Sample records for surface weather observations

  1. History of surface weather observations in the United States

    NASA Astrophysics Data System (ADS)

    Fiebrich, Christopher A.

    2009-04-01

    In this paper, the history of surface weather observations in the United States is reviewed. Local weather observations were first documented in the 17th Century along the East Coast. For many years, the progression of a weather observation from an initial reading to dissemination remained a slow and laborious process. The number of observers remained small and unorganized until agencies including the Surgeon General, Army, and General Land Office began to request regular observations at satellite locations in the 1800s. The Smithsonian was responsible for first organizing a large "network" of volunteer weather observers across the nation. These observers became the foundation for today's Cooperative Observer network. As applications of weather data continued to grow and users required the data with an ever-decreasing latency, automated weather networks saw rapid growth in the later part of the 20th century. Today, the number of weather observations across the U.S. totals in the tens of thousands due largely to privately-owned weather networks and amateur weather observers who submit observations over the internet.

  2. Development of a fire weather index using meteorological observations within the Northeast United States

    Treesearch

    Michael J. Erickson; Joseph J. Charney; Brian A. Colle

    2016-01-01

    A fire weather index (FWI) is developed using wildfire occurrence data and Automated Surface Observing System weather observations within a subregion of the northeastern United States (NEUS) from 1999 to 2008. Average values of several meteorological variables, including near-surface temperature, relative humidity, dewpoint, wind speed, and cumulative daily...

  3. Automation of surface observations program

    NASA Technical Reports Server (NTRS)

    Short, Steve E.

    1988-01-01

    At present, surface weather observing methods are still largely manual and labor intensive. Through the nationwide implementation of Automated Surface Observing Systems (ASOS), this situation can be improved. Two ASOS capability levels are planned. The first is a basic-level system which will automatically observe the weather parameters essential for aviation operations and will operate either with or without supplemental contributions by an observer. The second is a more fully automated, stand-alone system which will observe and report the full range of weather parameters and will operate primarily in the unattended mode. Approximately 250 systems are planned by the end of the decade. When deployed, these systems will generate the standard hourly and special long-line transmitted weather observations, as well as provide continuous weather information direct to airport users. Specific ASOS configurations will vary depending upon whether the operation is unattended, minimally attended, or fully attended. The major functions of ASOS are data collection, data processing, product distribution, and system control. The program phases of development, demonstration, production system acquisition, and operational implementation are described.

  4. Advancing land surface model development with satellite-based Earth observations

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  5. Observational study of atmospheric surface layer and coastal weather in northern Qatar

    NASA Astrophysics Data System (ADS)

    Samanta, Dhrubajyoti; Sadr, Reza

    2016-04-01

    Atmospheric surface layer is the interaction medium between atmosphere and Earth's surface. Better understanding of its turbulence nature is essential in characterizing the local weather, climate variability and modeling of turbulent exchange processes. The importance of Middle East region, with its unique geographical, economical and weather condition is well recognized. However, high quality micrometeorological observational studies are rare in this region. Here we show experimental results from micrometeorological observations from an experimental site in the coastal region of Qatar during August-December 2015. Measurements of winds are obtained from three sonic anemometers installed on a 9 m tower placed at Al Ghariyah beach in northern Qatar (26.08 °N, 51.36 °E). Different surface layer characteristics is analyzed and compared with earlier studies in equivalent weather conditions. Monthly statistics of wind speed, wind direction, temperature, humidity and heat index are made from concurrent observations from sonic anemometer and weather station to explore variations with surface layer characteristics. The results also highlights potential impact of sea breeze circulation on local weather and atmospheric turbulence. The observed daily maximum temperature and heat index during morning period may be related to sea breeze circulations. Along with the operational micrometeorological observation system, a camera system and ultrasonic wave measurement system are installed recently in the site to study coastline development and nearshore wave dynamics. Overall, the complete observational set up is going to provide new insights about nearshore wind dynamics and wind-wave interaction in Qatar.

  6. 47 CFR 87.525 - Scope of service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...

  7. 47 CFR 87.525 - Scope of service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...

  8. 47 CFR 87.525 - Scope of service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...

  9. 47 CFR 87.525 - Scope of service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...

  10. 47 CFR 87.525 - Scope of service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...

  11. Asian Dust Weather Categorization with Satellite and Surface Observations

    NASA Technical Reports Server (NTRS)

    Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen

    2011-01-01

    This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.

  12. Hurlburt Field, Florida. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1982-09-20

    SURFACE WEATHER OBSERVATIONS 2 2 SEP W ISJRLSURT FLD FL MSC #747770 E 30 26 w o86 41 FLU ELEV 38 FT FRT PARTS A-F POR FROM HOURLY OBS: JAN 67 - DEC 70...amounts and extreme valuesl; C) Surface winds; (D) Ceiling versus Visibility; Sky Cover; ( E )-Psychrometric Summaries (daily maximum and minimum...for this station: PART A WEATHER CONDITIONS PART E DAILY MAX, MIN, & MEAN TEMP ATMOSPHERIC PHENOMENA EXTREME MAX & MIN TEMP PART I PRECIPITATION

  13. Mineralogy and evolution of the surface of Mars: A review

    NASA Astrophysics Data System (ADS)

    Chevrier, V.; Mathé, P. E.

    2007-02-01

    We review the mineralogy of the surface of Mars, using data from various sources, including in situ characterisations performed by landers, remote observations from orbit, and studies of the SNC meteorites. We also discuss the possible alteration processes and the factor controlling them, and try to relate the mineralogical observations to the chemical evolution of the surface materials on Mars in order to identify the dominant process(es). Then we try to describe a possible chemical and mineralogical evolution of the surface materials, resulting from weathering driven by the abundance and activity of water. Even if weathering is the dominant process responsible for the surface evolution, all observations suggest that it is strongly affected locally in time and space by various other processes including hydrothermalism, volcanism, evaporites, meteoritic impacts and aeolian erosion. Nevertheless, the observed phases on the surface of Mars globally depend on the evolution of the weathering conditions. This hypothesis, if confirmed, could give a new view of the evolution of the martian surface, roughly in three steps. The first would correspond to clay-type weathering process in the Noachian, under a probable thick H 2O/CO 2-rich atmosphere. Then, during the Hesperian when water became scarcer and its activity sporadic, linked to volcanic activity, sulfate-type acidic weathering process would have been predominant. The third period would be like today, a very slow weathering by strongly oxidising agents (H 2O 2, O 2) in cold and dry conditions, through solid-gas or solid-films of water resulting frost-thaw and/or acid fog. This would favour poorly crystalline phases, mainly iron (oxy) hydroxides. But in this scenario many questions remain about the transition between these processes, and about the factors affecting the evolution of the weathering process.

  14. Measurement of fog and haze extinction characteristics and availability evaluation of free space optical link under the sea surface environment.

    PubMed

    Wu, Xiaojun; Wang, Hongxing; Song, Bo

    2015-02-10

    Fog and haze can lead to changes in extinction characteristics. Therefore, the performance of the free space optical link is highly influenced by severe weather conditions. Considering the influential behavior of weather conditions, a state-of-the-art solution for the observation of fog and haze over the sea surface is presented in this paper. A Mie scattering laser radar, with a wavelength of 532 nm, is used to observe the weather conditions of the sea surface environment. The horizontal extinction coefficients and visibilities are obtained from the observation data, and the results are presented in the paper. The changes in the characteristics of extinction coefficients and visibilities are analyzed based on both the short-term (6 days) severe weather data and long-term (6 months) data. Finally, the availability performance of the free space optical communication link is evaluated under the sea surface environment.

  15. 15 CFR 946.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE REGULATIONS OF THE NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.2 Definitions. Automate (or automation) means to replace employees performing surface observations at a field office with automated weather service observation...

  16. 15 CFR 946.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE REGULATIONS OF THE NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.2 Definitions. Automate (or automation) means to replace employees performing surface observations at a field office with automated weather service observation...

  17. 15 CFR 946.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE REGULATIONS OF THE NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.2 Definitions. Automate (or automation) means to replace employees performing surface observations at a field office with automated weather service observation...

  18. 15 CFR 946.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE REGULATIONS OF THE NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.2 Definitions. Automate (or automation) means to replace employees performing surface observations at a field office with automated weather service observation...

  19. 15 CFR 946.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE REGULATIONS OF THE NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.2 Definitions. Automate (or automation) means to replace employees performing surface observations at a field office with automated weather service observation...

  20. Introduction of the Mobile Platform for the Meteorological Observations in Seoul Metropolitan City of Korea

    NASA Astrophysics Data System (ADS)

    Baek, K. T.; Lee, S.; Kang, M.; Lee, G.

    2016-12-01

    Traffic accidents due to adverse weather such as fog, heavy rainfall, flooding and road surface freezing have been increasing in Korea. To reduce damages caused by the severe weather on the road, a forecast service of combined real-time road-wise weather and the traffic situation is required. Conventional stationary meteorological observations in sparse location system are limited to observe the detailed road environment. For this reason, a mobile meteorological observation platform has been coupled in Weather Information Service Engine (WISE) which is the prototype of urban-scale high resolution weather prediction system in Seoul metropolitan area of Korea in early August 2016. The instruments onboard are designed to measure 15 meteorological parameters; pressure, temperature, relative humidity, precipitation, up/down net radiation, up/down longwave radiation, up/down shortwave radiation, road surface condition, friction coefficient, water depth, wind direction and speed. The observations from mobile platform show a distinctive advantage of data collection in need for road conditions and inputs for the numerical forecast model. In this study, we introduce and examine the feasibility of mobile observations in urban weather prediction and applications.

  1. Surface chemistry associated with the cooling and subaerial weathering of recent basalt flows

    USGS Publications Warehouse

    White, A.F.; Hochella, M.F.

    1992-01-01

    The surface chemistry of fresh and weathered historical basalt flows was characterized using surface-sensitive X-ray photoelectron spectroscopy (XPS). Surfaces of unweathered 1987-1990 flows from the Kilauea Volcano, Hawaii, exhibited variable enrichment in Al, Mg, Ca, and F due to the formation of refractory fluoride compounds and pronounced depletion in Si and Fe from the volatilization of SiF4 and FeF3 during cooling. These reactions, as predicted from shifts in thermodynamic equilibrium with temperature, are induced by diffusion of HF from the flow interiors to the cooling surface. The lack of Si loss and solid fluoride formation for recent basalts from the Krafla Volcano, Iceland, suggest HF degassing at higher temperatures. Subsequent short-term subaerial weathering reactions are strongly influenced by the initial surface composition of the flow and therefore its cooling history. Successive samples collected from the 1987 Kilauea flow demonstrated that the fluoridated flow surfaces leached to a predominantly SiO2 composition by natural weathering within one year. These chemically depleted surfaces were also observed on Hawaiian basalt flows dating back to 1801 AD. Solubility and kinetic models, based on thermodynamic and kinetic data for crystalline AlF3, MgF2, and CaF2, support observed elemental depletion rates due to chemical weathering. Additional loss of alkalis from the Hawaiian basalt occurs from incongruent dissolution of the basalt glass substrate during weathering. ?? 1992.

  2. Enhancing USDA's Retrospective Analog Year Analyses Using NASA Satellite Precipitation and Soil Moisture Data

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; Shannon, H. D.

    2013-12-01

    The USDA World Agricultural Outlook Board (WAOB) is responsible for monitoring weather and climate impacts on domestic and foreign crop development. One of WAOB's primary goals is to determine the net cumulative effect of weather and climate anomalies on final crop yields. To this end, a broad array of information is consulted, including maps, charts, and time series of recent weather, climate, and crop observations; numerical output from weather and crop models; and reports from the press, USDA attachés, and foreign governments. The resulting agricultural weather assessments are published in the Weekly Weather and Crop Bulletin, to keep farmers, policy makers, and commercial agricultural interests informed of weather and climate impacts on agriculture. Because both the amount and timing of precipitation significantly affect crop yields, WAOB has often, as part of its operational process, used historical time series of surface-based precipitation observations to visually identify growing seasons with similar (analog) weather patterns as, and help estimate crop yields for, the current growing season. As part of a larger effort to improve WAOB estimates by integrating NASA remote sensing observations and research results into WAOB's decision-making environment, a more rigorous, statistical method for identifying analog years was developed. This method, termed the analog index (AI), is based on the Nash-Sutcliffe model efficiency coefficient. The AI was computed for five study areas and six growing seasons of data analyzed (2003-2007 as potential analog years and 2008 as the target year). Previously reported results compared the performance of AI for time series derived from surface-based observations vs. satellite-retrieved precipitation data. Those results showed that, for all five areas, crop yield estimates derived from satellite-retrieved precipitation data are closer to measured yields than are estimates derived from surface-based precipitation observations. Subsequent work has compared the relative performance of AI for time series derived from satellite-retrieved surface soil moisture data and from root zone soil moisture derived from the assimilation of surface soil moisture data into a land surface model. These results, which also showed the potential benefits of satellite data for analog year analyses, will be presented.

  3. Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations in Data Sparse Regions

    NASA Astrophysics Data System (ADS)

    Kucera, Paul; Steinson, Martin

    2017-04-01

    Accurate and reliable real-time monitoring and dissemination of observations of surface weather conditions is critical for a variety of societal applications. Applications that provide local and regional information about temperature, precipitation, moisture, and winds, for example, are important for agriculture, water resource monitoring, health, and monitoring of hazard weather conditions. In many regions of the World, surface weather stations are sparsely located and/or of poor quality. Existing stations have often been sited incorrectly, not well-maintained, and have limited communications established at the site for real-time monitoring. The University Corporation for Atmospheric Research (UCAR)/National Center for Atmospheric Research (NCAR), with support from USAID, has started an initiative to develop and deploy low-cost weather instrumentation in sparsely observed regions of the world. The project is focused on improving weather observations for environmental monitoring and early warning alert systems on a regional to global scale. Instrumentation that has been developed use innovative new technologies such as 3D printers, Raspberry Pi computing systems, and wireless communications. The goal of the project is to make the weather station designs, software, and processing tools an open community resource. The weather stations can be built locally by agencies, through educational institutions, and residential communities as a citizen effort to augment existing networks to improve detection of natural hazards for disaster risk reduction. The presentation will provide an overview of the open source weather station technology and evaluation of sensor observations for the initial networks that have been deployed in Africa.

  4. Development of Innovative Technology to Expand Precipitation Observations in Satellite Precipitation Validation in Under-developed Data-sparse Regions

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Steinson, M.

    2016-12-01

    Accurate and reliable real-time monitoring and dissemination of observations of precipitation and surface weather conditions in general is critical for a variety of research studies and applications. Surface precipitation observations provide important reference information for evaluating satellite (e.g., GPM) precipitation estimates. High quality surface observations of precipitation, temperature, moisture, and winds are important for applications such as agriculture, water resource monitoring, health, and hazardous weather early warning systems. In many regions of the World, surface weather station and precipitation gauge networks are sparsely located and/or of poor quality. Existing stations have often been sited incorrectly, not well-maintained, and have limited communications established at the site for real-time monitoring. The University Corporation for Atmospheric Research (UCAR)/National Center for Atmospheric Research (NCAR), with support from USAID, has started an initiative to develop and deploy low-cost weather instrumentation including tipping bucket and weighing-type precipitation gauges in sparsely observed regions of the world. The goal is to improve the number of observations (temporally and spatially) for the evaluation of satellite precipitation estimates in data-sparse regions and to improve the quality of applications for environmental monitoring and early warning alert systems on a regional to global scale. One important aspect of this initiative is to make the data open to the community. The weather station instrumentation have been developed using innovative new technologies such as 3D printers, Raspberry Pi computing systems, and wireless communications. An initial pilot project have been implemented in the country of Zambia. This effort could be expanded to other data sparse regions around the globe. The presentation will provide an overview and demonstration of 3D printed weather station development and initial evaluation of observed precipitation datasets.

  5. Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations

    NASA Astrophysics Data System (ADS)

    Kucera, Paul; Steinson, Martin

    2016-04-01

    Accurate and reliable real-time monitoring and dissemination of observations of surface weather conditions is critical for a variety of societal applications. Applications that provide local and regional information about temperature, precipitation, moisture, and winds, for example, are important for agriculture, water resource monitoring, health, and monitoring of hazard weather conditions. In many regions in Africa (and other global locations), surface weather stations are sparsely located and/or of poor quality. Existing stations have often been sited incorrectly, not well-maintained, and have limited communications established at the site for real-time monitoring. The US National Weather Service (NWS) International Activities Office (IAO) in partnership with University Corporation for Atmospheric Research (UCAR)/National Center for Atmospheric Research (NCAR) and funded by the United States Agency for International Development (USAID) Office of Foreign Disaster Assistance (OFDA) has started an initiative to develop and deploy low-cost weather instrumentation in sparsely observed regions of the world. The goal is to provide observations for environmental monitoring, and early warning alert systems that can be deployed at weather services in developing countries. Instrumentation is being designed using innovative new technologies such as 3D printers, Raspberry Pi computing systems, and wireless communications. The initial effort is focused on designing a surface network using GIS-based tools, deploying an initial network in Zambia, and providing training to Zambia Meteorological Department (ZMD) staff. The presentation will provide an overview of the project concepts, design of the low cost instrumentation, and initial experiences deploying a surface network deployment in Zambia.

  6. An attempt to comprehend Martian weathering conditions through the analysis of terrestrial palagonite samples

    NASA Technical Reports Server (NTRS)

    Douglas, C.; Wright, I. P.; Bell, J. B.; Morris, R. V.; Golden, D. C.; Pillinger, C. T.

    1993-01-01

    Spectroscopic observations of the Martian surface in the invisible to near infrared (0.4-1.0 micron), coupled with measurements made by Viking, have shown that the surface is composed of a mixture of fine-grained weathered and nonweathered minerals. The majority of the weathered components are thought to be materials like smectite clays, scapolite, or palagonite. Until materials are returned for analysis there are two possible ways of proceeding with an investigation of Martian surface processes: (1) the study of weathering products in meteorites that have a Martian origin (SNC's), and (2) the analysis of certain terrestrial weathering products as analogs to the material found in SNC's, or predicted to be present on the Martian surface. We describe some preliminary measurements of the carbon chemistry of terrestrial palagonite samples that exhibit spectroscopic similarities with the Martian surface. The data should aid the understanding of weathering in SNC's and comparisons between terrestrial palagonites and the Martian surface.

  7. Utilization of satellite imagery by in-flight aircraft. [for weather information

    NASA Technical Reports Server (NTRS)

    Luers, J. K.

    1976-01-01

    Present and future utilization of satellite weather data by commercial aircraft while in flight was assessed. Weather information of interest to aviation that is available or will become available with future geostationary satellites includes the following: severe weather areas, jet stream location, weather observation at destination airport, fog areas, and vertical temperature profiles. Utilization of this information by in-flight aircraft is especially beneficial for flights over the oceans or over remote land areas where surface-based observations and communications are sparse and inadequate.

  8. MESSENGER Observations of Extreme Space Weather in Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Slavin, J. A.

    2013-09-01

    Increasing activity on the Sun is allowing MESSENGER to make its first observations of Mercury's magnetosphere under extreme solar wind conditions. At Earth interplanetary shock waves and coronal mass ejections produce severe "space weather" in the form of large geomagnetic storms that affect telecommunications, space systems, and ground-based power grids. In the case of Mercury the primary effect of extreme space weather in on the degree to which this it's weak global magnetic field can shield the planet from the solar wind. Direct impact of the solar wind on the surface of airless bodies like Mercury results in space weathering of the regolith and the sputtering of atomic species like sodium and calcium to high altitudes where they contribute to a tenuous, but highly dynamic exosphere. MESSENGER observations indicate that during extreme interplanetary conditions the solar wind plasma gains access to the surface of Mercury through three main regions: 1. The magnetospheric cusps, which fill with energized solar wind and planetary ions; 2. The subsolar magnetopause, which is compressed and eroded by reconnection to very low altitudes where the natural gyro-motion of solar wind protons may result in their impact on the surface; 3. The magnetotail where hot plasma sheet ions rapidly convect sunward to impact the surface on the nightside of Mercury. The possible implications of these new MESSENGER observations for our ability to predict space weather at Earth and other planets will be described.

  9. Linking the Weather Generator with Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin; Farda, Ales; Skalak, Petr; Huth, Radan

    2013-04-01

    One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking the stochastic weather generator with the climate model output. The present contribution, in which the parametric daily surface weather generator (WG) M&Rfi is linked to the RCM output, follows two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate Regional Climate Model at 25 km resolution. The WG parameters are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series (including probability of wet day occurrence). (2) Presenting a methodology for linking the WG with RCM output. This methodology, which is based on merging information from observations and RCM, may be interpreted as a downscaling procedure, whose product is a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations. In this procedure, WG is calibrated with RCM-simulated multi-variate weather series in the first step, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with gridded RCM weather series and spatially scarcer observations. The quality of the weather series produced by the resultant gridded WG will be assessed in terms of selected climatic characteristics (focusing on characteristics related to variability and extremes of surface temperature and precipitation). Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102 action).

  10. Demonstrating the Alaska Ocean Observing System in Prince William Sound

    NASA Astrophysics Data System (ADS)

    Schoch, G. Carl; McCammon, Molly

    2013-07-01

    The Alaska Ocean Observing System and the Oil Spill Recovery Institute developed a demonstration project over a 5 year period in Prince William Sound. The primary goal was to develop a quasi-operational system that delivers weather and ocean information in near real time to diverse user communities. This observing system now consists of atmospheric and oceanic sensors, and a new generation of computer models to numerically simulate and forecast weather, waves, and ocean circulation. A state of the art data management system provides access to these products from one internet portal at http://www.aoos.org. The project culminated in a 2009 field experiment that evaluated the observing system and performance of the model forecasts. Observations from terrestrial weather stations and weather buoys validated atmospheric circulation forecasts. Observations from wave gages on weather buoys validated forecasts of significant wave heights and periods. There was an emphasis on validation of surface currents forecasted by the ocean circulation model for oil spill response and search and rescue applications. During the 18 day field experiment a radar array mapped surface currents and drifting buoys were deployed. Hydrographic profiles at fixed stations, and by autonomous vehicles along transects, were made to acquire measurements through the water column. Terrestrial weather stations were the most reliable and least costly to operate, and in situ ocean sensors were more costly and considerably less reliable. The radar surface current mappers were the least reliable and most costly but provided the assimilation and validation data that most improved ocean circulation forecasts. We describe the setting of Prince William Sound and the various observational platforms and forecast models of the observing system, and discuss recommendations for future development.

  11. Altus AFB, Oklahoma Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1985-09-01

    4 _ 2; 4, InI Air Weather Service ( MAC) Aft 1 REVISED UNIFOCM SUMMAARY CW SC IL!8k 2 SURFACE WATHER OBE3RVATION$ 2b1l__ ALTUS m~F3 OK.MC 732 4 40 99...BRANCH PERCENIA6E FRECQUENCY OF OCCURRENCE OF CEILING VERSUS VISIBILIIV USAFTEAC FRON HOURLY OBSERVATIONS AIR WATHER SERVICE/HAC STATION NUMBER: 123520

  12. Selective weathering of shocked minerals and chondritic enrichment of the Martian fines

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.

    1987-01-01

    In a recent paper, Boslough and Cygan reported the observation of shock-enhanced chemical weathering kinetics of three silicate minerals. Based on the experimental data and on those of Tyburczy and Ahrens for enhanced dehydration kinetics of shocked serpentine, a mechnaism is proposed by which shock-activated minerals are selectively weathered on the surface of Mars. The purpose of the present abstract is to argue on the basis of relative volumes of shocked materials that, as a direct consequence of selective weathering, the composition of the weathered surface units on Mars should be enriched in meteoritic material.

  13. Cockpit weather information needs

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along the route can be accomplished prior to pilot acceptance of the clearance. An ongoing multiphase test series is planned for testing and modifying the graphical weather system. Preliminary data shows that the nine test subjects considered the graphical presentation to be much better than their current weather information source for situation awareness, flight safety, and reroute decision making.

  14. Dobbins AFB, Georgia Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1984-04-25

    Ii4 GL(,BAL CLIMATOLOGY BRANCH uSArETAC WEATHER CONDITIONS Ar7 WEATHFR SERVICE/MAC 2ATIN DORINS AFR TIONNAME I -A YEARS PE;?CENTAGE FREQUENCY OF...USAFETAC CEILING VERSUS VISIBILITY AIr WEATHER SF1VICE/MAC ?"󈧚’ " DORIN , 4FB GA _4-81 JU - PERCENTAGE FREQUENCY OF OCCURRENCE (FROM HOURLY OBSERVATIONS

  15. Torrejon AB, Madrid, Spain. revised uniform summary of surface weather observations (RUSSWO). parts a-f. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-10-03

    This report is a six-part statistical summary of surface weather observations for Torrejon AB, Madrid Spain. It contains the following parts: (A) Weather Conditions; Atmospheric Phenomena; (B) Precipitation, Snowfall and Snow Depth (daily amounts and extreme values); (C) Surface winds; (D) Ceiling Versus Visibility; Sky Cover; (E) Psychrometric Summaries (daily maximum and minimum temperatures, extreme maximum and minimum temperatures, psychrometric summary of wet-bulb temperature depression versus dry-bulb temperature, means and standard deviations of dry-bulb, wet-bulb and dew-point temperatures and relative humidity); and (F) Pressure Summary (means, standard, deviations, and observation counts of station pressure and sea-level pressure). Data in thismore » report are presented in tabular form, in most cases in percentage frequency of occurrence or cumulative percentage frequency of occurrence tables.« less

  16. The impact of Surface Wind Velocity Data Assimilation on the Predictability of Plume Advection in the Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Sekiyama, Thomas; Kajino, Mizuo; Kunii, Masaru

    2017-04-01

    The authors investigated the impact of surface wind velocity data assimilation on the predictability of plume advection in the lower troposphere exploiting the radioactive cesium emitted by the Fukushima nuclear accident in March 2011 as an atmospheric tracer. It was because the radioactive cesium plume was dispersed from the sole point source exactly placed at the Fukushima Daiichi Nuclear Power Plant and its surface concentration was measured at many locations with a high frequency and high accuracy. We used a non-hydrostatic regional weather prediction model with a horizontal resolution of 3 km, which was coupled with an ensemble Kalman filter data assimilation system in this study, to simulate the wind velocity and plume advection. The main module of this weather prediction model has been developed and used operationally by the Japan Meteorological Agency (JMA) since before March 2011. The weather observation data assimilated into the model simulation were provided from two data resources; [#1] the JMA observation archives collected for numerical weather predictions (NWPs) and [#2] the land-surface wind velocity data archived by the JMA surface weather observation network. The former dataset [#1] does not contain land-surface wind velocity observations because their spatial representativeness is relatively small and therefore the land-surface wind velocity data assimilation normally deteriorates the more than one day NWP performance. The latter dataset [#2] is usually used for real-time weather monitoring and never used for the data assimilation of more than one day NWPs. We conducted two experiments (STD and TEST) to reproduce the radioactive cesium plume behavior for 48 hours from 12UTC 14 March to 12UTC 16 March 2011 over the land area of western Japan. The STD experiment was performed to replicate the operational NWP using only the #1 dataset, not assimilating land-surface wind observations. In contrast, the TEST experiment was performed assimilating both the #1 dataset and the #2 dataset including land-surface wind observations measured at more than 200 stations in the model domain. The meteorological boundary conditions for both the experiments were imported from the JMA operational global NWP model results. The modeled radioactive cesium concentrations were examined for plume arrival timing at each observatory comparing with the hourly-measured "suspended particulate matter" filter tape's cesium concentrations retrieved by Tsuruta et al. at more than 40 observatories. The averaged difference of the plume arrival times at 40 observatories between the observational reality and the STD experiment was 82.0 minutes; at this time, the forecast period was 13 hours on average. Meanwhile, The averaged difference of the TEST experiment was 72.8 minutes, which was smaller than that of the STD experiment with a statistical significance of 99.2 %. In summary, the land-surface wind velocity data assimilation improves the predictability of plume advection in the lower troposphere at least in the case of wintertime air pollution over complex terrain. We need more investigation into the data assimilation impact of land-surface weather observations on the predictability of pollutant dispersion especially in the planetary boundary layer.

  17. Nanomorphology of Itokawa regolith particles: Application to space-weathering processes affecting the Itokawa asteroid

    NASA Astrophysics Data System (ADS)

    Matsumoto, Toru; Tsuchiyama, Akira; Uesugi, Kentaro; Nakano, Tsukasa; Uesugi, Masayuki; Matsuno, Junya; Nagano, Takashi; Shimada, Akira; Takeuchi, Akihisa; Suzuki, Yoshio; Nakamura, Tomoki; Nakamura, Michihiko; Gucsik, Arnold; Nagaki, Keita; Sakaiya, Tatsuhiro; Kondo, Tadashi

    2016-08-01

    The morphological properties of 26 regolith particles from asteroid Itokawa were observed using scanning electron microscopes in combination with an investigation of their three-dimensional shapes obtained through X-ray microtomography. Surface observations of a cross section of the LL5 chondrite, and of crystals of olivine and pyroxene, were also performed for comparison. Some Itokawa particles have surfaces corresponding to walls of microdruses in the LL chondrite, where concentric polygonal steps develop and euhedral or subhedral grains exist. These formed through vapor growth owing to thermal annealing, which might have been caused by thermal metamorphism or shock-induced heating in Itokawa's parent body. Most of the Itokawa particles have more or less fractured surfaces, indicating that they were formed by disaggregation, probably caused by impacts. Itokawa particles with angular and rounded edges observed in computed tomography images are associated with surfaces exhibiting clear and faint structures, respectively. These surfaces can be interpreted by invoking different degrees of abrasion after regolith formation. A possible mechanism for the abrasion process is grain migration caused by impact-driven seismic waves. Space-weathered rims with blisters are distributed heterogeneously across the Itokawa regolith particles. This heterogeneous distribution can be explained by particle motion and fracturing, combined with solar-wind irradiation of the particle surfaces. The regolith activity-including grain motion, fracturing, and abrasion-might effectively act as refreshing process of Itokawa particles against space-weathered rim formation. The space-weathering processes affecting Itokawa would have developed simultaneously with space-weathered rim formation and regolith particle refreshment.

  18. Detecting climate variations and change: New challenges for observing and data management systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karl, T.R.; Quayle, R.G.; Groisman, P.Ya.

    1993-08-01

    Several essential aspects of weather observing and the management of weather data related to improving knowledge of climate variations and change in the surface boundary layer and the consequences for socioeconomic and biogeophysical systems, are discussed. The issues include long-term homogeneous time series of routine weather observations; time- and space-scale resolution of datasets derived from the observations; information about observing systems, data collection systems, and data reduction algorithms; and the enhancement of weather observing systems to serve as climate observing systems. Although much has been learned from existing weather networks and methods of data management, the system is far frommore » perfect. Several vital areas have not received adequate attention. Particular improvements are needed in the interaction between network designers and climatologists; operational analyses that focus on detecting and documenting outliers and time-dependent biases within datasets; developing the means to cope with and minimize potential inhomogeneities in weather observing systems; and authoritative documentation of how various aspects of climate have or have not changed. In this last area, close attention must be given to time and space resolution of the data. In many instances the time and space resolution requirements for understanding why the climate changes are not synonymous with understanding how it has changed or varied. This is particularly true within the surface boundary layer. A standard global daily/monthly climate message should also be introduced to supplement current Global Telecommunication System's CLIMAT data. Overall, a call is made for improvements in routine weather observing, data management, and analysis systems. Routine observations have provided (and will continue to provide) most of the information regarding how the climate has changed during the last 100 years affecting where we live, work, and grow our food. 58 refs., 8 figs., 1 tab.« less

  19. SEM and TEM Observation of the Surfaces of the Fine-Grained Particles Retrieved from the Muses-C Regio on the Asteroid 25413 Itokawa

    NASA Technical Reports Server (NTRS)

    Noguchi, T.; Nakamura, T.; Zolensky, Michael E.; Tanaka, M.; Hashimoto, T.; Konno, M.; Nakato, A.; Ogami, T.; Fujimura, A.; Abe, M.; hide

    2011-01-01

    Surface materials on airless solar system bodies exposed to interplanetary space are gradually changed their visible to near-infrared reflectance spectra by the process called "space weathering", which makes the spectra darker and redder. Hapke et al. proposed a model of space weathering: vapor deposition of nanophase reduced iron (npFe(sup 0)) on the surfaces of the grains within the very surface of lunar regolith. This model has been proved by detailed observation of the surfaces of the lunar soil grains by transmission electron microscope (TEM). They demonstrated that npFe(sup 0) was formed by a combination of vapor deposition and irradiation effects. In other words, both micrometeorite impacts and irradiation by solar wind and galactic cosmic ray play roles on the space weathering on the Moon. Because there is a continuum of reflectance spectra from those of Q-type asteroids (almost the same as those of ordinary chondrites) to those of S-type asteroids, it is strongly suggested that reflectance spectra of asteroids composed of ordinary chondrite-like materials were modified over time to those of S-type asteroids due to space weathering. It is predicted that a small amount of npFe(sup 0) on the surface of grains in the asteroidal regolith composed of ordinary chondrite-like materials is the main agent of asteroidal space weathering.

  20. Improved forecasts of winter weather extremes over midlatitudes with extra Arctic observations

    NASA Astrophysics Data System (ADS)

    Sato, Kazutoshi; Inoue, Jun; Yamazaki, Akira; Kim, Joo-Hong; Maturilli, Marion; Dethloff, Klaus; Hudson, Stephen R.; Granskog, Mats A.

    2017-02-01

    Recent cold winter extremes over Eurasia and North America have been considered to be a consequence of a warming Arctic. More accurate weather forecasts are required to reduce human and socioeconomic damages associated with severe winters. However, the sparse observing network over the Arctic brings errors in initializing a weather prediction model, which might impact accuracy of prediction results at midlatitudes. Here we show that additional Arctic radiosonde observations from the Norwegian young sea ICE expedition (N-ICE2015) drifting ice camps and existing land stations during winter improved forecast skill and reduced uncertainties of weather extremes at midlatitudes of the Northern Hemisphere. For two winter storms over East Asia and North America in February 2015, ensemble forecast experiments were performed with initial conditions taken from an ensemble atmospheric reanalysis in which the observation data were assimilated. The observations reduced errors in initial conditions in the upper troposphere over the Arctic region, yielding more precise prediction of the locations and strengths of upper troughs and surface synoptic disturbances. Errors and uncertainties of predicted upper troughs at midlatitudes would be brought with upper level high potential vorticity (PV) intruding southward from the observed Arctic region. This is because the PV contained a "signal" of the additional Arctic observations as it moved along an isentropic surface. This suggests that a coordinated sustainable Arctic observing network would be effective not only for regional weather services but also for reducing weather risks in locations distant from the Arctic.

  1. Intense sub-kilometer-scale boundary layer rolls observed in hurricane fran

    PubMed

    Wurman; Winslow

    1998-04-24

    High-resolution observations obtained with the Doppler On Wheels (DOW) mobile weather radar near the point of landfall of hurricane Fran (1996) revealed the existence of intense, sub-kilometer-scale, boundary layer rolls that strongly modulated the near-surface wind speed. It is proposed that these structures are one cause of geographically varying surface damage patterns that have been observed after some landfalling hurricanes and that they cause much of the observed gustiness, bringing high-velocity air from aloft to the lowest observable levels. High-resolution DOW radar observations are contrasted with lower-resolution observations obtained with an operational weather radar, which underestimated peak low-level wind speeds.

  2. Space weathering and the color indexes of minor bodies in the outer Solar System

    NASA Astrophysics Data System (ADS)

    Kaňuchová, Zuzana; Brunetto, Rosario; Melita, Mario; Strazzulla, Giovanni

    2012-09-01

    The surfaces of small bodies in the outer Solar System are rich in organic compounds and carbonaceous refractories mixed with ices and silicates. As made clear by dedicated laboratory experiments space weathering (e.g. energetic ion bombardment) can produce red colored materials starting from bright and spectrally flat ices. In a classical scenario, the space weathering processes “nurture” alter the small bodies surface spectra but are in competition with resurfacing agents that restore the original colors, and the result of these competing processes continuously modifying the surfaces is supposed to be responsible for the observed spectral variety of those small bodies. However an alternative point of view is that the different colors are due to “nature” i.e. to the different primordial composition of different objects. In this paper we present a model, based on laboratory results, that gives an original contribution to the “nature” vs. “nurture” debate by addressing the case of surfaces showing different fractions of rejuvenated vs. space weathered surface, and calculating the corresponding color variations. We will show how a combination of increasing dose coupled to different resurfacing can reproduce the whole range of observations of small outer Solar System bodies. Here we demonstrate, for the first time that objects having a fully weathered material turn back in the color-color diagrams. At the same time, object with the different ratio of pristine and weathered surface areas lay on specific lines in color-color diagrams, if exposed to the same amount of irradiation.

  3. Weather monitoring and forecasting over eastern Attica (Greece) in the frame of FLIRE project

    NASA Astrophysics Data System (ADS)

    Kotroni, Vassiliki; Lagouvardos, Konstantinos; Chrysoulakis, Nektarios; Makropoulos, Christtos; Mimikou, Maria; Papathanasiou, Chrysoula; Poursanidis, Dimitris

    2015-04-01

    In the frame of FLIRE project a Decision Support System has been built with the aim to support decision making of Civil Protection Agencies and local stakeholders in the area of east Attica (Greece), in the cases of forest fires and floods. In this presentation we focus on a specific action that focuses on the provision of high resolution short-term weather forecasting data as well as of dense meteorological observations over the study area. Both weather forecasts and observations serve as an input in the Weather Information Management Tool (WIMT) of the Decision Support System. We focus on: (a) the description of the adopted strategy for setting-up the operational weather forecasting chain that provides the weather forecasts for the FLIRE project needs, (b) the presentation of the surface network station that provides real-time weather monitoring of the study area and (c) the strategy adopted for issuing smart alerts for thunderstorm forecasting based of real-time lightning observations as well as satellite observations.

  4. Weather Information System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.

  5. Integrating Satellite, Radar and Surface Observation with Time and Space Matching

    NASA Astrophysics Data System (ADS)

    Ho, Y.; Weber, J.

    2015-12-01

    The Integrated Data Viewer (IDV) from Unidata is a Java™-based software framework for analyzing and visualizing geoscience data. It brings together the ability to display and work with satellite imagery, gridded data, surface observations, balloon soundings, NWS WSR-88D Level II and Level III RADAR data, and NOAA National Profiler Network data, all within a unified interface. Applying time and space matching on the satellite, radar and surface observation datasets will automatically synchronize the display from different data sources and spatially subset to match the display area in the view window. These features allow the IDV users to effectively integrate these observations and provide 3 dimensional views of the weather system to better understand the underlying dynamics and physics of weather phenomena.

  6. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2011-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours

  7. Tropical Ocean Surface Energy Balance Variability: Linking Weather to Climate Scales

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol Anne

    2013-01-01

    Radiative and turbulent surface exchanges of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing the spatiotemporal variability of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. These fluxes are integral components to tropical ocean-atmosphere variability; they can drive ocean mixed layer variations and modify the atmospheric boundary layer properties including moist static stability, thereby influencing larger-scale tropical dynamics. Non-parametric cluster-based classification of atmospheric and ocean surface properties has shown an ability to identify coherent weather regimes, each typically associated with similar properties and processes. Using satellite-based observational radiative and turbulent energy flux products, this study investigates the relationship between these weather states and surface energy processes within the context of tropical climate variability. Investigations of surface energy variations accompanying intraseasonal and interannual tropical variability often use composite-based analyses of the mean quantities of interest. Here, a similar compositing technique is employed, but the focus is on the distribution of the heat and moisture fluxes within their weather regimes. Are the observed changes in surface energy components dominated by changes in the frequency of the weather regimes or through changes in the associated fluxes within those regimes? It is this question that the presented work intends to address. The distribution of the surface heat and moisture fluxes is evaluated for both normal and non-normal states. By examining both phases of the climatic oscillations, the symmetry of energy and water cycle responses are considered.

  8. Lakenheath, United Kingdom. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1984-03-01

    035831625 N 52 24 E 000 34 ELEV 32 FT EGUL PARTS A-F HOURS 5UM04RIZEDs OOOOZ - 230OZ 06 aR IERIOD OF RECORD: HOURLY OBSERVATIONSt JUN 73 - MAY 83 SIM4&R! OF...Summary of Surface Weather Observations (RUSSWO)- Lakenheath- Final rept. United Kingdom. S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR( e ) S. CONTRACT...Ceiling Versus Visibility; Sky Cover; ( E ) Psychr metric SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) 19. Percentqge frequency of distribution

  9. Interactive Computing and Processing of NASA Land Surface Observations Using Google Earth Engine

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Burks, Jason; Bell, Jordan

    2016-01-01

    Google's Earth Engine offers a "big data" approach to processing large volumes of NASA and other remote sensing products. h\\ps://earthengine.google.com/ Interfaces include a Javascript or Python-based API, useful for accessing and processing over large periods of record for Landsat and MODIS observations. Other data sets are frequently added, including weather and climate model data sets, etc. Demonstrations here focus on exploratory efforts to perform land surface change detection related to severe weather, and other disaster events.

  10. Sunspots, Space Weather and Climate

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Four hundred years ago this year the telescope was first used for astronomical observations. Within a year, Galileo in Italy and Harriot in England reported seeing spots on the surface of the Sun. Yet, it took over 230 years of observations before a Swiss amateur astronomer noticed that the sunspots increased and decreased in number over a period of about 11 years. Within 15 years of this discovery of the sunspot cycle astronomers made the first observations of a flare on the surface of the Sun. In the 150 years since that discovery we have learned much about sunspots, the sunspot cycle, and the Sun s explosive events - solar flares, prominence eruptions and coronal mass ejections that usually accompany the sunspots. These events produce what is called Space Weather. The conditions in space are dramatically affected by these events. Space Weather can damage our satellites, harm our astronauts, and affect our lives here on the surface of planet Earth. Long term changes in the sunspot cycle have been linked to changes in our climate as well. In this public lecture I will give an introduction to sunspots, the sunspot cycle, space weather, and the possible impact of solar variability on our climate.

  11. A variable vertical resolution weather model with an explicitly resolved planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.

    1981-01-01

    A version of the fourth order weather model incorporating surface wind stress data from SEASAT A scatterometer observations is presented. The Monin-Obukhov similarity theory is used to relate winds at the top of the surface layer to surface wind stress. A reasonable approximation of surface fluxes of heat, moisture, and momentum are obtainable using this method. A Richardson number adjustment scheme based on the ideas of Chang is used to allow for turbulence effects.

  12. Toward RADSCAT measurements over the sea and their interpretation

    NASA Technical Reports Server (NTRS)

    Claassen, J. P.; Fung, A. K.; Wu, S. T.; Chan, H. L.

    1973-01-01

    Investigations into several areas which are essential to the execution and interpretation of suborbital observations by composite radiometer - scatterometer sensor (RADSCAT) are reported. Experiments and theory were developed to demonstrate the remote anemometric capability of the sensor over the sea through various weather conditions. It is shown that weather situations found in extra tropical cyclones are useful for demonstrating the all weather capability of the composite sensor. The large scale fluctuations of the wind over the sea dictate the observational coverage required to correlate measurements with the mean surface wind speed. Various theoretical investigations were performed to establish a premise for the joint interpretation of the experiment data. The effects of clouds and rains on downward radiometric observations over the sea were computed. A method of predicting atmospheric attenuation from joint observations is developed. In other theoretical efforts, the emission and scattering characteristics of the sea were derived. Composite surface theories with coherent and noncoherent assumptions were employed.

  13. Youngstown MAP, Ohio. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1982-05-10

    Air Weather Service ( MAC ) SCuOL2., IL 6222 R- UmmRm m "PJ M MOP Fr 4 JUN SURFACE WEATHER OSVAIWJ YOUNGSTOWN MAP OH MC #725250 N 41 16 W 080 40 ELD...percentage frequency of distribution tables OHIO YOUNGSTIOWN M "P, OHIO 20. and dew point temperatures and relative humidity); and (F) Pressure Summnary...p.ouIwuIis P i o m Qm 1 ---- .0 YN - :, 7 -AL CLIMATOLO’Y RA"CH 7 .I*.T 7C WEATHER CONDITIONS .ATH’p SEPVICE/mAC CNIIN -, JN,.S7 %N MAP OH 73-81 A U G

  14. Weather Measurements around Your School. Mapping Variations in Temperature and Humidity.

    ERIC Educational Resources Information Center

    Smith, David R.; And Others

    1991-01-01

    Presented is an activity where students conduct a micrometeorological study in their neighborhood using temperature, humidity measurements, and mapping skills. Included are a discussion of surface weather observations, the experiment, and directions. (KR)

  15. Space Weather Storm Responses at Mars: Lessons from A Weakly Magnetized Terrestrial Planet

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Dong, C. F.; Ma, Y. J.; Curry, S. M.; Li, Yan; Lee, C. O.; Hara, T.; Lillis, R.; Halekas, J.; Connerney, J. E.; Espley, J.; Brain, D. A.; Dong, Y.; Jakosky, B. M.; Thiemann, E.; Eparvier, F.; Leblanc, F.; Withers, P.; Russell, C. T.

    2017-10-01

    Much can be learned from terrestrial planets that appear to have had the potential to be habitable, but failed to realize that potential. Mars shows evidence of a once hospitable surface environment. The reasons for its current state, and in particular its thin atmosphere and dry surface, are of great interest for what they can tell us about habitable zone planet outcomes. A main goal of the MAVEN mission is to observe Mars' atmosphere responses to solar and space weather influences, and in particular atmosphere escape related to space weather `storms' caused by interplanetary coronal mass ejections (ICMEs). Numerical experiments with a data-validated MHD model suggest how the effects of an observed moderately strong ICME compare to what happens during a more extreme event. The results suggest the kinds of solar and space weather conditions that can have evolutionary importance at a planet like Mars.

  16. On the dual nature of lichen-induced rock surface weathering in contrasting micro-environments.

    PubMed

    Marques, Joana; Gonçalves, João; Oliveira, Cláudia; Favero-Longo, Sergio E; Paz-Bermúdez, Graciela; Almeida, Rubim; Prieto, Beatriz

    2016-10-01

    Contradictory evidence from biogeomorphological studies has increased the debate on the extent of lichen contribution to differential rock surface weathering in both natural and cultural settings. This study, undertaken in Côa Valley Archaeological Park, aimed at evaluating the effect of rock surface orientation on the weathering ability of dominant lichens. Hyphal penetration and oxalate formation at the lichen-rock interface were evaluated as proxies of physical and chemical weathering, respectively. A new protocol of pixel-based supervised image classification for the analysis of periodic acid-Schiff stained cross-sections of colonized schist revealed that hyphal spread of individual species was not influenced by surface orientation. However, hyphal spread was significantly higher in species dominant on northwest facing surfaces. An apparently opposite effect was noticed in terms of calcium oxalate accumulation at the lichen-rock interface; it was detected by Raman spectroscopy and complementary X-ray microdiffraction on southeast facing surfaces only. These results suggest that lichen-induced physical weathering may be most severe on northwest facing surfaces by means of an indirect effect of surface orientation on species abundance, and thus dependent on the species, whereas lichen-induced chemical weathering is apparently higher on southeast facing surfaces and dependent on micro-environmental conditions, giving only weak support to the hypothesis that lichens are responsible for the currently observed pattern of rock-art distribution in Côa Valley. Assumptions about the drivers of open-air rock-art distribution patterns elsewhere should also consider the micro-environmental controls of lichen-induced weathering, to avoid biased measures of lichen contribution to rock-art deterioration. © 2016 by the Ecological Society of America.

  17. The discovery of silicon oxide nanoparticles in space-weathered of Apollo 15 lunar soil grains

    NASA Astrophysics Data System (ADS)

    Gu, Lixin; Zhang, Bin; Hu, Sen; Noguchi, Takaaki; Hidaka, Hiroshi; Lin, Yangting

    2018-03-01

    Space weathering is an important process on the Moon and other airless celestial bodies. The most common space weathering effects are amorphization of the top surface of soil grains and formation of nanophase iron particles (npFe) within the partially amorphous rims. Hence, space weathering significantly affects optical properties of the surface of the Moon and other airless celestial bodies. Transmission electron microscope (TEM) analysis of Apollo 15 soil grains displays npFe (≤5 nm in size) embedded in the space-weathered rim (∼60 nm in thickness) of a pyroxene grain, consistent with previous studies. In contrast, submicron-sized fragments that adhere to the pyroxene grain show distinct space weathering features. Silicon oxide nanoparticles (npSiOx) were observed with npFe in a submicron-sized Mg-Fe silicate fragment. This is the first discovery of npSiOx as a product of space weathering. The npSiOx and the coexisting npFe are ∼10-25 nm in size, significantly larger than the typical npFe in the space weathered rim of the pyroxene grain. The coexisting npSiOx and npFe were probably formed directly in micrometeorite shock-induced melt, instead of in a solar-wind generated vapor deposit or irradiated rim. This new observation will shed light on space weathering processes on the Moon and airless celestial bodies.

  18. Generation of Multivariate Surface Weather Series with Use of the Stochastic Weather Generator Linked to Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Farda, A.; Huth, R.

    2012-12-01

    The regional-scale simulations of weather-sensitive processes (e.g. hydrology, agriculture and forestry) for the present and/or future climate often require high resolution meteorological inputs in terms of the time series of selected surface weather characteristics (typically temperature, precipitation, solar radiation, humidity, wind) for a set of stations or on a regular grid. As even the latest Global and Regional Climate Models (GCMs and RCMs) do not provide realistic representation of statistical structure of the surface weather, the model outputs must be postprocessed (downscaled) to achieve the desired statistical structure of the weather data before being used as an input to the follow-up simulation models. One of the downscaling approaches, which is employed also here, is based on a weather generator (WG), which is calibrated using the observed weather series and then modified (in case of simulations for the future climate) according to the GCM- or RCM-based climate change scenarios. The present contribution uses the parametric daily weather generator M&Rfi to follow two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate/CZ (v.2) Regional Climate Model at 25 km resolution. The WG parameters will be derived from the RCM-simulated surface weather series and compared to those derived from observational data in the Czech meteorological stations. The set of WG parameters will include selected statistics of the surface temperature and precipitation (characteristics of the mean, variability, interdiurnal variability and extremes). (2) Testing a potential of RCM output for calibration of the WG for the ungauged locations. The methodology being examined will consist in using the WG, whose parameters are interpolated from the surrounding stations and then corrected based on a RCM-simulated spatial variability. The quality of the weather series produced by the WG calibrated in this way will be assessed in terms of selected climatic characteristics focusing on extreme precipitation and temperature characteristics (including characteristics of dry/wet/hot/cold spells). Acknowledgements: The present experiment is made within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports) and VALUE (COST ES 1102 action).

  19. Gela, Italy, Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1983-11-03

    ADDRESS I2 REPORT DATE USAFETAC/ CBD 3 Nov 83 Air Weather Service (MAC) 13 NUMBER OF PAGES Scott AFB IL 62225 p. _ _ _0 r4 MONITORING AGENCY NAME & ADDRESS...temperature Lombined; tuid again for dry-bulb, wet-bulb, and dew-point tempera- tures separately. Total observations for thc .;e four Items is also

  20. Estimates for the Probabilities of Surface-to-Air Cloud-Free Lines-of-Sight and Low Cloud Statistics from Ship Observations. Part 1. Fifteen Marine Locations.

    DTIC Science & Technology

    1980-11-24

    time before and after) or cumulus fractus of bad weath’er, or both ( pannus ), usually below altostratus or nimbostratus. 8 = Cumulus and stratocumulus...vibrous upper part by cumulus, stratocumulus, stratus or pannus . + . from Surface Marine Observations Tape Deck TDF-11 *Fog All clouds in the 0-50...Fractus of bad weather, cr V both ( pannus ), usually below Alto- stratus or N~imbostratus. The term "bad weather* denotes the conditions which coenerally

  1. Revised Uniform Summary of Surface Weather Observations (RUSSWO) Monterey FAA, Monterey, California

    DTIC Science & Technology

    1980-07-24

    OF WEATHER CONDITIONS FROM HOUPLY OBSERVATIONS ( RAIN____ I____ _____$NW__FMOEm_%o ls TOA m T"uNDER., o SOWNG I OST JW% OUTS NO. OFMWSTR AND 0 ERAIN...AIR ZXTHED SE VICE/HAC WEATHER CONDITIONS M -ZNT--PY FAA CA 73-7; A STATION STATION NAME MONTH PERCENTAGE FREQUEN4CY OF OCCURRENCE OF iWEATHEP...CONDITIONS FRCM HOURLY OBSERVATIONS . M RO-UTH: I A,-,OB £l1. ., . OW4G ANO’ wi, NSt 0 R SAIN/O FRUZIN SH W %OFf SM OUST I %O OfICS TOTAL _ _LS T. STOMSI,, SNOW

  2. A reactive transport model for Marcellus shale weathering

    NASA Astrophysics Data System (ADS)

    Heidari, Peyman; Li, Li; Jin, Lixin; Williams, Jennifer Z.; Brantley, Susan L.

    2017-11-01

    Shale formations account for 25% of the land surface globally and contribute a large proportion of the natural gas used in the United States. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water in the surface or deep subsurface, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil and water chemistry data. The simulation was carried out for 10,000 years since deglaciation, assuming bedrock weathering and soil genesis began after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small if CO2 was not present in the soil gas. The field observations were only simulated successfully when the modeled specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals. Small surface areas could be consistent with the lack of accessibility of some fluids to mineral surfaces due to surface coatings. In addition, some mineral surface is likely interacting only with equilibrated pore fluids. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude from these observations that availability of reactive surface area and transport of H2O and gases are the most important factors affecting rates of Marcellus shale weathering of the in the shallow subsurface. This weathering study documents the utility of reactive transport modeling for complex subsurface processes. Such modelling could be extended to understand interactions between injected fluids and Marcellus shale gas reservoirs at higher temperature, pressure, and salinity conditions.

  3. Characterization of Lunar Swirls at Mare Ingenii: A Model for Space Weathering at Magnetic Anomalies

    NASA Technical Reports Server (NTRS)

    Kramer, Georgianna Y.; Combe, Jean-Philippe; Harnett, Erika M.; Hawke, Bernard Ray; Noble, Sarah K.; Blewett, David T.; McCord, Thomas B.; Giguere, Thomas A.

    2011-01-01

    Analysis of spectra from the Clementine ultraviolet-visible and near-infrared cameras of small, immature craters and surface soils both on and adjacent to the lunar swirls at Marc Ingenii has yielded the following conclusions about space weathering at a magnetic anomaly. (l) Despite having spectral characteristics of immaturity, the lunar swirls arc not freshly exposed surfaces. (2) The swirl surfaces arc regions of retarded weathering, while immediately adjacent regions experience accelerated weathering, (3) Weathering in the off-swirl regions darkens and flattens the spectrum with little to no reddening, which suggests that the production of larger (greater than 40 nm) nanophase iron dominates in these locations as a result of charged particle sorting by the magnetic field. Preliminaty analysis of two other lunar swirl regions, Reiner Gamma and Mare Marginis, is consistent with our observations at Mare Ingenii. Our results indicate that sputtering/vapor deposition, implanted solar wind hydrogen, and agglutination share responsibility for creating the range in npFe(sup 0) particle sizes responsible for the spectral effects of space weathering.

  4. The role of soil weathering and hydrology in regulating chemical fluxes from catchments (Invited)

    NASA Astrophysics Data System (ADS)

    Maher, K.; Chamberlain, C. P.

    2010-12-01

    Catchment-scale chemical fluxes have been linked to a number of different parameters that describe the conditions at the Earth’s surface, including runoff, temperature, rock type, vegetation, and the rate of tectonic uplift. However, many of the relationships relating chemical denudation to surface processes and conditions, while based on established theoretical principles, are largely empirical and derived solely from modern observations. Thus, an enhanced mechanistic basis for linking global solute fluxes to both surface processes and climate may improve our confidence in extrapolating modern solute fluxes to past and future conditions. One approach is to link observations from detailed soil-based studies with catchment-scale properties. For example, a number of recent studies of chemical weathering at the soil-profile scale have reinforced the importance of hydrologic processes in controlling chemical weathering rates. An analysis of data from granitic soils shows that weathering rates decrease with increasing fluid residence times and decreasing flow rates—over moderate fluid residence times, from 5 days to 10 years, transport-controlled weathering explains the orders of magnitude variation in weathering rates to a better extent than soil age. However, the importance of transport-controlled weathering is difficult to discern at the catchment scale because of the range of flow rates and fluid residence times captured by a single discharge or solute flux measurement. To assess the importance of transport-controlled weathering on catchment scale chemical fluxes, we present a model that links the chemical flux to the extent of reaction between the soil waters and the solids, or the fluid residence time. Different approaches for describing the distribution of fluid residence times within a catchment are then compared with the observed Si fluxes for a limited number of catchments. This model predicts high solute fluxes in regions with high run-off, relief, and long flow paths suggesting that the particular hydrologic setting of a landscape will be the underlying control on the chemical fluxes. As such, we reinterpret the large chemical fluxes that are observed in active mountain belts, like the Himalaya, to be primarily controlled by the long reactive flow paths created by the steep terrain coupled with high amounts of precipitation.

  5. Retrospective Analog Year Analyses Using NASA Satellite Data to Improve USDA's World Agricultural Supply and Demand Estimates

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; Shannon, H. D.

    2011-12-01

    The USDA World Agricultural Outlook Board (WAOB) is responsible for monitoring weather and climate impacts on domestic and foreign crop development. One of WAOB's primary goals is to determine the net cumulative effect of weather and climate anomalies on final crop yields. To this end, a broad array of information is consulted, including maps, charts, and time series of recent weather, climate, and crop observations; numerical output from weather and crop models; and reports from the press, USDA attachés, and foreign governments. The resulting agricultural weather assessments are published in the Weekly Weather and Crop Bulletin, to keep farmers, policy makers, and commercial agricultural interests informed of weather and climate impacts on agriculture. Because both the amount and timing of precipitation significantly impact crop yields, WAOB often uses precipitation time series to identify growing seasons with similar weather patterns and help estimate crop yields for the current growing season, based on observed yields in analog years. Although, historically, these analog years are identified through visual inspection, the qualitative nature of this methodology sometimes precludes the definitive identification of the best analog year. One goal of this study is to introduce a more rigorous, statistical approach for identifying analog years. This approach is based on a modified coefficient of determination, termed the analog index (AI). The derivation of AI will be described. Another goal of this study is to compare the performance of AI for time series derived from surface-based observations vs. satellite-based measurements (NASA TRMM and other data). Five study areas and six growing seasons of data were analyzed (2003-2007 as potential analog years and 2008 as the target year). Results thus far show that, for all five areas, crop yield estimates derived from satellite-based precipitation data are closer to measured yields than are estimates derived from surface-based precipitation measurements. Work is continuing to include satellite-based surface soil moisture data and model-assimilated root zone soil moisture. This study is part of a larger effort to improve WAOB estimates by integrating NASA remote sensing observations and research results into WAOB's decision-making environment.

  6. Weather impacts on space operations

    NASA Astrophysics Data System (ADS)

    Madura, J.; Boyd, B.; Bauman, W.; Wyse, N.; Adams, M.

    The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology Group for landing forecasts. Attention is given to prelaunch processing weather, launch support weather, Shuttle launch commit criteria, and range safety weather restrictions. Upper level wind requirements are examined. The frequency of hourly surface observations with thunderstorms at the Shuttle landing facility, and lightning downtime at the Titan launch complexes are illustrated.

  7. Osan AB, Korea. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1982-06-14

    USAFETAC SURFACE WINDS2 AIR WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 1471220 OSAN AS KO 73-S1 FED...BRANCHusAF’TAC SURFACE WINDS AIR WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 47122’ OSAN AS KO 73-81 NOV _RLL

  8. The Impact of Satellite-Derived Land Surface Temperatures on Numerical Weather Prediction Analyses and Forecasts

    NASA Astrophysics Data System (ADS)

    Candy, B.; Saunders, R. W.; Ghent, D.; Bulgin, C. E.

    2017-09-01

    Land surface temperature (LST) observations from a variety of satellite instruments operating in the infrared have been compared to estimates of surface temperature from the Met Office operational numerical weather prediction (NWP) model. The comparisons show that during the day the NWP model can underpredict the surface temperature by up to 10 K in certain regions such as the Sahel and southern Africa. By contrast at night the differences are generally smaller. Matchups have also been performed between satellite LSTs and observations from an in situ radiometer located in Southern England within a region of mixed land use. These matchups demonstrate good agreement at night and suggest that the satellite uncertainties in LST are less than 2 K. The Met Office surface analysis scheme has been adapted to utilize nighttime LST observations. Experiments using these analyses in an NWP model have shown a benefit to the resulting forecasts of near-surface air temperature, particularly over Africa.

  9. Development of a Graphical User Interface to Visualize Surface Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, R.L.

    1998-07-13

    Thousands of worldwide observing stations provide meteorological information near the earth's surface as often as once each hour. This surface data may be plotted on geographical maps to provide the meteorologist useful information regarding weather patterns for a region of interest. This report describes the components and applications of a graphical user interface which have been developed to visualize surface observations at any global location and time of interest.

  10. Low Cloud Type over the Ocean from Surface Observations. Part III: Relationship to Vertical Motion and the Regional Surface Synoptic Environment.

    NASA Astrophysics Data System (ADS)

    Norris, Joel R.; Klein, Stephen A.

    2000-01-01

    Composite large-scale dynamical fields contemporaneous with low cloud types observed at midlatitude Ocean Weather Station (OWS) C and eastern subtropical OWS N are used to establish representative relationships between low cloud type and the synoptic environment. The composites are constructed by averaging meteorological observations of surface wind and sea level pressure from volunteering observing ships (VOS) and analyses of sea level pressure, 1000-mb wind, and 700-mb pressure vertical velocity from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis project on those dates and times of day when a particular low cloud type was reported at the OWS.VOS and NCEP results for OWS C during summer show that bad-weather stratus occurs with strong convergence and ascent slightly ahead of a surface low center and trough. Cumulus-under-stratocumulus and moderate and large cumulus occur with divergence and subsidence in the cold sector of an extratropical cyclone. Both sky-obscuring fog and no-low-cloud typically occur with southwesterly flow from regions of warmer sea surface temperature and differ primarily according to slight surface convergence and stronger warm advection in the case of sky-obscuring fog or surface divergence and weaker warm advection in the case of no-low-cloud. Fair-weather stratus and ordinary stratocumulus are associated with a mixture of meteorological conditions, but differ with respect to vertical motion in the environment. Fair-weather stratus occurs most commonly in the presence of slight convergence and ascent, while stratocumulus often occurs in the presence of divergence and subsidence.Surface divergence and estimated subsidence at the top of the boundary layer are calculated from VOS observations. At both OWS C and OWS N during summer and winter these values are large for ordinary stratocumulus, less for cumulus-under-stratocumulus, and least (and sometimes slightly negative) for moderate and large cumulus. Subsidence interpolated from NCEP analyses to the top of the boundary layer does not exhibit such variation, but the discrepancy may be due to deficiencies in the analysis procedure or the boundary layer parameterization of the NCEP model. The VOS results suggest that decreasing divergence and subsidence in addition to increasing sea surface temperature may promote the transition from stratocumulus to trade cumulus observed over low-latitude oceans.

  11. An age-colour relationship for main-belt S-complex asteroids.

    PubMed

    Jedicke, Robert; Nesvorný, David; Whiteley, Robert; Ivezić Z, Zeljko; Jurić, Mario

    2004-05-20

    Asteroid collisions in the main belt eject fragments that may eventually land on Earth as meteorites. It has therefore been a long-standing puzzle in planetary science that laboratory spectra of the most populous class of meteorite (ordinary chondrites, OC) do not match the remotely observed surface spectra of their presumed (S-complex) asteroidal parent bodies. One of the proposed solutions to this perplexing observation is that 'space weathering' modifies the exposed planetary surfaces over time through a variety of processes (such as solar and cosmic ray bombardment, micro-meteorite bombardment, and so on). Space weathering has been observed on lunar samples, in Earth-based laboratory experiments, and there is good evidence from spacecraft data that the process is active on asteroid surfaces. Here, we present a measurement of the rate of space weathering on S-complex main-belt asteroids using a relationship between the ages of asteroid families and their colours. Extrapolating this age-colour relationship to very young ages yields a good match to the colour of freshly cut OC meteorite samples, lending strong support to a genetic relationship between them and the S-complex asteroids.

  12. Depth of maturity in the Moon's regolith

    NASA Astrophysics Data System (ADS)

    Denevi, B. W.; Duck, A.; Klem, S.; Ravi, S.; Robinson, M. S.; Speyerer, E. J.

    2017-12-01

    The observed maturity of the lunar surface is a function of its exposure to the weathering agents of the space environment as well as the rates of regolith gardening and overturn. Regolith exposed on the surface weathers until it is buried below material delivered to the surface by impact events; weathering resumes when it is re-exposed to the surface environment by later impacts. This cycle repeats until a mature layer of some thickness develops. The gardening rate of the upper regolith has recently been shown to be substantially higher than previously thought, and new insights on the rates of space weathering and potential variation of these rates with solar wind flux have been gained from remote sensing as well as laboratory studies. Examining the depth to which the lunar regolith is mature across a variety of locations on the Moon can provide new insight into both gardening and space weathering. Here we use images from the Lunar Reconnaissance Orbiter Camera (LROC) with pixel scales less than approximately 50 cm to examine the morphology and reflectance of impact craters in the 2- to 100-m diameter size range. Apollo core samples show substantial variation, but suggest that the upper 50 cm to >1 m of regolith is mature at the sampled sites. These depths indicate that because craters excavate to a maximum depth of 10% of the transient crater diameter, craters with diameters less than 5-10 m will typically expose only mature material and this phenomenon should be observable in LROC images. Thus, we present the results of classifying craters by both morphology and reflectance to determine the size-frequency distribution of craters that expose immature material versus those that do not. These results are then compared to observations of reflectance values for the ejecta of craters that have formed during the LRO mission. These newly formed craters span a similar range of diameters, and there is no ambiguity about post-impact weathering because they are less than a decade old.

  13. Exploring Nested Reaction Fronts to Understand How Oxygen Cracks Rocks, Carbonic and Sulfuric Acids Dissolve Rocks, and Water Transports Rocks during Weathering

    NASA Astrophysics Data System (ADS)

    Brantley, S. L.; Gu, X.; Sullivan, P. L.; Kim, H.; Stinchcomb, G. E.; Lebedeva, M.; Balashov, V. N.

    2016-12-01

    To first order, weathering is the reaction of rocks with oxidants (oxygen, nitrate, etc.), acids (carbonic, sulfuric, and organic acids), and water. To explore weathering we have been studying the depth intervals in soils, saprolite, and weathering rock where mineral reactions are localized - "reaction fronts". We limit the study to ridges or catchments in climates where precipitation is greater than potential evapotranspiration. For example, in the Susquehanna Shale Hills Critical Zone Observatory, we observe reaction fronts that generally define very rough surfaces in 3D that mimic the land surface topography, although with lower relief. Overall, the fronts form nested curved surfaces. In Shale Hills, the deepest reaction fronts are oxidation of pyrite, and dissolution of carbonate. The carbonate is inferred to dissolve at least partly due to the sulfuric acid produced by the pyrite. In addition to pyrite, chlorite also starts to oxidize at the water table. We hypothesize that these dissolution and oxidation reactions open pores and cause microfracturing that open the rock to infiltration of advecting meteoric waters. At much shallower depths, illite is observed to dissolve. In Shale Hills, these reaction fronts - pyrite, carbonate, illite - separate over meters beneath the ridges. Such separated reaction fronts have also been observed in other fractured lithologies where oxidation is the deepest reaction and is associated with weathering-induced fractures. In contrast, in some massive mafic rocks, reaction fronts are almost co-located. By studying the geometry of reaction fronts, it may be possible to elucidate the relative importance of how oxygen cracks rocks; carbonic, organic, and sulfuric acids dissolve rocks; and water mobilizes rock materials during weathering.

  14. Lithological and textural controls on radar and diurnal thermal signatures of weathered volcanic deposits, Lunar Crater region, Nevada

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.; Rivard, Benoit

    1992-01-01

    Radar backscatter intensity as measured by calibrated synthetic aperture radar (SAR) systems is primarily controlled by three factors: local incidence angle, wavelength-scale roughness, and dielectric permittivity of surface materials. Radar observations may be of limited use for geological investigations of surface composition, unless the relationships between lithology and the above characteristics can be adequately understood. In arid terrains, such as the Southwest U.S., weathering signatures (e.g. soil development, fracturing, debris grain size and shape, and hill slope characteristics) are controlled to some extent by lithologic characteristics of the parent bedrock. These textural features of outcrops and their associated debris will affect radar backscatter to varying degrees, and the multiple-wavelength capability of the JPL Airborne SAR (AIRSAR) system allows sampling of textures at three distinct scales. Diurnal temperature excursions of geologic surfaces are controlled primarily by the thermal inertia of surface materials, which is a measure of the resistance of a material to a change in temperature. Other influences include albedo, surface slopes affecting insolation, local meteorological conditions and surface emissivity at the relevant thermal wavelengths. To first order, thermal inertia variations on arid terrain surfaces result from grain size distribution and porosity differences, at scales ranging from micrometers to tens of meters. Diurnal thermal emission observations, such as those made by the JPL Thermal Infrared Multispectral Scanner (TIMS) airborne instrument, are thus influenced by geometric surface characteristics at scales comparable to those controlling radar backscatter. A preliminary report on a project involving a combination of field, laboratory and remote sensing observations of weathered felsic-to basaltic volcanic rock units exposed in the southern part of the Lunar Crater Volcanic Field, in the Pancake Range of central Nevada is presented. Focus is on the relationship of radar backscatter cross sections at multiple wavelengths, apparent diurnal temperature excursions identified in multi-temporal TIMS images, surface geometries related to weathering style, and parent bedrock lithology.

  15. Subarctic physicochemical weathering of serpentinized peridotite

    NASA Astrophysics Data System (ADS)

    Ulven, O. I.; Beinlich, A.; Hövelmann, J.; Austrheim, H.; Jamtveit, B.

    2017-06-01

    Frost weathering is effective in arctic and subarctic climate zones where chemical reactions are limited by the reduced availability of liquid water and the prevailing low temperature. However, small scale mineral dissolution reactions are nevertheless important for the generation of porosity by allowing infiltration of surface water with subsequent fracturing due to growth of ice and carbonate minerals. Here we combine textural and mineralogical observations in natural samples of partly serpentinized ultramafic rocks with a discrete element model describing the fracture mechanics of a solid when subject to pressure from the growth of ice and carbonate minerals in surface-near fractures. The mechanical model is coupled with a reaction-diffusion model that describes an initial stage of brucite dissolution as observed during weathering of serpentinized harzburgites and dunites from the Feragen Ultramafic Body (FUB), SE-Norway. Olivine and serpentine are effectively inert at relevant conditions and time scales, whereas brucite dissolution produces well-defined cm to dm thick weathering rinds with elevated porosity that allows influx of water. Brucite dissolution also increases the water saturation state with respect to hydrous Mg carbonate minerals, which are commonly found as infill in fractures in the fresh rock. This suggests that fracture propagation is at least partly driven by carbonate precipitation. Dissolution of secondary carbonate minerals during favorable climatic conditions provides open space available for ice crystallization that drives fracturing during winter. Our model reproduces the observed cm-scale meandering fractures that propagate into the fresh part of the rock, as well as dm-scale fractures that initiate the breakup of larger domains. Rock disintegration increases the reactive surface area and hence the rate of chemical weathering, enhances transport of dissolved and particulate matter in the weathering fluid, and facilitates CO2 uptake by carbonate precipitation. Our observations have implications for element cycling and CO2 sequestration in natural gravel and mine tailings.

  16. Low frequency North Atlantic SST variability: Weather noise forcing and coupled response

    NASA Astrophysics Data System (ADS)

    Fan, Meizhu

    A method to diagnose the causes of low frequency SST variability is developed, tested and applied in an ideal case and real climate. In the ideal case, a free simulation of the COLA CGCM is taken as synthetic observations. For real climate, we take NCEP reanalysis atmospheric data and Reynolds SST as observations. Both the synthetic and actual observation data show that weather noise is the main component of atmospheric variability at subtropics and high-latitude. Diagnoses of results from the ideal case suggest that most of the synthetic observed SST variability can be reproduced by the weather noise surface fluxes forcing. This includes the "observed" low frequency SST patterns in the North Atlantic and their corresponding time evolution. Among all the noise surface fluxes, heat flux plays a major role. The results from simulations using actual observations also suggest that the observed SST variability is mostly atmospheric weather noise forced. The regional atmospheric noise forcing, especially the heat flux noise forcing, is the major source of the low frequency SST variability in the North Atlantic. The observed SST tripole mode has about a 12 year period and it can be reasonably reproduced by the weather noise forcing in terms of its period, spatial pattern and variance. Based on our diagnosis, it is argued that the SST tripole is mainly forced by local atmospheric heat flux noise. The gyre circulation plays a secondary role: the anomalous gyre circulation advects mean thermal features across the inter-gyre boundary, and the mean gyre advection carries SST anomalies along the inter-gyre boundary. The diagnosis is compared with a delayed oscillator theory. We find that the delayed oscillator theory is not supported and that the SST tripole mode is forced by weather noise heat flux noise. However, the result may be model dependent.

  17. The sensitivity of snowfall to weather states over Sweden

    NASA Astrophysics Data System (ADS)

    Norin, Lars; Devasthale, Abhay; L'Ecuyer, Tristan S.

    2017-09-01

    For a high-latitude country like Sweden snowfall is an important contributor to the regional water cycle. Furthermore, snowfall impacts surface properties, affects atmospheric thermodynamics, has implications for traffic and logistics management, disaster preparedness, and also impacts climate through changes in surface albedo and turbulent heat fluxes. For Sweden it has been shown that large-scale atmospheric circulation patterns, or weather states, are important for precipitation variability. Although the link between atmospheric circulation patterns and precipitation has been investigated for rainfall there are no studies focused on the sensitivity of snowfall to weather states over Sweden.In this work we investigate the response of snowfall to eight selected weather states. These weather states consist of four dominant wind directions together with cyclonic and anticyclonic circulation patterns and enhanced positive and negative phases of the North Atlantic Oscillation. The presented analysis is based on multiple data sources, such as ground-based radar measurements, satellite observations, spatially interpolated in situ observations, and reanalysis data. The data from these sources converge to underline the sensitivity of falling snow over Sweden to the different weather states.In this paper we examine both average snowfall intensities and snowfall accumulations associated with the different weather states. It is shown that, even though the heaviest snowfall intensities occur during conditions with winds from the south-west, the largest contribution to snowfall accumulation arrives with winds from the south-east. Large differences in snowfall due to variations in the North Atlantic Oscillation are shown as well as a strong effect of cyclonic and anticyclonic circulation patterns. Satellite observations are used to reveal the vertical structures of snowfall during the different weather states.

