set for the USGS streamgage on the Meramec River at Fenton, Mo. (USGS station number 07019210). The water-surface profiles were produced for stages at 1-foot (ft) intervals referenced to the datum from each streamgage and ranging from the NWS action stage, or near bankfull discharge, to the stage corresponding to the estimated 0.2-percent annual exceedance probability (500-year recurrence interval) flood, as determined at the Eureka streamgage (USGS station number 07019000). The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging data having a 0.28-ft vertical accuracy and 3.28-ft horizontal resolution) to delineate the area flooded at each flood stage (water level).The availability of these maps, along with internet information regarding current stage from the USGS streamgages and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures and for postflood recovery efforts.
Nanoscale Analysis of Space-Weathering Features in Soils from Itokawa
NASA Technical Reports Server (NTRS)
Thompson, M. S.; Christoffersen, R.; Zega, T. J.; Keller, L. P.
2014-01-01
Space weathering alters the spectral properties of airless body surface materials by redden-ing and darkening their spectra and attenuating characteristic absorption bands, making it challenging to characterize them remotely [1,2]. It also causes a discrepency between laboratory analysis of meteorites and remotely sensed spectra from asteroids, making it difficult to associate meteorites with their parent bodies. The mechanisms driving space weathering include mi-crometeorite impacts and the interaction of surface materials with solar energetic ions, particularly the solar wind. These processes continuously alter the microchemical and structural characteristics of exposed grains on airless bodies. The change of these properties is caused predominantly by the vapor deposition of reduced Fe and FeS nanoparticles (npFe(sup 0) and npFeS respectively) onto the rims of surface grains [3]. Sample-based analysis of space weathering has tra-ditionally been limited to lunar soils and select asteroidal and lunar regolith breccias [3-5]. With the return of samples from the Hayabusa mission to asteroid Itoka-wa [6], for the first time we are able to compare space-weathering features on returned surface soils from a known asteroidal body. Analysis of these samples will contribute to a more comprehensive model for how space weathering varies across the inner solar system. Here we report detailed microchemical and microstructal analysis of surface grains from Itokawa.
Flood-inundation maps for the Scioto River at La Rue, Ohio
Whitehead, Matthew
2015-08-26
Digital flood-inundation maps for a 3-mile (mi) reach of the Scioto River that extends about 1/2 mi upstream and 1/2 mi downstream of the corporate boundary for La Rue, Ohio, were created by the U.S. Geological Survey (USGS) in cooperation with the Village of La Rue, Marion County Commissioners, Montgomery Township, and Marion County Scioto River Conservancy. The flood-inundation maps show estimates of the areal extent and depth of flooding correspond ing to selected water levels (stages) at the USGS streamgage on the Scioto River at La Rue (station number 03217500). The maps can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_ inundation/ . Near-real-time stages at this streamgage can be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/oh/nwis/uv/?site_no=03217500 or the National Weather Service (NWS) Advanced Hydro - logic Prediction Service at http://water.weather.gov/ahps2/ hydrograph.php?wfo=cle&gage=LARO1 , which also forecasts flood hydrographs at this site.
Insights into Regolith Dynamics from the Irradiation Record Preserved in Hayabusa Samples
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.; Berger, E. L.
2014-01-01
The rates of space weathering processes are poorly constrained for asteroid surfaces, with recent estimates ranging over 5 orders of magnitude. The return of the first surface samples from a space-weathered asteroid by the Hayabusa mission and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering. We determine the rates of space weathering on Itokawa by measuring solar flare track densities and the widths of solar wind damaged rims on grains. These measurements are made possible through novel focused ion beam (FIB) sample preparation methods.
Flood-inundation maps for the Susquehanna River near Harrisburg, Pennsylvania, 2013
Roland, Mark A.; Underwood, Stacey M.; Thomas, Craig M.; Miller, Jason F.; Pratt, Benjamin A.; Hogan, Laurie G.; Wnek, Patricia A.
2014-01-01
A series of 28 digital flood-inundation maps was developed for an approximate 25-mile reach of the Susquehanna River in the vicinity of Harrisburg, Pennsylvania. The study was selected by the U.S. Army Corps of Engineers (USACE) national Silver Jackets program, which supports interagency teams at the state level to coordinate and collaborate on flood-risk management. This study to produce flood-inundation maps was the result of a collaborative effort between the USACE, National Weather Service (NWS), Susquehanna River Basin Commission (SRBC), The Harrisburg Authority, and the U.S. Geological Survey (USGS). These maps are accessible through Web-mapping applications associated with the NWS, SRBC, and USGS. The maps can be used in conjunction with the real-time stage data from the USGS streamgage 01570500, Susquehanna River at Harrisburg, Pa., and NWS flood-stage forecasts to help guide the general public in taking individual safety precautions and will provide local municipal officials with a tool to efficiently manage emergency flood operations and flood mitigation efforts. The maps were developed using the USACE HEC–RAS and HEC–GeoRAS programs to compute water-surface profiles and to delineate estimated flood-inundation areas for selected stream stages. The maps show estimated flood-inundation areas overlaid on high-resolution, georeferenced, aerial photographs of the study area for stream stages at 1-foot intervals between 11 feet and 37 feet (which include NWS flood categories Action, Flood, Moderate, and Major) and the June 24, 1972, peak-of-record flood event at a stage of 33.27 feet at the Susquehanna River at Harrisburg, Pa., streamgage.
Probing the Depths of Space Weathering: A Cross-sectional View of Lunar Rock 76015
NASA Technical Reports Server (NTRS)
Noble, Sarah K.; Keller, L. P.; Stroud, Rhonda
2007-01-01
The term "space weathering" refers to the cumulative effects of several processes operating at the surface of any solar system body not protected by a thick atmosphere. These processes include cosmic and solar ray irradiation, solar wind implantation and sputtering, as well as melting and vaporization due to micrometeorite bombardment. Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. Rocks have much longer surface lifetimes than an individual soil grain and thus record a longer history of exposure. By studying the weathering products which have built up on a rock surface, we can gain a deeper perspective on the weathering process and better assess the relative importance of various weathering components. The weathered coating, or patina, of the lunar rock 76015 has been previously studied using SEM and TEM. It is a noritic breccia with both "glazed" (smooth glassy) and "classic" (microcratered and pancake-bearing) patina coatings. Previous TEM work on 76015 relied on ultramicrotomy to prepare cross sections of the patina coating, but these sections were limited by the "chatter" and loss of material in these brittle samples. Here we have used a focused ion beam (FIB) instrument to prepare cross sections in which the delicate stratigraphy of the patina coating is beautifully preserved.
Mapping day-of-burning with coarse-resolution satellite fire-detection data
Sean A. Parks
2014-01-01
Evaluating the influence of observed daily weather on observed fire-related effects (e.g. smoke production, carbon emissions and burn severity) often involves knowing exactly what day any given area has burned. As such, several studies have used fire progression maps  in which the perimeter of an actively burning fire is mapped at a fairly high temporal resolution -...
Smooth Sailing for Weather Forecasting
NASA Technical Reports Server (NTRS)
2002-01-01
Through a cooperative venture with NASA's Stennis Space Center, WorldWinds, Inc., developed a unique weather and wave vector map using space-based radar satellite information and traditional weather observations. Called WorldWinds, the product provides accurate, near real-time, high-resolution weather forecasts. It was developed for commercial and scientific users. In addition to weather forecasting, the product's applications include maritime and terrestrial transportation, aviation operations, precision farming, offshore oil and gas operations, and coastal hazard response support. Target commercial markets include the operational maritime and aviation communities, oil and gas providers, and recreational yachting interests. Science applications include global long-term prediction and climate change, land-cover and land-use change, and natural hazard issues. Commercial airlines have expressed interest in the product, as it can provide forecasts over remote areas. WorldWinds, Inc., is currently providing its product to commercial weather outlets.
Musser, Jonathan W.
2012-01-01
Digital flood-inundation maps for a 10.5-mile reach of Sweetwater Creek, from about 1,800 feet above the confluence of Powder Springs Creek to about 160 feet below the Interstate 20 bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with Cobb County, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Sweetwater Creek near Austell, Georgia (02337000). Current stage at this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Sweetwater Creek near Austell (02337000), which is available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers Hydrologic Engineering Centers River Analysis System (HEC–RAS) software for Sweetwater Creek and was used to compute flood profiles for a 10.5-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Sweetwater Creek near Austell streamgage (02337000), as well as high-water marks collected during annual peak-flow events in 1982 and 2009. The hydraulic model was then used to determine 21 water-surface profiles for flood stages at the Sweetwater Creek streamgage at 1-foot intervals referenced to the streamgage datum and ranging from just above bankfull stage (12.0 feet) to approximately 1.2 feet above the highest recorded water level at the streamgage (32.0 feet). The simulated water-surface profiles were then combined with a geographic information system digital elevation model—derived from contour data (8-foot horizontal resolution), in Cobb County, and USGS National Elevation Dataset (31-foot horizontal resolution), in Douglas County—to delineate the area flooded for each 1-foot increment of stream stage. The availability of these maps, when combined with real-time information regarding current stage from USGS streamgages and forecasted stream stages from the NWS, provides emergency management personnel and residents with critical information during flood-response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.
Koval'chuk, V K
2004-01-01
The article presents medicoecological estimation of quantitative relations between monsoon climate and urolithiasis primary morbidity in the Primorsky Territory. Quantitative estimation of the climate was performed by V. I. Rusanov (1973) who calculated daily meteorological data for 1 p.m. throughout 1991-1999. Primary urolithiasis morbidity for this period of time was provided by regional health department. The data were processed by methods of medical mapping and paired correlation analysis. In the Territory, mapping revealed the same location of the zones with high frequency of discomfortable weather of class V and VI causing chilblain in positive air temperatures and zones with elevated primary urolithiasis morbidity in children and adults. Correlation analysis confirmed mapping results and determined significant negative correlations between frequency of relatively comfortable moment weather classes II-IV and morbidity of children and adults, positive correlation between frequency of discomfortable class VI and adult morbidity. Thus, high frequency of days per year with discomfortable classes of moment weather in low positive air temperatures may be one of the factors of urolithiasis risk in population of the Primorsky Territory. Climatic factors should be taken into consideration in planning primary prophylaxis of this disease in the Primorsky Territory.
