Science.gov

Sample records for surface weather observations

  1. History of surface weather observations in the United States

    NASA Astrophysics Data System (ADS)

    Fiebrich, Christopher A.

    2009-04-01

    In this paper, the history of surface weather observations in the United States is reviewed. Local weather observations were first documented in the 17th Century along the East Coast. For many years, the progression of a weather observation from an initial reading to dissemination remained a slow and laborious process. The number of observers remained small and unorganized until agencies including the Surgeon General, Army, and General Land Office began to request regular observations at satellite locations in the 1800s. The Smithsonian was responsible for first organizing a large "network" of volunteer weather observers across the nation. These observers became the foundation for today's Cooperative Observer network. As applications of weather data continued to grow and users required the data with an ever-decreasing latency, automated weather networks saw rapid growth in the later part of the 20th century. Today, the number of weather observations across the U.S. totals in the tens of thousands due largely to privately-owned weather networks and amateur weather observers who submit observations over the internet.

  2. Observational study of atmospheric surface layer and coastal weather in northern Qatar

    NASA Astrophysics Data System (ADS)

    Samanta, Dhrubajyoti; Sadr, Reza

    2016-04-01

    Atmospheric surface layer is the interaction medium between atmosphere and Earth's surface. Better understanding of its turbulence nature is essential in characterizing the local weather, climate variability and modeling of turbulent exchange processes. The importance of Middle East region, with its unique geographical, economical and weather condition is well recognized. However, high quality micrometeorological observational studies are rare in this region. Here we show experimental results from micrometeorological observations from an experimental site in the coastal region of Qatar during August-December 2015. Measurements of winds are obtained from three sonic anemometers installed on a 9 m tower placed at Al Ghariyah beach in northern Qatar (26.08 °N, 51.36 °E). Different surface layer characteristics is analyzed and compared with earlier studies in equivalent weather conditions. Monthly statistics of wind speed, wind direction, temperature, humidity and heat index are made from concurrent observations from sonic anemometer and weather station to explore variations with surface layer characteristics. The results also highlights potential impact of sea breeze circulation on local weather and atmospheric turbulence. The observed daily maximum temperature and heat index during morning period may be related to sea breeze circulations. Along with the operational micrometeorological observation system, a camera system and ultrasonic wave measurement system are installed recently in the site to study coastline development and nearshore wave dynamics. Overall, the complete observational set up is going to provide new insights about nearshore wind dynamics and wind-wave interaction in Qatar.

  3. On Observing the Weather

    ERIC Educational Resources Information Center

    Crane, Peter

    2004-01-01

    Rain, sun, snow, sleet, wind... the weather affects everyone in some way every day, and observing weather is a terrific activity to attune children to the natural world. It is also a great way for children to practice skills in gathering and recording information and to learn how to use simple tools in a standardized fashion. What better way to…

  4. Planetary surface weathering

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1986-01-01

    The weathering of planetary surfaces is treated. Both physical and chemical weathering (reactions between minerals or mineraloids and planetary volatiles through oxidation, hydration, carbonation, or solution processes) are discussed. Venus, earth, and Mars all possess permanent atmospheres such that weathering should be expected to significantly affect their respective surfaces. In contrast, Mercury and the moon lack permanent atmospheres but conceivably could experience surface weathering in response to transient atmospheres generated by volcanic or impact cratering events. Weathering processes can be postulated for other rocky objects including Io, Titan, asteroids, and comets.

  5. Recovery of Global Surface Weather Observations for Historical Reanalyses and International Users

    NASA Astrophysics Data System (ADS)

    Allan, Rob; Compo, Gil; Carton, Jim

    2011-05-01

    Third International Atmospheric Circulation Reconstructions Over the Earth Initiative Workshop: Reanalysis and Applications; Baltimore, Maryland, 3-5 November 2010 ; The third Atmospheric Circulation Reconstructions over the Earth (ACRE) workshop advanced the goals of the international ACRE initiative (http://www.met-acre.org/) to undertake and facilitate the recovery of instrumental terrestrial and marine global surface weather observations underpinning global weather reconstructions and reanalyses spanning the past 200-250 years (http://reanalyses.org). The workshop improved integration of the 35-40 ACRE-linked international scientific projects, institutions, and organizations working toward these ends. The meeting highlighted the broad array and international usage of ACRE-facilitated data sets and reanalysis: the International Surface Pressure Databank (ISPD; http://dss.ucar.edu/datasets/ds132.0/), the International Comprehensive Ocean-Atmosphere Data Set (http:/icoads.noaa.gov/ICOADS;), and the 20th Century Reanalysis (20CR; http://www.esrl.noaa.gov/psd/data/20thC_Rean/). The need for more data recovery for all regions of the globe during the nineteenth and early twentieth centuries was emphasized. Many regional efforts for such recovery are under way. The Arctic and maritime regions were highlighted as particular areas needing attention. As a result of the meeting, connections with existing projects were made and new efforts were started to address these needs.

  6. Optimizing weather radar observations using an adaptive multiquadric surface fitting algorithm

    NASA Astrophysics Data System (ADS)

    Martens, Brecht; Cabus, Pieter; De Jongh, Inge; Verhoest, Niko

    2013-04-01

    Real time forecasting of river flow is an essential tool in operational water management. Such real time modelling systems require well calibrated models which can make use of spatially distributed rainfall observations. Weather radars provide spatial data, however, since radar measurements are sensitive to a large range of error sources, often a discrepancy between radar observations and ground-based measurements, which are mostly considered as ground truth, can be observed. Through merging ground observations with the radar product, often referred to as data merging, one may force the radar observations to better correspond to the ground-based measurements, without losing the spatial information. In this paper, radar images and ground-based measurements of rainfall are merged based on interpolated gauge-adjustment factors (Moore et al., 1998; Cole and Moore, 2008) or scaling factors. Using the following equation, scaling factors (C(xα)) are calculated at each position xα where a gauge measurement (Ig(xα)) is available: Ig(xα)+-? C (xα) = Ir(xα)+ ? (1) where Ir(xα) is the radar-based observation in the pixel overlapping the rain gauge and ? is a constant making sure the scaling factor can be calculated when Ir(xα) is zero. These scaling factors are interpolated on the radar grid, resulting in a unique scaling factor for each pixel. Multiquadric surface fitting is used as an interpolation algorithm (Hardy, 1971): C*(x0) = aTv + a0 (2) where C*(x0) is the prediction at location x0, the vector a (Nx1, with N the number of ground-based measurements used) and the constant a0 parameters describing the surface and v an Nx1 vector containing the (Euclidian) distance between each point xα used in the interpolation and the point x0. The parameters describing the surface are derived by forcing the surface to be an exact interpolator and impose that the sum of the parameters in a should be zero. However, often, the surface is allowed to pass near the observations (i

  7. Loring AFB, Caribou, Maine. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts a-f. Final report

    SciTech Connect

    Not Available

    1980-06-27

    This report is a six-part statistical summary of surface weather observations for Loring AFB, Caribou, ME. It contains the following parts: (A) Weather Conditions; Atmospheric Phenomena; (B) Precipitation, Snowfall and Snow Depth (daily amounts and extreme values); (C) Surface winds; (D) Ceiling versus Visibility; Sky Cover; (E) Psychrometric Summaries (daily maximum and minimum temperatures, extreme maximum and minimum temperatures, psychrometric summary of wet-bulb temperature depression versus dry-bulb temperature, means and standard deviations of dry-bulb, wet-bulb and dew point temperatures and relative humidity); and (F) Pressure Summary (means, standard deviations, and observation counts of station pressure and sea-level pressure). Data in this report are presented in tabular form, in most cases in percentage frequency of occurrence or cumulative percentage frequency of occurrence tables. (Author)

  8. Impact of surface meteorological observations on RAMS forecast of monsoon weather systems over the Indian region

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, P.; Sanjay, J.; Cotton, W. R.; Singh, S. S.

    2005-09-01

    An attempt has been made to study the impact of surface meteorological observations on the Regional Atmospheric Modelling System (RAMS) simulation of a monsoon depression and two low pressure systems. The surface observations are blended with the GEWEX Asian Monsoon Experiment (GAME) gridded analyses for these cases. In one set of experiments the model is run in 12 hour nudging mode initially and then in forecast mode using GAME gridded data without incorporating surface observations. In another set of experiments surface data are incorporated to enhance the signature of the systems in the large scale GAME analyses and nudging is applied initially for twelve hours. Subsequently the model is run in forecast mode to see the temporal and spatial evolution of different meteorological features associated with the systems. It is found that inclusion of the surface data has in general enhanced the signature of the systems in the analysis and subsequently shows improvement in the forecast of sea-level pressure, geopotential, wind field, etc. and the associated forecast of heavy rainfall, in particular. To make a quantitative comparison of the predicted rainfall with the observed one, equitable threat score and bias are calculated for different threshold values of rainfall. It is clearly noted that inclusion of surface data has improved the precipitation forecast over the Indian land mass as indicated by the equitable threat score and bias for all the threshold rainfall categories.

  9. Observations of “fresh” and weathered surfaces on asteroid pairs and their implications on the rotational-fission mechanism

    NASA Astrophysics Data System (ADS)

    Polishook, David; Moskovitz, Nicholas; Binzel, Richard P.; DeMeo, Francesca E.; Vokrouhlický, David; Žižka, Jindřich; Oszkiewicz, Dagmara

    2014-05-01

    The rotational-fission of a “rubble-pile” structured asteroid can result in an “asteroid pair” - two unbound asteroids sharing nearly identical heliocentric orbits. Models suggest that this mechanism exposes material from below the progenitor surface that previously had never have been exposed to the weathering conditions of space. Therefore, the surfaces of asteroid pairs offer the opportunity to observe non-weathered “fresh” spectra. Here we report near-infrared spectroscopic observations of 31 asteroids in pairs. In order to search for spectral indications of fresh surfaces we analyze their spectral slopes, parameters of their 1 μm absorption band and taxonomic classification. Additionally, through backward dynamical integration we estimate the time elapsed since the disintegration of the pairs’ progenitors. Analyzing the 19 ordinary chondrite-like (S-complex) objects in our sample, we find two Q-type Asteroids (19289 and 54827) that are the first of their kind to be observed in the main-belt of asteroids over the full visible and near-infrared range. This solidly demonstrates that the Q-type taxonomy is not limited to the NEA population. The pairs in our sample present a range of fresh and weathered surfaces with no clear evidence for a correlation with the ages of the pairs. However, our sample includes “old” pairs (2 × 106 ⩾ age ⩾ 1 × 106 years) that present relatively low, meteoritic-like spectral slopes (<0.2% per μm). This illustrates a timescale of at least ∼2 myr before an object develops high spectral slope that is typical for S-type asteroids. We discuss three mechanisms that explain the existence of weathered pairs with young dynamical ages and find that the “secondary fission” model (Jacobson, S.-A., Scheeres, D.-J. [2011]. Icarus 214, 161-178) is the most robust with our observations. In this mechanism an additional and subsequent fission of the secondary component contributes the lion share of fresh material that re

  10. Martian surface weathering studies

    NASA Technical Reports Server (NTRS)

    Calvin, M.

    1973-01-01

    The nature of the Martian surface was characterized by means of its reflectance properties. The Mariner 9 photography was used to establish terrain units which were crossed by the Mariner 6 and 7 paths. The IR reflectance measured by the IR spectrometers on these spacecraft was to be used to indicate the nature of the surface within these units. There is an indication of physical size and/or compositional variation between units but too many natural parameters can vary (size, shape, composition, adsorbed phases, reradiation, atmospheric absorbtion, temperature gradients, etc.) to be certain what effect is causing those variations observed. It is suggested that the characterization could be fruitfully pursued by a group which was dedicated to peeling back the layers of minutia affecting IR reflectance.

  11. Asteroid Surface Alteration by Space Weathering Processes

    NASA Astrophysics Data System (ADS)

    Brunetto, R.; Loeffler, M. J.; Nesvorný, D.; Sasaki, S.; Strazzulla, G.

    Micrometeorite bombardment and irradiation by solar wind and cosmic-ray ions cause variations in the optical properties of small solar system bodies surfaces, affecting efforts to draw connections between specific meteorites and asteroid types. These space weathering processes have been widely studied for the Moon and S- and V-type asteroids, and they are currently being investigated for other asteroid types. Here we review the laboratory studies performed by several groups on meteorites and asteroid surface analogs, aimed at simulating space weathering by using ion irradiation and laser ablation. Together with direct evidence of weathering of particles from asteroid Itokawa acquired by the Hayabusa mission, these results have provided a fundamental contribution to the spectral interpretation of asteroid observations, to establish a solid asteroids-meteorites link, and to understand the energetic processes affecting the surfaces of minor bodies. A general scheme for asteroid optical maturation is thus emerging. Slope trends from large surveys and in particular of young asteroid families have confirmed that solar wind is the main source of rapid (104-106 yr) weathering, and that a number of rejuvenating processes (impacts by small meteorites, planetary encounters, regolith shaking, etc.) efficiently counterbalance the fast weathering timescales.

  12. Cloud information for FIRE from surface weather reports

    NASA Technical Reports Server (NTRS)

    Hahn, Carole J.; Warren, Stephen G.; London, Julius

    1990-01-01

    Surface weather observations of clouds were analyzed to obtain a global cloud climatology (Warren et al, 1986; 1988). The form of the synoptic weather code limits the types of cloud information which are available from these reports. Comparison of surface weather reports with instrumental observations during the FIRE field experiments can help to clarify the operational definitions which were made in the climatology because of the nature of the synoptic code. The long-term climatology from surface weather observations is also useful background for planning the location and timing of intensive field experiments.

  13. Earth Observation Services Weather Imaging

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Microprocessor-based systems for processing satellite data offer mariners real-time images of weather systems, day and night, of large areas or allow them to zoom in on a few square miles. Systems West markets these commercial image processing systems, which have significantly decreased the cost of satellite weather stations. The company was assisted by the EOCAP program, which provides government co-funding to encourage private investment in, and to broaden the use of, NASA-developed technology for analyzing information about Earth and ocean resources.

  14. Statistics of link blockage due to cloud cover for free-space optical communications using NCDC surface weather observation data

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.; Piazzolla, S.

    2002-01-01

    Cloud opacity is one of the main atmospheric physical phenomena that can jeopardize the successful completion of an optical link between a spacecraft and a ground station. Hence, the site location chosen for a telescope used for optical communications must rely on knowledge of weather and cloud cover statistics for the geographical area where the telescope itself is located.

  15. The Future of Operational Space Weather Observations

    NASA Astrophysics Data System (ADS)

    Berger, T. E.

    2015-12-01

    We review the current state of operational space weather observations, the requirements for new or evolved space weather forecasting capablities, and the relevant sections of the new National strategy for space weather developed by the Space Weather Operations, Research, and Mitigation (SWORM) Task Force chartered by the Office of Science and Technology Policy of the White House. Based on this foundation, we discuss future space missions such as the NOAA space weather mission to the L1 Lagrangian point planned for the 2021 time frame and its synergy with an L5 mission planned for the same period; the space weather capabilities of the upcoming GOES-R mission, as well as GOES-Next possiblities; and the upcoming COSMIC-2 mission for ionospheric observations. We also discuss the needs for ground-based operational networks to supply mission critical and/or backup space weather observations including the NSF GONG solar optical observing network, the USAF SEON solar radio observing network, the USGS real-time magnetometer network, the USCG CORS network of GPS receivers, and the possibility of operationalizing the world-wide network of neutron monitors for real-time alerts of ground-level radiation events.

  16. Comparing High Resolution Weather Forecasts to Observations

    NASA Astrophysics Data System (ADS)

    Foley, T. A.; Smith, J. A.; Raby, J. W.

    2013-12-01

    The Advanced Research version of the Weather Research and Forecasting model (WRF) is a mesoscale numerical weather prediction (NWP) system, with a horizontal grid spacing of several kilometers to several hundred kilometers. WRF can create forecasts of finer horizontal resolution by embedding a smaller domain inside the parent domain, a process called nesting. A nest may be embedded simultaneously within a coarser-resolution (parent) model run, or run independently as a separate model forecast. Army operations require weather forecasts on a scale of one kilometer or less, an area of weather modeling known as 'terra incognita' between which large eddy simulation and traditional mesoscale NWP models are applied with most confidence. Complex terrain leads to differences in surface temperature, moisture gradients, and wind speed /wind direction, and these differences are not always well-characterized by mesoscale WRF forecasts. Differences in land surface characteristics produce air flows such as mountain/valley breezes, and sea breezes that are of vital importance to Army and Air Force operations. Atmospheric effects on commercial as well as military air platforms and any associated subsystems is of critical concern, whether for commercial flight planning or for military mission execution. The traditional model verification techniques currently used aggregate the error statistics over an entire domain (such as on the order of 100km x 100km to 500km x 500km in size), techniques which produce results that often appear smoothed and may not show the value added of higher resolution WRF output at grid resolutions of 1km or less. Point verification methods can also be ineffective due to 'double counting' errors of phase and spatial nature, and failing to capture model skill in resolving mesoscale structure. More in-depth analysis of the forecast errors are needed to deduce the various sub-regimes and temporal and spatial trends which may govern the statistics in a way which

  17. A Retrospective, Iterative, Geometry-Based (RIGB) tilt-correction method for radiation observed by automatic weather stations on snow-covered surfaces: application to Greenland

    NASA Astrophysics Data System (ADS)

    Wang, Wenshan; Zender, Charles S.; van As, Dirk; Smeets, Paul C. J. P.; van den Broeke, Michiel R.

    2016-03-01

    Surface melt and mass loss of the Greenland Ice Sheet may play crucial roles in global climate change due to their positive feedbacks and large fresh-water storage. With few other regular meteorological observations available in this extreme environment, measurements from automatic weather stations (AWS) are the primary data source for studying surface energy budgets, and for validating satellite observations and model simulations. Station tilt, due to irregular surface melt, compaction and glacier dynamics, causes considerable biases in the AWS shortwave radiation measurements. In this study, we identify tilt-induced biases in the climatology of surface shortwave radiative flux and albedo, and retrospectively correct these by iterative application of solar geometric principles. We found, over all the AWS from the Greenland Climate Network (GC-Net), the Kangerlussuaq transect (K-transect) and the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) networks, insolation on fewer than 40 % of clear days peaks within ±0.5 h of solar noon time, with the largest shift exceeding 3 h due to tilt. Hourly absolute biases in the magnitude of surface insolation can reach up to 200 W m-2, with respect to the well-understood clear-day insolation. We estimate the tilt angles and their directions based on the solar geometric relationship between the simulated insolation at a horizontal surface and the observed insolation by these tilted AWS under clear-sky conditions. Our adjustment reduces the root mean square error (RMSE) against references from both satellite observation and reanalysis by 16 W m-2 (24 %), and raises the correlation coefficients with them to above 0.95. Averaged over the whole Greenland Ice Sheet in the melt season, the adjustment in insolation to compensate station tilt is ˜ 11 W m-2, enough to melt 0.24 m of snow water equivalent. The adjusted diurnal cycles of albedo are smoother, with consistent semi-smiling patterns. The seasonal

  18. Space weathering of asteroids: Lessons from Itokawa for future observations

    NASA Astrophysics Data System (ADS)

    Sasaki, Sho; HIroi, Takahiro

    2016-07-01

    Introduction Space weathering of surface silicate minerals is the main process that should control the change of brightness and color of airless silicate bodies such and the Moon, Mercury and asteroids. Spectra of S-type asteroids exhibit more overall depletion and reddening, and more weakening of absorption bands than spectra of ordinary chondrites. These spectral mismatches are explained by the space weathering, where the primary proven mechanism of such spectral change is production of nanophase metallic iron particles (npFe0) 1), which were confirmed in the amorphous rim of lunar soil grains 2,3). Vapor-deposition through at high-velocity dust particle impacts as well as implantation of intensive solar wind ions would be responsible for producing the space weathering rims bearing nano-iron particles (npFe0). Simulation experiments using nanosecond pulse laser successfully produced vapor-deposition type npFe0 to change optical properties 4,5,6). Laser experiments showed that pyroxene would be weathered less than olivine, for pyroxene, pulse laser irradiation produced melt (amorphous) droplets containing npFe0, rather than vapour deposited rim that should provide stronger optical effect trough multiple scattering of incidental light. Itokawa Observed by Remote Sensing In November 2005, Japanese Asteroid Sample Return Mission HAYABUSA spacecraft rendezvoused S-type asteroid (25143) Itokawa. Optically, the surface of Itokawa is divided into brighter (and bluer) areas and darker (and redder) areas 7,8). In rough zones, dark boulder-rich surfaces usually superpose on bright materials. The near-infrared spectrometer (NIRS) confirmed previous disk-integrated results that suggested Itokawa's spectrum closely matched a weakly weathered LL5/6 chondrite 9). Although the surface is covered with rocks and is apparently lack of fine regolith, Itokawa's surface show darkening and reddening by space weathering. Experimental results suggest rocky meteorite fragments can be

  19. Weather observations through oceanic acoustic noise recorded by gliders

    NASA Astrophysics Data System (ADS)

    Cauchy, Pierre; Testor, Pierre; Guinet, Christophe; Gervaise, Cedric; Di Oro, Lucia; Ioana, Cornel; Mortier, Laurent; Bouin, Marie-Noelle; Beguery, Laurent; Klein, Patrice

    2013-04-01

    Offshore estimates of the meteorological parameters are unfortunately spurious when considering in-situ observtions only due to obvious observational limitations while their use would allow to calibrate satellite observations and to have better weather forecasts, if assimilated in numerical weather forecasting systems. The WOTAN (Weather Observations through Acoustic Noise) approach may be used to fill these gaps if coupled to the Global Ocean Observing Sytem which has now a global coverage thanks to many autonomous observing platforms. In this study we show first results from acoustic records collected by gliders deployed in the northwestern Mediterranean Sea in the framework of MOOSE. We show that using 3 descriptors at 5kHz, 8kHz, and 20kHz allows to extract the intensity of the wind and the precipitation when the glider is at depth. This approach based on the method presented by Barry & Nuysten (2004) is compared with meterological data from coastal weather stations and the offshore meteorological buoys from Meteo-France. We also show that there is a vane effect with the tail of the glider while at surface which allows to estimate the direction of the wind every so often. These observations coupled with the in-situ profiles on temperature and salinity profiles can allow to better study air-sea interactions.

  20. Automation of surface observations program

    NASA Technical Reports Server (NTRS)

    Short, Steve E.

    1988-01-01

    At present, surface weather observing methods are still largely manual and labor intensive. Through the nationwide implementation of Automated Surface Observing Systems (ASOS), this situation can be improved. Two ASOS capability levels are planned. The first is a basic-level system which will automatically observe the weather parameters essential for aviation operations and will operate either with or without supplemental contributions by an observer. The second is a more fully automated, stand-alone system which will observe and report the full range of weather parameters and will operate primarily in the unattended mode. Approximately 250 systems are planned by the end of the decade. When deployed, these systems will generate the standard hourly and special long-line transmitted weather observations, as well as provide continuous weather information direct to airport users. Specific ASOS configurations will vary depending upon whether the operation is unattended, minimally attended, or fully attended. The major functions of ASOS are data collection, data processing, product distribution, and system control. The program phases of development, demonstration, production system acquisition, and operational implementation are described.

  1. Widespread Surface Weathering on Early Mars

    NASA Astrophysics Data System (ADS)

    Loizeau, Damien; Carter, John; Mangold, Nicolas; Poulet, François; Rossi, Angelo; Allemand, Pascal; Quantin, Cathy; Bibring, Jean-Pierre

    2014-05-01

    The recent discovery of widespread hydrous clays on Mars indicates that diverse and widespread aqueous environments existed on Mars, from the surface to kilometric depths [1,2]. The study of the past habitability and past climates of the planet requires assessing the importance of sustained surface water vs. subsurface water in its aqueous history. Using remote sensing data, we propose that surface weathering existed on Mars, suggesting that Mars experienced durable episodes of sustained liquid water on its surface. Weathering profiles are identified as vertical sequences of Al-rich clays and Fe/Mg-rich clays in the top tens of meters of the surface, similar to cases of pedogenesis on Earth (e.g. [3,4]). Such localized clay sequences have been reported by other works in 3 regions of Mars [5-8] and a similar origin was also proposed. Their frequency is however likely underestimated due to limitations of orbital investigations and re-surfacing processes. A large survey of the CRISM dataset leaded to a down-selection of ~100 deposits with clear vertical sequences, widely distributed over the southern highlands and grouped in regional clusters [9]. These putative weathering sequences are found either on inter-crater plateaus, on the floor of craters and large basins, or on crater ejectas. We investigated the thickness of the altered sequences, the age of the altered units and the different geological contexts to further understand the weathering process(es). Using few HiRISE DEMs where possible, and CTX DEMs, we find that the thickness of the exposed Al clays is on average of the order of several meters to few tens of meters. The clay sequences reported here are consistent with terrestrial weathering sequences which form under wet climates over geological timescales (>105-107 years). The combined age assessment of the altered unit and the unaltered capping (where present) provides constraints on the age of the weathering itself. All investigated cases point to an

  2. Widespread Surface Weathering on Early Mars

    NASA Astrophysics Data System (ADS)

    Loizeau, D.; Carter, J.; Mangold, N.; Poulet, F.; Rossi, A.; Allemand, P.; Quantin, C.; Bibring, J.

    2013-12-01

    The recent discovery of widespread hydrous clays on Mars indicates that diverse and widespread aqueous environments existed on Mars, from the surface to kilometric depths [1,2]. The study of the past habitability of the planet requires assessing the importance of sustained surface water vs. subsurface water in its aqueous history. Using remote sensing data, we propose that surface weathering existed on Mars, suggesting that Mars experienced durable episodes of sustained liquid water on its surface. Weathering profiles are identified as vertical sequences of Al-rich clays and Fe/Mg-rich clays in the top tens of meters of the surface, similar to cases of pedogenesis on Earth (e.g. [3,4]). Such localized clay sequences have been reported by other works in 3 regions of Mars [5-8] and a similar origin was also proposed. Their frequency is however likely underestimated due to limitations of orbital investigations and re-surfacing processes. A large survey of the CRISM dataset leaded to a down-selection of 104 deposits with clear vertical sequences, widely distributed over the southern highlands and grouped in regional clusters [9]. These putative weathering sequences are found either on inter-crater plateaus, on the floor of craters and large basins, or on crater ejectas. We investigated the thickness of the altered sequences, the age of the altered units and the different geological contexts to further understand the weathering process(es). Using few HiRISE DEMs where possible, and CTX DEMs, we find that the thickness of the exposed Al clays is on average of the order of several meters to few tens of meters. The clay sequences reported here are consistent with terrestrial weathering sequences which form under wet climates over geological timescales (> 105-107 years). The combined age assessment of the altered unit and the unaltered capping (where present) provides constraints on the age of the weathering itself. All investigated cases point to an active weathering

  3. Evaluating climate models: Should we use weather or climate observations?

    SciTech Connect

    Oglesby, Robert J; Erickson III, David J

    2009-12-01

    Calling the numerical models that we use for simulations of climate change 'climate models' is a bit of a misnomer. These 'general circulation models' (GCMs, AKA global climate models) and their cousins the 'regional climate models' (RCMs) are actually physically-based weather simulators. That is, these models simulate, either globally or locally, daily weather patterns in response to some change in forcing or boundary condition. These simulated weather patterns are then aggregated into climate statistics, very much as we aggregate observations into 'real climate statistics'. Traditionally, the output of GCMs has been evaluated using climate statistics, as opposed to their ability to simulate realistic daily weather observations. At the coarse global scale this may be a reasonable approach, however, as RCM's downscale to increasingly higher resolutions, the conjunction between weather and climate becomes more problematic. We present results from a series of present-day climate simulations using the WRF ARW for domains that cover North America, much of Latin America, and South Asia. The basic domains are at a 12 km resolution, but several inner domains at 4 km have also been simulated. These include regions of complex topography in Mexico, Colombia, Peru, and Sri Lanka, as well as a region of low topography and fairly homogeneous land surface type (the U.S. Great Plains). Model evaluations are performed using standard climate analyses (e.g., reanalyses; NCDC data) but also using time series of daily station observations. Preliminary results suggest little difference in the assessment of long-term mean quantities, but the variability on seasonal and interannual timescales is better described. Furthermore, the value-added by using daily weather observations as an evaluation tool increases with the model resolution.