  18. Blytheville AFB, Arkansas, Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1987-10-01

    A USAFETAC Air Weather Service (MAC) 3SSTAe’ REVISED UNIFORM SUMMARY OF SURFACE WEATHER OBSERVATIONS BLYTHEVILLE AFB AR MSC 1723408 IC N 35 58 W...I IE C It I 1-3 4-b I-Il It 1 7-2 1 2 - 4- UC 4 1-4 7 4F - U S5 1(IA " SAN I9 I 1. . 217 2.0 .i D I .lF I .2 1.? .7 1 .1 1 .2 .2- 0.1I 7 I AIR4 3tf...o o o , . . .. . . .o ..oo.o.. 17-, -7 5C.-. 1-7 ’-, F t tt 71*1. Li I I L C1.2 4 t 7 1L 1 4 uC I* I. A .o o.....oo. oo ~ oo o ooo ...... ...... .o. o

  19. Buckley ANGB, Colorado. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1988-01-01

    Weather Service (MAC) 3SAFETAr’ REVISED UNIFORM SUMMARY OF SURFACE WEATHER OBSERVATIONS BUCKLEY ANGB CO MSC # 724695 N 39 43 W 104 45 ELEV 5663 FT KBKF...chg- R uc kI y A N T;B , A u ro ra , C o lo rad o A NG J an 71 No v 8 0 N o cliq e N o ( iq (o 1i , 4 I )r 7() [1 Ii1 " 7 No change AN(; Nec NO sep R3...6,U3 Lr: 7,-49 1 STATICN NAME: fTUC LE Y AN6F CO |I’(-j11 (IF I[ COPD : 62.07 4 IOUR AMOUNTS IN N6-S -8-0- N-I -i-s - ALL 9711 z JAN FEC9 "AR CpF, JL N

  20. McGuire AFB, New Jersey. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1987-12-01

    Air Weather Service (MAC) IS e REVISED UNIFORM SUMMARY OF SURFACE WEATHER OBSERVATIONS MCGUIRE AFB NJ MSC 724096 N 40 01 W 074 36 ELEV 133 FT KWRI...OCCUCRECVCL OF ’,UP F CE 4 1NU L DI ACT ICN v[ISSi *14U SFEEU ,,&FEICAC $AQM WOUkEY OhSFPVAIOS’ A Ti! L.ATIEP 5 3441ICE/ MSC $TA IC’. NUMFPP: 7,4𔄃t STATION...AI AELF I TOTALS I IT~ I2. .. 1 1 100.0 6.7 I19 I ’,ALNuI ~MP OF 0O"SEKhOA T I NS: ’K LLQL tL 4(L IMAI OO G’ 6Rf,H rLrCLNIIfCGE F iL CuENC9 Of uC (u

  1. Verification of National Weather Service spot forecasts using surface observations

    NASA Astrophysics Data System (ADS)

    Lammers, Matthew Robert

    Software has been developed to evaluate National Weather Service spot forecasts issued to support prescribed burns and early-stage wildfires. Fire management officials request spot forecasts from National Weather Service Weather Forecast Offices to provide detailed guidance as to atmospheric conditions in the vicinity of planned prescribed burns as well as wildfires that do not have incident meteorologists on site. This open source software with online display capabilities is used to examine an extensive set of spot forecasts of maximum temperature, minimum relative humidity, and maximum wind speed from April 2009 through November 2013 nationwide. The forecast values are compared to the closest available surface observations at stations installed primarily for fire weather and aviation applications. The accuracy of the spot forecasts is compared to those available from the National Digital Forecast Database (NDFD). Spot forecasts for selected prescribed burns and wildfires are used to illustrate issues associated with the verification procedures. Cumulative statistics for National Weather Service County Warning Areas and for the nation are presented. Basic error and accuracy metrics for all available spot forecasts and the entire nation indicate that the skill of the spot forecasts is higher than that available from the NDFD, with the greatest improvement for maximum temperature and the least improvement for maximum wind speed.

  2. The 3D Mesonet Concept: Extending Networked Surface Meteorological Tower Observations Through Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Chilson, P. B.; Fiebrich, C. A.; Huck, R.; Grimsley, J.; Salazar-Cerreno, J.; Carson, K.; Jacob, J.

    2017-12-01

    Fixed monitoring sites, such as those in the US National Weather Service Automated Surface Observing System (ASOS) and the Oklahoma Mesonet provide valuable, high temporal resolution information about the atmosphere to forecasters and the general public. The Oklahoma Mesonet is comprised of a network of 120 surface sites providing a wide array of atmospheric measurements up to a height of 10 m with an update time of five minutes. The deployment of small unmanned aircraft to collect in-situ vertical measurements of the atmospheric state in conjunction with surface conditions has potential to significantly expand weather observation capabilities. This concept can enhance the safety of individuals and support commerce through improved observations and short-term forecasts of the weather and other environmental variables in the lower atmosphere. We report on a concept of adding the capability of collecting vertical atmospheric measurements (profiles) through the use of unmanned aerial systems (UAS) at remote Oklahoma sites deemed suitable for this application. While there are a number of other technologies currently available that can provide measurements of one or a few variables, the proposed UAS concept will be expandable and modular to accommodate several different sensor packages and provide accurate in-situ measurements in virtually all weather conditions. Such a system would facilitate off-site maintenance and calibration and would provide the ability to add new sensors as they are developed or as new requirements are identified. The small UAS must be capable of accommodating the weight of all sensor packages and have lighting, communication, and aircraft avoidance systems necessary to meet existing or future FAA regulations. The system must be able to operate unattended, which necessitates the inclusion of risk mitigation measures such as a detect and avoid radar and the ability to transmit and receive transponder signals. Moreover, the system should be able to assess local weather conditions (visibility, surface winds, and cloud height) and the integrity of the vehicle (system diagnostics, fuel level) before takeoff. We provide a notional concept of operations for a 3D Mesonet being considered, describe the technical configuration for one station in the network, and discuss plans for future development.

  3. A Self-Organizing Map Based Evaluation of the Antarctic Mesoscale Prediction System Using Observations from a 30-m Instrumented Tower on the Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Nigro, M. A.; Cassano, J. J.; Wille, J.; Bromwich, D. H.; Lazzara, M. A.

    2015-12-01

    An accurate representation of the atmospheric boundary layer in numerical weather prediction models is important for predicting turbulence and energy exchange in the atmosphere. This study uses two years of observations from a 30-m automatic weather station (AWS) installed on the Ross Ice Shelf, Antarctica to evaluate forecasts from the Antarctic Mesoscale Prediction System (AMPS), a numerical weather prediction system based on the polar version of the Weather Research and Forecasting (Polar WRF) model that uses the MYJ planetary boundary layer scheme and that primarily supports the extensive aircraft operations of the U.S. Antarctic Program. The 30-m AWS has six levels of instrumentation, providing vertical profiles of temperature, wind speed, and wind direction. The observations show the atmospheric boundary layer over the Ross Ice Shelf is stable approximately 80% of the time, indicating the influence of the permanent ice surface in this region. The observations from the AWS are further analyzed using the method of self-organizing maps (SOM) to identify the range of potential temperature profiles that occur over the Ross Ice Shelf. The SOM analysis identified 30 patterns, which range from strong inversions to slightly unstable profiles. The corresponding AMPS forecasts were evaluated for each of the 30 patterns to understand the accuracy of the AMPS near surface layer under different atmospheric conditions. The results indicate that under stable conditions AMPS with MYJ under predicts the inversion strength by as much as 7.4 K over the 30-m depth of the tower and over predicts the near surface wind speed by as much as 3.8 m s-1. Conversely, under slightly unstable conditions, AMPS predicts both the inversion strength and near surface wind speeds with reasonable accuracy.

  4. Linking the Weather Generator with Regional Climate Model: Effect of Higher Resolution

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin; Huth, Radan; Farda, Ales; Skalak, Petr

    2014-05-01

    This contribution builds on our last year EGU contribution, which followed two aims: (i) validation of the simulations of the present climate made by the ALADIN-Climate Regional Climate Model (RCM) at 25 km resolution, and (ii) presenting a methodology for linking the parametric weather generator (WG) with RCM output (aiming to calibrate a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations). Now we have available new higher-resolution (6.25 km) simulations with the same RCM. The main topic of this contribution is an anser to a following question: What is an effect of using a higher spatial resolution on a quality of simulating the surface weather characteristics? In the first part, the high resolution RCM simulation of the present climate will be validated in terms of selected WG parameters, which are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series. When comparing the WG parameters from the two sources (RCM vs observations), we interpolate the RCM-based parameters into the station locations while accounting for the effect of altitude. In the second part, we will discuss an effect of using the higher resolution: the results of the validation tests will be compared with those obtained with the lower-resolution RCM. Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102 action).

  5. Fritzsche AAF, Fort Ord, Salinas, California. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1972-02-17

    OBSERVATIONS) 93217 FORT u-;v %.’,Ll/r i%. A s .-7 _ -_ STATION STATION MARC YEARS NORTH CLASS MOURS (L S.T.) CONITIONU PEDI MEAN (KNS) 1 -3 4 6 7 10...m .. . . . ’S - ,S: -’.. _ _ { MOM "" S USAF ETAC PSYCHROMETRIC SUMMARY AIR WEATHER SER,/XCc’/’. STATION STATION NAME YIEARS MONTH ) [PAGE 1 2100

  6. Constraining storm-scale forecasts of deep convective initiation with surface weather observations

    NASA Astrophysics Data System (ADS)

    Madaus, Luke

    Successfully forecasting when and where individual convective storms will form remains an elusive goal for short-term numerical weather prediction. In this dissertation, the convective initiation (CI) challenge is considered as a problem of insufficiently resolved initial conditions and dense surface weather observations are explored as a possible solution. To better quantify convective-scale surface variability in numerical simulations of discrete convective initiation, idealized ensemble simulations of a variety of environments where CI occurs in response to boundary-layer processes are examined. Coherent features 1-2 hours prior to CI are found in all surface fields examined. While some features were broadly expected, such as positive temperature anomalies and convergent winds, negative temperature anomalies due to cloud shadowing are the largest surface anomaly seen prior to CI. Based on these simulations, several hypotheses about the required characteristics of a surface observing network to constrain CI forecasts are developed. Principally, these suggest that observation spacings of less than 4---5 km would be required, based on correlation length scales. Furthermore, it is anticipated that 2-m temperature and 10-m wind observations would likely be more relevant for effectively constraining variability than surface pressure or 2-m moisture observations based on the magnitudes of observed anomalies relative to observation error. These hypotheses are tested with a series of observing system simulation experiments (OSSEs) using a single CI-capable environment. The OSSE results largely confirm the hypotheses, and with 4-km and particularly 1-km surface observation spacing, skillful forecasts of CI are possible, but only within two hours of CI time. Several facets of convective-scale assimilation, including the need for properly-calibrated localization and problems from non-Gaussian ensemble estimates of the cloud field are discussed. Finally, the characteristics of one candidate dense surface observing network are examined: smartphone pressure observations. Available smartphone pressure observations (and 1-hr pressure tendency observations) are tested by assimilating them into convective-allowing ensemble forecasts for a three-day active convective period in the eastern United States. Although smartphone observations contain noise and internal disagreement, they are effective at reducing short-term forecast errors in surface pressure, wind and precipitation. The results suggest that smartphone pressure observations could become a viable mesoscale observation platform, but more work is needed to enhance their density and reduce error. This work concludes by reviewing and suggesting other novel candidate observation platforms with a potential to improve convective-scale forecasts of CI.

  7. Space Weathering Rates in Lunar and Itokawa Samples

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.

    2017-01-01

    Space weathering alters the chemistry, microstructure, and spectral proper-ties of grains on the surfaces of airless bodies by two major processes: micrometeorite impacts and solar wind interactions. Investigating the nature of space weathering processes both in returned samples and in remote sensing observations provides information fundamental to understanding the evolution of airless body regoliths, improving our ability to determine the surface composition of asteroids, and linking meteorites to specific asteroidal parent bodies. Despite decades of research into space weathering processes and their effects, we still know very little about weathering rates. For example, what is the timescale to alter the reflectance spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope from an S-type asteroid? One approach to answering this question has been to determine ages of asteroid families by dynamical modeling and determine the spectral proper-ties of the daughter fragments. However, large differences exist between inferred space weathering rates and timescales derived from laboratory experiments, analysis of asteroid family spectra and the space weathering styles; estimated timescales range from 5000 years up to 108 years. Vernazza et al. concluded that solar wind interactions dominate asteroid space weathering on rapid timescales of 10(exp 4)-10(exp 6) years. Shestopalov et al. suggested that impact-gardening of regolith particles and asteroid resurfacing counteract the rapid progress of solar wind optical maturation of asteroid surfaces and proposed a space weathering timescale of 10(exp 5)-10(exp 6) years.

  8. Impact of Rice Paddy Areas Decrease on Local Climate over Taiwan

    NASA Astrophysics Data System (ADS)

    Lo, M. H.; Wen, W. H.; Chen, C. C.

    2014-12-01

    Agricultural irrigation practice is one of the important anthropogenic processes in the land surface modeling. Irrigation can decrease local surface temperature with alternating surface energy partitioning. Rice paddy is the major food crop in Asian monsoon region and rice is grown under flooded conditions during the growing season; hence, the rice paddy can be considered as an open water body, which has more impacts on the surface energy budget than other cropland does. In this study, we explore how the rice paddy area changes affect Taiwan's regional climate from both observational data and numerical modeling exercise. The Weather Research and Forecasting (WRF) model is utilized to explore impacts of rice paddy area changes on the regional climate, and energy and water budget changes. In addition, temperature datasets from six automatic weather stations in the northern Taiwan and two stations in the southern Taiwan are analyzed in this study to explore how the Daily Temperature Range (DTR) changes with the decreased rice paddy areas. Previous studies show that due to the urban heat island effect, aerosol direct and indirect effects, and global warming, the DTR has decreased in the past 4 decades observed from most of the weather stations around Taiwan. However, the declined rice paddy area may increase the DTR with higher Bowen ratio during the daytime. Preliminary results show that DTR is decreased in weather stations near the urban area, but increased in weather stations near fallow areas in the past 20 years. It shows that different land use changes may have opposite impacts on local and regional climate.

  9. Revised Uniform Summary of Surface Weather Observations (RUSSWO) for Wheeler AFB, Wahiawa, Hawaii. Parts A-F

    DTIC Science & Technology

    1980-01-11

    OBSERVATIONS) 225 :1 LIEELER AFB HI 68-70,73-79 JUL STATION STI* k-t 11Ot- ALL wEAT,4ER 1530-1700 CLASS ko ~z7 ILS i.- CONDITION rI 1’E 1.1 . SPEED .MEAN...AND SPEED (FROM HOURLY OBSERVATIONS) 225f_8 ,HEELER AFB HI 67-70,73-76 NOV MSATION STATION vults IZARS lONth ALL WEATHER 1800-2000 chit , mo02s (L 5

  10. Torrejon AB, Spain. Revised Uniform Summary of Surface Weather Observations. Parts A-F.

    DTIC Science & Technology

    1987-08-13

    OF SURFACE WEATHER OBSERVATIONS Q IORREJON AB SPAIN MSC 082270 N 40 29 W 003 27 ELEV 1994 FT LETO PARTS A F HOURS SUMMARIZED 0000 - 2300 LST PERIOD OF...8217I ..5 .8? .11 ..1 I14*! .0? .fl .0. .00 TgvC( TRACE .30 1.3 • . I *=I" i.1?i . o’, . 35 .tIU .’ uC .,0 .0O0 .qurl...MAC TA TION NUMPLR: OP227:) STATION NAME: TORREJON AR SPAIN PERIOD OF RLCORD: 7A-A? MONT-: FES 6OUQS(LSTI: 1’. UC -I1UO I WIND SPEED IN KNOTS

  11. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features ranged from tens to a few microns with textures that remained relatively sharp and were crystallographically controlled. These results were comparable to that observed in the "naturally" weathered comparison/reference grains. Chemical analysis by EDS indicates these textures correlated with the relative loss of Mg and Fe cations by diffusional processes. In contrast the biotic results indicated changes in the etching patterns on the scale of hundreds of nm, which are neither sharp nor crystallographically controlled (nanoetching). Organisms, organic debris and/or extracellular polymeric substances (biofilm) were often in close proximity or direct contact with the nanoetching. While there are many poorly constrained variables in natural weathering experiments to contend with, such as the time scale, the chemistry of the fluids and degree of biologic participation, some preliminary observations can be made: (1) certain distinct surface textures appear correlated with the specific processes giving rise to these textures; (2) the process of diffusing cations can produce many similar styles of surface textural changes; and (3) the main difference between abiotic and biotically produced weathering is the scale (microns versus nanometers) and the style (crystallographically versus noncrystallographically controlled) of the textural features. Further investigation into nanosize scale surface textures should attempt to quantify both textures and chemical changes of the role of microorganisms in the weathering of silicates. Additional experiments addressing nanoscale textures of shock features for comparison with the current data set.

  12. Simulation and Data Analytics for Mobile Road Weather Sensors

    NASA Astrophysics Data System (ADS)

    Chettri, S. R.; Evans, J. D.; Tislin, D.

    2016-12-01

    Numerous algorithmic and theoretical considerations arise in simulating a vehicle-based weather observation network known as the Mobile Platform Environmental Data (MoPED). MoPED integrates sensor data from a fleet of commercial vehicles (about 600 at last count, with thousands more to come) as they travel interstate, state and local routes and metropolitan areas throughout the conterminous United States. The MoPED simulator models a fleet of anywhere between 1000-10,000 vehicles that travel a highway network encoded in a geospatial database, starting and finishing at random times and moving at randomly-varying speeds. Virtual instruments aboard these vehicles interpolate surface weather parameters (such as temperature and pressure) from the High-Resolution Rapid Refresh (HRRR) data series, an hourly, coast-to-coast 3km grid of weather parameters modeled by the National Centers for Environmental Prediction. Whereas real MoPED sensors have noise characteristics that lead to drop-outs, drift, or physically unrealizable values, our simulation introduces a variety of noise distributions into the parameter values inferred from HRRR (Fig. 1). Finally, the simulator collects weather readings from the National Weather Service's Automated Surface Observation System (ASOS, comprised of over 800 airports around the country) for comparison, validation, and analytical experiments. The simulator's MoPED-like weather data stream enables studies like the following: Experimenting with data analysis and calibration methods - e.g., by comparing noisy vehicle data with ASOS "ground truth" in close spatial and temporal proximity (e.g., 10km, 10 min) (Fig. 2). Inter-calibrating different vehicles' sensors when they pass near each other. Detecting spatial structure in the surface weather - such as dry lines, sudden changes in humidity that accompany severe weather - and estimating how many vehicles are needed to reliably map these structures and their motion. Detecting bottlenecks in the MoPED data infrastructure to ensure real-time data filtering and dissemination as number of vehicles scales up; or tuning the data structures needed to keep track of individual sensor calibrations. Expanding the analytical and data management approach to other mobile weather sensors such as smartphones.

  13. Evaluation of WRF PBL parameterization schemes against direct observations during a dry event over the Ganges valley

    NASA Astrophysics Data System (ADS)

    Sathyanadh, Anusha; Prabha, Thara V.; Balaji, B.; Resmi, E. A.; Karipot, Anandakumar

    2017-09-01

    Accurate representations of the planetary boundary layer (PBL) are important in all weather forecast systems, especially in simulations of turbulence, wind and air quality in the lower atmosphere. In the present study, detailed observations from the Cloud Aerosol Interaction and Precipitation Enhancement Experiment - Integrated Ground based Observational Campaign (CAIPEEX-IGOC) 2014 comprising of the complete surface energy budget and detailed boundary layer observations are used to validate Advanced Research Weather Research and Forecasting (WRF) model simulations over a diverse terrain over the Ganges valley region, Uttar Pradesh, India. A drying event in June 2014 associated with a heat wave is selected for validation.Six local and nonlocal PBL schemes from WRF at 1 km resolution are compared with hourly observations during the diurnal cycle. Near-surface observations of weather parameters, radiation components and eddy covariance fluxes from micrometeorological tower, and profiles of variables from microwave radiometer, and radiosonde observations are used for model evaluations. Models produce a warmer, drier surface layer with higher wind speed, sensible heat flux and temperature than observations. Layered boundary layer dynamics, including the residual layer structure as illustrated in the observations over the Ganges valley are missed in the model, which lead to deeper mixed layers and excessive drying.Although it is difficult to identify any single scheme as the best, the qualitative and quantitative analyses for the entire study period and overall reproducibility of the observations indicate that the MYNN2 simulations describe lower errors and more realistic simulation of spatio-temporal variations in the boundary layer height.

  14. Space weathering of asteroids: Lessons from Itokawa for future observations

    NASA Astrophysics Data System (ADS)

    Sasaki, Sho; HIroi, Takahiro

    2016-07-01

    Introduction Space weathering of surface silicate minerals is the main process that should control the change of brightness and color of airless silicate bodies such and the Moon, Mercury and asteroids. Spectra of S-type asteroids exhibit more overall depletion and reddening, and more weakening of absorption bands than spectra of ordinary chondrites. These spectral mismatches are explained by the space weathering, where the primary proven mechanism of such spectral change is production of nanophase metallic iron particles (npFe0) 1), which were confirmed in the amorphous rim of lunar soil grains 2,3). Vapor-deposition through at high-velocity dust particle impacts as well as implantation of intensive solar wind ions would be responsible for producing the space weathering rims bearing nano-iron particles (npFe0). Simulation experiments using nanosecond pulse laser successfully produced vapor-deposition type npFe0 to change optical properties 4,5,6). Laser experiments showed that pyroxene would be weathered less than olivine, for pyroxene, pulse laser irradiation produced melt (amorphous) droplets containing npFe0, rather than vapour deposited rim that should provide stronger optical effect trough multiple scattering of incidental light. Itokawa Observed by Remote Sensing In November 2005, Japanese Asteroid Sample Return Mission HAYABUSA spacecraft rendezvoused S-type asteroid (25143) Itokawa. Optically, the surface of Itokawa is divided into brighter (and bluer) areas and darker (and redder) areas 7,8). In rough zones, dark boulder-rich surfaces usually superpose on bright materials. The near-infrared spectrometer (NIRS) confirmed previous disk-integrated results that suggested Itokawa's spectrum closely matched a weakly weathered LL5/6 chondrite 9). Although the surface is covered with rocks and is apparently lack of fine regolith, Itokawa's surface show darkening and reddening by space weathering. Experimental results suggest rocky meteorite fragments can be weathered. The presence of opposition effect in rocky terrain of Itokawa suggested that the surface would be covered by particulate materials or porous enough to scatter light. Spectral variations were observed, that can be explained by Hapke's space weathering model, where the amount of npFe0 controls spectral reddening. As for color variation of Itokawa, we can interpret that seismic shaking caused by impacts or planetary encounters should lead to exposure of underlying relatively fresh bright area by removing weathered darker boulder-rich layer. Itokawa - Evidence from Returned Samples In 2011, HAYABUSA returned more than 1000 particulate samples of Itokawa back to the Earth. Analysis of mineral assemblies and composition of Itokawa particles supports that Itokawa has LL-chondrite composition. The most notable discoveries in Itokawa particles is amorphous space-weathering rims containing npFe0 16, 17, 18). Sometimes ion-implanted type-II layers contains vesicles, probably due mainly to trapping solar wind energetic helium with penetration depth up to a few tens µm (composite vesicular rim in 17, 18)). Large vesicles are observed as blisters on the surface of Itokawa particles. Matsumoto et al. 18) identified space weathered rims with blisters on eleven out of twenty regolith particles of Itokawa. It was confirmed that a blister corresponds to a vesicle in npFe0-bearing amorphous layer. These rims with blisters are heterogeneously distributed even in one particle. Sometimes blistered rims are observed in opposite surfaces of the same particle. This is a strong evidence of regolith mixing. So far, there is no correlation between the blister distribution and surface morphologies such as roundness of particles. A few 10 nm amorphous rim can be developed in timescale 1000 yr (based on solar flare density, Regolith mixing processes may prolong timescale of optical maturation on smooth regions of Itokawa. References 1) Hapke B., Cassidy, W. And Wells. E.: Effects of vapor-phase deposition processes on the optical, chemical, and magnetic properties of the lunar regolith, Moon, 13 (1975), 339-353 2) Keller L. P. and McKay D. S.: Science, 261 (1993), 1305-1307. 3) Pieters C. M., et al. Meteorit.: Planet. Sci., 35 (2000), 1101-1107. 4) Yamada, M., et al.: Earth Planets Space 51 (1999), 1255-1265. 5) Sasaki, S., et al.: Nature 410 (2001), 555-557. 6) Brunetto, R., et al.: Icarus 180 (1995), 546-554. 10) Brunetto, R., Loeffler, M. J., Nesvorny, D., Sasaki, S., and Strazzulla, G.: Asteroid Surface Alteration by Space Weathering Processes, in Asteroid IV, Univ. Arizona Press (2015). 11) Hirata, N., et al.: Icarus 200 (2009), 486-502. 12) Ishiguro, M.: Scattered light correction of Hayabusa/AMICA data and quantitative spectral comparisons of Itokawa, Pub. Astron. Soc. Japan, 66 (2014), 55 13) Noguchi, T., et al.: Icarus 206 (2010), 319-326. 14) Nakamura, T., et al.: Science 333 (2011), 1113-1116. 15] Tsuchiyama, A., et al.: Science 333 (2011), 1125-1128. [6) Noguchi, T., et al.: Science 333 (2011), 1121-1125. 17) Noguchi, T., et al.: Meteorit. Planet. Sci., 49 (2014), 188-214. 18) Matsumoto, T. et al. Icarus (2015) 257, 230. 19) Noble S. K. et al. (2011) Meteorit. Planet. Sci., 45 (2011), 2007.

  15. Seasonal variability of atmospheric surface layer characteristics and weather pattern in Qatar

    NASA Astrophysics Data System (ADS)

    Samanta, Dhrubajyoti; Cheng, Way Lee; Sadr, Reza

    2016-11-01

    Qatar's economy is based on oil and gas industry, which are mostly located in coastal regions. Therefore, better understanding of coastal weather, characteristics of surface layer and turbulence exchange processes is much needed. However, the turbulent atmospheric layer study in this region is severely limited. To support the broader aim and study long term precise wind information, a micro-meteorological field campaign has been carried out in a coastal location of north Qatar. The site is based on a 9 m tower, installed at Al Ghariya in the northern coast of Qatar, equipped with three sonic anemometers, temperature-humidity sensor, radiometer and a weather station. This study shows results based on the period August 2015 to July 2016. Various surface layer characteristics and modellings coefficients based on Monin Obukhov similarity theory is studied for the year and seasonal change is noted. Along with the seasonal variabilities of different weather parameters also observed. We hope this long term field observational study will be very much helpful for research community especially for modelers. In addition, two beach and shoreline monitoring cameras installed at the site could give first time information on waves and shoreline changes, and wind-wave interaction in Qatar. An Preliminary Analysis of Wind-Wave Interaction in Qatar in the Context of Changing Climate.

  16. Documentation for Program SOILSIM: A computer program for the simulation of heat and moisture flow in soils and between soils, canopy and atmosphere

    NASA Technical Reports Server (NTRS)

    Field, Richard T.

    1990-01-01

    SOILSIM, a digital model of energy and moisture fluxes in the soil and above the soil surface, is presented. It simulates the time evolution of soil temperature and moisture, temperature of the soil surface and plant canopy the above surface, and the fluxes of sensible and latent heat into the atmosphere in response to surface weather conditions. The model is driven by simple weather observations including wind speed, air temperature, air humidity, and incident radiation. The model intended to be useful in conjunction with remotely sensed information of the land surface state, such as surface brightness temperature and soil moisture, for computing wide area evapotranspiration.

  17. Noah-MP-Crop: Enhancing cropland representation in the community land surface modeling system

    NASA Astrophysics Data System (ADS)

    Liu, X.; Chen, F.; Barlage, M. J.; Zhou, G.; Niyogi, D.

    2015-12-01

    Croplands are important in land-atmosphere interactions and in modifying local and regional weather and climate. Despite their importance, croplands are poorly represented in the current version of the coupled Weather Research and Forecasting (WRF)/ Noah land-surface modeling system, resulting in significant surface temperature and humidity biases across agriculture- dominated regions of the United States. This study aims to improve the WRF weather forecasting and regional climate simulations during the crop growing season by enhancing the representation of cropland in the Noah-MP land model. We introduced dynamic crop growth parameterization into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at both the field and regional scales with multiple crop biomass datasets, surface fluxes and soil moisture/temperature observations. We also integrated a detailed cropland cover map into WRF, enabling the model to simulate corn and soybean field across the U.S. Great Plains. Results show marked improvement in the Noah-MP-Crop performance in simulating leaf area index (LAI), crop biomass, soil temperature, and surface fluxes. Enhanced cropland representation is not only crucial for improving weather forecasting but can also help assess potential impacts of weather variability on regional hydrometeorology and crop yields. In addition to its applications to WRF, Noah-MP-Crop can be applied in high-spatial-resolution regional crop yield modeling and drought assessments

  18. Extended Edited Synoptic Cloud Reports from Ships and Land Stations Over the Globe, 1952-2009 (NDP-026C)

    DOE Data Explorer

    Hahn, C. J. [University of Arizona; Warren, S. G. [University of Washington; Eastman, R.

    1999-08-01

    This database contains surface synoptic weather reports for the entire globe, gathered from various available data sets. The reports were processed, edited, and rewritten to provide a single dataset of individual observations of clouds, spanning the 57 years 1952-2008 for ship data and the 39 years 1971-2009 for land station data. In addition to the cloud portion of the synoptic report, each edited report also includes the associated pressure, present weather, wind, air temperature, and dew point (and sea surface temperature over oceans). This data set is called the "Extended Edited Cloud Report Archive" (EECRA). The EECRA is based solely on visual cloud observations from weather stations, reported in the WMO synoptic code (WMO, 1974). Reports must contain cloud-type information to be included in the archive. Past data sources include those from the Fleet Numerical Oceanographic Center (FNOC, 1971-1976) and the National Centers for Environmental Prediction (NCEP, 1977-1996). This update uses data from a new source, the 'Integrated Surface Database' (ISD, 1997-2009; Smith et al., 2011). Our past analyses of the EECRA identified a subset of 5388 weather stations that were determined to produce reliable day and night observations of cloud amount and type. The update contains observations only from this subset of stations. Details concerning processing, previous problems, contents, and comments are available in the archive's original documentation . The EECRA contains about 81 million cloud observations from ships and 380 million from land stations. The data files have been compressed using unix. Unix/linux users can "uncompress" or "gunzip" the files after downloading. If you're interested in the NDP-026C database, then you'll also want to explore its related data products, NDP-026D and NDP-026E.

  19. Importance of mechanical disaggregation in chemical weathering in a cold alpine environment, San Juan Mountains, Colorado

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Drever, J.I.

    1999-01-01

    Weathering of welded tuff near the summit of Snowshoe Mountain (3660 m) in southwestern Colorado was studied by analyzing infiltrating waters in the soil and associated solid phases. Infiltrating waters exhibit anomalously high potassium to silica ratios resulting from dissolution of a potassium-rich glass that occurs as a trace phase in the rock. In laboratory experiments using rock from the field site, initial dissolution generated potassium-rich solutions similar to those observed in the field. The anomalous potassium release decreased over time (about 1 month), after which the dominant cation was calcium, with a much lower potassium to silica ratio. The anomalous potassium concentrations observed in the infiltrating soil solutions result from weathering of freshly exposed rock surfaces. Continual mechanical disaggregation of the rock due to segregation freezing exposes fresh glass to weathering and thus maintains the source of potassium for the infiltrating water. The ongoing process of creation of fresh surfaces by physical processes is an important influence on the composition of infiltrating waters in the vadose zone.

  20. Parametric vs. non-parametric daily weather generator: validation and comparison

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin

    2016-04-01

    As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30 years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series from several European stations available from the ECA&D database.

  1. Low-temperature formation of magnetic iron oxides

    NASA Technical Reports Server (NTRS)

    Koch, Chr. Bender; Madsen, M. B.

    1992-01-01

    Elemental analysis and magnetic measurements of the surface of Mars have indicated the presence of an iron oxide with a considerable magnetic moment. Identification of the oxide phase(s) is an important subject as this may be used to identify the process of weathering on the martian surface as well as the composition of the Mars regolith itself. Consequently, interest was in evidence of new formation of strongly magnetic phases (e.g., magnetite, maghemite, feroxyhyte) in terrestrially derived Mars sample analogs. Within the group of Mars sample analogs derived from low-temperature weathering of basalts in Arctic regions, evidence of magnetic oxides formed at the outermost weathering rind was never observed. However, in one instance where the weathering products accumulating in a crack of a basaltic stone were investigated, evidence of magnetite was found. The experimental details are presented.

  2. Strong catalytic activity of iron nanoparticles on the surfaces of reduced olivine

    NASA Astrophysics Data System (ADS)

    Tucker, William C.; Quadery, Abrar H.; Schulte, Alfons; Blair, Richard G.; Kaden, William E.; Schelling, Patrick K.; Britt, Daniel T.

    2018-01-01

    It is demonstrated that olivine powders heated to subsolidus temperatures in reducing conditions can develop significant concentrations of 10-50 nm diameter Fe nanoparticles on grain surfaces and that these display strong catalytic activity not observed in powders without Fe nanoparticles. Reduced surfaces were exposed to NH3, CO, and H2, volatiles that may be present on the surfaces of comet and volatile-rich asteroids. In the case of NH3 exposure, rapid decomposition was observed. When exposed to a mixture of CO and H2, significant coking of the mineral surfaces occurred. Analysis of the mineral grains after reaction indicated primarily the presence of graphene or graphitic carbon. The results demonstrate that strong chemical activity can be expected at powders that contain nanophase Fe particles. This suggests space-weathered mineral surfaces may play an important role in the synthesis and processing of organic species. This processing may be part of the weathering processes of volatile-rich but atmosphereless solar-system bodies.

  3. Understanding Space Weather: The Sun as a Variable Star

    NASA Technical Reports Server (NTRS)

    Strong, Keith; Saba, Julia; Kucera, Therese

    2011-01-01

    The Sun is a complex system of systems and until recently, less than half of its surface was observable at any given time and then only from afar. New observational techniques and modeling capabilities are giving us a fresh perspective of the solar interior and how our Sun works as a variable star. This revolution in solar observations and modeling provides us with the exciting prospect of being able to use a vastly increased stream of solar data taken simultaneously from several different vantage points to produce more reliable and prompt space weather forecasts. Solar variations that cause identifiable space weather effects do not happen only on solar-cycle timescales from decades to centuries; there are also many shorter-term events that have their own unique space weather effects and a different set of challenges to understand and predict, such as flares, coronal mass ejections, and solar wind variations

  4. Understanding Space Weather: The Sun as a Variable Star

    NASA Technical Reports Server (NTRS)

    Strong, Keith; Saba, Julia; Kucera, Therese

    2012-01-01

    The Sun is a complex system of systems and until recently, less than half of its surface was observable at any given time and then only from afar. New observational techniques and modeling capabilities are giving us a fresh perspective of the solar interior and how our Sun works as a variable star. This revolution in solar observations and modeling provides us with the exciting prospect of being able to use a vastly increased stream of solar data taken simultaneously from several different vantage points to produce more reliable and prompt space weather forecasts. Solar variations that cause identifiable space weather effects do not happen only on solar-cycle timescales from decades to centuries; there are also many shorter-term events that have their own unique space weather effects and a different set of challenges to understand and predict, such as flares, coronal mass ejections, and solar wind variations.

  5. The Heat Strain of Various Athletic Surfaces: A Comparison Between Observed and Modeled Wet-Bulb Globe Temperatures.

    PubMed

    Pryor, J Luke; Pryor, Riana R; Grundstein, Andrew; Casa, Douglas J

    2017-11-01

      The National Athletic Trainers' Association recommends using onsite wet-bulb globe temperature (WBGT) measurement to determine whether to modify or cancel physical activity. However, not all practitioners do so and instead they may rely on the National Weather Service (NWS) to monitor weather conditions.   To compare regional NWS WBGT estimates with local athletic-surface readings and compare WBGT measurements among various local athletic surfaces.   Observational study.   Athletic fields.   Measurements from 2 identical WBGT devices were averaged on 10 athletic surfaces within an NWS station reporting radius. Athletic surfaces consisted of red and black all-weather tracks (track), blue and black hard tennis courts (tennis), nylon-knit artificial green turf, green synthetic turfgrass, volleyball sand, softball clay, natural grass (grass), and a natural lake (water). Measurements (n = 143 data pairs) were taken over 18 days (May through September) between 1 pm and 4:30 pm in direct sunlight 1.2 m above ground. The starting location was counterbalanced across surfaces. The NWS weather data were entered into an algorithm to model NWS WBGT.   Black tennis, black track, red track, and volleyball sand WBGT recordings were greater than NWS estimates ( P ≤ .05). When all athletic-surface measurements were combined, NWS (26.85°C ± 2.93°C) underestimated athletic-surface WBGT measurements (27.52°C ± 3.13°C; P < .001). The range of difference scores (-4.42°C to 6.14°C) and the absolute mean difference (1.71°C ± 1.32°C) were large. The difference between the onsite and NWS WBGT measurements resulted in misclassification of the heat-safety activity category 45% (65/143) of the time ([Formula: see text]= 3.857, P = .05). The WBGT of water was 1.4°C to 2.7°C lower than that of all other athletic surfaces ( P = .04). We observed no other differences among athletic surfaces but noted large WBGT measurement variability among athletic playing surfaces.   Clinicians should use an onsite WBGT device to determine environmental conditions and the need for modification of athletic events, especially as environmental conditions worsen. Given the large WBGT variability among athletic surfaces, WBGT measurements should be obtained from each athletic surface.

  6. Optical space weathering on Vesta: Radiative-transfer models and Dawn observations

    NASA Astrophysics Data System (ADS)

    Blewett, David T.; Denevi, Brett W.; Le Corre, Lucille; Reddy, Vishnu; Schröder, Stefan E.; Pieters, Carle M.; Tosi, Federico; Zambon, Francesca; De Sanctis, Maria Cristina; Ammannito, Eleonora; Roatsch, Thomas; Raymond, Carol A.; Russell, Christopher T.

    2016-02-01

    Exposure to ion and micrometeoroid bombardment in the space environment causes physical and chemical changes in the surface of an airless planetary body. These changes, called space weathering, can strongly influence a surface's optical characteristics, and hence complicate interpretation of composition from reflectance spectroscopy. Prior work using data from the Dawn spacecraft (Pieters, C.M. et al. [2012]. Nature 491, 79-82) found that accumulation of nanophase metallic iron (npFe0), which is a key space-weathering product on the Moon, does not appear to be important on Vesta, and instead regolith evolution is dominated by mixing with carbonaceous chondrite (CC) material delivered by impacts. In order to gain further insight into the nature of space weathering on Vesta, we constructed model reflectance spectra using Hapke's radiative-transfer theory and used them as an aid to understanding multispectral observations obtained by Dawn's Framing Cameras (FC). The model spectra, for a howardite mineral assemblage, include both the effects of npFe0 and that of a mixed CC component. We found that a plot of the 438-nm/555-nm ratio vs. the 555-nm reflectance for the model spectra helps to separate the effects of lunar-style space weathering (LSSW) from those of CC-mixing. We then constructed ratio-reflectance pixel scatterplots using FC images for four areas of contrasting composition: a eucritic area at Vibidia crater, a diogenitic area near Antonia crater, olivine-bearing material within Bellicia crater, and a light mantle unit (referred to as an ;orange patch; in some previous studies, based on steep spectral slope in the visible) northeast of Oppia crater. In these four cases the observed spectral trends are those expected from CC-mixing, with no evidence for weathering dominated by production of npFe0. In order to survey a wider range of surfaces, we also defined a spectral parameter that is a function of the change in 438-nm/555-nm ratio and the 555-nm reflectance between fresh and mature surfaces, permitting the spectral change to be classified as LSSW-like or CC-mixing-like. When applied to 21 fresh and mature FC spectral pairs, it was found that none have changes consistent with LSSW. We discuss Vesta's lack of LSSW in relation to the possible agents of space weathering, the effects of physical and compositional differences among asteroid surfaces, and the possible role of magnetic shielding from the solar wind.

  7. A Meteorological Supersite for Aviation and Cold Weather Applications

    NASA Astrophysics Data System (ADS)

    Gultepe, Ismail; Agelin-Chaab, M.; Komar, J.; Elfstrom, G.; Boudala, F.; Zhou, B.

    2018-05-01

    The goal of this study is to better understand atmospheric boundary layer processes and parameters, and to evaluate physical processes for aviation applications using data from a supersite observing site. Various meteorological sensors, including a weather and environmental unmanned aerial vehicle (WE-UAV), and a fog and snow tower (FSOS) observations are part of the project. The PanAm University of Ontario Institute of Technology (UOIT) Meteorological Supersite (PUMS) observations are being collected from April 2015 to date. The FSOS tower gathers observations related to rain, snow, fog, and visibility, aerosols, solar radiation, and wind and turbulence, as well as surface and sky temperature. The FSOSs are located at three locations at about 450-800 m away from the PUMS supersite. The WE-UAV measurements representing aerosol, wind speed and direction, as well as temperature (T) and relative humidity (RH) are provided during clear weather conditions. Other measurements at the PUMS site include cloud backscattering profiles from CL51 ceilometer, MWR observations of liquid water content (LWC), T, and RH, and Microwave Rain Radar (MRR) reflectivity profile, as well as the present weather type, snow water depth, icing rate, 3D-ultrasonic wind and turbulence, and conventional meteorological observations from compact weather stations, e.g., WXTs. The results based on important weather event studies, representing fog, snow, rain, blowing snow, wind gust, planetary boundary layer (PBL) wind research for UAV, and icing conditions are given. The microphysical parameterizations and analysis processes for each event are provided, but the results should not be generalized for all weather events and be used cautiously. Results suggested that integrated observing systems based on data from a supersite as well as satellite sites can provide better information applicable to aviation meteorology, including PBL weather research, validation of numerical weather model predictions, and remote-sensing retrievals. Overall, the results from the five cases are provided and challenges related to observations applicable to aviation meteorology are discussed.

  8. A Model of the Temporal Variability of Optical Light from Extrasolar Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Ford, E. B.; Seager, S.; Turner, E. L.

    2001-05-01

    New observatories such as TPF (NASA) and Darwin (ESA) are being designed to detect light directly from terrestrial-mass planets. Such observations will provide new data to constrain theories of planet formation and may identify the possible presence of liquid water and even spectroscopic signatures suggestive of life. We model the light scattered by Earth-like planets focusing on temporal variability due to planetary rotation and weather. Since a majority of the scattered light comes from only a small fraction of the planet's surface, significant variations in brightness are possible. The variations can be as large as a factor of two for a cloud-free planet which has a range of albedos similar to those of the different surfaces found on Earth. If a significant fraction of the observed light is scattered by the planet's atmosphere, including clouds, then the amplitude of variations due to surface features will be diluted. Atmospheric variability (e.g. clouds) itself is extremely interesting because it provides evidence for weather. The planet's rotation period, fractional ice and cloud cover, gross distribution of land and water on the surface, large scale weather patterns, large regions of unusual reflectivity or color (such as major desserts or vegetation's "red edge") as well as the geometry of its spin, orbit, and illumination relative to the observer all have substantial effects on the planet's rotational light curve.

  9. The Impact of Ensemble Kalman Filter Assimilation of Near-Surface Observations on the Predictability of Atmospheric Conditions over Complex Terrain: Results from Recent MATERHORN Field Program

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Zhang, H.

    2013-12-01

    Near-surface atmospheric observations are the main conventional observations for weather forecasts. However, in modern numerical weather prediction, the use of surface observations, especially those data over complex terrain, remains a unique challenge. There are fundamental difficulties in assimilating surface observations with three-dimensional variational data assimilation (3DVAR). In our early study[1] (Pu et al. 2013), a series of observing system simulation experiments was performed with the ensemble Kalman filter (EnKF) and compared with 3DVAR for its ability to assimilate surface observations with 3DVAR. Using the advanced research version of the Weather Research and Forecasting (WRF) model, results demonstrate that the EnKF can overcome some fundamental limitations that 3DVAR has in assimilating surface observations over complex terrain. Specifically, through its flow-dependent background error term, the EnKF produces more realistic analysis increments over complex terrain in general. Over complex terrain, the EnKF clearly performs better than 3DVAR, because it is more capable of handling surface data in the presence of terrain misrepresentation. With this presentation, we further examine the impact of EnKF data assimilation on the predictability of atmospheric conditions over complex terrain with the WRF model and the observations obtained from the most recent field experiments of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program. The MATERHORN program provides comprehensive observations over mountainous regions, allowing the opportunity to study the predictability of atmospheric conditions over complex terrain in great details. Specifically, during fall 2012 and spring 2013, comprehensive observations were collected of soil states, surface energy budgets, near-surface atmospheric conditions, and profiling measurements from multiple platforms (e.g., balloon, lidar, radiosondes, etc.) over Dugway Proving Ground (DPG), Utah. With the near-surface observations and sounding data obtained during the MATERHORN fall 2012 field experiment, a month-long cycled EnKF analysis and forecast was produced with the WRF model and an advanced EnKF data assimilation system. Results are compared with the WRF near real-time forecasting during the same month and a set of analysis with 3DVAR data assimilation. Overall evaluation suggests some useful insights on the impacts of different data assimilation methods, surface and soil states, terrain representation on the predictability of atmospheric conditions over mountainous terrain. Details will be presented. References [1] Pu, Z., H. Zhang, and J. A. Anderson,. 'Ensemble Kalman filter assimilation of near-surface observations over complex terrain: Comparison with 3DVAR for short-range forecasts.' Tellus A, vol. 65,19620. 2013. http://dx.doi.org/10.3402/tellusa.v65i0. 19620.

  10. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  11. Options to Improve Rain Snow Parameterization in Surface Based Models

    NASA Astrophysics Data System (ADS)

    Feiccabrino, J. M.

    2017-12-01

    Precipitation phase determination is of upmost importance in a number of surface based hydrological, ecological, and safety models. However, precipitation phase at Earth's surface is a result of cloud and atmospheric properties not measured by surface weather stations. Nonetheless, they can be inferred from the available surface datum. This study uses 681,620 weather observations with air temperatures between -3 and 5°C and identified precipitation occurring at the time of the observation to determine simple, yet accurate, thresholds for precipitation phase determination schemes (PPDS). This dataset represents 38% and 42% of precipitation observations over a 16 year period for 85 Swedish, and 84 Norwegian weather stations. The misclassified precipitation (error) from PPDS using AT, dew-point temperature (DT) and wet-bulb temperature (WB) thresholds were compared using a single threshold PPDS. The Norwegian observations between -3 and 5°C resulted in 11.64%, 11.21%, and 8.42% error for DT (-0.2°C), AT (1.2°C), and WB (0.3°C) thresholds respectively. Individual station thresholds had a range of -0.7 to 1.2°C, -1.2 to 0.9°C, and -0.1 to 2.5°C for WB, DP, and AT respectively. To address threshold variance while decreasing error, weather stations were grouped into nine landscape categories; windward (WW) ocean, WW coast, WW fjord, WW hill, WW mountain, leeward (LW) mountain, LW hill, LW rolling hills, and LW coast. Landscape classification was based on location relative to the Scandinavian Mountains, and the % water or range of elevation within 15KM. Within landscapes, stations share similar land atmosphere exchanges which differ from other landscapes. These differences change optimal thresholds for PPDS between landscapes. Also tested were threshold temperature affects based on assumed atmospheric differences for the following observation groups; 1.) occurring before and after an air mass boundary, 2.) with different water temperatures and/or NAO phases, 3.) with snow cover, 4.) coupled with higher elevation stations and 5.) with different cloud heights. For example, in Norway, as the unsaturated layer depth beneath clouds increased, AT thresholds warmed. Cloud height adjusted AT thresholds reduced error by 5% before threshold adjustments for landscapes.

  12. Surface Landing Site Weather Analysis for Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. Lee

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is an important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface atmospheric conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. Climatological time series of operational surface weather observations are used to calculate probabilities of occurrence of various sets of hypothetical vehicle constraint thresholds, Data are available for numerous geographical locations such that statistical analysis can be performed for single sites as well as multiple-site network configurations. Results provide statistical descriptions of how often certain weather conditions are observed at the site(s) and the percentage that specified criteria thresholds are matched or exceeded. Outputs are tabulated by month and hour of day to show both seasonal and diurnal variation. This paper will describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that can be obtained,

  13. Space Weather Impacts on Spacecraft Design and Operations in Auroral Charging Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda N.

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth s land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems are episodically exposed to environments characterized by a high flux of energetic (approx.1 to 10 s kilovolt) electrons in regions of very low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. While it is well established that charging conditions in geostationary orbit are responsible for many anomalies and even spacecraft failures, to date there have been relatively few such reports due to charging in auroral environments. This presentation first reviews the physics of the space environment and its interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments and discuss how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  14. Evaluation of radar and automatic weather station data assimilation for a heavy rainfall event in southern China

    NASA Astrophysics Data System (ADS)

    Hou, Tuanjie; Kong, Fanyou; Chen, Xunlai; Lei, Hengchi; Hu, Zhaoxia

    2015-07-01

    To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) three-dimensional variational data assimilation (3DVAR) package. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station (AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting (QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to 9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6-9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score (FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.

  15. An evaluation of the impact of biomass burning smoke aerosol particles on near surface temperature forecasts

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Reid, J. S.; Benedetti, A.; Christensen, M.; Marquis, J. W.

    2016-12-01

    Currently, with the improvements in aerosol forecast accuracies through aerosol data assimilation, the community is unavoidably facing a scientific question: is it worth the computational time to insert real-time aerosol analyses into numerical models for weather forecasts? In this study, by analyzing a significant biomass burning aerosol event that occurred in 2015 over the Northern part of the Central US, the impact of aerosol particles on near-surface temperature forecasts is evaluated. The aerosol direct surface cooling efficiency, which links surface temperature changes to aerosol loading, is derived from observational-based data for the first time. The potential of including real-time aerosol analyses into weather forecasting models for near surface temperature forecasts is also investigated.

  16. Atmospheric Visual and Infrared Transmission Deduced from Surface Weather Observations: Weather and Warplanes. V1

    DTIC Science & Technology

    1976-10-01

    record is about 12 years (4]. TablP I lists, Table I RAW9AB FILES FOR GERMANY Dates of Record (mo/yr) Observation Interval Number of Location From To...60 6 12,907 Magdeburg 1/52 12/63 3, 6 22,796 Minster 8/59 11/71 3 32,594 Neubiberg 2/46 1/58 1 104,778 aMaialy daytime observations. - • for...illustration, the RAWDAB files for West and East Germany , including the dates of record, observation interval, and total number of observa- tions for each

  17. Minot AFB, North Dakota. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1987-12-01

    MAC) REVISED UNIFORM SUMMARY OF SURFACE WEATHER OBSERVATIONS MINOT AFB ND MSC 727675 N 48 25 W 101 21 ELEV 1668 FT KMIB PARTS A - F HOURS SUMMARIZED...o . ... . . . . .. . * , . .*** . *.,, ,,.* .. OrALt NtUME3P OP OE sERvI TO js: uC 6 LOYlAL CLIMPIATIOLO0G Y BAp AN(CH Pt QLI 1.T1A(.E It L...OF P1- COPD : 7 7-P6 MONTH: OCT IHOUPS(LSTI: ALL I wIND SPCFJ3 IN KN015 DIPECTIIN 1-3 4-6 7-10 11-16 17-21 227 28-33 34-40 41-47 4F-1S GE S6 TCI&L MEAt

  18. Martian soil stratigraphy and rock coatings observed in color-enhanced Viking Lander images

    NASA Technical Reports Server (NTRS)

    Strickland, E. L., III

    1979-01-01

    Subtle color variations of martian surface materials were enhanced in eight Viking Lander (VL) color images. Well-defined soil units recognized at each site (six at VL-1 and four at VL-2), are identified on the basis of color, texture, morphology, and contact relations. The soil units at the Viking 2 site form a well-defined stratigraphic sequence, whereas the sequence at the Viking 1 site is only partially defined. The same relative soil colors occur at the two sites, suggesting that similar soil units are widespread on Mars. Several types of rock surface materials can be recognized at the two sites; dark, relatively 'blue' rock surfaces are probably minimally weathered igneous rock, whereas bright rock surfaces, with a green/(blue + red) ratio higher than that of any other surface material, are interpreted as a weathering product formed in situ on the rock. These rock surface types are common at both sites. Soil adhering to rocks is common at VL-2, but rare at VL-1. The mechanism that produces the weathering coating on rocks probably operates planet-wide.

  19. Ground and surface water developmental toxicity at a municipal landfill--Description and weather-related variation

    USGS Publications Warehouse

    Bruner, M.A.; Rao, M.; Dumont, J.N.; Hull, M.; Jones, T.; Bantle, J.A.

    1998-01-01

    Contaminated groundwater poses a significant health hazard and may also impact wildlife such as amphibians when it surfaces. Using FETAX (Frog Embryo Teratogenesis Assay-Xenopus), the developmental toxicity of ground and surface water samples near a closed municipal landfill at Norman, OK, were evaluated. The groundwater samples were taken from a network of wells in a shallow, unconfined aquifer downgradient from the landfill. Surface water samples were obtained from a pond and small stream adjacent to the landfill. Surface water samples from a reference site in similar habitat were also analyzed. Groundwater samples were highly toxic in the area near the landfill, indicating a plume of toxicants. Surface water samples from the landfill site demonstrated elevated developmental toxicity. This toxicity was temporally variable and was significantly correlated with weather conditions during the 3 days prior to sampling. Mortality was negatively correlated with cumulative rain and relative humidity. Mortality was positively correlated with solar radiation and net radiation. No significant correlations were observed between mortality and weather parameters for days 4–7 preceding sampling.

  20. The potential for geostationary remote sensing of NO2 to improve weather prediction

    NASA Astrophysics Data System (ADS)

    Liu, X.; Mizzi, A. P.; Anderson, J. L.; Fung, I. Y.; Cohen, R. C.

    2017-12-01

    Observations of surface winds remain sparse making it challenging to simulate and predict the weather in circumstances of light winds that are most important for poor air quality. Direct measurements of short-lived chemicals from space might be a solution to this challenge. Here we investigate the application of data assimilation of NO­2 columns as will be observed from geostationary orbit to improve predictions and retrospective analysis of surface wind fields. Specifically, synthetic NO2 observations are sampled from a "nature run (NR)" regarded as the true atmosphere. Then NO2 observations are assimilated using EAKF methods into a "control run (CR)" which differs from the NR in the wind field. Wind errors are generated by introducing (1) errors in the initial conditions, (2) creating a model error by using two different formulations for the planetary boundary layer, (3) and by combining both of these effects. Assimilation of NO2 column observations succeeds in reducing wind errors, indicating the prospects for future geostationary atmospheric composition measurements to improve weather forecasting are substantial. We find that due to the temporal heterogeneity of wind errors, the success of this application favors chemical observations of high frequency, such as those from geostationary platform. We also show the potential to improve soil moisture field by assimilating NO­2 columns.

  1. Uncertainty in User-contributed Weather Data

    NASA Astrophysics Data System (ADS)

    Bell, S.; Cornford, D.; Bastin, L.; Molyneux, M.

    2012-04-01

    Websites such as Weather Underground and the Met Office's recently launched Weather Observations Website encourage members of the public to not only record meteorological observations for personal use but to upload them to a free online community to be shared and compared with data from hundreds of other weather stations in the UK alone. With such a concentration of freely available surface observations the question is whether it would be beneficial to incorporate this data into existing data assimilation schemes for constructing the initial conditions in Numerical Weather Prediction models. This question ultimately relates to how closely the amateur data represents reality, and how to quantify this uncertainty such that it may be accounted for when using the data. We will highlight factors that can lead to increased uncertainty. For instance as amateur data often comes with limited metadata it is difficult to assess whether an amateur station conforms to the strict guidelines and quality procedures that professional sites do. These guidelines relate to factors such as siting, exposure and calibration and in many cases it is practically impossible for amateur sites to conform to the guidelines due to a tendency for amateur sites to be located in enclosed urbanised areas. We will present exploratory research comparing amateur data from Weather Observations Website and Weather Underground against the Met Office's meteorological monitoring system which will be taken to represent the 'truth'. We are particularly aiming to identify bias in the amateur data and residual variances which will help to quantify our degree of uncertainty. The research will focus on 3 case periods, each with different synoptic conditions (clear skies, overcast, a frontal progression) and on observations of surface air temperature, precipitation, humidity. Future plans of the project will also be introduced such as further investigations into which factors lead to increased uncertainty, highlighting the importance of quantifying and accounting for their effects. Factors may include the degree of urbanisation around the site as well as those that may vary temporally such as the prevailing synoptic conditions. Will we also describe plans to take a Bayesian approach to assessing uncertainty and how this can be incorporated into data assimilation schemes.

  2. Sub-kilometer Numerical Weather Prediction in complex urban areas

    NASA Astrophysics Data System (ADS)

    Leroyer, S.; Bélair, S.; Husain, S.; Vionnet, V.

    2013-12-01

    A Sub-kilometer atmospheric modeling system with grid-spacings of 2.5 km, 1 km and 250 m and including urban processes is currently being developed at the Meteorological Service of Canada (MSC) in order to provide more accurate weather forecasts at the city scale. Atmospheric lateral boundary conditions are provided with the 15-km Canadian Regional Deterministic Prediction System (RDPS). Surface physical processes are represented with the Town Energy Balance (TEB) model for the built-up covers and with the Interactions between the Surface, Biosphere, and Atmosphere (ISBA) land surface model for the natural covers. In this study, several research experiments over large metropolitan areas and using observational networks at the urban scale are presented, with a special emphasis on the representation of local atmospheric circulations and their impact on extreme weather forecasting. First, numerical simulations are performed over the Vancouver metropolitan area during a summertime Intense Observing Period (IOP of 14-15 August 2008) of the Environmental Prediction in Canadian Cities (EPiCC) observational network. The influence of the horizontal resolution on the fine-scale representation of the sea-breeze development over the city is highlighted (Leroyer et al., 2013). Then severe storms cases occurring in summertime within the Greater Toronto Area (GTA) are simulated. In view of supporting the 2015 PanAmerican and Para-Pan games to be hold in GTA, a dense observational network has been recently deployed over this region to support model evaluations at the urban and meso scales. In particular, simulations are conducted for the case of 8 July 2013 when exceptional rainfalls were recorded. Leroyer, S., S. Bélair, J. Mailhot, S.Z. Husain, 2013: Sub-kilometer Numerical Weather Prediction in an Urban Coastal Area: A case study over the Vancouver Metropolitan Area, submitted to Journal of Applied Meteorology and Climatology.

  3. Remote Sensing Global Surface Air Pressure Using Differential Absorption BArometric Radar (DiBAR)

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrah, Steven; Lawrence, Wes; Hu, Yongxiang; Min, Qilong

    2016-01-01

    Tropical storms and severe weathers are listed as one of core events that need improved observations and predictions in World Meteorological Organization and NASA Decadal Survey (DS) documents and have major impacts on public safety and national security. This effort tries to observe surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at the 50-55 gigahertz O2 absorption band. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 4 millibars (approximately 1 millibar under all weather conditions). With these sea level pressure measurements, the forecasts of severe weathers such as hurricanes will be significantly improved. Since the development of the DiBAR concept about a decade ago, NASA Langley DiBAR research team has made substantial progress in advancing the concept. The feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. The team has developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  4. Spectral properties of Titan's impact craters imply chemical weathering of its surface

    PubMed Central

    Barnes, J. W.; Sotin, C.; MacKenzie, S.; Soderblom, J. M.; Le Mouélic, S.; Kirk, R. L.; Stiles, B. W.; Malaska, M. J.; Le Gall, A.; Brown, R. H.; Baines, K. H.; Buratti, B.; Clark, R. N.; Nicholson, P. D.

    2015-01-01

    Abstract We examined the spectral properties of a selection of Titan's impact craters that represent a range of degradation states. The most degraded craters have rims and ejecta blankets with spectral characteristics that suggest that they are more enriched in water ice than the rims and ejecta blankets of the freshest craters on Titan. The progression is consistent with the chemical weathering of Titan's surface. We propose an evolutionary sequence such that Titan's craters expose an intimate mixture of water ice and organic materials, and chemical weathering by methane rainfall removes the soluble organic materials, leaving the insoluble organics and water ice behind. These observations support the idea that fluvial processes are active in Titan's equatorial regions. PMID:27656006

  5. Space Weathering on Icy Satellites in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Perlman, Z.; Pearson, N.; Cruikshank, D. P.

    2014-01-01

    Space weathering produces well-known optical effects in silicate minerals in the inner Solar System, for example, on the Moon. Space weathering from solar wind and UV (ultraviolet radiation) is expected to be significantly weaker in the outer Solar System simply because intensities are low. However, cosmic rays and micrometeoroid bombardment would be similar to first order. That, combined with the much higher volatility of icy surfaces means there is the potential for space weathering on icy outer Solar System surfaces to show optical effects. The Cassini spacecraft orbiting Saturn is providing evidence for space weathering on icy bodies. The Cassini Visible and Infrared Mapping Spectrometer (VIMS) instrument has spatially mapped satellite surfaces and the rings from 0.35-5 microns and the Ultraviolet Imaging Spectrograph (UVIS) instrument from 0.1 to 0.2 microns. These data have sampled a complex mixing space between H2O ice and non-ice components and they show some common spectral properties. Similarly, spectra of the icy Galilean satellites and satellites in the Uranian system have some commonality in spectral properties with those in the Saturn system. The UV absorber is spectrally similar on many surfaces. VIMS has identified CO2, H2 and trace organics in varying abundances on Saturn's satellites. We postulate that through the spatial relationships of some of these compounds that they are created and destroyed through space weathering effects. For example, the trapped H2 and CO2 observed by VIMS in regions with high concentrations of dark material may in part be space weathering products from the destruction of H2O and organic molecules. The dark material, particularly on Iapetus which has the highest concentration in the Saturn system, is well matched by space-weathered silicates in the .4 to 2.6 micron range, and the spectral shapes closely match those of the most mature lunar soils, another indicator of space weathered material.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Anthony

    Presentation at ASHRAE about the spatial and temporal variability of gridded TMYs, discussing advanced GIS and Web services that allow for direct access to data, surface-based observations for thousands of stations, climate reanalysis data, and products derived from satellite data; new developments in NREL's solar databases based on both observed data and satellite-derived gridded data, status of TMY3 weather files, and NREL's plans for the next-generation TMY weather files; and also covers what is new and different in the Climatic Design Conditions Table in the 2013 ASHRAE Handbook of Fundamentals.

  7. Atmospheric Diabatic Heating in Different Weather States and the General Circulation

    NASA Technical Reports Server (NTRS)

    Rossow, William B.; Zhang, Yuanchong; Tselioudis, George

    2016-01-01

    Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.

  8. Surface Observation Climatic Summaries for Ansbach AHP/Katterbach, Germany

    DTIC Science & Technology

    1992-05-01

    SURFACE OBSERVATIONS CLIMATIC SWUMWN (LISOCS). EXISTING RUSSWOS AND LISOCS WILL CONTINUE IN USE , BUT WILL EVENTUALLY BE BY A 8OCS. 12A. DISTRIBUTION...OBSERVATION CLIMATIC 8UMW*IY). RUSSWOS AND LISOCS NOW IN EXISTENCE WILL CON- TIhUE TO BE USED UNTIL THEY ARE EVENTUALLY REPLACED BY SOCS. THIS PIODUCT...LOCATION A AT ASHEVILLE, NC 28901-2723. HERE, CLIMATOLOGISTS USE STATE-OF-THE-ART COM- PUTER TECHNOLOGY TO SUMMARIZE WEATHER OBSERVATIONS COLLECTED

  9. Validation of two (parametric vs non-parametric) daily weather generators

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Skalak, P.

    2015-12-01

    As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed-like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30-years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series from several European stations available from the ECA&D database. Acknowledgements: The weather generator is developed and validated within the frame of projects WG4VALUE (sponsored by the Ministry of Education, Youth and Sports of CR), and VALUE (COST ES 1102 action).

  10. Geochemical investigation of weathering processes in a forested headwater catchment: Mass-balance weathering fluxes

    USGS Publications Warehouse

    Jones, B.F.; Herman, J.S.

    2008-01-01

    Geochemical research on natural weathering has often been directed towards explanations of the chemical composition of surface water and ground water resulting from subsurface water-rock interactions. These interactions are often defined as the incongruent dissolution of primary silicates, such as feldspar, producing secondary weathering products, such as clay minerals and oxyhydroxides, and solute fluxes (Meunier and Velde, 1979). The chemical composition of the clay-mineral product is often ignored. However, in earlier investigations, the saprolitic weathering profile at the South Fork Brokenback Run (SFBR) watershed, Shenandoah National Park, Virginia, was characterized extensively in terms of its mineralogical and chemical composition (Piccoli, 1987; Pochatila et al., 2006; Jones et al., 2007) and its basic hydrology. O'Brien et al. (1997) attempted to determine the contribution of primary mineral weathering to observed stream chemistry at SFBR. Mass-balance model results, however, could provide only a rough estimate of the weathering reactions because idealized mineral compositions were utilized in the calculations. Making use of detailed information on the mineral occurrence in the regolith, the objective of the present study was to evaluate the effects of compositional variation on mineral-solute mass-balance modelling and to generate plausible quantitative weathering reactions that support both the chemical evolution of the surface water and ground water in the catchment, as well as the mineralogical evolution of the weathering profile. ?? 2008 The Mineralogical Society.

  11. Space Weather at Mars: MAVEN and MSL/RAD Observations of CME and SEP Events

    NASA Astrophysics Data System (ADS)

    Lee, C. O.; Ehresmann, B.; Lillis, R. J.; Dunn, P.; Rahmati, A.; Larson, D. E.; Guo, J.; Zeitlin, C.; Luhmann, J. G.; Halekas, J. S.; Espley, J. R.; Thiemann, E.; Hassler, D.

    2017-12-01

    While MAVEN have been observing the space weather conditions driven by ICMEs and SEPs in orbit around Mars, MSL/RAD have been measuring the surface radiation environment due to E > 150 MeV/nuc SEPs and the higher-energy galactic cosmic rays. The suite of MAVEN instruments measuring the particles (SEP), plasma (SWIA) and fields (MAG) information provides detailed local space weather information regarding the solar activity-related fluctuations in the measured surface dose rates. At the same time, the related enhancements in the RAD surface dose rates indicate the degree to which the SEPs affect the lower atmosphere and surface. We will present an overview of the MAVEN observations together with the MSL/RAD measurements and focus our discussion on a number of space weather events driven by CMEs and SEPs. During the March 2015 solar storm period, a succession of CMEs produced intense SEP proton fluxes that were detected by MAVEN/SEP in the 20 keV to 6 MeV detected energy channels. At higher energies, MAVEN/SEP record `FTO' SEP events that were triggered by > 13 MeV energetic protons passing through all three silicon detector layers (Front, Thick, and Open). Using the detector response matrix for an FTO event (incident energy vs detected energy), the minimum incident energy of the SEP protons observed in March 2015 was inferred to be > 40 MeV. The lack of any notable enhancements in the surface dose rate by MSL/RAD suggests that the highest incident energies of the SEP protons were < 150 MeV. Note that Forbush-like decreases were observed due to the local passages of the ICMEs. In contrast, MSL/RAD detected dose rate enhancements above the background level in October 2015 even though the MAVEN SWIA and MAG instruments did not detect any local passage of an ICME nor did the SEP instrument observe any SEP proton fluxes in the 20 keV to 6 MeV energy channels. However, MAVEN/SEP did record an FTO event that coincided with the RAD dose rate enhancement, all of which suggest that > 150 MeV SEP protons impacted the Martian atmosphere and surface. The source of the October 2015 SEP event was probably the CME that erupted near the solar west limb with respect to the Sun-Mars line. As part of the discussion, we will also show solar-heliospheric observations from near-Earth assets together with WSA-Enlil-cone results for some global heliospheric context.

  12. Statistical relationship between surface PM10 concentration and aerosol optical depth over the Sahel as a function of weather type, using neural network methodology

    NASA Astrophysics Data System (ADS)

    Yahi, H.; Marticorena, B.; Thiria, S.; Chatenet, B.; Schmechtig, C.; Rajot, J. L.; Crepon, M.

    2013-12-01

    work aims at assessing the capability of passive remote-sensed measurements such as aerosol optical depth (AOD) to monitor the surface dust concentration during the dry season in the Sahel region (West Africa). We processed continuous measurements of AODs and surface concentrations for the period (2006-2010) in Banizoumbou (Niger) and Cinzana (Mali). In order to account for the influence of meteorological condition on the relationship between PM10 surface concentration and AOD, we decomposed the mesoscale meteorological fields surrounding the stations into five weather types having similar 3-dimensional atmospheric characteristics. This classification was obtained by a clustering method based on nonlinear artificial neural networks, the so-called self-organizing map. The weather types were identified by processing tridimensional fields of meridional and zonal winds and air temperature obtained from European Centre for Medium-Range Weather Forecasts (ECMWF) model output centered on each measurement station. Five similar weather types have been identified at the two stations. Three of them are associated with the Harmattan flux; the other two correspond to northward inflow of the monsoon flow at the beginning or the end of the dry season. An improved relationship has been found between the surface PM10 concentrations and the AOD by using a dedicated statistical relationship for each weather type. The performances of the statistical inversion computed on the test data sets show satisfactory skills for most of the classes, much better than a linear regression. This should permit the inversion of the mineral dust concentration from AODs derived from satellite observations over the Sahel.

  13. Direct observations of rock moisture, a hidden component of the hydrologic cycle.

    PubMed

    Rempe, Daniella M; Dietrich, William E

    2018-03-13

    Recent theory and field observations suggest that a systematically varying weathering zone, that can be tens of meters thick, commonly develops in the bedrock underlying hillslopes. Weathering turns otherwise poorly conductive bedrock into a dynamic water storage reservoir. Infiltrating precipitation typically will pass through unsaturated weathered bedrock before reaching groundwater and running off to streams. This invisible and difficult to access unsaturated zone is virtually unexplored compared with the surface soil mantle. We have proposed the term "rock moisture" to describe the exchangeable water stored in the unsaturated zone in weathered bedrock, purposely choosing a term parallel to, but distinct from, soil moisture, because weathered bedrock is a distinctly different material that is distributed across landscapes independently of soil thickness. Here, we report a multiyear intensive campaign of quantifying rock moisture across a hillslope underlain by a thick weathered bedrock zone using repeat neutron probe measurements in a suite of boreholes. Rock moisture storage accumulates in the wet season, reaches a characteristic upper value, and rapidly passes any additional rainfall downward to groundwater. Hence, rock moisture storage mediates the initiation and magnitude of recharge and runoff. In the dry season, rock moisture storage is gradually depleted by trees for transpiration, leading to a common lower value at the end of the dry season. Up to 27% of the annual rainfall is seasonally stored as rock moisture. Significant rock moisture storage is likely common, and yet it is missing from hydrologic and land-surface models used to predict regional and global climate.

  14. Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun

    2018-03-01

    Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant sensitivity responses are found over the karst regions, including pronounced warming and cooling effects on the near-surface atmosphere from barren and forested land cover, respectively; (3) the barren ground in the karst regions provides conditions favourable for convective development under certain conditions. Therefore, it is suggested that karst and non-karst landscapes should be distinguished, and their physical processes should be considered for future model development.

  15. Effect of iron sulfides on space weathering: Lessons from the Itokawa particles and laboratory simulations

    NASA Astrophysics Data System (ADS)

    Okazaki, M.; Sasaki, S.; Tsuchiyama, A.; Miyake, A.; Matsumoto, T.; Hirata, T.; Hiroi, T.

    2014-07-01

    Space weathering is the process invoked to explain the spectral mismatch between S-type asteroids and ordinary chondrites: darkening, spectral reddening, and attenuation of absorption bands in the reflectance spectra. These changes of optical properties of the surface of airless silicate bodies are explained by nanophase metallic iron (nanoFe) particles, which are formed on regolith particles by high-velocity dust impacts as well as irradiation of the solar-wind ions (Hapke 2001). Those nanoFe particles were discovered in lunar soils, Kapoeta meteorite, and regolith grains from the surface of S-type asteroid Itokawa. Experimental studies using a nano-second-pulse laser confirmed that nanoFe should control the spectral darkening and reddening. The observed reddening of S-type asteroid families is correlated with dynamical asteroid ages after family-forming disruption (Jedicke, et al. 2004). Still, experiments showed that the weathering degree should depend on the composition such as the olivine/pyroxene ratio (Hiroi and Sasaki 2001). In ordinary chondrites, iron sulfides, typically, troilite FeS is the main sulfur-bearing mineral. TEM observation of a dust grain of Itokawa showed the presence of not only iron, but also nanophase FeS particles, which are embedded within a vapor-deposited thin surface layer (thinner than 10-15 nm; Noguchi et al. 2011). One of the Itokawa grains is composed mainly of FeS (about 40 microns) with smaller olivine and pyroxene particles (Yada et al., 2014). On the other hand, the surface sulfur depletion of S-type asteroid Eros was explained by the same mechanism (high-velocity dust and solar-wind particle impacts) of space weathering (Loeffler et al. 2008). To examine the effect of FeS on the surface optical properties of silicate bodies, we conducted pulse-laser irradiation experiments on mixtures of olivine (and pyroxene) and FeS particles with typical sizes of 45--75 micron, for varying FeS fractions (0--0.2 by weight). We find that the addition of Fes should promote the change of optical properties in accordance with space weathering, especially darkening. As compared to the cases where iron particles are mixed, darkening occurs characteristically in the infrared region. According to preliminary observations by the FESEM and HR microscopes, surfaces of olivine particles --- after laser irradiation --- are likely to be coated with vapor-deposited material. Moreover, some grains are covered by a smooth thicker FeS coating, which would contribute to the overall darkening. We suppose that iron sulfides may promote space weathering initially, even if some of the sulfides are, in time, decomposed to a lower surface sulfur abundance on small asteroids.

  16. Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events.

    PubMed

    Mann, Michael E; Rahmstorf, Stefan; Kornhuber, Kai; Steinman, Byron A; Miller, Sonya K; Coumou, Dim

    2017-03-27

    Persistent episodes of extreme weather in the Northern Hemisphere summer have been shown to be associated with the presence of high-amplitude quasi-stationary atmospheric Rossby waves within a particular wavelength range (zonal wavenumber 6-8). The underlying mechanistic relationship involves the phenomenon of quasi-resonant amplification (QRA) of synoptic-scale waves with that wavenumber range becoming trapped within an effective mid-latitude atmospheric waveguide. Recent work suggests an increase in recent decades in the occurrence of QRA-favorable conditions and associated extreme weather, possibly linked to amplified Arctic warming and thus a climate change influence. Here, we isolate a specific fingerprint in the zonal mean surface temperature profile that is associated with QRA-favorable conditions. State-of-the-art ("CMIP5") historical climate model simulations subject to anthropogenic forcing display an increase in the projection of this fingerprint that is mirrored in multiple observational surface temperature datasets. Both the models and observations suggest this signal has only recently emerged from the background noise of natural variability.

  17. Randolph AFB, San Antonio, Texas. Revised Uniform Summary of Surface Weather Observations (RUSSWO)

    DTIC Science & Technology

    1976-03-19

    FoRM ARE oUsoIII ’, " ’ . . . " " -,, ’:,,,:t."," *4 -- ".°" "- . . . " ’ * "- : ; Ir , ( DATA PROCESSING BRANCH EtAC/USAF SURFACE WINDS AIR" WATHER ...FORM ARI OS$Oitlt_ ___ _zT z __ __ ___......- ___ _ _ _ .4. .. . II DATA PROCESSIN G BRASFCH FTAC/USAF SURFACE WINDS AiR WATHER SERVICE/MAC PERCENTAGE...SURFACE WINDS 1 A/R WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) ( 12911- RANDOLPH AFBJTEXAS/SAN

  18. A Reactive Transport Model for Marcellus Shale Weathering

    NASA Astrophysics Data System (ADS)

    Li, L.; Heidari, P.; Jin, L.; Williams, J.; Brantley, S.