Workshop on chemical weathering on Mars, part 2
NASA Technical Reports Server (NTRS)
Burns, Roger (Editor); Banin, Amos (Editor)
1992-01-01
The third Mars Surface and Atmosphere Through Time (MSATT) Workshop, which was held 10-12 Sep. 1992, at Cocoa Beach/Cape Kennedy, focused on chemical weathering of the surface of Mars. The 30 papers presented at the workshop described studies of Martian weathering processes based on results from the Viking mission experiments, remote sensing spectroscopic measurements, studies of the shergottite, nakhlite, and chassignite (SNC) meteorites, laboratory measurements of surface analog materials, and modeling of reaction pathways. A summary of the technical sessions is presented and a list of workshop participants is included.
Space Weathering Effects at UV Wavelengths: Asteroids and the Moon
NASA Astrophysics Data System (ADS)
Hendrix, Amanda; Vilas, F.
2006-09-01
Space weathering, the bombardment of airless bodies by micrometeoroids and irradiation by solar wind particles, affects spectra of solar system bodies at visible/near IR (VNIR) wavelengths by darkening and reddening their surface materials, as well as degrading absorption features. We present new results detailing space weathering effects at ultraviolet wavelengths. We focus on new spectral modeling results, and also present spacecraft data of asteroids and the Moon, along with new UV measurements of asteroid families from HST, to demonstrate the effects of varying degrees of weathering and the outcome of weathering on surfaces of different compositions. Weathered surfaces are relatively bright and spectrally blue in the UV; these UV effects can be more obvious than the VNIR effects. The cause of these weathering effects is likely vapor deposition of submicroscopic iron (SMFe), through solar wind irradiation and micrometeoroid bombardment of the bodies' surfaces. In silicate minerals, the NUV region is dominated by a decrease in reflectance with wavelength - the "UV absorption edge.” In contrast to silicates, iron is opaque and relatively bright in the UV, so the addition of SMFe to a silicate grains has the effect of making the UV region brighter; this is in opposition to the situation at longer wavelengths, where the addition of SMFe decreases the albedo. Our spectral modeling results show that the addition of SMFe decreases the steepness of the UV dropoff, in effect making the UV spectrum bluer. This can explain the difference in UV spectral behavior seen between S-class asteroids and less-weathered ordinary chondrite meteorites, and between lunar rocks and more weathered lunar soils. This work is funded in part by Hubble Space Telescope Grant #10557.
NASA Technical Reports Server (NTRS)
Burns, R. G.
1993-01-01
The copious deposits of ferric-iron assemblages littering the surface of bright regions of Mars indicate that efficient oxidative weathering reactions have taken place during the evolution of the planet. Because the kinetics of atmosphere-surface (gas-solid) reactions are considerably slower than chemical weathering reactions involving an aqueous medium, most of the oxidation products now present in the martian regolith probably formed when groundwater flowed near the surface. This paper examines how chemical weathering reactions were effected by climatic variations when warm, wet environments became arid on Mars. Analogies are drawn with hydrogeochemical and weathering environments on the Australian continent where present-day oxidation of iron is occurring in acidic ground water under arid conditions.
Map showing outcrop of the coal-bearing units and land use in the Gulf Coast region
Warwick, Peter D.; SanFilipo, John R.; Crowley, Sharon S.; Thomas, Roger E.; Freid, John; Tully, John K.
1997-01-01
This map is a preliminary compilation of the outcrop geology of the known coal-bearing units in the Gulf Coast Coal region. The map has been compiled for use in the National Coal Resource Assessment Project currently being conducted by the U.S. Geological Survey, and will be updated as the assessment progresses. The purpose of the map is to show the distribution of coal-bearing rocks in the Gulf Coastal Plain Region and to show stratigraphic correlations, transportation network, fossil-fuel burning power plants, and federally managed lands in the region. It is hoped that this map may aid coal exploration and development in the region. Geologic contacts were digitized from paper copies of the maps listed in the reference section below. The primary source of information was the 1:500,000-scale state geology map series, but larger scale maps were use to better define certain areas, notably the Jackson-Claiborne contact in western Kentucky and Tennessee for example (Olive, 1980). Contacts along state boundaries were modified to best-fit information available from the border areas. Note that coal distribution in the mapped units is not uniform. For example, the Jackson Group contains coal in Texas, but in Mississippi is not presently known to contain significant coal deposits. The unit is widespread and in part non-marine and thus of potential future interest. In contrast, the Jackson Group is not shown in Georgia where it is mostly marine and residuum (weathered material) at the surface. Tertiary age coal has also been noted in the Vicksburg Group (Oligocene) of Louisiana and Mississippi, but is not shown on this map. Contacts with mapped surficial units are not always shown. The locations of coal mine permit boundaries are based on information available at the time of publication and were obtained from the Division of Surface Mining and Reclamation, Railroad Commission of Texas, Austin, and the Injection and Mining Division, Department of Natural Resources, Baton Rouge, Louisiana. The correlation of map units and formation names generally follow Galloway and others (1991). We have placed the Paleocene-Eocene boundary in the middle of the Calvert Bluff Formation in Texas based on unpublished pollen biostratigraphy reports (N.O. Fredericksen, unpublished data, 1993; D.J. Nichols, unpublished data, 1996).
Big slow movers: a look at weathered-rock slides in Western North Carolina
Rebecca S. Latham; Richard M. Wooten; Anne C. Witt; Stephen J. Fuemmeler; Kenneth a. Gillon; Thomas J. Douglas; Jennifer B. Bauer; Barton D. Clinton
2007-01-01
The North Carolina Geological Survey (NCGS) is currently implementing a landslide hazard-mapping program in western North Carolina authorized by the North Carolina Hurricane Recovery Act of 2005. To date, over 2700 landslides and landslide deposits have been documented. A small number of these landslides are relatively large, slow-moving, weathered-rock slides...
NOAA's National Hydrologic Assessment
select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News
Central American Flying Weather
1985-12-01
CEILING; VISIBILITY; WIND, PRECIPITATIDNc’--." HAZE, SMOKE, TEMPORALE ; MOUNTAIN WAVE; MILITARY METEOROLOGY. 4k- / ’A. bstract; Asummary of~ing weather...1 The " Temporale " ....................................1 Mountain Waves ......................I...............1 Severe Thunderstorms...charts. The for any part of Central America lies in having: Tactical Pilota.e Chart series , produced by the Df -.nse Mapping Agency, is * A good, basic
Analytical Retrieval of Global Land Surface Emissivity Maps at AMSR-E passive microwave frequencies
NASA Astrophysics Data System (ADS)
Norouzi, H.; Temimi, M.; Khanbilvardi, R.
2009-12-01
Land emissivity is a crucial boundary condition in Numerical Weather Prediction (NWP) modeling. Land emissivity is also a key indicator of land surface and subsurface properties. The objective of this study, supported by NOAA-NESDIS, is to develop global land emissivity maps using AMSR-E passive microwave measurements along with several ancillary data. The International Satellite Cloud Climatology Project (ISCCP) database has been used to obtain several inputs for the proposed approach such as land surface temperature, cloud mask and atmosphere profile. The Community Radiative Transfer Model (CRTM) has been used to estimate upwelling and downwelling atmospheric contributions. Although it is well known that correction of the atmospheric effect on brightness temperature is required at higher frequencies (over 19 GHz), our preliminary results have shown that a correction at 10.7 GHz is also necessary over specific areas. The proposed approach is based on three main steps. First, all necessary data have been collected and processed. Second, a global cloud free composite of AMSR-E data and corresponding ancillary images is created. Finally, monthly composting of emissivity maps has been performed. AMSR-E frequencies at 6.9, 10.7, 18.7, 36.5 and 89.0 GHz have been used to retrieve the emissivity. Water vapor information obtained from ISCCP (TOVS data) was used to calculate upwelling, downwelling temperatures and atmospheric transmission in order to assess the consistency of those derived from the CRTM model. The frequent land surface temperature (LST) determination (8 times a day) in the ISCCP database has allowed us to assess the diurnal cycle effect on emissivity retrieval. Differences in magnitude and phase between thermal temperature and low frequencies microwave brightness temperature have been noticed. These differences seem to vary in space and time. They also depend on soil texture and thermal inertia. The proposed methodology accounts for these factors and resultant differences in phase and magnitude between LST and microwave brightness temperature. Additional factors such as topography and vegetation cover are under investigation. In addition, the potential of extrapolating the obtained land emissivity maps to different window and sounding channels has been also investigated in this study. The extrapolation of obtained emissivities to different incident angles is also under investigation. Land emissivity maps have been developed at different AMSR-E frequencies. Obtained product has been validated and compared to global land use distribution. Moreover, global soil moisture AMSR-E product maps have been also used to assess to the spatial distribution of the emissivity. Moreover, obtained emissivity maps seem to be consistent with landuse/land cover maps. They also agree well with land emissivity maps obtained from the ISCCP database and developed using SSM/I observations (for frequencies over 19 GHz).
Online, automatic, ionospheric maps: IRI-PLAS-MAP
NASA Astrophysics Data System (ADS)
Arikan, F.; Sezen, U.; Gulyaeva, T. L.; Cilibas, O.
2015-04-01
Global and regional behavior of the ionosphere is an important component of space weather. The peak height and critical frequency of ionospheric layer for the maximum ionization, namely, hmF2 and foF2, and the total number of electrons on a ray path, Total Electron Content (TEC), are the most investigated and monitored values of ionosphere in capturing and observing ionospheric variability. Typically ionospheric models such as International Reference Ionosphere (IRI) can provide electron density profile, critical parameters of ionospheric layers and Ionospheric electron content for a given location, date and time. Yet, IRI model is limited by only foF2 STORM option in reflecting the dynamics of ionospheric/plasmaspheric/geomagnetic storms. Global Ionospheric Maps (GIM) are provided by IGS analysis centers for global TEC distribution estimated from ground-based GPS stations that can capture the actual dynamics of ionosphere and plasmasphere, but this service is not available for other ionospheric observables. In this study, a unique and original space weather service is introduced as IRI-PLAS-MAP from http://www.ionolab.org
NASA Astrophysics Data System (ADS)
Bell, J. R.; Molthan, A.; Dabboor, M.
2016-12-01
After a disaster occurs, decision makers require timely information to assist decision making and support. Earth observing satellites provide tools including optical remote sensors that sample in various spectral bands within the visible, near-infrared, and thermal infrared. However, views from optical sensors can be blocked when clouds are present, and cloud-free observations can be significantly delayed depending upon on their repeat cycle. Synthetic aperture radar (SAR) offers several advantages over optical sensors in terms of spatial resolution and the ability to map the Earth's surface whether skies are clear or cloudy. In cases where both SAR and cloud-free optical data are available, these instruments can be used together to provide additional confidence in what is being observed at the surface. This presentation demonstrates cases where SAR imagery can enhance the usefulness for mapping natural disasters and their impacts to the land surface, specifically from severe weather and flooding. The Missouri and Mississippi River flooding from early in 2016 and damage from hail swath in northwestern Iowa on 17 June 2016 are just two events that will be explored. Data collected specifically from the EO-1 (optical), Landsat (optical) and Sentinel 1 (SAR) missions are used to explore several applicable methodologies to determine which products and methodologies may provide decision makers with the best information to provide actionable information in a timely manner.