  4. Rates of oxidative weathering on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    Implicit in the mnemonic 'MSATT' (Mars surface and atmosphere through time) is that rates of surface processes on Mars through time should be investigated, including studies of the kinetics and mechanism of oxidative weathering reactions occurring in the Martian regolith. Such measurements are described. Two major elements analyzed in the Viking Lander XRF experiment that are most vulnerable to atmospheric oxidation are iron and sulfur. Originally, they occurred as Fe(2+)-bearing silicate and sulfide minerals in basaltic rocks on the surface of Mars. However, chemical weathering reactions through time have produced ferric- and sulfate-bearing assemblages now visible in the Martian regolith. Such observations raise several question about: (1) when the oxidative weathering reactions took place on Mars; (2) whether or not the oxidized regolith is a fossilized remnant of past weathering processes; (3) deducting chemical interactions of the ancient Martian atmosphere with its surface from surviving phases; (4) possible weathering reactions still occurring in the frozen regolith; and (5) the kinetics and mechanism of past and present-day oxidative reactions on Mars. These questions may be addressed experimentally by studying reaction rates of dissolution and oxidation of basaltic minerals, and by identifying reaction products forming on the mineral surfaces. Results for the oxidation of pyrrhotite and dissolved ferrous iron are reported.

  5. Space weathering of asteroids: Lessons from Itokawa for future observations

    NASA Astrophysics Data System (ADS)

    Sasaki, Sho; HIroi, Takahiro

    2016-07-01

    Introduction Space weathering of surface silicate minerals is the main process that should control the change of brightness and color of airless silicate bodies such and the Moon, Mercury and asteroids. Spectra of S-type asteroids exhibit more overall depletion and reddening, and more weakening of absorption bands than spectra of ordinary chondrites. These spectral mismatches are explained by the space weathering, where the primary proven mechanism of such spectral change is production of nanophase metallic iron particles (npFe0) 1), which were confirmed in the amorphous rim of lunar soil grains 2,3). Vapor-deposition through at high-velocity dust particle impacts as well as implantation of intensive solar wind ions would be responsible for producing the space weathering rims bearing nano-iron particles (npFe0). Simulation experiments using nanosecond pulse laser successfully produced vapor-deposition type npFe0 to change optical properties 4,5,6). Laser experiments showed that pyroxene would be weathered less than olivine, for pyroxene, pulse laser irradiation produced melt (amorphous) droplets containing npFe0, rather than vapour deposited rim that should provide stronger optical effect trough multiple scattering of incidental light. Itokawa Observed by Remote Sensing In November 2005, Japanese Asteroid Sample Return Mission HAYABUSA spacecraft rendezvoused S-type asteroid (25143) Itokawa. Optically, the surface of Itokawa is divided into brighter (and bluer) areas and darker (and redder) areas 7,8). In rough zones, dark boulder-rich surfaces usually superpose on bright materials. The near-infrared spectrometer (NIRS) confirmed previous disk-integrated results that suggested Itokawa's spectrum closely matched a weakly weathered LL5/6 chondrite 9). Although the surface is covered with rocks and is apparently lack of fine regolith, Itokawa's surface show darkening and reddening by space weathering. Experimental results suggest rocky meteorite fragments can be

  6. An evaluation of the impact of aerosol particles on weather forecasts from a biomass burning aerosol event over the Midwestern United States: observational-based analysis of surface temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Jianglong; Reid, Jeffrey S.; Christensen, Matthew; Benedetti, Angela

    2016-05-01

    A major continental-scale biomass burning smoke event from 28-30 June 2015, spanning central Canada through the eastern seaboard of the United States, resulted in unforecasted drops in daytime high surface temperatures on the order of 2-5 °C in the upper Midwest. This event, with strong smoke gradients and largely cloud-free conditions, provides a natural laboratory to study how aerosol radiative effects may influence numerical weather prediction (NWP) forecast outcomes. Here, we describe the nature of this smoke event and evaluate the differences in observed near-surface air temperatures between Bismarck (clear) and Grand Forks (overcast smoke), to evaluate to what degree solar radiation forcing from a smoke plume introduces daytime surface cooling, and how this affects model bias in forecasts and analyses. For this event, mid-visible (550 nm) smoke aerosol optical thickness (AOT, τ) reached values above 5. A direct surface cooling efficiency of -1.5 °C per unit AOT (at 550 nm, τ550) was found. A further analysis of European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), United Kingdom Meteorological Office (UKMO) near-surface air temperature forecasts for up to 54 h as a function of Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOT data across more than 400 surface stations, also indicated the presence of the daytime aerosol direct cooling effect, but suggested a smaller aerosol direct surface cooling efficiency with magnitude on the order of -0.25 to -1.0 °C per unit τ550. In addition, using observations from the surface stations, uncertainties in near-surface air temperatures from ECMWF, NCEP, and UKMO model runs are estimated. This study further suggests that significant daily changes in τ550 above 1, at which the smoke-aerosol-induced direct surface cooling effect could be comparable in magnitude with model uncertainties, are rare events on a global scale. Thus, incorporating

  7. A web-based tool that combines satellite and weather station observations to support irrigation scheduling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: The Satellite Irrigation Management Support (SIMS) project combines NASA's Terrestrial Observation and Prediction System (TOPS), Landsat and MODIS satellite imagery, and reference evapotranspiration from surface weather station networks to map daily crop irrigation demand in California in ...

  8. MAGDAS/CPMN Observations for Space Weather Study

    NASA Astrophysics Data System (ADS)

    Yumoto, K.

    2004-05-01

    An objective of the STP (nderline{S}olar nderline{T}errestrial nderline{P}hysics) researches is to support human activities in the geospace in the twenty-first century from an aspect of fundamental study. In order to understand the Sun-Earth system and effects to human lives, the international LWS (nderline{L}iving nderline{W}ith nderline{S}tar) and CAWSES (nderline{C}limate nderline{a}nd nderline{W}eather of nderline{S}un-nderline{E}arth nderline{S}ystem) programs start from 2004. The objective of CAWSES-WG 2 & 3 in Japan for the region from the solar surface through the solar wind, the magnetosphere, the ionosphere, and the thermosphere, to the atmosphere is a creation of new physics; (1) couplings of the complex and composite systems and (2) macro-and-micro-scale couplings in the Solar-Terrestrial system. The goals of CAWSES-WG 2 & 3 in Japan are to construct space weather stations (for observations) and modeling stations (for simulation/empirical modeling) during the period (2004-2008) of the international CAWSES program. Japanese STP groups will coordinate a research network to reach these goals for the space weather study. In order to study the complexity in the solar wind-magnetosphere-ionosphere-Earth's surface system, the nderline{S}pace nderline{E}nvironment nderline{R}esearch nderline{C}enter (SERC), Kyushu University, Fukuoka, Japan will carry out coordinated ground-based network observations for space weather studies, in cooperation with about 30 organizations in the world during the international CAWSES period (2004-2008). In the present paper, we will introduce a real-time nderline{MAC}netic nderline{D}ata nderline{A}cquisition nderline{S}ystem of nderline{C}ircumpan nderline{P}acific nderline{M}agnetometer nderline{N}etwork, i.e. MAGDAS/CPMN system in Kyushu University. By using this system, we will conduct the real-time monitoring and modeling of (1) the global 3-dimensional current system and (2) the plasma density variations for space weather

  9. How to Map Space Weathering on an Asteroid Surface

    NASA Astrophysics Data System (ADS)

    Clark, B. E.; Barucci, M. A.; Merlin, F.; Lantz, C.; Campins, H.; Fornasier, S.; Dotto, E.; Lauretta, D. S.

    2015-11-01

    Our OSIRIS-REx space weathering map of asteroid 101955 Bennu will be an expression of the probability that each surface facet exhibits space weathering. To each surface facet, we will assign a ranking in: slope, band depth, albedo, and context.

  10. Observing Weather in Venus's Lower Atmosphere

    NASA Astrophysics Data System (ADS)

    Young, E. F.; Bullock, M. A.; Chanover, N. J.; Lemmon, M. T.

    2003-05-01

    The rotation rate of Venus's sulfuric acid clouds is roughly 60 times greater than that of the solid surface, a phenomenon which is only partially understood. To help learn more about the details of the cloud motions, we observed Venus on three occasions near the past two inferior conjunctions at 2.3 microns, a window which transmits thermal radiation emanating from the lower scale heights of the atmosphere. Clouds block the thermal radiation in this wavelength band and show up as silhouettes on Venus's night side. We tracked atmospheric features to estimate their rates and directions. Several previous investigators have used 2.3 micron imaging to track Venus's clouds (e.g., Carlson et al. 1991, Crisp et al. 1991, Chanover et al. 1998). We compare our results to these previous investigations and to a solid-body rotator. We find no clear trend relating rotation rate to latitude. Instead, we often see local features with different rotation rates and different meridional directions from their neighbors within a latitudinal zone. These motions suggest that we are seeing snapshots of eddies in the mid-latitudes. Thick cloud cover is nearly always present at the equatorial latitudes and at both poles. The intermediate latitudes show thin cloud cover which is often broken into several narrow latitudinal ``zones,'' although these zones are certainly unlike belts and zones seen on Jupiter and Saturn, if only because (a) they are ephemeral on timescales of days and (b) they often have orientations that are up to 15 degrees away from the horizontal. As Crisp et al. (1991) suggest, these clearer regions could be the result of downwelling, possibly a manifestation of Hadley cells in the lower cloud deck. In approximately ten percent of our images we see turbulent-looking edges of the cloudy equatorial region, suggesting significant shear between adjacent latitudinal zones. Mark Bullock acknowledges support from NASA's Planetary Atmospheres and NSF's Planetary Astronomy programs

  11. Evidence of Space Weathering Processes Across the Surface of Vesta

    NASA Technical Reports Server (NTRS)

    Pieters, Carle M.; Blewett, David T.; Gaffey, Michael; Mittlefehldt, David W.; CristinaDeSanctis, Maria; Reddy, Vishnu; Coradini, Angioletta; Nathues, Andreas; Denevi, Brett W.; Li, Jian-Yang; McCord, Thomas B.; Marchi, Simone; Palmer, Eric E.; Sunshine, Jessica M.; Filacchione, Gianrico; Ammannito, Eleonora; Raymond, Carol A.; Russell, Christopher T.

    2011-01-01

    As NASA s Dawn spacecraft explores the surface of Vesta, it has become abundantly clear that Vesta is like no other planetary body visited to date. Dawn is collecting global data at increasingly higher spatial resolution during its one-year orbital mission. The bulk properties of Vesta have previously been linked to the HED meteorites through remote mineral characterization of its surface from Earth-based spectroscopy. A principal puzzle has been why Vesta exhibits relatively unweathered diagnostic optical features compared to other large asteroids. Is this due to the composition of this proto-planet or the space environment at Vesta? Alteration or weathering of materials in space normally develops as the products of several processes accumulate on the surface or in an evolving particulate regolith, transforming the bedrock into fragmental material with properties that may be measurably different from the original. Data from Dawn reveal that the regolith of Vesta is exceptionally diverse. Regional surface units are observed that have not been erased by weathering with time. Several morphologically-fresh craters have excavated bright, mafic-rich materials and exhibit bright ray systems. Some of the larger craters have surrounding subdued regions (often asymmetric) that are lower in albedo and relatively red-sloped in the visible while exhibiting weaker mafic signatures. Several other prominent craters have rim exposures containing very dark material and/or display a system of prominent dark rays. Most, but not all, dark areas associated with craters exhibit significantly lower spectral contrast, suggesting that either a Vesta lithology with an opaque component has been exposed locally or that the surface has been contaminated by a relatively dark impactor. Similarly, most, but not all, bright areas associated with craters exhibit enhanced mafic signatures compared to surroundings. On a regional scale, the large south polar structure and surrounding terrain exhibit

  12. Weather Observation Systems and Efficiency of Fighting Forest Fires

    NASA Astrophysics Data System (ADS)

    Khabarov, N.; Moltchanova, E.; Obersteiner, M.

    2007-12-01

    Weather observation is an essential component of modern forest fire management systems. Satellite and in-situ based weather observation systems might help to reduce forest loss, human casualties and destruction of economic capital. In this paper, we develop and apply a methodology to assess the benefits of various weather observation systems on reductions of burned area due to early fire detection. In particular, we consider a model where the air patrolling schedule is determined by a fire hazard index. The index is computed from gridded daily weather data for the area covering parts Spain and Portugal. We conduct a number of simulation experiments. First, the resolution of the original data set is artificially reduced. The reduction of the total forest burned area associated with air patrolling based on a finer weather grid indicates the benefit of using higher spatially resolved weather observations. Second, we consider a stochastic model to simulate forest fires and explore the sensitivity of the model with respect to the quality of input data. The analysis of combination of satellite and ground monitoring reveals potential cost saving due to a "system of systems effect" and substantial reduction in burned area. Finally, we estimate the marginal improvement schedule for loss of life and economic capital as a function of the improved fire observing system.

  13. Rock Rinds at Meridiani and Surface Weathering Phenomena

    NASA Astrophysics Data System (ADS)

    Jolliff, B.; Knoll, A.; Farrand, W.; Sullivan, R.

    2006-12-01

    The Rock Abrasion Tool (RAT) on the Mars rover Opportunity can brush away surface dust and grind away outcrop surface, exposing presumably less altered rock at depths of several mm. Alpha particle X-ray spectrometer (APXS) and Moessbauer spectrometer (MB) analyses of pre- and post-RAT targets, thus, provide information on the chemical nature of weathering of Meridiani outcrop rocks. To date, Opportunity has analyzed some 25 undisturbed rock surfaces, brushed and then analyzed 7 more, and ground 23 targets for IDD analysis. Panoramic camera images show that outcrop surfaces are typically either buff or purple (as viewed in bands centered at 673, 535, and 432 nm, Farrand et al., JGR, in press). Relatively flat surfaces that are approximately parallel to the ground are typically buff, whereas those that slope steeply tend to be purple. Surfaces of rock interiors ground by the RAT are also commonly purple. Spectrally, these color differences correspond to more oxidized (buff) and less oxidized (purple), and appear to relate to the degree of eolian abrasion. Flat-lying surfaces are not eroded as quickly, thus surfaces chemically weathered by exposure to tenuous atmospheric vapor may be preserved. These observations are consistent with in-situ analyses of rock surfaces and interiors. Compared to interiors, rock surfaces have about 1/3 less S, and in general, surface compositions lie between those of rock interiors and average surface soil. In detail, they differ from soil-rock mixtures as follows: surfaces are relatively depleted in Mg, Fe, Mn, Ti, and Cr, and they are enriched in Al, Na, K, P, Cl, and Si. From MB analyses, surfaces are richer (compared to soil-rock mixtures) in oxidized Fe phases and poorer in magnetite, olivine, and pyroxene. Morphologically, numerous flat-lying rocks and outcrop surfaces that are at or near the ground surface have a rind of erosionally resistant material. Such rinds are also chemically distinct from outcrop interiors. A rind

  14. Measuring stone weathering in cities: Surface reduction on marble monuments

    SciTech Connect

    Dragovich, D. )

    1987-01-01

    The purpose of this study was to establish whether measurements of stone weathering recorded by different observers could be aggregated into a simple data base for evaluating pollution effects on calcareous building stone. Apparent differences in recorded weathering rates on marble tombstones were here found to be partly a result of lettering size measured, measuring devices used, and individual observers.

  15. A New Perspective on Surface Weather Maps

    ERIC Educational Resources Information Center

    Meyer, Steve

    2006-01-01

    A two-dimensional weather map is actually a physical representation of three-dimensional atmospheric conditions at a specific point in time. Abstract thinking is required to visualize this two-dimensional image in three-dimensional form. But once that visualization is accomplished, many of the meteorological concepts and processes conveyed by the…

  16. Characteristics of Operational Space Weather Forecasting: Observations and Models

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Viereck, Rodney; Singer, Howard; Onsager, Terry; Biesecker, Doug; Rutledge, Robert; Hill, Steven; Akmaev, Rashid; Milward, George; Fuller-Rowell, Tim

    2015-04-01

    In contrast to research observations, models and ground support systems, operational systems are characterized by real-time data streams and run schedules, with redundant backup systems for most elements of the system. We review the characteristics of operational space weather forecasting, concentrating on the key aspects of ground- and space-based observations that feed models of the coupled Sun-Earth system at the NOAA/Space Weather Prediction Center (SWPC). Building on the infrastructure of the National Weather Service, SWPC is working toward a fully operational system based on the GOES weather satellite system (constant real-time operation with back-up satellites), the newly launched DSCOVR satellite at L1 (constant real-time data network with AFSCN backup), and operational models of the heliosphere, magnetosphere, and ionosphere/thermosphere/mesophere systems run on the Weather and Climate Operational Super-computing System (WCOSS), one of the worlds largest and fastest operational computer systems that will be upgraded to a dual 2.5 Pflop system in 2016. We review plans for further operational space weather observing platforms being developed in the context of the Space Weather Operations Research and Mitigation (SWORM) task force in the Office of Science and Technology Policy (OSTP) at the White House. We also review the current operational model developments at SWPC, concentrating on the differences between the research codes and the modified real-time versions that must run with zero fault tolerance on the WCOSS systems. Understanding the characteristics and needs of the operational forecasting community is key to producing research into the coupled Sun-Earth system with maximal societal benefit.

  17. Generation of Multivariate Surface Weather Series with Use of the Stochastic Weather Generator Linked to Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Farda, A.; Huth, R.

    2012-12-01

    The regional-scale simulations of weather-sensitive processes (e.g. hydrology, agriculture and forestry) for the present and/or future climate often require high resolution meteorological inputs in terms of the time series of selected surface weather characteristics (typically temperature, precipitation, solar radiation, humidity, wind) for a set of stations or on a regular grid. As even the latest Global and Regional Climate Models (GCMs and RCMs) do not provide realistic representation of statistical structure of the surface weather, the model outputs must be postprocessed (downscaled) to achieve the desired statistical structure of the weather data before being used as an input to the follow-up simulation models. One of the downscaling approaches, which is employed also here, is based on a weather generator (WG), which is calibrated using the observed weather series and then modified (in case of simulations for the future climate) according to the GCM- or RCM-based climate change scenarios. The present contribution uses the parametric daily weather generator M&Rfi to follow two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate/CZ (v.2) Regional Climate Model at 25 km resolution. The WG parameters will be derived from the RCM-simulated surface weather series and compared to those derived from observational data in the Czech meteorological stations. The set of WG parameters will include selected statistics of the surface temperature and precipitation (characteristics of the mean, variability, interdiurnal variability and extremes). (2) Testing a potential of RCM output for calibration of the WG for the ungauged locations. The methodology being examined will consist in using the WG, whose parameters are interpolated from the surrounding stations and then corrected based on a RCM-simulated spatial variability. The quality of the weather series produced by the WG calibrated in this way will be assessed in terms

  18. Use of meteorological satellite observations in weather modification programs

    NASA Technical Reports Server (NTRS)

    Dennis, A. S.; Smith, P. L., Jr.; Biswas, K. R.

    1973-01-01

    The potential value of weather satellite data in field operations of weather modification is appraised. It was found that satellites could play a useful role in operational weather modification projects, particularly in the recognition of treatment opportunities. Satellite cloud photographs and infrared observations appear promising in the identification of treatment opportunities in seeding orographic cloud systems for increased snowpack, in seeding convective clouds for increased rainfall, in identifying hail threats, and in tracking and observing hurricanes as an aid to timing and location of seeding treatments. It was concluded that the potential value of satellite data in the treatment and evaluation phases of operational projects is not as great as in the recognition of treatment opportunity.

  19. Observations of ionospheric electric fields above atmospheric weather systems

    SciTech Connect

    Farrell, W.M.; Aggson, T.L.; Rodgers, E.B.

    1994-10-01

    The authors report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. The authors report here on a set of likely E field candidates for atmosphere-ionosphere causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As they demonstrate, individual events can often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather. 31 refs., 11 figs., 1 tab.

  20. Observations of ionospheric electric fields above atmospheric weather systems

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Aggson, T. L.; Rodgers, E. B.; Hanson, W. B.

    1994-01-01

    We report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. We shall report here on a set of likely E field candidates for atmospheric-ionospheric causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As we shall demonstrate, individual events often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather.

  1. Observation of severe weather activities by Doppler sounder array

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Hung, R. J.

    1975-01-01

    A three-dimensional, nine-element, high-frequency CW Doppler sounder array has been used to detect ionospheric disturbances during periods of severe weather, particularly during periods with severe thunderstorms and tornadoes. One typical disturbance recorded during a period of severe thunderstorm activity and one during a period of tornado activity have been chosen for analysis in this note. The observations indicate that wave-like disturbances possibly generated by the severe weather have wave periods in the range 2-8 min which place them in the infrasonic wave category.

  2. The National Eclipse Weather Experiment: an assessment of citizen scientist weather observations.

    PubMed

    Barnard, L; Portas, A M; Gray, S L; Harrison, R G

    2016-09-28

    The National Eclipse Weather Experiment (NEWEx) was a citizen science project designed to assess the effects of the 20 March 2015 partial solar eclipse on the weather over the United Kingdom (UK). NEWEx had two principal objectives: to provide a spatial network of meteorological observations across the UK to aid the investigation of eclipse-induced weather changes, and to develop a nationwide public engagement activity-based participation of citizen scientists. In total, NEWEx collected 15 606 observations of air temperature, cloudiness and wind speed and direction from 309 locations across the UK, over a 3 h window spanning the eclipse period. The headline results were processed in near real time, immediately published online, and featured in UK national press articles on the day of the eclipse. Here, we describe the technical development of NEWEx and how the observations provided by the citizen scientists were analysed. By comparing the results of the NEWEx analyses with results from other investigations of the same eclipse using different observational networks, including measurements from the University of Reading's Atmospheric Observatory, we demonstrate that NEWEx provided a fair representation of the change in the UK meteorological conditions throughout the eclipse. Despite the simplicity of the approach adopted, robust reductions in both temperature and wind speed during the eclipse were observed.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  3. The National Eclipse Weather Experiment: an assessment of citizen scientist weather observations.

    PubMed

    Barnard, L; Portas, A M; Gray, S L; Harrison, R G

    2016-09-28

    The National Eclipse Weather Experiment (NEWEx) was a citizen science project designed to assess the effects of the 20 March 2015 partial solar eclipse on the weather over the United Kingdom (UK). NEWEx had two principal objectives: to provide a spatial network of meteorological observations across the UK to aid the investigation of eclipse-induced weather changes, and to develop a nationwide public engagement activity-based participation of citizen scientists. In total, NEWEx collected 15 606 observations of air temperature, cloudiness and wind speed and direction from 309 locations across the UK, over a 3 h window spanning the eclipse period. The headline results were processed in near real time, immediately published online, and featured in UK national press articles on the day of the eclipse. Here, we describe the technical development of NEWEx and how the observations provided by the citizen scientists were analysed. By comparing the results of the NEWEx analyses with results from other investigations of the same eclipse using different observational networks, including measurements from the University of Reading's Atmospheric Observatory, we demonstrate that NEWEx provided a fair representation of the change in the UK meteorological conditions throughout the eclipse. Despite the simplicity of the approach adopted, robust reductions in both temperature and wind speed during the eclipse were observed.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. PMID:27550767

  4. The National Eclipse Weather Experiment: an assessment of citizen scientist weather observations

    PubMed Central

    2016-01-01

    The National Eclipse Weather Experiment (NEWEx) was a citizen science project designed to assess the effects of the 20 March 2015 partial solar eclipse on the weather over the United Kingdom (UK). NEWEx had two principal objectives: to provide a spatial network of meteorological observations across the UK to aid the investigation of eclipse-induced weather changes, and to develop a nationwide public engagement activity-based participation of citizen scientists. In total, NEWEx collected 15 606 observations of air temperature, cloudiness and wind speed and direction from 309 locations across the UK, over a 3 h window spanning the eclipse period. The headline results were processed in near real time, immediately published online, and featured in UK national press articles on the day of the eclipse. Here, we describe the technical development of NEWEx and how the observations provided by the citizen scientists were analysed. By comparing the results of the NEWEx analyses with results from other investigations of the same eclipse using different observational networks, including measurements from the University of Reading’s Atmospheric Observatory, we demonstrate that NEWEx provided a fair representation of the change in the UK meteorological conditions throughout the eclipse. Despite the simplicity of the approach adopted, robust reductions in both temperature and wind speed during the eclipse were observed. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550767

  5. Aviation Weather Observations for Supplementary Aviation Weather Reporting Stations (SAWRS) and Limited Aviation Weather Reporting Stations (LAWRS). Federal Meteorological Handbook No. 9.

    ERIC Educational Resources Information Center

    Department of Transportation, Washington, DC.

    This handbook provides instructions for observing, identifying, and recording aviation weather at Limited Aviation Weather Reporting Stations (LAWRS) and Supplementary Aviation Weather Reporting Stations (SAWRS). Official technical definitions, meteorological and administrative procedures are outlined. Although this publication is intended for use…

  6. Surface chemistry associated with the cooling and subaerial weathering of recent basalt flows

    USGS Publications Warehouse

    White, A.F.; Hochella, M.F.

    1992-01-01

    The surface chemistry of fresh and weathered historical basalt flows was characterized using surface-sensitive X-ray photoelectron spectroscopy (XPS). Surfaces of unweathered 1987-1990 flows from the Kilauea Volcano, Hawaii, exhibited variable enrichment in Al, Mg, Ca, and F due to the formation of refractory fluoride compounds and pronounced depletion in Si and Fe from the volatilization of SiF4 and FeF3 during cooling. These reactions, as predicted from shifts in thermodynamic equilibrium with temperature, are induced by diffusion of HF from the flow interiors to the cooling surface. The lack of Si loss and solid fluoride formation for recent basalts from the Krafla Volcano, Iceland, suggest HF degassing at higher temperatures. Subsequent short-term subaerial weathering reactions are strongly influenced by the initial surface composition of the flow and therefore its cooling history. Successive samples collected from the 1987 Kilauea flow demonstrated that the fluoridated flow surfaces leached to a predominantly SiO2 composition by natural weathering within one year. These chemically depleted surfaces were also observed on Hawaiian basalt flows dating back to 1801 AD. Solubility and kinetic models, based on thermodynamic and kinetic data for crystalline AlF3, MgF2, and CaF2, support observed elemental depletion rates due to chemical weathering. Additional loss of alkalis from the Hawaiian basalt occurs from incongruent dissolution of the basalt glass substrate during weathering. ?? 1992.