    2017-12-01

    Shale formations account for 25% of the land surface globally. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil chemistry and water data. The simulation was carried out for 10,000 years, assuming bedrock weathering and soil genesis began right after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1,000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small with the presence of soil CO2. The field observations were only simulated successfully when the specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals, reflecting the lack of accessibility of fluids to mineral surfaces and potential surface coating. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude that availability of reactive surface area and transport of H2O and gases are the most important factors affecting chemical weathering of the Marcellus shale in the shallow subsurface. This study documents the utility of reactive transport modeling for complex subsurface processes. Such modelling could be extended to understand interactions between injected fluids and Marcellus shale gas reservoirs at higher temperature and pressure.

  19. On the sensitivity of numerical weather prediction to remotely sensed marine surface wind data - A simulation study

    NASA Technical Reports Server (NTRS)

    Cane, M. A.; Cardone, V. J.; Halem, M.; Halberstam, I.

    1981-01-01

    The reported investigation has the objective to assess the potential impact on numerical weather prediction (NWP) of remotely sensed surface wind data. Other investigations conducted with similar objectives have not been satisfactory in connection with a use of procedures providing an unrealistic distribution of initial errors. In the current study, care has been taken to duplicate the actual distribution of information in the conventional observing system, thus shifting the emphasis from accuracy of the data to the data coverage. It is pointed out that this is an important consideration in assessing satellite observing systems since experience with sounder data has shown that improvements in forecasts due to satellite-derived information is due less to a general error reduction than to the ability to fill data-sparse regions. The reported study concentrates on the evaluation of the observing system simulation experimental design and on the assessment of the potential of remotely sensed marine surface wind data.

  20. Biotite weathering in a natural forest setting near Derome, Sweden

    NASA Astrophysics Data System (ADS)

    Balogh-Brunstad, Z.; Negrich, K.; Hassenkam, T.; Wallander, H.; Stipp, S. L.

    2011-12-01

    Chemical weathering is a key process in non-nitrogen nutrient acquisition by microbes, fungi and plants. Biotite is commonly the major source of potassium, magnesium and iron. A unique opportunity arose to study natural weathering of biotite by mixed conifer and hardwood forest vegetation and associated microbes and fungi at an abandoned mine site. After the mining stopped over 30 years ago biotite was left behind in piles and the forest vegetation progressively colonized the site. Samples were collected from the top 40 cm of the biotite piles in a vicinity of pine, spruce and birch trees and included some young seedlings. Macroscopic observations documented abundant hyphal growth between the sheets of biotite. We hypothesized that fungal hyphae grow between the sheets to explore the nutrient source and weather the biotite leaving hyphal-sized etched channels on the basal surfaces. Biotite surfaces were examined with atomic force microscopy (AFM) and environmental scanning electron microscopy (ESEM) in their natural state and after removing the biological material from the mineral surfaces. The ESEM images show extensive hyphal colonization and patchy biofilm cover of the entire biotite surface on and within the sheets and at the edges of the particles. Fungal hyphae did not attach strongly to the basal surfaces of the biotite flakes as a result of small particles on the surfaces and the uneven micro-topography. The AFM images illustrate a complex microbial community around the fungal hyphae and detailed fungal morphology. High resolution AFM images show unique globular features of diameter 10-100 nm on all biofilm surfaces. However, removal of the biological material resulted in smooth and un-etched surfaces indicating that either our removal techniques are too invasive and destroy the surface layers of interest, or the etching of the basal surface is not the main mechanism for chemical weathering and base-cation nutrient immobilization in this natural setting. Species-specific interactions at the biofilm-microbe-fungus-mineral interface and spatial distribution in the biotite pile are under further investigation.

  1. Observation and modelling of urban dew

    NASA Astrophysics Data System (ADS)

    Richards, Katrina

    Despite its relevance to many aspects of urban climate and to several practical questions, urban dew has largely been ignored. Here, simple observations an out-of-doors scale model, and numerical simulation are used to investigate patterns of dewfall and surface moisture (dew + guttation) in urban environments. Observations and modelling were undertaken in Vancouver, B.C., primarily during the summers of 1993 and 1996. Surveys at several scales (0.02-25 km) show that the main controls on dew are weather, location and site configuration (geometry and surface materials). Weather effects are discussed using an empirical factor, FW . Maximum dew accumulation (up to ~ 0.2 mm per night) is seen on nights with moist air and high FW , i.e., cloudless conditions with light winds. Favoured sites are those with high Ysky and surfaces which cool rapidly after sunset, e.g., grass and well insulated roofs. A 1/8-scale model is designed, constructed, and run at an out-of-doors site to study dew patterns in an urban residential landscape which consists of house lots, a street and an open grassed park. The Internal Thermal Mass (ITM) approach is used to scale the thermal inertia of buildings. The model is validated using data from full-scale sites in Vancouver. Patterns in the model agree with those seen at the full-scale, i.e., dew distribution is governed by weather, site geometry and substrate conditions. Correlation is shown between Ysky and surface moisture accumulation. The feasibility of using a numerical model to simulate urban dew is investigated using a modified version of a rural dew model. Results for simple isolated surfaces-a deciduous tree leaf and an asphalt shingle roof-show promise, especially for built surfaces.

  2. Biocide leaching during field experiments on treated articles.

    PubMed

    Schoknecht, Ute; Mathies, Helena; Wegner, Robby

    2016-01-01

    Biocidal products can be sources of active substances in surface waters caused by weathering of treated articles. Marketing and use of biocidal products can be limited according to the European Biocidal Products Regulation if unacceptable risks to the environment are expected. Leaching of active substances from treated articles was observed in field experiments to obtain information on leaching processes and investigate the suitability of a proposed test method. Leaching under weathering conditions proceeds discontinuously and tends to decrease with duration of exposure. It does not only mainly depend on the availability of water but is also controlled by transport processes within the materials and stability of the observed substances. Runoff amount proved to be a suitable basis to compare results from different experiments. Concentrations of substances are higher in runoff collected from vertical surfaces compared to horizontal ones, whereas the leached amounts per surface area are higher from horizontal surfaces. Gaps in mass balances indicate that additional processes such as degradation and evaporation may be relevant to the fate of active substances in treated articles. Leached amounts of substances were considerably higher when the materials were exposed to intermittent water contact under laboratory conditions as compared to weathering of vertically exposed surfaces. Experiences from the field experiments were used to define parameters of a procedure that is now provided to fulfil the requirements of the Biocidal Products Regulation. The experiments confirmed that the amount of water which is in contact with exposed surfaces is the crucial parameter determining leaching of substances.

  3. Evaluation of Surface Flux Parameterizations with Long-Term ARM Observations

    DOE PAGES

    Liu, Gang; Liu, Yangang; Endo, Satoshi

    2013-02-01

    Surface momentum, sensible heat, and latent heat fluxes are critical for atmospheric processes such as clouds and precipitation, and are parameterized in a variety of models ranging from cloud-resolving models to large-scale weather and climate models. However, direct evaluation of the parameterization schemes for these surface fluxes is rare due to limited observations. This study takes advantage of the long-term observations of surface fluxes collected at the Southern Great Plains site by the Department of Energy Atmospheric Radiation Measurement program to evaluate the six surface flux parameterization schemes commonly used in the Weather Research and Forecasting (WRF) model and threemore » U.S. general circulation models (GCMs). The unprecedented 7-yr-long measurements by the eddy correlation (EC) and energy balance Bowen ratio (EBBR) methods permit statistical evaluation of all six parameterizations under a variety of stability conditions, diurnal cycles, and seasonal variations. The statistical analyses show that the momentum flux parameterization agrees best with the EC observations, followed by latent heat flux, sensible heat flux, and evaporation ratio/Bowen ratio. The overall performance of the parameterizations depends on atmospheric stability, being best under neutral stratification and deteriorating toward both more stable and more unstable conditions. Further diagnostic analysis reveals that in addition to the parameterization schemes themselves, the discrepancies between observed and parameterized sensible and latent heat fluxes may stem from inadequate use of input variables such as surface temperature, moisture availability, and roughness length. The results demonstrate the need for improving the land surface models and measurements of surface properties, which would permit the evaluation of full land surface models.« less

  4. Biologically-Mediated Weathering of Minerals From Nanometre Scale to Environmental Systems

    NASA Astrophysics Data System (ADS)

    Brown, D. J.; Banwart, S. A.; Smits, M. M.; Leake, J. R.; Bonneville, S.; Benning, L. G.; Haward, S. J.; Ragnarsdottir, K.

    2007-12-01

    The Weathering Science Consortium is a multi-disciplinary project that aims to create a step change in understanding how biota control mineral weathering and soil formation (http://www.wun.ac.uk/wsc). Our hypothesis is that rates of biotic weathering are driven by the energy supply from plants to the organisms, controlling their biomass, surface area of contact with minerals and their capacity to interact chemically with minerals. Symbiotic fungal mycorrhiza of 90% of plant species are empowered with an available carbohydrate supply from plants that is unparalleled amongst soil microbes. They develop extensive mycelial networks that intimately contact minerals, which they weather aggressively. We hypothesise that mycorrhiza play a critical role through their focussing of photosynthate energy from plants into sub-surface weathering environments. Our work identifies how these fungal cells, and their secretions, interact with mineral surfaces and affect the rates of nutrient transfer from minerals to the organism. Investigating these living systems allows us to create new concepts and mathematical models that can describe biological weathering and be used in computer simulations of soil weathering dynamics. We are studying these biochemical interactions at 3 levels of observation: 1. At the molecular scale to understand interactions between living cells and minerals and to quantify the chemistry that breaks down the mineral structure; 2. At the soil grain scale to quantify the activity and spatial distribution of the fungi, roots and other organisms (e.g. bacteria) and their effects on the rates at which minerals are dissolved to release nutrients; 3. At soil profile scale to test models for the spatial distribution of active fungi and carbon energy and their seasonal variability and impact on mineral dissolution rates. Here we present early results from molecular and soil grain scale experiments. We have grown pure culture (Suillus bovinus, Paxillus involutus) mycorrhizal mycelial networks associated with pine trees in otherwise sterile (agar) and also non-sterile (peat) microcosms, which include mineral sections and powders of biotite, apatite and quartz. 14C labelling has been used to map C flux through the microcosms and to determine the transfer of photosynthate energy into the weathering arenas. We have used Vertical Scanning Interferometry (VSI) to assess volumetric alteration of mineral substrates in contact with fungi. Focused Ion Beam (FIB)- Transmission Electron Microscope (TEM) work provides evidence for increased mechanical forcing and possible alteration of biotite surfaces with greater fungi contact time. We also present real-time in situ observations of mineral-organic acid and mineral-exudate interactions using Atomic Force Microscopy (AFM).

  5. Construction of Gridded Daily Weather Data and its Use in Central-European Agroclimatic Study

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Trnka, M.; Skalak, P.

    2013-12-01

    The regional-scale simulations of weather-sensitive processes (e.g. hydrology, agriculture and forestry) for the present and/or future climate often require high resolution meteorological inputs in terms of the time series of selected surface weather characteristics (typically temperature, precipitation, solar radiation, humidity, wind) for a set of stations or on a regular grid. As even the latest Global and Regional Climate Models (GCMs and RCMs) do not provide realistic representation of statistical structure of the surface weather, the model outputs must be postprocessed (downscaled) to achieve the desired statistical structure of the weather data before being used as an input to the follow-up simulation models. One of the downscaling approaches, which is employed also here, is based on a weather generator (WG), which is calibrated using the observed weather series, interpolated, and then modified according to the GCM- or RCM-based climate change scenarios. The present contribution, in which the parametric daily weather generator M&Rfi is linked to the high-resolution RCM output (ALADIN-Climate/CZ model) and GCM-based climate change scenarios, consists of two parts: The first part focuses on a methodology. Firstly, the gridded WG representing the baseline climate is created by merging information from observations and high resolution RCM outputs. In this procedure, WG is calibrated with RCM-simulated multi-variate weather series, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with RCM-simulated weather series vs. spatially scarcer observations. To represent the future climate, the WG parameters are modified according to the 'WG-friendly' climate change scenarios. These scenarios are defined in terms of changes in WG parameters and include - apart from changes in the means - changes in WG parameters, which represent the additional characteristics of the weather series (e.g. probability of wet day occurrence and lag-1 autocorrelation of daily mean temperature). The WG-friendly scenarios for the present experiment are based on comparison of future vs baseline surface weather series simulated by GCMs from a CMIP3 database. The second part will present results of climate change impact study based on an above methodology applied to Central Europe. The changes in selected climatic (focusing on the extreme precipitation and temperature characteristics) and agroclimatic (including number of days during vegetation season with heat and drought stresses) characteristics will be analysed. In discussing the results, the emphasis will be put on 'added value' of various aspects of above methodology (e.g. inclusion of changes in 'advanced' WG parameters into the climate change scenarios). Acknowledgements: The present experiment is made within the frame of projects WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR), ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), and VALUE (COST ES 1102 action).

  6. Recent Weather Extremes and Impacts on Agricultural Production and Vector-Borne Disease Outbreak Patterns

    NASA Technical Reports Server (NTRS)

    Anyamba, Assaf; Small, Jennifer L.; Britch, Seth C.; Tucker, Compton J.; Pak, Edwin W.; Reynolds, Curt A.; Crutchfield, James; Linthicum, Kenneth J.

    2014-01-01

    We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010-2012 period. We utilized 2000-2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused,10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations.

  7. Recent weather extremes and impacts on agricultural production and vector-borne disease outbreak patterns.

    PubMed

    Anyamba, Assaf; Small, Jennifer L; Britch, Seth C; Tucker, Compton J; Pak, Edwin W; Reynolds, Curt A; Crutchfield, James; Linthicum, Kenneth J

    2014-01-01

    We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010-2012 period. We utilized 2000-2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused ∼10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations.

  8. Solar Atmosphere to Earth's Surface: Long Lead Time dB/dt Predictions with the Space Weather Modeling Framework

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Manchester, W.; Savani, N.; Sokolov, I.; van der Holst, B.; Jin, M.; Toth, G.; Liemohn, M. W.; Gombosi, T. I.

    2017-12-01

    The future of space weather prediction depends on the community's ability to predict L1 values from observations of the solar atmosphere, which can yield hours of lead time. While both empirical and physics-based L1 forecast methods exist, it is not yet known if this nascent capability can translate to skilled dB/dt forecasts at the Earth's surface. This paper shows results for the first forecast-quality, solar-atmosphere-to-Earth's-surface dB/dt predictions. Two methods are used to predict solar wind and IMF conditions at L1 for several real-world coronal mass ejection events. The first method is an empirical and observationally based system to estimate the plasma characteristics. The magnetic field predictions are based on the Bz4Cast system which assumes that the CME has a cylindrical flux rope geometry locally around Earth's trajectory. The remaining plasma parameters of density, temperature and velocity are estimated from white-light coronagraphs via a variety of triangulation methods and forward based modelling. The second is a first-principles-based approach that combines the Eruptive Event Generator using Gibson-Low configuration (EEGGL) model with the Alfven Wave Solar Model (AWSoM). EEGGL specifies parameters for the Gibson-Low flux rope such that it erupts, driving a CME in the coronal model that reproduces coronagraph observations and propagates to 1AU. The resulting solar wind predictions are used to drive the operational Space Weather Modeling Framework (SWMF) for geospace. Following the configuration used by NOAA's Space Weather Prediction Center, this setup couples the BATS-R-US global magnetohydromagnetic model to the Rice Convection Model (RCM) ring current model and a height-integrated ionosphere electrodynamics model. The long lead time predictions of dB/dt are compared to model results that are driven by L1 solar wind observations. Both are compared to real-world observations from surface magnetometers at a variety of geomagnetic latitudes. Metrics are calculated to examine how the simulated solar wind drivers impact forecast skill. These results illustrate the current state of long-lead-time forecasting and the promise of this technology for operational use.

  9. Geophysical and Chemical Weathering Signatures Across the Deep Weathered-Unweathered Granite Boundary of the Calhoun Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Richter, D., Jr.; Bacon, A. R.; Brantley, S. L.; Holbrook, W. S.

    2015-12-01

    To understand the relationship between geophysical measurements and chemical weathering at Earth's surface, we combine comprehensive chemical and physical analyses of a 70-m granite weathering profile in the Southern Piedmont in the southeastern United States. The research site is in the uplands of the Calhoun Critical Zone Observatory and is similar to many geomorphically stable, ancient, and highly-weathered Ultisol soils of the region. Surface and downhole geophysical analyses suggest significant physical changes to depths of about 40 m, where geophysical properties are consistent with competent and unweathered granite. At this depth, surface refraction velocities increase to >4.5 km/s; variations in downhole sonic velocities decrease by more than two-fold; and deviations in the downhole caliper log sharply decrease as well. Forty meters depth is also the depth of initiation of plagioclase feldspar weathering, as inferred from bulk geochemical measurement of the full 70-m deep core. Specifically, element-depth profiles, cast as mass transfer coefficient profiles using Ti and Zr as immobile elements, document inferred loss of plagioclase in the depth interval between 15 and 40-m depth. Plagioclase feldspar is the most abundant of the highly reactive minerals in the granite. Such a wide reaction front is characteristic of weathering granites. Some loss of K is observed at these depths but most K loss, as well as Mg loss, occurs at shallower depths. Nearby geophysical profiles and 3D stress models have been interpreted as showing that seismic velocities decrease at 40 m depth due to opening of fractures as rock is exhumed toward the surface. Given our interpretations of both the geochemical and geophysical data, we infer that the onset of chemical weathering of feldspar coincides with the opening of these fractures. The data highlight the ability of geochemistry and geophysics to complement each other and enrich our understanding of Earth's Critical Zone.

  10. Titan's seasonal weather patterns, associated surface modification, and geological implications

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Perry, J. E.; Barnes, J. W.; McEwen, A. S.; Barbara, J. M.; Del Genio, A. D.; Hayes, A. G.; West, R. A.; Lorenz, R. D.; Schaller, E. L.; Lunine, J. I.; Ray, T. L.; Lopes, R. M. C.; Stofan, E. R.

    2013-09-01

    Model predictions [e.g., 1-3] and observations [e.g., 4,5] illustrate changes in Titan's weather patterns related to the seasons (Fig. 1). In two cases, surface changes were documented following large cloud outbursts (Figs. 2, 3): the first in Arrakis Planitia at high southern latitudes in Fall 2004, during Titan's late southern summer [6]; and the second at lows southern latitudes in Concordia and Hetpet Regiones, Yalaing Terra (Fig. 3), and Adiri, in Fall 2010, just over a year after Titan's northern vernal equinox [4, 7, 8]. Not only do these storms demonstrate Titan's atmospheric conditions and processes, they also have important implications for Titan's surface process, its methane cycle, and its geologic history.

  11. Surface chemistry and mineralogy. [of planet Mars

    NASA Technical Reports Server (NTRS)

    Banin, A.; Clark, B. C.; Waenke, H.

    1992-01-01

    The accumulated knowledge on the chemistry and mineralogy of Martian surface materials is reviewed. Pertinent information obtained by direct analyses of the soil on Mars by the Viking Landers, by remote sensing of Mars from flyby and orbiting spacecraft, by telescopic observations from earth, and through detailed analyses of the SNC meteorites presumed to be Martian rocks are summarized and analyzed. A compositional model for Mars soil, giving selected average elemental concentrations of major and trace elements, is suggested. It is proposed that the fine surface materials on Mars are a multicomponent mixture of weathered and nonweathered minerals. Smectite clays, silicate mineraloids similar to palagonite, and scapolite are suggested as possible major candidate components among the weathered minerals.

  12. Retrospective Analog Year Analyses Using NASA Satellite Data to Improve USDA's World Agricultural Supply and Demand Estimates

    NASA Technical Reports Server (NTRS)

    Teng, William; Shannon, Harlan

    2011-01-01

    The USDA World Agricultural Outlook Board (WAOB) is responsible for monitoring weather and climate impacts on domestic and foreign crop development. One of WAOB's primary goals is to determine the net cumulative effect of weather and climate anomalies on final crop yields. To this end, a broad array of information is consulted, including maps, charts, and time series of recent weather, climate, and crop observations; numerical output from weather and crop models; and reports from the press, USDA attach s, and foreign governments. The resulting agricultural weather assessments are published in the Weekly Weather and Crop Bulletin, to keep farmers, policy makers, and commercial agricultural interests informed of weather and climate impacts on agriculture. Because both the amount and timing of precipitation significantly affect crop yields, WAOB often uses precipitation time series to identify growing seasons with similar weather patterns and help estimate crop yields for the current growing season, based on observed yields in analog years. Historically, these analog years are visually identified; however, the qualitative nature of this method sometimes precludes the definitive identification of the best analog year. Thus, one goal of this study is to derive a more rigorous, statistical approach for identifying analog years, based on a modified coefficient of determination, termed the analog index (AI). A second goal is to compare the performance of AI for time series derived from surface-based observations vs. satellite-based measurements (NASA TRMM and other data).

  13. Woodbridge RAF United Kingdom. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1984-03-07

    GLOcAL CLIMATOLOY 4PANCH uoAFETAC CEILING VERSUS VISIBILITY AIP WEATHER SERVIC[/PAC 6 !� .0ODB8RI)E RAF UK _"_-_ " ___ .-8’ PERCENTAGE FREQUENCY OF...OSIVATIONWS A USAF ETAC 0. . -14.5(OL A) owvo I wv s op wpwm i -- GLOCAL CLIMATOLOGY RRANCH AT CEILING VERSUS VISIBILITYA’.P WEATHr SERVICE/MAC 7 .951

  14. Short Term Weather Forecasting in Real Time in a Base Weather Station Setting

    DTIC Science & Technology

    1993-10-01

    SMSL DWPF Figure 25. Plot of surface airways observations at 18 UTC, I April 1993. Data is plotted in conventional notation. 35 mu eb 23 -:.-j-32 29292 3...34 38 3 ... .. :......:.. . . O0i-02-93 0600 GMT CLCT TMPF WSYM SMSL DWPF Figure 26. As in Figure 25, except for 06 UTC, 2 April 1993. 36 Figure 27

  15. Surface Exposure Ages of Space-Weathered Grains from Asteroid 25143 Itokawa

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.; Christoffersen, R.

    2015-01-01

    We use the observed effects of solar wind ion irradiation and the accumulation of solar flare particle tracks recorded in Itokawa grains to constrain the rates of space weathering and yield information about regolith dynamics. The track densities are consistent with exposure at mm depths for 104-105 years. The solar wind damaged rims form on a much faster timescale, <10(exp 3) years.

  16. Weather in Mountainous Terrain (Overcoming Scientific Barriers to Weather Support)

    DTIC Science & Technology

    2011-02-15

    been more effective. Similarly, profiler data is more effective than surface observations. The satellite data are potentially valuable as an... Satellite data can play an important role in model validation, but accuracy has been an issue. Turbulence 1. The classical parameterizations for... data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this

  17. Inference of Surface Chemical and Physical Properties Using Mid-Infrared (MIR) Spectral Observations

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.

    2016-01-01

    Reflected or emitted energy from solid surfaces in the solar system can provide insight into thermo-physical and chemical properties of the surface materials. Measurements have been obtained from instruments located on Earth-based telescopes and carried on several space missions. The characteristic spectral features commonly observed in Mid-Infrared (MIR) spectra of minerals will be reviewed, along with methods used for compositional interpretations of MIR emission spectra. The influence of surface grain size, and space weathering processes on MIR emissivity spectra will also be discussed. Methods used for estimating surface temperature, emissivity, and thermal inertias from MIR spectral observations will be reviewed.

  18. First In-Situ Observations of Exospheric Response to CME Impact at Mercury

    NASA Astrophysics Data System (ADS)

    Raines, J. M.; Wallace, K. L.; Sarantos, M.; Jasinksi, J. M.; Tracy, P. J.; Dewey, R. M.; Weberg, M. J.; Slavin, J. A.

    2018-05-01

    We present the first in-situ observations of enhancements to Mercury's He exosphere generated by CME impact. These results have implications for understanding exosphere generation and loss processes, as well space weathering of the planet's surface.

  19. The "Mars-Sun Connection" and the Impact of Solar Variability on Mars Weather and Climate

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Grinspoon, D.

    2004-05-01

    We develop the scientific case to measure simultaneously the UV and near-UV solar irradiance incident on the Mars atmosphere and at the Martian surface, to explore the effects and influence of Solar variability and "Space Weather" on Mars weather and climate, its implications for life, and the implications for astronaut safety on future manned Mars missions. The UV flux at the Martian surface is expected to be highly variable, due to diurnal, daily, and seasonal variations in opacity of atmospheric dust and clouds, as well as diurnal and seasonal variations in ozone, water vapor and other absorbing species. This flux has been modeled (Kuhn and Atreya, 1979), but never measured directly from the Martian surface. By directly observing the UV and near UV solar irradiance both at the top of the atmosphere and at the Martian surface we will be able to directly constrain important model parameters necessary to understand the variations of atmospheric dynamics which drive both Mars weather and climate. Directly measuring the solar UV radiation incident upon the Mars atmosphere and at the Martian surface also has important implications for astronaut safety on future manned Mars missions. The flux at the surface of Mars at 250 nm is also believed to be approximately 3000 times greater than that on Earth. This presents potential hazards to future human explorers as well as challenges for future agriculture such as may be carried out in surface greenhouses to provide food for human colonists. A better understanding of the surface flux will aid in designing appropriate protection against these hazards.

  20. The ``Mars-Sun Connection" and the Impact of Solar Variability on Mars Weather and Climate

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Grinspoon, D. H.

    2003-05-01

    We develop the scientific case to measure simultaneously the UV and near-UV solar irradiance incident on the Mars atmosphere and at the Martian surface, to explore the effects and influence of Solar variability and ``Space Weather" on Mars weather and climate, its implications for life, and the implications for astronaut safety on future manned Mars missions. The UV flux at the Martian surface is expected to be highly variable, due to diurnal, daily, and seasonal variations in opacity of atmospheric dust and clouds, as well as diurnal and seasonal variations in ozone, water vapor and other absorbing species. This flux has been modeled (Kuhn and Atreya, 1979), but never measured directly from the Martian surface. By directly observing the UV and near UV solar irradiance both at the top of the atmosphere and at the Martian surface we will be able to directly constrain important model parameters necessary to understand the variations of atmospheric dynamics which drive both Mars weather and climate. Directly measuring the solar UV radiation incident upon the Mars atmosphere and at the Martian surface also has important implications for astronaut safety on future manned Mars missions. The flux at the surface of Mars at 250 nm is also believed to be approximately 3000 times greater than that on Earth. This presents potential hazards to future human explorers as well as challenges for future agriculture such as may be carried out in surface greenhouses to provide food for human colonists. A better understanding of the surface flux will aid in designing appropriate protection against these hazards.

  1. Groundwater quality under the influence of spent mushroom substrate weathering.

    PubMed

    Guo, Mingxin

    2005-10-01

    Nitrate and other solutes resulting from field-weathering of spent mushroom substrate (SMS) percolate into underlying soils and may migrate to groundwater. A field trial was conducted to investigate the potential influences of SMS weathering on groundwater quality. Spent mushroom substrate was deposited at 90 and 150 cm pile depths over a Typic Hapludult and weathered for 2 years. Eight casing wells were installed around the SMS piles to monitor the quality changes of groundwater with a high seasonal water table of 760 cm below the surface. Although leachate solutes had moved more than 200 cm deep in soil from the surface, no significant changes of groundwater quality caused by SMS weathering were observed even one year after removal of the SMS piles (3 years total). The groundwater had pH, electrical conductivity (EC) and dissolved organic carbon (DOC) of 4.3-5.7, 0.2-0.3 dS m(-1) and 0.7-2.2 mg L(-1), respectively. The major inorganic ions were Mg(2+), Ca(2+), Na(+), Cl(-), SO(4)(2-) and NO(3)(-), with a concentration range of 2.5-68.3 mg L(-1). The results suggest that SMS leachate solutes migrated fairly slow in deep subsurface soils of the experimental field. Considering that leachate solutes may move several meters in soil through preferential flow channels, weathering of SMS in fields with a high seasonal groundwater table >or=5 m below the ground is recommended. Conservatively, SMS weathering should be conducted on compact surfaces and leachate be collected and reused as liquid fertilizers.

  2. Myrtle Beach AFB South Carolina. Revised Uniform Summary of Surface Weather Observations. Parts A-F

    DTIC Science & Technology

    1975-07-03

    DATA PROCESSING BRNCm2 TAC/USAF SURFACE WINDS AIP wATHER SERVIC/?AL PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS...TRANS MONI, ALL WATHER 1200-1400 CLAM MUES (L.$,t.) ( CONDITION SPEED MEAN (KNTS) i’ 4-6 7. 10 11. 16 17.21 22 .27 28 . 33 34.40 41 .47 48 • !5 ;t56...PRUCESSING BRANCH 2ETAC/USAF SURFACE WINDSAIR wATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 13717

  3. Sachon AFS K-4, Sacheon, Korea. Revised Uniform Summary of Surface Weather Observations (RUSSWO)

    DTIC Science & Technology

    1968-04-11

    FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OESERVATIONS) 41240 -- SACHON KflREALROK AFS K-4 55-67_________ APR UT"If STATION MANZ TSARS SON ?") ALL...KOREA/ROI( AFS K-4 55-67 ____APR SAINSTATION NAME YEARS MOSN ALL WEATHER 1500-1700 ~ LA $S NOUN$ (LST I ONITIOW (KNTSI 1 .3 4.6 7.10 11.-16 17.21 22...4S 1209 c~ ~iC4 1V/ . $ I - - ’~-4 V ~’ *-** La DATA PROCESSING DIVISION ElAc, UJSAF SURFACE WINDS ASHEVILLE, N. C. 28801 PERCENTAGE FREQUENCY OF

  4. Summary of Meteorological Observations, Surface (SMOS), Kingsville, Texas.

    DTIC Science & Technology

    1984-09-01

    of surface C weather observation. The six parts are: Part A - Wather Conditions/ Atmospheric Phenn. Part S1 - Preci pitatien/Spofal 1/Snow, Depth... WATHER SERVICE SU2VACl WINDS AMMOIC MMD86AW MPW OFU ~AHOY hUam~W _______________ 41±low kI&K GO!PtO I2 Ci I~. I~JT2. C,. 2.& . W 1. -S . S 64~ E - S

  5. Space Weathering Impact on Solar System Surfaces and Planetary Mission Science

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2011-01-01

    We often look "through a glass, darkly" at solar system bodies with tenuous atmospheres and direct surface exposure to the local space environment. Space weathering exposure acts via universal space-surface interaction processes to produce a thin patina of outer material covering, potentially obscuring endogenic surface materials of greatest interest for understanding origins and interior evolution. Examples of obscuring exogenic layers are radiation crusts on cometary nuclei and iogenic components of sulfate hydrate deposits on the trailing hemisphere of Europa. Weathering processes include plasma ion implantation into surfaces, sputtering by charged particles and solar ultraviolet photons, photolytic chemistry driven by UV irradiation, and radiolytic chemistry evolving from products of charged particle irradiation. Regolith structure from impacts, and underlying deeper structures from internal evolution, affects efficacy of certain surface interactions, e.g. sputtering as affected by porosity and surface irradiation dosage as partly attenuated by local topographic shielding. These processes should be regarded for mission science planning as potentially enabling, e.g. since direct surface sputtering, and resultant surface-bound exospheres, can provide in-situ samples of surface composition to ion and neutral mass spectrometers on orbital spacecraft. Sample return for highest sensitivity compOSitional and structural analyses at Earth will usually be precluded by limited range of surface sampling, long times for return, and high cost. Targeted advancements in instrument technology would be more cost efficient for local remote and in-situ sample analysis. More realistic laboratory simulations, e.g. for bulk samples, are needed to interpret mission science observations of weathered surfaces. Space environment effects on mission spacecraft and science operations must also be specified and mitigated from the hourly to monthly changes in space weather and from longer term (e.g., solar cycle) evolution of space climate. Capable instrumentation on planetary missions can and should be planned to contribute to knowledge of interplanetary space environments. Evolving data system technologies such as virtual observatories should be explored for more interdisciplinary application to the science of planetary surface, atmospheric, magnetospheric, and interplanetary interactions.

  6. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  7. High resolution solar observations in the context of space weather prediction

    NASA Astrophysics Data System (ADS)

    Yang, Guo

    Space weather has a great impact on the Earth and human life. It is important to study and monitor active regions on the solar surface and ultimately to predict space weather based on the Sun's activity. In this study, a system that uses the full power of speckle masking imaging by parallel processing to obtain high-spatial resolution images of the solar surface in near real-time has been developed and built. The application of this system greatly improves the ability to monitor the evolution of solar active regions and to predict the adverse effects of space weather. The data obtained by this system have also been used to study fine structures on the solar surface and their effects on the upper solar atmosphere. A solar active region has been studied using high resolution data obtained by speckle masking imaging. Evolution of a pore in an active region presented. Formation of a rudimentary penumbra is studied. The effects of the change of the magnetic fields on the upper level atmosphere is discussed. Coronal Mass Ejections (CMEs) have a great impact on space weather. To study the relationship between CMEs and filament disappearance, a list of 431 filament and prominence disappearance events has been compiled. Comparison of this list with CME data obtained by satellite has shown that most filament disappearances seem to have no corresponding CME events. Even for the limb events, only thirty percent of filament disappearances are associated with CMEs. A CME event that was observed on March 20, 2000 has been studied in detail. This event did not show the three-parts structure of typical CMEs. The kinematical and morphological properties of this event were examined.

  8. Effect of different soil layers on porewater to remediate acidic surface environment at a close mine site.

    PubMed

    Salinas Villafane, Omar R; Igarashi, Toshifumi; Harada, Shusaku; Kurosawa, Mitsuru; Takase, Toshio

    2012-12-01

    This paper describes the chemistry of porewater when constructing different soil layers on acidic weathered rock of a closed mine to remediate the surface environment. Three cases were set on a flat surface of the site, all under different layer systems. Case 1 was only composed of weathered rocks. A top neutralization layer was constructed on the weathered rocks in case 2, whereas both an upper low-permeable and middle neutralization layers were constructed on the weathered rocks in case 3. The low-permeable layer of 30 cm thick consists of clay, and the neutralization layer of 30 cm thick consists of the mixture of the weathered rock and calcium carbonate as a neutralizer. Porewater sampling systems and soil sensors to measure temperature, water content, and electrical conductivity were set at different depths. In case 1, steadily high concentrations of heavy metals were observed regardless of the depth, and the pH ranged from 2 to 4. In cases 2 and 3, a dramatic decrease in concentrations of heavy metals was observed, even below the neutralization layer. For both cases, pH values were circumneutral. There were no significant seasonable changes in heavy metals concentrations and pH of porewater by considering the temperature and precipitation. In addition, the water content of the layers in case 3 fluctuated more mildly than that in cases 1 and 2, indicating that the low-permeable layer reduced the rate of infiltration. Therefore, a significant reduction in the load of heavy metals released from the site can be achieved by both implementing neutralization and low-permeable layers.

  9. Prediction Activities at NASA's Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2010-01-01

    The Global Modeling and Assimilation Office (GMAO) is a core NASA resource for the development and use of satellite observations through the integrating tools of models and assimilation systems. Global ocean, atmosphere and land surface models are developed as components of assimilation and forecast systems that are used for addressing the weather and climate research questions identified in NASA's science mission. In fact, the GMAO is actively engaged in addressing one of NASA's science mission s key questions concerning how well transient climate variations can be understood and predicted. At weather time scales the GMAO is developing ultra-high resolution global climate models capable of resolving high impact weather systems such as hurricanes. The ability to resolve the detailed characteristics of weather systems within a global framework greatly facilitates addressing fundamental questions concerning the link between weather and climate variability. At sub-seasonal time scales, the GMAO is engaged in research and development to improve the use of land information (especially soil moisture), and in the improved representation and initialization of various sub-seasonal atmospheric variability (such as the MJO) that evolves on time scales longer than weather and involves exchanges with both the land and ocean The GMAO has a long history of development for advancing the seasonal-to-interannual (S-I) prediction problem using an older version of the coupled atmosphere-ocean general circulation model (AOGCM). This includes the development of an Ensemble Kalman Filter (EnKF) to facilitate the multivariate assimilation of ocean surface altimetry, and an EnKF developed for the highly inhomogeneous nature of the errors in land surface models, as well as the multivariate assimilation needed to take advantage of surface soil moisture and snow observations. The importance of decadal variability, especially that associated with long-term droughts is well recognized by the climate community. An improved understanding of the nature of decadal variability and its predictability has important implications for efforts to assess the impacts of global change in the coming decades. In fact, the GMAO has taken on the challenge of carrying out experimental decadal predictions in support of the IPCC AR5 effort.

  10. Direct observations of rock moisture, a hidden component of the hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Rempe, Daniella M.; Dietrich, William E.

    2018-03-01

    Recent theory and field observations suggest that a systematically varying weathering zone, that can be tens of meters thick, commonly develops in the bedrock underlying hillslopes. Weathering turns otherwise poorly conductive bedrock into a dynamic water storage reservoir. Infiltrating precipitation typically will pass through unsaturated weathered bedrock before reaching groundwater and running off to streams. This invisible and difficult to access unsaturated zone is virtually unexplored compared with the surface soil mantle. We have proposed the term “rock moisture” to describe the exchangeable water stored in the unsaturated zone in weathered bedrock, purposely choosing a term parallel to, but distinct from, soil moisture, because weathered bedrock is a distinctly different material that is distributed across landscapes independently of soil thickness. Here, we report a multiyear intensive campaign of quantifying rock moisture across a hillslope underlain by a thick weathered bedrock zone using repeat neutron probe measurements in a suite of boreholes. Rock moisture storage accumulates in the wet season, reaches a characteristic upper value, and rapidly passes any additional rainfall downward to groundwater. Hence, rock moisture storage mediates the initiation and magnitude of recharge and runoff. In the dry season, rock moisture storage is gradually depleted by trees for transpiration, leading to a common lower value at the end of the dry season. Up to 27% of the annual rainfall is seasonally stored as rock moisture. Significant rock moisture storage is likely common, and yet it is missing from hydrologic and land-surface models used to predict regional and global climate.

  11. Space weathering trends on carbonaceous asteroids: A possible explanation for Bennu's blue slope?

    NASA Astrophysics Data System (ADS)

    Lantz, C.; Binzel, R. P.; DeMeo, F. E.

    2018-03-01

    We compare primitive near-Earth asteroid spectral properties to the irradiated carbonaceous chondrite samples of Lantz et al. (2017) in order to assess how space weathering processes might influence taxonomic classification. Using the same eigenvectors from the asteroid taxonomy by DeMeo et al. (2009), we calculate the principal components for fresh and irradiated meteorites and find that change in spectral slope (blueing or reddening) causes a corresponding shift in the two first principal components along the same line that the C- and X-complexes track. Using a sample of B-, C-, X-, and D-type NEOs with visible and near-infrared spectral data, we further investigated the correlation between prinicipal components and the spectral curvature for the primitive asteroids. We find that space weathering effects are not just slope and albedo, but also include spectral curvature. We show how, through space weathering, surfaces having an original "C-type" reflectance can thus turn into a redder P-type or a bluer B-type, and that space weathering can also decrease (and disguise) the D-type population. Finally we take a look at the case of OSIRIS-REx target (101955) Bennu and propose an explanation for the blue and possibly red spectra that were previously observed on different locations of its surface: parts of Bennu's surface could have become blue due to space weathering, while fresher areas are redder. No clear prediction can be made on Hayabusa-2 target (162173) Ryugu.

  12. Short- and long-term olivine weathering in Svalbard: implications for Mars.

    PubMed

    Hausrath, E M; Treiman, A H; Vicenzi, E; Bish, D L; Blake, D; Sarrazin, P; Hoehler, T; Midtkandal, I; Steele, A; Brantley, S L

    2008-12-01

    Liquid water is essential to life as we know it on Earth; therefore, the search for water on Mars is a critical component of the search for life. Olivine, a mineral identified as present on Mars, has been proposed as an indicator of the duration and characteristics of water because it dissolves quickly, particularly under low-pH conditions. The duration of olivine persistence relative to glass under conditions of aqueous alteration reflects the pH and temperature of the reacting fluids. In this paper, we investigate the utility of 3 methodologies to detect silicate weathering in a Mars analog environment (Sverrefjell volcano, Svalbard). CheMin, a miniature X-ray diffraction instrument developed for flight on NASA's upcoming Mars Science Laboratory, was deployed on Svalbard and was successful in detecting olivine and weathering products. The persistence of olivine and glass in Svalbard rocks was also investigated via laboratory observations of weathered hand samples as well as an in situ burial experiment. Observations of hand samples are consistent with the inference that olivine persists longer than glass at near-zero temperatures in the presence of solutions at pH approximately 7-9 on Svalbard, whereas in hydrothermally altered zones, glass has persisted longer than olivine in the presence of fluids at similar pH at approximately 50 degrees C. Analysis of the surfaces of olivine and glass samples, which were buried on Sverrefjell for 1 year and then retrieved, documented only minor incipient weathering, though these results suggest the importance of biological impacts. The 3 types of observations (CheMin, laboratory observations of hand samples, burial experiments) of weathering of olivine and glass at Svalbard show promise for interpretation of weathering on Mars. Furthermore, the weathering relationships observed on Svalbard are consistent with laboratory-measured dissolution rates, which suggests that relative mineral dissolution rates in the laboratory, in concert with field observations, can be used to yield valuable information regarding the pH and temperature of reacting martian fluids.

  13. Correction of Doppler Rada Data for Aircraft Motion Using Surface Measurements and Recursive Least-Squares Estimation

    NASA Technical Reports Server (NTRS)

    Durden, S.; Haddad, Z.

    1998-01-01

    Observations of Doppler velocity of hydrometeors form airborne Doppler weather radars normally contains a component due to the aircraft motion. Accurate hydrometeor velocity measurements thus require correction by subtracting this velocity from the observed velocity.

  14. The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoye; Zhong, Junting; Wang, Jizhi; Wang, Yaqiang; Liu, Yanju

    2018-04-01

    The weather conditions affecting aerosol pollution in Beijing and its vicinity (BIV) in wintertime have worsened in recent years, particularly after 2010. The relation between interdecadal changes in weather conditions and climate warming is uncertain. Here, we analyze long-term variations of an integrated pollution-linked meteorological index (which is approximately and linearly related to aerosol pollution), the extent of changes in vertical temperature differences in the boundary layer (BL) in BIV, and northerly surface winds from Lake Baikal during wintertime to evaluate the potential contribution of climate warming to changes in meteorological conditions directly related to aerosol pollution in this area; this is accomplished using NCEP reanalysis data, surface observations, and long-term vertical balloon sounding observations since 1960. The weather conditions affecting BIV aerosol pollution are found to have worsened since the 1960s as a whole. This worsening is more significant after 2010, with PM2.5 reaching unprecedented high levels in many cities in China, particularly in BIV. The decadal worsening of meteorological conditions in BIV can partly be attributed to climate warming, which is defined by more warming in the higher layers of the boundary layer (BL) than the lower layers. This worsening can also be influenced by the accumulation of aerosol pollution, to a certain extent (particularly after 2010), because the increase in aerosol pollution from the ground leads to surface cooling by aerosol-radiation interactions, which facilitates temperature inversions, increases moisture accumulations, and results in the extra deterioration of meteorological conditions. If analyzed as a linear trend, weather conditions have worsened by ˜ 4 % each year from 2010 to 2017. Given such a deterioration rate, the worsening of weather conditions may lead to a corresponding amplitude increase in PM2.5 in BIV during wintertime in the next 5 years (i.e., 2018 to 2022). More stringent emission reduction measures will need to be conducted by the government.

  15. WRF Model Simulations of Terrain-Driven Atmospheric Eddies in Marine Stratocumulus Clouds

    NASA Astrophysics Data System (ADS)

    Muller, B. M.; Herbster, C. G.; Mosher, F. R.

    2014-12-01

    It is not unusual to observe atmospheric eddies in satellite imagery of the marine stratus and stratocumulus clouds that characterize the summertime weather of the California coastal region and near-shore oceanic environment. The winds of the marine atmospheric boundary layer (MABL) over the ocean interact with the high terrain of prominent headlands and islands to create order-10 km scale areas of swirling air that can contain a cloud-free eye, 180-degree wind reversals at the surface over a period of minutes, and may be associated with mixing and turbulence between the high-humidity air of the MABL and the much warmer and drier inversion layer air above. However, synoptic and even subsynoptic surface weather measurements, and the synoptic upper-air observing network are inadequate, or in some cases, completely unable, to detect and characterize the formation, movement, and even the existence of the eddies. They can literally slip between land-based surface observation locations, or stay over the near-shore ocean environment where there may be no surface meteorological measurements. This study presents Weather Research and Forecasting (WRF) Model simulations of these small-scale, terrain-driven, atmospheric features in the MABL from cases detected in GOES satellite imagery. The purpose is to use model output to diagnose the formation mechanisms, sources of vorticity, and the air flow in and around the eddies. Satellite imagery is compared to simulated atmospheric variables to validate features generated within the model atmosphere, and model output is employed as a surrogate atmosphere to better understand the atmospheric characteristics of the eddies. Model air parcel trajectories are estimated to trace the movement and sources of the air contained in and around these often-observed, but seldom-measured features.

  16. Observation of local cloud and moisture feedbacks over high ocean and desert surface temperatures

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1995-01-01

    New data on clouds and moisture, made possible by reanalysis of weather satellite observations, show that the atmosphere reacts to warm clusters of very high sea surface temperatures in the western Pacific Ocean with increased moisture, cloudiness, and convection, suggesting a negative feedback limiting the sea surface temperature rise. The reverse was observed over dry and hot deserts where both moisture and cloudiness decrease, suggesting a positive feedback perpetuating existing desert conditions. In addition, the observations show a common critical surface temperature for both oceans and land; the distribution of atmospheric moisture is observed to reach a maximum value when the daily surface temperatures approach 304 +/- 1 K. These observations reveal complex dynamic-radiative interactions where multiple processes act simultaneously at the surface as well as in the atmosphere to regulate the feedback processes.

  17. A numerical circulation model with topography for the Martian Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Mass, C.; Sagan, C.

    1975-01-01

    A quasi-geostrophic numerical model, including friction, radiation, and the observed planetary topography, is applied to the general circulation of the Martian atmosphere in the Southern Hemisphere at latitudes south of about 35 deg. Near equilibrium weather systems developed after about 5 model days. To avoid violating the quasi-geostrophic approximation, only 0.8 of the already smoothed relief was employed. Weather systems and velocity fields are strikingly tied to topography. A 2mb middle latitude jet stream is found of remarkably terrestrial aspect. Highest surface velocities, both horizontal and vertical, are predicted in western Hellas Planitia and eastern Argyre Planitia, which are observed to be preferred sites of origin of major Martian dust storms. Mean horizontal velocities and vertical velocities are found just above the surface velocity boundary layer.

  18. Evaluating climate models: Should we use weather or climate observations?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Robert J; Erickson III, David J

    2009-12-01

    Calling the numerical models that we use for simulations of climate change 'climate models' is a bit of a misnomer. These 'general circulation models' (GCMs, AKA global climate models) and their cousins the 'regional climate models' (RCMs) are actually physically-based weather simulators. That is, these models simulate, either globally or locally, daily weather patterns in response to some change in forcing or boundary condition. These simulated weather patterns are then aggregated into climate statistics, very much as we aggregate observations into 'real climate statistics'. Traditionally, the output of GCMs has been evaluated using climate statistics, as opposed to their abilitymore » to simulate realistic daily weather observations. At the coarse global scale this may be a reasonable approach, however, as RCM's downscale to increasingly higher resolutions, the conjunction between weather and climate becomes more problematic. We present results from a series of present-day climate simulations using the WRF ARW for domains that cover North America, much of Latin America, and South Asia. The basic domains are at a 12 km resolution, but several inner domains at 4 km have also been simulated. These include regions of complex topography in Mexico, Colombia, Peru, and Sri Lanka, as well as a region of low topography and fairly homogeneous land surface type (the U.S. Great Plains). Model evaluations are performed using standard climate analyses (e.g., reanalyses; NCDC data) but also using time series of daily station observations. Preliminary results suggest little difference in the assessment of long-term mean quantities, but the variability on seasonal and interannual timescales is better described. Furthermore, the value-added by using daily weather observations as an evaluation tool increases with the model resolution.« less

  19. El Niño rides again

    NASA Astrophysics Data System (ADS)

    Friebele, Elaine

    Another weather-disrupting El Niño may be brewing in the Pacific Ocean, according to ocean measurements taken by NASA instruments on two orbiting satellites. Sea-surface height measurements taken by the radar altimeter on board the joint U.S.-French TOPEX/Poseidon satellite and wind data collected by the NASA scatterometer on Japan's Advanced Earth Observing Satellite (ADEOS) have been used together for the first time to predict changing weather conditions in the tropical Pacific Ocean.El Niño occurs when steady westward blowing trade winds weaken and reverse direction, moving the mass of warm water near Australia eastward to the coast of South America. The displacement of the warm water mass alters the atmospheric jet stream and weather patterns around the world. The TOPEX/Poseidon satellite uses an altimeter to bounce radar signals off the ocean's surface to make precise measurements of the distance between the satellite and sea surface. Researchers then map the barely perceptible hills and valleys of the sea surface by combining these data with measurements pinpointing the satellite's exact location in space.

  20. Observations of the evening transition processes on opposing slopes of a north-south oriented mountain

    NASA Astrophysics Data System (ADS)

    Pardyjak, E.

    2014-12-01

    The MATERHORN (Mountain Terrain Atmospheric Modeling and Observation) Program is a multiuniversity, multidisciplinary research initiative designed to improve numerical weather prediction in complex terrain and to better understand the physics of complex terrain flow phenomena across a wide range of scales. As part of MATERHORN, field campaigns were conducted at Dugway, UT, USA in Autumn 2012 and Spring 2013. A subset of the campaigns included dense observations along the East Slope of Granite Peak (40.096° N, -113.253° W), as well as additional observations on the opposing west facing slope. East Slope observations included five multi-sonic anemometer eddy covariance towers (two with full energy budget stations), eleven small energy budget stations, fifteen automated weather stations, a distributed temperature sensing (DTS) system, hot-film anemometry, infrared camera surface temperature observations and up to three Doppler lidars. West Slope operations were less intense with three main towers, two of which included sonic anemometry and one, which included full surface energy balance observations. For this presentation, our analysis will focus on characterizing and contrasting the response of mean wind circulations and thermodynamics variables, as well as turbulence quantities during the evening transitions on both the East Slope and West Slope when solar irradiation differences of the slope surfaces is extremely large.

  1. Active Sensing Air Pressure Using Differential Absorption Barometric Radar

    NASA Astrophysics Data System (ADS)

    Lin, B.

    2016-12-01

    Tropical storms and other severe weathers cause huge life losses and property damages and have major impacts on public safety and national security. Their observations and predictions need to be significantly improved. This effort tries to develop a feasible active microwave approach that measures surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 GHz O2 absorption band in order to constrain assimilated dynamic fields of numerical weather Prediction (NWP) models close to actual conditions. Air pressure is the most important variable that drives atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Even over land there is no uniform coverage of surface air pressure measurements. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as 4mb ( 1mb) under all weather conditions. NASA Langley research team has made substantial progresses in advancing the DiBAR concept. The feasibility assessment clearly shows the potential of surface barometry using existing radar technologies. The team has also developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted laboratory, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. The precision and accuracy of radar surface pressure measurements are within the range of the theoretical analysis of the DiBAR concept. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will provide us an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  2. Pitted rock surfaces on Mars: A mechanism of formation by transient melting of snow and ice

    NASA Astrophysics Data System (ADS)

    Head, James W.; Kreslavsky, Mikhail A.; Marchant, David R.

    2011-09-01

    Pits in rocks on the surface of Mars have been observed at several locations. Similar pits are observed in rocks in the Mars-like hyperarid, hypothermal stable upland zone of the Antarctic Dry Valleys; these form by very localized chemical weathering due to transient melting of small amounts of snow on dark dolerite boulders preferentially heated above the melting point of water by sunlight. We examine the conditions under which a similar process might explain the pitted rocks seen on the surface of Mars (rock surface temperatures above the melting point; atmospheric pressure exceeding the triple point pressure of H2O; an available source of solid water to melt). We find that on Mars today each of these conditions is met locally and regionally, but that they do not occur together in such a way as to meet the stringent requirements for this process to operate. In the geological past, however, conditions favoring this process are highly likely to have been met. For example, increases in atmospheric water vapor content (due, for example, to the loss of the south perennial polar CO2 cap) could favor the deposition of snow, which if collected on rocks heated to above the melting temperature during favorable conditions (e.g., perihelion), could cause melting and the type of locally enhanced chemical weathering that can cause pits. Even when these conditions are met, however, the variation in heating of different rock facets under Martian conditions means that different parts of the rock may weather at different times, consistent with the very low weathering rates observed on Mars. Furthermore, as is the case in the stable upland zone of the Antarctic Dry Valleys, pit formation by transient melting of small amounts of snow readily occurs in the absence of subsurface active layer cryoturbation.

  3. Natural Weathering Rates of Silicate Minerals

    NASA Astrophysics Data System (ADS)

    White, A. F.

    2003-12-01

    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic activities. For example, Huntington et al. (2000) show that extensive timber harvesting in the southeastern forests of the United States, which are underlain by intensely weathered saprolites, produces net calcium exports that exceed inputs from weathering, thus creating a long-term regional problem in forest management.The role of chemical weathering has long been recognized in economic geology. Tropical bauxites, which account for most of world's aluminum ores, are typical examples of residual concentration of silicate rocks by chemical weathering over long time periods (Samma, 1986). Weathering of ultramafic silicates such as peridotites forms residual lateritic deposits that contain significant deposits of nickel and cobalt. Ores generated by chemical mobilization include uranium deposits that are produced by weathering of granitic rocks under oxic conditions and subsequent concentration by sorption and precipitation ( Misra, 2000).Over the last several decades, estimating rates of silicate weathering has become important in addressing new environmental issues. Acidification of soils, rivers, and lakes has become a major concern in many parts of North America and Europe. Areas at particular risk are uplands where silicate bedrock, resistant to chemical weathering, is overlain by thin organic-rich soils (Driscoll et al., 1989). Although atmospheric deposition is the most important factor in watershed acidification, land use practices, such as conifer reforestation, also create acidification problems ( Farley and Werritty, 1989). In such environments, silicate hydrolysis reactions are the principal buffer against acidification. As pointed out by Drever and Clow (1995), a reasonable environmental objective is to decrease the inputs of acidity such that they are equal to or less than the rate of neutralization by weathering in sensitive watersheds.The intensive interest in past and present global climate change has renewed efforts to understand quantitatively feedback mechanisms between climate and chemical weathering. On timescales longer than a million years, atmospheric CO2 levels have been primarily controlled by the balance between the rate of volcanic inputs from the Earth's interior and the rate of uptake through chemical weathering of silicates at the Earth's surface (Ruddiman, 1997). Weathering is proposed as the principal moderator in controlling large increases and decreases in global temperature and precipitation through the greenhouse effects of CO2 over geologic time (R. A. Berner and E. K. Berner, 1997). Weathering processes observed in paleosols, discussed elsewhere in this volume (see Chapter 5.18), have also been proposed as indicating changes in Archean atmospheric CO2 and O2 levels (Ohmoto, 1996; Rye and Holland, 1998).

  4. ATM-Weather Integration Plan, Version 1.0

    DTIC Science & Technology

    2009-09-17

    necessarily involving the flight of aircraft (e.g. aerial gunnery, artillery, rockets, missiles, lasers , demolitions, etc.). The precise time of...tool teams to ensure that the concept is consistent with team doctrine and a collaborative and coherent NAS. In the text of this plan, weather...SAS: Wind shear detection (e.g. LLWAS), ASR-WSP, TDWR, LIDAR , ASR-8/9/11, NEXRAD, F-420, DASI, ASOS, AWOS, AWSS, SAWS, NextGen Surface Observing

  5. Statistics of link blockage due to cloud cover for free-space optical communications using NCDC surface weather observation data

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.; Piazzolla, S.

    2002-01-01

    Cloud opacity is one of the main atmospheric physical phenomena that can jeopardize the successful completion of an optical link between a spacecraft and a ground station. Hence, the site location chosen for a telescope used for optical communications must rely on knowledge of weather and cloud cover statistics for the geographical area where the telescope itself is located.

  6. Scatterometer capabilities in remotely sensing geophysical parameters over the ocean: The status and the possibilities

    NASA Technical Reports Server (NTRS)

    Brown, R. A.

    1984-01-01

    Extensive comparison between surface measurements and satellite Scatt signal and predicted winds show successful wind and weather analysis comparable with conventional weather service analyses. However, in regions often of the most interest, e.g., fronts and local storms, inadequacies in the latter fields leaves an inability to establish the satellite sensor capabilities. Thus, comparisons must be made between wind detecting measurements and other satellite measurements of clouds, moisture, waves or any other parameter which responds to sharp gradients in the wind. At least for the windfields and the derived surface pressure field analysis, occasional surface measurements are required to anchor and monitor the satellite analyses. Their averaging times must be made compatible with the satellite sensor measurement. Careful attention must be paid to the complex fields which contain many scales of turbulence and coherent structures affecting the averaging process. The satellite microwave system is capable of replacing the conventional point observation/numerical analysis for the ocean weather.

  7. An Extended Objective Evaluation of the 29-km Eta Model for Weather Support to the United States Space Program

    NASA Technical Reports Server (NTRS)

    Nutter, Paul; Manobianco, John

    1998-01-01

    This report describes the Applied Meteorology Unit's objective verification of the National Centers for Environmental Prediction 29-km eta model during separate warm and cool season periods from May 1996 through January 1998. The verification of surface and upper-air point forecasts was performed at three selected stations important for 45th Weather Squadron, Spaceflight Meteorology Group, and National Weather Service, Melbourne operational weather concerns. The statistical evaluation identified model biases that may result from inadequate parameterization of physical processes. Since model biases are relatively small compared to the random error component, most of the total model error results from day-to-day variability in the forecasts and/or observations. To some extent, these nonsystematic errors reflect the variability in point observations that sample spatial and temporal scales of atmospheric phenomena that cannot be resolved by the model. On average, Meso-Eta point forecasts provide useful guidance for predicting the evolution of the larger scale environment. A more substantial challenge facing model users in real time is the discrimination of nonsystematic errors that tend to inflate the total forecast error. It is important that model users maintain awareness of ongoing model changes. Such changes are likely to modify the basic error characteristics, particularly near the surface.

  8. TES Observations of Chryse and Acidalia Planitiae: Multiple Working Hypotheses for Distributions of Surface Compositions

    NASA Technical Reports Server (NTRS)

    Wyatt, M. B.; Bandfield, J. L.; McSween, H. Y., Jr.; Christensen, P. R.; Moersch, J.

    2002-01-01

    A gradation of surface units represents either (1) an influx of basaltic sediment from southern highlands, deposited on andesitic volcanics, or (2) incompletely weathered basalt marking the geographic extent of submarine alteration of basaltic crust. Additional information is contained in the original extended abstract.

  9. Charged particle space weathering rates at the Moon derived from ARTEMIS observations

    NASA Astrophysics Data System (ADS)

    Poppe, A. R.; Farrell, W. M.; Halekas, J. S.

    2017-12-01

    The weathering of airless bodies exposed to space is a fundamental process in the formation and evolution of planetary surfaces. At the Moon, space weathering induces a variety of physical, chemical, and optical changes including the formation of nanometer sized amorphous rims on individual lunar grains. These rims are formed by vapor redeposition from micrometeoroid impacts and ion irradiation-induced amorphization of the crystalline matrix. For ion irradiation-induced rims, however, laboratory experiments of the depth and formation timescales of these rims stand in stark disagreement with observations of lunar soil grains. We use observations by the ARTEMIS spacecraft in orbit around the Moon to compute the mean ion flux to the lunar surface and convolve this flux with ion irradiation-induced vacancy production rates calculated using the Stopping Range of Ions in Matter (SRIM) model. From this, we calculate the formation timescales for amorphous rim production as a function of depth and compare to laboratory experiments and observations of lunar soil. Our analysis resolves two outstanding issues: (1) the provenance of >100 nm amorphous rims on lunar grains and (2) the nature of the depth-age relationship for amorphous rims on lunar grains. We also present the hypothesis that ion beam-induced epitaxial crystallization is responsible for the discrepancy between observational and experimental results of the formation time of <100 nm amorphous rims.

  10. The potential for geostationary remote sensing of NO2 to improve weather prediction

    NASA Astrophysics Data System (ADS)

    Liu, X.; Mizzi, A. P.; Anderson, J. L.; Fung, I. Y.; Cohen, R. C.

    2016-12-01

    Observations of surface winds remain sparse making it challenging to simulate and predict the weather in circumstances of light winds that are most important for poor air quality. Direct measurements of short-lived chemicals from space might be a solution to this challenge. Here we investigate the application of data assimilation of NO­2 columns as will be observed from geostationary orbit to improve predictions and retrospective analysis of surface wind fields. Specifically, synthetic NO2 observations are sampled from a "nature run (NR)" regarded as the true atmosphere. Then NO2 observations are assimilated using EAKF methods into a "control run (CR)" which differs from the NR in the wind field. Wind errors are generated by introducing (1) errors in the initial conditions, (2) creating a model error by using two different formulations for the planetary boundary layer, (3) and by combining both of these effects. The assimilation reduces wind errors by up to 50%, indicating the prospects for future geostationary atmospheric composition measurements to improve weather forecasting are substantial. We also examine the assimilation sensitivity to the data assimilation window length. We find that due to the temporal heterogeneity of wind errors, the success of this application favors chemical observations of high frequency, such as those from geostationary platform. We also show the potential to improve soil moisture field by assimilating NO­2 columns.

  11. Some Physical and Computational Issues in Land Surface Data Assimilation of Satellite Skin Temperatures

    NASA Astrophysics Data System (ADS)

    Mackaro, Scott M.; McNider, Richard T.; Biazar, Arastoo Pour

    2012-03-01

    Skin temperatures that reflect the radiating temperature of a surface observed by infrared radiometers are one of the most widely available products from polar orbiting and geostationary satellites and the most commonly used satellite data in land surface assimilation. Past work has indicated that a simple land surface scheme with a few key parameters constrained by observations such as skin temperatures may be preferable to complex land use schemes with many unknown parameters. However, a true radiating skin temperature is sometimes not a prognostic variable in weather forecast models. Additionally, recent research has shown that skin temperatures cannot be directly used in surface similarity forms for inferring fluxes. This paper examines issues encountered in using satellite derived skin temperatures to improve surface flux specifications in weather forecast and air quality models. Attention is given to iterations necessary when attempting to nudge the surface energy budget equation to a desired state. Finally, the issue of mathematical operator splitting is examined in which the surface energy budget calculations are split with the atmospheric vertical diffusion calculations. However, the high level of connectivity between the surface and first atmospheric level means that the operator splitting leads to high frequency oscillations. These oscillations may hinder the assimilation of skin temperature derived moisture fluxes.

  12. Extending the Confrontation of Weather and Climate Models from Soil Moisture to Surface Flux Data

    NASA Astrophysics Data System (ADS)

    Dirmeyer, P.; Chen, L.; Wu, J.

    2016-12-01

    The atmosphere and land components of weather and climate models are typically developed separately and coupled as a last step before new model versions are released. Separate testing of land surface models (LSMs) and atmospheric models is often quite extensive in the development phase, but validation of coupled land-atmosphere behavior is often minimal if performed at all. This is partly because of this piecemeal model development approach and partly because the necessary in situ data to confront coupled land-atmosphere models (LAMs) has been meager until quite recently. Over the past 10-20 years there has been a growing number of networks of measurements of land surface states, surface fluxes, radiation and near-surface meteorology, although they have been largely uncoordinated and frequently incomplete across the range of variables necessary to validate LAMs. We extend recent work "confronting" a variety of LSMs and LAMs with in situ observations of soil moisture from cross-standardized networks to comparisons with measurements of surface latent and sensible heat fluxes at FLUXNET sites in a variety of climate regimes around the world. The motivation is to determine how well LSMs represent observed statistics of variability and co-variability, how much models differ from one another, and how those statistics change when the LSMs are coupled to atmospheric models. Furthermore, comparisons are made to several LAMs in both open-loop (free running) and reanalysis configurations. This shows to what extent data assimilation can constrain the processes involved in flux variability, and helps illuminate model development pathways to improve coupled land-atmosphere interactions in weather and climate models.

  13. Undergraduate Earth System Science Education: Project-Based Learning, Land-Atmosphere Interaction, and a Newly Established Student Weather Station

    NASA Astrophysics Data System (ADS)

    Baker, D.

    2004-12-01

    Undergraduate students conducted a semester-long research project as part of a special topics course that launched the Austin College Weather Station in spring 2001. The weather station is located on restored prairie roughly 100 km north of Dallas, Texas. In addition to standard meteorological observations, the Austin College Weather Station measures surface quantities such as soil moisture, soil temperature, solar radiation, infrared radiation, and soil heat flux. These additional quantities are used to calculate the surface energy balance using the Bowen ratio method. Thus, the Austin College Weather Station provides valuable information on land-atmosphere interaction in a prairie environment. This project provided a remarkable learning experience for the students. Each student supervised two instruments on the weather station. Students skillfully learned instrumentation details and the physical phenomena measured by the instruments. Team meetings were held each week to discuss issues such as station location, power requirements, telecommunication options, and data acquisition. Students made important decisions during the meetings. They would then work collaboratively on specific tasks that needed to be accomplished before the next meeting. Students also assessed the validity of their measurements after the weather station came on-line. With this approach, students became the experts. They utilized the scientific method to think critically and to solve problems. For at least a semester, students became Earth system scientists.

  14. Establishing Sprinkling Requirements on Trailers Transporting Market Weight Pigs in Warm and Hot Weather.

    PubMed

    Kephart, Rebecca; Johnson, Anna; Sapkota, Avi; Stalder, Kenneth; McGlone, John

    2014-04-11

    This study was conducted July of 2012 in Iowa, in WARM (<26.7 °C) and HOT (≥26.7 °C) weather. Four sprinkling methods were compared, with one treatment being randomly assigned to each load: control- no sprinkling (not applied in HOT weather), pigs only, bedding only, or pigs and bedding. Experiment 1 used 51 loads in WARM- and 86 loads in HOT weather to determine sprinkling effects on pig measures (surface temperature, vocalizations, slips and falls, and stress signs). Experiment 2 used 82 loads in WARM- and 54 loads in HOT weather to determine the sprinkling effects on transport losses (non-ambulatory, dead, and total transport losses). Experiment 1 found that, in WARM weather, there were no differences between sprinkling treatments for surface temperature, vocalizations, or slips and falls (p ≥ 0.18). However, stress signs were 2% greater when sprinkling pigs- or bedding only- compared to control (p = 0.03). Experiment 2 found that, in WARM and HOT weather, sprinkling did not affect non-ambulatory, dead, or total transport losses (p ≥ 0.18). Although the current study did not find any observed sprinkling effects for pig measures or transport losses it is extremely important to note that the inference space of this study is relatively small, so further studies should be conducted to see if these results are applicable to other geographical regions and seasons.

  15. Transmission Electron Microscopy of Plagioclase-Rich Itokawa Grains: Space Weathering Effects and Solar Flare Track Exposure Ages

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Berger, Eve L.

    2017-01-01

    Limited samples are available for the study of space weathering effects on airless bodies. The grains returned by the Hayabusa mission to asteroid 25143 Itokawa provide the only samples currently available to study space weathering of ordinary chondrite regolith. We have previously studied olivine-rich Itokawa grains and documented their surface alteration and exposure ages based on the observed density of solar flare particle tracks. Here we focus on the rarer Itokawa plagioclase grains, in order to allow comparisons between Itokawa and lunar soil plagioclase grains for which an extensive data set exists.

  16. Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events

    PubMed Central

    Mann, Michael E.; Rahmstorf, Stefan; Kornhuber, Kai; Steinman, Byron A.; Miller, Sonya K.; Coumou, Dim

    2017-01-01

    Persistent episodes of extreme weather in the Northern Hemisphere summer have been shown to be associated with the presence of high-amplitude quasi-stationary atmospheric Rossby waves within a particular wavelength range (zonal wavenumber 6–8). The underlying mechanistic relationship involves the phenomenon of quasi-resonant amplification (QRA) of synoptic-scale waves with that wavenumber range becoming trapped within an effective mid-latitude atmospheric waveguide. Recent work suggests an increase in recent decades in the occurrence of QRA-favorable conditions and associated extreme weather, possibly linked to amplified Arctic warming and thus a climate change influence. Here, we isolate a specific fingerprint in the zonal mean surface temperature profile that is associated with QRA-favorable conditions. State-of-the-art (“CMIP5”) historical climate model simulations subject to anthropogenic forcing display an increase in the projection of this fingerprint that is mirrored in multiple observational surface temperature datasets. Both the models and observations suggest this signal has only recently emerged from the background noise of natural variability. PMID:28345645

  17. Assimilation of Cloud Information in Numerical Weather Prediction Model in Southwest China

    NASA Astrophysics Data System (ADS)

    HENG, Z.

    2016-12-01

    Based on the ARPS Data Analysis System (ADAS), Weather Research and Forecasting (WRF) model, simulation experiments from July 1st 2015 to August 1st 2015 are conducted in the region of Southwest China. In the assimilation experiment (EXP), datasets from surface observations are assimilated, cloud information from weather Doppler radar, Fengyun-2E (FY-2E) geostationary satellite are retrieved by using the complex cloud analysis scheme in the ADAS, to insert microphysical variables and adjust the humility structure in the initial condition. As a control run (CTL), datasets from surface observations are assimilated, but no cloud information is used in the ADAS. The simulation result of a rainstorm caused by the Southwest Vortex during 14-15 July 2015 shows that, the EXP run has a better capability in representing the shape and intensity of precipitation, especially the center of rainstorm. The one-month inter-comparison of the initial and prediction results between the EXP and CTL runs reveled that, EXP runs can present a more reasonable phenomenon of rain and get a higher score in the rain prediction. Keywords: NWP, rainstorm, Data assimilation

  18. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  19. Extreme Spacecraft Charging in Polar Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Colson, Andrew D.; Minow, Joseph I.; NeergaardParker, Linda

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth's land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (10 s kilovolt) electrons in regions of low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from 0.6 kV to 2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  20. Extreme Spacecraft Charging in Polar Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Colson, Andrew D.; Minow, Joseph I.; Parker, L. Neergaard

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun -synchronous) orbits are widely used for remote sensing of the Earth fs land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (approx.10 fs kilovolt) electrons in regions of low background plasma density. Auroral charging conditions are similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from approx.0.6 kV to approx.2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  1. Modelling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/86Sr isotopic ratio of seawater

    NASA Technical Reports Server (NTRS)

    Francois, L. M.; Walker, J. C.

    1992-01-01

    A numerical model describing the coupled evolution of the biogeochemical cycles of carbon, sulfur, calcium, magnesium, phosphorus, and strontium has been developed to describe the long-term changes of atmospheric carbon dioxide and climate during the Phanerozoic. The emphasis is on the effects of coupling the cycles of carbon and strontium. Various interpretations of the observed Phanerozoic history of the seawater 87Sr/86Sr ratio are investigated with the model. More specifically, the abilities of continental weathering, volcanism, and surface lithology in generating that signal are tested and compared. It is suggested that the observed fluctuations are mostly due to a changing weatherability over time. It is shown that such a conclusion is very important for the modelling of the carbon cycle. Indeed, it implies that the conventional belief that the evolution of atmospheric carbon dioxide and climate on a long time scale is governed by the balance between the volcanic input of CO2 and the rate of silicate weathering is not true. Rather carbon exchanges between the mantle and the exogenic system are likely to have played a key role too. Further, the increase of the global weathering rates with increasing surface temperature and/or atmospheric CO2 pressure usually postulated in long-term carbon cycle and climate modelling is also inconsistent with the new model. Other factors appear to have modulated the weatherability of the continents through time, such as mountain building and the existence of glaciers and ice sheets. Based on these observations, a history of atmospheric carbon dioxide and climate during Phanerozoic time, consistent with the strontium isotopic data, is reconstructed with the model and is shown to be compatible with paleoclimatic indicators, such as the timing of glaciation and the estimates of Cretaceous paleotemperatures.

  2. Lunar Surface Charging during Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Halekas, Jasper S.; Delory, G. T.; Mewaldt, R. A.; Lin, R. P.; Fillingim, M. O.; Brain, D. A.; Lee, C. O.; Stubbs, T. J.; Farrell, W. M.; Hudson, M. K.

    2006-09-01

    The surface of the Moon, not protected by any substantial atmosphere, is directly exposed to the impact of both solar UV and solar wind plasma and energetic particles. This creates a complex lunar electrostatic environment, with the surface typically charging slightly positive in sunlight, and negative in shadow. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging leads to dust electrification and transport, posing a potentially significant hazard for exploration. The most significant charging effects should occur when the Moon is exposed to high-temperature plasmas like those encountered in the terrestrial plasmasheet or in solar storms. We now present evidence for kilovolt-scale negative charging of the shadowed lunar surface during solar energetic particle (SEP) events, utilizing data from the Lunar Prospector Electron Reflectometer (LP ER). We find that SEP events are associated with the most extreme lunar surface charging observed during the LP mission - rivaled only by previously reported charging during traversals of the terrestrial plasmasheet. The largest charging event observed by LP is a 4 kV negative surface potential (as compared to typical values of V) during a SEP event in May 1998. We characterize lunar surface charging during several SEP events, and compare to energetic particle measurements from ACE, Wind, and SOHO in order to determine the relationship between SEP events and extreme lunar surface charging. Space weather events are already considered by NASA to be a significant hazard to lunar exploration, due to high-energy ionizing radiation. Our observations demonstrate that plasma interactions with the lunar surface during SEP events, causing extreme surface charging and potentially significant dust electrification and transport, represent an additional hazard associated with space weather.

  3. Effective Utilization of Satellite Observations for Assessing Transnational Impact of Disasters

    NASA Astrophysics Data System (ADS)

    Alozie, J. E.; Anuforom, A. C.

    2014-12-01

    General meteorological observations sources for the surface, upper air and outer space are conducted using different technological equipment and instruments that meet international standards prescribed and approved by the United Nations organizations such as the International Civil Aviation Organization (ICAO) and the World Meteorological Organization (WMO). Satellite weather observations are critical for effective monitoring of the developments, propagations and disseminations of cold clouds and their expected adverse weather conditions as they move across national and transnational boundaries. The Nigerian Meteorological Agency (NiMet) which is the national weather service provider for Nigeria, utilizes an array of satellite products obtained from mainly the European Meteorological Satellite (EUMETSAT) for its routine weather and climate monitoring and forecasts. Overtime, NiMet has used weather workstations such as MSG, SYNERGIE and now PUMA for accessing satellite products such as RGB, Infra-red, Water vapour and the Multi-sensor Precipitation Estimate (MPE) obtained at near real-time periods. The satellite imageries find extensive applications in the delivery of early warning of raising of severe weather conditions such as dust storm and dust haze during the harmattan season (November - February); and thunderstorm accompanied by severe lightning and destructive strong winds. The paper will showcase some special cases of the tracking of squall lines and issuance of weather alerts through the media. The good result is that there was limited damage to infrastructure and no loss of life from the flash floods caused by the heavy rainfall from the squally thunderstorm.