TOMS UV Algorithm: Problems and Enhancements. 2
NASA Technical Reports Server (NTRS)
Krotkov, Nickolay; Herman, Jay; Bhartia, P. K.; Seftor, Colin; Arola, Antti; Kaurola, Jussi; Kroskinen, Lasse; Kalliskota, S.; Taalas, Petteri; Geogdzhaev, I.
2002-01-01
Satellite instruments provide global maps of surface ultraviolet (UV) irradiance by combining backscattered radiance measurements with radiative transfer models. The models are limited by uncertainties in input parameters of the atmosphere and the surface. We evaluate the effects of possible enhancements of the current Total Ozone Mapping Spectrometer (TOMS) surface UV irradiance algorithm focusing on effects of diurnal variation of cloudiness and improved treatment of snow/ice. The emphasis is on comparison between the results of the current (version 1) TOMS UV algorithm and each of the changes proposed. We evaluate different approaches for improved treatment of pixel average cloud attenuation, with and without snow/ice on the ground. In addition to treating clouds based only on the measurements at the local time of the TOMS observations, the results from other satellites and weather assimilation models can be used to estimate attenuation of the incident UV irradiance throughout the day. A new method is proposed to obtain a more realistic treatment of snow covered terrain. The method is based on a statistical relation between UV reflectivity and snow depth. The new method reduced the bias between the TOMS UV estimations and ground-based UV measurements for snow periods. The improved (version 2) algorithm will be applied to re-process the existing TOMS UV data record (since 1978) and to the future satellite sensors (e.g., Quik/TOMS, GOME, OMI on EOS/Aura and Triana/EPIC).
Sensitivity of mineral dissolution rates to physical weathering : A modeling approach
NASA Astrophysics Data System (ADS)
Opolot, Emmanuel; Finke, Peter
2015-04-01
There is continued interest on accurate estimation of natural weathering rates owing to their importance in soil formation, nutrient cycling, estimation of acidification in soils, rivers and lakes, and in understanding the role of silicate weathering in carbon sequestration. At the same time a challenge does exist to reconcile discrepancies between laboratory-determined weathering rates and natural weathering rates. Studies have consistently reported laboratory rates to be in orders of magnitude faster than the natural weathering rates (White, 2009). These discrepancies have mainly been attributed to (i) changes in fluid composition (ii) changes in primary mineral surfaces (reactive sites) and (iii) the formation of secondary phases; that could slow natural weathering rates. It is indeed difficult to measure the interactive effect of the intrinsic factors (e.g. mineral composition, surface area) and extrinsic factors (e.g. solution composition, climate, bioturbation) occurring at the natural setting, in the laboratory experiments. A modeling approach could be useful in this case. A number of geochemical models (e.g. PHREEQC, EQ3/EQ6) already exist and are capable of estimating mineral dissolution / precipitation rates as a function of time and mineral mass. However most of these approaches assume a constant surface area in a given volume of water (White, 2009). This assumption may become invalid especially at long time scales. One of the widely used weathering models is the PROFILE model (Sverdrup and Warfvinge, 1993). The PROFILE model takes into account the mineral composition, solution composition and surface area in determining dissolution / precipitation rates. However there is less coupling with other processes (e.g. physical weathering, clay migration, bioturbation) which could directly or indirectly influence dissolution / precipitation rates. We propose in this study a coupling between chemical weathering mechanism (defined as a function of reactive area, solution composition, temperature, mineral composition) and the physical weathering module in the SoilGen model which calculates the evolution of particle size (used for surface area calculation) as influenced by temperature gradients. The solution composition in the SoilGen model is also influenced by other processes such as atmospheric inputs, organic matter decomposition, cation exchange, secondary mineral formation and leaching. We then apply this coupled mechanism on a case study involving 3 loess soil profiles to analyze the sensitivity of mineral weathering rates to physical weathering. Initial results show some sensitivity but not that dramatic. The less sensitivity was attributed to dominance of resistant primary minerals (> 70% quartz). Scenarios with different sets of mineralogy will be tested and sensitivity results in terms of silicate mineral dissolution rates and CO2-consumption will be presented in the conference. References Sverdrup H and Warfvinge P., 1993. Calculating field weathering rates using a mechanistic geochemical model PROFILE. Applied Geochemistry, 8:273-283. White, A.F., 2009. Natural weathering rates of silicate minerals. In: Drever, J.I. (Ed.), Surface and Ground Water, Weathering and Soils. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry. vol. 5. Elsevier-Pergamon, Oxford, pp. 133-168.
Future development of IR thermovision weather satellite equipment
NASA Technical Reports Server (NTRS)
Listratov, A. V.
1974-01-01
The self radiation of the surface being viewed is used for image synthesis in IR thermovision equipment. The installation of such equipment aboard weather satellites makes it possible to obtain cloud cover pictures of the earth's surface in a complete orbit, regardless of the illumination conditions, and also provides quantitative information on the underlying surface temperature and cloud top height. Such equipment is used successfully aboard the Soviet satellites of the Meteor system, and experimentally on the American satellites of the Nimbus series. With regard to surface resolution, the present-day IR weather satellite equipment is inferior to the television equipment. This is due primarily to the comparatively low detectivity of the IR detectors used. While IR equipment has several fundamental advantages in comparison with the conventional television equipment, the problem arises of determining the possibility for future development of weather satellite IR thermovision equipment. Criteria are examined for evaluating the quality of IR.
Wu, Xiaojun; Wang, Hongxing; Song, Bo
2015-02-10
Fog and haze can lead to changes in extinction characteristics. Therefore, the performance of the free space optical link is highly influenced by severe weather conditions. Considering the influential behavior of weather conditions, a state-of-the-art solution for the observation of fog and haze over the sea surface is presented in this paper. A Mie scattering laser radar, with a wavelength of 532 nm, is used to observe the weather conditions of the sea surface environment. The horizontal extinction coefficients and visibilities are obtained from the observation data, and the results are presented in the paper. The changes in the characteristics of extinction coefficients and visibilities are analyzed based on both the short-term (6 days) severe weather data and long-term (6 months) data. Finally, the availability performance of the free space optical communication link is evaluated under the sea surface environment.
47 CFR 87.525 - Scope of service.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...
47 CFR 87.525 - Scope of service.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...
47 CFR 87.525 - Scope of service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...
47 CFR 87.525 - Scope of service.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...
47 CFR 87.525 - Scope of service.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...
Satellite Ocean Data Tools in the high school classroom.
NASA Astrophysics Data System (ADS)
Tweedie, M.; Snyder, H. D.
2007-12-01
The NASA-sponsored Ocean Motion website (http://www.oceanmotion.org) documents the story of humankind's interest in and observations of surface currents from the early seafaring Polynesians to present day satellite observations. Ocean surface current patterns impact our lives through their influences on the weather, climate, commerce, natural disasters and sea life. The Ocean Motion web site provides inquiry based, classroom ready materials for high school teachers and students to study ocean surface currents. In addition to the information resources posted on the website, there are also investigations that lead students to explore patterns and relationships through data products (color- coded map images, time series graphs and data tables). These investigations are done through an interactive browser interface that provides access to a wealth of oceanography data. This presentation focuses on use of surface current data and models in student investigations to illustrate application of basic science principles found in high school science curriculum. Skills developed using data to discover patterns and relationships will serve students in other courses as well as empower them to become stewards of the Earths environment.
Li, Shuai; Milliken, Ralph E.
2017-01-01
A new thermal correction model and experimentally validated relationships between absorption strength and water content have been used to construct the first global quantitative maps of lunar surface water derived from the Moon Mineralogy Mapper near-infrared reflectance data. We find that OH abundance increases as a function of latitude, approaching values of ~500 to 750 parts per million (ppm). Water content also increases with the degree of space weathering, consistent with the preferential retention of water originating from solar wind implantation during agglutinate formation. Anomalously high water contents indicative of interior magmatic sources are observed in several locations, but there is no global correlation between surface composition and water content. Surface water abundance can vary by ~200 ppm over a lunar day, and the upper meter of regolith may contain a total of ~1.2 × 1014 g of water averaged over the globe. Formation and migration of water toward cold traps may thus be a continuous process on the Moon and other airless bodies. PMID:28924612
NASA Astrophysics Data System (ADS)
Stephenson, D. B.
1997-10-01
The skill in predicting spatially varying weather/climate maps depends on the definition of the measure of similarity between the maps. Under the justifiable approximation that the anomaly maps are distributed multinormally, it is shown analytically that the choice of weighting metric, used in defining the anomaly correlation between spatial maps, can change the resulting probability distribution of the correlation coefficient. The estimate of the numbers of degrees of freedom based on the variance of the correlation distribution can vary from unity up to the number of grid points depending on the choice of weighting metric. The (pseudo-) inverse of the sample covariance matrix acts as a special choice for the metric in that it gives a correlation distribution which has minimal kurtosis and maximum dimension. Minimal kurtosis suggests that the average predictive skill might be improved due to the rarer occurrence of troublesome outlier patterns far from the mean state. Maximum dimension has a disadvantage for analogue prediction schemes in that it gives the minimum number of analogue states. This metric also has an advantage in that it allows one to powerfully test the null hypothesis of multinormality by examining the second and third moments of the correlation coefficient which were introduced by Mardia as invariant measures of multivariate kurtosis and skewness. For these reasons, it is suggested that this metric could be usefully employed in the prediction of weather/climate and in fingerprinting anthropogenic climate change. The ideas are illustrated using the bivariate example of the observed monthly mean sea-level pressures at Darwin and Tahitifrom 1866 1995.
1982-07-30
6 651 S:566 as~ ss oo 616o bl6 4000_ 49@8 61o2 55.8 55.9 57.7 55. 6415. : 55 44:s 64660 ses66 lt 259. 19 1.3 65.1 55.1 58.0 58.5 5.8 58.9 &le9 69.2...So..1 51.3 51.1 51. B16 51.? Si, 0sa ! 51.7 5IT 1.7 is 7S*110 2.1 4000 3:1 So t.AS51. 51.SSI 11.6 1 1 7 1 51.9 51.9j 5109 5109 S1.9’ 51.91IS1.91
NASA Technical Reports Server (NTRS)
Idso, S. B.; Jackson, R. D.; Reginato, R. J.