  7. Space based observations for monitoring extreme weather and climate events

    SciTech Connect

    Rao, P.K.

    1996-12-31

    Observations are essential for monitoring, understanding, and predicting the potential for extreme weather and climate events. These events occur on all time and spatial scales. Current NOAA operational satellites have a unique capability of providing many of the observations that are critical for monitoring these events. These observations and derived geophysical quantities can also be used for diagnostics and prediction purposes. Extreme weather conditions such as severe thunderstorms and flash floods, occur very quickly, may last for a short time, and create a considerable amount of damage. Advance warnings of the order of a few minutes are needed to alert the public so they may take adequate precautions. Some extreme weather conditions such as tropical storms (hurricanes) may last for days, and in order to predict the exact track, intensity of the storm and forecast the land fall, frequent observations are critical. Examples of satellite data that are obtained from the NOAA satellites are presented to demonstrate their ability to monitor the extreme weather phenomena. Examples of extreme climate conditions are droughts over continents and the annual depletion of ozone over the Antarctic. Data derived from NOAA satellites were used to monitor the severe drought over Texas and Southwestern U.S.A. in early 1996. Similar data are being used by other countries to monitor the drought in their regions. The development of the ozone hole over the Antarctic during the last fifteen years has been a major scientific and environmental concern. Data from NOAA operational satellites have been extensively used to show the yearly development and dissipation of the ozone hole during the Southern Hemisphere springtime.

  8. Physical and chemical weathering. [of Martian surface and rocks

    NASA Technical Reports Server (NTRS)

    Gooding, James L.; Arvidson, Raymond E.; Zolotov, Mikhail IU.

    1992-01-01

    Physical and chemical weathering processes that might be important on Mars are reviewed, and the limited observations, including relevant Viking results and laboratory simulations, are summarized. Physical weathering may have included rock splitting through growth of ice, salt or secondary silicate crystals in voids. Chemical weathering probably involved reactions of minerals with water, oxygen, and carbon dioxide, although predicted products vary sensitively with the abundance and physical form postulated for the water. On the basis of kinetics data for hydration of rock glass on earth, the fate of weathering-rind formation on glass-bearing Martian volcanic rocks is tentatively estimated to have been on the order of 0.1 to 4.5 cm/Gyr; lower rates would be expected for crystalline rocks.

  9. Land-surface influences on weather and climate

    NASA Technical Reports Server (NTRS)

    Baer, F.; Mintz, Y.

    1984-01-01

    Land-surface influences on weather and climate are reviewed. The interrelationship of vegetation, evapotranspiration, atmospheric circulation, and climate is discussed. Global precipitation, soil moisture, the seasonal water cycle, heat transfer, and atmospheric temperature are among the parameters considered in the context of a general biosphere model.

  10. Mobile vehicle road and weather observation quality check methods

    NASA Astrophysics Data System (ADS)

    Koller, Daniel Raymond

    data quality and accuracy, requiring the development of quality checks for mobile data collection. Using OBDII-equipped automobiles and mobile collection methods, we can begin to address issues of data quality by understanding, characterizing, and demonstrating the quality of mobile system observations from operational and research environments. Several forms of quality checking can be used, including range checks, Barnes spatial checks, comparing vehicle data to road weather models, and applying Clarus quality check methodologies and algorithms to mobile observations. Development of these quality checks can lead to the future integration of mobile data into the Clarus system, data implementation for improved forecasting, maintenance decision support, and traveler safety. This paper will discuss the benefits and challenges in mobile data collection, along with how the development and implementation of a system of quality checks will improve the quality and accuracy of mobile data collection.

  11. Jovian magnetospheric weathering of Europa's nonice surface material

    NASA Astrophysics Data System (ADS)

    Hibbitts, Charles A.; Paranicas, Christopher; Blaney, Diana L.; Murchie, Scott; Seelos, Frank

    2016-10-01

    Jovian plasma and energetic charged particles bombard the Galilean satellites. These satellites vary from volcanically active (Io) to a nearly primordial surface (Callisto). These satellites are imbedded in a harsh and complex particle radiation environment that weathers their surfaces, and thus are virtual laboratories for understanding how particle bombardment alters the surfaces of airless bodies. Europa orbits deeply in the Jovian radiation belts and may have an active surface, where space weathering and geologic processes can interact in complex ways with a range of timescales. At Europa's surface temperature of 80K to 130K, the hydrated nonice material and to a lesser extent, water ice, will be thermally stable over geologic times and will exhibit the effects of weathering. The ice on the surface of Europa is amorphous and contains trace products such as H2O2 [1] due to weathering. The nonice material, which likely has an endogenic component [2] may also be partially amorphous and chemically altered as a result of being weathered by electrons, Iogenic sulfur, or other agents [3]. This hydrated salt or frozen brine likely compositionally 'matures' over time as the more weakly bound constituents are preferentially removed compared with Ca and Mg [4]. Electron bombardment induces chemical reactions through deposition of energy (e.g., ionizations) possibly explaining some of the nonice material's redness [5,6]. Concurrently, micrometeroid gardening mixes the upper surface burying weathered and altered material while exposing both fresh material and previous altered material, potentially with astrobiological implications. Our investigation of the spectral alteration of nonice analog materials irradiated by 10s keV electrons demonstrates the prevalence of this alteration and we discuss relevance to potential measurements by the Europa MISE instrument.References: [1] Moore, M. and R. Hudson, (2000), Icarus, 145, 282-288; [2] McCord et al., (1998), Science, 280, 1242

  12. Global cloud climatology from surface observations

    SciTech Connect

    Warren, S.

    1995-09-01

    Surface weather observations from stations on land and ships in the ocean are used to obtain the global distribution, at 5{sup o}x5{sup o} latitude-longitude resolution, of total cloud cover and the average amounts of the different cloud types: cumulus, cumulonimbus, stratus, stratocumulus, nimbostratus, altostratus, altocumulus, cirrus, cirrostratus, cirrocumulus, and fog. Diurnal and seasonal variations are derived, as well as interannual variations and multi-year trends. 3 refs., 3 figs.

  13. Structural analysis of heat-treated birch (Betule papyrifera) surface during artificial weathering

    NASA Astrophysics Data System (ADS)

    Huang, Xianai; Kocaefe, Duygu; Kocaefe, Yasar; Boluk, Yaman; Krause, Cornélia

    2013-01-01

    Effect of artificial weathering on the surface structural changes of birch (Betule papyrifera) wood, heat-treated to different temperatures, was studied using the fluorescence microscopy and the scanning electron microscopy (SEM). Changes in the chemical structure of wood components were analyzed by FTIR in order to understand the mechanism of degradation taking place due to heat treatment and artificial weathering. The results are compared with those of the untreated (kiln-dried) birch. The SEM analysis results show that the effect of weathering on the cell wall of the untreated birch surface is more than that of heat-treated samples. The FTIR spectroscopy results indicate that lignin is the most sensitive component of heat-treated birch to the weathering degradation process. Elimination of the amorphous and highly crystallised cellulose is observed for both heat-treated and untreated wood during weathering. It is also observed that heat treatment increases the lignin and crystallised cellulose contents, which to some extent protects heat-treated birch against degradation due to weathering.

  14. A climatological link between slantwise instability and surface weather conditions

    NASA Astrophysics Data System (ADS)

    Glinton, M. R.; Gray, S. L.; Chagnon, J. M.; Morcrette, C. J.

    2012-04-01

    Midlatitude weather phenomena including rainbands in fronts and cloud heads and the descending sting jets found in extreme windstorms have been attributed, in part, to the release of conditional symmetric instability (CSI). CSI is a slantwise parcel instability arising from the combination of inertial and gravitational instability in a baroclinic atmosphere; its release gives slantwise convection. However, to date, demonstration of the link between CSI and severe weather has been confined to a few case studies. Weather forecast models with domains big enough to encompass entire midlatitude storms do not have sufficient resolution to realistically resolve the release of CSI, and CSI release is not parameterized in these models. The consequences of this lack of representation of CSI release are currently unknown and motivate this study. We present a North Atlantic climatology of the energy available for slantwise convection due to CSI derived from the ERA-Interim re-analysis, and compare it with an equivalent climatology of CAPE (the energy available for upright convection due to conditional instability). The annual cycle of land and sea surface temperatures are shown to strongly modulate these instabilities. The statistical relationship between these instabilities and surface weather conditions are presented.

  15. Surface Landing Site Weather Analysis for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. L.

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing of the Ares vehicles to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is art important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface weather conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center (MSFC) Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. This paper wiI1 describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that cab be obtained.

  16. Near Real Time MISR Wind Observations for Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Mueller, K. J.; Protack, S.; Rheingans, B. E.; Hansen, E. G.; Jovanovic, V. M.; Baker, N.; Liu, J.; Val, S.

    2014-12-01

    The Multi-angle Imaging SpectroRadiometer (MISR) project, in association with the NASA Langley Atmospheric Science Data Center (ASDC), has this year adapted its original production software to generate near-real time (NRT) cloud-motion winds as well as radiance imagery from all nine MISR cameras. These products are made publicly available at the ASDC with a latency of less than 3 hours. Launched aboard the sun-synchronous Terra platform in 1999, the MISR instrument continues to acquire near-global, 275 m resolution, multi-angle imagery. During a single 7 minute overpass of any given area, MISR retrieves the stereoscopic height and horizontal motion of clouds from the multi-angle data, yielding meso-scale near-instantaneous wind vectors. The ongoing 15-year record of MISR height-resolved winds at 17.6 km resolution has been validated against independent data sources. Low-level winds dominate the sampling, and agree to within ±3 ms-1 of collocated GOES and other observations. Low-level wind observations are of particular interest to weather forecasting, where there is a dearth of observations suitable for assimilation, in part due to reliability concerns associated with winds whose heights are assigned by the infrared brightness temperature technique. MISR cloud heights, on the other hand, are generated from stereophotogrammetric pattern matching of visible radiances. MISR winds also address data gaps in the latitude bands between geostationary satellite coverage and polar orbiting instruments that obtain winds from multiple overpasses (e.g. MODIS). Observational impact studies conducted by the Naval Research Laboratory (NRL) and by the German Weather Service (Deutscher Wetterdienst) have both demonstrated forecast improvements when assimilating MISR winds. An impact assessment using the GEOS-5 system is currently in progress. To benefit air quality forecasts, the MISR project is currently investigating the feasibility of generating near-real time aerosol products.

  17. Surface weathering and dispersibility of MC252 crude oil.

    PubMed

    Daling, Per S; Leirvik, Frode; Almås, Inger Kjersti; Brandvik, Per Johan; Hansen, Bjørn Henrik; Lewis, Alun; Reed, Mark

    2014-10-15

    Results from a comprehensive oil weathering and dispersant effectiveness study of the MC252 crude oil have been used to predict changes in oil properties due to weathering on the sea surface and to estimate the effective "time window" for dispersant application under various sea conditions. MC252 oil is a light paraffinic crude oil, for which approximately 55 wt.% will evaporate within 3-5 days when drifting on the sea. An unstable and low-viscosity water-in-oil (w/o) emulsion are formed during the first few days at the sea surface. This allows a high degree of natural dispersion when exposed to breaking wave conditions. Under calm sea conditions, a more stable and light-brown/orange colored water-in-oil (w/o) emulsion may start to form after several days, and viscosities of 10,000-15,000 mPa s can be achieved after 1-2 weeks. The "time window" for effective use of dispersants was estimated to be more than 1 week weathering at sea. PMID:25152185

  18. Surface weathering and dispersibility of MC252 crude oil.

    PubMed

    Daling, Per S; Leirvik, Frode; Almås, Inger Kjersti; Brandvik, Per Johan; Hansen, Bjørn Henrik; Lewis, Alun; Reed, Mark

    2014-10-15

    Results from a comprehensive oil weathering and dispersant effectiveness study of the MC252 crude oil have been used to predict changes in oil properties due to weathering on the sea surface and to estimate the effective "time window" for dispersant application under various sea conditions. MC252 oil is a light paraffinic crude oil, for which approximately 55 wt.% will evaporate within 3-5 days when drifting on the sea. An unstable and low-viscosity water-in-oil (w/o) emulsion are formed during the first few days at the sea surface. This allows a high degree of natural dispersion when exposed to breaking wave conditions. Under calm sea conditions, a more stable and light-brown/orange colored water-in-oil (w/o) emulsion may start to form after several days, and viscosities of 10,000-15,000 mPa s can be achieved after 1-2 weeks. The "time window" for effective use of dispersants was estimated to be more than 1 week weathering at sea.

  19. Effect of accelerated weathering on surface chemistry of modified wood

    NASA Astrophysics Data System (ADS)

    Temiz, Ali; Terziev, Nasko; Eikenes, Morten; Hafren, Jonas

    2007-04-01

    In this study, the effects of UV-light irradiation and water spray on colour and surface chemistry of scots pine sapwood samples were investigated. The specimens were treated with chromated copper arsenate (CCA), a metal-free propiconazol-based formulation, chitosan, furfuryl alcohol and linseed and tall oils. The weathering experiment was performed by cycles of 2 h UV-light irradiation followed by water spray for 18 min. The changes at the surface of the weathered samples were characterised by Fourier transform infrared spectroscopy (FT-IR); colour characterizations were performed by measuring CIELab parameters. The results show that all treatment methods except chitosan treatment provided lower colour changes than the control groups after 800 h exposure in weathering test cycle, but differences between chitosan and control were also small. The lowest colour changes were found on linseed oil (full cell process) and CCA treated wood. FT-IR results show that oil treatment (linseed and tall oil) decreased the intensities of a lignin specific peak (1500-1515 cm -1). Absorption band changes at 1630-1660 cm -1 were reduced by all treatments.

  20. Modeling apple surface temperature dynamics based on weather data.

    PubMed

    Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng

    2014-01-01

    The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00-18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of "Fuji" apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management. PMID:25350507

  1. Modeling apple surface temperature dynamics based on weather data.

    PubMed

    Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng

    2014-01-01

    The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00-18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of "Fuji" apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  2. Two cases of severe weather in Catalonia (Spain): an observational study

    NASA Astrophysics Data System (ADS)

    Ramis, Clemente; Arús, Joan; López, José Manuel; Mestres, Antoni M.

    1997-09-01

    Surface observations, satellite and radar imagery and cloud-to-ground lightning data are used in an observational study of two cases that produced severe weather in Catalonia (Spain). The first one occurred on 24 August 1993; a squall line crossed Catalonia from west to east producing heavy rain with rates of up to 100 mm h[minus sign]1 and hail of 7 cm diameter. The observational information provided is a good tool for monitoring the event and issuing a reasonable nowcast. The second case, which occurred on 31 August 1994, was associated with the development of a tornado (F1 in the Fujita scale) as well as hail of up to 5 cm diameter. In this case the convection was almost stationary and no clear signatures of severe weather can be identified from available satellite and radar imagery.

  3. Surface Meteorological Observation System (SMOS) Handbook

    SciTech Connect

    Ritsche, MT

    2008-03-01

    The Surface Meteorological Observation System (SMOS) mostly uses conventional in situ sensors to obtain 1-minute, 30-minute, and 1440-minute (daily) averages of surface wind speed, wind direction, air temperature, relative humidity (RH), barometric pressure, and precipitation at the Central Facility and many of the extended facilities of the Southern Great Plains (SGP) climate research site. The SMOSs are not calibrated as systems. The sensors and the data logger (which includes the analog-to-digital converter, or A/D) are calibrated separately. All systems are installed using components that have a current calibration. SMOSs have not been installed at extended facilities located within about 10 km of existing surface meteorological stations, such as those of the Oklahoma Mesonet. The Surface Meteorological Observation Systems are used to create climatology for each particular location, and to verify the output of numerical weather forecast and other model output. They are also used to “ground-truth” other remote sensing equipment.

  4. Widespread Weathered Glass on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Horgan, Briony; Bell, James F., III

    2012-01-01

    Low albedo sediments cover >10(exp 7) sq km in the northern lowlands of Mars, but the composition and origin of these widespread deposits have remained ambiguous despite many previous investigations. Here we use near-infrared spectra acquired by the Mars Express OMEGA (Observatoire pour la Mineralogie, l'Eau, les Glaces, et l'Activite') imaging spectrometer to show that these sediments exhibit spectral characteristics that are consistent with both high abundances of iron-bearing glass and silica-enriched leached rinds on glass. This interpretation is supported by observations of low-albedo soil grains with possible rinds at the Phoenix Mars Lander landing site in the northern lowlands. By comparison with the extensive glass-rich dune fields and sand sheets of Iceland, we propose an explosive volcanic origin for these glass-rich sediments. We also propose that the glassy remnant rinds on the sediments are the result of post-depositional alteration, as these rinds are commonly formed in arid terrestrial volcanic environments during water-limited, moderately acidic leaching. These weathered, glass-rich deposits in the northern lowlands are also colocated with the strongest concentrations of a major global compositional surface type previously identified in mid-infrared spectra, suggesting that they may be representative of global processes. Our results provide potential confirmation of models suggesting that explosive volcanism has been widespread on Mars, and also raise the possibilities that glass-rich volcaniclastics are a major source of eolian sand on Mars and that widespread surficial aqueous alteration has occurred under Amazonian climatic conditions.

  5. Optical space weathering on Vesta: Radiative-transfer models and Dawn observations

    NASA Astrophysics Data System (ADS)

    Blewett, David T.; Denevi, Brett W.; Le Corre, Lucille; Reddy, Vishnu; Schröder, Stefan E.; Pieters, Carle M.; Tosi, Federico; Zambon, Francesca; De Sanctis, Maria Cristina; Ammannito, Eleonora; Roatsch, Thomas; Raymond, Carol A.; Russell, Christopher T.

    2016-02-01

    Exposure to ion and micrometeoroid bombardment in the space environment causes physical and chemical changes in the surface of an airless planetary body. These changes, called space weathering, can strongly influence a surface's optical characteristics, and hence complicate interpretation of composition from reflectance spectroscopy. Prior work using data from the Dawn spacecraft (Pieters, C.M. et al. [2012]. Nature 491, 79-82) found that accumulation of nanophase metallic iron (npFe0), which is a key space-weathering product on the Moon, does not appear to be important on Vesta, and instead regolith evolution is dominated by mixing with carbonaceous chondrite (CC) material delivered by impacts. In order to gain further insight into the nature of space weathering on Vesta, we constructed model reflectance spectra using Hapke's radiative-transfer theory and used them as an aid to understanding multispectral observations obtained by Dawn's Framing Cameras (FC). The model spectra, for a howardite mineral assemblage, include both the effects of npFe0 and that of a mixed CC component. We found that a plot of the 438-nm/555-nm ratio vs. the 555-nm reflectance for the model spectra helps to separate the effects of lunar-style space weathering (LSSW) from those of CC-mixing. We then constructed ratio-reflectance pixel scatterplots using FC images for four areas of contrasting composition: a eucritic area at Vibidia crater, a diogenitic area near Antonia crater, olivine-bearing material within Bellicia crater, and a light mantle unit (referred to as an "orange patch" in some previous studies, based on steep spectral slope in the visible) northeast of Oppia crater. In these four cases the observed spectral trends are those expected from CC-mixing, with no evidence for weathering dominated by production of npFe0. In order to survey a wider range of surfaces, we also defined a spectral parameter that is a function of the change in 438-nm/555-nm ratio and the 555-nm reflectance

  6. Lightning Sensors for Observing, Tracking and Nowcasting Severe Weather

    PubMed Central

    Price, Colin

    2008-01-01

    Severe and extreme weather is a major natural hazard all over the world, often resulting in major natural disasters such as hail storms, tornados, wind storms, flash floods, forest fires and lightning damages. While precipitation, wind, hail, tornados, turbulence, etc. can only be observed at close distances, lightning activity in these damaging storms can be monitored at all spatial scales, from local (using very high frequency [VHF] sensors), to regional (using very low frequency [VLF] sensors), and even global scales (using extremely low frequency [ELF] sensors). Using sensors that detect the radio waves emitted by each lightning discharge, it is now possible to observe and track continuously distant thunderstorms using ground networks of sensors. In addition to the number of lightning discharges, these sensors can also provide information on lightning characteristics such as the ratio between intra-cloud and cloud-to-ground lightning, the polarity of the lightning discharge, peak currents, charge removal, etc. It has been shown that changes in some of these lightning characteristics during thunderstorms are often related to changes in the severity of the storms. In this paper different lightning observing systems are described, and a few examples are provided showing how lightning may be used to monitor storm hazards around the globe, while also providing the possibility of supplying short term forecasts, called nowcasting.

  7. A statistical model for road surface friction forecasting applying optical road weather measurements

    NASA Astrophysics Data System (ADS)

    Hippi, M.; Juga, I.; Nurmi, P.

    2009-09-01

    Road surface friction is defined as the grip between car tyre and underlying surface. Poor friction often plays a crucial role in wintertime car accidents. Friction can decrease dramatically during snowfall or when wet road surface temperature falls below zero. Even a thin layer of ice or snow can decrease friction substantially increasing the risk of accidents. Many studies have shown that road surface temperature, road conditions and friction can fluctuate dramatically within short distances under specific weather situations. Friction or grip can be improved with road maintenance activities like salting and gritting. Salting will melt the ice or snow layer, whereas gritting will improve the grip. Salting is effective only above -5C temperatures. Light snowfall together with low temperatures can result in very slippery driving conditions. Finnish Road Administration's observing network covers c. 500 road weather stations in Finland. Almost 100 of them are equipped with optical sensors (in winter 2008-2009). The number of optical sensors has increased remarkably during past few years. The optical measuring devices are Vaisala DSC111 sensors which measure the depth of water, snow and ice on the road surface and also produce an estimate of the state of road and prevailing friction. Observation data from road weather stations with optical sensors were collected from winter 2007/08, and a couple of representative (from a weather perspective) stations were selected for detailed statistical analysis. The purpose of the study was to find a statistical relationship between the observed values and, especially, the correlation between friction and other road weather parameters. Consequently, a model based on linear regression was developed. With the model friction being the dependent variable, the independent variables having highest correlations were the composite of ice and snow (water content) on the road, and the road surface temperature. In the case of a wet road

  8. TOF-SIMS investigations on weathered silver surfaces.

    PubMed

    Schnöller, J; Wiesinger, R; Kleber, C; Hilfrich, U; Schreiner, M; Hutter, H

    2008-03-01

    Silver-coated quartz crystal microbalance (QCM) disks were treated under different environmental conditions (including changes in parameters such as relative humidity (%RH) and SO(2)/H(2)S content) in atmospheres of synthetic air and pure N(2) for 24 h in a weathering chamber. The corroded surfaces were subjected to depth profiling by a time of flight (TOF) secondary ion mass spectrometry (SIMS) instrument, equipped with a Bi(+) analysis gun and Cs(+) sputter gun. The evaluation of the in-depth distribution of several elements and species provides evidence for the formation of a corrosion layer containing Ag(2)SO(3), even in the absence of oxidizing agents, such as H(2)O(2) or NO(2). Furthermore it could be elucidated that the thickness of the formed Ag(2)SO(3) layer does not depend on the SO(2) concentration but rather on the humidity and oxygen content of the ambient atmosphere. In weathering experiments in atmospheres composed of synthetic air, humidity, and H(2)S, the presence of different oxygen species (surface and bulk) and silver sulfide could be detected by TOF-SIMS depth profiling experiments. The obtained results for both acidifying gases are in good correlation with the corresponding tapping mode atomic force microscopy (TM-AFM) investigations and in situ QCM measurements.

  9. Solar wind interaction with the Reiner Gamma crustal magnetic anomaly: Connecting source magnetization to surface weathering

    NASA Astrophysics Data System (ADS)

    Poppe, Andrew R.; Fatemi, Shahab; Garrick-Bethell, Ian; Hemingway, Doug; Holmström, Mats

    2016-03-01

    Remanent magnetization has long been known to exist in the lunar crust, yet both the detailed topology and ultimate origin(s) of these fields remains uncertain. Some crustal magnetic fields coincide with surface albedo anomalies, known as lunar swirls, which are thought to be formed by differential surface weathering of the regolith underlying crustal fields due to deflection of incident solar wind protons. Here, we present results from a three-dimensional, self-consistent, plasma hybrid model of the solar wind interaction with two different possible source magnetizations for the Reiner Gamma anomaly. We characterize the plasma interaction with these fields and the resulting spatial distribution of charged-particle weathering of the surface and compare these results to optical albedo measurements of Reiner Gamma. The model results constrain the proposed source magnetizations for Reiner Gamma and suggest that vertical crustal magnetic fields are required to produce the observed "dark lanes."

  10. Burkholderia susongensis sp. nov., a mineral-weathering bacterium isolated from weathered rock surface.

    PubMed

    Gu, Jia-Yu; Zang, Sheng-Gang; Sheng, Xia-Fang; He, Lin-Yan; Huang, Zhi; Wang, Qi

    2015-03-01

    A novel type of mineral-weathering bacterium was isolated from the weathered surface of rock (mica schist) collected from Susong (Anhui, China). Cells of strain L226(T) were Gram-stain-negative. The strain grew optimally at 30 °C, with 1 % (w/v) NaCl and at pH 7.0 in trypticase soy broth. On the basis of 16S rRNA gene phylogeny, strain L226(T) was shown to belong to the genus Burkholderia and the closest phylogenetic relatives were Burkholderia sprentiae WSM5005(T) (98.3 %), Burkholderia acidipaludis NBRC 101816(T) (98.2 %), Burkholderia tuberum STM678(T) (97.2 %) and Burkholderia diazotrophica JPY461(T) (97.1 %). The DNA G+C content was 63.5 mol% and the respiratory quinone was Q-8. The major fatty acids were C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c. The polar lipid profile of strain L226(T) consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, unknown lipids and unidentified aminophospholipids. Based on the low level of DNA-DNA relatedness (ranging from 25.8 % to 34.4 %) to the tested type strains of species of the genus Burkholderia and unique phenotypic characteristics, it is suggested that strain L226(T) represents a novel species of the genus Burkholderia, for which the name Burkholderia susongensis sp. nov., is proposed. The type strain is L226(T) ( = CCTCC AB2014142(T) = JCM 30231(T)).

  11. Tropical Ocean Surface Energy Balance Variability: Linking Weather to Climate Scales

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol Anne

    2013-01-01

    Radiative and turbulent surface exchanges of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing the spatiotemporal variability of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. These fluxes are integral components to tropical ocean-atmosphere variability; they can drive ocean mixed layer variations and modify the atmospheric boundary layer properties including moist static stability, thereby influencing larger-scale tropical dynamics. Non-parametric cluster-based classification of atmospheric and ocean surface properties has shown an ability to identify coherent weather regimes, each typically associated with similar properties and processes. Using satellite-based observational radiative and turbulent energy flux products, this study investigates the relationship between these weather states and surface energy processes within the context of tropical climate variability. Investigations of surface energy variations accompanying intraseasonal and interannual tropical variability often use composite-based analyses of the mean quantities of interest. Here, a similar compositing technique is employed, but the focus is on the distribution of the heat and moisture fluxes within their weather regimes. Are the observed changes in surface energy components dominated by changes in the frequency of the weather regimes or through changes in the associated fluxes within those regimes? It is this question that the presented work intends to address. The distribution of the surface heat and moisture fluxes is evaluated for both normal and non-normal states. By examining both phases of the climatic oscillations, the symmetry of energy and water cycle responses are considered.