  4. Surface transportation weather decision support requirements : operational concept description : advanced-integrated decision support using weather information for surface transportation decisions makers : draft version 2.0

    DOT National Transportation Integrated Search

    2000-07-14

    This is a draft document for the Surface Transportation Weather Decision Support Requirements (STWDSR) project. The STWDSR project is being conducted for the FHWAs Office of Transportation Operations (HOTO) Road Weather Management Program by Mitre...

  5. Weathering of Olivine during Interaction of Sulfate Aerosols with Mars Soil under Current Climate Conditions

    NASA Astrophysics Data System (ADS)

    Niles, P. B.; Golden, D. C.; Michalski, J. R.; Ming, D. W.

    2017-12-01

    Sulfur concentrations in the Mars soils are elevated above 1 wt% in nearly every location visited by landed spacecraft. This observation was first made by the Viking landers, and has been confirmed by subsequent missions. The wide distribution of sulfur in martian soils has been attributed to volcanic degassing, formation of sulfate aerosols, and later incorporation into martian soils during gravitational sedimentation. However, later discoveries of more concentrated sulfur bearing sediments by the Opportunity rover has led some to believe that sulfates may instead be a product of evaporation and aeolian redistribution. One question that has not been addressed is whether the modern surface conditions are too cold for weathering of volcanic materials by sulfate aerosols. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars. Laboratory experiments were conducted to simulate weathering of olivine under Mars-like conditions. The weathering rates measured in this study suggest that fine grained olivine on Mars would weather into sulfate minerals in short time periods if they are exposed to H2SO4 aerosols at temperatures at or above -40°C. In this system, the strength of the acidic solution is maximized through eutectic freezing in an environment where the silicate minerals are extremely fine grained and have high surface areas. This provides an ideal environment for olivine weathering despite the very low temperatures. The likelihood of substantial sulfur-rich volcanism on Mars and creation of abundant sulfate aerosols suggests that this process would have been important during formation of martian soils and sediments. Future work modeling sulfur release rates during volcanic eruptions and aerosol distribution over the surface will help understand how well this process could concentrate sulfate minerals in nearby surface materials or whether this process would simply result in widespread globally distributed sulfur materials.

  6. Implementing a conceptual model of physical and chemical soil profile evolution

    NASA Astrophysics Data System (ADS)

    Kirkby, Mike

    2017-04-01

    When soil profile composition is generalised in terms of the proportion, p, of bedrock remaining (= 1 - depletion ratio), then other soil processes can also be expressed in terms of p, and 'soil depth' described by the integral of (1-p) down to bedrock. Soil profile evolution is expressed as the advance of a sigmoidal weathering front into the critical zone under the action of upward ionic diffusion of weathering products; downward advection of solutes in percolating waters, with loss of (cleanish) water as evapotranspiration and (solute-laden) water as a lateral sub-surface flow increment; and mechanical denudation increment at the surface. Each component responds to the degree of weathering. Percolation is limited by precipitation, evapotranspiration demand and the degree of weathering at each level in the profile which diverts subsurface flow. Mechanical removal rates are considered to broadly increase as weathering proceeds, as grain size and dilation angle decreases. The implication of these assumptions can be examined for steady state profiles, for which observed relationships between mechanical and chemical denudation rates; and between chemical denudation and critical zone depth are reproduced. For non-steady state evolution, these relationships break down, but provide a basis for linking critical zone with hillslope/ landform evolution.

  7. Recent Weather Extremes and Impacts on Agricultural Production and Vector-Borne Disease Outbreak Patterns

    PubMed Central

    Anyamba, Assaf; Small, Jennifer L.; Britch, Seth C.; Tucker, Compton J.; Pak, Edwin W.; Reynolds, Curt A.; Crutchfield, James; Linthicum, Kenneth J.

    2014-01-01

    We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010–2012 period. We utilized 2000–2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused ∼10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations. PMID:24658301

  8. The impact of synoptic weather on UK surface ozone and implications for premature mortality

    NASA Astrophysics Data System (ADS)

    Pope, R. J.; Butt, E. W.; Chipperfield, M. P.; Doherty, R. M.; Fenech, S.; Schmidt, A.; Arnold, S. R.; Savage, N. H.

    2016-12-01

    Air pollutants, such as ozone, have adverse impacts on human health and cause, for example, respiratory and cardiovascular problems. In the United Kingdom (UK), peak surface ozone concentrations typically occur in the spring and summer and are controlled by emission of precursor gases, tropospheric chemistry and local meteorology which can be influenced by large-scale synoptic weather regimes. In this study we composite surface and satellite observations of summer-time (April to September) ozone under different UK atmospheric circulation patterns, as defined by the Lamb weather types. Anticyclonic conditions and easterly flows are shown to significantly enhance ozone concentrations over the UK relative to summer-time average values. Anticyclonic stability and light winds aid the trapping of ozone and its precursor gases near the surface. Easterly flows (NE, E, SE) transport ozone and precursor gases from polluted regions in continental Europe (e.g. the Benelux region) to the UK. Cyclonic conditions and westerly flows, associated with unstable weather, transport ozone from the UK mainland, replacing it with clean maritime (North Atlantic) air masses. Increased cloud cover also likely decrease ozone production rates. We show that the UK Met Office regional air quality model successfully reproduces UK summer-time ozone concentrations and ozone enhancements under anticyclonic and south-easterly conditions for the summer of 2006. By using established ozone exposure-health burden metrics, anticyclonic and easterly condition enhanced surface ozone concentrations pose the greatest public health risk.

  9. Application of Observing System Simulation Experiments (OSSEs) to determining science and user requirements for space-based missions

    NASA Astrophysics Data System (ADS)

    Atlas, R. M.

    2016-12-01

    Observing System Simulation Experiments (OSSEs) provide an effective method for evaluating the potential impact of proposed new observing systems, as well as for evaluating trade-offs in observing system design, and in developing and assessing improved methodology for assimilating new observations. As such, OSSEs can be an important tool for determining science and user requirements, and for incorporating these requirements into the planning for future missions. Detailed OSSEs have been conducted at NASA/ GSFC and NOAA/AOML in collaboration with Simpson Weather Associates and operational data assimilation centers over the last three decades. These OSSEs determined correctly the quantitative potential for several proposed satellite observing systems to improve weather analysis and prediction prior to their launch, evaluated trade-offs in orbits, coverage and accuracy for space-based wind lidars, and were used in the development of the methodology that led to the first beneficial impacts of satellite surface winds on numerical weather prediction. In this talk, the speaker will summarize the development of OSSE methodology, early and current applications of OSSEs and how OSSEs will evolve in order to enhance mission planning.

  10. Mechanical weathering and rock erosion by climate-dependent subcritical cracking

    NASA Astrophysics Data System (ADS)

    Eppes, Martha-Cary; Keanini, Russell

    2017-06-01

    This work constructs a fracture mechanics framework for conceptualizing mechanical rock breakdown and consequent regolith production and erosion on the surface of Earth and other terrestrial bodies. Here our analysis of fracture mechanics literature explicitly establishes for the first time that all mechanical weathering in most rock types likely progresses by climate-dependent subcritical cracking under virtually all Earth surface and near-surface environmental conditions. We substantiate and quantify this finding through development of physically based subcritical cracking and rock erosion models founded in well-vetted fracture mechanics and mechanical weathering, theory, and observation. The models show that subcritical cracking can culminate in significant rock fracture and erosion under commonly experienced environmental stress magnitudes that are significantly lower than rock critical strength. Our calculations also indicate that climate strongly influences subcritical cracking—and thus rock weathering rates—irrespective of the source of the stress (e.g., freezing, thermal cycling, and unloading). The climate dependence of subcritical cracking rates is due to the chemophysical processes acting to break bonds at crack tips experiencing these low stresses. We find that for any stress or combination of stresses lower than a rock's critical strength, linear increases in humidity lead to exponential acceleration of subcritical cracking and associated rock erosion. Our modeling also shows that these rates are sensitive to numerous other environment, rock, and mineral properties that are currently not well characterized. We propose that confining pressure from overlying soil or rock may serve to suppress subcritical cracking in near-surface environments. These results are applicable to all weathering processes.

  11. Mineral Wells FAA, Texas. Ft. Wolters Mineral Wells/Texas. Revised Uniform Summary of Surface Weather Observations. Part A-F

    DTIC Science & Technology

    1972-05-18

    DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 0394,3 FT WIILTF.R’ AAF TEX/ MINERAI . WELLS 49-65,67-70 JUI) STATION STATION AM TRANS MONTM ALL WtI4THEk...DAIA PROCESSING DIVISCJN .~USAF ETAC PSYCHROMET(RICSU M R4 ’ AIR WEATHER SERYICE/MAC 03943 FT WO1LTER$ AAF TEX/ MINERAI . WELL$ 49*63#67-70 MAR____...AAF TEX/ MINERAI . WELLS 49-65b67-70 APRI STATION STATION NAME YEARS MONTH PAGE 2 0900-1100 HOURS (L. S. T.) Temp. WET BULB TEMPERATURE DEPRESSION (F

  12. Keesler AFB, Biloxi, Mississippi. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1982-02-08

    30 25 W 088 55 36 BIX STATION LOCATION AND INSTRUMENTATION HISTORY OUEI, TYPE AT THIS LOCATION ELEVATION ABOVE NSIL 003 O GEOGRAPHICAL LOCATION INANE...hours used by each service for each period are as follows: Air Force Stations: U. S. Navy and National Weather Service (USWB) Beginning thru 1945 at... VAIRBL C 22.0 30.9 15.5 1.6 .1 _ 100.0 3.5 TOTAL NUMBER OF OBSERVATIONS 808 USAFETAC ’otm 0-8-5 (OL-A) PMEVOUS EDITIOrO f THIS FOOM ARE OBSOLTE ,IAL 64 6

  13. Udorn RTAFB, Udon Thani, Thailand. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F

    DTIC Science & Technology

    1973-09-05

    DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 4105L UOUN THAN! T%4AND/UD"RN RTAFB 66,72 AUG STATIEN T N NANE YEARS NONIN 4 ALL WEATHER 0900.11,00 CUSS...92,6 󈧐.6 92.6 S400 9 s9 9 1 V1 .7 93. 9 9 9.1 9. qI .9 1 93 9 1 93. 9 993. S 300 94,.4 9415 9590 95,t 95o,4 954 9594 95,4 95*4 95,4 95s4 93.4 95*4

  14. Williams AFB, Arizona Revised Uniform Summary of Surface Weather Observations (RUSSWO) Parts A-F.

    DTIC Science & Technology

    1981-10-21

    N;I 1-L 9AL CLIMATOLOGY BRANCH ~.w~ .’ ETAC LJS. H A~(I EATV UMDT 2 f wEATHER SERVICE/MAC SEE FIRST HUMDIT 2 114 1 LLIAMS AFB AZ 69-70,73-80 JUL...4622 USAPETAC ’ol 0-87-5(01.A) , I roFql CL,-RAL CLIMATOLOGY BRANCH EATV 2 AFETAC SRVIE/ACATIVE UUTO HUMIDITY SEE FIRST PAGE Z Cl)4 AILLIAMS AFS AZ

  15. Space Weathering of Lunar Rocks and Regolith Grains

    NASA Technical Reports Server (NTRS)

    Keller, L. P.

    2013-01-01

    The exposed surfaces of lunar soil grains and lunar rocks become modified and coated over time with a thin rind of material (patina) through complex interactions with the space environment. These interactions encompass many processes including micrometeorite impacts, vapor and melt deposition, and solar wind implantation/sputtering effects that collectively are referred to as "space weathering". Studies of space weathering effects in lunar soils and rocks provide important clues to understanding the origin and evolution of the lunar regolith as well as aiding in the interpretation of global chemical and mineralogical datasets obtained by remote-sensing missions. The interpretation of reflectance spectra obtained by these missions is complicated because the patina coatings obscure the underlying rock mineralogy and compositions. Much of our understanding of these processes and products comes from decades of work on remote-sensing observations of the Moon, the analysis of lunar samples, and laboratory experiments. Space weathering effects collectively result in a reddened continuum slope, lowered albedo, and attenuated absorption features in reflectance spectra of lunar soils as compared to finely comminuted rocks from the same Apollo sites. Space weathering effects are largely surface-correlated, concentrated in the fine size fractions, and occur as amorphous rims on individual soil grains. Rims on lunar soil grains are highly complex and span the range between erosional surfaces modified by solar wind irradiation to depositional surfaces modified by the condensation of sputtered ions and impact-generated vapors. The optical effects of space weathering effects are directly linked to the production of nanophase Fe metal in lunar materials]. The size of distribution of nanophase inclusions in the rims directly affect optical properties given that large Fe(sup o) grains (approx 10 nm and larger) darken the sample (lower albedo) while the tiny Fe(sup o) grains (<5nm) are the primary agent in spectral "reddening". More recent work has focused on the nature and abundance of OH/H2O in the lunar regolith using orbital data and samples analyses. Advances in sample preparation techniques have made possible detailed analyses of patina-coated rock surfaces. Major advances are occurring in quantifying the rates and efficiency of space weathering processes through laboratory experimentation.

  16. Solar Disinfection of Pseudomonas aeruginosa in Harvested Rainwater: A Step towards Potability of Rainwater

    PubMed Central

    Amin, Muhammad T.; Nawaz, Mohsin; Amin, Muhammad N.; Han, Mooyoung

    2014-01-01

    Efficiency of solar based disinfection of Pseudomonas aeruginosa (P. aeruginosa) in rooftop harvested rainwater was evaluated aiming the potability of rainwater. The rainwater samples were exposed to direct sunlight for about 8–9 hours and the effects of water temperature (°C), sunlight irradiance (W/m2), different rear surfaces of polyethylene terephthalate bottles, variable microbial concentrations, pH and turbidity were observed on P. aeruginosa inactivation at different weathers. In simple solar disinfection (SODIS), the complete inactivation of P. aeruginosa was obtained only under sunny weather conditions (>50°C and >700 W/m2) with absorptive rear surface. Solar collector disinfection (SOCODIS) system, used to improve the efficiency of simple SODIS under mild and weak weather, completely inactivated the P. aeruginosa by enhancing the disinfection efficiency of about 20% only at mild weather. Both SODIS and SOCODIS systems, however, were found inefficient at weak weather. Different initial concentrations of P. aeruginosa and/or Escherichia coli had little effects on the disinfection efficiency except for the SODIS with highest initial concentrations. The inactivation of P. aeruginosa increased by about 10–15% by lowering the initial pH values from 10 to 3. A high initial turbidity, adjusted by adding kaolin, adversely affected the efficiency of both systems and a decrease, about 15–25%; in inactivation of P. aeruginosa was observed. The kinetics of this study was investigated by Geeraerd Model for highlighting the best disinfection system based on reaction rate constant. The unique detailed investigation of P. aeruginosa disinfection with sunlight based disinfection systems under different weather conditions and variable parameters will help researchers to understand and further improve the newly invented SOCODIS system. PMID:24595188

  17. Land surface controls on afternoon precipitation diagnosed from observational data: Uncertainties and confounding factors

    USDA-ARS?s Scientific Manuscript database

    The feedback between soil moisture and precipitation has long been a topic of interest due to its potential for improving weather and seasonal forecasts. The generally proposed mechanism assumes a control of soil moisture on precipitation via the partitioning of the surface fluxes (the Evaporative F...

  18. Research Review, 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Global Modeling and Simulation Branch (GMSB) of the Laboratory for Atmospheric Sciences (GLAS) is engaged in general circulation modeling studies related to global atmospheric and oceanographic research. The research activities discussed are organized into two disciplines: Global Weather/Observing Systems and Climate/Ocean-Air Interactions. The Global Weather activities are grouped in four areas: (1) Analysis and Forecast Studies, (2) Satellite Observing Systems, (3) Analysis and Model Development, (4) Atmospheric Dynamics and Diagnostic Studies. The GLAS Analysis/Forecast/Retrieval System was applied to both FGGE and post FGGE periods. The resulting analyses have already been used in a large number of theoretical studies of atmospheric dynamics, forecast impact studies and development of new or improved algorithms for the utilization of satellite data. Ocean studies have focused on the analysis of long-term global sea surface temperature data, for use in the study of the response of the atmosphere to sea surface temperature anomalies. Climate research has concentrated on the simulation of global cloudiness, and on the sensitivities of the climate to sea surface temperature and ground wetness anomalies.

  19. Weather and eared grebe winter migration near the Great Salt Lake, Utah.

    PubMed

    Williams, Augusta A; Laird, Neil F

    2018-03-01

    This study provides insight from the use of weather radar observations to understand the characteristics of the eared grebe migration near the Great Salt Lake (GSL) and provides unique information on weather conditions connected to these migration events. Doppler weather radar measurements from the Salt Lake City, Utah WSR-88D radar site (KMTX), along with meteorological surface and rawinsonde data, were used to identify and examine 281 eared grebe migration events across 15 winters from 1997/1998 through 2011/2012. An average of about 19 migration events occurred each winter with considerable interannual variability, as well as large variance in the spatial area and number of birds departing the GSL during each event. The migration events typically occurred during clear sky conditions in the presence of surface high pressure and colder than average surface temperatures. Migration events began 55 min after sunset, on average across the winter seasons, and in one case we demonstrate that an extended, nonstop flight was initiated of the departing eared grebes to northern Mexico. Eared grebes leaving the GSL largely flew above the freezing level with a mean northerly tailwind at flight altitude of 3.1 m s -1 and a westerly, cross-flight wind of 5.0 m s -1 while having an average flight speed at cruising altitude of 16.9 m s -1 , or 61 km h -1 . In addition to determining the variability of meteorological conditions during migration events across the 15 winters, atmospheric conditions during the largest migration event observed are presented and discussed.

  20. Weather and eared grebe winter migration near the Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Williams, Augusta A.; Laird, Neil F.

    2018-03-01

    This study provides insight from the use of weather radar observations to understand the characteristics of the eared grebe migration near the Great Salt Lake (GSL) and provides unique information on weather conditions connected to these migration events. Doppler weather radar measurements from the Salt Lake City, Utah WSR-88D radar site (KMTX), along with meteorological surface and rawinsonde data, were used to identify and examine 281 eared grebe migration events across 15 winters from 1997/1998 through 2011/2012. An average of about 19 migration events occurred each winter with considerable interannual variability, as well as large variance in the spatial area and number of birds departing the GSL during each event. The migration events typically occurred during clear sky conditions in the presence of surface high pressure and colder than average surface temperatures. Migration events began 55 min after sunset, on average across the winter seasons, and in one case we demonstrate that an extended, nonstop flight was initiated of the departing eared grebes to northern Mexico. Eared grebes leaving the GSL largely flew above the freezing level with a mean northerly tailwind at flight altitude of 3.1 m s-1 and a westerly, cross-flight wind of 5.0 m s-1 while having an average flight speed at cruising altitude of 16.9 m s-1, or 61 km h-1. In addition to determining the variability of meteorological conditions during migration events across the 15 winters, atmospheric conditions during the largest migration event observed are presented and discussed.

  1. On-site ocean horizontal aerosol extinction coefficient inversion under different weather conditions on the Bo-hai and Huang-hai Seas

    NASA Astrophysics Data System (ADS)

    Zeng, Xianjiang; Xia, Min; Ge, Yinghui; Guo, Wenping; Yang, Kecheng

    2018-03-01

    In this paper, we explore the horizontal extinction characteristics under different weather conditions on the ocean surface with on-site experiments on the Bo-hai and Huang-hai Seas in the summer of 2016. An experimental lidar system is designed to collect the on-site experimental data. By aiming at the inhomogeneity and uncertainty of the horizontal aerosol in practice, a joint retrieval method is proposed to retrieve the aerosol extinction coefficients (AEC) from the raw data along the optical path. The retrieval results of both the simulated and the real signals demonstrate that the joint retrieval method is practical. Finally, the sequence observation results of the on-site experiments under different weather conditions are reported and analyzed. These results can provide the attenuation information to analyze the atmospheric aerosol characteristics on the ocean surface.

  2. Chemical OSSEs in Global Modeling and Assimilation Office (GMAO)

    NASA Technical Reports Server (NTRS)

    Pawson, Steven

    2008-01-01

    This presentation will summarize ongoing 'chemical observing system simulation experiment (OSSE)' work in the Global Modeling and Assimilation Office (GMAO). Weather OSSEs are being studied in detail, with a 'nature run' based on the European Centre for Medium-Range Weather Forecasts (ECMWF) model that can be sampled by a synthesized suite of satellites that reproduces present-day observations. Chemical OSSEs are based largely on the carbon-cycle project and aim to study (1) how well we can reproduce the observed carbon distribution with the Atmospheric Infrared Sounder (AIRS) and Orbiting Carbon Observatory (OCO) sensors and (2) with what accuracy can we deduce surface sources and sinks of carbon species in an assimilation system.

  3. Surface Observation Climatic Summaries for Little Rock AFB, Arkansas

    DTIC Science & Technology

    1991-02-01

    STATE-OF-THE-ART COM- PUTER TECHNOLOGY TO SUMMARIZE WEATHER OBSERVATIONS COLLECTED FROM SELECTED MIL - ITARY, CIVILIAN, AND FOREIGN REPORTING STATIONS...PERCENT OCCURRENCE FREQUENCY ....................... E-6-1 PART F - PRESSURE (FROM HOURLY OBS) ................................... F -i-i SEA LEVEL...PRESSURE ................................................ F -2-1 ALTIMETER SETT ING ................................................. F -3-1 STATION

  4. NASA Cold Land Processes Experiment (CLPX 2002/03): Ground-based and near-surface meteorological observations

    Treesearch

    Kelly Elder; Don Cline; Angus Goodbody; Paul Houser; Glen E. Liston; Larry Mahrt; Nick Rutter

    2009-01-01

    A short-term meteorological database has been developed for the Cold Land Processes Experiment (CLPX). This database includes meteorological observations from stations designed and deployed exclusively for CLPXas well as observations available from other sources located in the small regional study area (SRSA) in north-central Colorado. The measured weather parameters...

  5. Meteorological Observations Available for the State of Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wharton, S.

    The National Weather Service’s Meteorological Assimilation Data Ingest System (MADIS) contains a large number of station networks of surface and upper air meteorological observations for the state of Utah. In addition to MADIS, observations from individual station networks may also be available. It has been confirmed that LLNL has access to the data sources listed below.

  6. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2012-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours. AFWA recognizes the importance of operational benchmarking and uncertainty characterization for land surface modeling and is developing standard methods, software, and metrics to verify and/or validate LIS output products. To facilitate this and other needs for land analysis activities at AFWA, the Model Evaluation Toolkit (MET) -- a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community -- and the Land surface Verification Toolkit (LVT), developed at the Goddard Space Flight Center (GSFC), have been adapted to operational benchmarking needs of AFWA's land characterization activities.

  7. Surface formation, preservation, and history of low-porosity crusts at the WAIS Divide site, West Antarctica

    NASA Astrophysics Data System (ADS)

    Fegyveresi, John M.; Alley, Richard B.; Muto, Atsuhiro; Orsi, Anaïs J.; Spencer, Matthew K.

    2018-01-01

    Observations at the West Antarctic Ice Sheet (WAIS) Divide site show that near-surface snow is strongly altered by weather-related processes such as strong winds and temperature fluctuations, producing features that are recognizable in the deep ice core. Prominent glazed surface crusts develop frequently at the site during summer seasons. Surface, snow pit, and ice core observations made in this study during summer field seasons from 2008-2009 to 2012-2013, supplemented by automated weather station (AWS) data with short- and longwave radiation sensors, revealed that such crusts formed during relatively low-wind, low-humidity, clear-sky periods with intense daytime sunshine. After formation, such glazed surfaces typically developed cracks in a polygonal pattern likely from thermal contraction at night. Cracking was commonest when several clear days occurred in succession and was generally followed by surface hoar growth; vapor escaping through the cracks during sunny days may have contributed to the high humidity that favored nighttime formation of surface hoar. Temperature and radiation observations show that daytime solar heating often warmed the near-surface snow above the air temperature, contributing to upward mass transfer, favoring crust formation from below, and then surface hoar formation. A simple surface energy calculation supports this observation. Subsequent examination of the WDC06A deep ice core revealed that crusts are preserved through the bubbly ice, and some occur in snow accumulated during winters, although not as commonly as in summertime deposits. Although no one has been on site to observe crust formation during winter, it may be favored by greater wintertime wind packing from stronger peak winds, high temperatures and steep temperature gradients from rapid midwinter warmings reaching as high as -15 °C, and perhaps longer intervals of surface stability. Time variations in crust occurrence in the core may provide paleoclimatic information, although additional studies are required. Discontinuity and cracking of crusts likely explain why crusts do not produce significant anomalies in other paleoclimatic records.

  8. The Influence of Runoff and Surface Hydrology on Titan's Weather and Climate

    NASA Astrophysics Data System (ADS)

    Faulk, S.; Lora, J. M.; Mitchell, J.; Moon, S.

    2017-12-01

    Titan's surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle, producing characteristic weather and seasonal climate patterns. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane "wetlands" reservoirs realistically produce observed cloud features and temperature profiles of Titan's atmosphere, whereas "aquaplanet" simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan's surface. The wetlands configuration is, in part, motivated by Titan's large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow of a global or regional methane table. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan's hydrology provides new insight into the complex interaction between Titan's atmosphere and surface, demonstrates the influence of surface runoff on Titan's global climate, and lays the groundwork for further surface hydrology developments in Titan GCMs, including infiltration and subsurface flow.

  9. Uniform Summary of Surface Weather Observations (RUSSWO), Edwards AFB, Lancaster, California (Revised)

    DTIC Science & Technology

    1979-02-09

    EARSONT -P-rCENTAGF FI’ UEN(Y r-F u-ckJR~NCE- OF WEATHER CONDITI2NS FRUW HOURLY JBSERVATIONS HOURS THUNDER- PAIN FREEZING SNOW 1 O1 SMOKE DUST X OF...o..,s o, L.,s ,o ., MI, oSSOUI 99 .. polg ?’ 10.1100ok Qooa.9 o . ol911- 4-’ . . . .- I >1k - -v ---. ---- - -- -- 2 ~ GL0l3t.L CLIMATOUurf’ BRA"C

  10. Operation TEAPOT. Report of the Test Manager Joint Test Organization

    DTIC Science & Technology

    1981-11-01

    Analysis of air, water, and milk samples were made at the laboratory at Mercury. z. 6.4 MONITORING PROCEDURES A mobile surface monitoring group consisting o...additional weather observations proved very use- ful in weather analysis and forecasting as well as for monitoring winds aloft prior to shot time. The...data were also valuable in post analysis for accurate plotting of fallout and determining cloud trajectories. The loca- tion and type of operations of

  11. Venus Surface Composition Constrained by Observation and Experiment

    NASA Astrophysics Data System (ADS)

    Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne

    2017-11-01

    New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ˜1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently. High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus' oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions. Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to the rarity of wollastonite and instability of carbonate at the Venus surface. Sulfur in the Venus atmosphere has been shown experimentally to react with Ca in surface minerals to produce anhydrite. The extent of this SO2 buffer is constrained by the Ca content of surface rocks and sulfur content of the atmosphere, both of which are likely variable, perhaps due to active volcanism. Experimental work on a range of semiconductor and ferroelectric minerals is placing constraints on the cause(s) of Venus' anomalously radar bright highlands.

  12. Space Weathering in the Mercurian Environment

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Pieters, C. M.

    2001-01-01

    Space weathering processes are known to be important on the Moon. These processes both create the lunar regolith and alter its optical properties. Like the Moon, Mercury has no atmosphere to protect it from the harsh space environment and therefore it is expected that it will also incur the effects of space weathering. However, there are many important differences between the environments of Mercury and the Moon. These environmental differences will almost certainly affect the weathering processes and the products of those processes. It should be possible to observe the effects of these differences in Vis (visible)/NIR (near infrared) spectra of the type expected to be returned by MESSENGER. More importantly, understanding these weathering processes and their consequences is essential for evaluating the spectral data returned from MESSENGER and other missions in order to determine the mineralogy and the Fe content of the Mercurian surface. Additional information is contained in the original extended abstract.

  13. Effect of Bacillus subtilis on Granite Weathering: A Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Song, W.; Ogawa, N.; Oguchi, C. T.; Hatta, T.; Matsukura, Y.

    2006-12-01

    We performed a comparative experiment to investigate how the ubiquitous soil bacterium Bacillus subtilis weathers granite and which granite-forming minerals weather more rapidly via biological processes. Batch type experiments (granite specimen in a 500 ml solution including NaCl, glucose, yeast extract and bacteria Bacillus subtilis at 27°E C) were carried out for 30 days. Granite surfaces were observed by SEM before and after the experiment. Bacillus subtilis had a strong influence on granite weathering by forming pits. There were 2.4 times as many pits and micropores were 2.3 times wider in granite exposed to Bacillus subtilis when compared with bacteria-free samples. Bacillus subtilis appear to preferentially select an optimum place to adhere to the mineral and dissolve essential elements from the mineral to live. Plagioclase was more vulnerable to bacterial weathering than biotite among the granite composing minerals.

  14. Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.

  15. Facts and Suggestions from a Brief History of the Galilean Moons and Space Weathering

    NASA Astrophysics Data System (ADS)

    Cooper, John

    2010-05-01

    From Galileo Galilei's Starry Messenger of four centuries ago we began the long journey of Galilean moon exploration now planned to continue with the joint ESA-NASA Europa Jupiter System Mission. Nearly eighty years after this historic beginning, the Keplerian orbital motions of these moons could be understood in terms of universal laws of motion and gravitation with Newton's Mathematical Principles of Natural Philosophy of 1687. But now looking back from the present to long before the discovery of magnetospheric radio emissions from Jupiter by Burke and Franklin in 1955 [1], we can infer the first apparent evidence for magnetospheric space weathering of the moon surfaces only from the 1926 first report of Stebbins [2] on photometric measurements of surface albedo light curves. These observations established the tidal locking of rotational and orbital motions from leading-trailing albedo asymmetries that we now significantly (if not entirely) associate with space weathering effects of the moon-magnetosphere-moon interactions. Of all the remote and in-situ observations that followed, those of the Pioneer (1973-1974), Voyager (1979), and Galileo (1995-2003) missions, and of the supporting measurements that followed in passing by the Ulysses (1992), Cassini (2000), and New Horizons (2007) missions, the discovery of greatest impact for space weathering may have been the first detection of Io volcanism by the Voyagers [3]. Accelerated as pickup ions in the corotating planetary magnetic field of Jupiter, atoms and molecules from the volcanic plume ejecta provide the primary source of magnetospheric ions for interactions with the other Galilean moons. These interactions include simple surface implantation of the iogenic ions, erosion of surface materials by ion sputtering, and modification of surface chemistry induced by volume ionization from more penetrating ions and electrons. From the highest energy magnetospheric protons and heavier ions, these interactions can be energetic enough to change isotopic ratios in the affected surface materials. The sputtered materials partially escape either directly to the magnetosphere or indirectly through exospheric losses, so these additionally contribute at trace levels to the magnetospheric interconnections of surface composition for all the moons. In order to determine the intrinsic composition of the moons from EJSM surface and exospheric measurements, we must first peel back the surficial patina of space weathering products. Conversely, future measurements of the magnetospheric ion composition at high resolution in elemental and significant isotopic abundances, including as products of space weathering on the moon surfaces, can be projected back to the Io source for huge advancements of our knowledge on the origins of Io volcanism and more generally of the Jupiter system. These are some of the relevant facts for space weathering from 400 years of Jupiter system exploration, the main suggestion is that one the highest returns on international investments in the EJSM mission would be from advancement of capabilities for in-situ sample analysis in the magnetosphere and from moon surfaces to cover the full range of elements and key isotopes. Modest investments in appropriate technologies for ion and neutral gas measurements to this level would be insignificant in cost as compared to Earth sample return. This suggestion was submitted by Cooper et al. [4] to the ongoing decadal survey of planetary science and mission priorities in the United States. References: [1] Stebbins, J., Publ. Astron. Soc. Pacific 38 (225), 321-322, 1926; [2] Burke, B.F., and K. L. Franklin, J. Geophys. Res. 60, 213-217, 1955. [3] Morabito, L. A., et al., Science 204, 972, 1979; [4] Cooper, J. F., and 21 Co-authors, Space Weathering Impact on Solar System Surfaces and Mission Science, Community White Paper submitted to Planetary Science Decadal Survey, 2013--2022. National Research Council, Washington, D.C., Sept. 15, 2009.

  16. Effects of weather on the retrieval of sea ice concentration and ice type from passive microwave data

    NASA Technical Reports Server (NTRS)

    Maslanik, J. A.

    1992-01-01

    Effects of wind, water vapor, and cloud liquid water on ice concentration and ice type calculated from passive microwave data are assessed through radiative transfer calculations and observations. These weather effects can cause overestimates in ice concentration and more substantial underestimates in multi-year ice percentage by decreasing polarization and by decreasing the gradient between frequencies. The effect of surface temperature and air temperature on the magnitudes of weather-related errors is small for ice concentration and substantial for multiyear ice percentage. The existing weather filter in the NASA Team Algorithm addresses only weather effects over open ocean; the additional use of local open-ocean tie points and an alternative weather correction for the marginal ice zone can further reduce errors due to weather. Ice concentrations calculated using 37 versus 18 GHz data show little difference in total ice covered area, but greater differences in intermediate concentration classes. Given the magnitude of weather-related errors in ice classification from passive microwave data, corrections for weather effects may be necessary to detect small trends in ice covered area and ice type for climate studies.

  17. A System for Monitoring and Forecasting Land Surface Phenology Using Time Series of JPSS VIIRS Observations and Its Applications

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Yu, Y.; Liu, L.

    2015-12-01

    Land surface phenology quantifies seasonal dynamics of vegetation properties including the timing and magnitude of vegetation greenness from satellite observations. Over the last decade, historical time series of AVHRR and MODIS data has been used to characterize the seasonal and interannual variation in terrestrial ecosystems and their responses to a changing and variable climate. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on board the operational JPSS satellites provides land surface observations in a timely fashion, which has the capability to monitor phenological development in near real time. This capability is particularly important for assisting agriculture, natural resource management, and land modeling for weather prediction systems. Here we introduce a system to monitor in real time and forecast in the short term phenological development based on daily VIIRS observations available with a one-day latency. The system integrates a climatological land surface phenology from long-term MODIS data and available VIIRS observations to simulate a set of potential temporal trajectories of greenness development at a given time and pixel. The greenness trajectories, which are qualified using daily two-band Enhanced Vegetation Index (EVI2), are applied to identify spring green leaf development and autumn color foliage status in real time and to predict the occurrence of future phenological events. This system currently monitors vegetation development across the North America every three days and makes prediction to 10 days ahead. We further introduce the applications of near real time spring green leaf and fall color foliage. Specifically, this system is used for tracing the crop progress across the United States, guiding the field observations in US National Phenology Network, servicing tourists for the observation of color fall foliage, and parameterizing seasonal surface physical conditions for numerical weather prediction models.

  18. Quantifying widespread aqueous surface weathering on Mars: The plateaus south of Coprates Chasma

    NASA Astrophysics Data System (ADS)

    Loizeau, D.; Quantin-Nataf, C.; Carter, J.; Flahaut, J.; Thollot, P.; Lozac'h, L.; Millot, C.

    2018-03-01

    Pedogenesis has been previously proposed on the plateaus around Coprates Chasma, Valles Marineris to explain the presence of widespread clay sequences with Al-clays and possible hydrated silica over Fe/Mg-clays on the surface of the plateaus (Le Deit et al., 2012; Carter et al., 2015). We use previous observations together with new MRO targeted observations and DEMs to constrain the extent and thickness of the plateau clay unit: the Al-clay unit is less than 3 m thick, likely ∼1 m, while the Fe/Mg-clays underneath are few tens of meters thick. We also refine the age of alteration by retrieving crater retention ages of the altered plateau and of later deposits: the observed clay sequence was created by surface pedogenesis between model ages of 4.1 Ga and 3.75 Ga. Using a leaching model from Zolotov and Mironenko (2016), we estimate the quantity of atmospheric precipitations needed to create such a clay sequence, that strongly depends on the chemistry of the precipitating fluid. A few hundreds of meters of cumulated precipitations of highly acidic fluids could explain the observed clay sequence, consistent with estimates based on late Noachian valley erosion for example (Rosenberg and Head, 2015). We show finally that the maximum quantity of sulfates potentially formed during this surface weathering event can only contribute minimally to the volume of sulfates deposited in Valles Marineris.

  19. Plattsburgh, AFB, New York. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1984-01-24

    GLOCAL CLIMATOLOGY 3RANCH LSAFETAC SURFACE WINDS 410 wrATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND...oeux1I, . .p 4. A i € * GLOcAL CLIMATCLOGY RANCH L’AFETAC CEILING VERSUS VISIBILITY AIP ’-EATHFR SRVlCE/MAC 72(7Z_ PLATTSBURSH AFS NV 74-97 *A

  20. Upgrade Summer Severe Weather Tool in MIDDS

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.

    2010-01-01

    The goal of this task was to upgrade the severe weather database from the previous phase by adding weather observations from the years 2004 - 2009, re-analyze the data to determine the important parameters, make adjustments to the index weights depending on the analysis results, and update the MIDDS GUI. The added data increased the period of record from 15 to 21 years. Data sources included local forecast rules, archived sounding data, surface and upper air maps, and two severe weather event databases covering east-central Florida. Four of the stability indices showed increased severe weather predication. The Total Threat Score (TTS) of the previous work was verified for the warm season of 2009 with very good skill. The TTS Probability of Detection (POD) was 88% and the False alarm rate (FAR) of 8%. Based on the results of the analyses, the MIDDS Severe Weather Worksheet GUI was updated to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters and synoptic-scale dynamics.

  1. Where fast weathering creates thin regolith and slow weathering creates thick regolith

    USGS Publications Warehouse

    Bazilevskaya, Ekaterina; Lebedeva, Marina; Pavich, Milan J.; Brantley, Susan L.; Rother, Gernot; Parkinson, Dilworth Y.; Cole, David

    2013-01-01

    Weathering disaggregates rock into regolith – the fractured or granular earth material that sustains life on the continental land surface. Here, we investigate what controls the depth of regolith formed on ridges of two rock compositions with similar initial porosities in Virginia (USA). A priori, we predicted that the regolith on diabase would be thicker than on granite because the dominant mineral (feldspar) in the diabase weathers faster than its granitic counterpart. However, weathering advanced 20 deeper into the granite than the diabase. The 20 -thicker regolith is attributed mainly to connected micron-sized pores, microfractures formed around oxidizing biotite at 20 m depth, and the lower iron (Fe) content in the felsic rock. Such porosity allows pervasive advection and deep oxidation in the granite. These observations may explain why regolith worldwide is thicker on felsic compared to mafic rock under similar conditions. To understand regolith formation will require better understanding of such deep oxidation reactions and how they impact fluid flow during weathering.

  2. Evidence of Space Weathering Processes Across the Surface of Vesta

    NASA Technical Reports Server (NTRS)

    Pieters, Carle M.; Blewett, David T.; Gaffey, Michael; Mittlefehldt, David W.; CristinaDeSanctis, Maria; Reddy, Vishnu; Coradini, Angioletta; Nathues, Andreas; Denevi, Brett W.; Li, Jian-Yang; hide

    2011-01-01

    As NASA s Dawn spacecraft explores the surface of Vesta, it has become abundantly clear that Vesta is like no other planetary body visited to date. Dawn is collecting global data at increasingly higher spatial resolution during its one-year orbital mission. The bulk properties of Vesta have previously been linked to the HED meteorites through remote mineral characterization of its surface from Earth-based spectroscopy. A principal puzzle has been why Vesta exhibits relatively unweathered diagnostic optical features compared to other large asteroids. Is this due to the composition of this proto-planet or the space environment at Vesta? Alteration or weathering of materials in space normally develops as the products of several processes accumulate on the surface or in an evolving particulate regolith, transforming the bedrock into fragmental material with properties that may be measurably different from the original. Data from Dawn reveal that the regolith of Vesta is exceptionally diverse. Regional surface units are observed that have not been erased by weathering with time. Several morphologically-fresh craters have excavated bright, mafic-rich materials and exhibit bright ray systems. Some of the larger craters have surrounding subdued regions (often asymmetric) that are lower in albedo and relatively red-sloped in the visible while exhibiting weaker mafic signatures. Several other prominent craters have rim exposures containing very dark material and/or display a system of prominent dark rays. Most, but not all, dark areas associated with craters exhibit significantly lower spectral contrast, suggesting that either a Vesta lithology with an opaque component has been exposed locally or that the surface has been contaminated by a relatively dark impactor. Similarly, most, but not all, bright areas associated with craters exhibit enhanced mafic signatures compared to surroundings. On a regional scale, the large south polar structure and surrounding terrain exhibit relatively strong mafic absorption features, suggesting either a concentration of mafic materials or that materials exposed have been less affected by space weathering products. These combined initial observations indicate some space weathering processes are active in this part of the main asteroid belt, but are highly variable across the surface of Vesta. Such processes include: impacts from wandering asteroidal debris and local mixing at both micro- and macro-scales, irradiation by solar wind and galactic particles, production and distribution of impact breccias or melt products, and local movement of materials to gravity lows (gradual as well as sudden).

  3. Light scattering and absorption by space weathered planetary bodies: Novel numerical solution

    NASA Astrophysics Data System (ADS)

    Markkanen, Johannes; Väisänen, Timo; Penttilä, Antti; Muinonen, Karri

    2017-10-01

    Airless planetary bodies are exposed to space weathering, i.e., energetic electromagnetic and particle radiation, implantation and sputtering from solar wind particles, and micrometeorite bombardment.Space weathering is known to alter the physical and chemical composition of the surface of an airless body (C. Pieters et al., J. Geophys. Res. Planets, 121, 2016). From the light scattering perspective, one of the key effects is the production of nanophase iron (npFe0) near the exposed surfaces (B. Hapke, J. Geophys. Res., 106, E5, 2001). At visible and ultraviolet wavelengths these particles have a strong electromagnetic response which has a major impact on scattering and absorption features. Thus, to interpret the spectroscopic observations of space-weathered asteroids, the model should treat the contributions of the npFe0 particles rigorously.Our numerical approach is based on the hierarchical geometric optics (GO) and radiative transfer (RT). The modelled asteroid is assumed to consist of densely packed silicate grains with npFe0 inclusions. We employ our recently developed RT method for dense random media (K. Muinonen, et al., Radio Science, submitted, 2017) to compute the contributions of the npFe0 particles embedded in silicate grains. The dense media RT method requires computing interactions of the npFe0 particles in the volume element for which we use the exact fast superposition T-matrix method (J. Markkanen, and A.J. Yuffa, JQSRT 189, 2017). Reflections and refractions on the grain surface and propagation in the grain are addressed by the GO. Finally, the standard RT is applied to compute scattering by the entire asteroid.Our numerical method allows for a quantitative interpretation of the spectroscopic observations of space-weathered asteroids. In addition, it may be an important step towards more rigorous a thermophysical model of asteroids when coupled with the radiative and conductive heat transfer techniques.Acknowledgments. Research supported by European Research Council with Advanced Grant No. 320773 SAEMPL. Computational resources provided by CSC- IT Centre for Science Ltd, Finland.

  4. Predicting Near-surface Winds with WindNinja for Wind Energy Applications

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, N. S.; Forthofer, J.; Shannon, K.; Butler, B.

    2016-12-01

    WindNinja is a high-resolution diagnostic wind model widely used by operational wildland fire managers to predict how near-surface winds may influence fire behavior. Many of the features which have made WindNinja successful for wildland fire are also important for wind energy applications. Some of these features include flexible runtime options which allow the user to initialize the model with coarser scale weather model forecasts, sparse weather station observations, or a simple domain-average wind for what-if scenarios; built-in data fetchers for required model inputs, including gridded terrain and vegetation data and operational weather model forecasts; relatively fast runtimes on simple hardware; an extremely user-friendly interface; and a number of output format options, including KMZ files for viewing in Google Earth and GeoPDFs which can be viewed in a GIS. The recent addition of a conservation of mass and momentum solver based on OpenFOAM libraries further increases the utility of WindNinja to modelers in the wind energy sector interested not just in mean wind predictions, but also in turbulence metrics. Here we provide an evaluation of WindNinja forecasts based on (1) operational weather model forecasts and (2) weather station observations provided by the MesoWest API. We also compare the high-resolution WindNinja forecasts to the coarser operational weather model forecasts. For this work we will use the High Resolution Rapid Refresh (HRRR) model and the North American Mesoscale (NAM) model. Forecasts will be evaluated with data collected in the Birch Creek valley of eastern Idaho, USA between June-October 2013. Near-surface wind, turbulence data, and vertical wind and temperature profiles were collected at very high spatial resolution during this field campaign specifically for use in evaluating high-resolution wind models like WindNinja. This work demonstrates the ability of WindNinja to generate very high-resolution wind forecasts for wind energy applications and evaluates the forecasts produced by two different initialization methods with data collected in a broad valley surrounded by complex terrain.

  5. The Global Drifter Program Currents, Sea Surface Temperature, Atmospheric Pressure and Waves in the World's OceanThe Global Drifter Program Currents, Sea Surface Temperature, Atmospheric Pressure and Waves in the World's Ocean

    NASA Astrophysics Data System (ADS)

    Centurioni, Luca

    2017-04-01

    The Global Drifter Program is the principal component of the Global Surface Drifting Buoy Array, a branch of NOAA's Global Ocean Observing System and a scientific project of the Data Buoy Cooperation Panel (DBCP). The DBCP is an international program coordinating the use of autonomous data buoys to observe atmospheric and oceanographic conditions over ocean areas where few other measurements are taken. The Global Drifter Program maintains an array of over 1,250 Lagrangian drifters, reporting in near real-time and designed measure 15 m depth Lagrangian currents, sea surface temperature (SST) and sea level atmospheric pressure (SLP), among others, to fulfill the needs to observe the air-sea interface at temporal and spatial scales adequate to support short to medium-range weather forecasting, ocean state estimates and climate science. This overview talk will discuss the main achievements of the program, the main impacts for satellite SST calibration and validation, for numerical weather prediction, and it will review the main scientific findings based on the use of Lagrangian currents. Finally, we will present new developments in Lagrangian drifter technology, which include special drifters designed to measure sea surface salinity, wind and directional wave spectra. New opportunities for expanding the scope of the Global Drifter Program will be discussed.

  6. The potential impact of scatterometry on oceanography - A wave forecasting case

    NASA Technical Reports Server (NTRS)

    Cane, M. A.; Cardone, V. J.

    1981-01-01

    A series of observing system simulation experiments have been performed in order to assess the potential impact of marine surface wind data on numerical weather prediction. In addition to conventional data, the experiments simulated the time-continuous assimilation of remotely sensed marine surface wind or temperature sounding data. The wind data were fabricated directly for model grid points intercepted by a Seasat-1 scatterometer swath and were assimilated into the lowest active level (945 mb) of the model using a localized successive correction method. It is shown that Seasat wind data can greatly improve numerical weather forecasts due to better definition of specific features. The case of the QE II storm is examined.

  7. The natural weathering of staurolite: crystal-surface textures, relative stability, and the rate-determining step

    Treesearch

    Michael A. Velbel; Charles L. Basso; Michael J. Zieg

    1996-01-01

    Mineral surface-textures on naturally weathered crystals of staurolite [monoclinic, pseudo-orthorhombic; Fe4Al18Si8O46(OH)2] indicate that staurolite weathering is generally interface-limited. Etch pits on naturally weathered staurolites are disk-shaped,...

  8. Stuttgart, Germany. Revised Uniform Summary of Surface Weather Observations (RUSSWO)

    DTIC Science & Technology

    1988-07-01

    4rREVISED UNIFORM SUMMARY OF SURFACE WEATHER OBSERVATIONS STUTTGART GERMANY MSC # 107380 N 48 41 K 009 13 ELEV 1300 FT EDOC PARTS A - F HOURS SUMMARIZED 0000...1 .. L. b I.E 725O0 14.2 24.A 26.4 32.3 32.1 33.6 34.2 36.7 37.7 9.2 39.c 39.5 39.7 𔄃.e 40. 1 I. . GE 6’ UC 1 14.4 25.3 27.0 30.6 32.8 34. 2 34*. 37.4...28.9 30.1 33.8 35.8 36.7 37.3 39.1 39.6 40.0 40.2 60.5 60.6 60.7 41.1 1.9 6E 8- uC l7.9 3L. b 31 .9 35.838 V.. 39. 139 . 7- 6’.6 - 42. 1-62. 7 42.9 4

  9. Characterization of freezing precipitation events through other meteorological variables and their recent changes over Northern Extratropics

    NASA Astrophysics Data System (ADS)

    Groisman, P. Y.; Yin, X.; Bulygina, O.

    2017-12-01

    Freezing precipitation events intertwine with agriculture, recreation, energy consumption, and seasonal transportation cycles of human activities. Using supplementary synoptic reports at 1,500 long-term stations of North America and Northern Eurasia, we created climatology of freezing precipitation near the surface and found significant changes (increases) in these occurrences in the past decade at high latitudes/elevations (Groisman et al. 2016; updated). Firstly, we document narrow boundaries of near surface temperature and humidity fields when freezing precipitation events occur; these are necessary but insufficient conditions of their occurrence. Secondly, using the upper air data at the sites collocated with in situ observations of freezing events, we quantify the typical pattern of lower troposphere temperature anomalies during freezing events: At the same locations and Julian days, the presence of freezing event at the surface is associated with significantly warmer temperatures in the lower troposphere; comparison of temperatures at nearest days before and after the freezing events with days during these events also shows statistically significant positive temperature anomalies in the lower troposphere to 500 hPa (on average, +3 to 4 °C) In the days with freezing events, vertical air temperature gradients between surface and 850 hPa become less than usual with frequent inversions, when the tropospheric air is warmer than at the surface. The above features of the lower tropospheric temperature, near-surface temperature and humidity represent a combination of weather conditions conducive for precipitation, if it happens, falling in the freezing rain form. The in situ reports of freezing events at synoptic stations allow us to estimate temporary and spatial distributions of such "special weather conditions". Thus, a posteriori high probability of freezing events under these weather conditions invokes similar probabilities of freezing rain over the ungauged terrain, where we do not have special synoptic reports but can reproduce these "special weather conditions" from less sophisticated observational networks and/or reanalyses. Reference: Groisman et al. 2016: Recent changes in the frequency of freezing precipitation in North America and Northern Eurasia. Environ Res Lett 11 045007.

  10. Impact of Interactive Energy-Balance Modeling on Student Learning in a Core-Curriculum Earth Science Course

    NASA Astrophysics Data System (ADS)

    Mandock, R. L.

    2008-12-01

    An interactive instructional module has been developed to study energy balance at the earth's surface. The module uses a graphical interface to model each of the major energy components involved in the partitioning of energy at this surface: net radiation, sensible and latent heat fluxes, ground heat flux, heat storage, anthropogenic heat, and advective heat transport. The graphical interface consists of an energy-balance diagram composed of sky elements, a line or box representing the air or sea surface, and arrows which indicate magnitude and direction of each of the energy fluxes. In April 2005 an energy-balance project and laboratory assignment were developed for a core-curriculum earth science course at Clark Atlanta University. The energy-balance project analyzes surface weather data from an assigned station of the Georgia Automated Environmental Monitoring Network (AEMN). The first part of the project requires the student to print two observations of the "Current Conditions" web page for the assigned station: one between the hours of midnight and 5:00 a.m., and the other between the hours of 3:00- 5:00 p.m. A satellite image of the southeastern United States must accompany each of these printouts. The second part of the project can be completed only after the student has modeled the 4 environmental scenarios taught in the energy-balance laboratory assignment. The student uses the energy-balance model to determine the energy-flux components for each of the printed weather conditions at the assigned station. On successful completion of the project, the student has become familiar with: (1) how weather observations can be used to constrain parameters in a microclimate model, (2) one common type of error in measurement made by weather sensors, (3) some of the uses and limitations of environmental models, and (4) fundamentals of the distribution of energy at the earth's surface. The project and laboratory assignment tie together many of the earth science concepts taught in the course: geology (soils), oceanography (surface mixed layer), and atmospheric science (meteorology of the lowest part of the atmosphere). Details of the project and its impact on student assessment tests and surveys will be presented.

  11. Revisit of rare earth element fractionation during chemical weathering and river sediment transport

    NASA Astrophysics Data System (ADS)

    Su, Ni; Yang, Shouye; Guo, Yulong; Yue, Wei; Wang, Xiaodan; Yin, Ping; Huang, Xiangtong

    2017-03-01

    Although rare earth element (REE) has been widely applied for provenance study and paleoenvironmental reconstruction, its mobility and fractionation during earth surface processes from weathering to sediment deposition remain more clarification. We investigated the REE fractionations during chemical weathering and river sediment transport based on the systematic observations from a granodiorite-weathering profile and Mulanxi River sediments in southeast China. Two chemical phases (leachates and residues) were separated by 1 N HCl leaching and the leachates account for 20-70% of the bulk REE concentration. REEs in the weathering profile have been mobilized and fractionated to different extents during chemical weathering and pedogenesis. Remarkable cerium anomalies (Ce/Ce* = 0.1-10.6) occur during weathering as a result of coprecipitation with Mn (hydro)oxides in the profile, while poor or no Ce anomalies in the river sediments were observed. This contrasting feature sheds new light on the indication of Ce anomaly for redox change. The hydraulic sorting-induced mineral redistribution can further homogenize the weathering and pedogenic alterations and thus weaken the REE fractionations in river sediments. The mineral assemblage is the ultimate control on REE composition, and the Mn-Fe (hydro)oxides and secondary phosphate minerals are the main hosts of acid-leachable REEs while the clay minerals could be important reservoirs for residual REEs. We thus suggest that the widely used REE proxies such as (LREE/HREE)UCC ratio in the residues is reliable for the indication of sediment provenance, while the ratio in the leachates can indicate the total weathering process to some extent.

  12. Improving the Long-Term Stability of Atmospheric Surface Deformation Predictions by Mitigating the Effects of Orography Updates in Operational Weather Forecast Models

    NASA Astrophysics Data System (ADS)

    Dill, Robert; Bergmann-Wolf, Inga; Thomas, Maik; Dobslaw, Henryk

    2016-04-01

    The global numerical weather prediction model routinely operated at the European Centre for Medium-Range Weather Forecasts (ECMWF) is typically updated about two times a year to incorporate the most recent improvements in the numerical scheme, the physical model or the data assimilation procedures into the system for steadily improving daily weather forecasting quality. Even though such changes frequently affect the long-term stability of meteorological quantities, data from the ECMWF deterministic model is often preferred over alternatively available atmospheric re-analyses due to both the availability of the data in near real-time and the substantially higher spatial resolution. However, global surface pressure time-series, which are crucial for the interpretation of geodetic observables, such as Earth rotation, surface deformation, and the Earth's gravity field, are in particular affected by changes in the surface orography of the model associated with every major change in horizontal resolution happened, e.g., in February 2006, January 2010, and May 2015 in case of the ECMWF operational model. In this contribution, we present an algorithm to harmonize surface pressure time-series from the operational ECMWF model by projecting them onto a time-invariant reference topography under consideration of the time-variable atmospheric density structure. The effectiveness of the method will be assessed globally in terms of pressure anomalies. In addition, we will discuss the impact of the method on predictions of crustal deformations based on ECMWF input, which have been recently made available by GFZ Potsdam.

  13. The Pascal Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Except for Earth, Mars is the planet most amenable to surface-based climate studies. Its surface is accessible, and the kind of observations that are needed, such as meteorological measurements from a long-lived global network, are readily achievable. Weather controls the movement of dust, the exchange of water between the surface and atmosphere, and the cycling of CO2 between the poles. We know there is a weather signal, we know how to measure it, and we know how to interpret it. Pascal seeks to understand the long-term global behavior of near-surface weather systems on Mars, how they interact with its surface, and, therefore, how they control its climate system. To achieve this, Pascal delivers 18 Science Stations to the surface of the planet that operate for three Mars years (5.6 Earth years). The network has stations operating in the tropics, midlatitudes, and polar regions of both hemispheres. During entry, descent, and landing, each Pascal probe acquires deceleration measurements to determine thermal structure, and descent images to characterize local terrain. On the surface, each Science Station takes daily measurements of pressure, opacity, temperature, wind speed, and water vapor concentration and monthly panoramic images of the landing environment. These data will characterize the planet's climate system and how atmosphere-surface interactions control it. The Pascal mission is named after 17th century French Scientist, Blaise Pascal, who pioneered measurements of atmospheric pressure. Pressure is the most critical measurement because it records the "heartbeat" of the planet's general circulation and climate system.

  14. Lithologic controls on AIRSAR signatures of bedrock and alluvium, at Lunar Crater, Nevada

    NASA Technical Reports Server (NTRS)

    Rivard, Benoit; Diorio, Marc; Budkewitsch, Paul

    1995-01-01

    Radar backscatter intensity as measured by calibrated synthetic aperture radar (SAR) systems is primarily controlled by three factors: local incidence angle, wavelength-scale roughness, and dielectric permittivity of surface materials. In order to make adequate use of radar observations for geological investigations of surface type, the relationships between lithology and the above characteristics must be adequately understood. In arid terrains weathering signatures (e.g. fracturing, debris grain size and shape, slope characteristics) are controlled to some extent by lithologic characteristics of the parent bedrock. These textural features of outcrops and their associated debris control radar backscatter to varying degrees. The quad-polarization JPL AIRSAR system allows sampling of textures at three distinct wavelength scales: C-band (5.66 cm), L-band (23.98 cm), and P-band (68.13 cm). This paper presents a discussion of AIRSAR data using recent field observations of weathered felsic and basaltic volcanic rock units exposed in the southern part of the Lunar Crater Volcanic Field, in the Pancake Range of central Nevada. The focus is on the relationship of radar backscatter at multiple wavelengths to weathering style and parent bedrock lithology.

  15. Observational evidence of European summer weather patterns predictable from spring

    NASA Astrophysics Data System (ADS)

    Ossó, Albert; Sutton, Rowan; Shaffrey, Len; Dong, Buwen

    2018-01-01

    Forecasts of summer weather patterns months in advance would be of great value for a wide range of applications. However, seasonal dynamical model forecasts for European summers have very little skill, particularly for rainfall. It has not been clear whether this low skill reflects inherent unpredictability of summer weather or, alternatively, is a consequence of weaknesses in current forecast systems. Here we analyze atmosphere and ocean observations and identify evidence that a specific pattern of summertime atmospheric circulation––the summer East Atlantic (SEA) pattern––is predictable from the previous spring. An index of North Atlantic sea-surface temperatures in March–April can predict the SEA pattern in July–August with a cross-validated correlation skill above 0.6. Our analyses show that the sea-surface temperatures influence atmospheric circulation and the position of the jet stream over the North Atlantic. The SEA pattern has a particularly strong influence on rainfall in the British Isles, which we find can also be predicted months ahead with a significant skill of 0.56. Our results have immediate application to empirical forecasts of summer rainfall for the United Kingdom, Ireland, and northern France and also suggest that current dynamical model forecast systems have large potential for improvement.

  16. Sparrevohn AFS, Alaska. Revised Uniform Summary of Surface Weather Observations.

    DTIC Science & Technology

    1985-09-18

    SSURFACE WEATHER OBSERVATIONS SPARREVOHN AFS AK MSC #702350 N 61 06 W155 35 ELEV: 1573 FT PASV PARTS A-F HOURS SUMMARIZED: 0000 - 2300 LST PERIOD OF RECORD...stations around the world. This is the provenance of the number (e.g., MSC 999999) which will appear on future OL-A standard products. D I...AFS Af PEt 7oif of [ COPD : 77-84 MONTH: A W, HO URS4LS3: ALL 7.3 itIts 816181L1F7 IN 6FAFLIF WILCS INs ((I (F IF F G CF b t I, [ CF ŕ 6 1 ,F F F tF7F I

  17. Thule AB, Greenland. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1987-05-12

    0 THULE AB GL MSC # 042020 N 76 32 W 068 45 ELEV 251 FT BGTL y PARTS A - F HOURS SUMMARIZED 0000 - 2300 LST H PERIOD OF RECORD: HOURLY OBSERVATIONS...SNnW UFPTH USAFLTAC (FROM DAILY OBSERVATIUNSI AIR WEATHER SERVICL/MAC STATION NUMBER: 042020 STATION NAME: THULF AB GL P[|OU OF P[ COPD : SI-R6 DAILY...F IOM HOIU4LY ORSFVVATII0NS A14 s[A1H[ SERVICL/MAC S AIION NUMHRP: 01-2021 S341 AII NAM[ : THUL 74 5GL CC8100 oF P[ COPD : 77-46 MONTH: NOV 40U l(ILSTI

  18. Ionic migration and weathering in frozen Antarctic soils

    NASA Technical Reports Server (NTRS)

    Ugolini, F. C.; Anderson, D. M.

    1973-01-01

    Soils of continental Antarctica are forming in one of the most severe terrestrial environments. Continuously low temperatures and the scarcity of water in the liquid state result in the development of desert-type soils. In an earlier experiment to determine the degree to which radioactive Na(Cl-36) would migrate from a shallow point source in permafrost, movement was observed. To confirm this result, a similar experiment involving (Na-22)Cl was conducted. Significantly less movement of the Na-22 ion was observed. Ionic movement in the unfrozen interfacial films at mineral surfaces in frozen ground is held to be important in chemical weathering in Antarctic soils.

  19. Numerical study of Asian dust transport during the springtime of 2001 simulated with the Chemical Weather Forecasting System (CFORS) model

    NASA Astrophysics Data System (ADS)

    Uno, Itsushi; Satake, Shinsuke; Carmichael, Gregory R.; Tang, Youhua; Wang, Zifa; Takemura, Toshihiko; Sugimoto, Nobuo; Shimizu, Atsushi; Murayama, Toshiyuki; Cahill, Thomas A.; Cliff, Steven; Uematsu, Mitsuo; Ohta, Sachio; Quinn, Patricia K.; Bates, Timothy S.

    2004-10-01

    The regional-scale aerosol transport model Chemical Weather Forecasting System (CFORS) is used for analysis of large-scale dust phenomena during the Asian Pacific Regional Characterization Experiment (ACE-Asia) intensive observation. Dust modeling results are examined with the surface weather reports, satellite-derived dust index (Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI)), Mie-scattering lidar observation, and surface aerosol observations. The CFORS dust results are shown to accurately reproduce many of the important observed features. Model analysis shows that the simulated dust vertical loading correlates well with TOMS AI and that the dust loading is transported with the meandering of the synoptic-scale temperature field at the 500-hPa level. Quantitative examination of aerosol optical depth shows that model predictions are within 20% difference of the lidar observations for the major dust episodes. The structure of the ACE-Asia Perfect Dust Storm, which occurred in early April, is clarified with the help of the CFORS model analysis. This storm consisted of two boundary layer components and one elevated dust (>6-km height) feature (resulting from the movement of two large low-pressure systems). Time variation of the CFORS dust fields shows the correct onset timing of the elevated dust for each observation site, but the model results tend to overpredict dust concentrations at lower latitude sites. The horizontal transport flux at 130°E longitude is examined, and the overall dust transport flux at 130°E during March-April is evaluated to be 55 Tg.

  20. High Resolution Land Surface Modeling with the next generation Land Data Assimilation Systems

    NASA Astrophysics Data System (ADS)

    Kumar, S. V.; Eylander, J.; Peters-Lidard, C.

    2005-12-01

    Knowledge of land surface processes is important to many real-world applications such as agricultural production, water resources management, and flood predication. The Air Force Weather Agency (AFWA) has provided the USDA and other customers global soil moisture and temperature data for the past 30 years using the agrometeorological data assimilation model (now called AGRMET), merging atmospheric data. Further, accurate initialization of land surface conditions has been shown to greatly influence and improve weather forecast model and seasonal-to-interannual climate predictions. The AFWA AGRMET model exploits real time precipitation observations and analyses, global forecast model and satellite data to generate global estimates of soil moisture, soil temperature and other land surface states at 48km spatial resolution. However, to truly address the land surface initialization and climate prediction problem, and to mitigate the errors introduced by the differences in spatial scales of models, representations of land surface conditions need to be developed at the same fine scales such as that of cloud resolving models. NASA's Goddard Space Flight Center has developed an offline land data assimilation system known as the Land Information System (LIS) capable of modeling land atmosphere interactions at spatial resolutions as fine as 1km. LIS provides a software architecture that integrates the use of the state of the art land surface models, data assimilation techniques, and high performance computing and data management tools. LIS also employs many high resolution surface parameters such as the NASA Earth Observing System (EOS)-era products. In this study we describe the development of a next generation high resolution land surface modeling and data assimilation system, combining the capabilities of LIS and AGRMET. We investigate the influence of high resolution land surface data and observations on the land surface conditions by comparing with the operational AGRMET outputs.

  1. Seattle FWS, Washington. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F

    DTIC Science & Technology

    1970-08-28

    FREQUENCY OF WIND DIRECTION AND SPEED til (FROM HOURLY OBSERVATIONS) 24244 SEATTLE wAHtIGTON FWC __iAR - -ALL WATHER _--- ~ALL -- CONDmON - SPEED 34MEAN (KNTS...10 PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED 11J1 (FROM HOURLY OBSERVATIONS) 2.4244 SEATTLE WASHINGTOjN FW -6 C ALL WATHER - -M ~0-0 50O

  2. weather@home 2: validation of an improved global-regional climate modelling system

    NASA Astrophysics Data System (ADS)

    Guillod, Benoit P.; Jones, Richard G.; Bowery, Andy; Haustein, Karsten; Massey, Neil R.; Mitchell, Daniel M.; Otto, Friederike E. L.; Sparrow, Sarah N.; Uhe, Peter; Wallom, David C. H.; Wilson, Simon; Allen, Myles R.

    2017-05-01

    Extreme weather events can have large impacts on society and, in many regions, are expected to change in frequency and intensity with climate change. Owing to the relatively short observational record, climate models are useful tools as they allow for generation of a larger sample of extreme events, to attribute recent events to anthropogenic climate change, and to project changes in such events into the future. The modelling system known as weather@home, consisting of a global climate model (GCM) with a nested regional climate model (RCM) and driven by sea surface temperatures, allows one to generate a very large ensemble with the help of volunteer distributed computing. This is a key tool to understanding many aspects of extreme events. Here, a new version of the weather@home system (weather@home 2) with a higher-resolution RCM over Europe is documented and a broad validation of the climate is performed. The new model includes a more recent land-surface scheme in both GCM and RCM, where subgrid-scale land-surface heterogeneity is newly represented using tiles, and an increase in RCM resolution from 50 to 25 km. The GCM performs similarly to the previous version, with some improvements in the representation of mean climate. The European RCM temperature biases are overall reduced, in particular the warm bias over eastern Europe, but large biases remain. Precipitation is improved over the Alps in summer, with mixed changes in other regions and seasons. The model is shown to represent the main classes of regional extreme events reasonably well and shows a good sensitivity to its drivers. In particular, given the improvements in this version of the weather@home system, it is likely that more reliable statements can be made with regards to impact statements, especially at more localized scales.

  3. Porosity evolution during weathering of Marcellus shale

    NASA Astrophysics Data System (ADS)

    Gu, X.; Brantley, S.

    2017-12-01

    Weathering is an important process that continuously converts rock to regolith. Shale weathering is of particular interest because 1) shale covers about 25% of continental land mass; 2) recent development of unconventional shale gas generates large volumes of rock cuttings. When cuttings are exposed at earth's surface, they can release toxic trace elements during weathering. In this study, we investigated the evolution of pore structures and mineral transformation in an outcrop of Marcellus shale - one of the biggest gas shale play in North America - at Frankstown, Pennsylvania. A combination of neutron scattering and imaging was used to characterize the pore structures from nm to mm. The weathering profile of Marcellus shale was also compared to the well-studied Rose Hill shale from the Susquehanna Shale Hills critical zone observatory nearby. This latter shale has a similar mineral composition as Marcellus shale but much lower concentrations of pyrite and OC. The Marcellus shale formation in outcrop overlies a layer of carbonate at 10 m below land surface with low porosity (<3%). All the shale samples above the carbonate layer are almost completely depleted in carbonate, plagioclase, chlorite and pyrite. The porosities in the weathered Marcellus shale are twice as high as in protolith. The pore size distribution exhibits a broad peak for pores of size in the range of 10s of microns, likely due to the loss of OC and/or dissolution of carbonate during weathering. In the nearby Rose Hill shale, the pyrite and carbonate are sharply depleted close to the water table ( 15-20 m at ridgetop); while chlorite and plagioclase are gradually depleted toward the land surface. The greater weathering extent of silicates in the Marcellus shale despite the similarity in climate and erosion rate in these two neighboring locations is attributed to 1) the formation of micron-size pores increases the infiltration rate into weathered Marcellus shale and therefore promotes mineral weathering; 2) the pyrite/carbonate ratio is higher in the Marcellus shale than in Rose Hill shale, and thus excess acidity generated through pyrite oxidation enhances the dissolution of silicates. We seek to use these and other observations to develop a global model for shale weathering that incorporates both mineral composition and porosity change.

  4. Plagioclase-Rich Itokawa Grains: Space Weathering, Exposure Ages, and Comparison to Lunar Soil Grains

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berge, E.

    2017-01-01

    Regolith grains returned by the Hayabusa mission to asteroid 25143 Itokawa provide the only samples currently available to study the interaction of chondritic asteroidal material with the space weathering environment. Several studies have documented the surface alterations observed on the regolith grains, but most of these studies involved olivine because of its abundance. Here we focus on the rarer Itokawa plagioclase grains, in order to allow comparisons between Itokawa and lunar soil plagioclase grains for which an extensive data set exists.

  5. Westover AFB, Chicopee Falls, Massachusetts Revised Uniform Summary of Surface Weather Observations (RUSSWO) Parts A-F.

    DTIC Science & Technology

    1981-10-01

    Chicopee Falls, Fia rpt Mass 6. PERFORMING ORG. REPORT NUMBER 7. AUTNOR(e) S. CONTRACT OR GRANT NUMBER(#) 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10...Chicopee Falls, Mass . * It contains the following parts: (A) Weather Conditions; Atmospheric Phenomena; (B) Precipitation, Snowfall and Snow Depth (daily...WESTOVER AFB/CHICOPEE FALLS MASS N 42 12 W 072 32 245 CEF 74491 STATION LOCATION AND INSTRUMENTATION HISTORY UNCEl TYPE AT TIS LOCATION ELEVATION ABOVE NSL

  6. Clark AFB, Philippines. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1984-02-01

    DATA PROCESSING DIVISION USAFETAC Air Weather Service ( MAC) 2L._qi( .3 I-H M3,; #983270 :.15 11 E 120 33 EL --V478 FT ?.p1K I-ARTS A-F HUMS...THIS PAGE .a.. E ...d) REPORT DOCUMENTATION PAGE READ INSTRUCTIONS REPORTDOCUMENTATIONPAGE_ BEFORE COMPLETING FORM I REPORT NUMBER 12 GOVT ACCESSION NO. 3...62225 P. 320 14 MONITORING AGENCY NAME & ADDRESS(f dlle’. e , Ifr Controlling Offfe) 15. SECURITY CLASS. (of this report) UNCLASSIFIED T5

  7. Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: Evaluating the boundary layer heat budget

    NASA Astrophysics Data System (ADS)

    Steeneveld, G. J.; Tolk, L. F.; Moene, A. F.; Hartogensis, O. K.; Peters, W.; Holtslag, A. A. M.

    2011-12-01

    The Weather Research and Forecasting Model (WRF) and the Regional Atmospheric Mesoscale Model System (RAMS) are frequently used for (regional) weather, climate and air quality studies. This paper covers an evaluation of these models for a windy and calm episode against Cabauw tower observations (Netherlands), with a special focus on the representation of the physical processes in the atmospheric boundary layer (ABL). In addition, area averaged sensible heat flux observations by scintillometry are utilized which enables evaluation of grid scale model fluxes and flux observations at the same horizontal scale. Also, novel ABL height observations by ceilometry and of the near surface longwave radiation divergence are utilized. It appears that WRF in its basic set-up shows satisfactory model results for nearly all atmospheric near surface variables compared to field observations, while RAMS needed refining of its ABL scheme. An important inconsistency was found regarding the ABL daytime heat budget: Both model versions are only able to correctly forecast the ABL thermodynamic structure when the modeled surface sensible heat flux is much larger than both the eddy-covariance and scintillometer observations indicate. In order to clarify this discrepancy, model results for each term of the heat budget equation is evaluated against field observations. Sensitivity studies and evaluation of radiative tendencies and entrainment reveal that possible errors in these variables cannot explain the overestimation of the sensible heat flux within the current model infrastructure.

  8. Multi-Scale Hydrometeorological Modeling, Land Data Assimilation and Parameter Estimation with the Land Information System

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.

    2011-01-01

    The Land Information System (LIS; http://lis.gsfc.nasa.gov) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite-and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. As such, LIS represents a step towards the next generation land component of an integrated Earth system model. In recognition of LIS object-oriented software design, use and impact in the land surface and hydrometeorological modeling community, the LIS software was selected as a co-winner of NASA?s 2005 Software of the Year award.LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has e volved from two earlier efforts -- North American Land Data Assimilation System (NLDAS) and Global Land Data Assimilation System (GLDAS) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of GLDAS and NLDAS now use specific configurations of the LIS software in their current implementations.In addition, LIS was recently transitioned into operations at the US Air Force Weather Agency (AFWA) to ultimately replace their Agricultural Meteorology (AGRMET) system, and is also used routinely by NOAA's National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) for their land data assimilation systems to support weather and climate modeling. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through "plugins". LIS has been coupled to the Weather Research and Forecasting (WRF) model to support studies of land-atmosphere coupling be enabling ensembles of land surface states to be tested against multiple representations of the atmospheric boundary layer. LIS has also been demonstrated for parameter estimation, who showed that the use of sequential remotely sensed soil moisture products can be used to derive soil hydraulic and texture properties given a sufficient dynamic range in the soil moisture retrievals and accurate precipitation inputs.LIS has also recently been demonstrated for multi-model data assimilation using an Ensemble Kalman Filter for sequential assimilation of soil moisture, snow, and temperature.Ongoing work has demonstrated the value of bias correction as part of the filter, and also that of joint calibration and assimilation.Examples and case studies demonstrating the capabilities and impacts of LIS for hydrometeorological modeling, assimilation and parameter estimation will be presented as advancements towards the next generation of integrated observation and modeling systems

  9. Impact of Soil Moisture Assimilation on Land Surface Model Spin-Up and Coupled LandAtmosphere Prediction

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Lawston, P.

    2016-01-01

    Advances in satellite monitoring of the terrestrial water cycle have led to a concerted effort to assimilate soil moisture observations from various platforms into offline land surface models (LSMs). One principal but still open question is that of the ability of land data assimilation (LDA) to improve LSM initial conditions for coupled short-term weather prediction. In this study, the impact of assimilating Advanced Microwave Scanning Radiometer for EOS (AMSR-E) soil moisture retrievals on coupled WRF Model forecasts is examined during the summers of dry (2006) and wet (2007) surface conditions in the southern Great Plains. LDA is carried out using NASAs Land Information System (LIS) and the Noah LSM through an ensemble Kalman filter (EnKF) approach. The impacts of LDA on the 1) soil moisture and soil temperature initial conditions for WRF, 2) land-atmosphere coupling characteristics, and 3) ambient weather of the coupled LIS-WRF simulations are then assessed. Results show that impacts of soil moisture LDA during the spin-up can significantly modify LSM states and fluxes, depending on regime and season. Results also indicate that the use of seasonal cumulative distribution functions (CDFs) is more advantageous compared to the traditional annual CDF bias correction strategies. LDA performs consistently regardless of atmospheric forcing applied, with greater improvements seen when using coarser, global forcing products. Downstream impacts on coupled simulations vary according to the strength of the LDA impact at the initialization, where significant modifications to the soil moisture flux- PBL-ambient weather process chain are observed. Overall, this study demonstrates potential for future, higher-resolution soil moisture assimilation applications in weather and climate research.