1976-01-01
A procedure is developed for removing data scatter in the thermal-inertia approach to remote sensing of soil moisture which arises from environmental variability in time and space. It entails the utilization of nearby National Weather Service air temperature measurements to normalize measured diurnal surface temperature variations to what they would have been for a day of standard diurnal air temperature variation, arbitrarily assigned to be 18 C. Tests of the procedure's basic premise on a bare loam soil and a crop of alfalfa indicate it to be conceptually sound. It is possible that the technique could also be useful in other thermal-inertia applications, such as lithographic mapping.
Flood-inundation maps for the White River at Spencer, Indiana
Nystrom, Elizabeth A.
2013-01-01
Digital flood-inundation maps for a 5.3-mile reach of the White River at Spencer, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage White River at Spencer, Indiana (sta. no. 03357000). Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. National Weather Service (NWS)-forecasted peak-stage inforamation may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at the White River at Spencer, Indiana, streamgage and documented high-water marks from the flood of June 8, 2008. The hydraulic model was then used to compute 20 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from the NWS action stage (9 feet) to the highest rated stage (28 feet) at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The availability of these maps along with Internet information regarding the current stage from the Spencer USGS streamgage and forecasted stream stages from the NWS will provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.
NASA Astrophysics Data System (ADS)
Porzucek, Sławomir; Łój, Monika; Matwij, Karolina; Matwij, Wojciech
2018-03-01
In the region of Siesławice (near Busko-Zdrój, Poland) there are unique phenomena of gypsum karst. Atmospheric factors caused numerous gypsum outcrops, canals and underground voids. The article presents the possibility of using non-invasive gravimetric surveys supplemented with geodetic measurements to illustrate karst changes occurring around the void. The use of modern geodetic measurement techniques including terrestrial and airborne laser scanning enables to generate a digital terrain model and a three-dimensional model of voids. Gravimetric field studies allowed to map the anomalies of the gravitational field of the near-surface zone. Geodetic measurement results have made it possible to accurately determine the terrain correction that supplemented the gravimetric anomaly information. Geophysical interpretation indicate the presence of weathered rocks in the near surface zone and fractures and loosened zones located surround the karst cave.
The Venus Emissivity Mapper - gaining a global perspective on the surface composition of Venus
NASA Astrophysics Data System (ADS)
Helbert, Joern; Dyar, Melinda; Widemann, Thomas; Marcq, Emmanuel; Maturilli, Alessandro; Mueller, Nils; Kappel, David; Ferrari, Sabrina; D'Amore, Mario; Tsang, Constantine; Arnold, Gabriele; Smrekar, Suzanne; VEM Team
2017-10-01
The permanent cloud cover of Venus prohibits observations of the surface with traditional imaging techniques over much of the EM spectral range, leading to the false notion that information about the composition of Venus’ surface could only be derived from lander missions. However, harsh environmental conditions on the surface cause landed missions to be sole site, highly complex, and riskier than orbiting missions.It is now known that 5 transparency windows occur in the Venus atmosphere, ranging from 0.86 µm to 1.18 µm. Recent advances in high temperature laboratory spectroscopy at the PSL at DLR these windows are highly diagnostic for surface mineralogy. Mapping of the southern hemisphere of Venus with VIRTIS on VEX in the 1.02 µm band was a proof-of-concept for an orbital remote sensing approach to surface composition and weathering studies[1-3]. The Venus Emissivity Mapper [4] proposed for the NASA’s Venus Origins Explorer (VOX) and the ESA EnVision proposal builds on these recent advances. It is the first flight instrument specially designed with a sole focus on mapping the surface of Venus using the narrow atmospheric windows around 1 µm. Operating in situ from Venus orbit, VEM will provide a global map of surface composition as well as redox state of the surface, providing a comprehensive picture of surface-atmosphere interaction and support for landing site selection. Continuous observation of the thermal emission of the Venus will provide tight constraints on the current day volcanic activity[5]. This is complemented by measurements of atmospheric water vapor abundance as well as cloud microphysics and dynamics. These data will allow for accurate correction of atmospheric interference on the surface measurements, which provide highly valuable science on their own. A mission combining VEM with a high-resolution radar mapper such as VOX or EnVision in a low circular orbit will provide key insights into the divergent evolution of Venus.1. Smrekar, S.E., et al., Science, 2010. 328(5978): p. 605-8.2. Helbert, J., et al., GRL, 2008. 35(11).3. Mueller, N., et al., JGR, 2008. 113.4. Helbert, J., et al. 2016. San Diego, CA: SPIE.5. Mueller, N.T., et al., JGR, 2017.
Cockpit weather information needs
NASA Technical Reports Server (NTRS)
Scanlon, Charles H.
1992-01-01
The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along the route can be accomplished prior to pilot acceptance of the clearance. An ongoing multiphase test series is planned for testing and modifying the graphical weather system. Preliminary data shows that the nine test subjects considered the graphical presentation to be much better than their current weather information source for situation awareness, flight safety, and reroute decision making.
Does Silicate Weathering of Loess Affect Atmospheric CO2?
NASA Astrophysics Data System (ADS)
Anderson, S. P.
2002-12-01
Weathering of glacial loess may be a significant, yet unrecognized, component of the carbon cycle. Glaciers produce fine-grained sediment, exposing vast amounts of mineral surface area to weathering processes, yet silicate mineral weathering rates at glacier beds and of glacial till are not high. Thus, despite the tremendous potential for glaciers to influence global weathering rates and atmospheric CO2 levels, this effect has not been demonstrated. Loess, comprised of silt-clay sizes, may be the key glacial deposit in which silicate weathering rates are high. Loess is transported by wind off braid plains of rivers, and deposited broadly (order 100 km from the source) in vegetated areas. Both the fine grain size, and hence large mineral surface area, and presence of vegetation should render loess deposits highly susceptible to silicate weathering. These deposits effectively extend the geochemical impact of glaciation in time and space, and bring rock flour into conditions conducive to chemical weathering. A simple 1-d model of silicate weathering fluxes from a soil profile demonstrates the potential of loess deposition to enhance CO2 consumption. At each time step, computed mineral dissolution (using anorthite and field-based rate constants) modifies the size of mineral grains within the soil. In the case of a stable soil surface, this results in a gradual decline in weathering fluxes and CO2 consumption through time, as finer grain sizes dissolve away. Computed weathering fluxes for a typical loess, with an initial mean grain size of 25 μm, are an order of magnitude greater than fluxes from a non-loess soil that differs only in having a mean grain size of 320 μm. High weathering fluxes are maintained through time if loess is continually deposited. Deposition rates as low as 0.01 mm/yr (one loess grain thickness per year) can lead to a doubling of CO2 consumption rates within 5 ka. These results suggest that even modest loess deposition rates can significantly increase CO2 consumption rates due to silicate weathering in soils. Thick loess deposits cover 5-10% of the global land surface, and loess deposits too thin to be included in global inventories cover a much greater area. Loess deposition and weathering over timescales greater than the duration of glaciation must be considered in models of atmospheric CO2 variation.
Development of flood profiles and flood-inundation maps for the Village of Killbuck, Ohio
Ostheimer, Chad J.
2013-01-01
Digital flood-inundation maps for a reach of Killbuck Creek near the Village of Killbuck, Ohio, were created by the U.S. Geological Survey (USGS), in cooperation with Holmes County, Ohio. The inundation maps depict estimates of the areal extent of flooding corresponding to water levels (stages) at the USGS streamgage Killbuck Creek near Killbuck (03139000) and were completed as part of an update to Federal Emergency Management Agency Flood-Insurance Study. The maps were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning system that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. The digital maps also have been submitted for inclusion in the data libraries of the USGS interactive Flood Inundation Mapper. Data from the streamgage can be used by emergency-management personnel, in conjunction with the flood-inundation maps, to help determine a course of action when flooding is imminent. Flood profiles for selected reaches were prepared by calibrating a steady-state step-backwater model to an established streamgage rating curve. The step-backwater model then was used to determine water-surface-elevation profiles for 10 flood stages at the streamgage with corresponding streamflows ranging from approximately the 50- to 0.2-percent annual exceedance probabilities. The computed flood profiles were used in combination with digital elevation data to delineate flood-inundation areas.
Characterization of Lunar Swirls at Mare Ingenii: A Model for Space Weathering at Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Kramer, Georgianna Y.; Combe, Jean-Philippe; Harnett, Erika M.; Hawke, Bernard Ray; Noble, Sarah K.; Blewett, David T.; McCord, Thomas B.; Giguere, Thomas A.
2011-01-01
Analysis of spectra from the Clementine ultraviolet-visible and near-infrared cameras of small, immature craters and surface soils both on and adjacent to the lunar swirls at Marc Ingenii has yielded the following conclusions about space weathering at a magnetic anomaly. (l) Despite having spectral characteristics of immaturity, the lunar swirls arc not freshly exposed surfaces. (2) The swirl surfaces arc regions of retarded weathering, while immediately adjacent regions experience accelerated weathering, (3) Weathering in the off-swirl regions darkens and flattens the spectrum with little to no reddening, which suggests that the production of larger (greater than 40 nm) nanophase iron dominates in these locations as a result of charged particle sorting by the magnetic field. Preliminaty analysis of two other lunar swirl regions, Reiner Gamma and Mare Marginis, is consistent with our observations at Mare Ingenii. Our results indicate that sputtering/vapor deposition, implanted solar wind hydrogen, and agglutination share responsibility for creating the range in npFe(sup 0) particle sizes responsible for the spectral effects of space weathering.
Space weathering and the color indexes of minor bodies in the outer Solar System
NASA Astrophysics Data System (ADS)
Kaňuchová, Zuzana; Brunetto, Rosario; Melita, Mario; Strazzulla, Giovanni
2012-09-01
The surfaces of small bodies in the outer Solar System are rich in organic compounds and carbonaceous refractories mixed with ices and silicates. As made clear by dedicated laboratory experiments space weathering (e.g. energetic ion bombardment) can produce red colored materials starting from bright and spectrally flat ices. In a classical scenario, the space weathering processes “nurture” alter the small bodies surface spectra but are in competition with resurfacing agents that restore the original colors, and the result of these competing processes continuously modifying the surfaces is supposed to be responsible for the observed spectral variety of those small bodies. However an alternative point of view is that the different colors are due to “nature” i.e. to the different primordial composition of different objects. In this paper we present a model, based on laboratory results, that gives an original contribution to the “nature” vs. “nurture” debate by addressing the case of surfaces showing different fractions of rejuvenated vs. space weathered surface, and calculating the corresponding color variations. We will show how a combination of increasing dose coupled to different resurfacing can reproduce the whole range of observations of small outer Solar System bodies. Here we demonstrate, for the first time that objects having a fully weathered material turn back in the color-color diagrams. At the same time, object with the different ratio of pristine and weathered surface areas lay on specific lines in color-color diagrams, if exposed to the same amount of irradiation.