  12. Observations and Impact Assessments of Extreme Space Weather Events

    NASA Astrophysics Data System (ADS)

    Baker, D. N.

    2007-05-01

    "Space weather" refers to conditions on the Sun, in the solar wind, and in Earth`s magnetosphere, ionosphere, and thermosphere. Activity on the Sun such as solar flares and coronal mass ejections can lead to high levels of radiation in space and can cause major magnetic storms at the Earth. Space radiation can come as energetic particles or as electromagnetic emissions. Adverse conditions in the near-Earth space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids. This can lead to a variety of socioeconomic losses. Astronauts and airline passengers exposed to high levels of radiation are also at risk. Society`s vulnerability to space weather effects is an issue of increasing concern. We are dependent on technological systems that are becoming more susceptible to space weather disturbances. We also have a permanent human presence in space with the International Space Station and the President and NASA have expressed a desire to expand our human space activities with missions to the moon and Mars. This will make space weather of even greater concern in the future. In this talk I will describe many space weather effects and will describe some of the societal and economic impacts that extreme events have had.

  13. Surface roughness and color characteristics of wood treated with preservatives after accelerated weathering test

    NASA Astrophysics Data System (ADS)

    Temiz, Ali; Yildiz, Umit C.; Aydin, Ismail; Eikenes, Morten; Alfredsen, Gry; Çolakoglu, Gürsel

    2005-08-01

    Wood samples treated with ammonium copper quat (ACQ 1900 and ACQ 2200), chromated copper arsenate (CCA), Tanalith E 3491 and Wolmanit CX-8 have been studied in accelerated weathering experiments. The weathering experiment was performed by cycles of 2 h UV-light irradiation followed by water spray for 18 min. The changes on the surface of the weathered samples were characterized by roughness and color measurements on the samples with 0, 200, 400 and 600 h of total weathering. The objective of this study was to investigate the changes created by weathering on impregnated wood with several different wood preservatives. This study was performed on the accelerated weathering test cycle, using UV irradiation and water spray in order to simulate natural weathering. Surface roughness and color measurement was used to investigate the changes after several intervals (0-200-400-600 h) in artificial weathering of treated and untreated wood.

  14. Titan's rotation - Surface feature observed

    NASA Astrophysics Data System (ADS)

    Lemmon, M. T.; Karkoschka, E.; Tomasko, M.

    1993-06-01

    A surface feature or a near-surface fracture is suggested to account for the time variations in the 0.94, 1.08, and 1.28 micron atmospheric windows of Titan's geometric albedo, relative to its albedo in adjacent methane bands. These observations are noted to be consistent with synchronous rotation. They can also be explained by a 0.1-higher surface albedo on Titan's leading hemisphere.

  15. Martian surface microtexture from orbital observations

    NASA Astrophysics Data System (ADS)

    Fernando, J.; Schmidt, F.; Douté, S.

    2015-10-01

    The information about the surface microtexture is useful to constrain the geological processes (e.g., transportation, deposition, weathering). In this study, the grain microtexture is derived from the orbital CRISM/MRO multi-angular observations allowing to characterize the surface scattering behavior. The Hapke radiative transfer model is inverted to derive the photometric parameters which have physical meanings (e.g., grain size, roughness, shape, internal structure). Eight sites having various geological contexts are selected. The results show a high diversity of grain microtexture. This result put forward that Mars have experimented various geological processes. The link between information about the grain microtexture and the geological processes will be presented at the conference.

  16. Training Guide in Surface SAWRS Observations.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD. National Weather Service.

    As a replacement of the 1949 primary training manual for supplementary aeronautical weather reports, instructions are presented in this Training Paper No. 5 for the purpose of guiding learners through their study of the Weather Service Observing Handbook (WSOH) No. 4. The content is divided into six chapters concerned with such topics as…

  17. Weather Observer, 15-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for use in vocational and technical education, was designed to upgrade an apprentice weather observer to the weather observer specialist level. Intended to be used in a laboratory or on-the-job learning situation, it contains both basic information needed for review and supervisory…

  18. Chitinophaga qingshengii sp. nov., isolated from weathered rock surface.

    PubMed

    Cheng, Cheng; Wang, Qi; He, Lin-Yan; Huang, Zhi; Sheng, Xia-Fang

    2015-01-01

    A novel mineral-weathering bacterium was isolated from weathered rock (potassic trachyte) surfaces collected from Nanjing (Jiangsu, PR China). Cells of strain JN246(T) were Gram-stain-negative, rod-shaped and non-motile. Strain JN246(T) was aerobic, catalase- and oxidase-positive, and grew optimally at 28 °C and pH 7.0. On the basis of 16S rRNA gene sequence analysis, strain JN246(T) belonged to the genus Chitinophaga and the closest phylogenetic relatives were Chitinophaga eiseniae YC6729(T) (98.5% 16S rRNA gene sequence similarity), Chitinophaga terrae KP01(T) (96.8%), and Chitinophaga jiangningensis JN53(T) (96.3 %). The major respiratory quinone was MK-7 and the major polyamine was homospermidine. The major fatty acids were iso-C15:0, C16:1ω5c, C16:0 and iso-C17:0 3-OH. The polar lipid profile of strain JN246(T) consisted of phosphatidylethanolamine, unknown aminolipids and unknown lipids. The genomic DNA G+C content of strain JN246(T) was 48.8 mol%. Based on the low level of DNA-DNA relatedness of strain JN246(T) (ranging from 22.6% to 42.4%) to the type strains of other species of the genus Chitinophaga and unique phenotypic characteristics, strain JN246(T) represents a novel species of the genus Chitinophaga, for which the name Chitinophaga qingshengii sp. nov. is proposed. The type strain is JN246(T) ( = CCTCC AB 2014201(T) = JCM 30026(T)).

  19. Chitinophaga qingshengii sp. nov., isolated from weathered rock surface.

    PubMed

    Cheng, Cheng; Wang, Qi; He, Lin-Yan; Huang, Zhi; Sheng, Xia-Fang

    2015-01-01

    A novel mineral-weathering bacterium was isolated from weathered rock (potassic trachyte) surfaces collected from Nanjing (Jiangsu, PR China). Cells of strain JN246(T) were Gram-stain-negative, rod-shaped and non-motile. Strain JN246(T) was aerobic, catalase- and oxidase-positive, and grew optimally at 28 °C and pH 7.0. On the basis of 16S rRNA gene sequence analysis, strain JN246(T) belonged to the genus Chitinophaga and the closest phylogenetic relatives were Chitinophaga eiseniae YC6729(T) (98.5% 16S rRNA gene sequence similarity), Chitinophaga terrae KP01(T) (96.8%), and Chitinophaga jiangningensis JN53(T) (96.3 %). The major respiratory quinone was MK-7 and the major polyamine was homospermidine. The major fatty acids were iso-C15:0, C16:1ω5c, C16:0 and iso-C17:0 3-OH. The polar lipid profile of strain JN246(T) consisted of phosphatidylethanolamine, unknown aminolipids and unknown lipids. The genomic DNA G+C content of strain JN246(T) was 48.8 mol%. Based on the low level of DNA-DNA relatedness of strain JN246(T) (ranging from 22.6% to 42.4%) to the type strains of other species of the genus Chitinophaga and unique phenotypic characteristics, strain JN246(T) represents a novel species of the genus Chitinophaga, for which the name Chitinophaga qingshengii sp. nov. is proposed. The type strain is JN246(T) ( = CCTCC AB 2014201(T) = JCM 30026(T)). PMID:25342110

  20. Space Weathering Impact on Solar System Surfaces and Planetary Mission Science

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2011-01-01

    We often look "through a glass, darkly" at solar system bodies with tenuous atmospheres and direct surface exposure to the local space environment. Space weathering exposure acts via universal space-surface interaction processes to produce a thin patina of outer material covering, potentially obscuring endogenic surface materials of greatest interest for understanding origins and interior evolution. Examples of obscuring exogenic layers are radiation crusts on cometary nuclei and iogenic components of sulfate hydrate deposits on the trailing hemisphere of Europa. Weathering processes include plasma ion implantation into surfaces, sputtering by charged particles and solar ultraviolet photons, photolytic chemistry driven by UV irradiation, and radiolytic chemistry evolving from products of charged particle irradiation. Regolith structure from impacts, and underlying deeper structures from internal evolution, affects efficacy of certain surface interactions, e.g. sputtering as affected by porosity and surface irradiation dosage as partly attenuated by local topographic shielding. These processes should be regarded for mission science planning as potentially enabling, e.g. since direct surface sputtering, and resultant surface-bound exospheres, can provide in-situ samples of surface composition to ion and neutral mass spectrometers on orbital spacecraft. Sample return for highest sensitivity compOSitional and structural analyses at Earth will usually be precluded by limited range of surface sampling, long times for return, and high cost. Targeted advancements in instrument technology would be more cost efficient for local remote and in-situ sample analysis. More realistic laboratory simulations, e.g. for bulk samples, are needed to interpret mission science observations of weathered surfaces. Space environment effects on mission spacecraft and science operations must also be specified and mitigated from the hourly to monthly changes in space weather and from longer

  1. Toward Application of Lightning Observations to Weather Forecasts and Warnings

    NASA Astrophysics Data System (ADS)

    Macgorman, D. R.

    2002-12-01

    Once lightning mapping systems became fast enough to locate lightning in real or near-real time, it became possible to consider applications of lightning data to weather operations. The first system to be used routinely in such a way was the LLP direction-finder network deployed around 1980 by the Bureau of Land Management to help detect range and forest fires started by cloud-to-ground lightning. In 1987, a federal interagency group collaborated with the State University of New York at Albany to put together a trial National Lightning Detection Network for a three-year evaluation of possible applications to weather operations. During this trial, the National Weather Service determined that the lightning ground-strike data are useful for detecting the presence, configuration, and evolution of storms and storm systems, and so subsequently procured lightning strike mapping data for federal use that has continued to the present. Research since then has suggested that detection of positive cloud-to-ground lightning may also be useful, when combined with radar data, to help identify some severe storms, though the conditions under which this is possible are still being investigated. Furthermore, cloud-to-ground flash data can be assimilated into forecast models to improve the initial conditions, and hence the forecasts, of the models. More recently technology has advanced to the point that mapping all types of lightning is feasible. Because typically more than 70% of the lightning flashes produced by a storm do not strike ground, such technologies, at a minimum, would increase sampling rates to identify thunderstorms more quickly and reliably. However, different types of lightning also provide different information about storms. Cloud-to-ground lightning tends to indicate the formation and descent of precipitation, while cloud flash rates appear to be associated more closely with updraft and graupel evolution. Research is underway to determine and quantify these

  2. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  3. Geomorphic controls on mineral weathering, elemental transport, and production of mineral surface area in a schist bedrock weathering profile, Piedmont Pennsylvania

    NASA Astrophysics Data System (ADS)

    Wenell, B.; Yoo, K.; Aufdenkampe, A. K.; Mahoney, J. B.; Lepak, L.

    2013-12-01

    We assess a deep chemical weathering profile in the context of geomorphic evolution in the Laurels Schist, a late proterozoic greenschist formation in the Christina River Basin Critical Zone Observatory located in the Piedmont region in southeastern Pennsylvania. Two 21-meter deep rotosonic drill cores were sampled at the ridge top and footslope positions in a first-order, forested watershed. The top meter was sampled at high-resolution in a soil pit adjacent to each drill core and along a hillslope transect to assess geomorphic controls on the weathering profile. Weathering processes in soil and saprolite were examined by observing changes in mineralogy, including the emergence of secondary phyllosilicate and oxide minerals; measuring specific surface area of bulk soil and saprolite; and by quantifying elemental mass changes of major and minor rock-forming elements. Mineral profiles were assessed using clay and bulk XRD, and reveal that kaolinite, a common secondary phyllosilicate, is present above 1.5 meters in the weathering profile. Specific surface area (SSA) values decrease with increasing depth to a critical depth around 2 meters, where the values of untreated (carbon-loaded) and muffled (carbon removed by heating) mineral grains converge to baseline SSA values below 10 m2g-1, indicating that carbon is sorbed with mineral surface area in the upper 2 meters. Immobile element concentrations decrease with increasing depth up to 3 meters, indicating that the preferential removal of mobile elements extends beyond the depth of C-mineral adsorption. Variability of immobile elements in the deep weathering profile reveal variations that could be the result of weathering in fractures but are more likely inherited by the rock composition and particle size of pre-metamorphosed parent rock.

  4. Comparing the simulation of climate impacts on crop yields with observed and synthetic weather data

    NASA Astrophysics Data System (ADS)

    Qian, B.; de Jong, R.; Yang, J.; Wang, H.; Gameda, S.

    2010-12-01

    Stochastic weather generators have been used extensively in the development of climate scenarios, especially at the daily or shorter time scales, for the use as climate input to agricultural simulation models that evaluate the climate impacts on crop yields. Because generated synthetic weather data mimic the observed weather data, discrepancies between the two datasets often exist. For example, interannual variability in the synthetic data is often found to be weaker than in the observed data, i.e., the well-known overdispersion problem. Therefore, it is important to evaluate if the climate impact models are sensitive to such discrepancies between synthetic weather data and observed ones. In this study, we used a stochastic weather generator (AAFC-WG) to generate 300-yr long synthetic weather data for two Canadian sites (Swift Current on the Canadian Prairies and London in southern Ontario), based on the observed weather data for the baseline period of 1961-1990. The Decision Support System for Agrotechnology Transfer (DSSAT) v4.0 was employed to simulate crop growth and yield. Spring wheat at Swift Current and grain corn at London were simulated by the DSSAT cropping system model with three major soil types at each location, using the 30-yr observed weather data and 300-yr synthetic data, respectively. Statistical tests were performed to investigate whether differences (both mean and variance) of the simulated crop yields between the simulations with observed and synthetic weather data are statistically significant or not. Results demonstrated that the differences in simulated crop yields are often not statistically significant when synthetic weather data are used to substitute the observed data.

  5. Spectral properties of Titan's impact craters imply chemical weathering of its surface

    PubMed Central

    Barnes, J. W.; Sotin, C.; MacKenzie, S.; Soderblom, J. M.; Le Mouélic, S.; Kirk, R. L.; Stiles, B. W.; Malaska, M. J.; Le Gall, A.; Brown, R. H.; Baines, K. H.; Buratti, B.; Clark, R. N.; Nicholson, P. D.

    2015-01-01

    Abstract We examined the spectral properties of a selection of Titan's impact craters that represent a range of degradation states. The most degraded craters have rims and ejecta blankets with spectral characteristics that suggest that they are more enriched in water ice than the rims and ejecta blankets of the freshest craters on Titan. The progression is consistent with the chemical weathering of Titan's surface. We propose an evolutionary sequence such that Titan's craters expose an intimate mixture of water ice and organic materials, and chemical weathering by methane rainfall removes the soluble organic materials, leaving the insoluble organics and water ice behind. These observations support the idea that fluvial processes are active in Titan's equatorial regions. PMID:27656006

  6. Spectral properties of Titan's impact craters imply chemical weathering of its surface

    PubMed Central

    Barnes, J. W.; Sotin, C.; MacKenzie, S.; Soderblom, J. M.; Le Mouélic, S.; Kirk, R. L.; Stiles, B. W.; Malaska, M. J.; Le Gall, A.; Brown, R. H.; Baines, K. H.; Buratti, B.; Clark, R. N.; Nicholson, P. D.

    2015-01-01

    Abstract We examined the spectral properties of a selection of Titan's impact craters that represent a range of degradation states. The most degraded craters have rims and ejecta blankets with spectral characteristics that suggest that they are more enriched in water ice than the rims and ejecta blankets of the freshest craters on Titan. The progression is consistent with the chemical weathering of Titan's surface. We propose an evolutionary sequence such that Titan's craters expose an intimate mixture of water ice and organic materials, and chemical weathering by methane rainfall removes the soluble organic materials, leaving the insoluble organics and water ice behind. These observations support the idea that fluvial processes are active in Titan's equatorial regions.

  7. Ground and surface water developmental toxicity at a municipal landfill: description and weather-related variation.

    PubMed

    Bruner, M A; Rao, M; Dumont, J N; Hull, M; Jones, T; Bantle, J A

    1998-03-01

    Contaminated groundwater poses a significant health hazard and may also impact wildlife such as amphibians when it surfaces. Using FETAX (Frog Embryo Teratogenesis Assay-Xenopus), the developmental toxicity of ground and surface water samples near a closed municipal landfill at Norman, OK, were evaluated. The groundwater samples were taken from a network of wells in a shallow, unconfined aquifer downgradient from the landfill. Surface water samples were obtained from a pond and small stream adjacent to the landfill. Surface water samples from a reference site in similar habitat were also analyzed. Groundwater samples were highly toxic in the area near the landfill, indicating a plume of toxicants. Surface water samples from the landfill site demonstrated elevated developmental toxicity. This toxicity was temporally variable and was significantly correlated with weather conditions during the 3 days prior to sampling. Mortality was negatively correlated with cumulative rain and relative humidity. Mortality was positively correlated with solar radiation and net radiation. No significant correlations were observed between mortality and weather parameters for days 4-7 preceding sampling.

  8. Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroid Space Weathering Studies

    NASA Technical Reports Server (NTRS)

    Dominque, Deborah L.; Chapman, Clark R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Orlando, Thomas M.; Schriver, David; Sprague, Ann L.; Blewett, David T.; Gillis-Davis, Jeffrey J.; Feldman, William C.; Lawrence, David J.; Ho, George C.; Vilas, Faith; Pieters, Carle M.; McClintock, William E.; Helbert, Jorn

    2011-01-01

    Understanding the composition of Mercury's crust is key to comprehending the formation of the planet. The regolith, derived from the crustal bedrock, has been altered via a set of space weathering processes. These processes are the same set of mechanisms that work to form Mercury's exosphere, and are moderated by the local space environment and the presence of an intrinsic planetary magnetic field. The alterations need to be understood in order to determine the initial crustal compositions. The complex interrelationships between Mercury's exospheric processes, the space environment, and surface composition are examined and reviewed. The processes are examined in the context of our understanding of these same processes on the lunar and asteroid regoliths. Keywords: Mercury (planet) Space weathering Surface processes Exosphere Surface composition Space environment 3

  9. Seasonal changes in Titan's weather and surface features

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Perry, J. E.; McEwen, A. S.; Barbara, J.; Del Genio, A.; West, R. A.; Hayes, A.; Schaller, E.

    2010-04-01

    Since Cassini's arrival at Saturn, the Titan's season has progressed from southern summer to just past the southern autumnal equinox (the equivalent of 12 January to 26 March), and accompanying changes in meteorology have been observed. Through 2004, large convective cloud systems were common over Titan's South Pole (e.g., Schaller et al., 2006); since 2005 such storms have been less common. Elongated streaks of clouds have been observed consistently at mid-southern latitudes, and became common at high northern latitudes in 2007. Only recently have clouds been detected at mid-northern latitudes. Changes have also been observed in surface features at high southern latitudes. A large dark area appeared between July 2004 and June 2005 (Turtle et al., 2009), and may have subsequently faded. Recent observations of Ontario Lacus suggest that its shoreline may have receded (e.g., Hayes et al., 2009). No changes have been observed to date in lakes and seas at high northern latitudes. Intriguingly, Cassini RADAR observations of Titan's South Pole reveal far fewer lakes than have been identified in the north (Stofan et al., 2007) and fewer than suggested by the number of dark features observed by ISS in this area (Turtle et al., 2009). This apparent discrepancy may indicate that not all of the dark south-polar features identified by ISS are filled with liquid. Alternatively, some lakes may be ephemeral: differences may be the result of precipitation and ponding of liquid methane and subsequent evaporation or infiltration thereof (Turtle et al., 2009) in the time between observations: ISS in mid-2004 and mid-2005 (equivalent of ~12 and ~25 January) and the RADAR observations starting in late 2007 (equivalent of ~28 February). We will present observations of Titan's meteorology and surface features, documenting seasonal changes and their implications for Titan's active methane cycle and atmospheric circulation.

  10. Characterization of bacterial community inhabiting the surfaces of weathered bricks of Nanjing Ming city walls.

    PubMed

    Qi-Wang; Ma, Guang-You; He, Lin-Yan; Sheng, Xia-Fang

    2011-01-15

    Nanjing Ming city wall, one of the important historic heritages in China, has greatly suffered weathering. Microbes play an important role in the weathering of historic buildings. However, little is known about the microbial community inhabiting naturally weathered brick minerals and their roles in the mineral weathering. To examine the associations between microorganisms and brick weathering process, we compare the phylogenetic diversity, abundance, community structure, and specific functional groups of bacteria existing in weathered bricks by using a coupled approach involving cultivation-independent analysis of denaturing gradient gel electrophoresis (DGGE) as well as cultivation-based analysis of Si-releasing bacteria. DGGE and sequence analyses show that the bacterial communities were different along a weathering gradient and the abundance of bacterial communities positively and significantly correlates with the extent of brick weathering. Laboratory brick mineral dissolution experiments indicate that bacteria isolated from the surfaces of weathered brick were very effective in enhancing brick dissolution. Phylogenetic analyses show that the weathered bricks were inhabited by specific functional groups of bacteria (Bacillus, Massillia, Brevibacillus, Glacialice, Acinetobacter, Brachysporum, and Achromobacter) that contribute to the brick weathering.

  11. Surface Exposure Ages of Space-Weathered Grains from Asteroid 25143 Itokawa

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.; Christoffersen, R.

    2015-01-01

    Space weathering processes such as solar wind ion irradiation and micrometeorite impacts are widely known to alter the properties of regolith materials exposed on airless bodies. The rates of space weathering processes however, are poorly constrained for asteroid regoliths, with recent estimates ranging over many orders of magnitude. The return of surface samples by JAXA's Hayabusa mission to asteroid 25143 Itokawa, and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering processes on airless bodies.

  12. Martian Weathering Environments of the Amazonian Indicated by Correlated Morphologic and Spectral Observation in Acidalia Planitia

    NASA Astrophysics Data System (ADS)

    Kraft, M. D.; Rogers, D.; Fergason, R. L.; Michalski, J. R.; Sharp, T. G.

    2009-12-01

    While much attention has been given to chemical alteration and the state of water on early Mars, it remains important to understand aqueous processes throughout Martian history, including the recent geologic past. It has been suggested that the Amazonian was marked primarily by anhydrous, oxidative weathering because Amazonian surfaces, such as the northern plains, lack hydration features in near-infrared spectra [1]. But high-silica materials (Surface Type 2, ST2) discovered by the Thermal Emission Spectrometer [2] that occur in the northern plains attest to aqueous alteration of silicate minerals. The questions are when did this occur and by what process? ST2 correlates spatially with outflow sediments and high-silica materials may have formed in large amounts of water related to outflow flooding events of the late Hesperian [3,4]. ST2 also may correspond to global ice-rich mantles, indicating formation in icy environments related to geologically recent climate fluctuations [3]. Can these very different mechanisms and environments be discerned? In a global study of TES spectra, Rogers et al. (2007) [5] found significant spectral differences between ST2 surfaces in northern and southern Acidalia Planitia that occur near 40-50° N. Several geomorphic transitions occur across latitudes, and many of these are directly or potentially related to Amazonian periglacial activity and occur in the 40-50° N range. This potential link between composition and periglacial morphology needs further exploration. We examined this relationship from 40-50° N in Acidalia Planitia, using Thermal Emission Imaging System (THEMIS) multispectral data to measure the local spectral properties of the surface. We identified a boundary between two surface spectral types that match closely the spectra of north and south Acidalia derived by Rogers et al. [2007]. This boundary is diffuse, occurring between 47-48° N in our study region in western Acidalia, and correlates with observed

  13. Weather Information System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.

  14. Correlation of the Abundance of Betaproteobacteria on Mineral Surfaces with Mineral Weathering in Forest Soils

    PubMed Central

    Lepleux, C.; Turpault, M. P.; Oger, P.; Frey-Klett, P.

    2012-01-01

    Pyrosequencing-based analysis of 16S rRNA gene sequences revealed a significant correlation between apatite dissolution and the abundance of betaproteobacteria on apatite surfaces, suggesting a role for the bacteria belonging to this phylum in mineral weathering. Notably, the cultivation-dependent approach demonstrated that the most efficient mineral-weathering bacteria belonged to the betaproteobacterial genus Burhkolderia. PMID:22798365

  15. Improving weather predictability by including land-surface model parameter uncertainty

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  16. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    USGS Publications Warehouse

    Zhu, Chen; Veblen, D.R.; Blum, A.E.; Chipera, S.J.

    2006-01-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 ??m thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ???105 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the

  17. A new model for weathering front propagation and the formation of regolith coupled with surface erosion and transport

    NASA Astrophysics Data System (ADS)

    Braun, Jean; Mercier, Jonathan

    2016-04-01

    In many environments, the weathering of rocks is an essential process that not only contributes directly to the removal of material from continental interiors to the world oceans but also plays an important role in preconditioning rocks for physical erosion and transport. Weathering results in the formation of a regolith profile that typically comprises a mobile soil layer, a saprolite layer (in-place weathered material) and a layer of fractured rock overlying the fresh bedrock. A large body of observations tells us that chemical weathering is primarily controlled by the presence/absence of water in the subsurface and must therefore be related to climate through precipitation and temperature. However, a predictive model that represents the complex interplay between the hydrology of the regolith and its growth/evolution by chemical weathering and surface erosion and transport is still lacking. Here we present a new numerical model of the propagation of a weathering front at the base of the saprolite layer that we use to predict the evolution of the regolith on geological time scales. In this model, we compute the steady-state geometry of the water table and assume that the rate of propagation of the weathering front is proportional to flow velocity at the base of the regolith layer. Using this model, we predict that two fundamentally different regimes may exist during the formation of a regolith profile that will ultimately control its geometry, its depth and its sensitivity to climate and local slope. We show that the two regimes correspond to different values of a simple dimensionless number that relates slope, precipitation and the mean hydraulic conductivity of the regolith profile. We also show that both regimes may exist, regardless of tectonic uplift and erosion, as long as the rate of erosion is slower than the rate of propagation of the weathering front, a condition that can be expressed through another, simple dimensionless number. We will also test the

  18. Simulation studies of proposed observing systems and their impact on numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Kalnay, E.; Susskind, J.; Baker, W. E.; Halem, M.

    1984-01-01

    A series of realistic simulation studies is being conducted as a cooperative effort between the European Centre for Medium Range Weather Forecasts (ECMWF), the National Meteorological Center (NMC), and the Goddard Laboratory for Atmospheric Sciences (GLAS) to provide a quantitative assessment of the potential impact of proposed observation systems on large scale numerical weather prediction. A special objective of this project is to avoid the unrealistic character of earlier simulation studies.

  19. Weather Specialist/Aerographer's Mate.

    ERIC Educational Resources Information Center

    Chanute AFB Technical Training Center, IL.

    This course trains Air Force personnel to perform duties prescribed for weather specialists and aerographer's mates. Training includes meteorology, surface and ship observation, weather radar, operation of standard weather instruments and communications equipment, and decoding and plotting of surface and upper air codes upon standard maps and…

  20. Effects Of Fungal-Mineral Interactions On Chemical Weathering And Denudation Processes - Observations From Experimental Ecosystems

    NASA Astrophysics Data System (ADS)

    Balogh, Z.; Keller, C.; Dickinson, J.