  10. Biologically enhanced mineral weathering: what does it look like, can we model it?

    NASA Astrophysics Data System (ADS)

    Schulz, M. S.; Lawrence, C. R.; Harden, J. W.; White, A. F.

    2011-12-01

    The interaction between plants and minerals in soils is hugely important and poorly understood as it relates to the fate of soil carbon. Plant roots, fungi and bacteria inhabit the mineral soil and work symbiotically to extract nutrients, generally through low molecular weight exudates (organic acids, extracelluar polysachrides (EPS), siderophores, etc.). Up to 60% of photosynthetic carbon is allocated below ground as roots and exudates, both being important carbon sources in soils. Some exudates accelerate mineral weathering. To test whether plant exudates are incorporated into poorly crystalline secondary mineral phases during precipitation, we are investigating the biologic-mineral interface. We sampled 5 marine terraces along a soil chronosequence (60 to 225 ka), near Santa Cruz, CA. The effects of the biologic interactions with mineral surfaces were characterized through the use of Scanning Electron Microscopy (SEM). Morphologically, mycorrhizal fungi were observed fully surrounding minerals, fungal hyphae were shown to tunnel into primary silicate minerals and we have observed direct hyphal attachment to mineral surfaces. Fungal tunneling was seen in all 5 soils by SEM. Additionally, specific surface area (using a nitrogen BET method) of primary minerals was measured to determine if the effects of mineral tunneling are quantifiable in older soils. Results suggest that fungal tunneling is more extensive in the primary minerals of older soils. We have also examined the influence of organic acids on primary mineral weathering during soil development using a geochemical reactive transport model (CrunchFlow). Addition of organic acids in our models of soil development at Santa Cruz result in decreased activity of Fe and Al in soil pore water, which subsequently alters the spatial extent of primary mineral weathering and kaolinite precipitation. Overall, our preliminary modeling results suggest biological processes may be an important but underrepresented aspect of soil development in geochemical models.

  11. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films

    PubMed Central

    Syranidou, Evdokia; Karkanorachaki, Katerina; Amorotti, Filippo; Repouskou, Eftychia; Kroll, Kevin; Kolvenbach, Boris; Corvini, Philippe F-X; Fava, Fabio

    2017-01-01

    This study investigated the potential of bacterial-mediated polyethylene (PE) degradation in a two-phase microcosm experiment. During phase I, naturally weathered PE films were incubated for 6 months with the indigenous marine community alone as well as bioaugmented with strains able to grow in minimal medium with linear low-density polyethylene (LLDPE) as the sole carbon source. At the end of phase I the developed biofilm was harvested and re-inoculated with naturally weathered PE films. Bacteria from both treatments were able to establish an active population on the PE surfaces as the biofilm community developed in a time dependent way. Moreover, a convergence in the composition of these communities was observed towards an efficient PE degrading microbial network, comprising of indigenous species. In acclimated communities, genera affiliated with synthetic (PE) and natural (cellulose) polymer degraders as well as hydrocarbon degrading bacteria were enriched. The acclimated consortia (indigenous and bioaugmented) reduced more efficiently the weight of PE films in comparison to non-acclimated bacteria. The SEM images revealed a dense and compact biofilm layer and signs of bio-erosion on the surface of the films. Rheological results suggest that the polymers after microbial treatment had wider molecular mass distribution and a marginally smaller average molar mass suggesting biodegradation as opposed to abiotic degradation. Modifications on the surface chemistry were observed throughout phase II while the FTIR profiles of microbially treated films at month 6 were similar to the profiles of virgin PE. Taking into account the results, we can suggest that the tailored indigenous marine community represents an efficient consortium for degrading weathered PE plastics. PMID:28841722

  12. A comparison of all-weather land surface temperature products

    NASA Astrophysics Data System (ADS)

    Martins, Joao; Trigo, Isabel F.; Ghilain, Nicolas; Goettche, Frank-M.; Ermida, Sofia; Olesen, Folke-S.; Gellens-Meulenberghs, Françoise; Arboleda, Alirio

    2017-04-01

    The Satellite Application Facility on Land Surface Analysis (LSA-SAF, http://landsaf.ipma.pt) has been providing land surface temperature (LST) estimates using SEVIRI/MSG on an operational basis since 2006. The LSA-SAF service has since been extended to provide a wide range of satellite-based quantities over land surfaces, such as emissivity, albedo, radiative fluxes, vegetation state, evapotranspiration, and fire-related variables. Being based on infra-red measurements, the SEVIRI/MSG LST product is limited to clear-sky pixels only. Several all-weather LST products have been proposed by the scientific community either based on microwave observations or using Soil-Vegetation-Atmosphere Transfer models to fill the gaps caused by clouds. The goal of this work is to provide a nearly gap-free operational all-weather LST product and compare these approaches. In order to estimate evapotranspiration and turbulent energy fluxes, the LSA-SAF solves the surface energy budget for each SEVIRI pixel, taking into account the physical and physiological processes occurring in vegetation canopies. This task is accomplished with an adapted SVAT model, which adopts some formulations and parameters of the Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL) model operated at the European Center for Medium-range Weather Forecasts (ECMWF), and using: 1) radiative inputs also derived by LSA-SAF, which includes surface albedo, down-welling fluxes and fire radiative power; 2) a land-surface characterization obtained by combining the ECOCLIMAP database with both LSA-SAF vegetation products and the H(ydrology)-SAF snow mask; 3) meteorological fields from ECMWF forecasts interpolated to SEVIRI pixels, and 4) soil moisture derived by the H-SAF and LST from LSA-SAF. A byproduct of the SVAT model is surface skin temperature, which is needed to close the surface energy balance. The model skin temperature corresponds to the radiative temperature of the interface between soil and atmosphere, which is assumed to have no heat storage. The modelled skin temperatures are in fair agreement with LST directly estimated from SEVIRI observations. However, in contrast to LST retrievals from SEVIRI/MSG (or other infrared sensors) the SVAT model solves the energy budget equation under all-sky conditions. The SVAT surface skin temperature is then used to fill gaps in LST fields caused by clouds. Since under cloudy conditions the direct incoming solar radiation is greatly reduced, thermal balance at the surface is more easily achieved and directional effects are also less important. Therefore, a better performance of the model skin temperature may be expected. In contrast, under clear skies the satellite LST showed to be more reliable, since the SVAT model shows biases in the daily amplitude of the skin temperature. In the context of the GlobTemperature project (http://www.globtemperature.info/), all-weather LST datasets using AMSR-E microwave radiances were produced, which are compared here to the SVAT-based LST. Both products were validated against in situ data - particularly from Gobabeb & Farm Heimat (Namibia), and Évora (Portugal) - to show that under cloudy conditions the agreement between in-situ LST and modelled skin temperature is acceptable. Compared to the SVAT-based LST, AMSR-E LST is closer to satellite observations (level 2 product); the complementarity of the two approaches is assessed.

  13. Surface Transportation Weather Decision Support Requirements - Executive Summary, Version 1.0

    DOT National Transportation Integrated Search

    1999-12-16

    WEATHER: IT AFFECTS THE VISIBILITY, TRACTABILITY, MANEUVERABILITY, VEHICLE STABILITY, EXHAUST EMISSIONS AND STRUCTURAL INTEGRITY OF THE SURFACE TRANSPORTATION SYSTEM. THEREBY WEATHER AFFECTS THE SAFETY, MOBILITY, PRODUCTIVITY AND ENVIRONMENTAL IMPACT...

  14. Using Uranium-series isotopes to understand processes of rapid soil formation in tropical volcanic settings: an example from Basse-Terre, French Guadeloupe

    NASA Astrophysics Data System (ADS)

    Ma, Lin

    2015-04-01

    Lin Ma1, Yvette Pereyra1, Peter B Sak2, Jerome Gaillardet3, Heather L Buss4 and Susan L Brantley5, (1) University of Texas at El Paso, El Paso, TX, United States, (2) Dickinson College, Carlisle, PA, United States, (3) Institute de Physique d Globe Paris, Paris, France, (4) University of Bristol, Bristol, United Kingdom, (5) Pennsylvania State University Main Campus, University Park, PA, United States Uranium-series isotopes fractionate during chemical weathering and their activity ratios can be used to determine timescales and rates of soil formation. Such soil formation rates provide important information to understand processes related to rapid soil formation in tropical volcanic settings, especially with respect to their fertility and erosion. Recent studies also highlighted the use of U-series isotopes to trace and quantify atmospheric inputs to surface soils. Such a process is particularly important in providing mineral nutrients to ecosystems in highly depleted soil systems such as the tropical soils. Here, we report U-series isotope compositions in thick soil profiles (>10 m) developed on andesitic pyroclastic flows in Basse-Terre Island of French Guadeloupe. Field observations have shown heterogeneity in color and texture in these thick profiles. However, major element chemistry and mineralogy show some general depth trends. The main minerals present throughout the soil profile are halloysite and gibbsite. Chemically immobile elements such as Al, Fe, and Ti show a depletion profile relative to Th while elements such as K, Mn, and Si show a partial depletion profile at depth. Mobile elements such as Ca, Mg, and Sr have undergone intensive weathering at depths, and an addition profile near the surface, most likely related to atmospheric inputs. (238U/232Th) activity ratios in one soil profile from the Brad David watershed in this study ranged from 0.374 to 1.696, while the (230Th/232Th) ratios ranged from 0.367 to 1.701. A decrease of (238U/232Th) in the deep soil profile depth is observed, and then an increase to the surface. The (230Th /232Th) ratios showed a similar trend as (238U/232Th). Marine aerosols and atmospheric dust from the Sahara region are most likely responsible for the addition of U in shallow soils. Intensive chemical weathering is responsible for the loss of U at depth, consistent with these observations of major element chemistry and mineralogy. Furthermore, U-series chemical weathering model suggests that the weathering duration from 12m to 4m depth in this profile is about 250kyr, with a weathering advancing rate of ~30 m/Ma. The rate is also about one order of magnitude lower than the weathering rate (~300 m/Ma) determined by river chemistry for this watershed. In this profile, the augered core didn't reach the unweathered bedrock. Hence, the derived slow weathering rate most likely represents the intensive weathering of clay minerals, while the transformation of fresh bedrock to regolith occurs at much great depth beneath the thick regolith. The marine aerosols and atmospheric dust are important sources of mineral nutrients for highly depleted surface soils.

  15. Lessons in weather data interoperability: the National Mesonet Program

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Werner, B.; Cogar, C.; Heppner, P.

    2015-12-01

    The National Mesonet Program (NMP) links local, state, and regional surface weather observation networks (a.k.a. mesonets) to enhance the prediction of high-impact, local-scale weather events. A consortium of 23 (and counting) private firms, state agencies, and universities provides near-real-time observations from over 7,000 fixed weather stations, and over 1,000 vehicle-mounted sensors, every 15 minutes or less, together with the detailed sensor and station metadata required for effective forecasts and decision-making. In order to integrate these weather observations across the United States, and to provide full details about sensors, stations, and observations, the NMP has defined a set of conventions for observational data and sensor metadata. These conventions address the needs of users with limited bandwidth and computing resources, while also anticipating a growing variety of sensors and observations. For disseminating weather observation data, the NMP currently employs a simple ASCII format derived from the Integrated Ocean Observing System. This simplifies data ingest into common desktop software, and parsing by simple scripts; and it directly supports basic readings of temperature, pressure, etc. By extending the format to vector-valued observations, it can also convey readings taken at different altitudes (e.g. windspeed) or depths (e.g., soil moisture). Extending beyond these observations to fit a greater variety of sensors (solar irradiation, sodar, radar, lidar) may require further extensions, or a move to more complex formats (e.g., based on XML or JSON). We will discuss the tradeoffs of various conventions for different users and use cases. To convey sensor and station metadata, the NMP uses a convention known as Starfish Fungus Language (*FL), derived from the Open Geospatial Consortium's SensorML standard. *FL separates static and dynamic elements of a sensor description, allowing for relatively compact expressions that reference a library of shared definitions (e.g., sensor manufacturer's specifications) alongside time-varying and site-specific details (slope / aspect, calibration, etc.) We will discuss the tradeoffs of *FL, SensorML, and alternatives for conveying sensor details to various users and uses.

  16. Polarimetric Observations of the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Kim, S.

    2017-12-01

    Polarimetric images contain valuable information on the lunar surface such as grain size and porosity of the regolith, from which one can estimate the space weathering environment on the lunar surface. Surprisingly, polarimetric observation has never been conducted from the lunar orbit before. A Wide-Angle Polarimetric Camera (PolCam) has been recently selected as one of three Korean science instruments onboard the Korea Pathfinder Lunar Orbiter (KPLO), which is aimed to be launched in 2019/2020 as the first Korean lunar mission. PolCam will obtain 80 m-resolution polarimetric images of the whole lunar surface between -70º and +70º latitudes at 320, 430 and 750 nm bands for phase angles up to 115º. I will also discuss previous polarimetric studies on the lunar surface based on our ground-based observations.

  17. Thule AB, Greenland. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1981-12-18

    7! USAFETAC PORn 0--5 (OL-A) PSIViOUS lIOWstO Of t$is Foam Am OU8O&IN * AA Ř L’~ C L AT C L,) C T I - :SURFACE WINDS V ~ PERCENTAGE FREQUENCY OF WIND...93. 93. 95. 96 1 96* 97. . 97 5 97 5 98.8 98:8 99 .2 L00 .3 TOTAL NUMBER OF OBSERVATIONS 81 USAF STAC : 0-14-9 (a A) V hD .... b

  18. The evolution of volcanic material on Mars: Preliminary results of sand-lavas relationships from the analogy with sandy lavas in Iceland

    NASA Astrophysics Data System (ADS)

    Mangold, N.; Baratoux, D.; Arnalds, O.; Grégoire, M.; Platevoët, B.; Bardintzeff, J. M.; Chevrier, V.; Pinet, P.; Mathé, P. E.; Rochette, P.

    2004-12-01

    The surface of Mars is covered by volcanic rocks from few tens of millions years to 3.5 by old. The presence of water and atmosphere can strongly affect these rocks, by both chemical and mechanical erosion and transport. The interpretation of multispectral and hyperspectral data of Mars requires a better comprehension of these surface processes in order to understand if the spectral data still corresponds to the volcanic composition at the time of formation. Volcanic material in Iceland is a good analog for the studies of possible landforms resulting from the formation, transport and deposition of basaltic sand on Mars. Iceland is amongst the unique places on Earth with a cold environment, abundant basaltic rocks and sands, and the presence of palagonite, a possible typical constituent of the Martian soil. A first field campaign has been achieved in fall 2003, with the objectives of sites selection and chemical analysis of sands and lavas in order to establish the sources of sands, and the mineralogical and chemical evolution from lava to sands. The first site is close to Skjalbreidur volcano, south of Langjokull and is composed of weathered lava blocks, sands and gravels. The second sampling site is close to Eldborgir volcano, also south of Langjokull, weathered lava flows and sands are observed here. The third sampling site is around Hekla volcano. The results of the chemical analysis indicate different situations for the origin of sands. For the first two sites, major, minor and traces elements are correlated and indicate that the sands, which are basaltic in composition, are genetically related to the surrounding lava. The sands at Hekla volcano, andesitic in composition, indicate a contamination of material eroded from basaltic lava flow by a more silicic component erupted from Hekla. Sands coming from different sources, of possibly different chemical and mineralogical composition, and of different nature of eruption can easily mix each other which has implications for the interpretation of infra-red data of the surface of Mars. A second result concerns the evolution of the mineralogical composition of basaltic sand compared to the lava. We observed a higher concentration of MgO and Ni in Skjalbreidur and Eldborgir sands than in the surrounding lava taken as a reference. Together, these observations indicate a higher concentration of olivine in the sands which may be due to its higher strength (compared to feldspaths and pyroxene) and sorting by wind from different grain size. On the other hand, the contribution of weathering seems not have destructed these olivine grains. Indeed, magnetic results show that magnetic phases such as titanomagnetite are poorly weathered despite being at the surface since 9000 years. The weathering by the wet climate is likely slow down by the cold temperatures all the year long. The detection of olivine at the surface of Mars is thus not a simple tool to conclude that the weather did not involve liquid water.

  19. Quantifying weathering advance rates in basaltic andesite rinds with uranium-series isotopes: a case study from Guadeloupe

    NASA Astrophysics Data System (ADS)

    Ma, L.; Chabaux, F. J.; Pelt, E.; Granet, M.; Sak, P. B.; Gaillardet, J.; Brantley, S. L.

    2010-12-01

    Weathering of basaltic rocks plays an important role in many Earth surface processes. It is thus of great interest to quantify their weathering rates. Because of their well-documented behaviors during water-rock interaction, U-series isotopes have been shown to have utility as a potential chronometer to constrain the formation rates of weathering rinds developed on fresh basaltic rocks. In this study, U-series isotopes and trace element concentrations were analyzed in a basaltic andesite weathering rind collected from the Bras David watershed, Guadeloupe. From the clast, core and rind samples were obtained by drilling along a 63.8 mm linear profile across a low curvature segment of the core-rind boundary. Trace element concentrations reveal: significant loss of REE, Y, Rb, Sr, and Ba in the weathering rind; conservative behaviors of Ti and Th; and external addition of U into the rind during clast weathering. Measured (234U/238U) activity ratios of the rind samples are much higher than the core samples and show excess 234U. Measured (238U/232Th) and (230Th/232Th) activity ratios of the core and rind samples increase gradually from the core into the weathering rind. The observed depletion profiles for the trace elements in the clast suggest that the earliest chemical reaction that creates significant porosity is dissolution of plagioclase, consistent with the previous study [Sak et al., 2010, CG, in press]. The porosity growth within the rind allows for an influx of soil solution that carries dissolved U with (234U/238U) activity ratios >1 into the clast. The deposition of U in the rind is most likely associated with precipication of secondary minerals during clast weathering. Such a continuous U addition is responsible for the observed gradual increase of (238U/232Th) activity ratios in the rind. Subsequent production of 230Th in the rind over time from the decay of excess 234U accounts for the observed continuous increase of (230Th/232Th) activity ratios. The U-series activity ratios in the clast were modeled with a weathering advance rate of ~0.3 mm kyr-1. This represents the rind advance rate at the low curvature segment of the core-rind boundary under tropical climate. This rate is consistent with the previously estimated formation rates of basaltic rinds under similar tropic conditions in Costa Rica [Sak et al., 2004, GCA 68, 1453; Pelt et al., 2008, EPSL 276, 98]. This rate is about one order of magnitude greater than those in temperate regions, documenting the important control of temperature on basalt weathering. This work illustrates that the weathering advance rates of rinds can be successfully estimated by U-series isotopes, demonstrating their great potential as dating tools for Earth surface processes. Furthermore, U-series chronometry provides a suitable method for independently testing the hypothesis that rind advance rates around an individual clast increase with increasing interfacial curvature.

  20. Richards-Gebaur AFB, Missouri Limited Surface Observations Climatic Summary (LISOCS). Parts A, C-F.

    DTIC Science & Technology

    1985-07-01

    Pressure" summaries for METAR stations. Table of Contents: AWS Form 2 "Station History " Part 1: Weather Conditions Part 2: Surface Winds Part 3...LOCATION AND INSTRUMENTATION HISTORY NUNiER TYPE 4T THIS LOCATION ELEVATION ABOVE NSL 065 or GEVORWICALL LOCATION I AIME Of LATITUDE LO4CI3 U01 PER

  1. Weathering and vegetation effects in early stages of soil formation

    Treesearch

    Jonathan D. Phillips; Alice V. Turkington; Daniel A. Marion

    2008-01-01

    Bedrock surfaces in the Ouachita Mountains, Arkansas, exposed by spillway construction and which had not previously been subjected to surface weathering environments, developed 15?20 cm thick soil covers in less than three decades. All open bedrock joints showed evidence of weathering and biological activity. Rock surfaces and fragments also showed evidence of...

  2. Establishing Sprinkling Requirements on Trailers Transporting Market Weight Pigs in Warm and Hot Weather

    PubMed Central

    Kephart, Rebecca; Johnson, Anna; Sapkota, Avi; Stalder, Kenneth; McGlone, John

    2014-01-01

    Simple Summary Transport is an inevitable process in the modern, multi-site swine industry. Pigs do not have efficient physiological means (such as sweating) to cool themselves. Therefore, being transported in hot weather can cause heat stress and even death. Sprinkling the pigs and/or bedding may facilitate cooling, thereby improving well-being and survivability of pigs arriving at the plant. Abstract This study was conducted July of 2012 in Iowa, in WARM (<26.7 °C) and HOT (≥26.7 °C) weather. Four sprinkling methods were compared, with one treatment being randomly assigned to each load: control- no sprinkling (not applied in HOT weather), pigs only, bedding only, or pigs and bedding. Experiment 1 used 51 loads in WARM- and 86 loads in HOT weather to determine sprinkling effects on pig measures (surface temperature, vocalizations, slips and falls, and stress signs). Experiment 2 used 82 loads in WARM- and 54 loads in HOT weather to determine the sprinkling effects on transport losses (non-ambulatory, dead, and total transport losses). Experiment 1 found that, in WARM weather, there were no differences between sprinkling treatments for surface temperature, vocalizations, or slips and falls (p ≥ 0.18). However, stress signs were 2% greater when sprinkling pigs- or bedding only- compared to control (p = 0.03). Experiment 2 found that, in WARM and HOT weather, sprinkling did not affect non-ambulatory, dead, or total transport losses (p ≥ 0.18). Although the current study did not find any observed sprinkling effects for pig measures or transport losses it is extremely important to note that the inference space of this study is relatively small, so further studies should be conducted to see if these results are applicable to other geographical regions and seasons. PMID:26480035

  3. High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea

    NASA Astrophysics Data System (ADS)

    Park, Moon-Soo; Park, Sung-Hwa; Chae, Jung-Hoon; Choi, Min-Hyeok; Song, Yunyoung; Kang, Minsoo; Roh, Joon-Woo

    2017-04-01

    To improve our knowledge of urban meteorology, including those processes applicable to high-resolution meteorological models in the Seoul Metropolitan Area (SMA), the Weather Information Service Engine (WISE) Urban Meteorological Observation System (UMS-Seoul) has been designed and installed. The UMS-Seoul incorporates 14 surface energy balance (EB) systems, 7 surface-based three-dimensional (3-D) meteorological observation systems and applied meteorological (AP) observation systems, and the existing surface-based meteorological observation network. The EB system consists of a radiation balance system, sonic anemometers, infrared CO2/H2O gas analyzers, and many sensors measuring the wind speed and direction, temperature and humidity, precipitation, and air pressure. The EB-produced radiation, meteorological, and turbulence data will be used to quantify the surface EB according to land use and to improve the boundary-layer and surface processes in meteorological models. The 3-D system, composed of a wind lidar, microwave radiometer, aerosol lidar, or ceilometer, produces the cloud height, vertical profiles of backscatter by aerosols, wind speed and direction, temperature, humidity, and liquid water content. It will be used for high-resolution reanalysis data based on observations and for the improvement of the boundary-layer, radiation, and microphysics processes in meteorological models. The AP system includes road weather information, mosquito activity, water quality, and agrometeorological observation instruments. The standardized metadata for networks and stations are documented and renewed periodically to provide a detailed observation environment. The UMS-Seoul data are designed to support real-time acquisition and display and automatically quality check within 10 min from observation. After the quality check, data can be distributed to relevant potential users such as researchers and policy makers. Finally, two case studies demonstrate that the observed data have a great potential to help to understand the boundary-layer structures more deeply, improve the performance of high-resolution meteorological models, and provide useful information customized based on the user demands in the SMA.

  4. The Behavior of Total Lightning Activity in Severe Florida Thunderstorms

    NASA Technical Reports Server (NTRS)

    Williams, Earle; Boldi, Bob; Matlin, Anne; Weber, Mark; Hodanish, Steve; Sharp, Dave; Goodman, Steve; Raghavan, Ravi; Buechler, Dennis

    1998-01-01

    The development of a new observational system called LISDAD (Lightning Imaging Sensor Demonstration and Display) has enabled a study of severe weather in central Florida. The total flash rates for storms verified to be severe are found to exceed 60 flashes/min, with some values reaching 500 flashes/min. Similar to earlier results for thunderstorm microbursts, the peak flash rate precedes the severe weather at the ground by 5-20 minutes. A distinguishing feature of severe storms is the presence of lightning "jumps"-abrupt increases in flash rate in advance of the maximum rate for the storm. ne systematic total lightning precursor to severe weather of all kinds-wind, hail, tornadoes-is interpreted in terms of the updraft that sows the seeds aloft for severe weather at the surface and simultaneously stimulates the ice microphysics that drives the lightning activity.

  5. The Antarctic environment and its effect upon the total carbon and sulfur abundances in recovered meteorites

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Andrawes, F. F.

    1980-01-01

    Total carbon and sulfur abundances have been measured for 25 meteorites recovered from the Allan Hills area of Antarctica. The majority (greater than 67%) of the meteorites analyzed do not contain enriched carbon abundances resulting from weathering processes. The presence of secondary carbonates in samples which give no apparent evidence of weathering was noted during pyrolysis experiments, despite the 'normal' total carbon abundances. In selected cases, the surfaces of weathered samples may contain up to a factor of two greater carbon content than the interior. Variations in carbon abundances may reflect the degree of weathering and the amount of secondary minerals present. One of the surprises of this study is that the majority of the Antarctic meteorites studied do not exhibit total carbon and sulfur abundances outside the ranges previously observed for falls.

  6. Climate, not atmospheric deposition, drives the biogeochemical mass-balance of a mountain watershed

    USGS Publications Warehouse

    Baron, Jill S.; Heath, Jared

    2014-01-01

    Watershed mass-balance methods are valuable tools for demonstrating impacts to water quality from atmospheric deposition and chemical weathering. Owen Bricker, a pioneer of the mass-balance method, began applying mass-balance modeling to small watersheds in the late 1960s and dedicated his career to expanding the literature and knowledge of complex watershed processes. We evaluated long-term trends in surface-water chemistry in the Loch Vale watershed, a 660-ha. alpine/subalpine catchment located in Rocky Mountain National Park, CO, USA. Many changes in surface-water chemistry correlated with multiple drivers, including summer or monthly temperature, snow water equivalent, and the runoff-to-precipitation ratio. Atmospheric deposition was not a significant causal agent for surface-water chemistry trends. We observed statistically significant increases in both concentrations and fluxes of weathering products including cations, SiO2, SO4 2−, and ANC, and in inorganic N, with inorganic N being primarily of atmospheric origin. These changes are evident in the individual months June, July, and August, and also in the combined June, July, and August summer season. Increasingly warm summer temperatures are melting what was once permanent ice and this may release elements entrained in the ice, stimulate chemical weathering with enhanced moisture availability, and stimulate microbial nitrification. Weathering rates may also be enhanced by sustained water availability in high snowpack years. Rapid change in the flux of weathering products and inorganic N is the direct and indirect result of a changing climate from warming temperatures and thawing cryosphere.

  7. Climate Central World Weather Attribution (WWA) project: Real-time extreme weather event attribution analysis

    NASA Astrophysics Data System (ADS)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi

    2015-04-01

    Extreme weather detection and attribution analysis has emerged as a core theme in climate science over the last decade or so. By using a combination of observational data and climate models it is possible to identify the role of climate change in certain types of extreme weather events such as sea level rise and its contribution to storm surges, extreme heat events and droughts or heavy rainfall and flood events. These analyses are usually carried out after an extreme event has occurred when reanalysis and observational data become available. The Climate Central WWA project will exploit the increasing forecast skill of seasonal forecast prediction systems such as the UK MetOffice GloSea5 (Global seasonal forecasting system) ensemble forecasting method. This way, the current weather can be fed into climate models to simulate large ensembles of possible weather scenarios before an event has fully emerged yet. This effort runs along parallel and intersecting tracks of science and communications that involve research, message development and testing, staged socialization of attribution science with key audiences, and dissemination. The method we employ uses a very large ensemble of simulations of regional climate models to run two different analyses: one to represent the current climate as it was observed, and one to represent the same events in the world that might have been without human-induced climate change. For the weather "as observed" experiment, the atmospheric model uses observed sea surface temperature (SST) data from GloSea5 (currently) and present-day atmospheric gas concentrations to simulate weather events that are possible given the observed climate conditions. The weather in the "world that might have been" experiments is obtained by removing the anthropogenic forcing from the observed SSTs, thereby simulating a counterfactual world without human activity. The anthropogenic forcing is obtained by comparing the CMIP5 historical and natural simulations from a variety of CMIP5 model ensembles. Here, we present results for the UK 2013/14 winter floods as proof of concept and we show validation and testing results that demonstrate the robustness of our method. We also revisit the record temperatures over Europe in 2014 and present a detailed analysis of this attribution exercise as it is one of the events to demonstrate that we can make a sensible statement of how the odds for such a year to occur have changed while it still unfolds.

  8. Use of EOS Data in AWIPS for Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Haines, Stephanie L.; Suggs, Ron J.; Bradshaw, Tom; Darden, Chris; Burks, Jason

    2003-01-01

    Operational weather forecasting relies heavily on real time data and modeling products for forecast preparation and dissemination of significant weather information to the public. The synthesis of this information (observations and model products) by the meteorologist is facilitated by a decision support system to display and integrate the information in a useful fashion. For the NWS this system is called Advanced Weather Interactive Processing System (AWIPS). Over the last few years NASA has launched a series of new Earth Observation Satellites (EOS) for climate monitoring that include several instruments that provide high-resolution measurements of atmospheric and surface features important for weather forecasting and analysis. The key to the utilization of these unique new measurements by the NWS is the real time integration of the EOS data into the AWIPS system. This is currently being done in the Huntsville and Birmingham NWS Forecast Offices under the NASA Short-term Prediction Research and Transition (SPORT) Program. This paper describes the use of near real time MODIS and AIRS data in AWIPS to improve the detection of clouds, moisture variations, atmospheric stability, and thermal signatures that can lead to significant weather development. The paper and the conference presentation will focus on several examples where MODIS and AIRS data have made a positive impact on forecast accuracy. The results of an assessment of the utility of these products for weather forecast improvement made at the Huntsville NWS Forecast Office will be presented.

  9. Sea State and Boundary Layer Physics of the Emerging Arctic Ocean

    DTIC Science & Technology

    2013-09-01

    meteorological stations; weather observations; upper-air (rawinsondes, balloons and tethered kit); turbulent fluxes; radiation; surface temperature...remote sensing, in-field remote sensing will be employed, using small unmanned aerial vehicles (UAV), balloons , and manned aircraft (funded by other

  10. Maintaining a Local Data Integration System in Support of Weather Forecast Operations

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian

    2010-01-01

    Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) have used a local data integration system (LDIS) as part of their forecast and warning operations. Each has benefited from 3-dimensional analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive and complete understanding of evolving fine-scale weather features. Recent efforts have been undertaken to update the LDIS through the formal tasking process of NASA's Applied Meteorology Unit. The goals include upgrading LDIS with the latest version of ADAS, incorporating new sources of observational data, and making adjustments to shell scripts written to govern the system. A series of scripts run a complete modeling system consisting of the preprocessing step, the main model integration, and the post-processing step. The preprocessing step prepares the terrain, surface characteristics data sets, and the objective analysis for model initialization. Data ingested through ADAS include (but are not limited to) Level II Weather Surveillance Radar- 1988 Doppler (WSR-88D) data from six Florida radars, Geostationary Operational Environmental Satellites (GOES) visible and infrared satellite imagery, surface and upper air observations throughout Florida from NOAA's Earth System Research Laboratory/Global Systems Division/Meteorological Assimilation Data Ingest System (MADIS), as well as the Kennedy Space Center ICape Canaveral Air Force Station wind tower network. The scripts provide NWS MLB and SMG with several options for setting a desirable runtime configuration of the LDIS to account for adjustments in grid spacing, domain location, choice of observational data sources, and selection of background model fields, among others. The utility of an improved LDIS will be demonstrated through postanalysis warm and cool season case studies that compare high-resolution model output with and without the ADAS analyses. Operationally, these upgrades will result in more accurate depictions of the current local environment to help with short-range weather forecasting applications, while also offering an improved initialization for local versions of the Weather Research and Forecasting model.

  11. Asteroidal Space Weathering: The Major Role of FeS

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Rahman, Z.; Hiroi, T.; Sasaki, S.; Noble, S. K.; Horz, F.; Cintala, M. J.

    2013-01-01

    Space weathering (SW) effects on the lunar surface are reasonably well-understood from sample analyses, remote-sensing data, and experiments, yet our knowledge of asteroidal SW effects are far less constrained. While the same SW processes are operating on asteroids and the Moon, namely solar wind irradiation, impact vaporization and condensation, and impact melting, their relative rates and efficiencies are poorly known, as are their effects on such vastly different parent materials. Asteroidal SW models based on remote-sensing data and experiments are in wide disagreement over the dominant mechanisms involved and their kinetics. Lunar space weathering effects observed in UVVIS-NIR spectra result from surface- and volume-correlated nanophase Fe metal (npFe(sup 0)) particles. In the lunar case, it is the tiny vapor-deposited npFe(sup 0) that provides much of the spectral reddening, while the coarser (largely melt-derived) npFe(sup 0) produce lowered albedos. Nanophase FeS (npFeS) particles are expected to modify reflectance spectra in much the same way as npFe(sup 0) particles. Here we report the results of experiments designed to explore the efficiency of npFeS production via the main space weathering processes operating in the asteroid belt.

  12. The Nimbus satellites - Pioneering earth observers

    NASA Technical Reports Server (NTRS)

    White, Carolynne

    1990-01-01

    The many scientific achievements of the Nimbus series of seven satellites for low-altitude atmospheric research and global weather surveillance are reviewed. The series provides information on fishery resources, weather modeling, atmospheric pollution monitoring, earth's radiation budget, ozone monitoring, ocean dynamics, and the effects of cloudiness. Data produced by the forty-eight instruments and sensors flown on the satellites are applied in the fields of oceanography, hydrology, geology, geomorphology, geography, cartography, agriculture and meteorology. The instruments include the Coastal Zone Color Scanner (which depicts phytoplankton concentrations in coastal areas), the Scanning Multichannel Microwave Radiometer (which measures sea-surface temperatures and sea-surface wind-speed), and the Total Ozone Mapping Spectrometer (which provides information on total amounts of ozone in the earth's atmosphere).

  13. Remote Sensing of Supercooled Cloud Layers in Cold Climate Using Ground Based Integrated Sensors System and Comparison with Pilot Reports and model forecasts

    NASA Astrophysics Data System (ADS)

    Boudala, Faisal; Wu, Di; Gultepe, Ismail; Anderson, Martha; turcotte, marie-france

    2017-04-01

    In-flight aircraft icing is one of the major weather hazards to aviation . It occurs when an aircraft passes through a cloud layer containing supercooled drops (SD). The SD in contact with the airframe freezes on the surface which degrades the performance of the aircraft.. Prediction of in-flight icing requires accurate prediction of SD sizes, liquid water content (LWC), and temperature. The current numerical weather predicting (NWP) models are not capable of making accurate prediction of SD sizes and associated LWC. Aircraft icing environment is normally studied by flying research aircraft, which is quite expensive. Thus, developing a ground based remote sensing system for detection of supercooled liquid clouds and characterization of their impact on severity of aircraft icing one of the important tasks for improving the NWPs based predictions and validations. In this respect, Environment and Climate Change Canada (ECCC) in cooperation with the Department of National Defense (DND) installed a number of specialized ground based remote sensing platforms and present weather sensors at Cold Lake, Alberta that includes a multi-channel microwave radiometer (MWR), K-band Micro Rain radar (MRR), Ceilometer, Parsivel distrometer and Vaisala PWD22 present weather sensor. In this study, a number of pilot reports confirming icing events and freezing precipitation that occurred at Cold Lake during the 2014-2016 winter periods and associated observation data for the same period are examined. The icing events are also examined using aircraft icing intensity estimated using ice accumulation model which is based on a cylindrical shape approximation of airfoil and the Canadian High Resolution Regional Deterministic Prediction System (HRDPS) model predicted LWC, median volume diameter and temperature. The results related to vertical atmospheric profiling conditions, surface observations, and the Canadian High Resolution Regional Deterministic Prediction System (HRDPS) model predictions are given. Preliminary results suggest that remote sensing and present weather sensors based observations of cloud SD regions can be used to describe micro and macro physical characteristics of the icing conditions. The model based icing intensity prediction reasonably agreed with the PIREPs and MWR observations.

  14. Wurtsmith AFB, Michigan. Revised Uniform Summary of Surface Weather Observations. Parts A-F.

    DTIC Science & Technology

    1987-06-12

    UNIFORM SUMMARY OF ASURFACE WEATHER OBSERVATIONS WURTSMITH AFB MI MSC 726395 N 44 27 W 0 8 3 24 ELEV 634 FT KOSC PARTS A - F HOURS SUMMARIZED 0000...SNOaFA[ USAFETAC FWCM SJPMAPY Of DAY [ATA AIR AFATHtr 5!RVICE/MAC STATION NUMSLR: 726395 STAT1O N NAmE : wURTSMITH Arb MI PI 0 IOU Or Pt COPD : ,j-7...1 1 1 F U),,%! WVAI limb, : r UC ’,1iL (L7’AI7,LOGY PRANC*tH Pt.FP NIA’ - FPR(’U,7NCY OF OCCURr-NCL OF SUPFACE WINO UIRECrIPN V(R.SUS gIE . 7 Ajj L1

  15. Investigating the mechanisms of shale porosity development to understand hydrologic controls on hillslope scale weathering in a comparison across CZOs

    NASA Astrophysics Data System (ADS)

    Gu, X.; Rempe, D.; Brantley, S. L.

    2016-12-01

    The spatial distribution of weathered rock across actively eroding landscapes strongly influences how water and solutes are routed throughout the landscape. To understand the controls on the evolution of weathering profiles that underlie hilly and mountainous regions, we investigated the porosity formation and chemical weathering of shale (Coastal Belt of the Franciscan Formation) samples from four boreholes at Eel River Critical Zone Observatory (ERCZO) in Northern California. We further compared the characteristics of the shale at ERCZO to the well studied Rose Hill shale at Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) in central Pennsylvania. These two sites have similar mineralogical composition, but are located in vastly different climate and tectonic settings. In particular, the erosion rate at ERCZO (0.2-0.4 mm/yr) is much faster than at SSHCZO (0.015 mm/yr), and the average annual precipitation at ERCZO is higher (1.7 m/yr vs. 1 m/yr at SSHCZO). However, neutron scattering experiments show nearly identical bedrock porosities (3.1-4.6%) of parent rock. Analysis of the chemical and mineralogical compositions of samples throughout the weathering profile reveal that, at both sites, chemical weathering reactions occur at similar depths despite large differences in erosion rate: 1) carbonate and pyrite deplete sharply near the water table. 2) Chlorite oxidation also initiates near water table but shows a wider reaction front. 3) Illite dissolution occurs near the land surface. In both settings, the interface between weathered and unweathered rock roughly coincides with the water table and the porosity and water-accessibility increase toward the land surface. However, at ERCZO, the porosity and the density of micro-fractures are higher in the weathered zone than observed at SSHCZO. It is possible that both sites are moving toward a balance between rates of erosion and weathering advance, and that higher density of microfractures at the rapidly eroding ERCZO promotes faster water infiltration and faster weathering advance relative to the more slowly eroding SSHCZO. Further investigation of the origin and role of these microfractures is needed to understand the interplay between climate, erosion, and weathering that controls hillslope weathering profiles.

  16. Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Bullen, T.D.; Harden, J.W.; Peterson, M.L.

    1996-01-01

    Mineral weathering rates are determined for a series of soils ranging in age from 0.2-3000 Ky developed on alluvial terraces near Merced in the Central Valley of California. Mineralogical and elemental abundances exhibit time-dependent trends documenting the chemical evolution of granitic sand to residual kaolinite and quartz. Mineral losses with time occur in the order: hornblende > plagioclase > K-feldspar. Maximum volume decreases of >50% occur in the older soils. BET surface areas of the bulk soils increase with age, as do specific surface areas of aluminosilicate mineral fractions such as plagioclase, which increases from 0.4-1.5 m2 g-1 over 600 Ky. Quartz surface areas are lower and change less with time (0.11-0.23 m2 g-1). BET surface areas correspond to increasing external surface roughness (?? = 10-600) and relatively constant internal surface area (??? 1.3 m2 g-1). SEM observations confirm both surface pitting and development of internal porosity. A numerical model describes aluminosilicate dissolution rates as a function of changes in residual mineral abundance, grain size distributions, and mineral surface areas with time. A simple geometric treatment, assuming spherical grains and no surface roughness, predicts average dissolution rates (plagioclase, 10-17.4; K-feldspar, 10-17.8; and hornblende, 10-17.5 mol cm-1 s-1) that are constant with time and comparable to previous estimates of soil weathering. Average rates, based on BET surface area measurements and variable surface roughnesses, are much slower (plagioclase, 10-19.9; K-feldspar, 10-20.5; and hornblende 10-20.1 mol cm-2 s-1). Rates for individual soil horizons decrease by a factor of 101.5 over 3000 Ky indicating that the surface reactivities of minerals decrease as the physical surface areas increase. Rate constants based on BET estimates for the Merced soils are factors of 103-104 slower than reported experimental dissolution rates determined from freshly prepared silicates with low surface roughness (?? <10). This study demonstrates that the utility of experimental rate constants to predict weathering in soils is limited without consideration of variable surface areas and processes that control the evolution of surface reactivity with time.

  17. Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering

    USGS Publications Warehouse

    Parham, Walter E.

    1969-01-01

    Weathering products formed on surfaces of both potassium and plagioclase feldspar (An70), which were continuously leached in a Soxhlet extraction apparatus for 140 days with 7.21 of distilled water per day at a temperature of approximately 78°C, are morphologically identical to natural products developed on potassium feldspars weathered under conditions of good drainage in the humid tropics. The new products, which first appear as tiny bumps on the feldspar surface, start to develop mainly at exposed edges but also at apparently random sites on flat cleavage surfaces. As weathering continues, the bumps grow outward from the feldspar surface to form tapered projections, which then develop into wide-based thin films or sheets. The thin sheets of many projections merge laterally to form one continuous flame-shaped sheet. The sheets formed on potassium feldspars may then roll to form tubes that are inclined at a high angle to the feldspar surface. Etch pits of triangular outline on the artificially weathered potassium feldspars serve as sites for development of continuous, non-rolled, hollow tubes. It is inferred from its morphology that this weathering product is halloysite or its primitive form. The product of naturally weathered potassium feldspars is halloysite . 4H2O.The flame-shaped films or sheets formed on artificially weathered plagioclase feldspar do not develop into hollow tubes, but instead give rise to a platy mineral that is most probably boehmite. These plates form within the flame-shaped films, and with continued weathering are released as the film deteriorates. There is no indication from this experiment that platy pseudohexagonal kaolinite forms from any of these minerals under the initial stage of weathering.

  18. Retrieval of spatially distributed hydrological properties from satellite observations for spatial evaluation of a national water resources model.

    NASA Astrophysics Data System (ADS)

    Mendiguren González, G.; Stisen, S.; Koch, J.

    2016-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  19. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations

    NASA Astrophysics Data System (ADS)

    McKague, D. S.; Ruf, C. S.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  20. Assessment of rock mechanical properties and seismic slope stability in variably weathered layered basalts

    NASA Astrophysics Data System (ADS)

    Greenwood, William; Clark, Marin; Zekkos, Dimitrios; Von Voigtlander, Jennifer; Bateman, Julie; Lowe, Katherine; Hirose, Mitsuhito; Anderson, Suzanne; Anderson, Robert; Lynch, Jerome

    2016-04-01

    A field and laboratory experimental study was conducted to assess the influence of weathering on the mechanical properties of basalts in the region of the Kohala volcano on the island of Hawaii. Through the systematic characterization of the weathering profiles developed in different precipitation regimes, we aim to explain the regional pattern of stability of slopes in layered basalts that were observed during the 2006 Mw 6.7 Kiholo Bay earthquake. While deeper weathering profiles on the wet side of the island might be expected to promote more and larger landslides, the distribution of landslides during the Kiholo Bay earthquake did not follow this anticipated trend. Landslide frequency (defined as number of landslides divided by total area) was similar on the steepest slopes (> 50-60) for both the dry and the wet side of the study area suggesting relatively strong ground materials irrespective of weathering. The study location is ideally suited to investigate the role of precipitation, and more broadly of climate, on the mechanical properties of the local rock units because the presence of the Kohala volcano produces a significant precipitation gradient on what are essentially identical basaltic flows. Mean annual precipitation (MAP) varies by more than an order of magnitude, from 200 mm/year on the western side of the volcano to 4000 mm/year in the eastern side. We will present results of measured shear wave velocities using a seismic surface wave methodology. These results were paired with laboratory testing on selected basalt specimens that document the sample-scale shear wave velocity and unconfined compressive strength of the basaltic rocks. Shear wave velocity and unconfined strength of the rocks are correlated and are both significantly lower in weathered rocks near the ground surface than at depth. This weathering-related reduction in shear wave velocity extends to greater depths in areas of high precipitation compared to areas of lower precipitation, as expected, with a pronounced transition occurring at about 1000 mm/yr MAP. We speculate that relatively stiff, sub-horizontal layers that are interbedded with weathered material, may explain the discrepancy between both lower seismic velocities (in the field and the laboratory) and lower unconfined compressive strength, and the interpreted high strength exhibited by the seismic slope response during the Kiholo Bay earthquake. This observation has important consequences on the type of landslides observed in the 2006 earthquake, as well as the landslides that can be expected in future earthquakes.

  1. A Formal Messaging Notation for Alaskan Aviation Data

    NASA Technical Reports Server (NTRS)

    Rios, Joseph L.

    2015-01-01

    Data exchange is an increasingly important aspect of the National Airspace System. While many data communication channels have become more capable of sending and receiving data at higher throughput rates, there is still a need to use communication channels efficiently with limited throughput. The limitation can be based on technological issues, financial considerations, or both. This paper provides a complete description of several important aviation weather data in Abstract Syntax Notation format. By doing so, data providers can take advantage of Abstract Syntax Notation's ability to encode data in a highly compressed format. When data such as pilot weather reports, surface weather observations, and various weather predictions are compressed in such a manner, it allows for the efficient use of throughput-limited communication channels. This paper provides details on the Abstract Syntax Notation One (ASN.1) implementation for Alaskan aviation data, and demonstrates its use on real-world aviation weather data samples as Alaska has sparse terrestrial data infrastructure and data are often sent via relatively costly satellite channels.

  2. Correlation-study about the ambient dose rate and the weather conditions

    NASA Astrophysics Data System (ADS)

    Furuya, Masato; Hatano, Yuko; Aoyama, Tomoo; Igarashi, Yasuhito; Kita, Kazuyuki; Ishizuka, Masahide

    2016-04-01

    The long-term radiation risks are believed to be heavily affected by the resuspension process. We therefore focus on the surface-atmosphere exchange process of released radioactive materials in this study. Radioactive materials were deposited on the soil and float in the air, and such complicated process are influenced by the weather conditions deeply. We need to reveal the correlation between the weather conditions and the ambient dose rate. In this study, we study the correlation between the weather conditions and the ambient dose rate with the correction of the decrease due to the radioactive decay. We found that there is a negative correlation between the ambient dose rate and the soil water content by the correlation coefficient. Using this result, we reconstruct the ambient dose rate from the weather conditions by the multiple regression analysis and found that the reconstructed data agree with the observation very well. Using Kalman filter, which can be sequentially updates the state estimate, we obtained such a good agreement.

  3. New challenges of the ARISE project

    NASA Astrophysics Data System (ADS)

    Blanc, Elisabeth

    2015-04-01

    It has been robustly demonstrated that variations in the circulation of the middle atmosphere influence weather and climate throughout the troposphere all the way to the Earth's surface. A key part of the coupling between the troposphere and stratosphere occurs through the propagation and breaking of planetary-scale Rossby waves and gravity waves. Limited observation of the middle atmosphere and these waves in particular limits the ability to faithfully reproduce the dynamics of the middle atmosphere in numerical weather prediction and climate models. The ARISE project combines for the first time international networks with complementary technologies such as infrasound, lidar and airglow. This joint network provided advanced data products that started to be used as benchmarks for weather forecast models. The ARISE network also allows enhanced and detailed monitoring of other extreme events in the Earth system such as erupting volcanoes, magnetic storms, tornadoes and tropical thunderstorms. In order to improve the ability of the network to monitor atmospheric dynamics, ARISE proposes to extend i) the existing network coverage in Africa and the high latitudes, ii) the altitude range in the stratosphere and mesosphere, iii) the observation duration using routine observation modes, and to use complementary existing infrastructures and innovative instrumentations. Data will be collected over the long term to improve weather forecasting to monthly or seasonal timescales, to monitor atmospheric extreme events and climate change. ARISE focuses on the link between models and observations for future assimilation of data by operational weather forecasting models. Among the applications, ARISE2 proposes infrasound remote volcano monitoring to provide notifications to civil aviation.

  4. Widespread land surface wind decline in the Northern Hemisphere partly attributed to land surface changes

    NASA Astrophysics Data System (ADS)

    Thepaut, J.; Vautard, R.; Cattiaux, J.; Yiou, P.; Ciais, P.

    2010-12-01

    The decline of surface wind observed in many regions of the world is a potential source of concern for wind power electricity generation. It is also suggested as the main cause of decreasing pan evaporation. In China, a persistent and significant decrease of monsoon winds was observed in all seasons. Surface wind declines were also evidenced in several regions of the world (U.S., Australia, several European countries). Except over China, no clear explanation was given for the wind decrease in the regions studied. Whether surface winds decrease is due to changes in the global atmospheric circulation or its variability, in surface processes or to observational trends has therefore not been elucidated. The identification of the drivers of such a decline requires a global investigation of available surface and upper-air wind data, which has not been conducted so far. Here we use global datasets of in-situ wind measurements that contain surface weather stations wind data (hourly or three-hourly data acquisition time step) and rawinsonde vertical wind data profiles (monthly time step) prepared by the NCAR. A set of 822 worldwide surface stations with continuous wind records was selected after a careful elimination of stations with obvious breaks and large gaps. This dataset mostly covers the Northern mid latitudes over the period 1979-2008. Using this data set, we found that annual mean wind speeds have declined at 73% of the surface stations over the past 30 years. In the Northern Hemisphere, positive wind trends are found only in a few places. In Europe, Central Asia, Eastern Asia and in North America the annual mean surface wind speed has decreased on average at a rate of -2.9, -5.9, -4.2, and -1.8 %/decade respectively, i.e. a decrease of about 10% in 30 years and up to about 20% in Central Asia. These results are robust to changes in the station selection method and parameters. By contrast, upper-air winds observed from rawinsondes, geostrophic winds deduced from pressure gradients, and modeled winds from weather re-analyses do not exhibit any comparable stilling trends than at surface stations. For instance, large-scale circulation changes captured in the most recent European Centre for Medium Range Weather Forecast re-analysis (ERA-interim) can only explain only up to 10-50% of the wind stilling, depending on the region. In addition, a significant amount of the slow-down could originate from a generalized increase in surface roughness, due for instance to forest growth and expansion, and urbanization. This hypothesis, which could explain up to 60% of the decline, is supported by remote sensing observations and theoretical calculations combined with meso-scale model simulations. For future wind power energy resource, the part of wind decline due to land cover changes is easier to cope with than that due to global atmospheric circulation slow down.

  5. Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approach

    NASA Astrophysics Data System (ADS)

    Baker, B.; Lee, T.; Buban, M.; Dumas, E. J.

    2017-12-01

    Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approachC. Bruce Baker1, Ed Dumas1,2, Temple Lee1,2, Michael Buban1,21NOAA ARL, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN2Oak Ridge Associated Universities, Oak Ridge, TN The development of a small Unmanned Aerial System (sUAS) testbeds that can be used to validate, integrate, calibrate and evaluate new technology and sensors for routine boundary layer research, validation of operational weather models, improvement of model parameterizations, and recording observations within high-impact storms is important for understanding the importance and impact of using sUAS's routinely as a new observing platform. The goal of the multi-testbed approach is to build a robust set of protocols to assess the cost and operational feasibility of unmanned observations for routine applications using various combinations of sUAS aircraft and sensors in different locations and field experiments. All of these observational testbeds serve different community needs, but they also use a diverse suite of methodologies for calibration and evaluation of different sensors and platforms for severe weather and boundary layer research. The primary focus will be to evaluate meteorological sensor payloads to measure thermodynamic parameters and define surface characteristics with visible, IR, and multi-spectral cameras. This evaluation will lead to recommendations for sensor payloads for VTOL and fixed-wing sUAS.

  6. Burlington IAP, Vermont. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1981-12-23

    34~ ~ ~ ~ ~ ~ ~ ~ ~~ ~A .... . ... .. . .. ... ... . . .. . .. ........ . . . . . . .. ’_L ’,AL CLIŘATOLOGY FRANCH 7AC SURFACE WINDS S A T,-.ŕ SERVICM/MAC...72 C USAP ETAC 0-1-5n (a.. A) ..vWW... 1394""S "IS FOOD ~~ ADS 00OLI *L ,AL CLIMATOLOGY BRANCH uSAFETAC CEILING VERSUS VISIBILITY A7. EATHER SERVICE/MAC

  7. Characteristics of the Surface Turbulent Flux and the Components of Radiation Balance over the Grasslands in the Southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, H.; Xiao, Z.; Wei, J.

    2016-12-01

    Characteristics of the Surface Turbulent Flux and the Components of Radiation Balance over the Grasslands in the Southeastern Tibetan PlateauHongyi Li 1, Ziniu Xiao 2 and Junhong Wei31 China Meteorological Administration Training Centre, Beijing, China2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 3Theory of Atmospheric Dynamics and Climate, Institute for Atmospheric and Environmental Sciences, Goethe University of Frankfurt, Campus Riedberg, GermanyAbstract:Based on the field observation data over the grasslands in the southeastern Tibetan Plateau and the observational datasets in Nyingchi weather station for the period from May 20 to July 9, 2013, the variation characteristics of the basic meteorological elements in Nyingchi weather station, the surface turbulent fluxes and the components of radiation balance over the grasslands, as well as their relationships, are analyzed in this paper. The results show that in Nyingchi weather station, the daily variations of relative humidity and average total cloud cover are consistent with that of precipitation, but that those of daily average air temperature, daily average ground temperature, daily average wind speed and daily sunshine duration have an opposite change to that of precipitation. During the observation period, latent heat exchange is greater than sensible heat exchange, and latent heat flux is significantly higher when there is rainfall, but sensible heat flux and soil heat flux are lower. The daily variation of the total solar radiation (DR) is synchronous with that of sensible heat flux, and the daily variations of reflective solar radiation (UR), long wave radiation by earth (ULR), net radiation (Rn) and surface albedo are consistent with DR, but that of the long wave radiation by atmosphere (DLR) has an opposite change. The diurnal variations of sensible heat flux, latent heat flux, soil heat flux and the components of surface radiation balance over the grasslands are characterized by higher values at noon and lower values in the morning and evening. Keywords: surface turbulent flux, components of radiation balance, grasslands, southeastern Tibetan Plateau

  8. How lithology and climate affect REE mobility and fractionation along a shale weathering transect of the Susquehanna Shale Hills Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Ma, L.; Jin, L.; Dere, A. L.; White, T.; Mathur, R.; Brantley, S. L.

    2012-12-01

    Shale weathering is an important process in global elemental cycles. Accompanied by the transformation of bedrock into regolith, many elements including rare earth elements (REE) are mobilized primarily by chemical weathering in the Critical Zone. Then, REE are subsequently transported from the vadose zone to streams, with eventual deposition in the oceans. REE have been identified as crucial and strategic natural resources; and discovery of new REE deposits will be facilitated by understanding global REE cycles. At present, the mechanisms and environmental factors controlling release, transport, and deposition of REE - the sources and sinks - at Earth's surface remain unclear. Here, we present a systematic study of soils, stream sediments, stream waters, soil water and bedrock in six small watersheds that are developed on shale bedrock in the eastern USA to constrain the mobility and fractionation of REE during early stages of chemical weathering. The selected watersheds are part of the shale transect established by the Susquehanna Shale Hills Observatory (SSHO) and are well suited to investigate weathering on shales of different compositions or within different climate regimes but on the same shale unit. Our REE study from SSHO, a small gray shale watershed in central Pennsylvania, shows that up to 65% of the REE (relative to parent bedrock) is depleted in the acidic and organic-rich soils due to chemical leaching. Both weathering soil profiles and natural waters show a preferential removal of middle REE (MREE: Sm to Dy) relative to light REE (La to Nd) and heavy REE (Ho to Lu) during shale weathering, due to preferential release of MREE from a phosphate phase (rhabdophane). Strong positive Ce anomalies observed in the regolith and stream sediments point to the fractionation and preferential precipitation of Ce as compared to other REE, in the generally oxidizing conditions of the surface environments. One watershed developed on the Marcellus black shale in Pennsylvania allows comparison of behaviors of REE in the organic-rich vs. organic-poor end members under the same climate conditions. Our study shows that black shale bedrock has much higher REE contents compared to the Rose Hill gray shale. The presence of reactive phases such as organic matter, carbonates and sulfides in black shale and their alteration greatly enhance the release of REE and other metals to surface environments. This observation suggests that weathering of black shale is thus of particular importance in the global REE cycles, in addition to other heavy metals that impact the health of terrestrial and aquatic ecosystems. Finally, our ongoing investigation of four more gray shale watersheds in Virginia, Tennessee, Alabama, and Puerto Rico will allow for a comparison of shale weathering along a climosequence. Such a systematic study will evaluate the control of air temperature and precipitation on REE release from gray shale weathering in eastern USA.

  9. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations. Part I: Surface fluxes

    NASA Astrophysics Data System (ADS)

    Josse, P.; Caniaux, G.; Giordani, H.; Planton, S.

    1999-04-01

    A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is highly non-local and enhanced in the coupled simulation.

  10. Waterspout Forecasting Method Over the Eastern Adriatic Using a High-Resolution Numerical Weather Model

    NASA Astrophysics Data System (ADS)

    Renko, Tanja; Ivušić, Sarah; Telišman Prtenjak, Maja; Šoljan, Vinko; Horvat, Igor

    2018-03-01

    In this study, a synoptic and mesoscale analysis was performed and Szilagyi's waterspout forecasting method was tested on ten waterspout events in the period of 2013-2016. Data regarding waterspout occurrences were collected from weather stations, an online survey at the official website of the National Meteorological and Hydrological Service of Croatia and eyewitness reports from newspapers and the internet. Synoptic weather conditions were analyzed using surface pressure fields, 500 hPa level synoptic charts, SYNOP reports and atmospheric soundings. For all observed waterspout events, a synoptic type was determined using the 500 hPa geopotential height chart. The occurrence of lightning activity was determined from the LINET lightning database, and waterspouts were divided into thunderstorm-related and "fair weather" ones. Mesoscale characteristics (with a focus on thermodynamic instability indices) were determined using the high-resolution (500 m grid length) mesoscale numerical weather model and model results were compared with the available observations. Because thermodynamic instability indices are usually insufficient for forecasting waterspout activity, the performance of the Szilagyi Waterspout Index (SWI) was tested using vertical atmospheric profiles provided by the mesoscale numerical model. The SWI successfully forecasted all waterspout events, even the winter events. This indicates that the Szilagyi's waterspout prognostic method could be used as a valid prognostic tool for the eastern Adriatic.

  11. Widespread land surface wind decline in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Vautard, R.; Cattiaux, J.; Yiou, P.; Thépaut, J.-N.; Ciais, P.

    2010-09-01

    The decline of surface wind observed in many regions of the world is a potential source of concern for wind power electricity generation. It is also suggested as the main cause of decreasing pan evaporation. In China, a persistent and significant decrease of monsoon winds was observed in all seasons. Surface wind declines were also evidenced in several regions of the world (U.S., Australia, several European countries). Except over China, no clear explanation was given for the wind decrease in the regions studied. Whether surface winds decrease is due to changes in the global atmospheric circulation or its variability, in surface processes or to observational trends has therefore not been elucidated. The identification of the drivers of such a decline requires a global investigation of available surface and upper-air wind data, which has not been conducted so far. Here we use global datasets of in-situ wind measurements that contain surface weather stations wind data (hourly or three-hourly data acquisition time step) and rawinsonde vertical wind data profiles (monthly time step) prepared by the NCAR. A set of 822 worldwide surface stations with continuous wind records was selected after a careful elimination of stations with obvious breaks and large gaps. This dataset mostly covers the Northern mid latitudes over the period 1979-2008. Using this data set, we found that annual mean wind speeds have declined at 73% of the surface stations over the past 30 years. In the Northern Hemisphere, positive wind trends are found only in a few places. In Europe, Central Asia, Eastern Asia and in North America the annual mean surface wind speed has decreased on average at a rate of -2.9, -5.9, -4.2, and -1.8 %/decade respectively, i.e. a decrease of about 10% in 30 years and up to about 20% in Central Asia. These results are robust to changes in the station selection method and parameters. By contrast, upper-air winds observed from rawinsondes, geostrophic winds deduced from pressure gradients, and modeled winds from weather re-analyses do not exhibit any comparable stilling trends than at surface stations. For instance, large-scale circulation changes captured in the most recent European Centre for Medium Range Weather Forecast re-analysis (ERA-interim) can only explain only up to 30% of the Eurasian wind stilling. In addition, a significant amount of the slow-down could originate from a generalized increase in surface roughness, due for instance to forest growth and expansion, and urbanization. This hypothesis is supported by theoretical calculations combined with meso-scale model simulations. For future wind power energy resource, the part of wind decline due to land cover changes is easier to cope with than that due to global atmospheric circulation slow down.

  12. Vertical distribution of trace-element concentrations and occurrence of metallurgical slag particles in accumulated bed sediments of Lake Roosevelt, Washington, September 2002

    USGS Publications Warehouse

    Cox, S.E.; Bell, P.R.; Lowther, J.S.; Van Metre, P.C.

    2005-01-01

    Sediment cores were collected from six locations in Lake Roosevelt to determine the vertical distributions of trace-element concentrations in the accumulated sediments of Lake Roosevelt. Elevated concentrations of arsenic, cadmium, copper, lead, mercury, and zinc occurred throughout much of the accumulated sediments. Concentrations varied greatly within the sediment core profiles, often covering a range of 5 to 10 fold. Trace-element concentrations typically were largest below the surficial sediments in the lower one-half of each profile, with generally decreasing concentrations from the 1964 horizon to the surface of the core. The trace-element profiles reflect changes in historical discharges of trace elements to the Columbia River by an upstream smelter. All samples analyzed exceeded clean-up guidelines adopted by the Confederated Tribes of the Colville Reservation for cadmium, lead, and zinc and more than 70 percent of the samples exceeded cleanup guidelines for mercury, arsenic, and copper. Although 100 percent of the samples exceeded sediment guidelines for cadmium, lead, and zinc, surficial concentrations of arsenic, copper, and mercury in some cores were less than the sediment-quality guidelines. With the exception of copper, the trace-element profiles of the five cores collected along the pre-reservoir Columbia River channel typically showed trends of decreasing concentrations in sediments deposited after the 1964 time horizon. The decreasing concentrations of trace elements in the upper half of cores from along the pre-reservoir Columbia River showed a pattern of decreasing concentrations similar to reductions in trace-element loading in liquid effluent from an upstream smelter. Except for arsenic, trace-element concentrations typically were smaller at downstream reservoir locations along the pre-reservoir Columbia River. Trace-element concentration in sediments from the Spokane Arm of the reservoir showed distinct differences compared to the similarities observed in cores from along the pre-reservoir Columbia River. Particles of slag, which have physical and chemical characteristics of slag discharged to the Columbia River by a lead-zinc smelter upstream of the reservoir at Trail, British Columbia, were found in sediments of Lake Roosevelt. Slag particles are more common in the upstream reaches of the reservoir. The chemical composition of the interior matrix of slag collected from Lake Roosevelt closely approximated the reported elemental concentrations of fresh smelter slag, although evidence of slag weathering was observed. Exfoliation flakes were observed on the surface of weathered slag particles isolated from the core sediments. The concentrations of zinc on the exposed surface of slag grains were smaller than concentrations on interior surfaces. Weathering rinds also were observed in the cross section of weathered slag grains, indicating that the glassy slag material was undergoing hydration and chemical weathering. Trace elements observed in accumulated sediments in the middle and lower reaches of the reservoir are more likely due to the input from liquid effluent discharges compared to slag discharges from the upstream smelter.

  13. Predicting soil formation on the basis of transport-limited chemical weathering

    NASA Astrophysics Data System (ADS)

    Yu, Fang; Hunt, Allen Gerhard

    2018-01-01

    Soil production is closely related to chemical weathering. It has been shown that, under the assumption that chemical weathering is limited by solute transport, the process of soil production is predictable. However, solute transport in soil cannot be described by Gaussian transport. In this paper, we propose an approach based on percolation theory describing non-Gaussian transport of solute to predict soil formation (the net production of soil) by considering both soil production from chemical weathering and removal of soil from erosion. Our prediction shows agreement with observed soil depths in the field. Theoretical soil formation rates are also compared with published rates predicted using soil age-profile thickness (SAST) method. Our formulation can be incorporated directly into landscape evolution models on a point-to-point basis as long as such models account for surface water routing associated with overland flow. Further, our treatment can be scaled-up to address complications associated with continental-scale applications, including those from climate change, such as changes in vegetation, or surface flow organization. The ability to predict soil formation rates has implications for understanding Earth's climate system on account of the relationship to chemical weathering of silicate minerals with the associated drawdown of atmospheric carbon, but it is also important in geomorphology for understanding landscape evolution, including for example, the shapes of hillslopes, and the net transport of sediments to sedimentary basins.

  14. Differentiating Hydrothermal, Pedogenic, and Glacial Weathering in a Cold Volcanic Mars-Analog Environment

    NASA Technical Reports Server (NTRS)

    Scudder, N. A.; Horgan, B.; Havig, J.; Rutledge, A.; Rampe, E. B.; Hamilton, T.

    2016-01-01

    Although the current cold, dry environment of Mars extends back through much of its history, its earliest periods experienced significant water- related surface activity. Both geomorphic features (e.g., paleolakes, deltas, and river valleys) and hydrous mineral detections (e.g., clays and salts) have historically been interpreted to imply a "warm and wet" early Mars climate. More recently, atmospheric modeling studies have struggled to produce early climate conditions with temperatures above 0degC, leading some studies to propose a "cold and icy" early Mars dominated by widespread glaciation with transient melting. However, the alteration mineralogy produced in subglacial environments is not well understood, so the extent to which cold climate glacial weathering can produce the diverse alteration mineralogy observed on Mars is unknown. This summer, we will be conducting a field campaign in a glacial weathering environment in the Cascade Range, OR in order to determine the types of minerals that these environments produce. However, we must first disentangle the effects of glacial weathering from other significant alteration processes. Here we attempt a first understanding of glacial weathering by differentiating rocks and sediments weathered by hydrothermal, pedogenic, and glacial weathering processes in the Cascades volcanic range.

  15. NWR (National Weather Service) voice synthesis project, phase 1

    NASA Astrophysics Data System (ADS)

    Sampson, G. W.

    1986-01-01

    The purpose of the NOAA Weather Radio (NWR) Voice Synthesis Project is to provide a demonstration of the current voice synthesis technology. Phase 1 of this project is presented, providing a complete automation of an hourly surface aviation observation for broadcast over NWR. In examining the products currently available on the market, the decision was made that synthetic voice technology does not have the high quality speech required for broadcast over the NWR. Therefore the system presented uses the phrase concatenation type of technology for a very high quality, versatile, voice synthesis system.

  16. Portland IAP, Portland, Oregon. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F

    DTIC Science & Technology

    1980-09-08

    JUL IATION STATION ANE TUA NONIN ALL WEATHER _1_0-05;! CLS NOURS 4L .T.) CONOITION SPEED MEAN (KNTS) 1.3 4.6 7.10 11*16 17.21 22.27 20.33 34-40 41.47...86. 86. 86. 86.3 860 86.3 86.3 86.3 86&3 6.3 8603 A603 > 2000 a*. 8a, 89 9590 .,1.ih 9.0 91 9. &. 9r.k 9 t. 6 90.& .94.1. (t. A91.. > 1800 3 9. 90. 910

  17. Microclimate Exposures of Surface-Based Weather Stations: Implications For The Assessment of Long-Term Temperature Trends.

    NASA Astrophysics Data System (ADS)

    Davey, Christopher A.; Pielke, Roger A., Sr.

    2005-04-01

    The U.S. Historical Climate Network is a subset of surface weather observation stations selected from the National Weather Service cooperative station network. The criteria used to select these stations do not sufficiently address station exposure characteristics. In addition, the current metadata available for cooperative network stations generally do not describe site exposure characteristics in sufficient detail. This paper focuses on site exposures with respect to air temperature measurements. A total of 57 stations were photographically surveyed in eastern Colorado, comparing existing exposures to the standards endorsed by the World Meteorological Organization. The exposures of most sites surveyed, including U.S. Historical Climate Network sites, were observed to fall short of these standards. This raises a critical question about the use of many Historical Climate Network sites in the development of long-term climate records and the detection of climate trends. Some of these sites clearly have poor exposures and therefore should be considered for removal from the Historical Climate Network. Candidate replacement sites do exist and should be considered for addition into the network to replace the removed sites. Documentation as performed for this study should be conducted worldwide in order to determine the extent of spatially nonrepresentative exposures and possible temperature biases.


  18. Martian Weathering Environments of the Amazonian Indicated by Correlated Morphologic and Spectral Observation in Acidalia Planitia

    NASA Astrophysics Data System (ADS)

    Kraft, M. D.; Rogers, D.; Fergason, R. L.; Michalski, J. R.; Sharp, T. G.

    2009-12-01

    While much attention has been given to chemical alteration and the state of water on early Mars, it remains important to understand aqueous processes throughout Martian history, including the recent geologic past. It has been suggested that the Amazonian was marked primarily by anhydrous, oxidative weathering because Amazonian surfaces, such as the northern plains, lack hydration features in near-infrared spectra [1]. But high-silica materials (Surface Type 2, ST2) discovered by the Thermal Emission Spectrometer [2] that occur in the northern plains attest to aqueous alteration of silicate minerals. The questions are when did this occur and by what process? ST2 correlates spatially with outflow sediments and high-silica materials may have formed in large amounts of water related to outflow flooding events of the late Hesperian [3,4]. ST2 also may correspond to global ice-rich mantles, indicating formation in icy environments related to geologically recent climate fluctuations [3]. Can these very different mechanisms and environments be discerned? In a global study of TES spectra, Rogers et al. (2007) [5] found significant spectral differences between ST2 surfaces in northern and southern Acidalia Planitia that occur near 40-50° N. Several geomorphic transitions occur across latitudes, and many of these are directly or potentially related to Amazonian periglacial activity and occur in the 40-50° N range. This potential link between composition and periglacial morphology needs further exploration. We examined this relationship from 40-50° N in Acidalia Planitia, using Thermal Emission Imaging System (THEMIS) multispectral data to measure the local spectral properties of the surface. We identified a boundary between two surface spectral types that match closely the spectra of north and south Acidalia derived by Rogers et al. [2007]. This boundary is diffuse, occurring between 47-48° N in our study region in western Acidalia, and correlates with observed morphologic and thermophysical differences. Close examination of those surfaces with High Resolution Imaging Science Experiment (HiRISE) images shows that the area north of the boundary is a modified version of the southern surface, subdued and overprinted by periglacial polygonal ground. Thus, we think that ground ice has modified the surface morphology and, furthermore, that periglacial processing also modified the silicate composition of the northern surface materials. Weathering that created the northern Acidalia composition involved ground ice, and was likely similar to weathering in Antarctic soils, in which silica is mobilized by thin water films and deposited as gels [6]. By this mechanism, aqueous weathering on Mars has probably persisted into, and throughout, the Amazonian. References: [1] Bibring et al. (2006) Science, 312, 400-404. [2] Bandfield et al. (2000) Science, 287, 1626-1630. [3] Wyatt et al. (2004) Geology, 32, 645-648. [4] Tanaka et al. (2005) USGS Sci. Invest. Map 2888. [5] Rogers et al. (2007) J. Geophys. Res.,112, E02004. [6] Ugolini and Anderson (1973), Soil Sci., 105, 461-470.

  19. Alteration of Lunar Rock Surfaces through Interaction with the Space Environment

    NASA Technical Reports Server (NTRS)

    Frushour, A. M.; Noble, S. K; Christoffersen, R.; Keller, L P.

    2014-01-01

    Space weathering occurs on all ex-posed surfaces of lunar rocks, as well as on the surfaces of smaller grains in the lunar regolith. Space weather-ing alters these exposed surfaces primarily through the action of solar wind ions and micrometeorite impact processes. On lunar rocks specifically, the alteration products produced by space weathering form surface coatings known as patina. Patinas can have spectral reflectance properties different than the underlying rock. An understanding of patina composition and thickness is therefore important for interpreting re-motely sensed data from airless solar system bodies. The purpose of this study is to try to understand the physical and chemical properties of patina by expanding the number of patinas known and characterized in the lunar rock sample collection.

  20. Enhancing Extreme Heat Health-Related Intervention and Preparedness Activities Using Remote Sensing Analysis of Daily Surface Temperature, Surface Observation Networks and Ecmwf Reanalysis

    NASA Astrophysics Data System (ADS)

    Garcia, R. L.; Booth, J.; Hondula, D.; Ross, K. W.; Stuyvesant, A.; Alm, G.; Baghel, E.

    2015-12-01

    Extreme heat causes more human fatalities in the United States than any other natural disaster, elevating the concern of heat-related mortality. Maricopa County Arizona is known for its high heat index and its sprawling metropolitan complex which makes this region a perfect candidate for human health research. Individuals at higher risk are unequally spatially distributed, leaving the poor, homeless, non-native English speakers, elderly, and the socially isolated vulnerable to heat events. The Arizona Department of Health Services, Arizona State University and NASA DEVELOP LaRC are working to establish a more effective method of placing hydration and cooling centers in addition to enhancing the heat warning system to aid those with the highest exposure. Using NASA's Earth Observation Systems from Aqua and Terra satellites, the daily spatial variability within the UHI was quantified over the summer heat seasons from 2005 - 2014, effectively establishing a remotely sensed surface temperature climatology for the county. A series of One-way Analysis of Variance revealed significant differences between daily surface temperature averages of the top 30% of census tracts within the study period. Furthermore, synoptic upper tropospheric circulation patterns were classified to relate surface weather types and heat index. The surface weather observation networks were also reviewed for analyzing the veracity of the other methods. The results provide detailed information regarding nuances within the UHI effect and will allow pertinent recommendations regarding the health department's adaptive capacity. They also hold essential components for future policy decision-making regarding appropriate locations for cooling centers and efficient warning systems.

  1. An Examination of Body Temperature for the Rocky Intertidal Mussel species, Mytilus californianus, Using Remotely Sensed Satellite Observations

    NASA Astrophysics Data System (ADS)

    Price, J.; Liff, H.; Lakshmi, V.