A reactive transport model for Marcellus shale weathering
NASA Astrophysics Data System (ADS)
Heidari, Peyman; Li, Li; Jin, Lixin; Williams, Jennifer Z.; Brantley, Susan L.
2017-11-01
Shale formations account for 25% of the land surface globally and contribute a large proportion of the natural gas used in the United States. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water in the surface or deep subsurface, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil and water chemistry data. The simulation was carried out for 10,000 years since deglaciation, assuming bedrock weathering and soil genesis began after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small if CO2 was not present in the soil gas. The field observations were only simulated successfully when the modeled specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals. Small surface areas could be consistent with the lack of accessibility of some fluids to mineral surfaces due to surface coatings. In addition, some mineral surface is likely interacting only with equilibrated pore fluids. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude from these observations that availability of reactive surface area and transport of H2O and gases are the most important factors affecting rates of Marcellus shale weathering of the in the shallow subsurface. This weathering study documents the utility of reactive transport modeling for complex subsurface processes. Such modelling could be extended to understand interactions between injected fluids and Marcellus shale gas reservoirs at higher temperature, pressure, and salinity conditions.
A numerical study of the effect of urbanization on the climate of Las Vegas metropolitan area
NASA Astrophysics Data System (ADS)
Kamal, S. M.; Huang, H. P.; Myint, S. W.
2014-12-01
Las Vegas is one of the fastest growing desert cities. Its developed area has doubled in the last 30 years. An accurate prediction of the effect of urbanization on the climate of the city is crucial for resource management and planning. In this study, we use the Weather Research and Forecasting (WRF) model coupled with a land surface and urban canopy model to investigate the effects of urbanization on the regional climate pattern around Las Vegas. High resolution numerical simulations are performed with a 3 km resolution over the metropolitan area. With identical lateral boundary conditions, three land-use land-cover maps, representing 2006, 1992 and hypothetical 1900, are used in multiple simulations. The differences in the simulated climate among those cases are used to quantify the urban effect. The simulated surface air temperature is validated against observational data from the weather station at the McCarran airport. It is found that urbanization affects substantial warming during the night but a minor cooling during the day. Detailed diagnostics of the surface energy budget are performed to help interpret this result. In addition, the emerging urban structures are found to have a mechanical effect of slowing down the climatological wind field over the urban area. The change in wind, in turn, leads to a secondary modification of the temperature structure within the air shed of the city. This finding suggests the need to combine the mechanical and thermodynamic effects to construct a complete picture of the influence of land cover on urban climate. In all cases of the simulations, it is also demonstrated that urbanization influences surface air temperature mainly within the metropolitan area.
NASA Astrophysics Data System (ADS)
Adcock, C. T.; Hausrath, E.; Tschauner, O. D.; Udry, A.
2015-12-01
Martian analogs, meteorites, and data from unmanned missions have greatly advanced our understanding of martian surface and near-surface processes. In particular, terrestrial analogs allow us to investigate Mars-relevant geomorphic, geochemical, petrogenetic, and hydrologic processes, as well as potential habitability. Craters of the Moon National Monument (COTM), located on the Snake River Plain of Idaho in the United States, represents a valuable phosphate-rich Mars analog, allowing us to examine phosphate minerals, important as volatile indicators and potential nutrient providers, under Mars-relevant conditions. COTM is in an arid to semi-arid environment with sub-freezing lows much of the year. Though wetter than present day Mars (24 - 38 cm MAP) [1], COTM may be analogous to a warmer and wetter past Mars. The area is also the locale of numerous lava flows, a number of which have been dated (2,000 to >18,000 y.b.p.) [2]. The flows have experienced weathering over time and thus represent a chronosequence with application to weathering on Mars. The flows have unusual chemistries, including high average phosphate contents (P2O5 1.75 wt% n=23 flows) [2], close to those in rocks analyzed at Gusev Crater, Mars (P2O5 1.79 wt% n=18 rocks) [3]. The Mars-like high phosphorus contents indicate a potential petrogenetic link and are also of astrobiological interest. Further, current samples of Mars phosphate minerals are limited to meteorites which have been heavily shocked - COTM represents a potential pre-shock and geochemical analog to Mars. We investigated weathering on COTM basalts and shock effects on Mars-relevant phosphate minerals. We used scanning electron microscopy, backscattered electron imagery, and X-Ray analysis/mapping to investigate COTM thin sections. Synchrotron diffraction was used to investigate martian meteorites and laboratory shocked Mars/COTM-relevant minerals for comparison. Results of our investigations indicate porosity development correlates with flow age, and shock alteration of phosphate minerals obscures the original phosphate mineralogy in martian meteorites. Thus COTM represents an important chronosequence and pre-shock mineralogy analog for Mars. [1] Vaughan et al. (2008) SSSAJ 75, [2] Kuntz, et al. (1992) GSA Mem. 179, [3] Adcock et al. (2013) Nat. Geos. 6.
ISSUES IN DIGITAL IMAGE PROCESSING OF AERIAL PHOTOGRAPHY FOR MAPPING SUBMERSED AQUATIC VEGETATION
The paper discusses the numerous issues that needed to be addressed when developing a methodology for mapping Submersed Aquatic Vegetation (SAV) from digital aerial photography. Specifically, we discuss 1) choice of film; 2) consideration of tide and weather constraints; 3) in-s...
Mars surface weathering products and spectral analogs: Palagonites and synthetic iron minerals
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, D. W.; Morris, R. V.; Lauer, H. V., Jr.
1992-01-01
There are several hypotheses regarding the formation of Martian surface fines. These surface fines are thought to be products of weathering processes occurring on Mars. Four major weathering environments of igneous rocks on Mars have been proposed; (1) impact induced hydrothermal alterations; (2) subpermafrost igneous intrusion; (3) solid-gas surface reactions; and (4) subaerial igneous intrusion over permafrost. Although one or more of these processes may be important on the Martian surface, one factor in common for all these processes is the reaction of solid or molten basalt with water (solid, liquid, or gas). These proposed processes, with the exception of solid-gas surface reactions, are transient processes. The most likely product of transient hydrothermal processes are layer silicates, zeolites, hydrous iron oxides and palagonites. The long-term instability of hydrous clay minerals under present Martian conditions has been predicted; however, the persistence of such minerals due to slow kinetics of dehydration, or entrapment in permafrost, where the activity of water is high, can not be excluded. Anhydrous oxides of iron (e.g., hematite and maghemite) are thought to be stable under present Martian surface conditions. Oxidative weathering of sulfide minerals associated with Martian basalts has been proposed. Weathering of sulfide minerals leads to a potentially acidic permafrost and the formation of Fe(3) oxides and sulfates. Weathering of basalts under acidic conditions may lead to the formation of kaolinite through metastable halloysite and metahalloysite. Kaolinite, if present, is thought to be a thermodynamically stable phase at the Martian surface. Fine materials on Mars are important in that they influence the surface spectral properties; these fines are globally distributed on Mars by the dust storms and this fraction will have the highest surface area which should act as a sink for most of the absorbed volatiles near the surface of Mars. Therefore, the objectives of this study were to: (1) examine the fine fraction mineralogy of several palagonitic materials from Hawaii; and (2) compare spectral properties of palagonites and submicron sized synthetic iron oxides with the spectral properties of the Martian surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Chun; Huang, Maoyi; Fast, Jerome D.
Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect atmospheric chemistry and secondary aerosol formation that ultimately influences air quality and aerosol radiative forcing. These uncertainties result from many factors, including uncertainties in land surface processes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (BVOCs). In this study, the latest version of Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) is coupled within the land surface scheme CLM4 (Community Land Model version 4.0) in the Weather Research and Forecasting model withmore » chemistry (WRF-Chem). In this implementation, MEGAN v2.1 shares a consistent vegetation map with CLM4 for estimating BVOC emissions. This is unlike MEGAN v2.0 in the public version of WRF-Chem that uses a stand-alone vegetation map that differs from what is used by land surface schemes. This improved modeling framework is used to investigate the impact of two land surface schemes, CLM4 and Noah, on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. The measurements collected during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the California Nexus of Air Quality and Climate Experiment (CalNex) conducted in June of 2010 provided an opportunity to evaluate the simulated BVOCs. Sensitivity experiments show that land surface schemes do influence the simulated BVOCs, but the impact is much smaller than that of vegetation distributions. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models in terms of simulating BVOCs, oxidant chemistry and, consequently, secondary organic aerosol formation.« less
High-resolution mapping of global surface water and its long-term changes
NASA Astrophysics Data System (ADS)
Pekel, J. F.; Cottam, A.; Gorelick, N.; Belward, A.
2016-12-01
The location and persistence of surface water is both affected by climate and human activity and affects climate, biological diversity and human wellbeing. Global datasets documenting surface water location and seasonality have been produced but measuring long-term changes at high resolution remains a challenge.To address the dynamic nature of water, the European Commission's Joint Research Centre (JRC), working with the Google Earth Engine (GEE) team has processed each single pixel acquired by Landsat 5, 7, and 8 between 16th March 1984 to 10th October 2015 (> 3.000.000 Landsat scenes, representing > 1823 Terabytes of data).The produced dataset record months and years when water was present across 32 year, were occurrence changed and what form changes took in terms of seasonality and persistence, and document intra-annual persistence, inter-annual variability, and trends.This validated dataset shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered showing how surface water is altered by human activities.Freely available, we anticipate that this dataset will provide valuable information to those working in areas linked to security of water supply for agriculture, industry and human consumption, for assessing water-related disaster reduction and recovery and for the study of waterborne pollution and disease spread. The maps will also improve surface boundary condition setting in climate and weather models, improve carbon emissions estimates, inform regional climate change impact studies, delimit wetlands for biodiversity and determine desertification trends. Issues such as dam building (and less widespread dam removal), disappearing rivers, the geopolitics of water distribution and coastal erosion are also addressed.