    2003-12-01

    A mesoscale (`sandbox') lysimeter experiment was performed at Hubbard Brook Experimental Forest, New Hampshire, to study plant-growth influences on chemical weathering and chemical denudation. Weathering was estimated by mass balance for 5 and 15-year intervals, and denudation was monitored as the product of drainage flow and concentration for 20 years in large (7.5x7.5x1.5m) fully lined sandboxes a.) planted with red pine (Pinus resinosa Ait.), and b.) kept free of vascular vegetation. Mass-balance equations included base cations (Ca, Mg, and K) in precipitation inputs and drainage outputs, and changes of base cation contents in biomass and soil. Scanning Electron Microscopy (SEM) and Environmental-SEM studies of the coarse sandbox soils were used for detection of mycorrhizal fungal association with roots, fungal development and attachment features on mineral grain surfaces. In the non-vascular system chemical weathering and denudation fluxes did not change significantly during the monitored period, but denudation fluxes were 1.3-1.4 times higher than weathering fluxes. In the vascular ecosystem the chemical weathering flux was 3 and 1.8 times greater than the denudation flux over 5 and 15 years, respectively, but both rates decreased over time. In our experiment the pines retarded denudation and accelerated weathering relative to the nonvascular system, thereby increasing available nutrient pools. The SEM and ESEM studies indicated more weathering features (etch pits, cracks, wholes, channels, and secondary minerals) in the mineral surfaces of the vascular system associated with the mycorrhizal fungal hyphae. Profiles of base-cation concentrations in soil water suggest that hyphal-mineral surface attachment might also insulate cation uptake from bulk soil water and hydrologic loss. The sandbox study offers insight into short-term effects of ecosystems on global biogeochemical processes.

  1. Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies

    NASA Technical Reports Server (NTRS)

    Domingue, Deborah L.; Chapman, Clark. R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Schriver, David; Travnicek, Pavel M.; Orlando, Thomas M.; Sprague, Ann L.; Blewett, David T.; Gillis-Davis, Jeffrey J.; Feldman, William C.; Lawrence, David J.; Ho, George C.; Ebel, Denton S.; Nittler, Larry R.; Vilas, Faith; Pieters, Carle M.; Solomon, Sean C.; Johnson, Catherine L.; Winslow, Reka M..; Helbert, Jorn; Peplowski, Patrick N.; Weider, Shoshana Z.; Mouawad, Nelly; Izenberg, Noam R.; McClintock, William E.

    2014-01-01

    Mercury's regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury's exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury's regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury's regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury's regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury's dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of

  2. Hubble Observes Surface of Titan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia.

    Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere.

    Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory; John Caldwell of York University, Canada; Larry Sromovsky of the University of Wisconsin; and Michael Allison of the Goddard Institute for Space Studies, New York City.

    Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much

  3. INDICATION OF INSENSITIVITY OF PLANETARY WEATHERING BEHAVIOR AND HABITABLE ZONE TO SURFACE LAND FRACTION

    SciTech Connect

    Abbot, Dorian S.; Ciesla, Fred J.; Cowan, Nicolas B.

    2012-09-10

    It is likely that unambiguous habitable zone terrestrial planets of unknown water content will soon be discovered. Water content helps determine surface land fraction, which influences planetary weathering behavior. This is important because the silicate-weathering feedback determines the width of the habitable zone in space and time. Here a low-order model of weathering and climate, useful for gaining qualitative understanding, is developed to examine climate evolution for planets of various land-ocean fractions. It is pointed out that, if seafloor weathering does not depend directly on surface temperature, there can be no weathering-climate feedback on a waterworld. This would dramatically narrow the habitable zone of a waterworld. Results from our model indicate that weathering behavior does not depend strongly on land fraction for partially ocean-covered planets. This is powerful because it suggests that previous habitable zone theory is robust to changes in land fraction, as long as there is some land. Finally, a mechanism is proposed for a waterworld to prevent complete water loss during a moist greenhouse through rapid weathering of exposed continents. This process is named a 'waterworld self-arrest', and it implies that waterworlds can go through a moist greenhouse stage and end up as planets like Earth with partial ocean coverage. This work stresses the importance of surface and geologic effects, in addition to the usual incident stellar flux, for habitability.

  4. Laboratory Simulations of Space Weathering of Asteroid Surfaces by Solar Wind Ions.

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth A.; De Ruette, Nathalie; Harlow, George; Domingue, Deborah L.; Savin, Daniel Wolf

    2014-06-01

    Studies into the formation of the terrestrial planets rely on the analysis of asteroids and meteorites. Asteroids are solar system remnants from the planetary formation period. By characterizing their mineralogical composition we can better constrain the formation and evolution of the inner planets.Remote sensing is the primary means for studying asteroids. Sample return missions, such as Hayabusa, are complex and expensive, hence we rely on asteroid reflectance spectra to determine chemical composition. Links have been made and debated between meteorite classes and asteroid types [1, 2]. If such relationships can be confirmed, then meteorites would provide a low cost asteroid sample set for study. However, a major issue in establishing this link is the spectral differences between meteorite samples and asteroid surfaces. The most commonly invoked explanation for these differences is that the surfaces of asteroids are space weathered [2, 3]. The dominant mechanism for this weathering is believed to be solar-wind ion irradiation [2, 4, 5]. Laboratory simulations of space weathering have demonstrated changes in the general direction required to alter spectra from unweathered meteorite samples to asteroid observations [3, 6 -10], but many open questions remain and we still lack a comprehensive understanding. We propose to explore the alleged connection of ordinary chondrite (OC) meteorites to S-type asteroids through a series of systematic laboratory simulations of solar-wind space weathering of asteroid surface materials. Here we describe the issue in more detail and describe the proposed apparatus. [1] Chapman C. R. (1996) Meteorit. Planet. Sci., 31, 699-725. [2] Chapman C. R. (2004), Annu. Rev. Earth Planet. Sci., 32, 539-567. [3] Hapke B. (2001) J. Ge-ophys. Res., 106, 10039-10074. [4] Pieters C.M. et al. (2000) Meteorit. Planet. Sci., 35, 1101-1107. [5] Ver-nazza P. et al. (2009) Nature, 458, 993-995. [6] Stra-zulla G. et al. (2005) Icarus, 174, 31-35 (2005). [7

  5. Hubble Observes Surface of Titan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia.

    Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere.

    Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory; John Caldwell of York University, Canada; Larry Sromovsky of the University of Wisconsin; and Michael Allison of the Goddard Institute for Space Studies, New York City.

    Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much

  6. The rate and causes of lunar space weathering: Insights from Lunar Reconnaissance Orbiter Wide Angle Camera ultraviolet observations

    NASA Astrophysics Data System (ADS)

    Denevi, B. W.; Robinson, M. S.; Sato, H.; Hapke, B. W.; McEwen, A. S.; Hawke, B. R.

    2011-12-01

    Lunar Reconnaissance Orbiter Wide Angle Camera global ultraviolet and visible imaging provides a unique opportunity to examine the rate and causes of space weathering on the Moon. Silicates typically have a strong decrease in reflectance toward UV wavelengths (<~450 nm) due to strong bands at 250 nm and in the far UV. Metallic iron is relatively spectrally neutral, and laboratory spectra suggest that its addition to mature soils in the form of submicroscopic iron (also known as nanophase iron) flattens silicate spectra, significantly reducing spectral slope in the ultraviolet. Reflectance at ultraviolet wavelengths may be especially sensitive to the surface coatings that form due to exposure to space weathering because scattering from the surfaces of grains contributes a larger fraction to the reflectance spectrum at short wavelengths. We find that the UV slope (as measured by the 320/415 nm ratio) is a more sensitive measure of maturity than indexes based on visible and near-infrared wavelengths. Only the youngest features (less than ~100 Ma) retain a UV slope that is distinct from mature soils of the same composition. No craters >20 km have UV slopes that approach those observed in laboratory spectra of fresh lunar materials (powdered lunar rocks). While the 320/415 nm ratio increases by ~18% from powdered rocks to mature soils in laboratory samples, Giordano Bruno, the freshest large crater, only shows a 3% difference between fresh and mature materials. At the resolution of our UV data (400 m/pixel), we observe some small (<5 km) craters that show a ~14% difference in 320/415 nm ratio from their mature surroundings. UV observations show that Reiner Gamma has had significantly lower levels of space weathering than any of the Copernican craters we examined, and was the only region we found with a UV slope that approached laboratory values for fresh powdered rock samples. This is consistent with the hypothesis that its high albedo is due to magnetic shielding from

  7. The role of SANSA's geomagnetic observation network in space weather monitoring: A review

    NASA Astrophysics Data System (ADS)

    Kotzé, P. B.; Cilliers, P. J.; Sutcliffe, P. R.

    2015-10-01

    Geomagnetic observations play a crucial role in the monitoring of space weather events. In a modern society relying on the efficient functioning of its technology network such observations are important in order to determine the potential hazard for activities and infrastructure. Until recently, it was the perception that geomagnetic storms had no or very little adverse effect on radio communication and electric power infrastructure at middle- and low-latitude regions like southern Africa. The 2003 Halloween storm changed this perception. In this paper we discuss the role of the geomagnetic observation network operated by the South African National Space Agency (SANSA) in space weather monitoring. The primary objective is to describe the geomagnetic data sets available to characterize and monitor the various types of solar-driven disturbances, with the aim to better understand the physics of these processes in the near-Earth space environment and to provide relevant space weather monitoring and prediction.

  8. Rates of oxidative weathering on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1993-01-01

    A model of acid weathering is proposed for the iron-rich basalts on Mars. Aqueous oxidation of iron sulfides released SO4(2-) and H(+) ions that initiated the dissolution of basaltic ferromagnesian silicates and released Fe(2+) ions. The Fe(2+) ions eventually underwent ferrolysis reactions and produced insoluble hydrous ferric oxide phases. Measurements of the time-dependence of acid weathering reactions show that pyrrhotite is rapidly converted to pyrite plus dissolved ferrous iron, the rate of pyrite formation decreasing with rising pH and lower temperatures. On Mars, oxidation rates of dissolved Fe(2+) ions in equatorial melt-waters in contact with the atmosphere are estimated to lie in the range 0.3-3.0 ppb Fe/yr over the pH range 2 to 6. Oxidation of Fe(2+) ions is estimated to be extremely slow in brine eutectic solutions that might be present on Mars and to be negligible in the frozen regolith.

  9. A study on the integrity and authentication of weather observation data using Identity Based Encryption.

    PubMed

    Seo, Jung Woo; Lee, Sang Jin

    2016-01-01

    Weather information provides a safe working environment by contributing to the economic activity of the nation, and plays role of the prevention of natural disasters, which can cause large scaled casualties and damage of property. Especially during times of war, weather information plays a more important role than strategy, tactics and information about trends of the enemy. Also, it plays an essential role for the taking off and landing of fighter jet and the sailing of warships. If weather information, which plays a major role in national security and economy, gets misused for cyber terrorism resulting false weather information, it could be a huge threat for national security and the economy. We propose a plan to safely transmit the measured value from meteorological sensors through a meteorological telecommunication network in order to guarantee the confidentiality and integrity of the data despite cyber-attacks. Also, such a plan allows one to produce reliable weather forecasts by performing mutual authentication through authentication devices. To make sure of this, one can apply an Identity Based Signature to ensure the integrity of measured data, and transmit the encrypted weather information with mutual authentication about the authentication devices. There are merits of this research: It is not necessary to manage authentication certificates unlike the Public Key Infrastructure methodology, and it provides a powerful security measure with the capability to be realized in a small scale computing environment, such as the meteorological observation system due to the low burden on managing keys. PMID:27536509

  10. A study on the integrity and authentication of weather observation data using Identity Based Encryption.

    PubMed

    Seo, Jung Woo; Lee, Sang Jin

    2016-01-01

    Weather information provides a safe working environment by contributing to the economic activity of the nation, and plays role of the prevention of natural disasters, which can cause large scaled casualties and damage of property. Especially during times of war, weather information plays a more important role than strategy, tactics and information about trends of the enemy. Also, it plays an essential role for the taking off and landing of fighter jet and the sailing of warships. If weather information, which plays a major role in national security and economy, gets misused for cyber terrorism resulting false weather information, it could be a huge threat for national security and the economy. We propose a plan to safely transmit the measured value from meteorological sensors through a meteorological telecommunication network in order to guarantee the confidentiality and integrity of the data despite cyber-attacks. Also, such a plan allows one to produce reliable weather forecasts by performing mutual authentication through authentication devices. To make sure of this, one can apply an Identity Based Signature to ensure the integrity of measured data, and transmit the encrypted weather information with mutual authentication about the authentication devices. There are merits of this research: It is not necessary to manage authentication certificates unlike the Public Key Infrastructure methodology, and it provides a powerful security measure with the capability to be realized in a small scale computing environment, such as the meteorological observation system due to the low burden on managing keys.

  11. Simulation studies of the impact of advanced observing systems on numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Kalnay, E.; Susskind, J.; Reuter, D.; Baker, W. E.; Halem, M.

    1984-01-01

    To study the potential impact of advanced passive sounders and lidar temperature, pressure, humidity, and wind observing systems on large-scale numerical weather prediction, a series of realistic simulation studies between the European Center for medium-range weather forecasts, the National Meteorological Center, and the Goddard Laboratory for Atmospheric Sciences is conducted. The project attempts to avoid the unrealistic character of earlier simulation studies. The previous simulation studies and real-data impact tests are reviewed and the design of the current simulation system is described. Consideration is given to the simulation of observations of space-based sounding systems.

  12. Widespread Surface Weathering on Early Mars: possible implication on the Past Climate

    NASA Astrophysics Data System (ADS)

    Loizeau, Damien; Carter, John; Mangold, Nicolas; Poulet, François; Rossi, Angelo P.; Allemand, Pascal; Lozac'h, Loïc; Quantin, Cathy; Bibring, Jean-Pierre

    2015-04-01

    The recent discovery of widespread hydrous clays on Mars with OMEGA/Mars Express and CRISM/MRO indicates that diverse and widespread aqueous environments existed on Mars, from the surface to kilometric depths [1, 2]. The study of the past habitability and past climates of the planet requires assessing the importance of sustained surface water vs. subsurface water in its aqueous history. Vertical sequences of Al-rich clays on top of Fe/Mg-rich clays in the top tens of meters of the surface are identified on Mars [3-6] (see figure 1) and interpreted as possible weathering profiles, similar to cases of pedogenesis on Earth (e.g. [7, 8]). A global study of these clay sequences has recently been published by Carter et al. [9]. This following work presents detailed geological analysis, performed for each identified candidate, in order to constrain their age and origin. With the increasing availability of CTX and HiRISE stereoimages, we investigate the thickness of the altered sequences, the age of the altered units and the different geological contexts to further understand the weathering process(es), and their possible implication on the past climate. The types of geologic settings where the interpreted weathering profiles are observed are much varied: from basin floor to plateaus, in apparent massive rocks to finely layered rocks. Besides, the number and variety of sequences is/was likely larger. However, in term of chronology, the alteration seems to have stopped in a relatively limited period of time for the studied cases, between 3.8 and 3.6 Ga. This would point to a formation due to a global process that enabled liquid water at the surface and pedogenesis in various regions, on various terrains, from late Noachian to early Hesperian. This global process would imply regular, widely distributed ice or precipitations in large regions of Mars at that time. If weathering occurred before that time, during the early or middle Noachian, the sequences may have been erased

  13. Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, Natalie S.; Forthofer, Jason M.; Lamb, Brian K.; Shannon, Kyle S.; Butler, Bret W.

    2016-04-01

    Wind predictions in complex terrain are important for a number of applications. Dynamic downscaling of numerical weather prediction (NWP) model winds with a high-resolution wind model is one way to obtain a wind forecast that accounts for local terrain effects, such as wind speed-up over ridges, flow channeling in valleys, flow separation around terrain obstacles, and flows induced by local surface heating and cooling. In this paper we investigate the ability of a mass-consistent wind model for downscaling near-surface wind predictions from four NWP models in complex terrain. Model predictions are compared with surface observations from a tall, isolated mountain. Downscaling improved near-surface wind forecasts under high-wind (near-neutral atmospheric stability) conditions. Results were mixed during upslope and downslope (non-neutral atmospheric stability) flow periods, although wind direction predictions generally improved with downscaling. This work constitutes evaluation of a diagnostic wind model at unprecedented high spatial resolution in terrain with topographical ruggedness approaching that of typical landscapes in the western US susceptible to wildland fire.

  14. Feasibility of using a seismic surface wave method to study seasonal and weather effects on shallow surface soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this paper is to study the feasibility of using a seismic surface wave method to investigate seasonal and weather effects on shallow surface soils. In the study, temporal variations of subsurface soil properties were measured and monitored by using a combination of a new seismic su...

  15. Feasibility of using a seismic surface wave method to study seasonal and weather effects on shallow surface soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the paper is to study the temporal variations of the subsurface soil properties due to seasonal and weather effects using a combination of a new seismic surface method and an existing acoustic probe system. A laser Doppler vibrometer (LDV) based multi-channel analysis of surface wav...

  16. Characterization of surface carbon films on weathered Japaneseroof tiles by soft x-ray spectroscopy

    SciTech Connect

    Muramatsu, Y.; Yamashita, M.; Motoyama, M.; Hirose, M.; Denlinger, J.D.; Gullikson, E.M.; Perera, R.C.

    2004-07-15

    The effects of weathering on carbon films deposited onJapanese smoked roof tileswere investigated by soft x-ray absorption andemission spectroscopy using synchrotron radiation. X-ray absorptionmeasurements revealed that weathering oxidizes the carbon films and thatpartial carboxy chemical bonding occurs. Incident angle-dependent x-rayabsorption spectra in the C K region confirmed that the degree of theorientation at the surface of the oxidized carbon films decreases withweathering. However, the take-off angle-dependent C K x-ray emissionspectra showed that the orientation of the layered carbon structure ismaintained in the bulk portion when weathered. Therefore, it is confirmedthat oxidation proceeds from the surface of the carbon films. Weatheringdegrades and oxidizes the surface carbon films, which causes the metallicsilver color to change to darker gray.

  17. Weather Radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, Jothiram

    2004-10-01

    Weather radar is an indispensable component for remote sensing of the atmosphere, and the data and products derived from weather radar are routinely used in climate and weather-related studies to examine trends, structure, and evolution. The need for weather remote sensing is driven by the necessity to understand and explain a specific atmospheric science phenomenon. The importance of remote sensing is especially evident in high-profile observational programs, such as the WSR-88D (Weather Surveillance Radar) network, TRMM (Tropical Rainfall Measuring Mission), and ARM (Atmospheric Radiation Measurement). A suite of ground-based and airborne radar instruments is maintained and deployed for observing wind, clouds, and precipitation. Weather radar observation has become an integral component of weather forecasting and hydrology and climate studies. The inclusion of weather radar observations in numerical weather modeling has enhanced severe storm forecasting, aviation weather, hurricane intensity and movement, and the global water cycle.

  18. Porosity and surface area evolution during weathering of two igneous rocks

    SciTech Connect

    Navarre-Sitchler, Alexis; Cole, David; Rother, Gernot; Jin, Lixin; Buss, Heather; Brantley, S. L.

    2013-01-01

    During weathering, rocks release nutrients and storewater vital for growth ofmicrobial and plant life. Thus, the growth of porosity as weathering advances into bedrock is a life-sustaining process for terrestrial ecosystems. Here, we use small-angle and ultra small-angle neutron scattering to show how porosity develops during initial weathering under tropical conditions of two igneous rock compositions, basaltic andesite and quartz diorite. The quartz diorite weathers spheroidally while the basaltic andesite does not. The weathering advance rates of the two systems also differ, perhaps due to this difference in mechanism, from 0.24 to 100 mm kyr1, respectively. The scattering data document how surfaces inside the feldspar-dominated rocks change as weathering advances into the protolith. In the unaltered rocks, neutrons scatter fromtwo types of featureswhose dimensions vary from6 nmto 40 lm: pores and bumps on pore grain surfaces. These features result in scattering data for both unaltered rocks that document multi-fractal behavior: scattering is best described by amass fractal dimension (Dm) and a surface fractal dimension (Ds) for features of length scales greater than and less than 1 lm, respectively. In the basaltic andesite, Dm is approximately 2.9 and Ds is approximately 2.7. The mechanism of solute transport during weathering of this rock is diffusion. Porosity and surface area increase from 1.5%to 8.5%and 3 to 23 m2 g1 respectively in a relatively consistent trend across themm-thick plagioclase reaction front. Across this front, both fractal dimensions decrease, consistentwith development of amoremonodisperse pore networkwith smoother pore surfaces. Both changes are consistent largely with increasing connectivity of pores without significant surface roughening, as expected for transport-limited weathering. In contrast, porosity and surface area increase from 1.3% to 9.5% and 1.5 to 13 m2 g1 respectively across a many cm-thick reaction front in the

  19. Porosity and surface area evolution during weathering of two igneous rocks

    NASA Astrophysics Data System (ADS)

    Navarre-Sitchler, Alexis K.; Cole, David R.; Rother, Gernot; Jin, Lixin; Buss, Heather L.; Brantley, Susan L.

    2013-05-01

    During weathering, rocks release nutrients and store water vital for growth of microbial and plant life. Thus, the growth of porosity as weathering advances into bedrock is a life-sustaining process for terrestrial ecosystems. Here, we use small-angle and ultra small-angle neutron scattering to show how porosity develops during initial weathering under tropical conditions of two igneous rock compositions, basaltic andesite and quartz diorite. The quartz diorite weathers spheroidally while the basaltic andesite does not. The weathering advance rates of the two systems also differ, perhaps due to this difference in mechanism, from 0.24 to 100 mm kyr-1, respectively. The scattering data document how surfaces inside the feldspar-dominated rocks change as weathering advances into the protolith. In the unaltered rocks, neutrons scatter from two types of features whose dimensions vary from 6 nm to 40 μm: pores and bumps on pore-grain surfaces. These features result in scattering data for both unaltered rocks that document multi-fractal behavior: scattering is best described by a mass fractal dimension (Dm) and a surface fractal dimension (Ds) for features of length scales greater than and less than ˜1 μm, respectively. In the basaltic andesite, Dm is approximately 2.9 and Ds is approximately 2.7. The mechanism of solute transport during weathering of this rock is diffusion. Porosity and surface area increase from ˜1.5% to 8.5% and 3 to 23 m2 g-1 respectively in a relatively consistent trend across the mm-thick plagioclase reaction front. Across this front, both fractal dimensions decrease, consistent with development of a more monodisperse pore network with smoother pore surfaces. Both changes are consistent largely with increasing connectivity of pores without significant surface roughening, as expected for transport-limited weathering. In contrast, porosity and surface area increase from 1.3% to 9.5% and 1.5 to 13 m2 g-1 respectively across a many cm-thick reaction

  20. Monitoring Inland Ice Cover under All-weather Conditions with the Combined Use of Microwave and GOES-R Observations

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Key, J. R.; Wang, X.

    2010-12-01

    The cryosphere exists at all latitudes and in about one hundred countries. Not only does the cryosphere play a significant role in climate, but also it has profound socio-economic value, especially over inland water, including lakes and rivers, due to its role in water resources and its impact on transportation, fisheries, hunting, herding, and agriculture. A number of ice characterization algorithms have been improved and/or developed for the next generation Geostationary Operational Environmental Satellite (GOES-R) Advanced Baseline Imager (ABI), including ice identification, ice concentration, ice thickness and age, and ice motion. These products will play an important role in monitoring ice cover over inland water considering its high spatial, temporal, and spectral resolution. However, the effectiveness of such products is constrained by cloud cover. Lake ice products from microwave observations are less affected by clouds, but their quality is hindered by coarse spatial and temporal resolution as well as contamination by the land surface. Optimization of all-weather ice products from microwave observations, and ice products with higher spatial and temporal resolutions from GOES-R enables us to monitor the ice characteristics over the inland water surfaces, e.g., the Great Lakes, effectively in real time under all-weather conditions, and improves the products that are being developed for ABI. The combined used of both products provides accurate, timely information on ice characteristics over inland water surfaces to meet the needs of transportation and winter weather forecasting. An overview of the ice cover, concentration, and motion products for both GOES-R and microwave observation will be given, and case studies of combining both products for monitoring ice characteristics over inland water will be presented.

  1. Weathering pits as indicators of the relative age of granite surfaces in the Cairngorm mountains, Scotland

    USGS Publications Warehouse

    Hall, A.M.; Phillips, W.M.

    2006-01-01

    Weathering pits 1-140 cm deep occur on granite surfaces in the Cairngorms associated with a range of landforms, including tors, glacially exposed slabs, large erratics and blockfields. Pit depth is positively correlated with cosmogenic exposure age, and both measures show consistent relationships on individual rock landforms. Rates of pit deepening are non-linear and a best fit is provided by the sigmoidal function D = b1+ exp(b2+b3/t). The deepest pits occur on unmodified tor summits, where 10 Be exposure ages indicate that surfaces have been exposed to weathering for a minimum of 52-297 ka. Glacially exposed surfaces with pits 10-46 cm deep have given 10 Be exposure durations of 21-79 ka, indicating exposure by glacial erosion before the last glacial cycle. The combination of cosmogenic exposure ages with weathering pit depths greatly extends the area over which inferences can be made regarding the ages of granite surfaces in the Cairngorms. Well-developed weathering pits on glacially exposed surfaces in other granite areas are potential indicators of glacial erosion before the Last Glacial Maximum. ?? Swedish Society for Anthropology and Geography.

  2. Paleomagnetic dating of paleo-weathering surfaces, North America and Scotland

    NASA Astrophysics Data System (ADS)

    Dulin, S. A.; Elmore, R. D.; Parnell, J.

    2013-12-01

    Permian-Triassic chemical remanent magnetizations (CRMs) have been reported in basement rocks below weathering surfaces in continental Europe and North America, and are attributed to weathering fluids which caused precipitation of authigenic hematite. Identification and dating of these paleotopographic surfaces can have implications for climatic conditions during the weathering event. In this study we report paleomagnetic and petrographic results from unconformity surfaces in North America and Scotland to determine the characteristics and extent of this weathering event. Red granites from the Wichita Mountains in southern Oklahoma hold a CRM in hematite that is late Permian in age. The red granites represent a weathering profile that is seen in the upper 200m of the granites, and is present throughout the Wichita Mountains. On the Kintyre peninsula in Scotland, reddened Dalradian schist below an unconformity overlain by Permian-Triassic sandstones contains a late Permian-early Triassic CRM with southwesterly declinations and up inclinations (D = 184.6°, I = -33.3°). The CRM resides in hematite that is intergrown with dolomite. The overlying red sandstone has a similar CRM. Grey Dalradian schist contains magnetite but does not contain a stable magnetization. At another locality, reddened and dolomitized Dalradian schist below an unconformity overlain by the Devonian Old Red Sandstone contains a CRM with northeasterly declinations and down inclinations. The Devonian sandstones contain a CRM with southwesterly declinations and moderate up inclinations that are approximately antipodal to the CRM in the schist. The CRMs in the schist and sandstones reside in hematite. The fluids which caused remagnetization must have penetrated below the Permian unconformity into the Devonian unconformity. Other unconformity surfaces in Scotland (Cambrian-Lewisian; Triassic-Torridonian; Torridonian-Lewisian) are also being investigated as part of this study to determine if similar

  3. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route

    NASA Astrophysics Data System (ADS)

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-11-01

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR.