    2012-12-01

    Temperature is considered to be one of the most important physical factors in determining organismal distribution and physiological performance of species in rocky intertidal ecosystems, especially the growth and survival of mussels. However, little is known about the spatial and temporal patterns of temperature in intertidal ecosystems or how those patterns affect intertidal mussel species because of limitations in data collection. We collected in situ temperature at Strawberry Hill, Oregon USA using mussel loggers embedded among the intertidal mussel species, Mytilus californianus. Remotely sensed surface temperatures were used in conjunction with in situ weather and ocean data to determine if remotely sensed surface temperatures can be used as a predictor for changes in the body temperature of a rocky intertidal mussel species. The data used in this study was collected between January 2003 and December 2010. The mussel logger temperatures were compared to in situ weather data collected from a local weather station, ocean data collected from a NOAA buoy, and remotely sensed surface temperatures collected from NASA's sun-synchronous Moderate Resolution Imaging Spectroradiometer aboard the Earth Observing System Aqua and EOS Terra satellites. Daily surface temperatures were collected from four pixel locations which included two sea surface temperature (SST) locations and two land surface temperature (LST) locations. One of the land pixels was chosen to represent the intertidal surface temperature (IST) because it was located within the intertidal zone. As expected, all surface temperatures collected via satellite were significantly correlated to each other and the associated in situ temperatures. Examination of temperatures from the off-shore NOAA buoy and the weather station provide evidence that remotely sensed temperatures were similar to in situ temperature data and explain more variability in mussel logger temperatures than the in situ temperatures. Our results suggest that temperatures (surface temperature and air temperature) are similar across larger spatial scales even when the type of data collection is different. Mussel logger temperatures were strongly correlated to SSTs and were not significantly different than SSTs. Sea surface temperature collected during the Aqua overpass explained 67.1% of the variation in mean monthly mussel logger temperature. When SST, LST, and IST were taken into consideration, nearly 73% of the variation in mussel logger temperature was explained. While in situ monthly air temperature and water temperature explained only 28-33% of the variation in mussel logger temperature. Our results suggests that remotely sensed surface temperatures are reliable and important measurements that can be used to better understand the effects temperature may have on intertidal mussel species in Strawberry Hill, Oregon. Remotely sensed surface temperature could act as a relative indicator of change and may be used to predict general habitat trends and drivers that could directly affect organism body temperature.

  2. Why is SMOS Drier than the South Fork In-situ Soil Moisture Network?

    NASA Astrophysics Data System (ADS)

    Walker, V. A.; Hornbuckle, B. K.; Cosh, M. H.

    2014-12-01

    Global maps of near-surface soil moisture are currently being produced by the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite mission at 40 km. Within the next few months NASA's Soil Moisture Active Passive (SMAP) satellite mission will begin producing observations of near-surface soil moisture at 10 km. Near-surface soil moisture is the water content of the first 3 to 5 cm of the soil. Observations of near-surface soil moisture are expected to improve weather and climate forecasts. These satellite observations must be validated. We define validation as determining the space/time statistical characteristics of the uncertainty. A standard that has been used for satellite validation is in-situ measurements of near-surface soil moisture made with a network of sensors spanning the extent of a satellite footprint. Such a network of sensors has been established in the South Fork of the Iowa River in Central Iowa by the USDA ARS. Our analysis of data in 2013 indicates that SMOS has a dry bias: SMOS near-surface soil moisture is between 0.05 to 0.10 m^3m^{-3} lower than what is observed by the South Fork network. A dry bias in SMOS observations has also been observed in other regions of North America. There are many possible explanations for this difference: underestimation of vegetation, or soil surface roughness; undetected radio frequency interference (RFI); a retrieval model that is not appropriate for agricultural areas; or the use of an incorrect surface temperature in the retrieval process. We will begin our investigation by testing this last possibility: that SMOS is using a surface temperature that is too low which results in a drier soil moisture that compensates for this error. We will present a comparison of surface temperatures from the European Center for Medium-range Weather Forecasting (ECMWF) used to retrieve near-surface soil moisture from SMOS measurements of brightness temperature, and surface temperatures in the South Fork obtained from both tower and in-situ sensors. We will also use a long-term data set of tower and in-situ sensors collected in agricultural fields to develop a relationship between air temperature and the surface temperature relevant to the terrestrial microwave emission that is detected by SMOS.

  3. Space Weathering of Intermediate-Size Soil Grains in Immature Apollo 17 Soil 71061

    NASA Technical Reports Server (NTRS)

    Wentworth, S. J.; Robinson, G. A.; McKay, D. S.

    2005-01-01

    Understanding space weathering, which is caused by micrometeorite impacts, implantation of solar wind gases, radiation damage, chemical effects from solar particles and cosmic rays, interactions with the lunar atmosphere, and sputter erosion and deposition, continues to be a primary objective of lunar sample research. Electron beam studies of space weathering have focused on space weathering effects on individual glasses and minerals from the finest size fractions of lunar soils [1] and patinas on lunar rocks [2]. We are beginning a new study of space weathering of intermediate-size individual mineral grains from lunar soils. For this initial work, we chose an immature soil (see below) in order to maximize the probability that some individual grains are relatively unweathered. The likelihood of identifying a range of relatively unweathered grains in a mature soil is low, and we plan to study grains ranging from pristine to highly weathered in order to determine the progression of space weathering. Future studies will include grains from mature soils. We are currently in the process of documenting splash glass, glass pancakes, craters, and accretionary particles (glass and mineral grains) on plagioclase from our chosen soil using high-resolution field emission scanning electron microscopy (FESEM). These studies are being done concurrently with our studies of patinas on larger lunar rocks [e.g., 3]. One of our major goals is to correlate the evidence for space weathering observed in studies of the surfaces of samples with the evidence demonstrated at higher resolution (TEM) using cross-sections of samples. For example, TEM studies verified the existence of vapor deposits on soil grains [1]; we do not yet know if they can be readily distinguished by surfaces studies of samples. A wide range of textures of rims on soil grains is also clear in TEM [1]; might it be possible to correlate them with specific characteristics of weathering features seen in SEM?

  4. Probing the deep critical zone beneath the Luquillo Experimental Forest, Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buss, Heather; Brantley, S. L.; Scatena, Fred

    2013-01-01

    Recent work has suggested that weathering processes occurring in the subsurface produce the majority of silicate weathering products discharged to the world s oceans, thereby exerting a primary control on global temperature via the well-known positive feedback between silicate weathering and CO2. In addition, chemical and physical weathering processes deep within the critical zone create aquifers and control groundwater chemistry, watershed geometry and regolith formation rates. Despite this, most weathering studies are restricted to the shallow critical zone (e.g., soils, outcrops). Here we investigate the chemical weathering, fracturing and geomorphology of the deep critical zone in the Bisley watershed inmore » the Luquillo Critical Zone Observatory, Puerto Rico, from two boreholes drilled to 37.2 and 27.0 m depth, from which continuous core samples were taken. Corestones exposed aboveground were also sampled. Weathered rinds developed on exposed corestones and along fracture surfaces on subsurface rocks slough off of exposed corestones once rinds attain a thickness up to ~1 cm, preventing the corestones from rounding due to diffusion limitation. Such corestones at the land surface are assumed to be what remains after exhumation of similar, fractured bedrock pieces that were observed in the drilled cores between thick layers of regolith. Some of these subsurface corestones are massive and others are highly fractured, whereas aboveground corestones are generally massive with little to no apparent fracturing. Subsurface corestones are larger and less fractured in the borehole drilled on a road where it crosses a ridge compared to the borehole drilled where the road crosses the stream channel. Both borehole profiles indicate that the weathering zone extends to well below the stream channel in this upland catchment; hence weathering depth is not controlled by the stream level within the catchment and not all of the water in the watershed is discharged to the stream.« less

  5. Probing the deep critical zone beneath the Luquillo Experimental Forest, Puerto Rico

    USGS Publications Warehouse

    Buss, Heather L.; Brantley, Susan L.; Scatena, Fred; Bazilevskaya, Katya; Blum, Alex E.; Schulz, Marjorie S.; Jiménez, Rafael; White, Arthur F.; Rother, G.; Cole, D.

    2013-01-01

    Recent work has suggested that weathering processes occurring in the subsurface produce the majority of silicate weathering products discharged to the world's oceans, thereby exerting a primary control on global temperature via the well-known positive feedback between silicate weathering and CO2. In addition, chemical and physical weathering processes deep within the critical zone create aquifers and control groundwater chemistry, watershed geometry and regolith formation rates. Despite this, most weathering studies are restricted to the shallow critical zone (e.g. soils, outcrops). Here we investigate the chemical weathering, fracturing and geomorphology of the deep critical zone in the Bisley watershed in the Luquillo Critical Zone Observatory, Puerto Rico, from two boreholes drilled to 37.2 and 27.0 m depth, from which continuous core samples were taken. Corestones exposed aboveground were also sampled. Weathered rinds developed on exposed corestones and along fracture surfaces on subsurface rocks slough off of exposed corestones once rinds attain a thickness up to ~1 cm, preventing the corestones from rounding due to diffusion limitation. Such corestones at the land surface are assumed to be what remains after exhumation of similar, fractured bedrock pieces that were observed in the drilled cores between thick layers of regolith. Some of these subsurface corestones are massive and others are highly fractured, whereas aboveground corestones are generally massive with little to no apparent fracturing. Subsurface corestones are larger and less fractured in the borehole drilled on a road where it crosses a ridge compared with the borehole drilled where the road crosses the stream channel. Both borehole profiles indicate that the weathering zone extends to well below the stream channel in this upland catchment; hence weathering depth is not controlled by the stream level within the catchment and not all of the water in the watershed is discharged to the stream

  6. Internal Physical Features of a Land Surface Model Employing a Tangent Linear Model

    NASA Technical Reports Server (NTRS)

    Yang, Runhua; Cohn, Stephen E.; daSilva, Arlindo; Joiner, Joanna; Houser, Paul R.

    1997-01-01

    The Earth's land surface, including its biomass, is an integral part of the Earth's weather and climate system. Land surface heterogeneity, such as the type and amount of vegetative covering., has a profound effect on local weather variability and therefore on regional variations of the global climate. Surface conditions affect local weather and climate through a number of mechanisms. First, they determine the re-distribution of the net radiative energy received at the surface, through the atmosphere, from the sun. A certain fraction of this energy increases the surface ground temperature, another warms the near-surface atmosphere, and the rest evaporates surface water, which in turn creates clouds and causes precipitation. Second, they determine how much rainfall and snowmelt can be stored in the soil and how much instead runs off into waterways. Finally, surface conditions influence the near-surface concentration and distribution of greenhouse gases such as carbon dioxide. The processes through which these mechanisms interact with the atmosphere can be modeled mathematically, to within some degree of uncertainty, on the basis of underlying physical principles. Such a land surface model provides predictive capability for surface variables including ground temperature, surface humidity, and soil moisture and temperature. This information is important for agriculture and industry, as well as for addressing fundamental scientific questions concerning global and local climate change. In this study we apply a methodology known as tangent linear modeling to help us understand more deeply, the behavior of the Mosaic land surface model, a model that has been developed over the past several years at NASA/GSFC. This methodology allows us to examine, directly and quantitatively, the dependence of prediction errors in land surface variables upon different vegetation conditions. The work also highlights the importance of accurate soil moisture information. Although surface variables are predicted imperfectly due to inherent uncertainties in the modeling process, our study suggests how satellite observations can be combined with the model, through land surface data assimilation, to improve their prediction.

  7. The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: evaluating the surface energy budget in a regional climate model with automatic weather station observations

    NASA Astrophysics Data System (ADS)

    Steffensen Schmidt, Louise; Aðalgeirsdóttir, Guðfinna; Guðmundsson, Sverrir; Langen, Peter L.; Pálsson, Finnur; Mottram, Ruth; Gascoin, Simon; Björnsson, Helgi

    2017-07-01

    A simulation of the surface climate of Vatnajökull ice cap, Iceland, carried out with the regional climate model HIRHAM5 for the period 1980-2014, is used to estimate the evolution of the glacier surface mass balance (SMB). This simulation uses a new snow albedo parameterization that allows albedo to exponentially decay with time and is surface temperature dependent. The albedo scheme utilizes a new background map of the ice albedo created from observed MODIS data. The simulation is evaluated against observed daily values of weather parameters from five automatic weather stations (AWSs) from the period 2001-2014, as well as in situ SMB measurements from the period 1995-2014. The model agrees well with observations at the AWS sites, albeit with a general underestimation of the net radiation. This is due to an underestimation of the incoming radiation and a general overestimation of the albedo. The average modelled albedo is overestimated in the ablation zone, which we attribute to an overestimation of the thickness of the snow layer and not taking the surface darkening from dirt and volcanic ash deposition during dust storms and volcanic eruptions into account. A comparison with the specific summer, winter, and net mass balance for the whole of Vatnajökull (1995-2014) shows a good overall fit during the summer, with a small mass balance underestimation of 0.04 m w.e. on average, whereas the winter mass balance is overestimated by on average 0.5 m w.e. due to too large precipitation at the highest areas of the ice cap. A simple correction of the accumulation at the highest points of the glacier reduces this to 0.15 m w.e. Here, we use HIRHAM5 to simulate the evolution of the SMB of Vatnajökull for the period 1981-2014 and show that the model provides a reasonable representation of the SMB for this period. However, a major source of uncertainty in the representation of the SMB is the representation of the albedo, and processes currently not accounted for in RCMs, such as dust storms, are an important source of uncertainty in estimates of snow melt rate.

  8. Subsurface Evolution: Weathering and Mechanical Strength Reduction in Bedrock of Lower Gordon Gulch, Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Anderson, S. P.; Anderson, R. S.; Blum, A.; Foster, M. A.; Langston, A. L.

    2011-12-01

    Weathering processes drive mobile regolith production at the surface of the earth. Chemical and physical weathering weakens rock by creating porosity, opening fractures, and transforming minerals. Increased porosity provides habitat for living organisms, which aid in further breakdown of the rock, leaving it more susceptible to displacement and transport. In this study, we test mechanical and chemical characteristics of weathered profiles to better understand weathering processes. We collect shallow bedrock cores from tors and isovolumetrically weathered bedrock in lower Gordon Gulch to characterize the mechanical strength, mineralogy, and bulk chemistry of samples to track changes in the subsurface as bedrock weathers to mobile regolith. Gordon Gulch is a small (2.7 km2), E-W trending catchment within the Boulder Creek Critical Zone Observatory underlain by Pre-Cambrian gneiss and granitic bedrock. The basin is typical of the "Rocky Mountain Surface" of the Front Range, characterized by low relief, a lack of glacial or fluvial incision, and deep weathering. Although the low-curvature, low-relief Rocky Mountain Surface would appear to indicate a landscape roughly in steady-state, shallow seismic surveys (Befus et al., 2011, Vadose Zone Journal) indicate depth to bedrock is highly variable. Block style release of saprolite into mobile regolith could explain this high variability and should be observable in geotechnical testing. Gordon Gulch also displays a systematic slope-aspect dependent control on weathering, with N-facing hillslopes exhibiting deeper weathering profiles than the S-facing hillslope. We believe comparisons of paired geotechnical-testing, XRD, and XRF analyses may explain this hillslope anisotropy. Rock quality designation (RQD) values, a commonly used indicator of rock mass quality (ASTM D6032), from both N- and S- facing aspects in Gordon Gulch indicate that granitic bedrock in both outcrop and saprolitic rock masses is poor to very poor. Brazilian tensile testing of outcrop core samples show relatively low tensile failure forces, and exhibit a roughly logarithmic increase in failure force, and hence tensile strength, with depth. For many of the granitic strength profiles, the point of greatest curvature is around 0.5 m depth. Tests reveal small-scale variation in the tensile strength, suggesting that the tight fracture-spacing bounding blocks of saprolite plays an important role in regolith production. The origin of the micro- and macro-fractures is unclear. Preliminary results do not correlate clear depth-trends in mineralogy or bulk chemistry with mechanical strength. The lack of a strong signature from chemical or mineralogical weathering suggests that mechanical processes, such as frost cracking or biotite hydration, may dominate.

  9. The Roadmap of Marine Observation Development Fostering the Understanding of Weather-Climate Characteristics in the Indonesian Maritime Continent

    NASA Astrophysics Data System (ADS)

    Sakya, A. E.; Ramdhani, A.; Florida, N.; Nurhayati, N.

    2016-12-01

    Indonesian Maritime Continent (MC) territory has a unique characteristics of weather-climate variation, due to its geographical position. MC accommodates complex atmosphere-ocean interaction phenomena with huge impacts not only on inter-seasonal, but also on global weather and short-term climate variation like Monsoons, Madden-Julian Oscillation (MJO), El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole Mode (IOD). These phenomena give major contribution to the dynamics of rainfall patterns and climate variability in Indonesian MC. The above complexities are more predictable because observations in the Central and Eastern Pacific (TAO/TRITON) and Indian Ocean (RAMA) are available. Moreover, global remote-sensing observations through satellites have also been developed and its data is easily accessed. At present, maritime weather observation in Indonesia relies on global cooperation, observations carried out using remote sensing equipment, and in-situ observations made by the National Ministries/Institution. However, availability of marine observation data in the MC is very limited, especially inside Indonesian waters. It thus serves a challenge to BMKG to become more active in participating national and international partnership programs to encourage continuous in-situ marine observations. BMKG and National Oceanic and Atmospheric Administration America (NOAA) has a joint cooperation to maintain RAMA array as part of the Global Ocean Observing System (GOOS) and to deliver in-situ oceanic and atmospheric data trhough so-called Indonesian Program Initiative on Maritime Observations and Analysis (Indonesia PRIMA). Within next 5 years, BMKG will focus to foster in-situ marine observation on surface as well as underwater through various observation methods. The development of which is framed within the relevant international programs such as - among others - Year of Maritime Continent (YMC) 2017, JCOMM 5 session 2017, and Tropical Pacific Observation System 2020. These activities are also aligned with Indonesian government program envisions global maritime axis through reinforcement of weather and climate services in sea and pushes connectivity between islands, water transportation safety, natural resources marine exploration activities and other maritime activities.

  10. Multi-Scale Hydrometeorological Modeling, Land Data Assimilation and Parameter Estimation with the Land Information System

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Kumar, Sujay V.; Santanello, Joseph A., Jr.; Reichle, Rolf H.

    2009-01-01

    The Land Information System (LIS; http://lis.gsfc.nasa.gov; Kumar et al., 2006; Peters- Lidard et al.,2007) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. As such, LIS represents a step towards the next generation land component of an integrated Earth system model. In recognition of LIS object-oriented software design, use and impact in the land surface and hydrometeorological modeling community, the LIS software was selected ase co-winner of NASA's 2005 Software of the Year award. LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has evolved from two earlier efforts North American Land Data Assimilation System (NLDAS; Mitchell et al. 2004) and Global Land Data Assimilation System (GLDAS; Rodell al. 2004) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of GLDAS and NLDAS now use specific configurations of the LIS software in their current implementations. In addition, LIS was recently transitioned into operations at the US Air Force Weather Agency (AFWA) to ultimately replace their Agricultural Meteorology (AGRMET) system, and is also used routinely by NOAA's National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) for their land data assimilation systems to support weather and climate modeling. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through "plugins,". As described in Kumar et al., 2007, and demonstrated in Case et al., 2008, and Santanello et al., 2009, LIS has been coupled to the Weather Research and Forecasting (WRF) model to support studies of land-atmosphere coupling the enabling ensembles of land surface states to be tested against multiple representations of the atmospheric boundary layer. LIS has also been demonstrated for parameter estimation as described in Peters-Lidard et al. (2008) and Santanello et al. (2007), who showed that the use of sequential remotely sensed soil moisture products can be used to derive soil hydraulic and texture properties given a sufficient dynamic range in the soil moisture retrievals and accurate precipitation inputs. LIS has also recently been demonstrated for multi-model data assimilation (Kumar et al., 2008) using an Ensemble Kalman Filter for sequential assimilation of soil moisture, snow, and temperature. Ongoing work has demonstrated the value of bias correction as part of the filter, and also that of joint calibration and assimilation. Examples and case studies demonstrating the capabilities and impacts of LIS for hydrometeoroogical modeling, assimilation and parameter estimation will be presented as advancements towards the next generation of integrated observation and modeling systems.

  11. Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin

    NASA Technical Reports Server (NTRS)

    Zaitchik, Benjamin F.; Rodell, Matthew; Reichle, Rolf H.

    2007-01-01

    NASA's GRACE mission has the potential to be extremely valuable for water resources applications and global water cycle research. What makes GRACE unique among Earth Science satellite systems is that it is able to monitor variations in water stored in all forms, from snow and surface water to soil moisture to groundwater in the deepest aquifers. However, the space and time resolutions of GRACE observations are coarse. GRACE typically resolves water storage changes over regions the size of Nebraska on a monthly basis, while city-scale, daily observations would be more useful for water management, agriculture, and weather prediction. High resolution numerical (computer) hydrology models have been developed, which predict the fates of water and energy after they strike the land surface as precipitation and sunlight. These are similar to weather and climate forecast models, which simulate atmospheric processes. We integrated the GRACE observations into a hydrology model using an advanced technique called data assimilation. The results were new estimates of groundwater, soil moisture, and snow variations, which combined the veracity of GRACE with the high resolution of the model. We tested the technique over the Mississippi River basin, but it will be even more valuable in parts of the world which lack reliable data on water availability.

  12. Evaluation of surface layer flux parameterizations using in-situ observations

    NASA Astrophysics Data System (ADS)

    Katz, Jeremy; Zhu, Ping

    2017-09-01

    Appropriate calculation of surface turbulent fluxes between the atmosphere and the underlying ocean/land surface is one of the major challenges in geosciences. In practice, the surface turbulent fluxes are estimated from the mean surface meteorological variables based on the bulk transfer model combined with the Monnin-Obukhov Similarity (MOS) theory. Few studies have been done to examine the extent to which such a flux parameterization can be applied to different weather and surface conditions. A novel validation method is developed in this study to evaluate the surface flux parameterization using in-situ observations collected at a station off the coast of Gulf of Mexico. The main findings are: (a) the theoretical prediction that uses MOS theory does not match well with those directly computed from the observations. (b) The largest spread in exchange coefficients is shown in strong stable conditions with calm winds. (c) Large turbulent eddies, which depend strongly on the mean flow pattern and surface conditions, tend to break the constant flux assumption in the surface layer.

  13. WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model

    Treesearch

    Janice L. Coen; Marques Cameron; John Michalakes; Edward G. Patton; Philip J. Riggan; Kara M. Yedinak

    2012-01-01

    A wildland fire behavior module (WRF-Fire) was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and used, with fuel properties...

  14. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Veblen, David R.; Blum, Alex E.; Chipera, Stephen J.

    2006-09-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 μm thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ˜10 5 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the possibility of this amorphous layer on feldspar surface.

  15. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    USGS Publications Warehouse

    Zhu, Chen; Veblen, D.R.; Blum, A.E.; Chipera, S.J.

    2006-01-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 ??m thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ???105 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the possibility of this amorphous layer on feldspar surface. ?? 2006 Elsevier Inc. All rights reserved.

  16. Dyess AFB, Texas. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1988-01-01

    Observations (RUSSWO); Dyess AFB TX; Texas; Abilene TX; Army Airfield Abilene TX; USTX722665. 19 Abstract: A six-part statistical data summary of...ELAT. AND S TANDARD Di-V I AtIONjS PEEESNTCVIS [’j ,T INCLUDE INCOMPLETE MONTHS. FOUR OR MORE MONTHS ARE NEEDED TO ADMILTE THE SE STATISTIC S AND...TA L NLMMYt (,F OPSIRW8IONS: 93" 6LOfAL CLPUATOLOGV FRANC " PERCENTAGE FPEiUtICY OF OCCURRENCE OF SURFACE WIND DIRECTION VERSUS WIND SPEED LiSAF7 I

  17. The Synoptic Climatology of Severe Thunderstorms in Manitoba.

    NASA Astrophysics Data System (ADS)

    Ladochy, Stephen Eugene Gabriel

    The thesis presents the climatologies for Manitoba thunderstorms, hailstorms and tornadoes as well as investigates the synoptic weather conditions conducive for their development. The study not only uses standard meteorological information, but also various kinds of proxy data, in the form of damage reports. These damage reports complement the meteorological data by providing a higher resolution of observations, particularly in the sparsely populated regions. The synoptic conditions are relatively similar for all forms of severe thunderstorms, though the upper level jet stream (ULJ) is stronger for tornadoes, in general. Composite charts, drawn for 50 larger, more damaging hail days and 48 tornado days in the 1970's, helped identify important surface and upper air weather parameters and their inter -relationships with each other and the location of the storm. Time sequence composite charts were used to also show the development process in severe weather occurrences. From the composites, a synoptic weather type classification was devised with 10 categories to identify each storm by type. The most common pattern for severe weather has a strong southwesterly ULJ, with the storm occurring ahead of an advancing cold front. The ULJ patterns were drawn for each synoptic type days, showing differences between categories. The average conditions during tornado touchdowns were also seen from composite maps of surface and upper air isobaric charts. While severe thunderstorms are seen to occur under the "ideal" conditions, often described for U.S. severe weather, they can also be produced under other weather patterns and combinations of atmospheric parameters thought less favorable. The ULJ and LLJ (low-level jet stream) models used in U.S. studies do not always fit Manitoba storms, however, less favorable jet positions, at specific levels, can be compensated for by low-level advection of warm, and moist air.

  18. Sulfur Effect on the Space Weathering of Airless Bodies: Laboratory Simulation

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Okazaki, M.; Tanaka, H.; Hiroi, T.

    2017-12-01

    Space weathering is the main process that should control the change of brightness and color of the surface of airless silicate bodies such and the Moon, Mercury and asteroids. S-type asteroids show more overall depletion and reddening of the spectra, and more weakening of absorption bands than ordinary chondrites. Vapor-deposition through at high-velocity dust impacts as well as implantation of intensive solar wind ions may produce the space weathering rims bearing nano-iron particles (npFe0), responsible for spectral change. Simulation experiments using nanosecond pulse laser successfully produced vapor-deposition type npFe0 to change the optical properties [1]. A small (500m) asteroid Itokawa has a weathered surface, although its surface is rocky (rough terrain) or pebble-rich (smooth terrain). In 2011, HAYABUSA returned the particulate samples from the smooth terrain. The most notable discoveries in Itokawa particles are amorphous space-weathering rims containing npFe0. Sulfur and magnesium abundances suggest the presence of nanophase FeS (and MgS) in addition to npFe0 [2]. The presence of npFeS in asteroidal regolith is compatible with the observation of regolith breccia meteorites. On Mercury, MESSENGER revealed a high sulfur abundance (2wt% on average up to 4wt%), which can account for all of Fe by FeS. Both npFeS and npMgS may play an important role also on the surface of Mercury by lowering albedo. In our laboratory simulation using pulsed laser, spectral changes of olivine samples are facilitated when FeS is mixed (5-10wt%) (Fig.1). Nanophase Fe is confirmed by TEM. The darkening feature is reduced by additional heading at 150C, which would suggest the presence of volatile residue. Mixing of pure sulfur particles showed some, but not significant changes after laser irradiation. We acknowledge A. Miyake and A. Tsuchiyama at Kyoto U. for TEM observation. Ref: [1] S. Sasaki et al.: Nature 410 (2001) 555; [2] T. Noguchi et al.: Science 333 (2011) 1121 Fig. 1. Spectral change after pulse laser irradiation. The vertical axis shows normalized reflectance at 2500 nm-infrared darkening, whereas the horizontal axis shows the spectral slope of reflectance ratio of 1600 nm to 560 nm that would show reddening. Size range of fine FeS is smaller than 45 micron.

  19. Evapotranspiration from nonuniform surfaces - A first approach for short-term numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Chang, Jy-Tai

    1988-01-01

    Observations of surface heterogeneity of soil moisture from scales of meters to hundreds of kilometers are discussed, and a relationship between grid element size and soil moisture variability is presented. An evapotranspiration model is presented which accounts for the variability of soil moisture, standing surface water, and vegetation internal and stomatal resistance to moisture flow from the soil. The mean values and standard deviations of these parameters are required as input to the model. Tests of this model against field observations are reported, and extensive sensitivity tests are presented which explore the importance of including subgrid-scale variability in an evapotranspiration model.

  20. Zeolite Formation and Weathering Processes in Dry Valleys of Antartica: Martian Analogs

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Wentworth, S. J.; McKay, D. S.; Socki, R. A.

    2004-01-01

    Terrestrial weathering processes in cold-desert climates such as the Dry Valleys of Antarctica may provide an excellent analog to chemical weathering and diagenesis of soils on Mars. Detailed studies of soil development and the chemical and mineralogical alterations occurring within soil columns in Wright Valley, Antarctica show incredible complexity in the upper meter of soil. Previous workers noted the ice-free Dry Valleys are the best terrestrial approximations to contemporary Mars. Images returned from the Pathfinder and Spirit landers show similarities to surfaces observed within the Dry Valleys. Similarities to Mars that exist in these valleys are: mean temperatures always below freezing (-20 C), no rainfall, sparse snowfall-rapidly removed by sublimation, desiccating winds, diurnal freeze-thaw cycles (even during daylight hours), low humidity, oxidative environment, relatively high solar radiation and low magnetic fields . The Dry Valley soils contain irregular distributions and low abundances of soil microorganisms that are somewhat unusual on Earth. Physical processes-such as sand abrasion-are dominant mechanisms of rock weathering in Antarctica. However, chemical weathering is also an important process even in such extreme climates. For example, ionic migration occurs even in frozen soils along liquid films on individual soil particles. It has also been shown that water with liquid-like properties is present in soils at temperatures on the order of approx.-80 C and it has been observed that the percentage of oxidized iron increases with increasing soil age and enrichments in oxidized iron occurs toward the surface. The presence of evaporates is evident and appear similar to "evaporite sites" within the Pathfinder and Spirit sites. Evaporites indicate ionic migration and chemical activity even in the permanently frozen zone. The presence of evaporates indicates that chemical weathering of rocks and possibly soils has been active. Authogenic zeolites have been identified within the soil columns because they are fragile; i.e. they are euhedral, unabraded, and unfractured, strongly suggesting in situ formation. Their presence in Antarctic samples is another indication that diagenic processes are active in cold-desert environments. The presence of zeolites, and other clays along with halites, sulfates, carbonates, and hydrates are to be expected within the soil columns on Mars at the Gusev and Isidis Planitia regions. The presence of such water-bearing minerals beneath the surface supplies one of the requirements to support biological activity on Mars.

  1. The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: Evaluating the surface energy budget in a Regional Climate Model with automatic weather station observations

    NASA Astrophysics Data System (ADS)

    Steffensen Schmidt, Louise; Aðalgeirsdóttir, Guðfinna; Guðmundsson, Sverrir; Langen, Peter L.; Pálsson, Finnur; Mottram, Ruth; Gascoin, Simon; Björnsson, Helgi

    2017-04-01

    The evolution of the surface mass balance of Vatnajökull ice cap, Iceland, from 1981 to the present day is estimated by using the Regional Climate Model HIRHAM5 to simulate the surface climate. A new albedo parametrization is used for the simulation, which describes the albedo with an exponential decay with time. In addition, it utilizes a new background map of the ice albedo created from MODIS data. The simulation is validated against observed daily values of weather parameters from five Automatic Weather Stations (AWSs) from 2001-2014, as well as mass balance measurements from 1995-2014. The modelled albedo is overestimated at the AWS sites in the ablation zone, which we attribute to an overestimation of the thickness of the snow layer and the model not accounting for dust and ash deposition during dust storms and volcanic eruptions. A comparison with the specific summer, winter, and annual mass balance for all Vatnajökull from 1995-2014 shows a good overall fit during the summer, with the model underestimating the balance by only 0.04 m w. eq. on average. The winter balance, on the other hand, is overestimated by 0.5 m w. eq. on average, mostly due to an overestimation of the precipitation at the highest areas of the ice cap. A simple correction of the accumulation at these points reduced the error to 0.15 m w. eq. The model captures the evolution of the specific mass balance well, for example it captures an observed shift in the balance in the mid-1990s, which gives us confidence in the results for the entire model run. Our results show the importance of bare ice albedo for modelled mass balance and that processes not currently accounted for in RCMs, such as dust storms, are an important source of uncertainty in estimates of the snow melt rate.

  2. Cloudy Sounding and Cloud-Top Height Retrieval From AIRS Alone Single Field-of-View Radiance Measurements

    NASA Technical Reports Server (NTRS)

    Weisz, Elisabeth; Li, Jun; Li, Jinlong; Zhou, Daniel K.; Huang, Hung-Lung; Goldberg, Mitchell D.; Yang, Ping

    2007-01-01

    High-spectral resolution measurements from the Atmospheric Infrared Sounder (AIRS) onboard the EOS (Earth Observing System) Aqua satellite provide unique information about atmospheric state, surface and cloud properties. This paper presents an AIRS alone single field-of-view (SFOV) retrieval algorithm to simultaneously retrieve temperature, humidity and ozone profiles under all weather conditions, as well as cloud top pressure (CTP) and cloud optical thickness (COT) under cloudy skies. For optically thick cloud conditions the above-cloud soundings are derived, whereas for clear skies and optically thin cloud conditions the profiles are retrieved from 0.005 hPa down to the earth's surface. Initial validation has been conducted by using the operational MODIS (Moderate Resolution Imaging Spectroradiometer) product, ECMWF (European Center of Medium range Weather Forecasts) analysis fields and radiosonde observations (RAOBs). These inter-comparisons clearly demonstrate the potential of this algorithm to process data from 38 high-spectral infrared (IR) sounder instruments.

  3. Improved Modeling of Land-Atmosphere Interactions using a Coupled Version of WRF with the Land Information System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaCasse, Katherine M.; Santanello, Joseph A., Jr.; Lapenta, William M.; Petars-Lidard, Christa D.

    2007-01-01

    The exchange of energy and moisture between the Earth's surface and the atmospheric boundary layer plays a critical role in many hydrometeorological processes. Accurate and high-resolution representations of surface properties such as sea-surface temperature (SST), vegetation, soil temperature and moisture content, and ground fluxes are necessary to better understand the Earth-atmosphere interactions and improve numerical predictions of weather and climate phenomena. The NASA/NWS Short-term Prediction Research and Transition (SPORT) Center is currently investigating the potential benefits of assimilating high-resolution datasets derived from the NASA moderate resolution imaging spectroradiometer (MODIS) instruments using the Weather Research and Forecasting (WRF) model and the Goddard Space Flight Center Land Information System (LIS). The LIS is a software framework that integrates satellite and ground-based observational and modeled data along with multiple land surface models (LSMs) and advanced computing tools to accurately characterize land surface states and fluxes. The LIS can be run uncoupled to provide a high-resolution land surface initial condition, and can also be run in a coupled mode with WRF to integrate surface and soil quantities using any of the LSMs available in LIS. The LIS also includes the ability to optimize the initialization of surface and soil variables by tuning the spin-up time period and atmospheric forcing parameters, which cannot be done in the standard WRF. Among the datasets available from MODIS, a leaf-area index field and composite SST analysis are used to improve the lower boundary and initial conditions to the LIS/WRF coupled model over both land and water. Experiments will be conducted to measure the potential benefits from using the coupled LIS/WRF model over the Florida peninsula during May 2004. This month experienced relatively benign weather conditions, which will allow the experiments to focus on the local and mesoscale impacts of the high-resolution MODIS datasets and optimized soil and surface initial conditions. Follow-on experiments will examine the utility of such an optimized WRF configuration for more complex weather scenarios such as convective initiation. This paper will provide an overview of the experiment design and present preliminary results from selected cases in May 2004.

  4. Investigation of the Mid-Atlantic coast sudden cold water

    NASA Astrophysics Data System (ADS)

    Sun, D.; Kafatos, M.; Liu, Z.; Chiu, L.

    2003-12-01

    In the midsummer of this year, it was reported that there was a tremendous change in ocean temperature along the Mid-Atlantic coast, dropping as much as 10 degrees overnight. This sudden sea surface temperature drop affected local tourism and fishing, keep the tourists out of water at this vacation time, caused local tuna fishing hasn't been as good this year, but the cold water lured chill-loving striped bass close to shore, and has two to three weeks of great rockfish, which fishermen could normally get till fall. This article investigates this event by using satellite observations, numerical model outputs, and surface weather analysis. It is found that the North Atlantic cold current, combined with the coastal upwelling driven by the weather influence might cause this sudden cold SST event.

  5. Mars: The Viking discoveries

    NASA Technical Reports Server (NTRS)

    French, B. M.

    1977-01-01

    An overview of the Viking Mars probe is presented. The Viking spacecraft is described and a brief history of the earlier observations and exploration of Mars is provided. A number of the Viking photographs of the Martian surface are presented and a discussion of the experiments Viking performed including a confirmation of the general theory of relativity are reported. Martian surface chemistry is discussed and experiments to study the weather on Mars are reported.

  6. AIRS First Light Data: Typhoon Ramasun, July 3, 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    Four images of Tropical Cyclone Ramasun were obtained July 3, 2002 by the Atmospheric Infrared Sounder experiment system onboard NASA's Aqua spacecraft. The AIRS experiment, with its wide spectral coverage in four diverse bands, provides the ability to obtain complete 3-D observations of severe weather, from the surface, through clouds to the top of the atmosphere with unprecedented accuracy. This accuracy is the key to understanding weather patterns and improving weather predictions.

    Viewed separately, none of these images can provide accurate 3-D descriptions of the state of the atmosphere because of interference from clouds. However, the ability to make simultaneous observations at a wide range of wavelengths allows the AIRS experiment to 'see' through clouds.

    This visible light picture from the AIRS instrument provides important information about the location of the cyclone, cloud structure and distribution.

    The AIRS instrument image at 900 cm-1 (Figure 1) is from a 10 micron transparent 'window channel' that is little affected by water vapor but still cannot see through clouds. In clear areas (like the eye of the cyclone and over northwest Australia) it measures a surface temperature of about 300K (color encoded red). In cloudy areas it measures the cloud top temperature, about 200K for the cyclone, which translates to a cloud top height of about 50,000 feet.

    On the other hand, most clouds are relatively transparent in microwave, and the Advanced Microwave Sounding Instrument channel image (Figure 2) can see through all but the densest clouds. For example, Taiwan, which is covered by clouds, is clearly visible.

    The Humidity Sounder for Brazil instrument channel (Figure 3), also in the microwave, is more sensitive to both clouds and humidity. Only in clear, dry regions, such as the eye of the cyclone or the area north of Australia, does it see the surface. It is also severely affected by suspended ice particles formed by strong convection, which causes scattering and appears to be extremely cold. These blue areas indicate intense precipitation.

    The Atmospheric Infrared Sounder is an instrument onboard NASA's Aqua satellite under the space agency's Earth Observing System. The sounding system is making highly accurate measurements of air temperature, humidity, clouds and surface temperature. Data will be used to better understand weather and climate. It will also be used by the National Weather Service and the National Oceanic and Atmospheric Administration to improve the accuracy of their weather and climate models.

    The instrument was designed and built by Lockheed Infrared Imaging Systems (recently acquired by British Aerospace) under contract with JPL. The Aqua satellite mission is managed by NASA's Goddard Space Flight Center.

  7. Integrating NASA Satellite Data Into USDA World Agricultural Outlook Board Decision Making Environment To Improve Agricultural Estimates

    NASA Technical Reports Server (NTRS)

    Teng, William; Shannon, Harlan; deJeu, Richard; Kempler, Steve

    2012-01-01

    The USDA World Agricultural Outlook Board (WAOB) is responsible for monitoring weather and climate impacts on domestic and foreign crop development. One of WAOB's primary goals is to determine the net cumulative effect of weather and climate anomalies on final crop yields. To this end, a broad array of information is consulted. The resulting agricultural weather assessments are published in the Weekly Weather and Crop Bulletin, to keep farmers, policy makers, and commercial agricultural interests informed of weather and climate impacts on agriculture. The goal of the current project is to improve WAOB estimates by integrating NASA satellite precipitation and soil moisture observations into WAOB's decision making environment. Precipitation (Level 3 gridded) is from the TRMM Multi-satellite Precipitation Analysis (TMPA). Soil moisture (Level 2 swath and Level 3 gridded) is generated by the Land Parameter Retrieval Model (LPRM) and operationally produced by the NASA Goddard Earth Sciences Data and Information Services Center (GBS DISC). A root zone soil moisture (RZSM) product is also generated, via assimilation of the Level 3 LPRM data by a land surface model (part of a related project). Data services to be available for these products include GeoTIFF, GDS (GrADS Data Server), WMS (Web Map Service), WCS (Web Coverage Service), and NASA Giovanni. Project benchmarking is based on retrospective analyses of WAOB analog year comparisons. The latter are between a given year and historical years with similar weather patterns and estimated crop yields. An analog index (AI) was developed to introduce a more rigorous, statistical approach for identifying analog years. Results thus far show that crop yield estimates derived from TMPA precipitation data are closer to measured yields than are estimates derived from surface-based precipitation measurements. Work is continuing to include LPRM surface soil moisture data and model-assimilated RZSM.

  8. Clay Mineralogy and Crystallinity as a Climatic Indicator: Evidence for Both Cold and Temperate Conditions on Early Mars

    NASA Technical Reports Server (NTRS)

    Horgan, B.; Rutledge, A.; Rampe, E. B.

    2015-01-01

    Surface weathering on Earth is driven by precipitation (rain/snow melt). Here we summarize the influence of climate on minerals produced during surface weathering, based on terrestrial literature and our new laboratory analyses of weathering products from glacial analog sites. By comparison to minerals identified in likely surface environments on Mars, we evaluate the implications for early martian climate.

  9. Environmental Education Tips: Weather Activities.

    ERIC Educational Resources Information Center

    Brainard, Audrey H.

    1989-01-01

    Provides weather activities including questions, on weather, heating the earth's surface, air, tools of the meteorologist, clouds, humidity, wind, and evaporation. Shows an example of a weather chart activity. (RT)

  10. Surface Formation and Preservation of Very-Low-Porosity Thin Crusts ( "Glazes") at the WAIS Divide Site, West Antarctica

    NASA Astrophysics Data System (ADS)

    Fegyveresi, J. M.; Alley, R. B.; Muto, A.; Spencer, M. K.; Orsi, A. J.

    2014-12-01

    Observations at the WAIS Divide site show that near-surface snow is strongly altered by weather-related processes, producing features that are recognizable in the ice core. Prominent reflective "glazed" surface crusts develop frequently during the summer. Observations during austral summers 2008-09 through 2012-13, supplemented by Automated Weather Station data with insolation sensors, documented formation of such crusts during relatively low-wind, low-humidity, clear-sky periods with intense daytime sunshine. After formation, such glazed surfaces typically developed cracks in a polygonal pattern with few-meter spacing, likely from thermal contraction at night. Cracking was commonest when several clear days occurred in succession, and was generally followed by surface hoar growth. Temperature and radiation observations showed that solar heating often warmed the near-surface snow above the air temperature, contributing to mass transfer favoring crust formation. Subsequent investigation of the WDC06A deep ice core revealed that preserved surface crusts were seen in the core at an average rate of ~4.3 ± 2 yr-1 over the past 5500 years. They are about 40% more common in layers deposited during summers than during winters. The total summertime crust frequency also covaried with site temperature, with more present during warmer periods. We hypothesize that the mechanism for glaze formation producing single-grain-thick very-low-porosity thin crusts (i.e. "glazes") involves additional in-filling of open pores. The thermal conductivity of ice greatly exceeds that of air, so heat transport in firn is primarily conductive. Because heat flow is primarily through the grain structure, for a temperature inversion (colder upper surface) beneath a growing thin crust at the upper surface, pores will be colder than interconnected grains, favoring mass transport into those pores. Transport may occur by vapor, surface, or volume diffusion, although vapor diffusion and surface transport in pre-melted films are likely to dominate. On-site wintertime observations have not been made, but crust formation during winter may be favored by greater wind-packing, large meteorologically-forced temperature changes reaching as high as -15oC in midwinter, and perhaps longer intervals of surface stability.

  11. Thermal stress weathering and the spalling of Antarctic rocks

    NASA Astrophysics Data System (ADS)

    Lamp, J. L.; Marchant, D. R.; Mackay, S. L.; Head, J. W.

    2017-01-01

    Using in situ field measurements, laboratory analyses, and numerical modeling, we test the potential efficacy of thermal stress weathering in the flaking of millimeter-thick alteration rinds observed on cobbles and boulders of Ferrar Dolerite on Mullins Glacier, McMurdo Dry Valleys (MDV). In particular, we examine whether low-magnitude stresses, arising from temperature variations over time, result in thermal fatigue weathering, yielding slow crack propagation along existing cracks and ultimate flake detachment. Our field results show that during summer months clasts of Ferrar Dolerite experience large-temperature gradients across partially detached alteration rinds (>4.7°C mm-1) and abrupt fluctuations in surface temperature (up to 12°C min-1); the latter are likely due to the combined effects of changing solar irradiation and cooling from episodic winds. The results of our thermal stress model, coupled with subcritical crack growth theory, suggest that thermal stresses induced at the base of thin alteration rinds 2 mm thick, common on rocks exposed for 105 years, may be sufficient to cause existing cracks to propagate under present-day meteorological forcing, eventually leading to rind detachment. The increase in porosity observed within alteration rinds relative to unaltered rock interiors, as well as predicted decreases in rind strength based on allied weathering studies, likely facilitates thermal stress crack propagation through a reduction of fracture toughness. We conclude that thermal stress weathering may be an active, though undervalued, weathering process in hyperarid, terrestrial polar deserts such as the stable upland region of the MDV.

  12. Improving wind energy forecasts using an Ensemble Kalman Filter data assimilation technique in a fully coupled hydrologic and atmospheric model

    NASA Astrophysics Data System (ADS)

    Williams, J. L.; Maxwell, R. M.; Delle Monache, L.

    2012-12-01

    Wind power is rapidly gaining prominence as a major source of renewable energy. Harnessing this promising energy source is challenging because of the chaotic nature of wind and its propensity to change speed and direction over short time scales. Accurate forecasting tools are critical to support the integration of wind energy into power grids and to maximize its impact on renewable energy portfolios. Numerous studies have shown that soil moisture distribution and land surface vegetative processes profoundly influence atmospheric boundary layer development and weather processes on local and regional scales. Using the PF.WRF model, a fully-coupled hydrologic and atmospheric model employing the ParFlow hydrologic model with the Weather Research and Forecasting model coupled via mass and energy fluxes across the land surface, we have explored the connections between the land surface and the atmosphere in terms of land surface energy flux partitioning and coupled variable fields including hydraulic conductivity, soil moisture and wind speed, and demonstrated that reductions in uncertainty in these coupled fields propagate through the hydrologic and atmospheric system. We have adapted the Data Assimilation Research Testbed (DART), an implementation of the robust Ensemble Kalman Filter data assimilation algorithm, to expand our capability to nudge forecasts produced with the PF.WRF model using observational data. Using a semi-idealized simulation domain, we examine the effects of assimilating observations of variables such as wind speed and temperature collected in the atmosphere, and land surface and subsurface observations such as soil moisture on the quality of forecast outputs. The sensitivities we find in this study will enable further studies to optimize observation collection to maximize the utility of the PF.WRF-DART forecasting system.

  13. Adaptive Blending of Model and Observations for Automated Short-Range Forecasting: Examples from the Vancouver 2010 Olympic and Paralympic Winter Games

    NASA Astrophysics Data System (ADS)

    Bailey, Monika E.; Isaac, George A.; Gultepe, Ismail; Heckman, Ivan; Reid, Janti

    2014-01-01

    An automated short-range forecasting system, adaptive blending of observations and model (ABOM), was tested in real time during the 2010 Vancouver Olympic and Paralympic Winter Games in British Columbia. Data at 1-min time resolution were available from a newly established, dense network of surface observation stations. Climatological data were not available at these new stations. This, combined with output from new high-resolution numerical models, provided a unique and exciting setting to test nowcasting systems in mountainous terrain during winter weather conditions. The ABOM method blends extrapolations in time of recent local observations with numerical weather predictions (NWP) model predictions to generate short-range point forecasts of surface variables out to 6 h. The relative weights of the model forecast and the observation extrapolation are based on performance over recent history. The average performance of ABOM nowcasts during February and March 2010 was evaluated using standard scores and thresholds important for Olympic events. Significant improvements over the model forecasts alone were obtained for continuous variables such as temperature, relative humidity and wind speed. The small improvements to forecasts of variables such as visibility and ceiling, subject to discontinuous changes, are attributed to the persistence component of ABOM.

  14. Investigating Surface Bias Errors in the Weather Research and Forecasting (WRF) Model using a Geographic Information System (GIS)

    DTIC Science & Technology

    2015-02-01

    WRF ) Model using a Geographic Information System (GIS) by Jeffrey A Smith, Theresa A Foley, John W Raby, and Brian Reen...ARL-TR-7212 ● FEB 2015 US Army Research Laboratory Investigating Surface Bias Errors in the Weather Research and Forecasting ( WRF ) Model...SUBTITLE Investigating surface bias errors in the Weather Research and Forecasting ( WRF ) Model using a Geographic Information System (GIS) 5a

  15. Geomorphology's role in the study of weathering of cultural stone

    NASA Astrophysics Data System (ADS)

    Pope, Gregory A.; Meierding, Thomas C.; Paradise, Thomas R.

    2002-10-01

    Great monumental places—Petra, Giza, Angkor, Stonehenge, Tikal, Macchu Picchu, Rapa Nui, to name a few—are links to our cultural past. They evoke a sense of wonderment for their aesthetic fascination if not for their seeming permanence over both cultural and physical landscapes. However, as with natural landforms, human constructs are subject to weathering and erosion. Indeed, many of our cultural resources suffer from serious deterioration, some natural, some enhanced by human impact. Groups from the United Nations to local civic and tourism assemblies are deeply interested in maintaining and preserving such cultural resources, from simple rock art to great temples. Geomorphologists trained in interacting systems, process and response to thresholds, rates of change over time, and spatial variation of weathering processes and effects are able to offer insight into how deterioration occurs and what can be done to ameliorate the impact. Review of recent literature and case studies presented here demonstrate methodological and theoretical advances that have resulted from the study of cultural stone weathering. Because the stone was carved at a known date to a "baseline" or zero-datum level, some of the simplest methods (e.g., assessing surface weathering features or measuring surface recession in the field) provide useful data on weathering rates and processes. Such data are difficult or impossible to obtain in "natural" settings. Cultural stone weathering studies demonstrate the importance of biotic and saline weathering agents and the significance of weathering factors such as exposure (microclimate) and human impact. More sophisticated methods confirm these observations, but also reveal discrepancies between field and laboratory studies. This brings up two important caveats for conservators and geomorphologists. For the conservator, are laboratory and natural setting studies really analogous and useful for assessing stone damage? For the geomorphologist, does cultural stone data have any real relevance to the natural environment? These are questions for future research and debate. In any event, cultural stone weathering studies have been productive for both geomorphologists and conservators. Continued collaboration and communication between the geomorphic, historic preservation, archaeological, and engineering research communities are encouraged.

  16. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  17. Biogenic isoprene emissions driven by regional weather predictions using different initialization methods: case studies during the SEAC4RS and DISCOVER-AQ airborne campaigns

    NASA Astrophysics Data System (ADS)

    Huang, Min; Carmichael, Gregory R.; Crawford, James H.; Wisthaler, Armin; Zhan, Xiwu; Hain, Christopher R.; Lee, Pius; Guenther, Alex B.

    2017-08-01

    Land and atmospheric initial conditions of the Weather Research and Forecasting (WRF) model are often interpolated from a different model output. We perform case studies during NASA's SEAC4RS and DISCOVER-AQ Houston airborne campaigns, demonstrating that using land initial conditions directly downscaled from a coarser resolution dataset led to significant positive biases in the coupled NASA-Unified WRF (NUWRF, version 7) surface and near-surface air temperature and planetary boundary layer height (PBLH) around the Missouri Ozarks and Houston, Texas, as well as poorly partitioned latent and sensible heat fluxes. Replacing land initial conditions with the output from a long-term offline Land Information System (LIS) simulation can effectively reduce the positive biases in NUWRF surface air temperature by ˜ 2 °C. We also show that the LIS land initialization can modify surface air temperature errors almost 10 times as effectively as applying a different atmospheric initialization method. The LIS-NUWRF-based isoprene emission calculations by the Model of Emissions of Gases and Aerosols from Nature (MEGAN, version 2.1) are at least 20 % lower than those computed using the coarser resolution data-initialized NUWRF run, and are closer to aircraft-observation-derived emissions. Higher resolution MEGAN calculations are prone to amplified discrepancies with aircraft-observation-derived emissions on small scales. This is possibly a result of some limitations of MEGAN's parameterization and uncertainty in its inputs on small scales, as well as the representation error and the neglect of horizontal transport in deriving emissions from aircraft data. This study emphasizes the importance of proper land initialization to the coupled atmospheric weather modeling and the follow-on emission modeling. We anticipate it to also be critical to accurately representing other processes included in air quality modeling and chemical data assimilation. Having more confidence in the weather inputs is also beneficial for determining and quantifying the other sources of uncertainties (e.g., parameterization, other input data) of the models that they drive.

  18. Tool to assess contents of ARM surface meteorology network netCDF files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staudt, A.; Kwan, T.; Tichler, J.

    The Atmospheric Radiation Measurement (ARM) Program, supported by the US Department of Energy, is a major program of atmospheric measurement and modeling designed to improve the understanding of processes and properties that affect atmospheric radiation, with a particular focus on the influence of clouds and the role of cloud radiative feedback in the climate system. The ARM Program will use three highly instrumented primary measurement sites. Deployment of instrumentation at the first site, located in the Southern Great Plains of the United States, began in May of 1992. The first phase of deployment at the second site in the Tropicalmore » Western Pacific is scheduled for late in 1995. The third site will be in the North Slope of Alaska and adjacent Arctic Ocean. To meet the scientific objectives of ARM, observations from the ARM sites are combined with data from other sources; these are called external data. Among these external data sets are surface meteorological observations from the Oklahoma Mesonet, a Kansas automated weather network, the Wind Profiler Demonstration Network (WPDN), and the National Weather Service (NWS) surface stations. Before combining these data with the Surface Meteorological Observations Station (SMOS) ARM data, it was necessary to assess the contents and quality of both the ARM and the external data sets. Since these data sets had previously been converted to netCDF format for use by the ARM Science Team, a tool was written to assess the contents of the netCDF files.« less

  19. Surface transportation weather decision support requirements : user needs and appendices : advanced-integrated decision support using weather information for surface transportation decision makers

    DOT National Transportation Integrated Search

    2000-01-24

    The Federal Highway Administration (FHWA) of the U.S. Department of Transportation (USDOT) : has a responsibility to coordinate and promote projects that will bring the best information on weather to decision makers, in order to improve performance o...

  20. Evaluation of several finishes on severely weathered wood

    Treesearch

    R. Sam Williams; Peter Sotos; William Feist

    1999-01-01

    Alkyd-, oil-modified-latex-, and latex-based finishes were applied to severely weathered western redcedar and redwood boards that did not have any surface treatment to ameliorate the weathered surface prior to painting. Six finishes were evaluated annually for 11 years for cracking, flaking, erosion, mildew growth, discoloration, and general appearance. Low-solids-...

  1. Surface characterization of weathered wood-plastic composites produced from modified wood flour

    Treesearch

    James S. Fabiyi; Armando G. McDonald; Nicole M. Stark

    2007-01-01

    The effects of weathering on the surface properties of wood-plastic composites (WPC) were examined. High-density polyethylene (HDPE) based WPCs made from modified wood flour (untreated, extractives free, and holocellulose (delignified) fibers) were subjected to accelerated (xenon-arc) weathering. Colorimetry and Fourier-transform infrared spectroscopy were employed to...

  2. Spectral decomposition of asteroid Itokawa based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho

    2018-01-01

    The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (< a few million years) for Itokawa, consistent with the cosmic-ray-exposure time of returned samples from Itokawa. The Itokawa PC score distribution exhibits asymmetry along the evolution track, strongly suggesting that space weathering has begun saturated on this young asteroid. The freshest spectrum found on Itokawa exhibits a clear sign for space weathering, indicating again that space weathering occurs very rapidly on this body. We also conducted PCA on Itokawa spectra alone and compared the results with space-weathering experiments. The obtained results indicate that the first principal component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.

  3. Comparison of kinetic and air temperatures in Budapest aiming applications in weather forecasting

    NASA Astrophysics Data System (ADS)

    Mika, Janos; Nemeth, Akos; Bela Olah, Andras; Dezso, Zsuzsanna

    2010-05-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) based kinetic temperature data are compared with the surface air temperature data at the four weather stations in Budapest, Hun-gary. Dependence of these temperature characteristics on weather conditions, characterised by macrosynoptic types and by objective weather types, is in the focus of the study. Day- and night-time kinetic temperature series are used from the period 2001-2008. Four automatic stations are also used as the surface-based control variables. The four MODIS-pixels, covering one station, each, are the sites of our comparison. One of the four stations has strictly urban situation at the roof level in a strongly built-in region of Budapest. Another one, used as background rural station is at the east-west edge of the town with gar-dened environment. Two other stations are positioned near the river Danube at the northern and southern edges of Budapest, still under mezo-scale effect of the city. The number of elaborated hourly values is 4300-4400 above each pixel, depending on the cloudiness. At the four station automatic observations on air temperature, cloudiness (=0), relative humidity and wind-speed are observed in the hours of the MODIS observations. From these elements air temperature is used for comparison with the satellite-based kinetic temperature, and also as the main components of the Physiologically Equivalent Temperature (PET), de-rived to characterise usefulness of the kinetic temperature. Our first aim is to specify detailed relationship between the two temperatures consider-ing the seasonal and diurnal cycles and synoptic situation. This comparison is also performed by using the PET to establish which kind of temperature reminds this human bioclimatic in-dex better. If we could establish effective relationships with the synoptic situations (or weather types) we could use them in two further applications. The first one is the everyday forecasting of dangerous situations within the city on the days when the rural weather forecast claims about extreme temperature even at the rural sites. On summer hot days the weather-dependent UHI increases but on cold winter days decreases the risks on human health and technical equipments. The other scientific problem is whether the long-term season-dependent changes of the atmospheric circulation can modify the behaviour of the UHI even without fur-ther changes in the building in of the city. To answer this question the established relation-ships are combined with regional climate change projections of the circulation conditions.

  4. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Nebula Cloud Computing Environment

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Case, Jonathan L.; Venner, Jason; Moreno-Madrinan, Max. J.; Delgado, Francisco

    2012-01-01

    Over the past two years, scientists in the Earth Science Office at NASA fs Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real ]time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA fs Short ]term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface ] and satellite ]based observations.

  5. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Nebula Cloud Computing Environment

    NASA Astrophysics Data System (ADS)

    Molthan, A.; Case, J.; Venner, J.; Moreno-Madriñán, M. J.; Delgado, F.

    2012-12-01

    Over the past two years, scientists in the Earth Science Office at NASA's Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real-time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA's Short-term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface- and satellite-based observations.

  6. Comment on [open quotes]Weathering, plants, and the long-term carbon cycle[close quotes] by Robert A. Berner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, T.A.

    1993-05-01

    Berner (1992) has asserted that Jackson and Keller (1970a) misinterpreted the conspicuous reddish crust which forms on young lava flows in areas of rock surface colonised by the lichen Stereocaulon vulcani (but not in adjacent areas of bare rock) in regions of high rain fall on the Island of Hawaii. Jackson (1968) and Jackson and Keller (1970a,b) concluded from the results of a thorough interdisiplinary investigation employing a wide spectrum of techniques and information that his reddish coating, is an intensely leached weathering crust formed in situ, and that biochemical activities of the lichen or its associated microflora not onlymore » accelerate the chemical weathering of the rock by orders of magnitude but also determine the specific mineralogical and chemical properties of the weathering products. Berner, however, maintained that the reddish crust is in reality a deposit of [open quotes]wind-blown soil dust[close quotes] entrapped by a sticky organic substance secreted by the lichen. Berner fixed his attention on just one aspect of the many-sided body of interrelated data on which the conclusions of Jackson and Keller are founded-the observation that the weathering crust is much thicker on lichen-covered rock surfaces than on lichen-free [open quotes]control[close quotes] areas of the same rock. The totality of published evidence overwhelmingly supports the conclusions of Jackson and Keller an demonstrates that Berner's rival hypothesis is untenable.« less

  7. Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steefel, Carl; Hausrath, E.M.; Navarre-Sitchler, A.K.

    2008-03-15

    Where Martian rocks have been exposed to liquid water, chemistry versus depth profiles could elucidate both Martian climate history and potential for life. The persistence of primary minerals in weathered profiles constrains the exposure time to liquid water: on Earth, mineral persistence times range from {approx}10 ka (olivine) to {approx}250 ka (glass) to {approx}1Ma (pyroxene) to {approx}5Ma (plagioclase). Such persistence times suggest mineral persistence minima on Mars. However, Martian solutions may have been more acidic than on Earth. Relative mineral weathering rates observed for basalt in Svalbard (Norway) and Costa Rica demonstrate that laboratory pH trends can be used tomore » estimate exposure to liquid water both qualitatively (mineral absence or presence) and quantitatively (using reactive transport models). Qualitatively, if the Martian solution pH > {approx}2, glass should persist longer than olivine; therefore, persistence of glass may be a pH-indicator. With evidence for the pH of weathering, the reactive transport code CrunchFlow can quantitatively calculate the minimum duration of exposure to liquid water consistent with a chemical profile. For the profile measured on the surface of Humphrey in Gusev Crater, the minimum exposure time is 22 ka. If correct, this estimate is consistent with short-term, episodic alteration accompanied by ongoing surface erosion. More of these depth profiles should be measured to illuminate the weathering history of Mars.« less

  8. Space Weathering of Olivine in Lunar Soils: A Comparison to Itokawa Regolith Samples

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.

    2014-01-01

    Regolith particles from airless bodies preserve a record of the space weathering processes that occurred during their surface exposure history. These processes have major implications for interpreting remote-sensing data from airless bodies. Solar wind irradiation effects occur in the rims of exposed grains, and impact processes result in the accumulation of vapordeposited elements and other surface-adhering materials. The grains returned from the surface of Itokawa by the Hayabusa mission allow the space weathering "style" of a chondritic, asteroidal "soil" to be compared to the lunar case. Here, we present new studies of space-weathered olivine grains from lunar soils, and compare these results to olivine grains from Itokawa. Samples and Methods: We analyzed microtome thin sections of olivine grains from the 20-45 micron fractions of three lunar soils: 71061, 71501 and 10084 (immature, submature and mature, respectively). Imaging and analytical data were obtained using a JEOL 2500SE 200kV field-emission scanning-transmission electron microscope equipped with a thin-window energy-dispersive x-ray spectrometer. Similar analyses were obtained from three Hayabusa olivine grains. Results and Discussion: We observed lunar grains showing a range of solar flare track densities (from <10(exp 9) to approx.10(exp 12)/sq cm). The lunar olivines all show disordered, highly strained, nanocrystalline rims up to 150-nm thick. The disordered rim thickness is positively correlated with solar flare track density. All of the disordered rims are overlain by a Si-rich amorphous layer, ranging up to 50-nm thick, enriched in elements that are not derived from the host olivine (e.g., Ca, Al, and Ti). The outmost layer represents impact-generated vapor deposits typically observed on other lunar soil grains. The Hayabusa olivine grains show track densities <10(exp 10)/sq cm and display disordered rims 50- to 100-nm thick. The track densities are intermediate to those observed in olivines in immature and submature lunar soils and indicate surface exposures of approx. 10(exp 5) years. The outermost few nanometers of the disordered rims on Hayabusa olivines are more Si-rich and Mg- and Fe-depleted relative to the cores of the grains and likely represent a minor accumulation of impact-generated vapors or sputter deposits. Nanophase Fe metal particles are less abundant in the Hayabusa rims compared to the rims on lunar grains. Conclusions: The Hayabusa and lunar olivine grain rims have widths and microstructures consistent with formation from atomic displacement damage from solar wind ions. The space weathering features in the Hayabusa grains are similar to those observed in olivines from immature to submature lunar soils. A major difference, however, is that the Hayabusa grains appear to lack the hypervelocity impact products (melt spherules, thick vapor deposits, and abundant nanophase Fe metal particles) that are common in lunar soil grains with a similar exposure history.

  9. Reese AFB, Lubbock, Texas. Revised Uniform Summary of Surface Weather Observations (RUSSWO)

    DTIC Science & Technology

    1979-07-16

    DewPomn i 264(𔃾IT’ 48120 30 .6 9,)L2 1 1 3 Z .71 1 V-7 i .....- ’<’ # I I GL’’B𔃾 . CLIIATLdfY ’ A,!C:’i USAFETAC PSYCHROMETRIC SUMMARYA . tIRt ’-IEATFER

  10. An Observation-base investigation of nudging in WRF for downscaling surface climate information to 12-km Grid Spacing

    EPA Science Inventory

    Previous research has demonstrated the ability to use the Weather Research and Forecast (WRF) model and contemporary dynamical downscaling methods to refine global climate modeling results to a horizontal resolution of 36 km. Environmental managers and urban planners have expre...

  11. The impact of satellite temperature soundings on the forecasts of a small national meteorological service

    NASA Technical Reports Server (NTRS)

    Wolfson, N.; Thomasell, A.; Alperson, Z.; Brodrick, H.; Chang, J. T.; Gruber, A.; Ohring, G.

    1984-01-01

    The impact of introducing satellite temperature sounding data on a numerical weather prediction model of a national weather service is evaluated. A dry five level, primitive equation model which covers most of the Northern Hemisphere, is used for these experiments. Series of parallel forecast runs out to 48 hours are made with three different sets of initial conditions: (1) NOSAT runs, only conventional surface and upper air observations are used; (2) SAT runs, satellite soundings are added to the conventional data over oceanic regions and North Africa; and (3) ALLSAT runs, the conventional upper air observations are replaced by satellite soundings over the entire model domain. The impact on the forecasts is evaluated by three verification methods: the RMS errors in sea level pressure forecasts, systematic errors in sea level pressure forecasts, and errors in subjective forecasts of significant weather elements for a selected portion of the model domain. For the relatively short range of the present forecasts, the major beneficial impacts on the sea level pressure forecasts are found precisely in those areas where the satellite sounding are inserted and where conventional upper air observations are sparse. The RMS and systematic errors are reduced in these regions. The subjective forecasts of significant weather elements are improved with the use of the satellite data. It is found that the ALLSAT forecasts are of a quality comparable to the SAR forecasts.

  12. Coupling the Community Atmospheric Model (CAM) with the Statistical Spectral Interpolation (SSI) System under ESMF

    NASA Technical Reports Server (NTRS)

    daSilva, Arlindo

    2004-01-01

    The first set of interoperability experiments illustrates the role ESMF can play in integrating the national Earth science resources. Using existing data assimilation technology from NCEP and the National Weather Service, the Community Atmosphere Model (CAM) was able to ingest conventional and remotely sensed observations, a capability that could open the door to using CAM for weather as well as climate prediction. CAM, which includes land surface capabilities, was developed by NCAR, with key components from GSFC. In this talk we will describe the steps necessary for achieving the coupling of these two systems.

  13. Micro weather stations for in situ measurements in the Martian planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Kaiser, W. J.; Kenny, T. W.; Vanzandt, T. R.; Tillman, J. E.

    1992-01-01

    Viking Lander meteorology measurements show that the Martian planetary boundary layer (PBL) has large diurnal and seasonal variations in pressure, wind velocity, relative humidity, and airborne dust loading. An even larger range of conditions was inferred from remote sensing observations acquired by the Mariner 9 and Viking orbiters. Numerical models indicate that these changes may be accompanied by dramatic vertical and horizontal wind shears (100 m/s/km) and rapid changes in the static stability. In-situ measurements from a relatively small number surface stations could yield global constraints on the Martian climate and atmospheric general circulation by providing ground truth for remote sensing instruments on orbiters. A more complete understanding of the meteorology of the PBL is an essential precursor to manned missions to Mars because this will be their working environment. In-situ measurements are needed for these studies because the spatial and temporal scales that characterize the important meteorological processes near the surface cannot be resolved from orbit. The Mars Environmental Survey (MESUR) Program will provide the first opportunity to deploy a network of surface weather stations for a comprehensive investigation of the Martian PBL. The feasibility and utility of a network of micro-weather stations for making in-situ meteorological measurements in the Martian PBL are assessed.

  14. Accumulation mechanisms and the weathering of Antarctic equilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Benoit, P. H.; Sears, D. W. G.

    1999-06-01

    Induced thermoluminescence (TL) is used to quantitatively evaluate the degree of weathering of meteorites found in Antarctica. We find a weak correlation between TL sensitivity and descriptions of weathering in hand specimens, the highly weathered meteorites having lower TL sensitivity than unweathered meteorites. Analysis of samples taken throughout large meteorites shows that the heterogeneity in TL sensitivity within meteorite finds is not large relative to the range exhibited by different weathered meteorites. The TL sensitivity values can be restored by minimal acid washing, suggesting the lower TL sensitivities of weathered meteorites reflects thin weathering rims on mineral grains or coating of these grains by iron oxides produced by hydration and oxidation of metal and sulfides. Small meteorites may tend to be more highly weathered than large meteorites at the Allan Hills ice fields. We find that meteorite fragments >150 g may take up to 300,000 years to reach the highest degrees of weathering, while meteorites <150 g require <40,000 years. However, at other fields, local environmental conditions and variability in terrestrial history are more important in determining weathering than size alone. Weathering correlates poorly with surface exposure duration, presumably because weathering occurs primarily during interglacial periods. The Allan Hills locality has served as a fairly stable surface over the last 100,000 years or so and has efficiently preserved both small and large meteorites. Meteorites from Lewis Cliff, however, have experienced extensive weathering, probably because of increased surface melt water from nearby outcrops. Meteorites from the Elephant Moraine locality tend to exhibit only minor degrees of weathering, but small meteorites are less weathered than large meteorites, which we suggest is due to the loss of small meteorites by aeolian transport.

  15. Homogenizing Surface and Satellite Observations of Cloud. Aspects of Bias in Surface Data.

    DTIC Science & Technology

    1987-11-10

    both ( pannus ), usually below fractus of bad weather, or both ( pannus ), usu- Altostratus or Nimbostratus ally below Altostratus or Nimbostratus 8 Cumulus...Stratocumulus, Stratus of an anvil; either accompanied or not by Cu- or pannus mulonimbus without anvil or fibrous upper part, by Cumulus, Stratocumulus...Stratus or pannus CL clouds invisible owing to darkness, fog, / Stratocumulus, Stratus, Cumulus and Cu- blowing dust or sand, or other similar mulonimbus

  16. Surface Observation Climatic Summaries (SOCS) for K. I. Sawyer AFB, Michigan

    DTIC Science & Technology

    1989-03-01

    OPERATING LOCATION A, USkFfTAC 6C. -ADDRESS: FEDERAL BUJILDING, ASHEVILLE, NC 28801-2723 11. TITLE: SURFACE OBSERVAT ION CLIMAAT -ICSUM-MARIEfS (SMCS...MENT, 09 REASON FfR CHANGE TRANSMITTER RECORDER GROUND ---- ------------------------------------------------------ AN/GMO-I ML-204A 83 FT 4 TAT~4Y A...WEATHER STATION. NhTE : R1FPORTING PRACTICESHAVE CHANGED WITH TIME. METAR AND SYNOPTIC REPORTING STATIONS RECORD (ON AWS FORMS 10/IDA) AND TRANSMIT

  17. Impact of derived global weather data on simulated crop yields

    PubMed Central

    van Wart, Justin; Grassini, Patricio; Cassman, Kenneth G

    2013-01-01

    Crop simulation models can be used to estimate impact of current and future climates on crop yields and food security, but require long-term historical daily weather data to obtain robust simulations. In many regions where crops are grown, daily weather data are not available. Alternatively, gridded weather databases (GWD) with complete terrestrial coverage are available, typically derived from: (i) global circulation computer models; (ii) interpolated weather station data; or (iii) remotely sensed surface data from satellites. The present study's objective is to evaluate capacity of GWDs to simulate crop yield potential (Yp) or water-limited yield potential (Yw), which can serve as benchmarks to assess impact of climate change scenarios on crop productivity and land use change. Three GWDs (CRU, NCEP/DOE, and NASA POWER data) were evaluated for their ability to simulate Yp and Yw of rice in China, USA maize, and wheat in Germany. Simulations of Yp and Yw based on recorded daily data from well-maintained weather stations were taken as the control weather data (CWD). Agreement between simulations of Yp or Yw based on CWD and those based on GWD was poor with the latter having strong bias and large root mean square errors (RMSEs) that were 26–72% of absolute mean yield across locations and years. In contrast, simulated Yp or Yw using observed daily weather data from stations in the NOAA database combined with solar radiation from the NASA-POWER database were in much better agreement with Yp and Yw simulated with CWD (i.e. little bias and an RMSE of 12–19% of the absolute mean). We conclude that results from studies that rely on GWD to simulate agricultural productivity in current and future climates are highly uncertain. An alternative approach would impose a climate scenario on location-specific observed daily weather databases combined with an appropriate upscaling method. PMID:23801639

  18. Impact of derived global weather data on simulated crop yields.

    PubMed

    van Wart, Justin; Grassini, Patricio; Cassman, Kenneth G

    2013-12-01

    Crop simulation models can be used to estimate impact of current and future climates on crop yields and food security, but require long-term historical daily weather data to obtain robust simulations. In many regions where crops are grown, daily weather data are not available. Alternatively, gridded weather databases (GWD) with complete terrestrial coverage are available, typically derived from: (i) global circulation computer models; (ii) interpolated weather station data; or (iii) remotely sensed surface data from satellites. The present study's objective is to evaluate capacity of GWDs to simulate crop yield potential (Yp) or water-limited yield potential (Yw), which can serve as benchmarks to assess impact of climate change scenarios on crop productivity and land use change. Three GWDs (CRU, NCEP/DOE, and NASA POWER data) were evaluated for their ability to simulate Yp and Yw of rice in China, USA maize, and wheat in Germany. Simulations of Yp and Yw based on recorded daily data from well-maintained weather stations were taken as the control weather data (CWD). Agreement between simulations of Yp or Yw based on CWD and those based on GWD was poor with the latter having strong bias and large root mean square errors (RMSEs) that were 26-72% of absolute mean yield across locations and years. In contrast, simulated Yp or Yw using observed daily weather data from stations in the NOAA database combined with solar radiation from the NASA-POWER database were in much better agreement with Yp and Yw simulated with CWD (i.e. little bias and an RMSE of 12-19% of the absolute mean). We conclude that results from studies that rely on GWD to simulate agricultural productivity in current and future climates are highly uncertain. An alternative approach would impose a climate scenario on location-specific observed daily weather databases combined with an appropriate upscaling method. © 2013 John Wiley & Sons Ltd.

  19. Space weather in the EU's FP7 Space Theme. Preface to the special issue on "EU-FP7 funded space weather projects"

    NASA Astrophysics Data System (ADS)

    Chiarini, Paola

    2013-11-01

    Technological infrastructures in space and on ground provide services on which modern society and economies rely. Space weather related research is funded under the 7th Framework Programme for Research and Innovation (FP7) of the European Union in response to the need of protecting such critical infrastructures from the damage which could be caused by extreme space weather events. The calls for proposals published under the topic "Security of space assets from space weather events" of the FP7 Space Theme aimed to improve forecasts and predictions of disruptive space weather events as well as identify best practices to limit the impacts on space- and ground-based infrastructures and their data provision. Space weather related work was also funded under the topic "Exploitation of space science and exploration data", which aims to add value to space missions and Earth-based observations by contributing to the effective scientific exploitation of collected data. Since 2007 a total of 20 collaborative projects have been funded, covering a variety of physical phenomena associated with space weather, from ionospheric disturbances and scintillation, to geomagnetically induced currents at Earth's surface, to coronal mass ejections and solar energetic particles. This article provides an overview of the funded projects, touching upon some results and referring to specific websites for a more exhaustive description of the projects' outcomes.