Improving Weather Research and Forecasting Model Initial Conditions via Surface Pressure Analysis
2015-09-01
Obsgrid) that creates input data for the Advanced Research version of the Weather Research and Forecasting model ( WRF -ARW) is modified to perform a...surface pressure objective analysis to allow surface analyses of other fields to be more fully utilized in the WRF -ARW initial conditions. Nested 27-, 9...of surface pressure unnecessarily limits the application of other surface analyses into the WRF initial conditions and contributes to the creation of
Ionospheric research for space weather service support
NASA Astrophysics Data System (ADS)
Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata
2016-07-01
Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is investigated. The products of the Project web sites at http://www.cbk.waw.pl/rwc and http://www.izmiran.ru/services/iweather are widely used in scientific investigations and numerous applications by the telecommunication and navigation operators and users whose number at the web sites is growing substantially from month to month.
Linking the Weather Generator with Regional Climate Model
NASA Astrophysics Data System (ADS)
Dubrovsky, Martin; Farda, Ales; Skalak, Petr; Huth, Radan
2013-04-01
One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking the stochastic weather generator with the climate model output. The present contribution, in which the parametric daily surface weather generator (WG) M&Rfi is linked to the RCM output, follows two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate Regional Climate Model at 25 km resolution. The WG parameters are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series (including probability of wet day occurrence). (2) Presenting a methodology for linking the WG with RCM output. This methodology, which is based on merging information from observations and RCM, may be interpreted as a downscaling procedure, whose product is a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations. In this procedure, WG is calibrated with RCM-simulated multi-variate weather series in the first step, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with gridded RCM weather series and spatially scarcer observations. The quality of the weather series produced by the resultant gridded WG will be assessed in terms of selected climatic characteristics (focusing on characteristics related to variability and extremes of surface temperature and precipitation). Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102 action).
NASA Astrophysics Data System (ADS)
Dubrovsky, M.; Farda, A.; Huth, R.
2012-12-01
The regional-scale simulations of weather-sensitive processes (e.g. hydrology, agriculture and forestry) for the present and/or future climate often require high resolution meteorological inputs in terms of the time series of selected surface weather characteristics (typically temperature, precipitation, solar radiation, humidity, wind) for a set of stations or on a regular grid. As even the latest Global and Regional Climate Models (GCMs and RCMs) do not provide realistic representation of statistical structure of the surface weather, the model outputs must be postprocessed (downscaled) to achieve the desired statistical structure of the weather data before being used as an input to the follow-up simulation models. One of the downscaling approaches, which is employed also here, is based on a weather generator (WG), which is calibrated using the observed weather series and then modified (in case of simulations for the future climate) according to the GCM- or RCM-based climate change scenarios. The present contribution uses the parametric daily weather generator M&Rfi to follow two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate/CZ (v.2) Regional Climate Model at 25 km resolution. The WG parameters will be derived from the RCM-simulated surface weather series and compared to those derived from observational data in the Czech meteorological stations. The set of WG parameters will include selected statistics of the surface temperature and precipitation (characteristics of the mean, variability, interdiurnal variability and extremes). (2) Testing a potential of RCM output for calibration of the WG for the ungauged locations. The methodology being examined will consist in using the WG, whose parameters are interpolated from the surrounding stations and then corrected based on a RCM-simulated spatial variability. The quality of the weather series produced by the WG calibrated in this way will be assessed in terms of selected climatic characteristics focusing on extreme precipitation and temperature characteristics (including characteristics of dry/wet/hot/cold spells). Acknowledgements: The present experiment is made within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports) and VALUE (COST ES 1102 action).
Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy
NASA Astrophysics Data System (ADS)
Wyatt, Michael Bruce
2002-11-01
This dissertation comprises four separate parts that address the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) investigation objective of determining and mapping the composition and distribution of surface minerals and rocks on Mars from orbit. In Part 1, laboratory thermal infrared spectra (5 25 μm, at 2 cm-1 spectral sampling), deconvolved modal mineralogies, and derived mineral and bulk rock chemistries of basalt, basaltic andesite, andesite, and dacite were used to evaluate and revise volcanic rock classification schemes. Multiple steps of classification were required to distinguish volcanic rocks, reflecting the mineralogic diversity and continuum of compositions that exists in volcanic rock types. In Part 2, laboratory spectral data were convolved to TES 10 cm-1 sampling to ascertain whether adequate results for volcanic rock classification can be obtained with lower spectral resolution, comparable to that obtained from Mars orbit. Modeled spectra, modeled modal mineralogies, and derived bulk rock chemistries at low (10 cm-1) spectral sampling provide good matches to measured and high (2 cm-1) spectral sampling modeled values. These results demonstrate the feasibility of using similar techniques and classification schemes for the interpretation of terrestrial laboratory samples and TES-resolution data. In Part 3, new deconvolved mineral abundances from TES data and terrestrial basalts using a spectral end-member set representing minerals common in unaltered and low-temperature aqueously altered basalts were used to reclassify martian surface lithologies. The new formulations maintain the dominance of unaltered basalt in the southern highlands, but indicate the northern lowlands can be interpreted as weathered basalt. The coincidence between locations of altered basalt and a previously suggested northern ocean basin implies that lowland plains materials may be basalts altered under submarine conditions and/or weathered basaltic sediment transported into this depocenter. In Part 4, results from the previous parts are applied to examine the distribution of TES-derived surface compositions in the Oxia Palus region on Mars through high-spatial resolution mapping. Features of interest within Oxia Palus include volcanic/sedimentary materials in southern Acidalia Planitia, low-albedo crater floors and wind streaks in western Arabia Terra, and channel outflow deposits of the Mars Pathfinder (MP) landing site.
Space Weathering Rates in Lunar and Itokawa Samples
NASA Technical Reports Server (NTRS)
Keller, L. P.; Berger, E. L.
2017-01-01
Space weathering alters the chemistry, microstructure, and spectral proper-ties of grains on the surfaces of airless bodies by two major processes: micrometeorite impacts and solar wind interactions. Investigating the nature of space weathering processes both in returned samples and in remote sensing observations provides information fundamental to understanding the evolution of airless body regoliths, improving our ability to determine the surface composition of asteroids, and linking meteorites to specific asteroidal parent bodies. Despite decades of research into space weathering processes and their effects, we still know very little about weathering rates. For example, what is the timescale to alter the reflectance spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope from an S-type asteroid? One approach to answering this question has been to determine ages of asteroid families by dynamical modeling and determine the spectral proper-ties of the daughter fragments. However, large differences exist between inferred space weathering rates and timescales derived from laboratory experiments, analysis of asteroid family spectra and the space weathering styles; estimated timescales range from 5000 years up to 108 years. Vernazza et al. concluded that solar wind interactions dominate asteroid space weathering on rapid timescales of 10(exp 4)-10(exp 6) years. Shestopalov et al. suggested that impact-gardening of regolith particles and asteroid resurfacing counteract the rapid progress of solar wind optical maturation of asteroid surfaces and proposed a space weathering timescale of 10(exp 5)-10(exp 6) years.
Prediction of Backscatter and Emissivity of Snow at Millimeter Wavelengths.
1980-01-01
LIST OF FIGURES Figure Title Page C-I General Area Map 204 C-2 Location of Alpena National Weather 205 Service Station C-3 Photographs of Site E 206 C-4...February 5, 6, 7, 1979 were ob- tained from National Weather Service, Alpena Station and included in Tables C-9 through C-12. Figure C-2 shows the...relative position * 1 of the sites and the Alpena National Weather Service Station. 203 I 0 1 s LAKE HURON ROGERS CITY 20 0 5 10 MILES 0 C HEBOYGAN NORTH
Observational study of atmospheric surface layer and coastal weather in northern Qatar
NASA Astrophysics Data System (ADS)
Samanta, Dhrubajyoti; Sadr, Reza
2016-04-01
Atmospheric surface layer is the interaction medium between atmosphere and Earth's surface. Better understanding of its turbulence nature is essential in characterizing the local weather, climate variability and modeling of turbulent exchange processes. The importance of Middle East region, with its unique geographical, economical and weather condition is well recognized. However, high quality micrometeorological observational studies are rare in this region. Here we show experimental results from micrometeorological observations from an experimental site in the coastal region of Qatar during August-December 2015. Measurements of winds are obtained from three sonic anemometers installed on a 9 m tower placed at Al Ghariyah beach in northern Qatar (26.08 °N, 51.36 °E). Different surface layer characteristics is analyzed and compared with earlier studies in equivalent weather conditions. Monthly statistics of wind speed, wind direction, temperature, humidity and heat index are made from concurrent observations from sonic anemometer and weather station to explore variations with surface layer characteristics. The results also highlights potential impact of sea breeze circulation on local weather and atmospheric turbulence. The observed daily maximum temperature and heat index during morning period may be related to sea breeze circulations. Along with the operational micrometeorological observation system, a camera system and ultrasonic wave measurement system are installed recently in the site to study coastline development and nearshore wave dynamics. Overall, the complete observational set up is going to provide new insights about nearshore wind dynamics and wind-wave interaction in Qatar.
NASA Technical Reports Server (NTRS)
Noguchi, T.; Nakamura, T.; Zolensky, Michael E.; Tanaka, M.; Hashimoto, T.; Konno, M.; Nakato, A.; Ogami, T.; Fujimura, A.; Abe, M.;
2011-01-01
Surface materials on airless solar system bodies exposed to interplanetary space are gradually changed their visible to near-infrared reflectance spectra by the process called "space weathering", which makes the spectra darker and redder. Hapke et al. proposed a model of space weathering: vapor deposition of nanophase reduced iron (npFe(sup 0)) on the surfaces of the grains within the very surface of lunar regolith. This model has been proved by detailed observation of the surfaces of the lunar soil grains by transmission electron microscope (TEM). They demonstrated that npFe(sup 0) was formed by a combination of vapor deposition and irradiation effects. In other words, both micrometeorite impacts and irradiation by solar wind and galactic cosmic ray play roles on the space weathering on the Moon. Because there is a continuum of reflectance spectra from those of Q-type asteroids (almost the same as those of ordinary chondrites) to those of S-type asteroids, it is strongly suggested that reflectance spectra of asteroids composed of ordinary chondrite-like materials were modified over time to those of S-type asteroids due to space weathering. It is predicted that a small amount of npFe(sup 0) on the surface of grains in the asteroidal regolith composed of ordinary chondrite-like materials is the main agent of asteroidal space weathering.