  4. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route.

    PubMed

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-01-01

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR. PMID:26585690

  5. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route

    PubMed Central

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-01-01

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR. PMID:26585690

  6. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route.

    PubMed

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-01-01

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR.

  7. Total Lightning Observations of Extreme Weather Events over the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Carey, L. D.; Petersen, W. A.; Christian, H. J.

    2008-12-01

    The overall objective is to investigate total lightning characteristics of extreme weather events over the contiguous United States (CONUS) using TRMM (Tropical Rainfall Measuring Mission) LIS (Lightning Image Sensor) and OTD (Optical Transient Detector) satellite observations. A large LIS (10+ years) and OTD (5 years) data base is available to study the instantaneous total or cloud-to-ground (CG) plus intracloud (IC) lightning characteristics of extreme weather events. More specifically, the LIS and OTD data are combined with National Lightning Detection Network (NLDN) observations to examine the total and CG lightning flash rate and density, the IC:CG ratio, and positive CG percentage. These instantaneous lightning characteristics can be used for basic science studies to better understand the physical and dynamical linkages between lightning and precipitation and their environmental controls. They can also provide a first-look of extreme weather events leading up to future satellite observations (e.g., NOAA GOES-R Geostationary Lightning Mapper [GLM]) for use in climate studies and the short-term prediction and warning process. Extreme weather events are defined by the NOAA Storm Data reports of tornadoes, large hail (at least 0.75 inch) and strong straight-line winds (at least 50 kts). Over CONUS, there are over 70,000 severe storm reports in the TRMM spatial domain (< 35 degrees N) from 1998-2007 and over 100,000 storm reports in the OTD spatial domain (5/1995-4/2000). Temporal co-location is on the order of 1% (i.e., 1000's of coincident overpasses), providing a statistically significant sample of instantaneous total lightning properties. This instantaneous behavior of lightning in extreme weather is then compared to that of typical thunderstorm events, or randomly sampled LIS/OTD events in which the extreme events have been eliminated from the population. Results describing the instantaneous behavior of total lightning within a large sample of extreme and

  8. Total Lightning Observations of Extreme Weather Events over the Contiguous United States

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Petersen, Walter A.; Christian, Hugh J.

    2008-01-01

    The overall objective is to investigate total lightning characteristics of extreme weather events over the contiguous United States (CONUS) using TRMM (Tropical Rainfall Measuring Mission) LIS (Lightning Image Sensor) and OTD (Optical Transient Detector) satellite observations. A large LIS (10+ years) and OTD (5 years) data base is available to study the instantaneous total or cloud-to-ground (CG) plus intracloud (IC) lightning characteristics of extreme weather events. More specifically, the LIS and OTD data are combined with National Lightning Detection Network (NLDN) observations to examine the total and CG lightning flash rate and density, the IC:CG ratio, and positive CG percentage. These instantaneous lightning characteristics can be used for basic science studies to better understand the physical and dynamical linkages between lightning and precipitation and their environmental controls. They can also provide a first-look of extreme weather events leading up to future satellite observations (e.g., NOAA GOES-R Geostationary Lightning Mapper [GLM]) for use in climate studies and the short-term prediction and warning process. Extreme weather events are defined by the NOAA Storm Data reports of tornadoes, large hail (at least 0.75 inch) and strong straight-line winds (at least 50 kts). Over CONUS, there are over 70,000 severe storm reports in the TRMM spatial domain (< 35 N) from 1998-2007 and over 100,000 storm reports in the OTD spatial domain (5/1995-4/2000). Temporal co-location is on the order of 1% (i.e., 1000 s of coincident overpasses), providing a statistically significant sample of instantaneous total lightning properties. This instantaneous behavior of lightning in extreme weather is then compared to that of typical thunderstorm events, or randomly sampled LIS/OTD events in which the extreme events have been eliminated from the population. Results describing the instantaneous behavior of total lightning within a large sample of extreme and typical

  9. WORLD SURFACE CURRENTS FROM SHIP'S DRIFT OBSERVATIONS

    SciTech Connect

    Duncan, C.P.; Schladow, S.G.

    1980-11-01

    Over 4 million observations of ship's drift are on file at the U.S. National Oceanographic Data Centre, in Washington, D. C., representing a vast amount of information on ocean surface currents. The observed drift speeds are dependent on the frequency of occurence of the particular current speeds and the frequency of observation. By comparing frequency of observation with the drift speeds observed it is possible to confirm known current patterns and detect singularities in surface currents.

  10. The link between clay mineral weathering and the stabilization of Ni surface precipitates

    SciTech Connect

    Ford, R.G.; Scheinost, A.C.; Scheckel, K.G.; Sparks, D.L.

    1999-09-15

    The formation of transition-metal surface precipitates may occur during sorption to clay minerals under ambient soil conditions. This process may lead to significant long-term stabilization of the metal within the soil profile. However, the rates and mechanisms controlling surface precipitate formation are poorly understood. The authors monitored changes in the reversibility of Ni sorbed to a clay mineral, pyrophyllite, in model batch experiments maintained at pH 7.5 for up to 1 year. The macroscopic sorption and dissolution study was complemented by a time-resolved characterization of the sorbed phase via spectroscopic and thermal methods. They found that nickel became increasingly resistant, over time, to extraction with EDTA. Initially, the sorbed phase consisted of a Ni-Al layered double hydroxide (LDH). With time, the anionic species in the interlayer space of the LDH changed from nitrate to silica polymers transforming the LDH gradually into a precursor Ni-Al phyllosilicate. The authors believe that this phase transformation is responsible for a substantial part of the observed increase in dissolution resistance. Thus, clay mineral weathering and the time-dependent release of Al and Si ions controlled Ni precipitate nucleation and transformation. The results suggest a potential pathway for long-term Ni stabilization in soil.

  11. C3Winds: A Novel 3D Wind Observing System to Characterize Severe Weather Events

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Wu, D. L.; Yee, J. H.; Boldt, J.; Demajistre, R.; Reynolds, E.; Tripoli, G. J.; Oman, L.; Prive, N.; Heidinger, A. K.; Wanzong, S.

    2015-12-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to resolve high-resolution 3D dynamic structures of severe wind events. Rapid evolution of severe weather events highlights the need for high-resolution mesoscale wind observations. Yet mesoscale observations of severe weather dynamics are quite rare, especially over the ocean where extratropical and tropical cyclones (ETCs and TCs) can undergo explosive development. Measuring wind velocity at the mesoscale from space remains a great challenge, but is critically needed to understand and improve prediction of severe weather and tropical cyclones. Based on compact, visible/IR imagers and a mature stereoscopic technique, C3Winds has the capability to measure high-resolution (~2 km) cloud motion vectors and cloud geometric heights accurately by tracking cloud features from two formation-flying CubeSats, separated by 5-15 minutes. Complementary to lidar wind measurements from space, C3Winds will provide high-resolution wind fields needed for detailed investigations of severe wind events in occluded ETCs, rotational structures inside TC eyewalls, and ozone injections associated with tropopause folding events. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with the potential for increased diurnal sampling via CubeSat constellation.

  12. Combining solar science and asteroid science with the space weather observation network (SWON)

    NASA Astrophysics Data System (ADS)

    Maiwald, Volker; Weiß, André; Jansen, Frank

    2012-12-01

    The peculiarity of space weather for Earth orbiting satellites, air traffic and power grids on Earth and especially the financial and operational risks posed by damage due to space weather, underline the necessity of space weather observation. The importance of such observations is even more increasing due to the impending solar maximum. In recognition of this importance we propose a mission architecture for solar observation as an alternative to already published mission plans like Solar Probe (NASA) or Solar Orbiter (ESA). Based upon a Concurrent Evaluation session in the Concurrent Engineering Facility of the German Aerospace Center, we suggest using several spacecraft in an observation network. Instead of placing such spacecraft in a solar orbit, we propose landing on several asteroids, which are in opposition to Earth during the course of the mission and thus allow observation of the Sun's far side. Observation of the far side is especially advantageous as it improves the warning time with regard to solar events by about 2 weeks. Landing on Inner Earth Object (IEO) asteroids for observation of the Sun has several benefits over traditional mission architectures. Exploiting shadowing effects of the asteroids reduces thermal stress on the spacecraft, while it is possible to approach the Sun closer than with an orbiter. The closeness to the Sun improves observation quality and solar power generation, which is intended to be achieved with a solar dynamic system. Furthermore landers can execute experiments and measurements with regard to asteroid science, further increasing the scientific output of such a mission. Placing the spacecraft in a network would also benefit the communication contact times of the network and Earth. Concluding we present a first draft of a spacecraft layout, mission objectives and requirements as well as an initial mission analysis calculation.

  13. Production of mineral surface area within deep weathering profiles at eroding vs. depositional hillslope locations: Christina River Basin Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Fisher, B.; Yoo, K.; Aufdenkampe, A. K.; Nater, E.

    2014-12-01

    Geomorphic and biogeochemical processes and hillslope morphology are partly controlled by the extent and degree of chemical weathering between soil and bedrock. The production of mineral specific surface area (SSA) via chemical weathering is a critical variable for mechanistic understanding of weathering and provides an interface between minerals and the soil carbon cycle. We examined two 21-meter deep drill cores in the Laurels Schist at 141 MASL (summit) and 130 MASL (interfluve) in a 900 ha first order watershed in the Laurels Preserve, a forested land use end member in the Christina River Basin CZO. In addition to mineral SSA, we report elemental and mineralogical changes through both weathering profiles. Despite highly variable bedrock composition, mobile elements (Ca & Na) are depleted within 3-5 m below the ground surface, which is consistent with the removal of Ca-Na-plagioclase ((Na,Ca)Al(Si,Al)3O8) at this interval; we consider this depth as a weathering front. The water table in both boreholes was ~123 MASL (5/2014), which is well below the weathering front, suggesting that weathering processes are not coupled with groundwater interactions in this system. Clay XRD reveals the presence of secondary phyllosilicates including vermiculite, illite, and kaolinite in the upper 3 m of the summit weathering profile, which are weathering products of primary plagioclase, muscovite, and chlorite. The currently available clay mineralogy results are consistent with the decrease in total SSA from up to 20 m2g-1 at the surface to <5 m2g-1 below 3 m depth. Within the first 3 m from the surface, citrate-dithionate extractable iron contributed 30-60% of the total surface area. Therefore transformation of primary minerals to secondary phyllosilicate minerals, involving leaching loss of cations, was partly responsible for SSA production, but iron oxides play a significant role in production of SSA above the weathering front. This observation did not differ between

  14. Weather Observers: A Manipulative Augmented Reality System for Weather Simulations at Home, in the Classroom, and at a Museum

    ERIC Educational Resources Information Center

    Hsiao, Hsien-Sheng; Chang, Cheng-Sian; Lin, Chien-Yu; Wang, Yau-Zng

    2016-01-01

    This study focused on how to enhance the interactivity and usefulness of augmented reality (AR) by integrating manipulative interactive tools with a real-world environment. A manipulative AR (MAR) system, which included 3D interactive models and manipulative aids, was designed and developed to teach the unit "Understanding Weather" in a…

  15. Mars surface weathering products and spectral analogs: Palagonites and synthetic iron minerals

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Morris, R. V.; Lauer, H. V., Jr.

    1992-01-01

    There are several hypotheses regarding the formation of Martian surface fines. These surface fines are thought to be products of weathering processes occurring on Mars. Four major weathering environments of igneous rocks on Mars have been proposed; (1) impact induced hydrothermal alterations; (2) subpermafrost igneous intrusion; (3) solid-gas surface reactions; and (4) subaerial igneous intrusion over permafrost. Although one or more of these processes may be important on the Martian surface, one factor in common for all these processes is the reaction of solid or molten basalt with water (solid, liquid, or gas). These proposed processes, with the exception of solid-gas surface reactions, are transient processes. The most likely product of transient hydrothermal processes are layer silicates, zeolites, hydrous iron oxides and palagonites. The long-term instability of hydrous clay minerals under present Martian conditions has been predicted; however, the persistence of such minerals due to slow kinetics of dehydration, or entrapment in permafrost, where the activity of water is high, can not be excluded. Anhydrous oxides of iron (e.g., hematite and maghemite) are thought to be stable under present Martian surface conditions. Oxidative weathering of sulfide minerals associated with Martian basalts has been proposed. Weathering of sulfide minerals leads to a potentially acidic permafrost and the formation of Fe(3) oxides and sulfates. Weathering of basalts under acidic conditions may lead to the formation of kaolinite through metastable halloysite and metahalloysite. Kaolinite, if present, is thought to be a thermodynamically stable phase at the Martian surface. Fine materials on Mars are important in that they influence the surface spectral properties; these fines are globally distributed on Mars by the dust storms and this fraction will have the highest surface area which should act as a sink for most of the absorbed volatiles near the surface of Mars. Therefore

  16. Ground-based Observations of the Solar Sources of Space Weather

    NASA Astrophysics Data System (ADS)

    Veronig, A. M.; Pötzi, W.

    2016-04-01

    Monitoring of the Sun and its activity is a task of growing importance in the frame of space weather research and awareness. Major space weather disturbances at Earth have their origin in energetic outbursts from the Sun: solar flares, coronal mass ejections and associated solar energetic particles. In this review we discuss the importance and complementarity of ground-based and space-based observations for space weather studies. The main focus is drawn on ground-based observations in the visible range of the spectrum, in particular in the diagnostically manifold Hα spectral line, which enables us to detect and study solar flares, filaments (prominences), filament (prominence) eruptions, and Moreton waves. Existing Hα networks such as the GONG and the Global High-Resolution Hα Network are discussed. As an example of solar observations from space weather research to operations, we present the system of real-time detection of Hα flares and filaments established at Kanzelhöhe Observatory (KSO; Austria) in the frame of the space weather segment of the ESA Space Situational Awareness programme (swe.ssa.esa.int). An evaluation of the system, which is continuously running since July 2013 is provided, covering an evaluation period of almost 2.5 years. During this period, KSO provided 3020 hours of real-time Hα observations at the ESA SWE portal. In total, 824 Hα flares were detected and classified by the real-time detection system, including 174 events of Hα importance class 1 and larger. For the total sample of events, 95 % of the automatically determined flare peak times lie within ±5 min of the values given in the official optical flares reports (by NOAA and KSO), and 76 % of the start times. The heliographic positions determined are better than ±5°. The probability of detection of flares of importance 1 or larger is 95 %, with a false alarm rate of 16 %. These numbers confirm the high potential of automatic flare detection and alerting from ground

  17. Surface Exposure Ages of Space-Weathered Grains from Asteroid 25143 Itokawa

    NASA Astrophysics Data System (ADS)

    Keller, L.; Berger, E.; Christoffersen, R.

    2015-10-01

    We use the observed effects of solar wind ion irradiation and the accumulation of solar flare particle tracks recorded in Itokawa grains to constrain the rates of space weathering and yield information about regolith dynamics. The track densities are consistent with exposure at mm depths for 104-105 years. The solar wind damaged rims form on a much faster timescale, <103 years.

  18. Interactive Computing and Processing of NASA Land Surface Observations Using Google Earth Engine

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Burks, Jason; Bell, Jordan

    2016-01-01

    Google's Earth Engine offers a "big data" approach to processing large volumes of NASA and other remote sensing products. h\\ps://earthengine.google.com/ Interfaces include a Javascript or Python-based API, useful for accessing and processing over large periods of record for Landsat and MODIS observations. Other data sets are frequently added, including weather and climate model data sets, etc. Demonstrations here focus on exploratory efforts to perform land surface change detection related to severe weather, and other disaster events.

  19. Mars weather and predictability: Modeling and ensemble data assimilation of spacecraft observations

    NASA Astrophysics Data System (ADS)

    Greybush, Steven J.

    Combining the perspectives of spacecraft observations and the GFDL Mars General Circulation Model (MGCM) in the framework of ensemble data assimilation leads to an improved understanding of the weather and climate of Mars and its atmospheric predictability. The bred vector (BV) technique elucidates regions and seasons of instability in the MGCM, and a kinetic energy budget reveals their physical origins. Instabilities prominent in the late autumn through early spring seasons of each hemisphere along the polar temperature front result from baroclinic conversions from BV potential to BV kinetic energy, whereas barotropic conversions dominate along the westerly jets aloft. Low level tropics and the northern hemisphere summer are relatively stable. The bred vectors are linked to forecast ensemble spread in data assimilation and help explain the growth of forecast errors. Thermal Emission Spectrometer (TES) temperature profiles are assimilated into the MGCM using the Local Ensemble Transform Kalman Filter (LETKF) for a 30-sol evaluation period during the northern hemisphere autumn. Short term (0.25 sol) forecasts compared to independent observations show reduced error (3--4 K global RMSE) and bias compared to a free running model. Several enhanced techniques result in further performance gains. Spatially-varying adaptive inflation and varying the dust distribution among ensemble members improve estimates of analysis uncertainty through the ensemble spread, and empirical bias correction using time mean analysis increments help account for model biases. With bias correction, we estimate a predictability horizon of about 5 sols during which temperature, wind, and surface pressure forecasts initialized from an assimilation analysis are superior to a free running model forecast. LETKF analyses, when compared with the UK reanalysis, show a superior correspondence to independent radio science temperature profiles. Traveling waves in both hemispheres share a correspondence in

  20. Effects of UV weathering on surface properties of polypropylene composites reinforced with wood flour, lignin, and cellulose

    NASA Astrophysics Data System (ADS)

    Peng, Yao; Liu, Ru; Cao, Jinzhen; Chen, Yu

    2014-10-01

    In this study, the influence of accelerated weathering on polypropylene composites reinforced with wood flour (WF), lignin, and cellulose at different loading levels were evaluated. Six groups of samples were exposed in a QUV accelerated weathering tester for a total of 960 h. The surface color, surface gloss, contact angle and flexural properties of the samples were tested. Besides, the weathered surface was characterized by SEM and ATR-FTIR. The results revealed that (1) the discoloration of composites was accelerated by the presence of lignin, especially at high content; (2) composites containing lignin showed less loss of flexural strength and modulus, less cracks, and better hydrophobicity on weathered surface than other groups, confirming its functions of stabilization and antioxidation; (3) cellulose-based composites exhibited better color stability but more significant deterioration in flexural properties after weathering compared to other composites, suggesting that such kind of composites could not be used as load-bearing structure in outdoor applications.

  1. A High-Resolution 3D Weather Radar, MSG, and Lightning Sensor Observation Composite

    NASA Astrophysics Data System (ADS)

    Diederich, Malte; Senf, Fabian; Wapler, Kathrin; Simmer, Clemens

    2013-04-01

    Within the research group 'Object-based Analysis and SEamless prediction' (OASE) of the Hans Ertel Centre for Weather Research programme (HerZ), a data composite containing weather radar, lightning sensor, and Meteosat Second Generation observations is being developed for the use in object-based weather analysis and nowcasting. At present, a 3D merging scheme combines measurements of the Bonn and Jülich dual polarimetric weather radar systems (data provided by the TR32 and TERENO projects) into a 3-dimensional polar-stereographic volume grid, with 500 meters horizontal, and 250 meters vertical resolution. The merging takes into account and compensates for various observational error sources, such as attenuation through hydrometeors, beam blockage through topography and buildings, minimum detectable signal as a function of noise threshold, non-hydrometeor echos like insects, and interference from other radar systems. In addition to this, the effect of convection during the radar 5-minute volume scan pattern is mitigated through calculation of advection vectors from subsequent scans and their use for advection correction when projecting the measurements into space for any desired timestamp. The Meteosat Second Generation rapid scan service provides a scan in 12 spectral visual and infrared wavelengths every 5 minutes over Germany and Europe. These scans, together with the derived microphysical cloud parameters, are projected into the same polar stereographic grid used for the radar data. Lightning counts from the LINET lightning sensor network are also provided for every 2D grid pixel. The combined 3D radar and 2D MSG/LINET data is stored in a fully documented netCDF file for every 5 minute interval, and is made ready for tracking and object based weather analysis. At the moment, the 3D data only covers the Bonn and Jülich area, but the algorithms are planed to be adapted to the newly conceived DWD polarimetric C-Band 5 minute interval volume scan strategy. An

  2. Cockpit weather information needs

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along

  3. Data Assimilation of SMAP Observations and the Impact on Weather Forecasts and Heat Stress

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Case, Jonathan; Blankenship, Clay; Crosson, William; White, Khristopher

    2014-01-01

    SPoRT produces real-time LIS soil moisture products for situational awareness and local numerical weather prediction over CONUS, Mesoamerica, and East Africa ?Currently interact/collaborate with operational partners on evaluation of soil moisture products ?Drought/fire ?Extreme heat ?Convective initiation ?Flood and water borne diseases ?Initial efforts to assimilate L2 soil moisture observations from SMOS (as a precursor for SMAP) have been successful ?Active/passive blended product from SMAP will be assimilated similarly and higher spatial resolution should improve on local-scale processes

  4. On the dynamic estimation of relative weights for observation and forecast in numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Wahba, Grace; Deepak, A. (Editor)

    1988-01-01

    The problem of merging direct and remotely sensed (indirect) data with forecast data to get an estimate of the present state of the atmosphere for the purpose of numerical weather prediction is examined. To carry out this merging optimally, it is necessary to provide an estimate of the relative weights to be given to the observations and forecast. It is possible to do this dynamically from the information to be merged, if the correlation structure of the errors from the various sources is sufficiently different. Some new statistical approaches to doing this are described, and conditions quantified in which such estimates are likely to be good.

  5. Space Weather Observations by GNSS Radio Occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2

    PubMed Central

    Yue, Xinan; Schreiner, William S; Pedatella, Nicholas; Anthes, Richard A; Mannucci, Anthony J; Straus, Paul R; Liu, Jann-Yenq

    2014-01-01

    The joint Taiwan-United States FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) mission, hereafter called COSMIC, is the first satellite constellation dedicated to remotely sense Earth's atmosphere and ionosphere using a technique called Global Positioning System (GPS) radio occultation (RO). The occultations yield abundant information about neutral atmospheric temperature and moisture as well as space weather estimates of slant total electron content, electron density profiles, and an amplitude scintillation index, S4. With the success of COSMIC, the United States and Taiwan are moving forward with a follow-on RO mission named FORMOSAT-7/COSMIC-2 (COSMIC-2), which will ultimately place 12 satellites in orbit with two launches in 2016 and 2019. COSMIC-2 satellites will carry an advanced Global Navigation Satellite System (GNSS) RO receiver that will track both GPS and Russian Global Navigation Satellite System signals, with capability for eventually tracking other GNSS signals from the Chinese BeiDou and European Galileo system, as well as secondary space weather payloads to measure low-latitude plasma drifts and scintillation at multiple frequencies. COSMIC-2 will provide 4–6 times (10–15X in the low latitudes) the number of atmospheric and ionospheric observations that were tracked with COSMIC and will also improve the quality of the observations. In this article we focus on COSMIC/COSMIC-2 measurements of key ionospheric parameters. PMID:26213514

  6. The Themis-Beagle families: Investigation of space-weathering processes on primitive surfaces

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Perna, D.; Lantz, C.; Barucci, M.

    2014-07-01

    In the past 20 years, enormous progress has been reached in the study of space-weathering (SW) effects on silicates and silicate asteroids. The so-called ordinary chondrite paradox, that is, lack of asteroids similar to the ordinary chondrites, which represent 80 % of meteorite falls, has been solved. These meteorites are now clearly related to S-type asteroids, as proved also by the direct measurements of the NEAR and HAYABUSA missions on the near-Earth asteroids Eros and Itokawa. Spectral differences between S-type asteroids and ordinary chondrites are caused by space-weathering effects, which produce a darkening in the albedo, a reddening of the spectra, and diminish the silicate absorption bands on the asteroids surfaces, exposed to cosmic radiation and solar wind. On the other hand, our understanding of space-weathering effects on primitive asteroids is still poor. Only few laboratory experiments have been devoted to the investigation of SW effects on dark carbonaceous chondrites and on complex organic materials. Irradiation of transparent organic materials produces firstly redder and darker materials that upon further processing turn flatter-bluish and darker (Kanuchova et al. 2012; Moroz et al. 2004). The Themis family is a natural laboratory to study primitive asteroids and space-weathering effects. The Themis family is located between 3.05 and 3.24 au, beyond the snow line, and it is composed of primitive asteroids. Themis is one of the most statistically reliable families in the asteroid belt. First discovered by Hirayama (1918), it has been identified as a family in all subsequent works, and it has 550 members as determined by Zappalà et al. (1995) and more than 4000 as determined by Nesvorny et al. (2010). The family formed probably about 2.3 Gyr ago as a result of a large-scale catastrophic disruption event of a parent asteroid 400 km in diameter colliding with a 190-km projectile (Marzari et al. 1995). Several Themis family members show absorption

  7. An observed database to characterize the weather conditions associated with subtropical cyclogenesis over southern-southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Yamamoto, R.; Porfirio da Rocha, R.

    2012-04-01

    A project to study the climatic, dynamic and synoptic aspects of subtropical cyclones that develop in southern-southeastern coast of Brazil is in development. The weather conditions associated with such cyclones is an important question that must be answered in this project. However, for such characterization it is necessary to use the local meteorological observations of wind, wind gust, rainfall, air temperature, etc. The NCEP (National Center for Environmental Prediction) reanalysis have spatial and time resolutions that provide elements to study the synoptic and dynamics of meteorological events (cyclone, anticyclones, troughs, ridges, monsoons circulations, etc) until the production of complex climatology. However, this analysis has coarse horizontal resolution (~250 Km) that often does not allow the identification of intense meteorological phenomena. A more precise characterization of location and intensity of weather conditions associated with subtropical cyclones would be performed using local observations. Therefore, this work describes the methodology to construct a database of surface weather observations using a relational database management system (RDBMS) MySQL. The data source are SYNOP (Surface Synoptic Observations), METAR (Meteorological Aerodrome Report), NCDC (National Climatic Data Center) and CETESB (Environmental Agency of Sao Paulo State) that are available online through dynamic web page. An iterative algorithm robot was developed to automate the data extraction. Most of the data source are encoded or at non-standard format, hence was developed an algorithm in C++, using the REGEX library, an engine of text pattern search, for decode and handle the exception (erroneous and corrupted data). After the data decoding and formatting it is stored into the MySQL database. The structure of database was divided into categories of tables: a table with the source of data definition, a table with stations information and two sets of tables (for hourly

  8. Assessing the Impact of Observations on Numerical Weather Forecasts Using the Adjoint Method

    NASA Technical Reports Server (NTRS)

    Gelaro, Ronald

    2012-01-01

    The adjoint of a data assimilation system provides a flexible and efficient tool for estimating observation impacts on short-range weather forecasts. The impacts of any or all observations can be estimated simultaneously based on a single execution of the adjoint system. The results can be easily aggregated according to data type, location, channel, etc., making this technique especially attractive for examining the impacts of new hyper-spectral satellite instruments and for conducting regular, even near-real time, monitoring of the entire observing system. This talk provides a general overview of the adjoint method, including the theoretical basis and practical implementation of the technique. Results are presented from the adjoint-based observation impact monitoring tool in NASA's GEOS-5 global atmospheric data assimilation and forecast system. When performed in conjunction with standard observing system experiments (OSEs), the adjoint results reveal both redundancies and dependencies between observing system impacts as observations are added or removed from the assimilation system. Understanding these dependencies may be important for optimizing the use of the current observational network and defining requirements for future observing systems

  9. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Case, Jonathan L.; Molthan, Andrew L.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center develops new products and techniques that can be used in operational meteorology. The majority of these products are derived from NASA polar-orbiting satellite imagery from the Earth Observing System (EOS) platforms. One such product is a Greenness Vegetation Fraction (GVF) dataset, which is produced from Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the new SPoRT-MODIS GVF dataset on land surface models apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. The second phase of the project is to examine the impacts of the SPoRT GVF dataset on NWP using the Weather Research and Forecasting (WRF) model. Two separate WRF model simulations were made for individual severe weather case days using the NCEP GVF (control) and SPoRT GVF (experimental), with all other model parameters remaining the same. Based on the sensitivity results in these case studies, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and lower direct surface heating, which typically resulted in lower (higher) predicted 2-m temperatures (2-m dewpoint temperatures). The opposite was true

  10. A much warmer Earth surface for most of geologic time: implications to biotic weathering

    NASA Technical Reports Server (NTRS)

    Schwartzman, D. W.; McMenamin, M.