  20. Modeling COSMO-SkyMed measurements of precipitating clouds over the sea using simultaneous weather radar observations

    NASA Astrophysics Data System (ADS)

    Roberto, N.; Baldini, L.; Facheris, L.; Chandrasekar, V.

    2014-07-01

    Several satellite missions employing X-band synthetic aperture radar (SAR) have been activated to provide high-resolution images of normalized radar cross-sections (NRCS) on land and ocean for numerous applications. Rainfall and wind affect the sea surface roughness and consequently the NRCS from the combined effects of corrugation due to impinging raindrops and surface wind. X-band frequencies are sensitive to precipitation: intense convective cells result in irregularly bright and dark patches in SAR images, masking changes in surface NRCS. Several works have modeled SAR images of intense precipitation over land; less adequately investigated is the precipitation effect over the sea surface. These images are analyzed in this study by modeling both the scattering and attenuation of radiation by hydrometeors in the rain cells and the NRCS surface changes using weather radar precipitation estimates as input. The reconstruction of X-band SAR returns in precipitating clouds is obtained by the joint utilization of volume reflectivity and attenuation, the latter estimated by coupling ground-based radar measurements and an electromagnetic model to predict the sea surface NRCS. Radar signatures of rain cells were investigated using X-band SAR images collected from the COSMO-SkyMed constellation of the Italian Space Agency. Two case studies were analyzed. The first occurred over the sea off the coast of Louisiana (USA) in summer 2010 with COSMO-SkyMed (CSK®) ScanSar mode monitoring of the Deepwater Horizon oil spill. Simultaneously, the NEXRAD S-band Doppler radar (KLIX) located in New Orleans was scanning the same portion of ocean. The second case study occurred in Liguria (Italy) on November 4, 2011, during an extraordinary flood event. The same events were observed by the Bric della Croce C-band dual polarization radar located close to Turin (Italy). The polarimetric capability of the ground radars utilized allows discrimination of the composition of the precipitation volume, in particular distinguishing ice from rain. Results shows that for space-borne SAR at X-band, effects due to precipitation on water surfaces can be modeled using coincident ground-based weather radar measurements.

  1. The GLOBE Contrail Protocol: Initial Analysis of Results

    NASA Technical Reports Server (NTRS)

    Chambers, Lin; Duda, David

    2004-01-01

    The GLOBE contrail protocol was launched in March 2003 to obtain surface observer reports of contrail occurrence to complement satellite and model studies underway at NASA Langley, among others. During the first year, more than 30,000 ground observations of contrails were submitted to GLOBE. An initial analysis comparing the GLOBE observations to weather prediction model results for relative humidity at flight altitudes is in progress. This paper reports on the findings to date from this effort.

  2. Weathering pits as indicators of the relative age of granite surfaces in the Cairngorm mountains, Scotland

    USGS Publications Warehouse

    Hall, A.M.; Phillips, W.M.

    2006-01-01

    Weathering pits 1-140 cm deep occur on granite surfaces in the Cairngorms associated with a range of landforms, including tors, glacially exposed slabs, large erratics and blockfields. Pit depth is positively correlated with cosmogenic exposure age, and both measures show consistent relationships on individual rock landforms. Rates of pit deepening are non-linear and a best fit is provided by the sigmoidal function D = b1+ exp(b2+b3/t). The deepest pits occur on unmodified tor summits, where 10 Be exposure ages indicate that surfaces have been exposed to weathering for a minimum of 52-297 ka. Glacially exposed surfaces with pits 10-46 cm deep have given 10 Be exposure durations of 21-79 ka, indicating exposure by glacial erosion before the last glacial cycle. The combination of cosmogenic exposure ages with weathering pit depths greatly extends the area over which inferences can be made regarding the ages of granite surfaces in the Cairngorms. Well-developed weathering pits on glacially exposed surfaces in other granite areas are potential indicators of glacial erosion before the Last Glacial Maximum. ?? Swedish Society for Anthropology and Geography.

  3. Malmstrom AFB, Great Falls, Montana. Revised Uniform Summary of Surface Weather Observations (RUSSWO)

    DTIC Science & Technology

    1978-06-12

    PRECIPITATION PSYCHROMETRIC-DRY VS WET BULB SNOWFALL MEAN & STD DEV. (DRY BULB, WIT BULB, & DEW POINT) SNOW DEPTH RELATIVE HUMIDITY PARTC SURFACE WINDS PART D...CONDITIONS FROM HOURLY OBSERVATIONS JU 00.jAN/RRI 0 RAIN FREEZING SNOW %OF SMOKE DUST % OF OSS TOTAL MONTH HUS TOURS HAt SAND TOT FOSAD/ RTO HOUS. THUNDR.ADOl...WEATHFR 1500-1700. CLAS VS MIEN(LT.) CONDITION SPEED IMEAN (KNTS) 1.3 4.6 7.10 11.16 17.21 22.27V 2833 34. 40 41.47 43.55 ?:56 % WIND cit. ISPEED N 1.1

  4. "Fast pedogenesis" on proglacial areas: examples from the north-western Italian Alps

    NASA Astrophysics Data System (ADS)

    D'Amico, Michele; Freppaz, Michele; Zanini, Ermanno

    2013-04-01

    Climate changes have huge impacts on alpine ecosystems. One of the most visible effects is glacial retreat since the end of the Little Ice Age (LIA: 190-190 years ago), which caused the exposure of previously glaciated surfaces. These surfaces are open-air laboratories, verifying theories regarding ecosystem and soil development. In order to increase our knowledge on the effect of time and vegetation primary succession on soil development in proglacial areas, we sampled soils and surveyed plant communities on stable points on the proglacial areas of the Lys and Verra Grande glaciers, in the Italian north-western Alps (Valle d'Aosta). Sampling sites were located on dated sites (6-260 years), on the basis of literature or historical photographs). Glacial till is attacked by weathering processes immediately after deposition and stabilization, such as loss of soluble compounds, acidification, primary mineral weathering. The speed of these processes are largely increased after the establishment of a continuous vegetation cover, thanks to surface stabilization, organic matter accumulation caused by litter input and root decomposition below the soil surface. On sialic glacial tills (Lys forefield), below timberline and under a larch - Rhododendron forest, a fast and steady decrease in pH values, increase in organic matter content and horizon differentiation were observed. In particular, genetic eluvial horizons formed in just 60 years, while diagnostic albic horizons were developed after ca. 90 years, evidencing an early start of the podzolization processes. Cheluviation of Fe and, secondarily, Al were analytically verified. However, illuviation of Fe, Al and organic matter in incipient B horizons was not sufficient to obtain diagnostic spodic horizons on LIA materials. Under grazed grassland below timberline and alpine prairie above timberline, acidification and weathering were slightly slower, and no redistribution with depth of Fe and Al oxi-hydroxides was observed. A cambic Bw horizon developed on the oldest LIA moraines. On ultramafic materials (Verra Grande glacier forefield), vegetation succession was inhibited by toxic concentration of available Ni and Mg and scarcity of nutrients; this inhibited the organic matter input on the soil surface, slowing down acidification, base leaching and mineral weathering. However, soon after the establishment of the typical subalpine larch-Rhododendron forest on 190-260 years old moraines, a visible E horizon could form, overlying an organic matter and metal-enriched incipient Bs horizon.

  5. Effect of iron sulfides on the space weathering of airless silicate bodies: Laboratory simulation

    NASA Astrophysics Data System (ADS)

    Sasaki, Sho; Hiroi, Takahiro; Okazaki, Mizuki

    The spectral mismatch between S-type asteroids and ordinary chondrites is explained by the process "space weathering", which should change the optical properties of the surface of airless silicate bodies: darkening, spectral reddening, and attenuation of absorption bands in reflectance spectra. It is caused by nanophase metallic iron (nanoFe) particles within the amorphous rims, which are formed on regolith particles by high velocity dust impacts as well as irradiation of the solar wind ions. Those nanoFe particles were discovered in lunar soils, Kapoeta meteorite, and regolith grains from the surface of S-type asteroid Itokawa. Experimental studies using nano-second pulse laser confirmed that nanoFe should control the spectral darkening and reddening. In ordinary chondrites, iron sulfides, especially troilite FeS is the main sulfur-bearing mineral. TEM observation of a dust grain of Itokawa showed the presence of not only iron, but also nanophase FeS particles, which would be formed within a surface vapor-deposited thin layer (<10 to 15nm) (Noguchi et al., 2011). Among dust grains of Itokawa, one grain is composed mainly of FeS (-40 mum) with smaller olivine and pyroxene grains embedded in the FeS (Yada et al., 2014). Previously surface sulfur depletion of S-type asteroid Eros was explained by the same causes (high velocity dust impacts as well as irradiation of the solar wind ions) as space weathering (Loeffler et al. 2008), but the effect of FeS on the surface optical properties of silicate bodies has not discussed well. To examine this effect, we conducted pulse laser irradiation experiments on mixture of olivine (and pyroxene) and FeS particles with sizes typically 45-75micron, under various FeS fraction (0-20wt%). We found that addition of FeS promotes the change of optical properties in accordance with space weathering. Compared with the cases where Fe particles are mixed, darkening of 1.0 - 2.5 micron region is observed. Probably FeS nanoparticles would be formed to change the reflectance spectra. References: [1] Noguchi, T. et al. (2011) Science 333,1121., [2] Yada, T. et al. (2014) LPSC 45th, 1759., [3] Loeffler, M. J. et al. (2008) Icarus 195, 622.

  6. Optimizing weather radar observations using an adaptive multiquadric surface fitting algorithm

    NASA Astrophysics Data System (ADS)

    Martens, Brecht; Cabus, Pieter; De Jongh, Inge; Verhoest, Niko

    2013-04-01

    Real time forecasting of river flow is an essential tool in operational water management. Such real time modelling systems require well calibrated models which can make use of spatially distributed rainfall observations. Weather radars provide spatial data, however, since radar measurements are sensitive to a large range of error sources, often a discrepancy between radar observations and ground-based measurements, which are mostly considered as ground truth, can be observed. Through merging ground observations with the radar product, often referred to as data merging, one may force the radar observations to better correspond to the ground-based measurements, without losing the spatial information. In this paper, radar images and ground-based measurements of rainfall are merged based on interpolated gauge-adjustment factors (Moore et al., 1998; Cole and Moore, 2008) or scaling factors. Using the following equation, scaling factors (C(xα)) are calculated at each position xα where a gauge measurement (Ig(xα)) is available: Ig(xα)+-? C (xα) = Ir(xα)+ ? (1) where Ir(xα) is the radar-based observation in the pixel overlapping the rain gauge and ? is a constant making sure the scaling factor can be calculated when Ir(xα) is zero. These scaling factors are interpolated on the radar grid, resulting in a unique scaling factor for each pixel. Multiquadric surface fitting is used as an interpolation algorithm (Hardy, 1971): C*(x0) = aTv + a0 (2) where C*(x0) is the prediction at location x0, the vector a (Nx1, with N the number of ground-based measurements used) and the constant a0 parameters describing the surface and v an Nx1 vector containing the (Euclidian) distance between each point xα used in the interpolation and the point x0. The parameters describing the surface are derived by forcing the surface to be an exact interpolator and impose that the sum of the parameters in a should be zero. However, often, the surface is allowed to pass near the observations (i.e. the observed scaling factors C(xα)) on a distance aαK by introducing an offset parameter K, which results in slightly different equations to calculate a and a0. The described technique is currently being used by the Flemish Environmental Agency in an online forecasting system of river discharges within Flanders (Belgium). However, rescaling the radar data using the described algorithm is not always giving rise to an improved weather radar product. Probably one of the main reasons is the parameters K and ? which are implemented as constants. It can be expected that, among others, depending on the characteristics of the rainfall, different values for the parameters should be used. Adaptation of the parameter values is achieved by an online calibration of K and ? at each time step (every 15 minutes), using validated rain gauge measurements as ground truth. Results demonstrate that rescaling radar images using optimized values for K and ? at each time step lead to a significant improvement of the rainfall estimation, which in turn will result in higher quality discharge predictions. Moreover, it is shown that calibrated values for K and ? can be obtained in near-real time. References Cole, S. J., and Moore, R. J. (2008). Hydrological modelling using raingauge- and radar-based estimators of areal rainfall. Journal of Hydrology, 358(3-4), 159-181. Hardy, R.L., (1971) Multiquadric equations of topography and other irregular surfaces, Journal of Geophysical Research, 76(8): 1905-1915. Moore, R. J., Watson, B. C., Jones, D. A. and Black, K. B. (1989). London weather radar local calibration study. Technical report, Institute of Hydrology.

  7. Learning and Risk Exposure in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Moore, F.

    2015-12-01

    Climate change is a gradual process most apparent over long time-scales and large spatial scales, but it is experienced by those affected as changes in local weather. Climate change will gradually push the weather people experience outside the bounds of historic norms, resulting in unprecedented and extreme weather events. However, people do have the ability to learn about and respond to a changing climate. Therefore, connecting the weather people experience with their perceptions of climate change requires understanding how people infer the current state of the climate given their observations of weather. This learning process constitutes a first-order constraint on the rate of adaptation and is an important determinant of the dynamic adjustment costs associated with climate change. In this paper I explore two learning models that describe how local weather observations are translated into perceptions of climate change: an efficient Bayesian learning model and a simpler rolling-mean heuristic. Both have a period during which the learner's beliefs about the state of the climate are different from its true state, meaning the learner is exposed to a different range of extreme weather outcomes then they are prepared for. Using the example of surface temperature trends, I quantify this additional exposure to extreme heat events under both learning models and both RCP 8.5 and 2.6. Risk exposure increases for both learning models, but by substantially more for the rolling-mean learner. Moreover, there is an interaction between the learning model and the rate of climate change: the inefficient rolling-mean learner benefits much more from the slower rates of change under RCP 2.6 then the Bayesian. Finally, I present results from an experiment that suggests people are able to learn about a trending climate in a manner consistent with the Bayesian model.

  8. Effect of processing method on surface and weathering characteristics of wood-flour/HDPE composites

    Treesearch

    Nicole M. Stark; Laurent M. Matuana; Craig M. Clemons

    2004-01-01

    Wood-plastic lumber is promoted as a low maintenance high-durability product. When exposed to accelerated weathering, however, wood-plastic composites may experience a color change and/or loss in mechanical properties. Different methods of manufacturing wood-plastic composites lead to different surface characteristics, which can influence weathering, In this study, 50...

  9. Coupling of physical erosion and chemical weathering after phases of intense human activity

    NASA Astrophysics Data System (ADS)

    Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Kubik, Peter W.

    2014-05-01

    Anthropogenic disturbance of natural vegetation profoundly alters the lateral and vertical fluxes of soil nutrients and particles at the land surface. Human-induced acceleration of soil erosion can thereby result in an imbalance between physical erosion, soil production and chemical weathering. The (de-)coupling between physical erosion and chemical weathering in ecosystems with strong anthropogenic disturbances is not yet fully understood, as earlier studies mostly focused on natural ecosystems. In this study, we explore the chemical weathering intensity for four study sites located in the Internal Zone of the Spanish Betic Cordillera. Most of the sites belong to the Nevado-Filabres complex, but are characterized by different rates of long-term exhumation, 10Be catchment-wide denudation and hill slope morphology. Denudation rates are generally low, but show large variation between the three sites (from 23 to 246 mm kyr-1). The magnitude of denudation rates is consistent with longer-term uplift rates derived from marine deposits, fission-track measurements and vertical fault slip rates. Two to three soil profiles were sampled per study site at exposed ridge tops. All soils overly fractured mica schist, and are very thin (< 60cm). In each soil profile, we sampled 5 depth slices, rock fragments and the (weathered) bedrock. In total, 38 soil and 20 rock samples were analyzed for their chemical composition. The chemical weathering intensity is constrained by the Chemical Depletion Fraction that is based on a chemical mass balance approach using Zr as an immobile element. Chemical weathering accounts for 5 to 35% of the total mass lost due to denudation. We observe systematically higher chemical weathering intensities (CDFs) in sites with lower denudation rates (and vice versa), suggesting that weathering is supply-limited. Our measurements of soil elemental losses from 10 soil profiles suggest that the observed variation in chemical weathering is strongly associated with long-term 10Be derived denudation rates, and tectonic uplift rates. Our data do not provide direct evidence of an imbalance between soil production and chemical weathering, despite more than 2000 years of intense human activity.

  10. Satellites, scientists track storm from Sun to surface

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    1997-02-01

    On January 6, the Sun spat a coronal mass ejection (CME) into the solar wind and toward Earth; by January 10, a cloud of charged particles buffeted the face of the planet. It was, by several accounts, a run-of-the-mill space weather event. But the scientific work surrounding the storm was anything but run-of-the-mill. For the first time, space physicists observed and recorded a space weather event from start to finish, from solar surface to earthly impact. Researchers are calling it the first true success story of the four-year-old International Solar Terrestrial Physics program (ISTP), which includes NASA's WIND and POLAR spacecraft; the joint Solar and Heliospheric Observatory (SOHO) mission of NASA and the European Space Agency; the joint Geotail mission of NASA and Japan's Institute of Space and Aeronautical Science; and Russia's Interball satellites.

  11. Salt efflorescence due to water-rock interaction on the surface of tuff cave in the Yoshimi-Hyakuana Historic Site, central Japan

    NASA Astrophysics Data System (ADS)

    Oguchi, Chiaki T.; Kodama, Shogo; Mohammad, Rajib; Tharanga Udagedara, Dashan

    2016-04-01

    Artificial cave walls in Yoshimi Hyakuana Historic Site have been suffering from salt weathering since 1945 when the caves were made. To consider the processes of weathering and subsequent crystallization of secondary minerals, water-rock experiment using tuff from this area was performed. Rocks, surface altered materials, groundwater and rainwater were collected, and chemical and mineralogical characteristics of those samples were investigated. The XRD and SEM-EDS analyses were carried out for the solid samples and ICP-OES analysis was performed for the solution generated from the experiment, groundwater and rainwater. Gypsum is detected in original tuff, and on grey and whiter coloured altered materials. General chemical changes were observed on this rock. However, it is found that purple and black altered materials were mainly made due to microbiological processes.

  12. Validation of Noah-simulated Soil Temperature in the North American Land Data Assimilation System Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Youlong; Ek, Michael; Sheffield, Justin

    2013-02-25

    Soil temperature can exhibit considerable memory from weather and climate signals and is among the most important initial conditions in numerical weather and climate models. Consequently, a more accurate long-term land surface soil temperature dataset is needed to improve weather and climate simulation and prediction, and is also important for the simulation of agricultural crop yield and ecological processes. The North-American Land Data Assimilation (NLDAS) Phase 2 (NLDAS-2) has generated 31-years (1979-2009) of simulated hourly soil temperature data with a spatial resolution of 1/8o. This dataset has not been comprehensively evaluated to date. Thus, the ultimate purpose of the presentmore » work is to assess Noah-simulated soil temperature for different soil depths and timescales. We used long-term (1979-2001) observed monthly mean soil temperatures from 137 cooperative stations over the United States to evaluate simulated soil temperature for three soil layers (0-10 cm, 10-40 cm, 40-100 cm) for annual and monthly timescales. We used short-term (1997-1999) observed soil temperature from 72 Oklahoma Mesonet stations to validate simulated soil temperatures for three soil layers and for daily and hourly timescales. The results showed that the Noah land surface model (Noah LSM) generally matches observed soil temperature well for different soil layers and timescales. At greater depths, the simulation skill (anomaly correlation) decreased for all time scales. The monthly mean diurnal cycle difference between simulated and observed soil temperature revealed large midnight biases in the cold season due to small downward longwave radiation and issues related to model parameters.« less

  13. Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroid Space Weathering Studies

    NASA Technical Reports Server (NTRS)

    Dominque, Deborah L.; Chapman, Clark R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Orlando, Thomas M.; Schriver, David; hide

    2011-01-01

    Understanding the composition of Mercury's crust is key to comprehending the formation of the planet. The regolith, derived from the crustal bedrock, has been altered via a set of space weathering processes. These processes are the same set of mechanisms that work to form Mercury's exosphere, and are moderated by the local space environment and the presence of an intrinsic planetary magnetic field. The alterations need to be understood in order to determine the initial crustal compositions. The complex interrelationships between Mercury's exospheric processes, the space environment, and surface composition are examined and reviewed. The processes are examined in the context of our understanding of these same processes on the lunar and asteroid regoliths. Keywords: Mercury (planet) Space weathering Surface processes Exosphere Surface composition Space environment 3

  14. Weathering phases recorded by gnammas developed since last glaciation at Serra da Estrela, Portugal

    NASA Astrophysics Data System (ADS)

    Domínguez-Villar, David; Razola, Laura; Carrasco, Rosa M.; Jennings, Carrie E.; Pedraza, Javier

    2009-09-01

    The morphometrical analysis of gnammas (weathering pits) in granite landscapes has been used to establish the relative chronology of recent erosive surfaces and to provide the weathering history in a region. To test the validity of gnammas as relative chronometer indicators, and the reliability of the obtained weathering record, two sites have been studied in Serra da Estrela, Portugal. The first site is within the limits of the glacier that existed in these mountains during the last glaciation, whereas the second site is located in an unglaciated sector of the mountains, which preserves a longer record of weathering in the bedrock surface. The number of gnamma weathering phases recorded in the latter site (8) is larger than those from the former (6). Correlation between both measurement stations based on morphometrical criteria is excellent for the younger six weathering phases (1 to 6). Consequently, the parameter used for relative chronology ( δ-value) has been verified to be age dependent, although absolute values are modulated by microclimate due to altitude variations. The weathering record was essentially duplicated once the surfaces at both sites were exposed, demonstrating the reliability of gnamma evolution as a post-glacial environmental indicator for the region.

  15. Surficial weathering of iron sulfide mine tailings under semi-arid climate.

    PubMed

    Hayes, Sarah M; Root, Robert A; Perdrial, Nicolas; Maier, Raina; Chorover, Jon

    2014-09-15

    Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering under semi-arid climate at an EPA Superfund Site in semi-arid central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg -1 , respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in the lowest pH samples, indicating its metastable persistence in these semiarid tailings. The resulting sharp geochemical speciation gradients in close proximity to the tailings surface have important implications for plant colonization, as well as mobility and bioavailability of co-associated toxic metal(loid)s.

  16. Surficial weathering of iron sulfide mine tailings under semi-arid climate

    PubMed Central

    Hayes, Sarah M.; Root, Robert A.; Perdrial, Nicolas; Maier, Raina; Chorover, Jon

    2014-01-01

    Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering under semi-arid climate at an EPA Superfund Site in semi-arid central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130–140 and 100–120 g kg−1, respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in the lowest pH samples, indicating its metastable persistence in these semiarid tailings. The resulting sharp geochemical speciation gradients in close proximity to the tailings surface have important implications for plant colonization, as well as mobility and bioavailability of co-associated toxic metal(loid)s. PMID:25197102

  17. Surficial weathering of iron sulfide mine tailings under semi-arid climate

    NASA Astrophysics Data System (ADS)

    Hayes, Sarah M.; Root, Robert A.; Perdrial, Nicolas; Maier, Raina M.; Chorover, Jon

    2014-09-01

    Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering in a semi-arid climate at an EPA Superfund Site in central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg-1, respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in samples with the lowest pH, indicating its metastable persistence in these semiarid tailings. The resulting sharp geochemical speciation gradients in close proximity to the tailings surface have important implications for plant colonization, as well as mobility and bioavailability of co-associated toxic metal(loid)s.

  18. Crystallization and dissolution of airborne sea-salts on weathered marble in a coastal environment at Delos (Cyclades-Greece)

    NASA Astrophysics Data System (ADS)

    Chabas, A.; Jeannette, D.; Lefèvre, R. A.

    Far from the ground moisture zone, marble remains of Delos archaeological site have undergone an extensive weathering through contour scaling and granular disintegration. Comparison of the analytical results from analytical scanning electron microscopy examination of surface samples of weathered marble and air filtration membranes confirms the atmospheric transport of marine salts and their deposition on stone surface. A laboratory experiment emphasizes the role of these atmospheric salts in the weathering process of marbles in coastal environment.

  19. Surface Exposure Ages of Space-Weathered Grains from Asteroid 25143 Itokawa

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.; Christoffersen, R.

    2015-01-01

    Space weathering processes such as solar wind ion irradiation and micrometeorite impacts are widely known to alter the properties of regolith materials exposed on airless bodies. The rates of space weathering processes however, are poorly constrained for asteroid regoliths, with recent estimates ranging over many orders of magnitude. The return of surface samples by JAXA's Hayabusa mission to asteroid 25143 Itokawa, and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering processes on airless bodies.

  20. Evaluation of Ten Methods for Initializing a Land Surface Model

    NASA Technical Reports Server (NTRS)

    Rodell, M.; Houser, P. R.; Berg, A. A.; Famiglietti, J. S.

    2005-01-01

    Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the stocks and fluxes of water (including soil moisture, snow, evaporation, and runoff) and energy (including the temperature of and sensible heat released from the soil) after they arrive on the land surface as precipitation and sunlight. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy and space-time resolution. Hence LSMs have been developed to integrate the available observations with our understanding of the physical processes involved, using powerful computers, in order to map these stocks and fluxes as they change in time. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth"s water cycle and climate variability. NASA"s Global Land Data Assimilation System (GLDAS) project facilitates testing of several different LSMs with a variety of input datasets (e.g., precipitation, plant type).

  1. Seasonal prevailing surface winds in Northern Serbia

    NASA Astrophysics Data System (ADS)

    Tošić, Ivana; Gavrilov, Milivoj B.; Marković, Slobodan B.; Ruman, Albert; Putniković, Suzana

    2018-02-01

    Seasonal prevailing surface winds are analyzed in the territory of Northern Serbia, using observational data from 12 meteorological stations over several decades. In accordance with the general definition of prevailing wind, two special definitions of this term are used. The seasonal wind roses in 16 directions at each station are analyzed. This study shows that the prevailing winds in Northern Serbia have northwestern and southeastern directions. Circulation weather types over Serbia are presented in order to determine the connections between the synoptic circulations and prevailing surface winds. Three controlling pressure centers, i.e., the Mediterranean cyclone, Siberian high, and the Azores anticyclone, appear as the most important large-scale factors that influence the creation of the prevailing winds over Northern Serbia. Beside the synoptic cause of the prevailing winds, it is noted that the orography of the eastern Balkans has a major influence on the winds from the second quadrant. It was found that the frequencies of circulation weather types are in agreement with those of the prevailing winds over Northern Serbia.

  2. Two Distinct Modes in One-Day Rainfall Event during MC3E Field Campaign: Analyses of Disdrometer Observations and WRF-SBM Simulation

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Matsui, Toshihisa; Tokay, Ali; Kollias, Pavlos; Tao, Wei-Kuo

    2012-01-01

    A unique microphysical structure of rainfall is observed by the surface laser optical Particle Size and Velocity (Parsivel) disdrometers on 25 April 2011 during Midlatitude Continental Convective Clouds Experiment (MC3E). According to the systematic differences in rainfall rate and bulk effective droplet radius, the sampling data can be divided into two groups; the rainfall mostly from the deep convective clouds has relatively high rainfall rate and large bulk effective droplet radius, whereas the reverse is true for the rainfall from the shallow wrm clouds. The Weather Research and Forecasting model coupled with spectral bin microphysics (WRF-SBM) successfully reproduces the two distinct modes in the observed rainfall microphysical structure. The results show that the up-to-date model can demonstrate how the cloud physics and the weather condition on the day are involved in forming the unique rainfall characteristic.

  3. The NASA Thunderstorm Observations and Research (ThOR) Mission: Lightning Mapping from Space to Improve the Short-term Forecasting of Severe Storms

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Christian, H. J.; Boccippio, D. J.; Koshak, W. J.; Cecil, D. J.; Arnold, James E. (Technical Monitor)

    2002-01-01

    The ThOR mission uses a lightning mapping sensor in geostationary Earth orbit to provide continuous observations of thunderstorm activity over the Americas and nearby oceans. The link between lightning activity and cloud updrafts is the basis for total lightning observations indicating the evolving convective intensification and decay of storms. ThOR offers a national operational demonstration of the utility of real-time total lightning mapping for earlier and more reliable identification of potentially severe and hazardous storms. Regional pilot projects have already demonstrated that the dominance in-cloud lightning and increasing in-cloud lash rates are known to precede severe weather at the surface by tens of minutes. ThOR is currently planned for launch in 2005 on a commercial or research satellite. Real-time data will be provided to selected NWS Weather Forecast Offices and National Centers (EMC/AWC/SPC) for evaluation.

  4. Two distinct modes in one-day rainfall event during MC3E field campaign: Analyses of disdrometer observations and WRF-SBM simulation

    NASA Astrophysics Data System (ADS)

    Iguchi, Takamichi; Matsui, Toshihisa; Tokay, Ali; Kollias, Pavlos; Tao, Wei-Kuo

    2012-12-01

    A unique microphysical structure of rainfall is observed by the surface laser optical Particle Size and Velocity (Parsivel) disdrometers on 25 April 2011 during Midlatitude Continental Convective Clouds Experiment (MC3E). According to the systematic differences in rainfall rate and bulk effective droplet radius, the sampling data can be divided into two groups; the rainfall mostly from the deep convective clouds has relatively high rainfall rate and large bulk effective droplet radius, whereas the reverse is true for the rainfall from the shallow warm clouds. The Weather Research and Forecasting model coupled with spectral bin microphysics (WRF-SBM) successfully reproduces the two distinct modes in the observed rainfall microphysical structure. The results show that the up-to-date model can demonstrate how the cloud physics and the weather condition on the day are involved in forming the unique rainfall characteristic.

  5. Evaluating the effect of lithology on porosity development in ridgetops in the Appalachian Piedmont

    NASA Astrophysics Data System (ADS)

    Marcon, V.; Gu, X.; Fisher, B.; Brantley, S. L.

    2016-12-01

    Together, chemical and physical processes transform fresh bedrock into friable weathered material. Even in systems where lithology, tectonic history, and climatic history are all known, it is challenging to predict the depth of weathering because the mechanisms that control the rate of regolith formation are not understood. In the Appalachian Piedmont, where rates of regolith formation and erosion are thought to be in a rough steady state, the depth of weathering varies with lithology. The Piedmont provides a controlled natural environment to isolate the effects of lithology on weathering processes so we can start to understand the mechanisms that initiate and drive weathering. Weathering is deepest over feldspathic rocks (schist/granite) with regolith 20-30m thick and thinnest over mafic and ultramafic rocks (diabase/serpentinite) with regolith <5m thick (Pavich et al., 1989). We are exploring both chemical and physical controls on weathering. For example, when regolith thickness is plotted versus fracture toughness of each lithology, regolith thickness generally increases with decreasing fracture toughness. However, serpentinite, a rheologically weak rock, does not follow this trend with thin soils. To understand this observation, physical weathering parameters (porosity, connectivity, and surface area) were evaluated using neutron scattering on Piedmont rocks at different degrees of weathering. Samples of both weathered diabase and serpentinite are dominated by small pores (<0.1micron), whereas pores in schist are characteristically larger (1-10microns). As serpentinite weathers, porosity is created by serpentinization reactions and lost from collapse during weathering. Serpentinite consists of easily weathered hydrous minerals with little quartz. Comparatively, rocks with more quartz (e.g. schist) have a supportive skeleton as the rock weathers. This quartz skeleton could prevent the collapse of pores and result in isovolumetric weathering. Non-isovolumetric weathering limits infiltration of reactive fluids deeper into the rock, minimizing regolith formation in serpentinite due to its lack of a quartz skeleton. Given this, fracture toughness may be an important parameter to consider in terms of predicting regolith thickness.

  6. Soc Trang City Apt., Vietnam. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F

    DTIC Science & Technology

    1971-03-25

    FROM HOURLY OBSERVATIONS) 40001 .SC TRANG VIETNAM/CITY AIRPORT 57,59j6. ,70 HARSTATION STATION ANe ytafts NONIN C ALL WEATHER O300-0500| C LA~SS...90 9,1 ow690 9590 989089o,00OO,0OO, > 200 1 8906 9501 905 98o3 98#6 190t 9/905 9905 99,8! $90 99. 00 00 00,0o0090 00 6.oI 906 950]’ 9605_98910 986...7 9 8 00006 _> 400 9293 9590 9697 91.4 98,4 99.4 99,4 994 99.7 99.7 99.7 99. 99. 00.000.0 2300 �’ "@%1 -W, 11f917 ŝ 4f7 9994 990 9WI 99# 998 999

  7. Directable weathering of concave rock using curvature estimation.

    PubMed

    Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew

    2010-01-01

    We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.

  8. Climate Products and Services to Meet the Challenges of Extreme Events

    NASA Astrophysics Data System (ADS)

    McCalla, M. R.

    2008-12-01

    The 2002 Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM1)-sponsored report, Weather Information for Surface Transportation: National Needs Assessment Report, addressed meteorological needs for six core modes of surface transportation: roadway, railway, transit, marine transportation/operations, pipeline, and airport ground operations. The report's goal was to articulate the weather information needs and attendant surface transportation weather products and services for those entities that use, operate, and manage America's surface transportation infrastructure. The report documented weather thresholds and associated impacts which are critical for decision-making in surface transportation. More recently, the 2008 Climate Change Science Program's (CCSP) Synthesis and Assessment Product (SAP) 4.7 entitled, Impacts of Climate Change and Variability on Transportation Systems and Infrastructure: Gulf Coast Study, Phase I, included many of the impacts from the OFCM- sponsored report in Table 1.1 of this SAP.2 The Intergovernmental Panel on Climate Change (IPCC) reported that since 1950, there has been an increase in the number of heat waves, heavy precipitation events, and areas of drought. Moreover, the IPCC indicated that greater wind speeds could accompany more severe tropical cyclones.3 Taken together, the OFCM, CCSP, and IPCC reports indicate not only the significance of extreme events, but also the potential increasing significance of many of the weather thresholds and associated impacts which are critical for decision-making in surface transportation. Accordingly, there is a real and urgent need to understand what climate products and services are available now to address the weather thresholds within the surface transportation arena. It is equally urgent to understand what new climate products and services are needed to address these weather thresholds, and articulate what can be done to fill the gap between the existing federal climate products and services and the needed federal climate products and services which will address these weather thresholds. Just as important, as we work to meet the needs, a robust education and outreach program is essential to take full advantage of new products, services and capabilities. To ascertain what climate products and services currently exist to address weather thresholds relative to surface transportation, what climate products and services are needed to address these weather thresholds, and how to bridge the gap between what is available and what is needed, the OFCM surveyed the federal meteorological community. Consistent with the extreme events highlighted in the IPCC report, the OFCM survey categorized the weather thresholds associated with surface transportation into the following extreme event areas: (a) excessive heat, (b) winter precipitation, (c) summer precipitation, (d) high winds, and (e) flooding and coastal inundation. The survey results, the gap analysis, as well as OFCM's planned, follow-on activities with additional categories (i.e., in addition to surface transportation) and weather thresholds will be shared with meeting participants. 1 The OFCM is an interdepartmental office established in response to Public Law 87-843 with the mission to ensure the effective use of federal meteorological resources by leading the systematic coordination of operational weather and climate requirements, products, services, and supporting research among the federal agencies. 2 http://www.climatescience.gov/Library/sap/sap4-7/final-report/sap4-7-final-ch1.pdf 3 http://www.gcrio.org/ipcc/ar4/wg1/faq/ar4wg1faq-3-3.pdf

  9. Decay of sandstone monuments in Petra (Jordan): Gravity-induced stress as a stabilizing factor

    NASA Astrophysics Data System (ADS)

    Řihošek, Jaroslav; Bruthans, Jiří; Mašín, David; Filippi, Michal; Schweigstillova, Jana

    2016-04-01

    As demonstrated by physical experiments and numerical modeling the gravity-induced stress (stress in further text) in sandstone massive reduces weathering and erosion rate (Bruthans et al. 2014). This finding is in contrast to common view that stress threatens stability of man-made monuments carved to sandstone. Certain low- levels of gravity-induced stress can in fact stabilize and protect these forms against weathering and disintegration. The purpose of this investigation is to evaluate the effect of the stress on weathering of sandstone monuments at the Petra World Heritage Site in Jordan via field observations, salt weathering experiments, and physical and numerical modeling. Previous studies on weathering of Petra monuments have neglected the impact of stress, but the ubiquitous presence of stress-controlled landforms in Petra suggests that it has a substantial effect on weathering and erosion processes on man-made monuments and natural surfaces. Laboratory salt weathering experiments with cubes of Umm Ishrin sandstone from Petra demonstrated the inverse relationship between stress magnitude and decay rate. Physical modeling with Strelec locked sand from the Czech Republic was used to simulate weathering and decay of Petra monuments. Sharp forms subjected to water erosion decayed to rounded shapes strikingly similar to tombs in Petra subjected to more than 2000 years of weathering and erosion. The physical modeling results enabled visualization of the recession of monument surfaces in high spatial and temporal resolution and indicate that the recession rate of Petra monuments is far from constant both in space and time. Numerical modeling of stress fields confirms the physical modeling results. This novel approach to investigate weathering clearly demonstrates that increased stress decreases the decay rate of Petra monuments. To properly delineate the endangered zones of monuments, the potential damage caused by weathering agents should be combined with stress modeling and verified by documentation of real damage. This research was funded by Grant Agency of Charles University (no. 386815) Bruthans J., Soukup J., Vaculíková J., Filippi M., Schweigstillova J., Mayo A.L., Mašín D., Kletetschka G.,Řihošek J. (2014): Sandstone landforms shaped by negative feedback between stress and erosion. Nature Geoscience 7(8): 597-601.

  10. Microclimatic modeling of the desert in the United Arab Emirates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, A.K.; Abdrabboh, M.A.; Kamel, K.A.

    1996-10-01

    The present study is concerned with the prediction of the weather parameters in the microclimate layer (less than 2 m above the ground surface) in the desert and sparsely vegetated areas in the United Arab Emirates. A survey was made of the weather data in these regions including solar radiation, wind speed, screen temperatures and relative humidity. Additionally, wind speed data were obtained at heights below two meters and surface albedo was recorded for various soil and vegetation conditions. A survey was also carried out for the different plant species in various areas of the U.A.E. Data on soil andmore » surface temperature were then analyzed. An energy balance model was formulated including incident short- and long-wave length radiation between earth and sky, convective heat transfer to/from earth surface, surface reflection of solar radiation and soil/plant evapotranspiration. An explicit one dimensional finite difference scheme was adapted to solve the resulting algebraic finite difference equations. The equation for surface nodes included thermal radiation as well as convection effects. The heat transfer coefficient was evaluated on the basis of wind speed and surface roughness at the site where the energy balance was set. Theoretical predictions of air and soil temperatures were accordingly compared to experimental measurements in selected sites, where reasonable agreements were observed.« less

  11. Studies of the Earth Energy Budget and Water Cycle Using Satellite Observations and Model Analyses

    NASA Technical Reports Server (NTRS)

    Campbell, G. G.; VonderHarr, T. H.; Randel, D. L.; Kidder, S. Q.

    1997-01-01

    During this research period we have utilized the ERBE data set in comparisons to surface properties and water vapor observations in the atmosphere. A relationship between cloudiness and surface temperature anomalies was found. This same relationship was found in a general circulation model, verifying the model. The attempt to construct a homogeneous time series from Nimbus 6, Nimbus 7 and ERBE data is not complete because we are still waiting for the ERBE reanalysis to be completed. It will be difficult to merge the Nimbus 6 data in because its observations occurred when the average weather was different than the other periods, so regression adjustments are not effective.

  12. Weathering of almandine garnet: influence of secondary minerals on the rate-determining step, and implications for regolith-scale Al mobilization

    Treesearch

    Jason R. Price; Debra S. Bryan-Ricketts; Diane Anderson; Michael A. Velbel

    2013-01-01

    Secondary surface layers form by replacement of almandine garnet during chemical weathering. This study tested the hypothesis that the kinetic role of almandine's weathering products, and the consequent relationships of primary-mineral surface texture and specific assemblages of secondary minerals, both vary with the solid-solution-controlled variations in Fe and...

  13. Biggs AAF, El Paso, Texas. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F

    DTIC Science & Technology

    1981-01-14

    wet-bulb temperature depression versus dry -bulb temperature, means and standard deviations of d-j-bulb, wet-bulb (over) SDD, 1473 UNCLASS IF I ED FC...distribution tables Dry -bulb temperature versud wet-bulb temperature Cumulative percentage frequency of distribution tables 20. and dew point...PART 5 PRECIPITATION PSYCHROMETRIC.DRY VS WET BULB SNOWFALL MEAN & STO 0EV SNOW EPTH DRY BULB, WET BULB, &DEW POINtI RELATIVE HUMIDITY PARTC SURFACE

  14. Feasibility of using a seismic surface wave method to study seasonal and weather effects on shallow surface soils

    USDA-ARS?s Scientific Manuscript database

    The objective of the paper is to study the temporal variations of the subsurface soil properties due to seasonal and weather effects using a combination of a new seismic surface method and an existing acoustic probe system. A laser Doppler vibrometer (LDV) based multi-channel analysis of surface wav...

  15. McChord AFB, Washington Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1984-04-01

    SECURITY CLASS. (of ISIS e.po,t) UNCLASSIFIED I5s. DECLASSIFICATION ’DDBNGRADING SCHEDULE IA DISTRIBUTION STATEMENT (of tis Repo.13 Approved for public ...FW.,S ,b J 290320 l 51861 SS.1 3. I 31 13 93 I ’ . , _ . - - .. , - , -, ., ,L - -+- +. .: .. +. ... ’ ’ - - . _,r;,, - -" -. I

  16. The use of LIDAR Technology for Measuring Mixing Heights under the Photochemical Assessment Monitoring Program; leveraging research under the joint DISCOVER-AQ/FRAPPÉ Missions

    EPA Science Inventory

    The operational use of ceilometers across the United States has been limited to detection of cloud-base heights across the Automatic Surface Observing Systems (ASOS) primarily operated by the National Weather Service and the Federal Aviation Administration. Continued improvements...

  17. Ellsworth AFB, South Dakota. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1987-12-01

    34. . . . . .. . . .. .1 ’’ 4 . .. 1~ ’ . ........ .. . .3.. . ’ ’.. 9,!.. 4.!o. . 8,3 4.3.° . . .. . L l4773, 𔃽’’’ 7$ (7Of 0 ’’,!Ř ATl3"’ V L );-AL CL1i’a7 [ LOLY 1,P

  18. Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan

    NASA Astrophysics Data System (ADS)

    Meyer, Kevin J.; Carey, Anne E.; You, Chen-Feng

    2017-10-01

    Chemical weathering source provenance changes associated with Typhoon Mindulle (2004) were identified for the Choshui River Watershed in west-central Taiwan using radiogenic Sr isotope (87Sr/86Sr) and major ion chemistry analysis of water samples collected before, during, and following the storm event. Storm water sampling over 72 h was conducted in 3 h intervals, allowing for novel insight into weathering regime changes in response to intense rainfall events. Chemical weathering sources were determined to be bulk silicate and disseminated carbonate minerals at the surface and silicate contributions from deep thermal waters. Loss on ignition analysis of collected rock samples indicate disseminated carbonate can compose over 25% by weight of surface mineralogy, but typically makes up ∼2-3% of watershed rock. 87Sr/86Sr and major element molar ratios indicate that Typhoon Mindulle caused a weathering regime switch from normal flow incorporating a deep thermal signature to that of a system dominated by surface weathering. The data suggest release of silicate solute rich soil pore waters during storm events, creating a greater relative contribution of silicate weathering to the solute load during periods of increased precipitation and runoff. Partial depletion of this soil solute reservoir and possible erosion enhanced carbonate weathering lead to increased importance of carbonates to the weathering regime as the storm continues. Major ion data indicate that complex mica weathering (muscovite, biotite, illite, chlorite) may represent an important silicate weathering pathway in the watershed. Deep thermal waters represent an important contribution to river solutes during normal non-storm flow conditions. Sulfuric acid sourced from pyrite weathering is likely a major weathering agent in the Choshui River watershed.

  19. Peak Wind Tool for General Forecasting

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Short, David

    2008-01-01

    This report describes work done by the Applied Meteorology Unit (AMU) in predicting peak winds at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45th Weather Squadron requested the AMU develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. Based on observations from the KSC/CCAFS wind tower network , Shuttle Landing Facility (SLF) surface observations, and CCAFS sounding s from the cool season months of October 2002 to February 2007, the AMU created mul tiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence , the temperature inversion depth and strength, wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft.

  20. Detection of heat wave using Kalpana-1 VHRR land surface temperature product over India

    NASA Astrophysics Data System (ADS)

    Shah, Dhiraj; Pandya, Mehul R.; Pathak, Vishal N.; Darji, Nikunj P.; Trivedi, Himanshu J.

    2016-05-01

    Heat Waves can have notable impacts on human mortality, ecosystem, economics and energy supply. The effect of heat wave is much more intense during summer than the other seasons. During the period of April to June, spells of very hot weather occur over certain regions of India and global warming scenario may result in further increases of such temperature anomalies and corresponding heat waves conditions. In this paper, satellite observations have been used to detect the heat wave conditions prevailing over India for the period of May-June 2015. The Kalpana-1 VHRR derived land surface temperature (LST) products have been used in the analysis to detect the heat wave affected regions over India. Results from the analysis shows the detection of heat wave affected pixels over Indian land mass. It can be seen that during the study period the parts of the west India, Indo-gangetic plane, Telangana and part of Vidarbh was under severe heat wave conditions which is also confirmed with Automatic Weather Station (AWS) air temperature observations.

  1. Simulation of the Impact of New Aircraft-and Satellite-based Ocean Surface Wind Measurements on Wind Analyses and Numerical Forecasts

    NASA Technical Reports Server (NTRS)

    Miller, TImothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; Gamache, John; Amarin, Ruba; El-Nimri, Salem; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx. 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is implemented. Also shown will be preliminary results of numerical weather prediction OSSEs in which the impact of the addition of HIRAD observations to the initial state on numerical forecasts of the hurricane intensity and structure is assessed.

  2. Coordination, Data Management and Enhancement of the International Arctic Buoy Programme (IABP), A US Interagency Arctic Buoy Programme (USIABP) Contribution to the IABP

    DTIC Science & Technology

    2012-09-30

    International Arctic Buoy Programme ( IABP ) A US Interagency Arctic Buoy Programme (USIABP) contribution to the IABP Dr. Ignatius G. Rigor Polar...observations of surface meteorology and ice motion. These observations are assimilated into Numerical Weather Prediction (NWP) models that are used to...distribution of sea ice. Over the Arctic Ocean, this fundamental observing network is maintained by the IABP , and is a critical component of the

  3. Validation of WRF forecasts for the Chajnantor region

    NASA Astrophysics Data System (ADS)

    Pozo, Diana; Marín, J. C.; Illanes, L.; Curé, M.; Rabanus, D.

    2016-06-01

    This study assesses the performance of the Weather Research and Forecasting (WRF) model to represent the near-surface weather conditions and the precipitable water vapour (PWV) in the Chajnantor plateau, in the north of Chile, from 2007 April to December. The WRF model shows a very good performance forecasting the near-surface temperature and zonal wind component, although it overestimates the 2 m water vapour mixing ratio and underestimates the 10 m meridional wind component. The model represents very well the seasonal, intraseasonal and the diurnal variation of PWV. However, the PWV errors increase after the 12 h of simulation. Errors in the simulations are larger than 1.5 mm only during 10 per cent of the study period, they do not exceed 0.5 mm during 65 per cent of the time and they are below 0.25 mm more than 45 per cent of the time, which emphasizes the good performance of the model to forecast the PWV over the region. The misrepresentation of the near-surface humidity in the region by the WRF model may have a negative impact on the PWV forecasts. Thus, having accurate forecasts of humidity near the surface may result in more accurate PWV forecasts. Overall, results from this, as well as recent studies, supports the use of the WRF model to provide accurate weather forecasts for the region, particularly for the PWV, which can be of great benefit for astronomers in the planning of their scientific operations and observing time.

  4. Micro-mapping Meteorite Surfaces on Mars using Microscopic Imager Mosaics — A Tool for Unraveling Weathering History at Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Ashley, J. W.; Herkenhoff, K. E.; Golombek, M. P.; Johnson, J. R.

    2012-12-01

    Meteorites found on Mars provide valuable insights into martian surface processes. During the course of Mars Exploration Rover (MER) extended missions, Spirit and Opportunity have identified 17 confirmed and candidate meteorites on Mars, most of which are irons. The iron meteorites exhibit morphologies and coatings that communicate complex post-fall exposure histories relevant to an understanding of climate near the martian equator [1-4]. Both chemical and mechanical weathering effects are represented. Among the more significant of these are: 1) cm-scale hollowing, 2) surficial rounding, 3) mass excavation/dissolution and removal, 4) differential etching of kamacite plates and taenite lamellae, revealing Widmanstätten patterns, 5) discontinuous iron oxide coatings, and 6) the effects of cavernous weathering, which often penetrate to rock interiors. Determining the nature, magnitude, and timing of each process and its associated features is a complex problem that will be aided by laboratory experiments, image processing, and careful surface evaluation. Because some features appear to superpose others in ways analogous to stratigraphic relationships, Microscopic Imager (MI) mosaics are useful for sketching "geologic maps" of meteorite surfaces. Employing the techniques of conventional planetary mapping [5], each map was drafted manually using full-resolution MI mosaics and Adobe Photoshop software. Units were selected to represent the oxide coating, dust-coated surfaces, sand-coated surfaces, taenite lamellae, and uncoated metal. Also included are areas in shadow, and regions of blooming caused by specular reflection of metal. Regmaglypt rim crests are presented as lineations. As with stratigraphic relationships, noting embayments and other cross-cutting relationships assists with establishing the relative timing for observed weathering effects. In addition to suggesting alternating sequences of wind and water exposure [1], patterns in oxide coating occurrence show evidence that coating deposition (interpreted as a result of water interaction) was geologically recent: Because the margins of many oxide coating deposits are concentric to and slightly removed from regmaglypt rim crests, the latest cycle is interpreted as a time of coating removal, not deposition, with these topographic high points representing zones of greatest erosional attack. Assuming the oxide coating has a low to moderate hardness, this observation implies relative geologic youth for the coating. However, it is unknown whether oxide deposits are stable or actively eroded by free basaltic sand grains [e.g., 6] in the modern epoch. The high science return from ongoing meteorite studies at MER landing sites supports their consideration if meteorites are also encountered by the Mars Science Laboratory Curiosity rover in Gale Crater.

  5. Assessment of marine weather forecasts over the Indian sector of Southern Ocean

    NASA Astrophysics Data System (ADS)

    Gera, Anitha; Mahapatra, D. K.; Sharma, Kuldeep; Prakash, Satya; Mitra, A. K.; Iyengar, G. R.; Rajagopal, E. N.; Anilkumar, N.

    2017-09-01

    The Southern Ocean (SO) is one of the important regions where significant processes and feedbacks of the Earth's climate take place. Expeditions to the SO provide useful data for improving global weather/climate simulations and understanding many processes. Some of the uncertainties in these weather/climate models arise during the first few days of simulation/forecast and do not grow much further. NCMRWF issued real-time five day weather forecasts of mean sea level pressure, surface winds, winds at 500 hPa & 850 hPa and rainfall, daily to NCAOR to provide guidance for their expedition to Indian sector of SO during the austral summer of 2014-2015. Evaluation of the skill of these forecasts indicates possible error growth in the atmospheric model at shorter time scales. The error growth is assessed using the model analysis/reanalysis, satellite data and observations made during the expedition. The observed variability of sub-seasonal rainfall associated with mid-latitude systems is seen to exhibit eastward propagations and are well reproduced in the model forecasts. All cyclonic disturbances including the sub-polar lows and tropical cyclones that occurred during this period were well captured in the model forecasts. Overall, this model performs reasonably well over the Indian sector of the SO in medium range time scale.

  6. Influence of mountains on Arctic tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Seabrook, Jeffrey; Whiteway, James

    2016-02-01

    Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring of 2008 using a differential absorption lidar. The observations were carried out at Eureka Weather Station, which is located between various mountain ranges. Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the midtroposphere descended in the lee of the mountains. Three case studies from spring of 2008 are described.

  7. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Case, Jonathan L.; Molthan, Andrew L.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center develops new products and techniques that can be used in operational meteorology. The majority of these products are derived from NASA polar-orbiting satellite imagery from the Earth Observing System (EOS) platforms. One such product is a Greenness Vegetation Fraction (GVF) dataset, which is produced from Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the new SPoRT-MODIS GVF dataset on land surface models apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. The second phase of the project is to examine the impacts of the SPoRT GVF dataset on NWP using the Weather Research and Forecasting (WRF) model. Two separate WRF model simulations were made for individual severe weather case days using the NCEP GVF (control) and SPoRT GVF (experimental), with all other model parameters remaining the same. Based on the sensitivity results in these case studies, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and lower direct surface heating, which typically resulted in lower (higher) predicted 2-m temperatures (2-m dewpoint temperatures). The opposite was true for areas with lower GVF in the SPoRT model runs. These differences in the heating and evaporation rates produced subtle yet quantifiable differences in the simulated convective precipitation systems for the selected severe weather case examined.

  8. Weathering-associated bacteria from the Damma glacier forefield: physiological capabilities and impact on granite dissolution.

    PubMed

    Frey, Beat; Rieder, Stefan R; Brunner, Ivano; Plötze, Michael; Koetzsch, Stefan; Lapanje, Ales; Brandl, Helmut; Furrer, Gerhard

    2010-07-01

    Several bacterial strains isolated from granitic rock material in front of the Damma glacier (Central Swiss Alps) were shown (i) to grow in the presence of granite powder and a glucose-NH(4)Cl minimal medium without additional macro- or micronutrients and (ii) to produce weathering-associated agents. In particular, four bacterial isolates (one isolate each of Arthrobacter sp., Janthinobacterium sp., Leifsonia sp., and Polaromonas sp.) were weathering associated. In comparison to what was observed in abiotic experiments, the presence of these strains caused a significant increase of granite dissolution (as measured by the release of Fe, Ca, K, Mg, and Mn). These most promising weathering-associated bacterial species exhibited four main features rendering them more efficient in mineral dissolution than the other investigated isolates: (i) a major part of their bacterial cells was attached to the granite surfaces and not suspended in solution, (ii) they secreted the largest amounts of oxalic acid, (iii) they lowered the pH of the solution, and (iv) they formed significant amounts of HCN. As far as we know, this is the first report showing that the combined action of oxalic acid and HCN appears to be associated with enhanced elemental release from granite, in particular of Fe. This suggests that extensive microbial colonization of the granite surfaces could play a crucial role in the initial soil formation in previously glaciated mountain areas.

  9. Weathering-Associated Bacteria from the Damma Glacier Forefield: Physiological Capabilities and Impact on Granite Dissolution ▿

    PubMed Central

    Frey, Beat; Rieder, Stefan R.; Brunner, Ivano; Plötze, Michael; Koetzsch, Stefan; Lapanje, Ales; Brandl, Helmut; Furrer, Gerhard

    2010-01-01

    Several bacterial strains isolated from granitic rock material in front of the Damma glacier (Central Swiss Alps) were shown (i) to grow in the presence of granite powder and a glucose-NH4Cl minimal medium without additional macro- or micronutrients and (ii) to produce weathering-associated agents. In particular, four bacterial isolates (one isolate each of Arthrobacter sp., Janthinobacterium sp., Leifsonia sp., and Polaromonas sp.) were weathering associated. In comparison to what was observed in abiotic experiments, the presence of these strains caused a significant increase of granite dissolution (as measured by the release of Fe, Ca, K, Mg, and Mn). These most promising weathering-associated bacterial species exhibited four main features rendering them more efficient in mineral dissolution than the other investigated isolates: (i) a major part of their bacterial cells was attached to the granite surfaces and not suspended in solution, (ii) they secreted the largest amounts of oxalic acid, (iii) they lowered the pH of the solution, and (iv) they formed significant amounts of HCN. As far as we know, this is the first report showing that the combined action of oxalic acid and HCN appears to be associated with enhanced elemental release from granite, in particular of Fe. This suggests that extensive microbial colonization of the granite surfaces could play a crucial role in the initial soil formation in previously glaciated mountain areas. PMID:20525872

  10. Complete Decoding and Reporting of Aviation Routine Weather Reports (METARs)

    NASA Technical Reports Server (NTRS)

    Lui, Man-Cheung Max

    2014-01-01

    Aviation Routine Weather Report (METAR) provides surface weather information at and around observation stations, including airport terminals. These weather observations are used by pilots for flight planning and by air traffic service providers for managing departure and arrival flights. The METARs are also an important source of weather data for Air Traffic Management (ATM) analysts and researchers at NASA and elsewhere. These researchers use METAR to correlate severe weather events with local or national air traffic actions that restrict air traffic, as one example. A METAR is made up of multiple groups of coded text, each with a specific standard coding format. These groups of coded text are located in two sections of a report: Body and Remarks. The coded text groups in a U.S. METAR are intended to follow the coding standards set by National Oceanic and Atmospheric Administration (NOAA). However, manual data entry and edits made by a human report observer may result in coded text elements that do not follow the standards, especially in the Remarks section. And contrary to the standards, some significant weather observations are noted only in the Remarks section and not in the Body section of the reports. While human readers can infer the intended meaning of non-standard coding of weather conditions, doing so with a computer program is far more challenging. However such programmatic pre-processing is necessary to enable efficient and faster database query when researchers need to perform any significant historical weather analysis. Therefore, to support such analysis, a computer algorithm was developed to identify groups of coded text anywhere in a report and to perform subsequent decoding in software. The algorithm considers common deviations from the standards and data entry mistakes made by observers. The implemented software code was tested to decode 12 million reports and the decoding process was able to completely interpret 99.93 of the reports. This document presents the deviations from the standards and the decoding algorithm. Storing all decoded data in a database allows users to quickly query a large amount of data and to perform data mining on the data. Users can specify complex query criteria not only on date or airport but also on weather condition. This document also describes the design of a database schema for storing the decoded data, and a Data Warehouse web application that allows users to perform reporting and analysis on the decoded data. Finally, this document presents a case study correlating dust storms reported in METARs from the Phoenix International airport with Ground Stops issued by Air Route Traffic Control Centers (ATCSCC). Blowing widespread dust is one of the weather conditions when dust storm occurs. By querying the database, 294 METARs were found to report blowing widespread dust at the Phoenix airport and 41 of them reported such condition only in the Remarks section of the reports. When METAR is a data source for an ATM research, it is important to include weather conditions not only from the Body section but also from the Remarks section of METARs.

  11. A Coupled Surface Nudging Scheme for use in Retrospective Weather and Climate Simulations for Environmental Applications

    EPA Science Inventory

    A surface analysis nudging scheme coupling atmospheric and land surface thermodynamic parameters has been implemented into WRF v3.8 (latest version) for use with retrospective weather and climate simulations, as well as for applications in air quality, hydrology, and ecosystem mo...

  12. 27 CFR 9.127 - Cayuga Lake.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of State Route 90 with State Route 326. (3) Then south along the primary, all-weather, hard surface.../southeast along State Route 90 until it intersects the light-duty, all-weather, hard or improved surface..., hard or improved surface road, approximately 4 miles, until it intersects State Route 34B, just south...

  13. 27 CFR 9.127 - Cayuga Lake.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of State Route 90 with State Route 326. (3) Then south along the primary, all-weather, hard surface.../southeast along State Route 90 until it intersects the light-duty, all-weather, hard or improved surface..., hard or improved surface road, approximately 4 miles, until it intersects State Route 34B, just south...

  14. 27 CFR 9.127 - Cayuga Lake.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of State Route 90 with State Route 326. (3) Then south along the primary, all-weather, hard surface.../southeast along State Route 90 until it intersects the light-duty, all-weather, hard or improved surface..., hard or improved surface road, approximately 4 miles, until it intersects State Route 34B, just south...

  15. Analysis of the ability of large-scale reanalysis data to define Siberian fire danger in preparation for future fire prediction

    NASA Astrophysics Data System (ADS)

    Soja, Amber; Westberg, David; Stackhouse, Paul, Jr.; McRae, Douglas; Jin, Ji-Zhong; Sukhinin, Anatoly

    2010-05-01

    Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under current climate change scenarios. Therefore, changes in fire regimes have the potential to compel ecological change, moving ecosystems more quickly towards equilibrium with a new climate. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to define fire weather danger and fire regimes, so that large-scale data can be confidently used to predict future fire regimes using large-scale fire weather data, like that available from current Intergovernmental Panel on Climate Change (IPCC) climate change scenarios. In this talk, we intent to: (1) evaluate Fire Weather Indices (FWI) derived using reanalysis and interpolated station data; (2) discuss the advantages and disadvantages of using these distinct data sources; and (3) highlight established relationships between large-scale fire weather data, area burned, active fires and ecosystems burned. Specifically, the Canadian Forestry Service (CFS) Fire Weather Index (FWI) will be derived using: (1) NASA Goddard Earth Observing System version 4 (GEOS-4) large-scale reanalysis and NASA Global Precipitation Climatology Project (GPCP) data; and National Climatic Data Center (NCDC) surface station-interpolated data. Requirements of the FWI are local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. GEOS-4 reanalysis and NCDC station-interpolated fire weather indices are generally consistent spatially, temporally and quantitatively. Additionally, increased fire activity coincides with increased FWI ratings in both data products. Relationships have been established between large-scale FWI to area burned, fire frequency, ecosystem types, and these can be use to estimate historic and future fire regimes.

  16. Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline

    NASA Astrophysics Data System (ADS)

    Quirk, J.; Leake, J. R.; Banwart, S. A.; Taylor, L. L.; Beerling, D. J.

    2014-01-01

    Trees dominate terrestrial biotic weathering of silicate minerals by converting solar energy into chemical energy that fuels roots and their ubiquitous nutrient-mobilising fungal symbionts. These biological activities regulate atmospheric CO2 concentrations ([CO2]a) over geologic timescales by driving calcium and magnesium fluvial ion export and marine carbonate formation. However, the important stabilising feedbacks between [CO2]a and biotic weathering anticipated by geochemical carbon cycle models remain untested. We report experimental evidence for a negative feedback across a declining Cenozoic [CO2]a range from 1500 to 200 ppm, whereby low [CO2]a curtails mineral surface alteration via trenching and etch pitting by arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal partners of tree roots. Optical profile imaging using vertical scanning interferometry reveals changes in nanoscale surface topography consistent with a dual mode of attack involving delamination and trenching by AM and EM fungal hyphae on phyllosilicate mineral flakes. This is consistent with field observations of micropores in feldspar, hornblende and basalt, purportedly caused by EM fungi, but with little confirmatory evidence. Integrating these findings into a process-based biotic weathering model revealed that low [CO2]a effectively acts as a "carbon starvation" brake, causing a three-fold drop in tree-driven fungal weathering fluxes of calcium and magnesium from silicate rock grains as [CO2]a falls from 1500 to 200 ppm. The feedback is regulated through the action of low [CO2]a on host tree productivity and provides empirical evidence for the role of [CO2]a starvation in diminishing the contribution of trees and mycorrhizal fungi to rates of biological weathering. More broadly, diminished tree-driven weathering under declining [CO2]a may provide an important contributory mechanism stabilising Earth's [CO2]a minimum over the past 24 million years.

  17. Weathering by tree root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline

    NASA Astrophysics Data System (ADS)

    Quirk, J.; Leake, J. R.; Banwart, S. A.; Taylor, L. L.; Beerling, D. J.

    2013-10-01

    Trees dominate terrestrial biotic weathering of silicate minerals by converting solar energy into chemical energy that fuels roots and their ubiquitous nutrient-mobilising fungal symbionts. These biological activities regulate atmospheric CO2 ([CO2]a) over geologic timescales by driving calcium and magnesium fluvial ion export and marine carbonate formation, but the important stabilising feedbacks between [CO2]a and biotic weathering anticipated by geochemical carbon cycle models remain untested. We report experimental evidence for a negative feedback across a declining Cenozoic [CO2]a range from 1500 ppm to 200 ppm, whereby low [CO2]a curtails mineral surface alteration via trenching and etch pitting by arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal partners of tree roots. Optical profile imaging using vertical scanning interferometry reveals changes in nanoscale surface topography consistent with a dual mode of attack involving delamination and trenching by AM and EM fungal hyphae on phyllosilicate mineral flakes. This is consistent with field observations of micropores in feldspar, hornblende and basalt, purportedly caused by EM fungi, but with little confirmatory evidence. Integrating these findings into a process-based biotic weathering model revealed that low [CO2]a effectively acts as a "carbon starvation" brake, causing a three-fold drop in tree-driven fungal weathering fluxes of calcium and magnesium from silicate rock grains as [CO2]a falls from 1500 ppm to 200 ppm. The feedback is regulated through the action of low [CO2]a on host tree productivity and provides empirical evidence for the role of [CO2]a starvation in diminishing the contribution of trees and mycorrhizal fungi to rates of biological weathering. More broadly, diminished tree-driven weathering under declining [CO2]a may provide an important contributory mechanism stabilising Earth's [CO2]a minimum over the past 24 million years.

  18. Basic Diagnosis and Prediction of Persistent Contrail Occurrence using High-resolution Numerical Weather Analyses/Forecasts and Logistic Regression. Part II: Evaluation of Sample Models

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Minnis, Patrick

    2009-01-01

    Previous studies have shown that probabilistic forecasting may be a useful method for predicting persistent contrail formation. A probabilistic forecast to accurately predict contrail formation over the contiguous United States (CONUS) is created by using meteorological data based on hourly meteorological analyses from the Advanced Regional Prediction System (ARPS) and from the Rapid Update Cycle (RUC) as well as GOES water vapor channel measurements, combined with surface and satellite observations of contrails. Two groups of logistic models were created. The first group of models (SURFACE models) is based on surface-based contrail observations supplemented with satellite observations of contrail occurrence. The second group of models (OUTBREAK models) is derived from a selected subgroup of satellite-based observations of widespread persistent contrails. The mean accuracies for both the SURFACE and OUTBREAK models typically exceeded 75 percent when based on the RUC or ARPS analysis data, but decreased when the logistic models were derived from ARPS forecast data.

  19. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Case, Jonathan; Kozlowski, Danielle; Molthan, Andrew

    2012-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting entities, including a number of National Weather Service offices. SPoRT transitions real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One challenge that forecasters face is applying convection-allowing numerical models to predict mesoscale convective weather. In order to address this specific forecast challenge, SPoRT produces real-time mesoscale model forecasts using the Weather Research and Forecasting (WRF) model that includes unique NASA products and capabilities. Currently, the SPoRT configuration of the WRF model (SPoRT-WRF) incorporates the 4-km Land Information System (LIS) land surface data, 1-km SPoRT sea surface temperature analysis and 1-km Moderate resolution Imaging Spectroradiometer (MODIS) greenness vegetation fraction (GVF) analysis, and retrieved thermodynamic profiles from the Atmospheric Infrared Sounder (AIRS). The LIS, SST, and GVF data are all integrated into the SPoRT-WRF through adjustments to the initial and boundary conditions, and the AIRS data are assimilated into a 9-hour SPoRT WRF forecast each day at 0900 UTC. This study dissects the overall impact of the NASA datasets and the individual surface and atmospheric component datasets on daily mesoscale forecasts. A case study covering the super tornado outbreak across the Ce ntral and Southeastern United States during 25-27 April 2011 is examined. Three different forecasts are analyzed including the SPoRT-WRF (NASA surface and atmospheric data), the SPoRT WRF without AIRS (NASA surface data only), and the operational National Severe Storms Laboratory (NSSL) WRF (control with no NASA data). The forecasts are compared qualitatively by examining simulated versus observed radar reflectivity. Differences between the simulated reflectivity are further investigated using convective parameters along with model soundings to determine the impacts of the various NASA datasets. Additionally, quantitative evaluation of select meteorological parameters is performed using the Meteorological Evaluation Tools model verification package to compare forecasts to in situ surface and upper air observations.

  20. Temporal Stability of Surface Roughness Effects on Radar Based Soil Moisture Retrieval During the Corn Growth Cycle

    NASA Technical Reports Server (NTRS)

    Joseph, A.T.; Lang, R.; O'Neill, P.E.; van der Velde, R.; Gish, T.

    2008-01-01

    A representative soil surface roughness parameterization needed for the retrieval of soil moisture from active microwave satellite observation is difficult to obtain through either in-situ measurements or remote sensing-based inversion techniques. Typically, for the retrieval of soil moisture, temporal variations in surface roughness are assumed to be negligible. Although previous investigations have suggested that this assumption might be reasonable for natural vegetation covers (Moran et al. 2002, Thoma et al. 2006), insitu measurements over plowed agricultural fields (Callens et al. 2006) have shown that the soil surface roughness can change considerably over time. This paper reports on the temporal stability of surface roughness effects on radar observations and soil moisture retrieved from these radar observations collected once a week during a corn growth cycle (May 10th - October 2002). The data set employed was collected during the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) field campaign covering this 2002 corn growth cycle and consists of dual-polarized (HH and VV) L-band (1.6 GHz) acquired at view angles of 15, 35, and 55 degrees. Cross-polarized L baud radar data were also collected as part of this experiment, but are not used in the analysis reported on here. After accounting for vegetation effects on radar observations, time-invariant optimum roughness parameters were determined using the Integral Equation Method (IEM) and radar observations acquired over bare soil and cropped conditions (the complete radar data set includes entire corn growth cycle). The optimum roughness parameters, soil moisture retrieval uncertainty, temporal distribution of retrieval errors and its relationship with the weather conditions (e.g. rainfall and wind speed) have been analyzed. It is shown that over the corn growth cycle, temporal roughness variations due to weathering by rain are responsible for almost 50% of soil moisture retrieval uncertainty depending on the sensing configuration. The effects of surface roughness variations are found to be smallest for observations acquired at a view angle of 55 degrees and HH polarization. A possible explanation for this result is that at 55 degrees and HH polarization the effect of vertical surface height changes on the observed radar response are limited because the microwaves travel parallel to the incident plane and as a result will not interact directly with vertically oriented soil structures.

  1. Nanoscale Analysis of Space-Weathering Features in Soils from Itokawa

    NASA Technical Reports Server (NTRS)

    Thompson, M. S.; Christoffersen, R.; Zega, T. J.; Keller, L. P.

    2014-01-01

    Space weathering alters the spectral properties of airless body surface materials by redden-ing and darkening their spectra and attenuating characteristic absorption bands, making it challenging to characterize them remotely [1,2]. It also causes a discrepency between laboratory analysis of meteorites and remotely sensed spectra from asteroids, making it difficult to associate meteorites with their parent bodies. The mechanisms driving space weathering include mi-crometeorite impacts and the interaction of surface materials with solar energetic ions, particularly the solar wind. These processes continuously alter the microchemical and structural characteristics of exposed grains on airless bodies. The change of these properties is caused predominantly by the vapor deposition of reduced Fe and FeS nanoparticles (npFe(sup 0) and npFeS respectively) onto the rims of surface grains [3]. Sample-based analysis of space weathering has tra-ditionally been limited to lunar soils and select asteroidal and lunar regolith breccias [3-5]. With the return of samples from the Hayabusa mission to asteroid Itoka-wa [6], for the first time we are able to compare space-weathering features on returned surface soils from a known asteroidal body. Analysis of these samples will contribute to a more comprehensive model for how space weathering varies across the inner solar system. Here we report detailed microchemical and microstructal analysis of surface grains from Itokawa.

  2. Insights into Regolith Dynamics from the Irradiation Record Preserved in Hayabusa Samples

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Berger, E. L.

    2014-01-01

    The rates of space weathering processes are poorly constrained for asteroid surfaces, with recent estimates ranging over 5 orders of magnitude. The return of the first surface samples from a space-weathered asteroid by the Hayabusa mission and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering. We determine the rates of space weathering on Itokawa by measuring solar flare track densities and the widths of solar wind damaged rims on grains. These measurements are made possible through novel focused ion beam (FIB) sample preparation methods.

  3. A climatological study of the associated weather events to Cut-off low systems in the Southwestern Europe and Northern Africa

    NASA Astrophysics Data System (ADS)

    Nieto, R.; Gimeno, L.; de La Torre, L.; Tesouro, M.; Añel, J.; Ribera, P.

    2003-04-01

    Cut-off low-pressure systems-COLS- are usually closed circulations at middle and upper troposphere developed from a deep trough in the westerlies. As general rule troposphere below COLs is unstable and convective severe events can occur as a function of the surface conditions. COLs can bring moderate to heavy rainfall over large areas. In particular they are among the most important weather systems that affect Southern Europe and Northern Africa and responsible for some of the most catastrophic weather events in terms of precipitation rate. In this study we identify COLs systems in Southwestern Europe and Northern Africa for a 41-year period (1958 to 1998) using an approach based in imposing the three main physical characteristics of the conceptual model of COL (a. closed circulation and minimum of geopotential, minimum of equivalent thickness, and two two baroclinic zones, one in front of the low and the other behind the low). Data from NCAR-NCEP reanalysis were used. The objective was to check the expected weather events according to the conceptual model of COL in an area where precipitation due to COL is relevant. In general terms results confirm expected weather events: a frontal cloud band on the leading edge of an upper level low that is usually thick enough to produce precipitation. Over cold surface there is no convection, and therefore no showers occur. Over Sea, moderate to heavy showery precipitation is frequent. The heaviest precipitation occur when convective cells are observed in the centre and over warm ocean, fall flash flood is frequent.

  4. Development and verification of a new wind speed forecasting system using an ensemble Kalman filter data assimilation technique in a fully coupled hydrologic and atmospheric model

    NASA Astrophysics Data System (ADS)

    Williams, John L.; Maxwell, Reed M.; Monache, Luca Delle

    2013-12-01

    Wind power is rapidly gaining prominence as a major source of renewable energy. Harnessing this promising energy source is challenging because of the chaotic nature of wind and its inherently intermittent nature. Accurate forecasting tools are critical to support the integration of wind energy into power grids and to maximize its impact on renewable energy portfolios. We have adapted the Data Assimilation Research Testbed (DART), a community software facility which includes the ensemble Kalman filter (EnKF) algorithm, to expand our capability to use observational data to improve forecasts produced with a fully coupled hydrologic and atmospheric modeling system, the ParFlow (PF) hydrologic model and the Weather Research and Forecasting (WRF) mesoscale atmospheric model, coupled via mass and energy fluxes across the land surface, and resulting in the PF.WRF model. Numerous studies have shown that soil moisture distribution and land surface vegetative processes profoundly influence atmospheric boundary layer development and weather processes on local and regional scales. We have used the PF.WRF model to explore the connections between the land surface and the atmosphere in terms of land surface energy flux partitioning and coupled variable fields including hydraulic conductivity, soil moisture, and wind speed and demonstrated that reductions in uncertainty in these coupled fields realized through assimilation of soil moisture observations propagate through the hydrologic and atmospheric system. The sensitivities found in this study will enable further studies to optimize observation strategies to maximize the utility of the PF.WRF-DART forecasting system.