Jovian magnetospheric weathering of Europa's nonice surface material
NASA Astrophysics Data System (ADS)
Hibbitts, Charles A.; Paranicas, Christopher; Blaney, Diana L.; Murchie, Scott; Seelos, Frank
2016-10-01
Jovian plasma and energetic charged particles bombard the Galilean satellites. These satellites vary from volcanically active (Io) to a nearly primordial surface (Callisto). These satellites are imbedded in a harsh and complex particle radiation environment that weathers their surfaces, and thus are virtual laboratories for understanding how particle bombardment alters the surfaces of airless bodies. Europa orbits deeply in the Jovian radiation belts and may have an active surface, where space weathering and geologic processes can interact in complex ways with a range of timescales. At Europa's surface temperature of 80K to 130K, the hydrated nonice material and to a lesser extent, water ice, will be thermally stable over geologic times and will exhibit the effects of weathering. The ice on the surface of Europa is amorphous and contains trace products such as H2O2 [1] due to weathering. The nonice material, which likely has an endogenic component [2] may also be partially amorphous and chemically altered as a result of being weathered by electrons, Iogenic sulfur, or other agents [3]. This hydrated salt or frozen brine likely compositionally 'matures' over time as the more weakly bound constituents are preferentially removed compared with Ca and Mg [4]. Electron bombardment induces chemical reactions through deposition of energy (e.g., ionizations) possibly explaining some of the nonice material's redness [5,6]. Concurrently, micrometeroid gardening mixes the upper surface burying weathered and altered material while exposing both fresh material and previous altered material, potentially with astrobiological implications. Our investigation of the spectral alteration of nonice analog materials irradiated by 10s keV electrons demonstrates the prevalence of this alteration and we discuss relevance to potential measurements by the Europa MISE instrument.References: [1] Moore, M. and R. Hudson, (2000), Icarus, 145, 282-288; [2] McCord et al., (1998), Science, 280, 1242; [3] Carlson et al., (2002), Icarus, 157, 456-463; [4] McCord et al., (2001), JGR, 106, E2, 3311-3319; [5] Hand, K. and R. Carlson, (2015), GRL, 10.1002/2015GRL063559. [6] Hibbitts, C.A. and Paranicas, C., ACS conference, Aug., 2016.
Temperature trends and Urban Heat Island intensity mapping of the Las Vegas valley area
NASA Astrophysics Data System (ADS)
Black, Adam Leland
Modified urban climate regions that are warmer than rural areas at night are referred to as Urban Heat Islands or UHI. Islands of warmer air over a city can be 12 degrees Celsius greater than the surrounding cooler air. The exponential growth in Las Vegas for the last two decades provides an opportunity to detect gradual temperature changes influenced by an increasing presence of urban materials. This thesis compares ground based thermometric observations and satellite based remote sensing temperature observations to identify temperature trends and UHI areas caused by urban development. Analysis of temperature trends between 2000 and 2010 at ground weather stations has revealed a general cooling trend in the Las Vegas region. Results show that urban development accompanied by increased vegetation has a cooling effect in arid climates. Analysis of long term temperature trends at McCarran and Nellis weather stations show 2.4 K and 1.2 K rise in temperature over the last 60 years. The ground weather station temperature data is related to the land surface temperature images from the Landsat Thematic Mapper to estimate and evaluate urban heat island intensity for Las Vegas. Results show that spatial and temporal trends of temperature are related to the gradual change in urban landcover. UHI are mainly observed at the airport and in the industrial areas. This research provides useful insight into the temporal behavior of the Las Vegas area.
29 CFR 1918.36 - Weather deck rails.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Weather deck rails. 1918.36 Section 1918.36 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Working Surfaces § 1918.36 Weather deck rails. Removable weather deck rails shall be kept in place except when cargo operations require them to be removed...
29 CFR 1918.36 - Weather deck rails.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 7 2012-07-01 2012-07-01 false Weather deck rails. 1918.36 Section 1918.36 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Working Surfaces § 1918.36 Weather deck rails. Removable weather deck rails shall be kept in place except when cargo operations require them to be removed...
29 CFR 1918.36 - Weather deck rails.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Weather deck rails. 1918.36 Section 1918.36 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Working Surfaces § 1918.36 Weather deck rails. Removable weather deck rails shall be kept in place except when cargo operations require them to be removed...
29 CFR 1918.36 - Weather deck rails.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 7 2013-07-01 2013-07-01 false Weather deck rails. 1918.36 Section 1918.36 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Working Surfaces § 1918.36 Weather deck rails. Removable weather deck rails shall be kept in place except when cargo operations require them to be removed...
29 CFR 1918.36 - Weather deck rails.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 7 2011-07-01 2011-07-01 false Weather deck rails. 1918.36 Section 1918.36 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Working Surfaces § 1918.36 Weather deck rails. Removable weather deck rails shall be kept in place except when cargo operations require them to be removed...
National Maps - Alaska - NOAA's National Weather Service
select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings current Forecast for Alaska is produced by the NWS Anchorage Forecast Office. It is updated daily Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and
Climate Prediction Center - The ENSO Cycle
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > El Niño/La Niña > The ENSO Cycle ENSO Cycle Banner Climate for Weather and Climate Prediction Climate Prediction Center 5830 University Research Court College
Middle Atmosphere Program. Handbook for MAP, volume 20
NASA Technical Reports Server (NTRS)
Bowhill, S. A. (Editor); Edwards, B. (Editor)
1986-01-01
Various topics related to investigations of the middle atmosphere are discussed. Numerical weather prediction, performance characteristics of weather profiling radars, determination of gravity wave and turbulence parameters, case studies of gravity-wave propagation, turbulence and diffusion due to gravity waves, the climatology of gravity waves, mesosphere-stratosphere-troposphere radar, antenna arrays, and data management techniques are among the topics discussed.
Mandla A. Tshabalala; John E. Gangstad
2003-01-01
Accelerated weathering of wood surfaces coated with hexadecyltrimethoxysilane (HDTMOS) in the presence of methyltrimethoxysilane (MTMOS) by the sol-gel process was investigated. The sol-gel process allowed the deposition of a covalently bound thin layer of polysiloxane networks on the wood surface that was resistant to water sorption and water leaching. The rate of...
Simulating the Reiner Gamma Lunar Swirl: Solar Wind Standoff Works!
NASA Astrophysics Data System (ADS)
Deca, Jan; Divin, Andrey; Lue, Charles; Ahmadi, Tara; Horányi, Mihály
2017-04-01
Discovered by early astronomers during the Renaissance, the Reiner Gamma formation is a prominent lunar surface feature. Observations have shown that the tadpole-shaped albedo marking, or swirl, is co-located with one of the strongest crustal magnetic anomalies on the Moon. The region therefore presents an ideal test case to constrain the kinetic solar wind interaction with lunar magnetic anomalies and its possible consequences for lunar swirl formation. All known swirls have been associated with magnetic anomalies, but the opposite does not hold. The evolutionary scenario of the lunar albedo markings has been under debate since the Apollo era. By coupling fully kinetic simulations with a surface vector mapping model based on Kaguya and Lunar Prospector magnetic field measurements, we show that solar wind standoff is the dominant process to have formed the lunar swirls. It is an ion-electron kinetic interaction mechanism that locally prevents weathering by solar wind ions and the subsequent formation of nanophase iron. The correlation between the surface weathering process and the surface reflectance is optimal when evaluating the proton energy flux, rather than the proton density or number flux. This is an important result to characterise the primary process for surface darkening. In addition, the simulated proton reflection rate is for the first time directly compared with in-orbit flux measurements from the SARA:SWIM ion sensor onboard the Chandrayaan-1 spacecraft. The agreement is found excellent. Understanding the relation between the lunar surface albedo features and the co-located magnetic anomaly is essential for our interpretation of the Moon's geological history, space weathering, and to evaluate future lunar exploration opportunities. This work was supported in part by NASA's Solar System Exploration Research Virtual Institute (SSERVI): Institute for Modeling Plasmas, Atmosphere, and Cosmic Dust (IMPACT). The work by C.L. was supported by NASA grant NNX15AP89G. Resources were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. Part of this work was inspired by discussions within International Team 336: "Plasma Surface Interactions with Airless Bodies in Space and the Laboratory" at the International Space Science Institute, Bern, Switzerland. The LRO-WAC data are publicly available from the NASA PDS Imaging Node. The Wind/MFI and Wind/SWE data used in this study are available via the NASA National Space Science Data Center, Space Physics Data Facility, and the MIT Space Plasma Group. The Chandrayaan-1/SARA data are available via the Indian Space Science Data Center.
Effects of Knowledge and Display Design on Comprehension of Complex Graphics
ERIC Educational Resources Information Center
Canham, Matt; Hegarty, Mary
2010-01-01
In two experiments, participants made inferences from weather maps, before and after they received instruction about relevant meteorological principles. Different versions of the maps showed either task-relevant information alone, or both task-relevant and task-irrelevant information. Participants improved on the inference task after instruction,…
Colorado Lightning Mapping Array Collaborations through the GOES-R Visiting Scientist Program
NASA Technical Reports Server (NTRS)
Stano, Geoffrey T.; Szoke, Edward; Rydell, Nezette; Cox, Robert; Mazur, Rebecca
2014-01-01
For the past two years, the GOES-R Proving Ground has solicited proposals for its Visiting Scientist Program. NASA's Short-term Prediction Research and Transition (SPoRT) Center has used this opportunity to support the GOES-R Proving Ground by expanding SPoRT's total lightning collaborations. In 2012, this expanded the evaluation of SPoRT's pseudo-geostationary lightning mapper product to the Aviation Weather Center and Storm Prediction Center. This year, SPoRT has collaborated with the Colorado Lightning Mapping Array (COLMA) and potential end users. In particular, SPoRT is collaborating with the Cooperative Institute for Research in the Atmosphere (CIRA) and Colorado State University (CSU) to obtain these data in real-time. From there, SPoRT is supporting the transition of these data to the local forecast offices in Boulder, Colorado and Cheyenne, Wyoming as well as to Proving Ground projects (e.g., the Hazardous Weather Testbed's Spring Program and Aviation Weather Center's Summer Experiment). This presentation will focus on the results of this particular Visiting Scientist Program trip. In particular, the COLMA data are being provided to both forecast offices for initial familiarization. Additionally, several forecast issues have been highlighted as important uses for COLMA data in the operational environment. These include the utility of these data for fire weather situations, situational awareness for both severe weather and lightning safety, and formal evaluations to take place in the spring of 2014.