    1993-01-01

    The authors present two scenarios for the temperature history of Earth. One scenario is conventional, the other relies on a warmer history. Both scenarios include surface cooling determined by the evolution of the biosphere and are similar until the Proterozoic period. The warmer scenario requires a higher plant/lichen terrestrial biota to increase weathering intensity. Justification for a warmer surface includes period temperatures from the oxygen isotope record of coexisting phosphates and cherts, an upper limit of 58 degrees C from primary gypsum precipitation, and the lack of fractionation of sulfur isotopes between sulfide and sulfates in Archean sediments.

  11. Earth surface erosion and weathering from the 10Be (meteoric)/9Be ratio

    NASA Astrophysics Data System (ADS)

    von Blanckenburg, Friedhelm; Bouchez, Julien; Wittmann, Hella

    2012-10-01

    The isotope ratio of the meteoric cosmogenic nuclide 10Be to the mineral-derived stable isotope 9Be discloses both the Earth surface denudation rate and its weathering intensity. We develop a set of steady state mass balance equations that describes this system from a soil column over the hillslope scale to an entire river basin. The prerequisites making this new approach possible are: (1) the 9Be concentration of parent rock (typically 2.5±0.5 ppm in granitic and clastic sedimentary lithologies) is known; (2) both Be isotopes equilibrate between the fluids decomposing rock and reactive solids formed during weathering; and (3) a critical spatial scale is exceeded at which the fluxes of both isotopes into and out of the weathering zone are at steady state over the time scale of weathering (typically ˜10 kyr). For these cases the isotope ratios can be determined in bulk sediment or soil, on leachates from the reactive (adsorbed and pedogenic mineral-bound) phase in sediment or soil, and even on the dissolved phase in river water. The 10Be/9Be ratio offers substantial advantages over the single-isotope system of meteoric 10Be. The latter system allows to directly determine erosion rates only in the case that 10Be is fully retentive in the weathering zone and that riverine sorting has not introduced grain size-dependent 10Be concentration gradients in sediments. We show the feasibility of the 10Be/9Be tracer approach at the river scale for sediment and water samples in the Amazon basin, where independent estimates of denudation rates from in situ-produced 10Be exist. We furthermore calculate meaningful denudation rates from a set of published 10Be/9Be ratios measured in the dissolved load of globally distributed rivers. We conclude that this isotope ratio can be used to reconstruct global paleo-denudation from sedimentary records.

  12. Observation of surfaces by reflection electron holography.

    PubMed

    Osakabe, N

    1992-02-15

    Reflection electron holography is described as a method to observe sub-A surface morphology. Phase shift of a Bragg-reflected electron wave was measured by means of holographic interferometry using an electron microscope equipped with a field emission electron gun and an electron biprism. A short wavelength of high energy electrons is the essential key to the high vertical sensitivity of this method, since geometrical path differences produced by the surface topography are measured in units of wavelengths in interferometrical measuring. Phase shift at a monoatomic step and the displacement field around a dislocation emerging on the surface were observed.

  13. Surface-Correlated Nanophase Iron Metal in Lunar Soils: Petrography and Space Weathering Effects

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Wentworth, Susan J.; McKay, David S.

    1998-01-01

    Space weathering is a term used to include all of the processes that act on material exposed at the surface of a planetary or small body. In the case of the Moon, it includes a variety of processes that formed the lunar regolith, caused the maturation of lunar soils, and formed patina on rock surfaces. The processes include micrometeorite impact and reworking, implantation of solar wind and flare particles, radiation damage and chemical effects from solar particles and cosmic rays, interactions with the lunar atmosphere, and sputtering erosion and deposition. Space weathering effects collectively result in a reddened continuum slope, lowered albedo, and attenuated absorption features in reflectance spectra of lunar soils as compared to finely comminuted rocks from the same Apollo sites. Understanding these effects is critical in order to fully integrate the lunar sample collection with remotely sensed data from recent robotic missions (e.g., Lunar Prospector, Clementine, Galileo). Our objective is to determine the origin of space weathering effects in lunar soils through combined electron microscopy and microspectrophotometry techniques applied to individual soil particles from <20 pm size factions (dry-sieved) of mature lunar soils. It has been demonstrated that it is the finest size fraction (<25 pm) of lunar soils that dominates the optical properties of the bulk soils.

  14. Real-time Observations of Rock Cracking and Weather Provide Insights into Thermal Stress-Related Processes of Mechanical Weathering.

    NASA Astrophysics Data System (ADS)

    Eppes, M. C.; Magi, B. I.; Keanini, R.

    2015-12-01

    The environmental conditions (weather and/or climate) that limit or drive mechanical weathering via thermal stress are poorly understood. Here we examine acoustic emission (AE) records of rock cracking in boulders sitting on the ground in humid-temperate (~1 year of data) and semi-arid (~3 years) locations. We compare on-site average ambient daily temperature for days in which cracking occurs to the average temperatures for those dates derived from local climate records. The temperatures characterizing days on which cracking occurs is similar for both stations (range = -10 C to +30 C); where 21% and 73% of cracking occurs on hot days (> 20C) in the humid and semi-arid climates respectively while 17% and 0.1% occurs on very cold days (-8C to -3C). When days during which cracking occurs are compared to climate averages, 81% (NC) and 51% (NM) of all cracking occurs on days with absolute temperature anomalies >1, regardless of the temperature. The proportion of cracking that occurs on anomalously hot or cold days rises to 92% and 77% when the data is normalized to account for uneven sampling of the days with extreme temperatures. In order to determine to what extent this trend holds true in a more complex setting, we examined an existing 100+ year record of rock falls from Yosemite Valley. Preliminary results, although more equivocal, are consistent with the boulder cracking AE data. We examine the AE datasets in the context of our previous numerical modeling of insolation-driven thermal stress in rock and hypothesize that there is an increased potential for fracture on days with extreme temperatures because 1) thermal-stress is dependent on temperature variance from far-field and/or average rock temperatures and 2) that days with climatologically extreme air temperatures result in maximums in such variance. An implication of our results is that environments with extreme weather variability may have higher thermal breakdown rates, including certain locations today and

  15. Effects of copper-plasma deposition on weathering properties of wood surfaces

    NASA Astrophysics Data System (ADS)

    Gascón-Garrido, P.; Mainusch, N.; Militz, H.; Viöl, W.; Mai, C.

    2016-03-01

    Thin layers of copper micro-particles were deposited on the surfaces of Scots pine (Pinus sylvestris L.) micro-veneers using atmospheric pressure plasma to improve the resistance of the surfaces to weathering. Three different loadings of copper were established. Micro-veneers were exposed to artificial weathering in a QUV weathering tester for 0, 24, 48, 96 and 144 h following the standard EN 927-6 [1]. Mass losses after each exposure showed significant differences between copper coated and untreated micro-veneers. Tensile strength was assessed at zero span (z-strength) and finite span (f-strength) under dry conditions (20 °C, 65% RH). During 48 h, micro-veneers lost their z-strength progressively. In contrast, copper coating at highest loading imparts a photo-protective effect to wood micro-veneers during 144 h exhibiting z-strength retention of 95%. F-strength losses were similar in all copper treated and untreated micro-veneers up to 96 h. However, after 144 h, copper coated micro-veneers at highest loading showed significantly greater strength retention of 56%, while untreated micro-veneers exhibited only 38%. Infrared spectroscopy suggested that copper coating does not stabilize lignin. Inductively Coupled Plasma revealed that micro-veneers coated with the highest loading exhibited the lowest percentage of copper loss. Blue stain resistance of copper coated Scots pine following the guidelines of EN 152 [2] was performed. Additional test with different position of the coated surface was also assessed. Copper coating reduced fungal growth when coated surface is exposed in contact with vermiculite. Spores of Aureobasidium pullulans were not able to germinate on the copper coated surface positioned uppermost.

  16. Satellite Based Mapping of Land Surface ET using MODIS and Alternate Surface Meteorological Inputs from AMSR-E, Reanalysis, and Surface Weather Stations

    NASA Astrophysics Data System (ADS)

    Mu, Q.; Jones, L. A.; Kimball, J. S.; Running, S. W.

    2007-12-01

    Regional evapotranspiration (ET), including water loss from plant transpiration and soil evaporation, is essential to understanding interactions between land-atmosphere surface energy and water balances. Vapor pressure deficit (VPD) and surface air temperature are key variables for stomatal conductance and ET estimation. We developed an algorithm to estimate ET using a modified Penman-Monteith approach driven by MODIS derived vegetation data and daily surface meteorological inputs including net incoming solar radiation, air temperature and VPD. The model was applied using alternate daily meteorological inputs, including: 1) site level weather station observations, 2) VPD and air temperature derived from the Advanced Microwave Scanning Radiometer (AMSR-E) on the EOS Aqua satellite, and 3) Global Modeling and Assimilation Office (GMAO) reanalysis based surface temperature, humidity and solar radiation data. Model performance was assessed across a North American boreal-Arctic transect (>50o N) of six eddy covariance flux towers representing boreal grassland, boreal forest and tundra biomes. Model results derived from the three meteorology data sets agree well with observed tower fluxes (r>0.6; P<0.00001; RMSE<30W/m2) and capture spatial patterns and seasonal variability in ET. The MODIS-AMSR-E derived ET results also show comparable accuracy to ET results derived from the reanalysis meteorology, while ET estimation error was generally more a function of algorithm parameterization than differences in meteorology drivers. Our results indicate significant potential for regional mapping and monitoring daily land surface evaporation using synergistic information from satellite optical-IR and microwave remote sensing.

  17. Surface Exposure Ages of Space-Weathered Grains from Asteroid 25143 Itokawa

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.; Christoffersen, R.

    2015-01-01

    We use the observed effects of solar wind ion irradiation and the accumulation of solar flare particle tracks recorded in Itokawa grains to constrain the rates of space weathering and yield information about regolith dynamics. The track densities are consistent with exposure at mm depths for 104-105 years. The solar wind damaged rims form on a much faster timescale, <10(exp 3) years.

  18. Modeling COSMO-SkyMed measurements of precipitating clouds over the sea using simultaneous weather radar observations

    NASA Astrophysics Data System (ADS)

    Roberto, N.; Baldini, L.; Facheris, L.; Chandrasekar, V.

    2014-07-01

    Several satellite missions employing X-band synthetic aperture radar (SAR) have been activated to provide high-resolution images of normalized radar cross-sections (NRCS) on land and ocean for numerous applications. Rainfall and wind affect the sea surface roughness and consequently the NRCS from the combined effects of corrugation due to impinging raindrops and surface wind. X-band frequencies are sensitive to precipitation: intense convective cells result in irregularly bright and dark patches in SAR images, masking changes in surface NRCS. Several works have modeled SAR images of intense precipitation over land; less adequately investigated is the precipitation effect over the sea surface. These images are analyzed in this study by modeling both the scattering and attenuation of radiation by hydrometeors in the rain cells and the NRCS surface changes using weather radar precipitation estimates as input. The reconstruction of X-band SAR returns in precipitating clouds is obtained by the joint utilization of volume reflectivity and attenuation, the latter estimated by coupling ground-based radar measurements and an electromagnetic model to predict the sea surface NRCS. Radar signatures of rain cells were investigated using X-band SAR images collected from the COSMO-SkyMed constellation of the Italian Space Agency. Two case studies were analyzed. The first occurred over the sea off the coast of Louisiana (USA) in summer 2010 with COSMO-SkyMed (CSK®) ScanSar mode monitoring of the Deepwater Horizon oil spill. Simultaneously, the NEXRAD S-band Doppler radar (KLIX) located in New Orleans was scanning the same portion of ocean. The second case study occurred in Liguria (Italy) on November 4, 2011, during an extraordinary flood event. The same events were observed by the Bric della Croce C-band dual polarization radar located close to Turin (Italy). The polarimetric capability of the ground radars utilized allows discrimination of the composition of the precipitation

  19. AIRS Observations of DomeC in Antarctica and Comparison with Automated Weather Stations (AWS)

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, Dave; Broberg, Steve

    2006-01-01

    We compare the surface temperatures at Dome Concordia (DomeC) deduced from AIRS data and two Automatic Weather Stations at Concordia Station: AWS8989 , which has been in operation since December 1996, and AWS.it, for which data are available between January and November 2005. The AWS8989 readings are on average 3 K warmer than the AWS.it readings, with a warmer bias in the Antarctic summer than in the winter season. Although AIRS measures the skin brightness temperature, while the AWS reports the temperature of the air at 3 meter above the surface, the AIRS measurements agree well with the AWS.it readings for all data and separately for the summer and winter seasons, if data taken in the presence of strong surface inversions are filtered out. This can be done by deducing the vertical temperature gradient above the surface directly from the AIRS temperature sounding channels or indirectly by noting that extreme vertical gradients near the surface are unlikely if the wind speed is more than a few meters per second. Since the AIRS measurements are very well calibrated, the agreement with AWS.it is very encouraging. The warmer readings of AWS8989 are likely due to thermal contamination of the AWS8989 site by the increasing activity at Concordia Station. Data from an AWS.it quality station could be used for the evaluation of radiometric accuracy and stability of polar orbiting sounders at low temperatures. Unfortunately, data from AWS.it was available only for a limited time. The thermal contamination of the AWS8989 data makes long-term trends deduced from AWS8989 and possibly results about the rapid Antarctic warming deduced from other research stations on Antarctica suspect. AIRS is the first hyperspectral infrared sounder designed in support of weather forecasting and climate research. It was launched in May 2002 on the EOS Aqua spacecraft into a 704 km altitude polar sun-synchronous orbit. The lifetime of AIRS, estimated before launch to be at least 5 years is

  20. Biochemical evolution II: origin of life in tubular microstructures on weathered feldspar surfaces.

    PubMed

    Parsons, I; Lee, M R; Smith, J V

    1998-12-22

    Mineral surfaces were important during the emergence of life on Earth because the assembly of the necessary complex biomolecules by random collisions in dilute aqueous solutions is implausible. Most silicate mineral surfaces are hydrophilic and organophobic and unsuitable for catalytic reactions, but some silica-rich surfaces of partly dealuminated feldspars and zeolites are organophilic and potentially catalytic. Weathered alkali feldspar crystals from granitic rocks at Shap, north west England, contain abundant tubular etch pits, typically 0.4-0.6 microm wide, forming an orthogonal honeycomb network in a surface zone 50 microm thick, with 2-3 x 10(6) intersections per mm2 of crystal surface. Surviving metamorphic rocks demonstrate that granites and acidic surface water were present on the Earth's surface by approximately 3.8 Ga. By analogy with Shap granite, honeycombed feldspar has considerable potential as a natural catalytic surface for the start of biochemical evolution. Biomolecules should have become available by catalysis of amino acids, etc. The honeycomb would have provided access to various mineral inclusions in the feldspar, particularly apatite and oxides, which contain phosphorus and transition metals necessary for energetic life. The organized environment would have protected complex molecules from dispersion into dilute solutions, from hydrolysis, and from UV radiation. Sub-micrometer tubes in the honeycomb might have acted as rudimentary cell walls for proto-organisms, which ultimately evolved a lipid lid giving further shelter from the hostile outside environment. A lid would finally have become a complete cell wall permitting detachment and flotation in primordial "soup." Etch features on weathered alkali feldspar from Shap match the shape of overlying soil bacteria.

  1. Biochemical evolution II: Origin of life in tubular microstructures on weathered feldspar surfaces

    PubMed Central

    Parsons, Ian; Lee, Martin R.; Smith, Joseph V.

    1998-01-01

    Mineral surfaces were important during the emergence of life on Earth because the assembly of the necessary complex biomolecules by random collisions in dilute aqueous solutions is implausible. Most silicate mineral surfaces are hydrophilic and organophobic and unsuitable for catalytic reactions, but some silica-rich surfaces of partly dealuminated feldspars and zeolites are organophilic and potentially catalytic. Weathered alkali feldspar crystals from granitic rocks at Shap, north west England, contain abundant tubular etch pits, typically 0.4–0.6 μm wide, forming an orthogonal honeycomb network in a surface zone 50 μm thick, with 2–3 × 106 intersections per mm2 of crystal surface. Surviving metamorphic rocks demonstrate that granites and acidic surface water were present on the Earth’s surface by ∼3.8 Ga. By analogy with Shap granite, honeycombed feldspar has considerable potential as a natural catalytic surface for the start of biochemical evolution. Biomolecules should have become available by catalysis of amino acids, etc. The honeycomb would have provided access to various mineral inclusions in the feldspar, particularly apatite and oxides, which contain phosphorus and transition metals necessary for energetic life. The organized environment would have protected complex molecules from dispersion into dilute solutions, from hydrolysis, and from UV radiation. Sub-micrometer tubes in the honeycomb might have acted as rudimentary cell walls for proto-organisms, which ultimately evolved a lipid lid giving further shelter from the hostile outside environment. A lid would finally have become a complete cell wall permitting detachment and flotation in primordial “soup.” Etch features on weathered alkali feldspar from Shap match the shape of overlying soil bacteria. PMID:9860941

  2. Characterization of surface chemistry and crystallization behavior of polypropylene composites reinforced with wood flour, cellulose, and lignin during accelerated weathering

    NASA Astrophysics Data System (ADS)

    Peng, Yao; Liu, Ru; Cao, Jinzhen

    2015-03-01

    In this study, six groups of polypropylene composites reinforced with wood flour (WF), cellulose, and lignin at different loading levels were exposed in a QUV accelerated weathering tester for a total duration of 960 h. The changes in surface morphology, chemistry, and thermal properties of weathered samples were characterized by atomic force microscope (AFM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetric (DSC), respectively. The flexural properties of all samples were tested after different durations of weathering. The results showed that: (1) the surface roughness of all samples increased after weathering; (2) composites containing lignin showed less loss of flexural strength and modulus and less roughness on weathered surface compared with lignin-free composites, indicating the functions of stabilization and antioxidation of lignin; (3) the crystallinity of PP increased in all weathered samples due to chain scissions and recrystallization; (4) ATR-FTIR and XPS analyses demonstrated in detail that significant changes occurred in surface chemistry, accompanied by the photodegradation and photo-oxidation of lignin and cellulose with prolonged weathering time.

  3. Surface degradation of CeO2 stabilized acrylic polyurethane coated thermally treated jack pine during accelerated weathering

    NASA Astrophysics Data System (ADS)

    Saha, Sudeshna; Kocaefe, Duygu; Boluk, Yaman; Pichette, Andre

    2013-07-01

    The thermally treated wood is a new value-added product and is very important for the diversification of forestry products. It drew the attention of consumers due to its attractive dark brown color. However, it loses its color when exposed to outside environment. Therefore, development of a protective coating for this value added product is necessary. In the present study, the efficiency of CeO2 nano particles alone or in combination with lignin stabilizer and/or bark extracts in acrylic polyurethane polymer was investigated by performing an accelerated weathering test. The color measurement results after accelerated weathering demonstrated that the coating containing CeO2 nano particles was the most effective whereas visual assessment suggested the coating containing CeO2 nano particles and lignin stabilizer as the most effective coating. The surface polarity changed for all the coatings during weathering and increase in contact angle after weathering suggested cross linking and reorientation of the polymer chain during weathering. The surface chemistry altered during weathering was evaluated by ATR-FTIR analysis. It suggested formation of different carbonyl byproducts during weathering. The chain scission reactions of the urethane linkages were not found to be significant during weathering.

  4. A systematic review and meta-analysis of the effects of extreme weather events and other weather-related variables on Cryptosporidium and Giardia in fresh surface waters.

    PubMed

    Young, Ian; Smith, Ben A; Fazil, Aamir

    2015-03-01

    Global climate change is expected to impact drinking water quality through multiple weather-related phenomena. We conducted a systematic review and meta-analysis of the relationship between various weather-related variables and the occurrence and concentration of Cryptosporidium and Giardia in fresh surface waters. We implemented a comprehensive search in four databases, screened 1,228 unique citations for relevance, extracted data from 107 relevant articles, and conducted random-effects meta-analysis on 16 key relationships. The average odds of identifying Cryptosporidium oocysts and Giardia cysts in fresh surface waters was 2.61 (95% CI = 1.63-4.21; I² = 16%) and 2.87 (95% CI = 1.76-4.67; I² = 0%) times higher, respectively, during and after extreme weather events compared to baseline conditions. Similarly, the average concentration of Cryptosporidium and Giardia identified under these conditions was also higher, by approximately 4.38 oocysts/100 L (95% CI = 2.01-9.54; I(2) = 0%) and 2.68 cysts/100 L (95% CI = 1.08-6.55; I² = 48%). Correlation relationships between other weather-related parameters and the density of these pathogens were frequently heterogeneous and indicated low to moderate effects. Meta-regression analyses identified different study-level factors that influenced the variability in these relationships. The results can be used as direct inputs for quantitative microbial risk assessment. Future research is warranted to investigate these effects and potential mitigation strategies in different settings and contexts.

  5. A twenty-first century California observing network for monitoring extreme weather events

    USGS Publications Warehouse

    White, A.B.; Anderson, M.L.; Dettinger, M.D.; Ralph, F.M.; Hinojosa, A.; Cayan, D.R.; Hartman, R.K.; Reynolds, D.W.; Johnson, L.E.; Schneider, T.L.; Cifelli, R.; Toth, Z.; Gutman, S.I.; King, C.W.; Gehrke, F.; Johnston, P.E.; Walls, C.; Mann, Dorte; Gottas, D.J.; Coleman, T.

    2013-01-01

    During Northern Hemisphere winters, the West Coast of North America is battered by extratropical storms. The impact of these storms is of paramount concern to California, where aging water supply and flood protection infrastructures are challenged by increased standards for urban flood protection, an unusually variable weather regime, and projections of climate change. Additionally, there are inherent conflicts between releasing water to provide flood protection and storing water to meet requirements for water supply, water quality, hydropower generation, water temperature and flow for at-risk species, and recreation. In order to improve reservoir management and meet the increasing demands on water, improved forecasts of precipitation, especially during extreme events, is required. Here we describe how California is addressing their most important and costliest environmental issue – water management – in part, by installing a state-of-the-art observing system to better track the area’s most severe wintertime storms.

  6. Field observations on spatial variability of surface hoar at the basin scale

    NASA Astrophysics Data System (ADS)

    Feick, Sebastian; Kronholm, Kalle; Schweizer, Jürg

    2007-06-01

    Surface hoar deposited on the snow surface represents, once buried by subsequent snowfall, one of the principal weak layers on which dry snow slab avalanches release. To predict instabilities caused by a buried surface hoar layer, its spatial extent needs to be known. Avalanche forecasting relies, among other things, on meteorological data from automatic stations. In principle, surface hoar formation can be predicted from these data. In order to study the spatial variation in surface hoar formation and destruction, daily observations were made during one winter at 23 locations of different aspect, slope inclination, and wind exposure within an area of about 3 km2. Four automatic weather stations were located within the study area: one on level terrain and three across a ridge. Despite the good instrumentation the correlation between surface hoar growth and calculated sublimation rate was poor. Distinct spatial patterns of surface hoar growth were found. Surface hoar crystals were frequently larger at the ridge site than in the surroundings of the automatic weather station on level terrain. The variation in surface hoar formation was mainly due to different prevailing wind regimes during the formation periods. The surroundings of the automatic weather station on level terrain were under the influence of local katabatic winds that dried up the air so that growth conditions were locally less favorable. Our observations suggest that predicting surface hoar formation for complex alpine terrain on the basis of data from an automatic weather station, the standard procedure in avalanche forecasting, seems nearly impossible unless at least the local wind regime is known at high resolution (≤10 m). For both surface hoar formation and surface hoar destruction observations suggest wind conditions to be most crucial for spatial variation.

  7. Observation of Local Cloud and Moisture Feedbacks Associated with High Ocean and Desert Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1993-01-01

    New data on clouds and moisture, made possible by reanalysis of weather satellite observations, show that the atmosphere reacts to warm ocean pools in the Western Pacific Ocean with increased moisture and cloudiness, suggesting a negative feedback limiting the rise in sea-surface temperature.

  8. Surface Material Analysis of the S-type Asteroids: Removing the Space Weathering Effect from Reflectance Spectrum

    NASA Technical Reports Server (NTRS)

    Ueda, Y.; Miyamoto, M.; Mikouchi, T.; Hiroi, T.

    2003-01-01

    Recent years, many researchers have been observing a lot of asteroid reflectance spectra in the UV, visible to NIR at wavelength region. Reflectance spectroscopy of asteroid at this range should bring us a lot of information about its surface materials. Pyroxene and olivine have characteristic absorption bands in this wavelength range. Low-Ca pyroxene has two absorption bands around 0.9 microns and 1.9 microns. The more Ca and Fe content, the longer both absorption band centers. On the other hand, reflectance spectrum of olivine has three complicated absorption bands around 1 m, and no absorption feature around 2 microns. In general, reflectance spectra of many asteroids that are considered to be silicate rich (i.e., S- and A type asteroids) show redder slope and more subdued absorption bands than those of terrestrial minerals and meteorites. These features are now believed to be caused by the space weathering effect, which is probably caused by micrometeorite bombardment and/or solar wind. This process causes nanophase reduced iron (npFe(sup 0)) particles near the surface of mineral grains, which leads the optical change. Therefore, the space weathering effect should be removed from asteroid reflectance spectra to compare with those of meteorite and terrestrial minerals. In this report, we will apply the expanded modified Gaussian model (MGM) to the reflectance spectra of S-type asteroids 7 Iris and 532 Herculina and compare them with those of meteorites.

  9. Development of a surface-specific, anti-weathering stone preservative treatment

    SciTech Connect

    Rao, S.M.; Brinkar, C.J.; Rao, S.M.; Ross, T.J.

    1997-04-01

    We are testing an anti-weathering preservation strategy that is specific to limestone surfaces. The strategy involves the application of a mineral-specific, bifunctional, passivating/coupling agent that binds to both the limestone surface and to the consolidating inorganic polymer matrix. The sol-gel based reactions form composite materials with desirable conservation and anti-weathering properties. We present the results of our efforts, the highlights of which are: (1) scanning probe microscopy of moisture-free calcite crystals treated with the trisilanol form of silylalkylaminocarboxylate (SAAC), reveals porous agglomerates that offer no significant resistance to the mild leaching action of deionized water. When the crystals are further consolidated with a silica-based consolidant (A2**), no dissolution is seen although the positive role of the passivant molecule is not yet delineated. (2) Modulus of rupture tests on limestone cores treated with an aminoalkylsilane (AEAPS) and A2** showed a 25-35% increase in strength compared to the untreated samples. (3) Environmental scanning electron microscopy of treated limestone subjected to a concentrated acid attack showed degradation of the surface except in areas where thick layers of the consolidant were deposited.