  5. Topographic growth around the Orange River valley, southern Africa: A Cenozoic record of crustal deformation and climatic change

    NASA Astrophysics Data System (ADS)

    Dauteuil, Olivier; Bessin, Paul; Guillocheau, François

    2015-03-01

    We reconstruct the history of topographic growth in southern Africa on both sides of the Orange River valley from an integrated analysis of erosion surfaces, crustal deformation and climate change. First, we propose an inventory of erosion surfaces observed in the study area and classify them according to their most likely formative process, i.e. chemical weathering or mechanical erosion. Among the various land units observed we define a new class of landform: the pedivalley, which corresponds to a wide valley with a flat erosional floor. In the Orange River valley, we mapped three low-relief erosion surfaces, each bevelling a variety of lithologies. The oldest and most elevated is (1) a stripped etchplain evolving laterally into (2) a stepped pediplain bearing residual inselbergs; (3) a younger pediplain later formed in response to a more recent event of crustal deformation. These are all Cenozoic landforms: the etchplain is associated with a late Palaeocene to middle Eocene weathering event, and the two pediplains are older than the middle Miocene alluvial terraces of the Orange River. Landscape evolution was first driven by slow uplift (10 m/Ma), followed by a second interval of uplift involving a cumulative magnitude of at least 200 m. This event shaped the transition between the two pediplains and modified the drainage pattern. A final phase of uplift (magnitude: 60 m) occurred after the Middle Miocene and drove the incision of the lower terraces of the Orange River. Climate exerted a major control over the denudation process, and involved very humid conditions responsible for lateritic weathering, followed by more arid conditions, which promoted the formation of pedivalleys. Collectively, these produce pediplains.

  6. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed windmore » speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s -1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.« less

  7. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    DOE PAGES

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; ...

    2015-09-25

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed windmore » speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s -1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.« less

  8. Forecasting near-surface weather conditions and precipitation in Alaska's Prince William Sound with the PWS-WRF modeling system

    NASA Astrophysics Data System (ADS)

    Olsson, Peter Q.; Volz, Karl P.; Liu, Haibo

    2013-07-01

    In the summer of 2009, several scientific teams engaged in a field program in Prince William Sound (PWS), Alaska to test an end-to-end atmosphere/ocean prediction system specially designed for this region. The "Sound Predictions Field Experiment" (FE) was a test of the PWS-Observing System (PWS-OS) and the culmination of a five-year program to develop an observational and prediction system for the Sound. This manuscript reports on results of an 18-day high-resolution atmospheric forecasting field project using the Weather Research and Forecasting (WRF) model.Special attention was paid to surface meteorological properties and precipitation. Upon reviewing the results of the real-time forecasts, modifications were incorporated in the PWS-WRF modeling system in an effort to improve objective forecast skill. Changes were both geometric (model grid structure) and physical (different physics parameterizations).The weather during the summer-time FE was typical of the PWS in that it was characterized by a number of minor disturbances rotating around an anchored low, but with no major storms in the Gulf of Alaska. The basic PWS-WRF modeling system as implemented operationally for the FE performed well, especially considering the extremely complex terrain comprising the greater PWS region.Modifications to the initial PWS-WRF modeling system showed improvement in predicting surface variables, especially where the ambient flow interacted strongly with the terrain. Prediction of precipitation on an accumulated basis was more accurate than prediction on a day-to-day basis. The 18-day period was too short to provide reliable assessment and intercomparison of the quantitative precipitation forecasting (QPF) skill of the PWS-WRF model variants.

  9. Modelling chemical depletion profiles in regolith

    USGS Publications Warehouse

    Brantley, S.L.; Bandstra, J.; Moore, J.; White, A.F.

    2008-01-01

    Chemical or mineralogical profiles in regolith display reaction fronts that document depletion of leachable elements or minerals. A generalized equation employing lumped parameters was derived to model such ubiquitously observed patterns:C = frac(C0, frac(C0 - Cx = 0, Cx = 0) exp (??ini ?? over(k, ??) ?? x) + 1)Here C, Cx = 0, and Co are the concentrations of an element at a given depth x, at the top of the reaction front, or in parent respectively. ??ini is the roughness of the dissolving mineral in the parent and k???? is a lumped kinetic parameter. This kinetic parameter is an inverse function of the porefluid advective velocity and a direct function of the dissolution rate constant times mineral surface area per unit volume regolith. This model equation fits profiles of concentration versus depth for albite in seven weathering systems and is consistent with the interpretation that the surface area (m2 mineral m- 3 bulk regolith) varies linearly with the concentration of the dissolving mineral across the front. Dissolution rate constants can be calculated from the lumped fit parameters for these profiles using observed values of weathering advance rate, the proton driving force, the geometric surface area per unit volume regolith and parent concentration of albite. These calculated values of the dissolution rate constant compare favorably to literature values. The model equation, useful for reaction fronts in both steady-state erosional and quasi-stationary non-erosional systems, incorporates the variation of reaction affinity using pH as a master variable. Use of this model equation to fit depletion fronts for soils highlights the importance of buffering of pH in the soil system. Furthermore, the equation should allow better understanding of the effects of important environmental variables on weathering rates. ?? 2008.

  10. Probing the Depths of Space Weathering: A Cross-sectional View of Lunar Rock 76015

    NASA Technical Reports Server (NTRS)

    Noble, Sarah K.; Keller, L. P.; Stroud, Rhonda

    2007-01-01

    The term "space weathering" refers to the cumulative effects of several processes operating at the surface of any solar system body not protected by a thick atmosphere. These processes include cosmic and solar ray irradiation, solar wind implantation and sputtering, as well as melting and vaporization due to micrometeorite bombardment. Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. Rocks have much longer surface lifetimes than an individual soil grain and thus record a longer history of exposure. By studying the weathering products which have built up on a rock surface, we can gain a deeper perspective on the weathering process and better assess the relative importance of various weathering components. The weathered coating, or patina, of the lunar rock 76015 has been previously studied using SEM and TEM. It is a noritic breccia with both "glazed" (smooth glassy) and "classic" (microcratered and pancake-bearing) patina coatings. Previous TEM work on 76015 relied on ultramicrotomy to prepare cross sections of the patina coating, but these sections were limited by the "chatter" and loss of material in these brittle samples. Here we have used a focused ion beam (FIB) instrument to prepare cross sections in which the delicate stratigraphy of the patina coating is beautifully preserved.

  11. Mesocosm study on weathering characteristics of Iranian Heavy crude oil with and without dispersants.

    PubMed

    Joo, Changkyu; Shim, Won Joon; Kim, Gi Beum; Ha, Sung Yong; Kim, Moonkoo; An, Joon Geon; Kim, Eunsic; Kim, Beom; Jung, Seung Won; Kim, Young-Ok; Yim, Un Hyuk

    2013-03-15

    The environmental fate of Iranian Heavy crude oil (IHC) with and without an added oil spill dispersant (OSD) has been studied using a 1000 kL capacity in situ mesocosm. Physical weathering and chemical composition changes of the oil were monitored for 77 days. Compound-specific effects of the OSD could be observed as changes over time in the content of the total petroleum hydrocarbon (TPH), unresolved complex mixture (UCM), alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes and steranes in the oil. As oil weathers, most hydrocarbons showed a rapid decreasing phase followed by a slowdown and stabilization. Recalcitrant biomarkers, however, showed a different trend. An increase in hydrocarbon contents in the form of UCM occurred after OSD treatment. The enhanced solubility of the low molecular weight PAHs by the OSD decreased the half-life of the alkylated PAHs in the OD. After 77 days of exposure at the sea surface, both the oils with and without the OSD exhibited moderate weathering. Most of the source diagnostic indices maintained their source information, and the weathering indices indicated that evaporation, dissolution, and dispersion were the major weathering processes. The mass balance of the weathered oil was calculated using laboratory and mesocosm data and the results demonstrate the importance of using a mesocosm for the production of environmentally realistic data. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. TEM Analyses of Itokawa Regolith Grains and Lunar Soil Grains to Directly Determine Space Weathering Rates on Airless Bodies

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P.; Christoffersen, Roy

    2016-01-01

    Samples returned from the moon and Asteroid Itokawa by NASA's Apollo Missions and JAXA's Hayabusa Mission, respectively, provide a unique record of their interaction with the space environment. Space weathering effects result from micrometeorite impact activity and interactions with the solar wind. While the effects of solar wind interactions, ion implantation and solar flare particle track accumulation, have been studied extensively, the rate at which these effects accumulate in samples on airless bodies has not been conclusively determined. Results of numerical modeling and experimental simulations do not converge with observations from natural samples. We measured track densities and rim thicknesses of three olivine grains from Itokawa and multiple olivine and anorthite grains from lunar soils of varying exposure ages. Samples were prepared for analysis using a Leica EM UC6 ultramicrotome and an FEI Quanta 3D dual beam focused ion beam scanning electron microscope (FIB-SEM). Transmission electron microscope (TEM) analyses were performed on the JEOL 2500SE 200kV field emission STEM. The solar wind damaged rims on lunar anorthite grains are amorphous, lack inclusions, and are compositionally similar to the host grain. The rim width increases as a smooth function of exposure age until it levels off at approximately 180 nm after approximately 20 My (Fig. 1). While solar wind ion damage can only accumulate while the grain is in a direct line of sight to the Sun, solar flare particles can penetrate to mm-depths. To assess whether the track density accurately predicts surface exposure, we measured the rim width and track density in olivine and anorthite from the surface of rock 64455, which was never buried and has a surface exposure age of 2 My based on isotopic measurements. The rim width from 64455 (60-70nm) plots within error of the well-defined trend for solar wind amorphized rims in Fig. 1. Measured solar flare track densities are accurately reflecting the surface exposure of the grains. Track densities correlate with the amorphous rim thicknesses. While the space-weathered rims of anorthite grains are amorphous, the space-weathered rims on both Itokawa and lunar olivine grains show solar wind damaged rims that are not amorphous. Instead, the rims are nanocrystalline with high dislocation densities and sparse inclusions of nanophase Fe metal. The rim thicknesses on the olivine grains also correlate with track density. The Itokawa olivine grains have track densities that indicate surface exposures of approximately 10(exp 5) years. Longer exposures (up to approximately 10(exp 7) years) do not amorphize the rims, as evidenced by lunar soil olivines with high track densities (approximately 10(exp 11) cm(exp -2)). From the combined data, shown in Fig. 1, it is clear that olivine is damaged (but not amorphized) more rapidly by the solar wind compared to anorthite. The olivine damaged rim forms quickly (in approximately 10(exp 6) y) and saturates at approximately 120nm with longer exposure time. The anorthite damaged rims form more slowly, amorphize, and grow thicker than the olivine rims. This is in agreement with numerical modeling data which predicts that solar wind damaged rims on anorthite will be thicker than olivine. However, the models predict that both olivine and anorthite rims will amorphize and reach equilibrium widths in less than 10(exp 3) y, in contrast to what is observed for natural samples. Laboratory irradiation experiments, which show rapid formation of fully amorphous and blistered surfaces from simulated solar wind exposures are also in contrast to observations of natural samples. These results suggest that there is a flux dependence on the type and extent of irradiation damage that develops in olivine. This flux dependence suggests that great caution be used in extrapolating between high-flux laboratory experiments and the natural case, as demonstrated by. We constrain the space weathering rate through analysis of returned samples. Provided that the track densities and the solar wind damaged rim widths exhibited by the Itokawa grains are typical of the fine-grained regions of Itokawa, then the space weathering rate is on the order of 10(exp 5) y. Space weathering effects in lunar soils saturate within a few My of exposure while those in Itokawa regolith grains formed in approximately 10(exp 5) y. Olivine and anorthite respond differently to solar wind irradiation. The space weathering effects in olivine are particularly difficult to reconcile with laboratory irradiation studies and numerical models. Additional measurements, experiments, and modeling are required to resolve the discrepancies among the observations and calculations involving solar wind amorphization of different minerals on airless bodies.

  13. Surface Observation Climatic Summaries for Dover AFB, Delaware

    DTIC Science & Technology

    1992-04-01

    EXISTING RUSSNOS AND LISOCS WILL CONTINUE IN USE , BUT WILL EVENTUALLY BE BY A OCS. 12A. DISRIBUTION/AVAILABILITY STATMENT: APPROVED FOR PUBLIC...EXISTENCE WILL CON- TIMM TO BE USED UfIXIL THEY ARE EVENITUALLY REPLACED BY SOCS. THIS PRODUCT HAS BEER ISSUED IN OTHER FONS UNDER SEVERAL OTHER...CLIMATOLOGISTS USE STATE-OF-THE-ART COM- PUTER TElCEOLOGY TO SUMMARIZE WEATHER OBSERVATIONS COLLECTED FROM SELECTED MIL- ITARY, CIVILIAN, AND FOREIGN REPORTING

  14. Hahn AB, Germany (West). Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1982-08-09

    ABLE 01 MEAN G4NTtST LEASTSNOW TV AMTS iA IA$ |T fpN W NONE WACE I I 2 4-4 7I 12.24 -, 7 ’ 940 321 0 2 ov o A, 4T JAN 4l6941...humidity isually wvm nct reported prior to 1949, nor subsequent to June 1958; and was uomputed by machiue methods for observations recorded during these

  15. Fort Simpson, Northwest Territories, Canada. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1972-01-25

    CONDITIONS PART E DAILY MAX, M ,&MEAN TEMAP M ATMOSPHERIC PHENOMENA 0A16 N01 AVAILAbL~c EXTREME MAX & mIN TEMP j PART B PRECIPITATION pA Nor...FPREQJENCY riF UCCURRENUr OF RwEATHER CiliqUITIOtJS FROM 40LRLY UBSrkVATjoN5~ RAIN FREEZING SNO I OF SMOKE DUST % OF ORS TOTAL HOURS TOUR- M AND OR RHDG...262 - T S t,"PSOK NJ 1)T 5766PAR STATION STATION NAME YEARS M ONTH 1-FkCEP4TAGE PREQJ ENCY O’F UCCURRENCE OF WEATHER CUNUITIONS FRO HULALY

  16. Laboratory Simulations of Space Weathering of Asteroid Surfaces by Solar Wind Ions.

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth A.; De Ruette, Nathalie; Harlow, George; Domingue, Deborah L.; Savin, Daniel Wolf

    2014-06-01

    Studies into the formation of the terrestrial planets rely on the analysis of asteroids and meteorites. Asteroids are solar system remnants from the planetary formation period. By characterizing their mineralogical composition we can better constrain the formation and evolution of the inner planets.Remote sensing is the primary means for studying asteroids. Sample return missions, such as Hayabusa, are complex and expensive, hence we rely on asteroid reflectance spectra to determine chemical composition. Links have been made and debated between meteorite classes and asteroid types [1, 2]. If such relationships can be confirmed, then meteorites would provide a low cost asteroid sample set for study. However, a major issue in establishing this link is the spectral differences between meteorite samples and asteroid surfaces. The most commonly invoked explanation for these differences is that the surfaces of asteroids are space weathered [2, 3]. The dominant mechanism for this weathering is believed to be solar-wind ion irradiation [2, 4, 5]. Laboratory simulations of space weathering have demonstrated changes in the general direction required to alter spectra from unweathered meteorite samples to asteroid observations [3, 6 -10], but many open questions remain and we still lack a comprehensive understanding. We propose to explore the alleged connection of ordinary chondrite (OC) meteorites to S-type asteroids through a series of systematic laboratory simulations of solar-wind space weathering of asteroid surface materials. Here we describe the issue in more detail and describe the proposed apparatus. [1] Chapman C. R. (1996) Meteorit. Planet. Sci., 31, 699-725. [2] Chapman C. R. (2004), Annu. Rev. Earth Planet. Sci., 32, 539-567. [3] Hapke B. (2001) J. Ge-ophys. Res., 106, 10039-10074. [4] Pieters C.M. et al. (2000) Meteorit. Planet. Sci., 35, 1101-1107. [5] Ver-nazza P. et al. (2009) Nature, 458, 993-995. [6] Stra-zulla G. et al. (2005) Icarus, 174, 31-35 (2005). [7] Brunetto R and Strazzulla G (2005) Icarus, 179, 265-273. [8] Marchi S et al. (2005) Astron. Astrophys., 443, 769-775. [9] Loeffler M. J. et al. (2009) J. Geo-phys. Res., 114, E03003. [10] Fu X. et al. (2012) Ica-rus, 219, 630-640

  17. Sources of variation in multi-decadal water fluxes inferred from weather station data

    NASA Astrophysics Data System (ADS)

    Rigden, Angela Jean

    Terrestrial evapotranspiration (ET) is a significant component of the energy and water balances at the land surface. However, direct, continuous measurements of ET are spatially limited and only available since the 1990s. Due to this lack of observations, detecting and attributing long-term regional trends in ET remains difficult. This dissertation aims to alleviate the data limitation and detect long-term trends by developing a method to infer ET from data collected at common weather stations, which are spatially and temporally abundant. The methodology used to infer ET from historical meteorological data is based on an emergent relation between the land surface and atmospheric boundary layer. We refer to this methodology as the Evapotranspiration from Relative Humidity at Equilibrium method, or the "ETRHEQ method". In the first section of this dissertation, we develop the ETRHEQ method for use at common weather stations and demonstrate the utility of the method at twenty eddy covariance sites spanning a wide range of climate and plant functional types. Next, we apply the ETRHEQ method at historical weather stations across the continental U.S. and show that ET estimates obtained via the ETRHEQ method compare well with watershed scale ET, as well as ET estimates from land surface models. From 1961 to 1997, we find negligible or increasing trends in summertime ET over the central U.S. and the west coast and negative trends in the eastern and western U.S. From 1998 to 2014, we find a sharp decline in summertime ET across the entire U.S. We show that this decline is consistent with decreasing transpiration associated with declines in humidity. Lastly, we assess the sensitivity of ET to perturbations in soil moisture and humidity anticipated with climate change. We demonstrate that the response of ET to changing humidity and soil moisture is strongly dependent on the biological and hydrological state of the surface, particularly the degree of water stress and vegetation fraction. In total, this dissertation demonstrates the utility of the ETRHEQ method as a means to estimate ET from weather station data and highlights the critical role of vegetation in modulating ET variability.

  18. Workshop on chemical weathering on Mars, part 2

    NASA Technical Reports Server (NTRS)

    Burns, Roger (Editor); Banin, Amos (Editor)

    1992-01-01

    The third Mars Surface and Atmosphere Through Time (MSATT) Workshop, which was held 10-12 Sep. 1992, at Cocoa Beach/Cape Kennedy, focused on chemical weathering of the surface of Mars. The 30 papers presented at the workshop described studies of Martian weathering processes based on results from the Viking mission experiments, remote sensing spectroscopic measurements, studies of the shergottite, nakhlite, and chassignite (SNC) meteorites, laboratory measurements of surface analog materials, and modeling of reaction pathways. A summary of the technical sessions is presented and a list of workshop participants is included.

  19. Space Weathering Effects at UV Wavelengths: Asteroids and the Moon

    NASA Astrophysics Data System (ADS)

    Hendrix, Amanda; Vilas, F.

    2006-09-01

    Space weathering, the bombardment of airless bodies by micrometeoroids and irradiation by solar wind particles, affects spectra of solar system bodies at visible/near IR (VNIR) wavelengths by darkening and reddening their surface materials, as well as degrading absorption features. We present new results detailing space weathering effects at ultraviolet wavelengths. We focus on new spectral modeling results, and also present spacecraft data of asteroids and the Moon, along with new UV measurements of asteroid families from HST, to demonstrate the effects of varying degrees of weathering and the outcome of weathering on surfaces of different compositions. Weathered surfaces are relatively bright and spectrally blue in the UV; these UV effects can be more obvious than the VNIR effects. The cause of these weathering effects is likely vapor deposition of submicroscopic iron (SMFe), through solar wind irradiation and micrometeoroid bombardment of the bodies' surfaces. In silicate minerals, the NUV region is dominated by a decrease in reflectance with wavelength - the "UV absorption edge.” In contrast to silicates, iron is opaque and relatively bright in the UV, so the addition of SMFe to a silicate grains has the effect of making the UV region brighter; this is in opposition to the situation at longer wavelengths, where the addition of SMFe decreases the albedo. Our spectral modeling results show that the addition of SMFe decreases the steepness of the UV dropoff, in effect making the UV spectrum bluer. This can explain the difference in UV spectral behavior seen between S-class asteroids and less-weathered ordinary chondrite meteorites, and between lunar rocks and more weathered lunar soils. This work is funded in part by Hubble Space Telescope Grant #10557.

  20. Oxidation of dissolved iron under warmer, wetter conditions on Mars: Transitions to present-day arid environments

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1993-01-01

    The copious deposits of ferric-iron assemblages littering the surface of bright regions of Mars indicate that efficient oxidative weathering reactions have taken place during the evolution of the planet. Because the kinetics of atmosphere-surface (gas-solid) reactions are considerably slower than chemical weathering reactions involving an aqueous medium, most of the oxidation products now present in the martian regolith probably formed when groundwater flowed near the surface. This paper examines how chemical weathering reactions were effected by climatic variations when warm, wet environments became arid on Mars. Analogies are drawn with hydrogeochemical and weathering environments on the Australian continent where present-day oxidation of iron is occurring in acidic ground water under arid conditions.

  1. Dynamic Analysis of Tunnel in Weathered Rock Subjected to Internal Blast Loading

    NASA Astrophysics Data System (ADS)

    Tiwari, Rohit; Chakraborty, Tanusree; Matsagar, Vasant

    2016-11-01

    The present study deals with three-dimensional nonlinear finite element (FE) analyses of a tunnel in rock with reinforced concrete (RC) lining subjected to internal blast loading. The analyses have been performed using the coupled Eulerian-Lagrangian analysis tool available in FE software Abaqus/Explicit. Rock and RC lining are modeled using three-dimensional Lagrangian elements. Beam elements have been used to model reinforcement in RC lining. Three different rock types with different weathering conditions have been used to understand the response of rock when subjected to blast load. The trinitrotoluene (TNT) explosive and surrounding air have been modeled using the Eulerian elements. The Drucker-Prager plasticity model with strain rate-dependent material properties has been used to simulate the stress-strain response of rock. The concrete damaged plasticity model and Johnson-Cook plasticity model have been used for the simulation of stress-strain response of concrete and steel, respectively. The explosive (TNT) has been modeled using Jones-Wilkins-Lee (JWL) equation of state. The analysis results have been studied for stresses, deformation and damage of RC lining and the surrounding rock. It is observed that damage in RC lining results in higher stress in rock. Rocks with low modulus and high weathering conditions show higher attenuation of shock wave. Higher amount of ground shock wave propagation is observed in case of less weathered rock. Ground heave is observed under blast loading for tunnel close to ground surface.

  2. Aviation Weather Observations for Supplementary Aviation Weather Reporting Stations (SAWRS) and Limited Aviation Weather Reporting Stations (LAWRS). Federal Meteorological Handbook No. 9.

    ERIC Educational Resources Information Center

    Department of Transportation, Washington, DC.

    This handbook provides instructions for observing, identifying, and recording aviation weather at Limited Aviation Weather Reporting Stations (LAWRS) and Supplementary Aviation Weather Reporting Stations (SAWRS). Official technical definitions, meteorological and administrative procedures are outlined. Although this publication is intended for use…

  3. An Iterative, Geometric, Tilt Correction Method for Radiation and Albedo Observed by Automatic Weather Stations on Snow-Covered Surfaces: Application to Greenland

    NASA Astrophysics Data System (ADS)

    Wang, W.; Zender, C. S.; van As, D.; Smeets, P.; van den Broeke, M.

    2015-12-01

    Surface melt and mass loss of Greenland Ice Sheet may play crucial roles in global climate change due to their positive feedbacks and large fresh water storage. With few other regular meteorological observations available in this extreme environment, measurements from Automatic Weather Stations (AWS) are the primary data source for the surface energy budget studies, and for validating satellite observations and model simulations. However, station tilt, due to surface melt and compaction, results in considerable biases in the radiation and thus albedo measurements by AWS. In this study, we identify the tilt-induced biases in the climatology of surface radiative flux and albedo, and then correct them based on geometrical principles. Over all the AWS from the Greenland Climate Network (GC-Net), the Kangerlussuaq transect (K-transect) and the Programme for Monitoring of the Greenland Ice Sheet (PROMICE), only ~15% of clear days have the correct solar noon time, with the largest bias to be 3 hours. Absolute hourly biases in the magnitude of surface insolation can reach up to 200 W/m2, with daily average exceeding 100 W/m2. The biases are larger in the accumulation zone due to the systematic tilt at each station, although variabilities of tilt angles are larger in the ablation zone. Averaged over the whole Greenland Ice Sheet in the melting season, the absolute bias in insolation is ~23 W/m2, enough to melt 0.51 m snow water equivalent. We estimate the tilt angles and their directions by comparing the simulated insolation at a horizontal surface with the observed insolation by these tilted AWS under clear-sky conditions. Our correction reduces the RMSE against satellite measurements and reanalysis by ~30 W/m2 relative to the uncorrected data, with correlation coefficients over 0.95 for both references. The corrected diurnal changes of albedo are more smooth, with consistent semi-smiling patterns (see Fig. 1). The seasonal cycles and annual variabilities of albedo are in a better agreement with previous studies (see Fig. 2 and 3). The consistent tilt-corrected shortwave radiation dataset derived here will provide better observations and validations for surface energy budget studies on Greenland Ice Sheet, including albedo variation, surface melt simulations and cloud radiative forcing estimates.

  4. Method to estimate drag coefficient at the air/ice interface over drifting open pack ice from remotely sensed data

    NASA Technical Reports Server (NTRS)

    Feldman, U.

    1984-01-01

    A knowledge in near real time, of the surface drag coefficient for drifting pack ice is vital for predicting its motions. And since this is not routinely available from measurements it must be replaced by estimates. Hence, a method for estimating this variable, as well as the drag coefficient at the water/ice interface and the ice thickness, for drifting open pack ice was developed. These estimates were derived from three-day sequences of LANDSAT-1 MSS images and surface weather charts and from the observed minima and maxima of these variables. The method was tested with four data sets in the southeastern Beaufort sea. Acceptable results were obtained for three data sets. Routine application of the method depends on the availability of data from an all-weather air or spaceborne remote sensing system, producing images with high geometric fidelity and high resolution.

  5. Computer-Assisted Interactive Documentary and Performance Arts in Illimitable Space

    NASA Astrophysics Data System (ADS)

    Sheridan, William Michael

    Winter can bring significant snow storm systems or nor'easters to New England. Understanding each factor which can affect nor'easters will allow forecasters to better predict the subsequent weather conditions. One important parameter is the sea surface temperature (SST) of the Atlantic Ocean, where many of these systems strengthen and gain much of their structure. The Weather Research and Forecasting (WRF) model was used to simulate four different nor'easters (Mar 2007, Dec 2007, Jan 2008, Dec 2010) using both observed and warmed SSTs. For the wanner SST simulations, the SSTs over the model domain were increased by 1°C. This change increased the total surface heat fluxes in all of the storms, and the resulting simulated storms were all more intense. The influence on the amount of snowfall over land was highly variable, depending on how close to the coastline the storms were and temperatures across the region.

  6. The dust cloud of the century

    NASA Astrophysics Data System (ADS)

    Robock, A.

    1983-02-01

    The structure and composition of the dust cloud from the 4 April 1982 eruption of the El Chichon volcano in Chiapas state, Mexico, is examined and the possible effects of the dust cloud on the world's weather patterns are discussed. Observations of the cloud using a variety of methods are evaluated, including data from the GOES and NOAA-7 weather satellites, vertically pointing lidar measurements, the SME satellite, and the Nimbus-7 satellite. Studies of the gaseous and particulate composition of the cloud reveal the presence of large amounts of sulfuric acid particles, which have a long mean residence time in the atmosphere and have a large effect on the amount of solar radiation received at the earth's surface by scattering several percent of the radiation back to space. Estimates of the effect of this cloud on surface air temperature changes are presented based on findings from climate models.

  7. High resolution regional climate simulation of the Hawaiian Islands - Validation of the historical run from 2003 to 2012

    NASA Astrophysics Data System (ADS)

    Xue, L.; Newman, A. J.; Ikeda, K.; Rasmussen, R.; Clark, M. P.; Monaghan, A. J.

    2016-12-01

    A high-resolution (a 1.5 km grid spacing domain nested within a 4.5 km grid spacing domain) 10-year regional climate simulation over the entire Hawaiian archipelago is being conducted at the National Center for Atmospheric Research (NCAR) using the Weather Research and Forecasting (WRF) model version 3.7.1. Numerical sensitivity simulations of the Hawaiian Rainband Project (HaRP, a filed experiment from July to August in 1990) showed that the simulated precipitation properties are sensitive to initial and lateral boundary conditions, sea surface temperature (SST), land surface models, vertical resolution and cloud droplet concentration. The validations of model simulated statistics of the trade wind inversion, temperature, wind field, cloud cover, and precipitation over the islands against various observations from soundings, satellites, weather stations and rain gauges during the period from 2003 to 2012 will be presented at the meeting.

  8. Tissint martian meteorite: a fresh look at the interior, surface, and atmosphere of Mars.

    PubMed

    Aoudjehane, H Chennaoui; Avice, G; Barrat, J-A; Boudouma, O; Chen, G; Duke, M J M; Franchi, I A; Gattacceca, J; Grady, M M; Greenwood, R C; Herd, C D K; Hewins, R; Jambon, A; Marty, B; Rochette, P; Smith, C L; Sautter, V; Verchovsky, A; Weber, P; Zanda, B

    2012-11-09

    Tissint (Morocco) is the fifth martian meteorite collected after it was witnessed falling to Earth. Our integrated mineralogical, petrological, and geochemical study shows that it is a depleted picritic shergottite similar to EETA79001A. Highly magnesian olivine and abundant glass containing martian atmosphere are present in Tissint. Refractory trace element, sulfur, and fluorine data for the matrix and glass veins in the meteorite indicate the presence of a martian surface component. Thus, the influence of in situ martian weathering can be unambiguously distinguished from terrestrial contamination in this meteorite. Martian weathering features in Tissint are compatible with the results of spacecraft observations of Mars. Tissint has a cosmic-ray exposure age of 0.7 ± 0.3 million years, consistent with those of many other shergottites, notably EETA79001, suggesting that they were ejected from Mars during the same event.

  9. Frost-weathering on Mars - Experimental evidence for peroxide formation

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.; Miller, K. J.; Harwood, W. S.

    1979-01-01

    The weathering of silicates by frost is investigated in relation to the formation of surface peroxides to which Viking biology experiment results have been attributed. Samples of the minerals olivine and pyroxene were exposed to water vapor at -11 to -22 C and resultant gas evolution and pH were monitored. Experiments reveal the formation of an acidic oxidant upon interaction of the mineral and H2O frost at subfreezing temperatures, which chemical indicators have suggested to be chemisorbed hydrogen peroxide. A model for the formation of chemisorbed peroxide based on the chemical reduction of the mineral by surface frost is proposed, and it is predicted that the perioxide would decay at high temperatures to H2O and adsorbed O, consistent with the long-term storage and sterilization behavior of the soil oxidants observed in the Viking Gas Exchange and Labeled Release experiments.

  10. Are Clay Minerals a Climate Constraint? A Review of Prior Data and New Insights on Martian "Weathering Sequences"

    NASA Astrophysics Data System (ADS)

    Ehlmann, B. L.; Dundar, M.

    2016-12-01

    Most clay minerals on Mars are Fe/Mg smectites or chlorites, which typically form from mafic protoliths in aqueous chemical systems that are relatively closed and thus require liquid water but not large amounts of water throughput and large-scale chemical leaching. They may thus form either in the subsurface or under select conditions at the surface. However, Al clay minerals, discovered in multiple locations on Mars (Arabia Terra, Northeast Syrtis, Libya Montes Terra Sirenum, Eridania, circum-Hellas, Valles Marineris) may provide evidence of substantial water throughput, if their protolith materials were basaltic. This is because formation of Al clays from a mafic protolith requires removal of Mg and either formation of accompanying Fe oxides or removal of Fe. Thus, the observed sequences of Al clays atop Fe/Mg clays were proposed to represent open system weathering and possibly a late climate optimum around the late Noachian/early Hesperian [1]. Later, they were comprehensively cataloged and reported to represent "weathering sequences" similar to those in terrestrial tropical environments [2]. However, key questions remain; in particular, how much water throughput over what time scale is required? The answer to this question has substantial bearing on the climate of early Mars. Recently, we employed a newly developed, non-parametric Bayesian algorithm [3,4] for semi-automatic identification of rare spectral classes on 139 CRISM images in areas with reported regional-scale occurrences of Al clays. Dozens of detections of the minerals alunite and jarosite were made with the algorithm and then verified by manual analysis. These sulfate hydroxides form only at low pHs, and thus their presence tightly constrains water chemistry. Here, we discuss the evidence for low pH surface waters associated with the weathering sequences and their implications for the cumulative duration of surface weathering. [1] Ehlmann et al., 2011, Nature | [2] Carter et al., 2015, Icarus | [3] Dundar et al., 2016, IEEE WHISPERS proceedings | [4] Ehlmann & Dundar, submitted

  11. Sensitivity of mineral dissolution rates to physical weathering : A modeling approach

    NASA Astrophysics Data System (ADS)

    Opolot, Emmanuel; Finke, Peter

    2015-04-01

    There is continued interest on accurate estimation of natural weathering rates owing to their importance in soil formation, nutrient cycling, estimation of acidification in soils, rivers and lakes, and in understanding the role of silicate weathering in carbon sequestration. At the same time a challenge does exist to reconcile discrepancies between laboratory-determined weathering rates and natural weathering rates. Studies have consistently reported laboratory rates to be in orders of magnitude faster than the natural weathering rates (White, 2009). These discrepancies have mainly been attributed to (i) changes in fluid composition (ii) changes in primary mineral surfaces (reactive sites) and (iii) the formation of secondary phases; that could slow natural weathering rates. It is indeed difficult to measure the interactive effect of the intrinsic factors (e.g. mineral composition, surface area) and extrinsic factors (e.g. solution composition, climate, bioturbation) occurring at the natural setting, in the laboratory experiments. A modeling approach could be useful in this case. A number of geochemical models (e.g. PHREEQC, EQ3/EQ6) already exist and are capable of estimating mineral dissolution / precipitation rates as a function of time and mineral mass. However most of these approaches assume a constant surface area in a given volume of water (White, 2009). This assumption may become invalid especially at long time scales. One of the widely used weathering models is the PROFILE model (Sverdrup and Warfvinge, 1993). The PROFILE model takes into account the mineral composition, solution composition and surface area in determining dissolution / precipitation rates. However there is less coupling with other processes (e.g. physical weathering, clay migration, bioturbation) which could directly or indirectly influence dissolution / precipitation rates. We propose in this study a coupling between chemical weathering mechanism (defined as a function of reactive area, solution composition, temperature, mineral composition) and the physical weathering module in the SoilGen model which calculates the evolution of particle size (used for surface area calculation) as influenced by temperature gradients. The solution composition in the SoilGen model is also influenced by other processes such as atmospheric inputs, organic matter decomposition, cation exchange, secondary mineral formation and leaching. We then apply this coupled mechanism on a case study involving 3 loess soil profiles to analyze the sensitivity of mineral weathering rates to physical weathering. Initial results show some sensitivity but not that dramatic. The less sensitivity was attributed to dominance of resistant primary minerals (> 70% quartz). Scenarios with different sets of mineralogy will be tested and sensitivity results in terms of silicate mineral dissolution rates and CO2-consumption will be presented in the conference. References Sverdrup H and Warfvinge P., 1993. Calculating field weathering rates using a mechanistic geochemical model PROFILE. Applied Geochemistry, 8:273-283. White, A.F., 2009. Natural weathering rates of silicate minerals. In: Drever, J.I. (Ed.), Surface and Ground Water, Weathering and Soils. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry. vol. 5. Elsevier-Pergamon, Oxford, pp. 133-168.

  12. The North Alabama Lightning Mapping Array: Recent Severe Storm Observations and Future Prospects

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Blakeslee, R.; Christian, H.; Koshak, W.; Bailey, J.; Hall, J.; McCaul, E.; Buechler, D.; Darden, C.; Burks, J.

    2004-01-01

    The North Alabama Lightning Mapping Array became operational in November 2001 as a principal component of a severe weather test bed to infuse new science and technology into the short-term forecasting of severe and hazardous weather, principally within nearby National Weather Service forecast offices. Since the installation of the LMA, it has measured the total lightning activity of a large number of severe weather events, including three supercell tornado outbreaks, two supercell hailstorm events, and numerous microburst-producing storms and ordinary non-severe thunderstorms. The key components of evolving storm morphology examined are the time rate-of-change (temporal trending) of storm convective and precipitation characteristics that can be diagnosed in real-time using NEXRAD WSR-88D Doppler radar (echo growth and decay, precipitation structures and velocity features, outflow boundaries), LMA (total lightning flash rate and its trend) and National Lightning Detection Network (cloud-to- ground lightning, its polarity and trends). For example, in a transitional season supercell tornado outbreak, peak total flash rates for typical supercells in Tennessee reached 70-100/min, and increases in the total flash rate occurred during storm intensification as much as 20-25 min prior to at least some of the tornadoes. The most intense total flash rate measured during this outbreak (over 800 flashes/min) occurred in a storm in Alabama. In the case of a severe summertime pulse thunderstorm in North Alabama, the peak total flash rate reached 300/min, with a strong increase in total lightning evident some 9 min before damaging winds were observed at the surface. In this paper we provide a sampling of LMA observations and products during severe weather events to illustrate the capability of the system, and discuss the prospects for improving the short-term forecasting of convective weather using total lightning data.

  13. Road Weather and Connected Vehicles

    NASA Astrophysics Data System (ADS)

    Pisano, P.; Boyce, B. C.

    2015-12-01

    On average, there are over 5.8 M vehicle crashes each year of which 23% are weather-related. Weather-related crashes are defined as those crashes that occur in adverse weather or on slick pavement. The vast majority of weather-related crashes happen on wet pavement (74%) and during rainfall (46%). Connected vehicle technologies hold the promise to transform road-weather management by providing improved road weather data in real time with greater temporal and geographic accuracy. This will dramatically expand the amount of data that can be used to assess, forecast, and address the impacts that weather has on roads, vehicles, and travelers. The use of vehicle-based measurements of the road and surrounding atmosphere with other, more traditional weather data sources, and create road and atmospheric hazard products for a variety of users. The broad availability of road weather data from mobile sources will vastly improve the ability to detect and forecast weather and road conditions, and will provide the capability to manage road-weather response on specific roadway links. The RWMP is currently demonstrating how weather, road conditions, and related vehicle data can be used for decision making through an innovative Integrated Mobile Observations project. FHWA is partnering with 3 DOTs (MN, MI, & NV) to pilot these applications. One is a mobile alerts application called the Motorists Advisories and Warnings (MAW) and a maintenance decision support application. These applications blend traditional weather information (e.g., radar, surface stations) with mobile vehicle data (e.g., temperature, brake status, wiper status) to determine current weather conditions. These weather conditions, and other road-travel-relevant information, are provided to users via web and phone applications. The MAW provides nowcasts and short-term forecasts out to 24 hours while the EMDSS application can provide forecasts up to 72 hours in advance. The three DOTs have placed readers and external road weather sensors on their maintenance fleet vehicles to collect vehicular and meteorological data. Data from all three states is sent to a processing system called the Pikalert® Vehicle Data Translator (VDT) that quality checks and uses the data to infer current and forecasted weather conditions.

  14. A Multiyear Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Evaporation is a key component of the hydrological cycle and the surface heat budget, while the wind stress is the major forcing for driving the oceanic circulation. The global air-sea fluxes of momentum, latent and sensible heat, radiation, and freshwater (precipitation-evaporation) are the forcing for driving oceanic circulation and, hence, are essential for understanding the general circulation of global oceans. The global air-sea fluxes are required for driving ocean models and validating coupled ocean-atmosphere global models. We have produced a 7.5-year (July 1987-December 1994) dataset of daily surface turbulent fluxes over the global oceans from the Special Sensor microwave/Imager (SSM/I) data. Daily turbulent fluxes were derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) validated well with that of the collocated radiosonde observations over the global oceans. Furthermore, the retrieved daily wind stresses and latent heat fluxes were found to agree well with that of the in situ measurements (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE intensive observing period (November 1992-February 1993). The global distributions of 1988-94 seasonal-mean turbulent fluxes will be presented. In addition, the global distributions of 1990-93 annual-means turbulent fluxes and input variables will be compared with those of UWM/COADS covering the same period. The latter is based on the COADS (comprehensive ocean-atmosphere data set) and is recognized to be one of the best climatological analyses of fluxes derived from ship observations.

  15. WMS and WFS Standards Implementation of Weather Data

    NASA Astrophysics Data System (ADS)

    Armstrong, M.

    2005-12-01

    CustomWeather is private weather company that delivers global weather data products. CustomWeather has built a mapping platform according to OGC standards. Currently, both a Web Mapping Service (WMS) and Web Feature Service (WFS) are supported by CustomWeather. Supporting open geospatial standards has lead to number of positive changes internally to the processes of CustomWeather, along with those of the clients accessing the data. Quite a number of challenges surfaced during this process, particularly with respect to combining a wide variety of raw modeling and sensor data into a single delivery platform. Open standards have, however, made the delivery of very different data products rather seamless. The discussion will address the issues faced in building an OGC-based mapping platform along with the limitations encountered. While the availability of these data products through open standards is still very young, there have already been many adopters in the utility and navigation industries. The discussion will take a closer look at the different approach taken by these two industries as they utilize interoperability standards with existing data. Insight will be given in regards to applications already taking advantage of this new technology and how this is affecting decision-making processes. CustomWeather has observed considerable interest and potential benefit in this technology from developing countries. Weather data is a key element in disaster management. Interoperability is literally opening up a world of data and has the potential to quickly enable functionality that would otherwise take considerable time to implement. The discussion will briefly touch on our experience.

  16. Future development of IR thermovision weather satellite equipment

    NASA Technical Reports Server (NTRS)

    Listratov, A. V.

    1974-01-01

    The self radiation of the surface being viewed is used for image synthesis in IR thermovision equipment. The installation of such equipment aboard weather satellites makes it possible to obtain cloud cover pictures of the earth's surface in a complete orbit, regardless of the illumination conditions, and also provides quantitative information on the underlying surface temperature and cloud top height. Such equipment is used successfully aboard the Soviet satellites of the Meteor system, and experimentally on the American satellites of the Nimbus series. With regard to surface resolution, the present-day IR weather satellite equipment is inferior to the television equipment. This is due primarily to the comparatively low detectivity of the IR detectors used. While IR equipment has several fundamental advantages in comparison with the conventional television equipment, the problem arises of determining the possibility for future development of weather satellite IR thermovision equipment. Criteria are examined for evaluating the quality of IR.

  17. A Comparison of Five Numerical Weather Prediction Analysis Climatologies in Southern High Latitudes.

    NASA Astrophysics Data System (ADS)

    Connolley, William M.; Harangozo, Stephen A.

    2001-01-01

    In this paper, numerical weather prediction analyses from four major centers are compared-the Australian Bureau of Meteorology (ABM), the European Centre for Medium-Range Weather Forecasts (ECMWF), the U.S. National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR), and The Met. Office (UKMO). Two of the series-ECMWF reanalysis (ERA) and NCEP-NCAR reanalysis (NNR)-are `reanalyses'; that is, the data have recently been processed through a consistent, modern analysis system. The other three-ABM, ECMWF operational (EOP), and UKMO-are archived from operational analyses.The primary focus in this paper is on the period of 1979-93, the period used for the reanalyses, and on climatology. However, ABM and NNR are also compared for the period before 1979, for which the evidence tends to favor NNR. The authors are concerned with basic variables-mean sea level pressure, height of the 500-hPa surface, and near-surface temperature-that are available from the basic analysis step, rather than more derived quantities (such as precipitation), which are available only from the forecast step.Direct comparisons against station observations, intercomparisons of the spatial pattern of the analyses, and intercomparisons of the temporal variation indicate that ERA, EOP, and UKMO are best for sea level pressure;that UKMO and EOP are best for 500-hPa height; and that none of the analyses perform well for near-surface temperature.

  18. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  19. Surface chemistry changes and microstructure evaluation of low density nanocluster polyethylene under natural weathering: A spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Hamzah, M.; Khenfouch, M.; Rjeb, A.; Sayouri, S.; Houssaini, D. S.; Darhouri, M.; Srinivasu, VV

    2018-03-01

    Polyethylene is the most commonly used plastic in daily life, covering wide areas of application e.g. this polymer is used as a greenhouses covering material. This article investigates the effect of photo-oxidation on commercial unstabilised Low Density Polyethylene (uLDPE), as result of outdoor weathering factors. In this study, the samples were exposed for four months to the natural weather. The physico-chemical effects of natural ageing were studied by attenuated total reflection Fourier transform infrared (ATR-FTIR) and X-ray photoelectron (XPS) spectroscopy to elucidate the chemical composition, the nature of chemical bonds established and further to interrogate the changes that occur on the surface of the uLDPE samples. The main chemical change of uLDPE results in the formation of different kinds of carbonyl and vinyl groups identifiable in the ATR-FTIR and XPS spectra. The degree of crystallinity for these samples was calculated in terms of time exposure. An increase in the degree of crystallinity due to chemicrystallization was observed, which we indicative of the occurrences of chain scission. During outdoor exposure it was found that the photo-oxidation results in the formation of chain scission occurrences via Norrish type II reactions.

  20. Altus AFB Oklahoma. Revised Uniform Summary of Surface Weather Observations. Parts A-F.

    DTIC Science & Technology

    1983-06-01

    amounts and extreme values); (c) surface winds; (D) Ceiling versus Visibility; Sky Cover; (E) Psychrometric DID I FONI 1473 EDITION OF Iae IOS6 1 ...By _ _ . . Distribut 1 on/ Availability Codes Avail and/or Dist Special SS" D UNCLASSIFIED SI~CUNiIY CLASIPICrlATIOUl Oir ’’ PAGC(Wlnr Dalta...stations around the world. This is the ptovenance of the number (e.g., MSC 999999) which will appear on future OL-A standard products. IWI -. ~~ 1

  1. Salt-enhanced chemical weathering of building materials and bacterial mineralization of calcium carbonate as a treatment

    NASA Astrophysics Data System (ADS)

    Schiro, M.; Ruiz-Agudo, E.; Jroundi, F.; Gonzalez-Muñoz, M. T.; Rodriguez-Navarro, C.

    2012-04-01

    Salt weathering is an important mechanism contributing to the degradation and loss of stone building materials. In addition to the physical weathering resulting from crystallization pressure, the presence of salts in solution greatly enhances the chemical weathering potential of pore waters. Flow through experiments quantify the dissolution rates of calcite and quartz grains (63-125 micrometer diameter) when subjected to 1.0 ionic strength solutions of MgSO4, MgCl, Na2SO4 or NaCl. Results indicate that the identity of the cation is the primary control over the dissolution rate of both calcite and quartz substrates, with salt-enhanced dissolution occurring most rapidly in Mg2+ bearing solutions. It has been observed that weathering rates of rocks in nature, as well as building stones, are slowed down by naturally occurring or artificially produced patinas. These tend to be bacterially produced, durable mineralized coatings that lend some degree of protection to the underlying stone surface [1]. Our research shows that bacterially produced carbonate coatings can be quite effective at reducing chemical weathering of stone by soluble salts. The calcite-producing-bacteria used in this study were isolated from stone monuments in Granada, Spain [2] and cultivated in an organic-rich culture medium on a variety of artificial and natural substrates (including limestone, marble, sandstone, quartz, calcite single crystals, glass cover-slips, and sintered porous glass). Scanning electron microscopy (FESEM) was used to image bacterial calcite growth and biofilm formation. In-situ atomic force microscopy (AFM) enabled calculation of dissolution rates of untreated and bacterially treated surfaces. 2D-XRD showed the mineralogy and crystallographic orientation of bacterial calcium carbonate. Results indicate that bacterially produced calcite crystals form a coherent, mechanically resistant surface layer in perfect crystallographic continuity with the calcite substrate (self-epitaxy). These calcite biominerals are more resistant to chemical weathering by salt-enhanced dissolution, apparently due to the incorporation of organics (bacterial exopolymeric substances, EPS). Conversely, on silicate substrates, non-oriented vaterite forms, leading to limited protection. These preliminary results indicate that bacterial treatments have a significant potential to protect the stone built cultural heritage. [1] De Muynck et al. (2010) Ecol. Eng. 36, 118-136. [2] Jimenez-Lopez et al. (2007) Chemosphere 68, 1929-1936.

  2. Effect of TiO2-Crystal Forms on the Photo-Degradation of EVA/PLA Blend Under Accelerated Weather Testing

    NASA Astrophysics Data System (ADS)

    Van Cong, Do; Trang, Nguyen Thi Thu; Giang, Nguyen Vu; Lam, Tran Dai; Hoang, Thai

    2016-05-01

    Photo-degradation of poly (ethylene-co-vinyl acetate) (EVA)/poly (lactic acid) (PLA) blend and EVA/PLA/TiO2 nanocomposites was carried out under accelerated weather testing conditions by alternating cycles of ultraviolet (UV) light and moisture at controlled and elevated temperatures. The characters, properties, and morphology of these materials before and after accelerated weather testing were determined by Fourier transform infrared spectroscopy, colour changes, viscosity, tensile test, thermogravimetric analysis, and field emission scanning electron microscopy. The increases in the content of oxygen-containing groups, colour changes; the decreases in viscosity, tensile properties, and thermal stability of these materials after accelerated weather testing are the evidence for the photo-degradation of the blend and nanocomposites. After accelerated weather testing, the appearance of many micro-holes and micro-pores on the surface of the collected samples was observed. The photo-degradation degree of the nanocomposites depended on the TiO2-crystal form. Rutile TiO2 do not enhance the degradation, but anatase and mixed crystals TiO2 nanoparticles promoted the degradation of the nanocomposites. Particularly, the mixed crystals TiO2 nanoparticles showed the highest photo-catalytic activity of the nanocomposites.

  3. Low altitude temperature and humidity profile data for application to aircraft noise propagation

    NASA Technical Reports Server (NTRS)

    Connor, A. B.; Copeland, W. L.; Fulbright, D. C.

    1975-01-01

    A data search of the weather statistics from 11 widely dispersed geographical locations within the continental United States was conducted. The sites, located long both sea-coasts and in the interior, span the northern, southern, and middle latitudes. The weather statistics, retrieved from the records of these 11 sites, consist of two daily observations taken over a 10-year period. The data were sorted with respect to precipitation and surface winds and classified into temperature intervals of 5 C and relative humidity intervals of 10 percent for the lower 1400 meters of the atmosphere. These data were assembled in a statistical format and further classified into altitude increments of 200 meters. The data are presented as sets of tables for each site by season of the year and include both daily observations.

  4. Comprehensive amateur coverage of the Mars 2015-2017 apparition from the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Foster, C.

    2017-09-01

    Although there are current, active scientific assets orbiting and on the surface of Mars, comprehensive amateur monitoring of the planet can still add value. With latest technology and improved high resolution imaging techniques, amateurs are still in a position to observe and report in real time on any significant atmospheric activity on the planet. The author was able to follow the 2015-2017 Mars apparition comprehensively from December 2015 through until February 2017. The planet was imaged on 198 nights by the author during this period, and although no major(non-regional) dust storms occurred during the apparition, a number of atmospheric phenomena were noted and imaged. Orographic cloud formations, Northern and southern polar hood development, high latitude weather systems and the changing weather systems and conditions in and around the Hellas basin were observed and recorded.

  5. Hamilton AFB, San Rafael, California. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A through F

    DTIC Science & Technology

    1972-11-03

    FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 23211 HAAIILTON.AF6 CALIF/SAN RAFAEL 39-70 NOV STAIWU ITATIONKAM NONIN ALL WEATHER...i 94,7j 94*91 9590 95,0 95,0 95tO 95,0 95,1i 95, 1 9501 95,1 91,1 95,0’ 95,2 2 :> Soo0 5𔃺 96 a0 _a* 4 96.6 960.’ 960? 4607 96,a 96.8 96.,9 96:81 91...99.0 9590 2: 400 71.5 956. 3 0 j 99.0 j �. 959.4 99.4 9 _!L799 54 79 95.7 5.7 91.7 95.7 95.7 2300 71.60 95.6 973590 56 99 93#9.77 9.8 9 9 9 8,0 959

  6. Energetic charged particle interactions at icy satellites

    NASA Astrophysics Data System (ADS)

    Nordheim, T.; Hand, K. P.; Paranicas, C.; Howett, C.; Hendrix, A. R.

    2016-12-01

    Satellites embedded within planetary magnetospheres are typically exposed to bombardment by charged particles, from thermal plasma to more energetic particles at radiation belt energies. At many planetary satellites, energetic charged particles are typically unimpeded by patchy atmospheres or induced satellite magnetic fields and instead are stopped in the surface itself. Most of these primaries have ranges in porous water ice that are at most centimeters, but some of their secondary photons, emitted during the deceleration process, can reach meter depths [Paranicas et al., 2002, 2004; Johnson et al., 2004]. Examples of radiation-induced surface alteration includes sputtering, radiolysis and grain sintering, processes that are capable of significantly altering the physical properties of surface material. Thus, accurate characterization of energetic charged particle weathering at icy satellites is crucial to a more comprehensive understanding of these bodies. At Saturn's inner mid-size moons remote sensing observations by several instruments onboard the Cassini spacecraft have revealed distinct weathering patterns which have been attributed to energetic electron bombardment of the surface [Howett et al., 2011, 2012, 2014; Schenk et al., 2011; Paranicas et al., 2014]. In the Jovian system, radiolytic production of oxidants has been invoked as a potential source of energy for life which may reside in the sub-surface ocean of its satellite Europa [Johnson et al., 2003; Hand et al., 2007; Vance et al., 2016]. Here we will discuss the near-surface energetic charged particle environment of icy satellites, with particular emphasis on comparative studies between the Saturnian and Jovian systems and interpretation of remote sensing observations by instruments onboard missions such as Cassini and Galileo. In addition, we will discuss implications for surface sampling by future lander missions (e.g. the proposed Europa lander now under study).

  7. Does Silicate Weathering of Loess Affect Atmospheric CO2?

    NASA Astrophysics Data System (ADS)

    Anderson, S. P.

    2002-12-01

    Weathering of glacial loess may be a significant, yet unrecognized, component of the carbon cycle. Glaciers produce fine-grained sediment, exposing vast amounts of mineral surface area to weathering processes, yet silicate mineral weathering rates at glacier beds and of glacial till are not high. Thus, despite the tremendous potential for glaciers to influence global weathering rates and atmospheric CO2 levels, this effect has not been demonstrated. Loess, comprised of silt-clay sizes, may be the key glacial deposit in which silicate weathering rates are high. Loess is transported by wind off braid plains of rivers, and deposited broadly (order 100 km from the source) in vegetated areas. Both the fine grain size, and hence large mineral surface area, and presence of vegetation should render loess deposits highly susceptible to silicate weathering. These deposits effectively extend the geochemical impact of glaciation in time and space, and bring rock flour into conditions conducive to chemical weathering. A simple 1-d model of silicate weathering fluxes from a soil profile demonstrates the potential of loess deposition to enhance CO2 consumption. At each time step, computed mineral dissolution (using anorthite and field-based rate constants) modifies the size of mineral grains within the soil. In the case of a stable soil surface, this results in a gradual decline in weathering fluxes and CO2 consumption through time, as finer grain sizes dissolve away. Computed weathering fluxes for a typical loess, with an initial mean grain size of 25 μm, are an order of magnitude greater than fluxes from a non-loess soil that differs only in having a mean grain size of 320 μm. High weathering fluxes are maintained through time if loess is continually deposited. Deposition rates as low as 0.01 mm/yr (one loess grain thickness per year) can lead to a doubling of CO2 consumption rates within 5 ka. These results suggest that even modest loess deposition rates can significantly increase CO2 consumption rates due to silicate weathering in soils. Thick loess deposits cover 5-10% of the global land surface, and loess deposits too thin to be included in global inventories cover a much greater area. Loess deposition and weathering over timescales greater than the duration of glaciation must be considered in models of atmospheric CO2 variation.

  8. Effects of rainfall events on the occurrence and detection efficiency of viruses in river water impacted by combined sewer overflows.

    PubMed

    Hata, Akihiko; Katayama, Hiroyuki; Kojima, Keisuke; Sano, Shoichi; Kasuga, Ikuro; Kitajima, Masaaki; Furumai, Hiroaki

    2014-01-15

    Rainfall events can introduce large amount of microbial contaminants including human enteric viruses into surface water by intermittent discharges from combined sewer overflows (CSOs). The present study aimed to investigate the effect of rainfall events on viral loads in surface waters impacted by CSO and the reliability of molecular methods for detection of enteric viruses. The reliability of virus detection in the samples was assessed by using process controls for virus concentration, nucleic acid extraction and reverse transcription (RT)-quantitative PCR (qPCR) steps, which allowed accurate estimation of virus detection efficiencies. Recovery efficiencies of poliovirus in river water samples collected during rainfall events (<10%) were lower than those during dry weather conditions (>10%). The log10-transformed virus concentration efficiency was negatively correlated with suspended solid concentration (r(2)=0.86) that increased significantly during rainfall events. Efficiencies of DNA extraction and qPCR steps determined with adenovirus type 5 and a primer sharing control, respectively, were lower in dry weather. However, no clear relationship was observed between organic water quality parameters and efficiencies of these two steps. Observed concentrations of indigenous enteric adenoviruses, GII-noroviruses, enteroviruses, and Aichi viruses increased during rainfall events even though the virus concentration efficiency was presumed to be lower than in dry weather. The present study highlights the importance of using appropriate process controls to evaluate accurately the concentration of water borne enteric viruses in natural waters impacted by wastewater discharge, stormwater, and CSOs. © 2013.

  9. Probing the molecular-level control of aluminosilicate dissolution: A sensitive solid-state NMR proxy for reactive surface area

    NASA Astrophysics Data System (ADS)

    Washton, Nancy M.; Brantley, Susan L.; Mueller, Karl T.

    2008-12-01

    For two suites of volcanic aluminosilicate glasses, the accessible and reactive sites for covalent attachment of the fluorine-containing (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS) probe molecule were measured by quantitative 19F nuclear magnetic resonance (NMR) spectroscopy. The first set of samples consists of six rhyolitic and dacitic glasses originating from volcanic activity in Iceland and one rhyolitic glass from the Bishop Tuff, CA. Due to differences in the reactive species present on the surfaces of these glasses, variations in the rate of acid-mediated dissolution (pH 4) for samples in this suite cannot be explained by variations in geometric or BET-measured surface area. In contrast, the rates scale directly with the surface density of TFS-reactive sites as measured by solid-state NMR. These data are consistent with the inference that the TFS-reactive M-OH species on the glass surface, which are known to be non-hydrogen-bonded Q 3 groups, represent loci accessible to and affected by proton-mediated dissolution. The second suite of samples, originating from a chronosequence in Kozushima, Japan, is comprised of four rhyolites that have been weathered for 1.1, 1.8, 26, and 52 ka. The number of TFS-reactive sites per gram increases with duration of weathering in the laboratory for the "Icelandic" samples and with duration of field weathering for both "Icelandic" and Japanese samples. One hypothesis is consistent with these and published modeling, laboratory, and field observations: over short timescales, dissolution is controlled by fast-dissolving sites, but over long timescales, dissolution is controlled by slower-dissolving sites, the surface density of which is proportional to the number of TFS-reactive Q 3 sites. These latter sites are not part of a hydrogen-bonded network on the surface of the glasses, and measurement of their surface site density allows predictions of trends in reactive surface area. The TFS treatment method, which is easily monitored by quantitative 19F solid-state NMR, therefore provides a chemically specific and quantifiable proxy to understand the nature of how sites on dissolving silicates control dissolution. Furthermore, 27Al NMR techniques are shown here to be useful in identifying clays on the glass surfaces, and these methods are therefore effective for quantifying concentrations of weathering impurities. Our interpretations offer a testable hypothesis for the mechanism of proton-promoted dissolution for low-iron aluminosilicate minerals and glasses and suggest that future investigations of reactive surfaces with high-sensitivity NMR techniques are warranted.

  10. Carbonate Mineral Weathering Contributions to the HCO3- Flux from Headwater Mid-latitude Streams in the Face of Increasing Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Szramek, K.; Ogrinc, N.; Walter, L. M.

    2007-12-01

    As anthropogenic liberated CO2 increases in the atmosphere, landscape level responses of the carbon cycle to perturbations associated with global warming are likely to be observed in carbonate bearing regions. Within physically open weathering environments, carbonate (calcite and dolomite) mineral solubility is proportional to pCO2 and inversely proportional to temperature, with the solubility of dolomite progressively greater than calcite below 25°C. Changes in weathering zone CO2 occur as CO2 drawdown is increased due to CO2 fertilization effects on plant growth, to warmer mean annual temperatures, or to land use changes. The rise in weathering zone CO2 will significantly augment the open system solubility of carbonate minerals and increase the DIC content of surface waters (unconfined groundwaters and rivers). The thermodynamic relationships between calcite and dolomite indicate the further need to examine the role of dolomite on the global riverine DIC budget. On a continental scale, the global weathering budget indicates the importance of northern hemisphere landmasses to riverine fluxes of Ca2+, Mg2+ and DIC as HCO3-. The results of a hydrogeochemical study of carbonate mineral equilibria and weathering fluxes for headwater streams within the Danube, the James and the St. Lawrence River Basins is presented. Available long-term geochemical and discharge data along with detailed catchment geochemical views of surface water and soil weathering zones were determined to examine the historical and current contribution of carbonate weathering to the geochemical fluctuations of the these headwater regions and the ability of these watersheds to maintain current conditions in the facing of increasing CO2. In order to gauge how these streams with variable climates, land use practices, lithologies, and weathering zone thicknesses compare to each other, river runoff and HCO3- concentrations are normalized to catchment area. The resulting carbonate weathering intensity on a global scale, shows the study regions exceeding the world average by factors of between 2 to 20. Within each stream, variability of HCO3- concentrations are minimal over a wide range of discharges indicating that carbonate weathering is not limited by solubility. A closer look at dolomite weathering contributions estimated from riverine Mg2+ fluxes exceeds the world average by factors between 2 to 15. Our results indicate that both calcite and dolomite mineral weathering within temperate zone watersheds will be able to carry an increased flux of HCO3- to the ocean as global atmospheric CO2 increases. In addition this work reinforces the significant contribution of dolomite weathering to the global HCO3- flux.

  11. Tracking spatial variation in river load from Andean highlands to inter-Andean valleys

    NASA Astrophysics Data System (ADS)

    Tenorio, Gustavo E.; Vanacker, Veerle; Campforts, Benjamin; Álvarez, Lenín; Zhiminaicela, Santiago; Vercruysse, Kim; Molina, Armando; Govers, Gerard

    2018-05-01

    Mountains play an important role in the denudation of continents and transfer erosion and weathering products to lowlands and oceans. The rates at which erosion and weathering processes take place in mountain regions have a substantial impact on the morphology and biogeochemistry of downstream reaches and lowlands. The controlling factors of physical erosion and chemical weathering and the coupling between the two processes are not yet fully understood. In this study, we report physical erosion and chemical weathering rates for five Andean catchments located in the southern Ecuadorian Andes and investigate their mutual interaction. During a 4-year monitoring period, we sampled river water at biweekly intervals, and we analyzed water samples for major ions and suspended solids. We derived the total annual dissolved, suspended sediment, and ionic loads from the flow frequency curves and adjusted rating curves and used the dissolved and suspended sediment yields as proxies for chemical weathering and erosion rates. In the 4-year period of monitoring, chemical weathering exceeds physical erosion in the high Andean catchments. Whereas physical erosion rates do not exceed 30 t km-2 y-1 in the relict glaciated morphology, chemical weathering rates range between 22 and 59 t km-2 y-1. The variation in chemical weathering is primarily controlled by intrinsic differences in bedrock lithology. Land use has no discernible impact on the weathering rate but leads to a small increase in base cation concentrations because of fertilizer leaching in surface water. When extending our analysis with published data on dissolved and suspended sediment yields from the northern and central Andes, we observe that the river load composition strongly changes in the downstream direction, indicating large heterogeneity of weathering processes and rates within large Andean basins.

  12. The geochemical evolution of riparian ground water in a forested piedmont catchment

    USGS Publications Warehouse

    Burns, Douglas A.; Plummer, Niel; McDonnell, Jeffrey J.; Busenberg, Eurybiades; Casile, Gerolamo C.; Kendall, Carol; Hooper, Richard P.; Freer, James E.; Peters, Norman E.; Beven, Keith; Schlosser, Peter

    2003-01-01

    The principal weathering reactions and their rates in riparian ground water were determined at the Panola Mountain Research Watershed (PMRW) near Atlanta, Georgia. Concentrations of major solutes were measured in ground water samples from 19 shallow wells completed in the riparian (saprolite) aquifer and in one borehole completed in granite, and the apparent age of each sample was calculated from chloroflourocarbons and tritium/helium-3 data. Concentrations of SiO2, Na+, and Ca2+ generally increased downvalley and were highest in the borehole near the watershed outlet. Strong positive correlations were found between the concentrations of these solutes and the apparent age of ground water that was modern (zero to one year) in the headwaters, six to seven years midway down the valley, and 26 to 27 years in the borehole, located ∼500 m downstream from the headwaters. Mass-balance modeling of chemical evolution showed that the downstream changes in ground water chemistry could be largely explained by weathering of plagioclase to kaolinite, with possible contributions from weathering of K-feldspar, biotite, hornblende, and calcite. The in situ rates of weathering reactions were estimated by combining the ground water age dates with geochemical mass-balance modeling results. The weathering rate was highest for plagioclase (∼6.4 μmol/L/year), but could not be easily compared with most other published results for feldspar weathering at PMRW and elsewhere because the mineral-surface area to which ground water was exposed during geochemical evolution could not be estimated. However, a preliminary estimate of the mineral-surface area that would have contacted the ground water to provide the observed solute concentrations suggests that the plagioclase weathering rate calculated in this study is similar to the rate calculated in a previous study at PMRW, and three to four orders of magnitude slower than those published in previous laboratory studies of feldspar weathering. An accurate model of the geochemical evolution of riparian ground water is necessary to accurately model the geochemical evolution of stream water at PMRW.

  13. Craig AFB, Selma, Alabama. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F

    DTIC Science & Technology

    1976-06-15

    amaAt,~~~ *~~~~~~; 4c.e,. DQ550 453 0. 8FI93 Ttl < etBIh 24172 30786.1_______ i-P K. W Depoii 81019 308716~.J .53 198 32 ~.5 a 7O0~~t 1 3539 -5339t76

  14. Nellis AFB, Nevada. Revised Uniform Summary of Surface Weather Observations.

    DTIC Science & Technology

    1986-11-01

    uL3BAL CLIMATOLOGY BRANCH PERCENTAGE FREQUENCY OF OCCURRENLE OF cEILING VERSUS VISIBILITY USAFETAC FROM HOUPLY O.SERVATIONS AIR wATHER SERVICE/MAC...FREAUENCY OF 0CCUN9LNJE OF CEILING VERSUS VISIBILI3Y USAFLTAC FROM HOUPLY OoSLRVAOIONS AIR WATHER SER9ICE/MAC STATION NUM8EV: 723865 STATION NAME: NELLIS

  15. Yokota Air Base, Japan: Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F

    DTIC Science & Technology

    1988-02-01

    8217... .. ... ... .. ... ... .. ... .. ... ... . m ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. * GLOBAL CLIMAIOLOGY 6RANCH PLECENTAGE FREOUNCY OF...24 HOUR AMOUNTS IN INCHES - M -0-N-T-H-S- ALL YEAS I JAN...8217........................°...........°................°................ 24 HOUR AMUUNTS IN INCHFS - M -O-N-I-H-S- ALL YEA I JAN F E *’AIr AP4 MAY JUN

  16. Mars surface weathering products and spectral analogs: Palagonites and synthetic iron minerals

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Morris, R. V.; Lauer, H. V., Jr.

    1992-01-01

    There are several hypotheses regarding the formation of Martian surface fines. These surface fines are thought to be products of weathering processes occurring on Mars. Four major weathering environments of igneous rocks on Mars have been proposed; (1) impact induced hydrothermal alterations; (2) subpermafrost igneous intrusion; (3) solid-gas surface reactions; and (4) subaerial igneous intrusion over permafrost. Although one or more of these processes may be important on the Martian surface, one factor in common for all these processes is the reaction of solid or molten basalt with water (solid, liquid, or gas). These proposed processes, with the exception of solid-gas surface reactions, are transient processes. The most likely product of transient hydrothermal processes are layer silicates, zeolites, hydrous iron oxides and palagonites. The long-term instability of hydrous clay minerals under present Martian conditions has been predicted; however, the persistence of such minerals due to slow kinetics of dehydration, or entrapment in permafrost, where the activity of water is high, can not be excluded. Anhydrous oxides of iron (e.g., hematite and maghemite) are thought to be stable under present Martian surface conditions. Oxidative weathering of sulfide minerals associated with Martian basalts has been proposed. Weathering of sulfide minerals leads to a potentially acidic permafrost and the formation of Fe(3) oxides and sulfates. Weathering of basalts under acidic conditions may lead to the formation of kaolinite through metastable halloysite and metahalloysite. Kaolinite, if present, is thought to be a thermodynamically stable phase at the Martian surface. Fine materials on Mars are important in that they influence the surface spectral properties; these fines are globally distributed on Mars by the dust storms and this fraction will have the highest surface area which should act as a sink for most of the absorbed volatiles near the surface of Mars. Therefore, the objectives of this study were to: (1) examine the fine fraction mineralogy of several palagonitic materials from Hawaii; and (2) compare spectral properties of palagonites and submicron sized synthetic iron oxides with the spectral properties of the Martian surface.

  17. Improving Weather Research and Forecasting Model Initial Conditions via Surface Pressure Analysis

    DTIC Science & Technology

    2015-09-01

    Obsgrid) that creates input data for the Advanced Research version of the Weather Research and Forecasting model ( WRF -ARW) is modified to perform a...surface pressure objective analysis to allow surface analyses of other fields to be more fully utilized in the WRF -ARW initial conditions. Nested 27-, 9...of surface pressure unnecessarily limits the application of other surface analyses into the WRF initial conditions and contributes to the creation of

  18. Widespread Surface Weathering on Early Mars: possible implication on the Past Climate

    NASA Astrophysics Data System (ADS)

    Loizeau, Damien; Carter, John; Mangold, Nicolas; Poulet, François; Rossi, Angelo P.; Allemand, Pascal; Lozac'h, Loïc; Quantin, Cathy; Bibring, Jean-Pierre

    2015-04-01

    The recent discovery of widespread hydrous clays on Mars with OMEGA/Mars Express and CRISM/MRO indicates that diverse and widespread aqueous environments existed on Mars, from the surface to kilometric depths [1, 2]. The study of the past habitability and past climates of the planet requires assessing the importance of sustained surface water vs. subsurface water in its aqueous history. Vertical sequences of Al-rich clays on top of Fe/Mg-rich clays in the top tens of meters of the surface are identified on Mars [3-6] (see figure 1) and interpreted as possible weathering profiles, similar to cases of pedogenesis on Earth (e.g. [7, 8]). A global study of these clay sequences has recently been published by Carter et al. [9]. This following work presents detailed geological analysis, performed for each identified candidate, in order to constrain their age and origin. With the increasing availability of CTX and HiRISE stereoimages, we investigate the thickness of the altered sequences, the age of the altered units and the different geological contexts to further understand the weathering process(es), and their possible implication on the past climate. The types of geologic settings where the interpreted weathering profiles are observed are much varied: from basin floor to plateaus, in apparent massive rocks to finely layered rocks. Besides, the number and variety of sequences is/was likely larger. However, in term of chronology, the alteration seems to have stopped in a relatively limited period of time for the studied cases, between 3.8 and 3.6 Ga. This would point to a formation due to a global process that enabled liquid water at the surface and pedogenesis in various regions, on various terrains, from late Noachian to early Hesperian. This global process would imply regular, widely distributed ice or precipitations in large regions of Mars at that time. If weathering occurred before that time, during the early or middle Noachian, the sequences may have been erased by the more intense erosion of that time. Also, it is difficult to date older terrains by crater counting on small surfaces. These observations make a strong constrain concerning the past habitability of Mars: liquid water has been widely available at the surface of the planet, in contact with different rocks, until the early Hesperian time. Acknowledgment: Some of the authors have received funding from the ERC (FP7/2007-2013)/ERC Grant agreement n° 280168. References: [1] Ehlmann B., et al. Nature, 479, 53-60 (2011). [2] Carter J., et al. JGR, 118, 831-858 (2013) [3] Gaudin A., et al. Icarus, 216(1), 257-268 (2011). [4] Loizeau D., et al. Icarus, 205, 396-418 (2010). [5] Noe Dobrea E., et al. JGR, 115, E00D19 (2010). [6] Le Deit L., et al. JGR, 117, E00J05 (2012). [7] Velde B., et al. Ed. Springer, Berlin, (1995). [8] Wilson M. Clay Minerals, 39, 233-266 (2004). [9] Carter J., et al. Icarus, 248, 373-382.

  19. Laboratory tools to quantify biogenic dissolution of rocks and minerals: a model rock biofilm growing in percolation columns

    NASA Astrophysics Data System (ADS)

    Seiffert, Franz; Bandow, Nicole; Kalbe, Ute; Milke, Ralf; Gorbushina, Anna

    2016-04-01

    Sub-aerial biofilms (SAB) are ubiquitous, self-sufficient microbial ecosystems found on mineral surfaces at all altitudes and latitudes. SABs, which are the principal causes of weathering on exposed terrestrial surfaces, are characterised by patchy growth dominated by associations of algae, cyanobacteria, fungi and heterotrophic bacteria. A recently developed in vitro system to study colonisation of rocks exposed to air included two key SAB participants - the rock-inhabiting ascomycete Knufia petricola (CBS 123872) and the phototrophic cyanobacterium Nostoc punctiforme ATCC29133. Both partners are genetically tractable and we used them here to study weathering of granite, K-feldspar and plagioclase. Small fragments of the various rocks or minerals (1 to 6 mm) were packed into flow-through columns and incubated with 0.1% glucose and 10 µM thiamine-hydrochloride (90 µL.min-1) to compare weathering with and without biofilms. Dissolution of the minerals was followed by: analysing (i) the degradation products in the effluent from the columns via Inductively Coupled Plasma Spectroscopy and (ii) by studying polished sections of the incubated mineral fragment/grains using scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analyses. K. petricola/N. punctiforme stimulated release of Ca, Na, Mg and Mn. Analyses of the polished sections confirmed depletion of Ca, Na and K near the surface of the fragments. The abrupt decrease in Ca concentration observed in peripheral areas of plagioclase fragments favoured a dissolution-reprecipitation mechanism. Percolation columns in combination with a model biofilm can thus be used to study weathering in closed systems. Columns can easily be filled with different minerals and biofilms, the effluent as well as grains can be collected after long-term exposure under axenic conditions and easily analysed.

  20. On the assimilation of satellite derived soil moisture in numerical weather prediction models

    NASA Astrophysics Data System (ADS)

    Drusch, M.

    2006-12-01

    Satellite derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analysed from the modelled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. Three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF) have been performed for the two months period of June and July 2002: A control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating bias corrected TMI (TRMM Microwave Imager) derived soil moisture over the southern United States through a nudging scheme using 6-hourly departures. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analysed in the nudging experiment is the most accurate estimate when compared against in-situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage. The transferability of the results to other satellite derived soil moisture data sets will be discussed.

Top