An improved dehazing algorithm of aerial high-definition image
NASA Astrophysics Data System (ADS)
Jiang, Wentao; Ji, Ming; Huang, Xiying; Wang, Chao; Yang, Yizhou; Li, Tao; Wang, Jiaoying; Zhang, Ying
2016-01-01
For unmanned aerial vehicle(UAV) images, the sensor can not get high quality images due to fog and haze weather. To solve this problem, An improved dehazing algorithm of aerial high-definition image is proposed. Based on the model of dark channel prior, the new algorithm firstly extracts the edges from crude estimated transmission map and expands the extracted edges. Then according to the expended edges, the algorithm sets a threshold value to divide the crude estimated transmission map into different areas and makes different guided filter on the different areas compute the optimized transmission map. The experimental results demonstrate that the performance of the proposed algorithm is substantially the same as the one based on dark channel prior and guided filter. The average computation time of the new algorithm is around 40% of the one as well as the detection ability of UAV image is improved effectively in fog and haze weather.
NASA Astrophysics Data System (ADS)
Chang, Liang; Liu, Min; Guo, Lixin; He, Xiufeng; Gao, Guoping
2016-10-01
The estimation of atmospheric water vapor with high resolution is important for operational weather forecasting, climate monitoring, atmospheric research, and numerous other applications. The 40 m×40 m and 30 m×30 m differential precipitable water vapor (ΔPWV) maps are generated with C- and L-band synthetic aperture radar interferometry (InSAR) images over Shanghai, China, respectively. The ΔPWV maps are accessed via comparisons with the spatiotemporally synchronized PWV measurements from the European Centre for Medium-Range Weather Forecasts Interim reanalysis at the finest resolution and global positioning system observations, respectively. Results reveal that the ΔPWV maps can be estimated from both C- and L-band InSAR images with an accuracy of better than 2.0 mm, which, therefore, demonstrates the ability of InSAR observations at both C- and L-band to detect the water vapor distribution with high spatial resolution.
Predicting Airspace Capacity Impacts Using the Consolidated Storm Prediction for Aviation
NASA Technical Reports Server (NTRS)
Russell, Carl
2010-01-01
Convective weather is currently the largest contributor to air traffic delays in the United States. In order to make effective traffic flow management decisions to mitigate these delays, weather forecasts must be made as early and as accurately as possible. A forecast product that could be used to mitigate convective weather impacts is the Consolidated Storm Prediction for Aviation. This product provides forecasts of cloud water content and convective top heights at 0- to 8-hour look-ahead times. The objective of this study was to examine a method of predicting the impact of convective weather on air traffic sector capacities using these forecasts. Polygons representing forecast convective weather were overlaid at multiple flight levels on a sector map to calculate the fraction of each sector covered by weather. The fractional volume coverage was used as the primary metric to determine convection s impact on sectors. Results reveal that the forecasts can be used to predict the probability and magnitude of weather impacts on sector capacity up to eight hours in advance.
Evolution of Shock Melt Compositions in Lunar Regoliths
NASA Technical Reports Server (NTRS)
Vance, A. M.; Christoffersen, R.; Keller, L. P.; Berger, E. L.; Noble, S. K.
2016-01-01
Space weathering processes - driven primarily by solar wind ion and micrometeorite bombardment, are constantly changing the surface regoliths of airless bodies, such as the Moon. It is essential to study lunar soils in order to fully under-stand the processes of space weathering, and how they alter the optical reflectance spectral properties of the lunar surface relative to bedrock. Lunar agglutinates are aggregates of regolith grains fused together in a glassy matrix of shock melt produced during micrometeorite impacts into the lunar regolith. The formation of the shock melt component in agglutinates involves reduction of Fe in the target material to generate nm-scale spherules of metallic Fe (nanophase Fe0 or npFe0). The ratio of elemental Fe, in the form of npFe0, to FeO in a given bulk soil indicates its maturity, which increases with length of surface exposure as well as being typically higher in the finer-size fraction of soils. The melting and mixing process in agglutinate formation remain poorly understood. This includes incomplete knowledge regarding how the homogeneity and overall compositional trends of the agglutinate glass portions (agglutinitic glass) evolve with maturity. The aim of this study is to use sub-micrometer scale X-ray compositional mapping and image analysis to quantify the chemical homogeneity of agglutinitic glass, correlate its homogeneity to its parent soil maturity, and identify the principal chemical components contributing to the shock melt composition variations. An additional focus is to see if agglutinitic glass contains anomalously high Fe sub-micron scale compositional domains similar to those recently reported in glassy patina coatings on lunar rocks.
Lunar Ion Transport Near Magnetic Anomalies: Possible Implications for Swirl Formation
NASA Technical Reports Server (NTRS)
Keller, J. W.; Killen, R. M.; Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.
2011-01-01
The bright swirling features on the lunar surface in areas around the Moon but most prominently at Reiner Gamma, have intrigued scientists for many years. After Apollo and later Lunar Prospector (LP} mapped the Lunar magnetic fields from orbit, it was observed that these features are generally associated with crustal magnetic anomalies. This led researchers to propose a number of explanations for the swirls that invoke these fields. Prominent among these include magnetic shielding in the form of a mini-magnetosphere which impedes space weathering by the solar wind, magnetically controlled dust transport, and cometary or asteroidal impacts that would result in shock magnetization with concomitant formation ofthe swirls. In this presentation, we will consider another possibility, that the ambient magnetic and electric fields can transport and channel secondary ions produced by micrometeorite or solar wind ion impacts. In this scenario, ions that are created in these impacts are under the influence of these fields and can drift for significant distances before encountering the magnetic anomalies when their trajectories are disrupted and concentrated onto nearby areas. These ions may then be responsible for chemical alteration of the surface leading either to a brightening effect or a disruption of space weathering processes. To test this hypothesis we have run ion trajectory simulations that show ions from regions about the magnetic anomalies can be channeled into very small areas near the anomalies and although questions remain as to nature of the mechanisms that could lead to brightening of the surface it appears that the channeling effect is consistent with the existence of the swirls.
Geophysical imaging reveals topographic stress control of bedrock weathering
NASA Astrophysics Data System (ADS)
St. Clair, J.; Moon, S.; Holbrook, W. S.; Perron, J. T.; Riebe, C. S.; Martel, S. J.; Carr, B.; Harman, C.; Singha, K.; Richter, D. deB.
2015-10-01
Bedrock fracture systems facilitate weathering, allowing fresh mineral surfaces to interact with corrosive waters and biota from Earth’s surface, while simultaneously promoting drainage of chemically equilibrated fluids. We show that topographic perturbations to regional stress fields explain bedrock fracture distributions, as revealed by seismic velocity and electrical resistivity surveys from three landscapes. The base of the fracture-rich zone mirrors surface topography where the ratio of horizontal compressive tectonic stresses to near-surface gravitational stresses is relatively large, and it parallels the surface topography where the ratio is relatively small. Three-dimensional stress calculations predict these results, suggesting that tectonic stresses interact with topography to influence bedrock disaggregation, groundwater flow, chemical weathering, and the depth of the “critical zone” in which many biogeochemical processes occur.
Radar image and data fusion for natural hazards characterisation
Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Jixian; Zhang, Yonghong
2010-01-01
Fusion of synthetic aperture radar (SAR) images through interferometric, polarimetric and tomographic processing provides an all - weather imaging capability to characterise and monitor various natural hazards. This article outlines interferometric synthetic aperture radar (InSAR) processing and products and their utility for natural hazards characterisation, provides an overview of the techniques and applications related to fusion of SAR/InSAR images with optical and other images and highlights the emerging SAR fusion technologies. In addition to providing precise land - surface digital elevation maps, SAR - derived imaging products can map millimetre - scale elevation changes driven by volcanic, seismic and hydrogeologic processes, by landslides and wildfires and other natural hazards. With products derived from the fusion of SAR and other images, scientists can monitor the progress of flooding, estimate water storage changes in wetlands for improved hydrological modelling predictions and assessments of future flood impacts and map vegetation structure on a global scale and monitor its changes due to such processes as fire, volcanic eruption and deforestation. With the availability of SAR images in near real - time from multiple satellites in the near future, the fusion of SAR images with other images and data is playing an increasingly important role in understanding and forecasting natural hazards.
Operational Use of OGC Web Services at the Met Office
NASA Astrophysics Data System (ADS)
Wright, Bruce
2010-05-01
The Met Office has adopted the Service-Orientated Architecture paradigm to deliver services to a range of customers through Rich Internet Applications (RIAs). The approach uses standard Open Geospatial Consortium (OGC) web services to provide information to web-based applications through a range of generic data services. "Invent", the Met Office beta site, is used to showcase Met Office future plans for presenting web-based weather forecasts, product and information to the public. This currently hosts a freely accessible Weather Map Viewer, written in JavaScript, which accesses a Web Map Service (WMS), to deliver innovative web-based visualizations of weather and its potential impacts to the public. The intention is to engage the public in the development of new web-based services that more accurately meet their needs. As the service is intended for public use within the UK, it has been designed to support a user base of 5 million, the analysed level of UK web traffic reaching the Met Office's public weather information site. The required scalability has been realised through the use of multi-tier tile caching: - WMS requests are made for 256x256 tiles for fixed areas and zoom levels; - a Tile Cache, developed in house, efficiently serves tiles on demand, managing WMS request for the new tiles; - Edge Servers, externally hosted by Akamai, provide a highly scalable (UK-centric) service for pre-cached tiles, passing new requests to the Tile Cache; - the Invent Weather Map Viewer uses the Google Maps API to request tiles from Edge Servers. (We would expect to make use of the Web Map Tiling Service, when it becomes an OGC standard.) The Met Office delivers specialist commercial products to market sectors such as transport, utilities and defence, which exploit a Web Feature Service (WFS) for data relating forecasts and observations to specific geographic features, and a Web Coverage Service (WCS) for sub-selections of gridded data. These are locally rendered as maps or graphs, and combined with the WMS pre-rendered images and text, in a FLEX application, to provide sophisticated, user impact-based view of the weather. The OGC web services supporting these applications have been developed in collaboration with commercial companies. Visual Weather was originally a desktop application for forecasters, but IBL have developed it to expose the full range of forecast and observation data through standard web services (WCS and WMS). Forecasts and observations relating to specific locations and geographic features are held in an Oracle Database, and exposed as a WFS using Snowflake Software's GO-Publisher application. The Met Office has worked closely with both IBL and Snowflake Software to ensure that the web services provided strike a balance between conformance to the standards and performance in an operational environment. This has proved challenging in areas where the standards are rapidly evolving (e.g. WCS) or do not allow adequate description of the Met-Ocean domain (e.g. multiple time coordinates and parametric vertical coordinates). It has also become clear that careful selection of the features to expose, based on the way in which you expect users to query those features, in necessary in order to deliver adequate performance. These experiences are providing useful 'real-world' input in to the recently launched OGC MetOcean Domain Working Group and World Meteorological Organisation (WMO) initiatives in this area.