  10. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2.

    NASA Astrophysics Data System (ADS)

    Devarakonda, R.

    2014-12-01

    Daymet: Daily Surface Weather Data and Climatological Summaries provides gridded estimates of daily weather parameters for North America, including daily continuous surfaces of minimum and maximum temperature, precipitation occurrence and amount, humidity, shortwave radiation, snow water equivalent, and day length. The current data product (Version 2) covers the period January 1, 1980 to December 31, 2013 [1]. Data are available on a daily time step at a 1-km x 1-km spatial resolution in Lambert Conformal Conic projection with a spatial extent that covers the North America as meteorological station density allows. Daymet data can be downloaded from 1) the ORNL Distributed Active Archive Center (DAAC) search and order tools (http://daac.ornl.gov/cgi-bin/cart/add2cart.pl?add=1219) or directly from the DAAC FTP site (http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1219) and 2) the Single Pixel Tool (http://daymet.ornl.gov/singlepixel.html) and THREDDS (Thematic Real-time Environmental Data Services) Data Server (TDS) (http://daymet.ornl.gov/thredds_mosaics.html). The Single Pixel Data Extraction Tool [2] allows users to enter a single geographic point by latitude and longitude in decimal degrees. A routine is executed that translates the (lon, lat) coordinates into projected Daymet (x,y) coordinates. These coordinates are used to access the Daymet database of daily-interpolated surface weather variables. The Single Pixel Data Extraction Tool also provides the option to download multiple coordinates programmatically. The ORNL DAAC's TDS provides customized visualization and access to Daymet time series of North American mosaics. Users can subset and download Daymet data via a variety of community standards, including OPeNDAP, NetCDF Subset service, and Open Geospatial Consortium (OGC) Web Map/Coverage Service. References: [1] Thornton, P. E., Thornton, M. M., Mayer, B. W., Wilhelmi, N., Wei, Y., Devarakonda, R., & Cook, R. (2012). "Daymet: Daily surface weather on a 1

  11. Weatherability Evaluation of Nanocomposite Polymeric Treatments for Surface Protection of Construction Materials

    SciTech Connect

    Scarfato, Paola; Letizia Fariello, Maria; Di Maio, Luciano; Incarnato, Loredana

    2010-06-02

    In this work the protective efficacy and stability against UV weathering of polymeric nanocomposites for concrete (CLS) surface protection have been evaluated. In particular, nanocomposite hybrids were prepared dispersing a commercial organomodified montmorillonite (Cloisite 30B) in two different polymeric matrices, one based on fluoroelastomers (Fluoline CP), the other on silane and siloxane (Antipluviol S). The obtained systems were characterized by several techniques (SAXD, DSC, TGA, FT-IR, contact angle measurements, colorimetry), before and after accelerated aging due to UV exposure, in order to evaluate the effect of the nanoscale dispersion of the organoclay on the properties and the UV stability of the treatments.

  12. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  13. How much does weather-driven vegetation dynamics matter in land surface modelling?

    NASA Astrophysics Data System (ADS)

    Ingwersen, Joachim; Streck, Thilo

    2016-04-01

    Land surface models (LSM) are an essential part of weather and climate models as they provide the lower boundary condition for the atmospheric models. In state-of-the-art LSMs the seasonal vegetation dynamics is "frozen". The seasonal variation of vegetation state variables, such as leaf area index or green vegetation fraction, are prescribed in lookup tables. Hence, a year-by-year variation in the development of vegetation due to changing weather conditions cannot be considered. For climate simulations, this is obviously a severe drawback. The objective of the present study was to quantify the potential error in the simulation of land surface exchange processes resulting from "frozen" vegetation dynamics. For this purpose we simulated energy and water fluxes from a winter wheat stand and a maize stand in Southwest Germany. In a first set of simulations, six years (2010 to 2015) were simulated considering weather-driven vegetation dynamics. For this purpose, we coupled the generic crop growth model GECROS with the NOAH-MP model (NOAHMP-GECROS). In a second set of simulations all vegetation-related state variables of the 2010 simulation were written to an external file and were used to overwrite the vegetation-related state variables of the simulations of the years 2011-2015. The difference between both sets was taken as a measure for the potential error introduced to the LSM due to the assumption of a "frozen" vegetation dynamics. We will present first results and discuss the impact of "frozen" vegetation dynamics on climate change simulations.

  14. Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations

    NASA Astrophysics Data System (ADS)

    Kucera, Paul; Steinson, Martin

    2016-04-01

    Accurate and reliable real-time monitoring and dissemination of observations of surface weather conditions is critical for a variety of societal applications. Applications that provide local and regional information about temperature, precipitation, moisture, and winds, for example, are important for agriculture, water resource monitoring, health, and monitoring of hazard weather conditions. In many regions in Africa (and other global locations), surface weather stations are sparsely located and/or of poor quality. Existing stations have often been sited incorrectly, not well-maintained, and have limited communications established at the site for real-time monitoring. The US National Weather Service (NWS) International Activities Office (IAO) in partnership with University Corporation for Atmospheric Research (UCAR)/National Center for Atmospheric Research (NCAR) and funded by the United States Agency for International Development (USAID) Office of Foreign Disaster Assistance (OFDA) has started an initiative to develop and deploy low-cost weather instrumentation in sparsely observed regions of the world. The goal is to provide observations for environmental monitoring, and early warning alert systems that can be deployed at weather services in developing countries. Instrumentation is being designed using innovative new technologies such as 3D printers, Raspberry Pi computing systems, and wireless communications. The initial effort is focused on designing a surface network using GIS-based tools, deploying an initial network in Zambia, and providing training to Zambia Meteorological Department (ZMD) staff. The presentation will provide an overview of the project concepts, design of the low cost instrumentation, and initial experiences deploying a surface network deployment in Zambia.

  15. Constraining Numerical Geodynamo Modeling with Surface Observations

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Tangborn, Andrew

    2006-01-01

    Numerical dynamo solutions have traditionally been generated entirely by a set of self-consistent differential equations that govern the spatial-temporal variation of the magnetic field, velocity field and other fields related to dynamo processes. In particular, those solutions are obtained with parameters very different from those appropriate for the Earth s core. Geophysical application of the numerical results therefore depends on correct understanding of the differences (errors) between the model outputs and the true states (truth) in the outer core. Part of the truth can be observed at the surface in the form of poloidal magnetic field. To understand these differences, or errors, we generate new initial model state (analysis) by assimilating sequentially the model outputs with the surface geomagnetic observations using an optimal interpolation scheme. The time evolution of the core state is then controlled by our MoSST core dynamics model. The final outputs (forecasts) are then compared with the surface observations as a means to test the success of the assimilation. We use the surface geomagnetic data back to year 1900 for our studies, with 5-year forecast and 20-year analysis periods. We intend to use the result; to understand time variation of the errors with the assimilation sequences, and the impact of the assimilation on other unobservable quantities, such as the toroidal field and the fluid velocity in the core.

  16. Space Weathering Effects in Lunar Soils: The Roles of Surface Exposure Time and Bulk Chemical Composition

    NASA Technical Reports Server (NTRS)

    Zhang, Shouliang; Keller, Lindsay P.

    2011-01-01

    Space weathering effects on lunar soil grains result from both radiation-damaged and deposited layers on grain surfaces. Typically, solar wind irradiation forms an amorphous layer on regolith silicate grains, and induces the formation of surficial metallic Fe in Fe-bearing minerals [1,2]. Impacts into the lunar regolith generate high temperature melts and vapor. The vapor component is largely deposited on the surfaces of lunar soil grains [3] as is a fraction of the melt [4, this work]. Both the vapor-deposits and the deposited melt typically contain nanophase Fe metal particles (npFe0) as abundant inclusions. The development of these rims and the abundance of the npFe0 in lunar regolith, and thus the optical properties, vary with the soil mineralogy and the length of time the soil grains have been exposed to space weathering effects [5]. In this study, we used the density of solar flare particle tracks in soil grains to estimate exposure times for individual grains and then perform nanometer-scale characterization of the rims using transmission electron microscopy (TEM). The work involved study of lunar soil samples with different mineralogy (mare vs. highland) and different exposure times (mature vs. immature).

  17. Homogenizing surface pressure time-series from operational numerical weather prediction models for geodetic applications

    NASA Astrophysics Data System (ADS)

    Dobslaw, H.

    2016-07-01

    Global surface pressure grids from 14.5 years of 6-hourly analyses out of both the operational ECMWF weather prediction model and ERA-Interim are mapped to a common reference orography by means of ECMWF's mean sea-level pressure diagnostic. The approach reduces both relative biases and residual variability by about one order of magnitude and thereby achieves a consistency among both data sets at the level of about 1 hPa. Remaining differences rather reflect temperature biases and also resolution limitations of the reanalysis data set, but are not anymore related to the local roughness in orography or to changes in the spatial resolution of the operational model. The presented reduction method therefore allows to obtain surface pressure time series with the long-time consistency of a reanalysis from an operational numerical weather model with much higher resolution and much shorter latency, making the results suitable for geodetic near realtime applications requiring continuously updated time series that are homogeneous over many years.

  18. Inference of Surface Chemical and Physical Properties Using Mid-Infrared (MIR) Spectral Observations

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.

    2016-01-01

    Reflected or emitted energy from solid surfaces in the solar system can provide insight into thermo-physical and chemical properties of the surface materials. Measurements have been obtained from instruments located on Earth-based telescopes and carried on several space missions. The characteristic spectral features commonly observed in Mid-Infrared (MIR) spectra of minerals will be reviewed, along with methods used for compositional interpretations of MIR emission spectra. The influence of surface grain size, and space weathering processes on MIR emissivity spectra will also be discussed. Methods used for estimating surface temperature, emissivity, and thermal inertias from MIR spectral observations will be reviewed.

  19. The main pillar: Assessment of space weather observational asset performance supporting nowcasting, forecasting, and research to operations

    PubMed Central

    Posner, A; Hesse, M; St Cyr, O C

    2014-01-01

    Space weather forecasting critically depends upon availability of timely and reliable observational data. It is therefore particularly important to understand how existing and newly planned observational assets perform during periods of severe space weather. Extreme space weather creates challenging conditions under which instrumentation and spacecraft may be impeded or in which parameters reach values that are outside the nominal observational range. This paper analyzes existing and upcoming observational capabilities for forecasting, and discusses how the findings may impact space weather research and its transition to operations. A single limitation to the assessment is lack of information provided to us on radiation monitor performance, which caused us not to fully assess (i.e., not assess short term) radiation storm forecasting. The assessment finds that at least two widely spaced coronagraphs including L4 would provide reliability for Earth-bound CMEs. Furthermore, all magnetic field measurements assessed fully meet requirements. However, with current or even with near term new assets in place, in the worst-case scenario there could be a near-complete lack of key near-real-time solar wind plasma data of severe disturbances heading toward and impacting Earth's magnetosphere. Models that attempt to simulate the effects of these disturbances in near real time or with archival data require solar wind plasma observations as input. Moreover, the study finds that near-future observational assets will be less capable of advancing the understanding of extreme geomagnetic disturbances at Earth, which might make the resulting space weather models unsuitable for transition to operations. Key Points Manuscript assesses current and near-future space weather assets Current assets unreliable for forecasting of severe geomagnetic storms Near-future assets will not improve the situation PMID:26213516

  20. Quantifying the VNIR Effects of Nanophase Iron Generated through the Space Weathering of Silicates: Reconciling Modeled Data with Laboratory Observations

    NASA Astrophysics Data System (ADS)

    Legett, C., IV; Glotch, T. D.; Lucey, P. G.

    2015-12-01

    Space weathering is a diverse set of processes that occur on the surfaces of airless bodies due to exposure to the space environment. One of the effects of space weathering is the generation of nanophase iron particles in glassy rims on mineral grains due to sputtering of iron-bearing minerals. These particles have a size-dependent effect on visible and near infrared (VNIR) reflectance spectra with smaller diameter particles (< 50 nm) causing both reddening and darkening of the spectra with respect to unweathered material (Britt-Pieters particle behavior), while larger particles (> 300 nm) darken without reddening. Between these two sizes, a gradual shift between these two behaviors occurs. In this work, we present results from the Multiple Sphere T-Matrix (MSTM) scattering model in combination with Hapke theory to explore the particle size and iron content parameter spaces with respect to VNIR (700-1700 nm) spectral slope. Previous work has shown that the MSTM-Hapke hybrid model offers improvements over Mie-Hapke models. Virtual particles are constructed out of an arbitrary number of spheres, and each sphere is assigned a refractive index and extinction coefficient for each wavelength of interest. The model then directly solves Maxwell's Equations at every wave-particle interface to predict the scattering, extinction and absorption efficiencies. These are then put into a simplified Hapke bidirectional reflectance model that yields a predicted reflectance. Preliminary results show an area of maximum slopes for iron particle diameters < 80 nm and iron concentrations of ~1-10wt% in an amorphous silica matrix. Further model runs are planned to better refine the extent of this region. Companion laboratory work using mixtures of powdered aerogel and nanophase iron particles provides a point of comparison to modeling efforts. The effects on reflectance and emissivity values due to particle size in a nearly ideal scatterer (aerogel) are also observed with comparisons to

  1. Mass discharge rate retrieval combining weather radar and thermal camera observations

    NASA Astrophysics Data System (ADS)

    Vulpiani, Gianfranco; Ripepe, Maurizio; Valade, Sebastien

    2016-08-01

    The mass discharge rate is a key parameter for initializing volcanic ash dispersal models. Commonly used empirical approaches derive the discharge rate by the plume height as estimated by remote sensors. A novel approach based on the combination of weather radar observations and thermal camera imagery is presented here. It is based on radar ash concentration estimation and the retrieval of the vertical exit velocities of the explosive cloud using thermal camera measurements. The applied radar retrieval methodology is taken from a revision of previously presented work. Based on the analysis of four eruption events of the Mount Etna volcano (Sicily, Italy) that occurred in December 2015, the proposed methodology is tested using observations collected by three radar systems (at C and X band) operated by the Italian Department of Civil Protection. The total erupted mass was estimated to be about 9·109 kg and 2.4·109 kg for the first and second events, respectively, while it was about 1.2·109 kg for both the last two episodes. The comparison with empirical approaches based on radar-retrieved plume height shows a reasonably good agreement. Additionally, the comparative analysis of the polarimetric radar measurements provides interesting information on the vertical structure of the ash plume, including the size of the eruption column and the height of the gas thrust region.

  2. An observed connection between wintertime temperature anomalies over Northwest China and weather regime transitions in North Atlantic

    NASA Astrophysics Data System (ADS)

    Li, Chao; Zhang, Qingyun

    2015-04-01

    In this study, the association between wintertime temperature anomalies over Northwest China and the weather regime transitions in North Atlantic on synoptic scale is analyzed by using observational surface air temperature (SAT) data and atmospheric reanalysis data. Daily SAT anomaly and duration time are used in order to define SAT anomaly cases. Differences with regard to the circulation anomalies over the Ural Mountains and the upstream North Atlantic area are evident. It is found that the colder than normal SAT is caused by the enhanced Ural high and associated southward flow over Northwest China. Time-lagged composites reveal possible connections between the SAT anomalies and the different development phases of the North Atlantic Oscillation (NAO). The Ural highs tend to be strengthened during the negative phase of NAO (NAO-) to Atlantic ridge transition, which are closely related to the downstream-propagating Rossby wave activity. The opposite circulation patterns are observed in the warm SAT cases. A cyclonic circulation anomaly is distinctly enhanced over the Urals during the positive phase of NAO (NAO+) to Scandinavian blocking transition, which would cause warmer SAT over Northwest China. Further analyses suggest that the intensified zonal wind over North Atlantic would favor the NAO- to Atlantic ridge transition, while the weakened zonal wind may be responsible for the transition between NAO+ and Scandinavian blocking.

  3. Anti-weathering treatments to protect mineral surfaces: Hybrid sol-gel and biomimetic strategies

    NASA Astrophysics Data System (ADS)

    Rao, Sudeep Motupalli

    1998-12-01

    The natural weathering of stone is accelerated by the combined effects of acid rain, salt crystallization and the freeze-thaw cycles of water. This dissertation describes the development of two anti-weathering preservation treatments that are specific to limestone surfaces. The first strategy involves the application of a surface-specific, bifunctional, passivating, coupling agent that binds to both the limestone surface and to a consolidating inorganic polymeric silica matrix by a sol-gel process. The second strategy involves biomimetic process that converts the exposed limestone surface into a nonreactive calcium oxalate hydrate ceramic layer found in kidney stones and lichen deposits. The microreactor environment of a scanning probe microscope (SPM) fluid cell was used to simulate acid rain effects on treated and untreated calcite surfaces, seen as etch pits and crystal step movement. The treatment process was also monitored at near molecular scale resolution using the SPM. Calcite crystals treated with aminoethylaminopropyltrimethoxysilane (25% AEAPS) passivating coupling agent and a silica consolidating solution (50%w/w), are resistant to the leaching action of deionized water equilibriated with atmospheric COsb2 to pH 5. The aminoalkoxylsilane coupling agent catalyses the condensation reaction and also reacts with the surface to offer the coupling mechanism. Modulus of rupture strength tests on limestone cores treated with the AEAPS and silica-based consolidant showed a 25-35% increase in strength. Environmental scanning electron microscopy of treated limestone exposed to concentrated sulfuric acid showed degradation of the surface except in areas where thick layers of the consolidant were deposited. Powder leach tests using a pH-stat apparatus yielded quantitative proof of the efficacy of the biomimetic calcium oxalate process. The dissolution rates (2.14×10sp{-9} mmol/cmsp2/sec) of treated calcite were two orders of magnitude less than untreated calcium

  4. An auto weather-vaning system for a dp vessel that uses a nonlinear controller and a disturbance observer

    NASA Astrophysics Data System (ADS)

    Kim, Dae Hyuk; Kim, Nakwan

    2014-03-01

    An auto weather-vaning system for a Dynamic Positioning (DP) vessel is proposed. When a DP vessel is operating, its position keeping is hindered by ocean environmental disturbances which include the ocean current, wave and wind. Generally, most ocean vessels have a longitudinal length that is larger than the transverse width. The largest load acts on the DP vessel by ocean disturbances, when the disturbances are incoming in the transverse direction. Weather- vaning is the concept of making the heading angle of the DP vessel head toward (or sway from) the disturbance direc-tion. This enables the DP vessel to not only perform marine operations stably and safely, but also to maintain its posi-tion with minimum control forces (surge & sway components). To implement auto weather-vaning, a nonlinear control¬ler and a disturbance observer are used. The disturbance observer transforms a real plant to the nominal model without disturbance to enhance the control performance. And the nonlinear controller deals with the kinematic nonlinearity. The auto weather-vaning system is completed by adding a weather-vaning algorithm to disturbance based controller. Numerical simulations of a semi-submersible type vessel were performed for the validation. The results show that the proposed method enables a DP vessel to maintain its position with minimum control force.

  5. Oscillation Responses to an Extreme Weather Event from a Deep Moored Observing System

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Dimarco, S. F.; Stoessel, M. M.; Zhang, X.; Ingle, S.

    2011-12-01

    In June 2007 tropical Cyclone Gonu passed directly over an ocean observing system consisting of four, deep autonomous mooring stations along the 3000 m isobath in the northern Arabian Sea. Gonu was the largest cyclone known to have occurred in the Arabian Sea or to strike the Arabian Peninsula. The mooring system was designed by Lighthouse R & D Enterprises, Inc. and installed in cooperation with the Oman Ministry of Agriculture and Fisheries Wealth. The instruments on the moorings continuously recorded water velocities, temperature, conductivity, pressure, dissolved oxygen and turbidity at multiple depths and at hourly intervals during the storm. Near-inertial oscillations at all moorings from thermocline to seafloor are coincident with the arrival of Gonu. Sub-inertial oscillations with periods of 2-10 days are recorded at the post-storm relaxation stage of Gonu, primarily in the thermocline. These oscillations consist of warm, saline water masses, likely originating from the Persian Gulf. Prominent 12.7-day sub-inertial waves, measured at a station ~300 km offshore, are bottom-intensified and have characteristics of baroclinic, topographically-trapped waves. Theoretical results from a topographically-trapped wave model are in a good agreement with the observed 12.7-day waves. The wavelength of the 12.7-day waves is about 590 km calculated from the dispersion relationship. Further analysis suggests that a resonant standing wave is responsible for trapping the 12.7-day wave energy inside the Sea of Oman basin. The observational results reported here are the first measurements of deepwater responses to a tropical cyclone in the Sea of Oman/Arabian Sea. Our study demonstrates the utility of sustained monitoring for studying the impact of extreme weather events on the ocean.

  6. About the possibility of weather forecast by the radio observation of meteor trail drifts

    NASA Astrophysics Data System (ADS)

    Mirhusen, Narziev

    In this paper, the variations of wind in the meteor zone with temperature on the ground surface layer has been investigated on basis of continuous observational data obtained during the action of the program DYANA ( January - March 1990 ), STEP ( June 1990 ) and results measuring of temperature obtained at the Aerological stations In Dushanbe. The mean value of the wind for each day in the East - West direction and in the North-South direction as well has been found and then the constant component has been calculated. From the results of analysis and comparison of mean value of constant components of wind modification with the variation of the temperature in the surface layer there has been observed, that in many cases of anomalous increase of wind speed the temperature drop has revealed. And during the abrupt decrease of the wind speed the decrease of temperature has been revealed. This type of variation of the wind in the meteor zone and temperature in the point of observation is particularly noticeable in the cases of anomalous change of the wind speed in the East-West direction. The alteration of temperature in the surface layer for the next 3-4 days before and after the observation of anomaly in the upper atmospheric wind has been analyzed considering the results of wind observation, in the meteor zone. There, has been discovered that the difference of the values Δt before and after the observation of anomaly considerably increases after the abrupt change of wind in the meteor zone. During the relative sudden decrease of the average value of wind on the value ΔU=12 m/s, the average value of Δt on the surface layer observed in the program STEP and from the data of the wind alteration in the period of action of the meteor showers: Perseids, Orionids and Geminids in 1990, is -1°C.

  7. Surface Temperature Variation Prediction Model Using Real-Time Weather Forecasts

    NASA Astrophysics Data System (ADS)

    Karimi, M.; Vant-Hull, B.; Nazari, R.; Khanbilvardi, R.

    2015-12-01

    Combination of climate change and urbanization are heating up cities and putting the lives of millions of people in danger. More than half of the world's total population resides in cities and urban centers. Cities are experiencing urban Heat Island (UHI) effect. Hotter days are associated with serious health impacts, heart attaches and respiratory and cardiovascular diseases. Densely populated cities like Manhattan, New York can be affected by UHI impact much more than less populated cities. Even though many studies have been focused on the impact of UHI and temperature changes between urban and rural air temperature, not many look at the temperature variations within a city. These studies mostly use remote sensing data or typical measurements collected by local meteorological station networks. Local meteorological measurements only have local coverage and cannot be used to study the impact of UHI in a city and remote sensing data such as MODIS, LANDSAT and ASTER have with very low resolution which cannot be used for the purpose of this study. Therefore, predicting surface temperature in urban cities using weather data can be useful.Three months of Field campaign in Manhattan were used to measure spatial and temporal temperature variations within an urban setting by placing 10 fixed sensors deployed to measure temperature, relative humidity and sunlight. Fixed instrument shelters containing relative humidity, temperature and illumination sensors were mounted on lampposts in ten different locations in Manhattan (Vant-Hull et al, 2014). The shelters were fixed 3-4 meters above the ground for the period of three months from June 23 to September 20th of 2013 making measurements with the interval of 3 minutes. These high resolution temperature measurements and three months of weather data were used to predict temperature variability from weather forecasts. This study shows that the amplitude of spatial and temporal variation in temperature for each day can be predicted

  8. Space Weather Measurements from the Surface of Mars with the RAD Instrument on the Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Hassler, Donald M.; Rafkin, Scot; Reitz, Guenther; Koehler, Jan; Posner, Arik; Guo, Jingnan; Ehresmann, Bent; Zeitlin, Cary; Wimmer-Schweingruber, Robert; Matthiä, Daniel

    2016-07-01

    The Radiation Assessment Detector (RAD) is a compact, lightweight energetic particle analyzer currently operating on the surface of Mars as part of the Mars Science Laboratory (MSL) Mission. RAD is providing the first measurements of the energetic particle radiation environment on the surface of another planet due to solar flares, coronal mass ejections (CMEs), and galactic cosmic rays (GCRs). RAD is providing synoptic measurements of the energetic particle environment at a 2nd location in heliosphere (other than near-Earth or L1), and will aid heliospheric modeling over solar cycle. These observations of SEP fluxes are contributing to a solar energetic particle (SEP) event database at Mars and the Martian surface to aid prediction of Solar Particle Events (SPEs), including onset, temporal & size predictions. This presentation will provide an overview of the RAD investigation and present measurements of the solar flare, GCR and radiation environment on the surface of Mars, and discuss the importance of providing broad heliospheric coverage for situational awareness of space weather as we plan to send humans out into deep space and to Mars. RAD is supported by NASA (HEOMD) under JPL subcontract #1273039 to SwRI, and by DLR in Germany under contract with Christian-Albrechts-Universitat (CAU).

  9. Space Weather Measurements from the Surface of Mars with the RAD Instrument on the Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Hassler, D.

    2015-12-01

    The Radiation Assessment Detector (RAD) is a compact, lightweight energetic particle analyzer currently operating on the surface of Mars as part of the Mars Science Laboratory (MSL) Mission. RAD is providing the first measurements of the energetic particle radiation environment on the surface of another planet due to solar flares, coronal mass ejections (CMEs), and galactic cosmic rays (GCRs). RAD is providing synoptic measurements of the energetic particle environment at a 2nd location in heliosphere (other than near-Earth or L1), and will aid heliospheric modeling over solar cycle. These observations of SEP fluxes are contributing to a solar energetic particle (SEP) event database at Mars and the Martian surface to aid prediction of Solar Particle Events (SPEs), including onset, temporal & size predictions. This presentation will provide an overview of the RAD investigation and present measurements of the solar flare, GCR and radiation environment on the surface of Mars, and discuss the importance of providing broad heliospheric coverage for situational awareness of space weather as we plan to send humans out into deep space and to Mars. RAD is supported by NASA (HEOMD) under JPL subcontract #1273039 to SwRI, and by DLR in Germany under contract with Christian-Albrechts-Universitat (CAU).

  10. Simulation of Nor'westers using Doppler weather radar wind observations in a mesoscale model

    NASA Astrophysics Data System (ADS)

    Das, Someshwar; Abhilash, S.; Das Gupta, Munmun

    2006-12-01

    Severe thunderstorms form over the Eastern and Northeastern parts of India, i.e., Gangetic West Bengal, Jharkhand, Orissa, Assam and parts of Bihar during the pre-monsoon months (April-May). These storms are known as "Nor'wester" as they move from Northwest to Southeast. In this study we have made numerical simulations of 10 thunderstorms that formed over the West Bengal region during April-May of 2005 and 2006. Numerical simulations have been carried out using MM5 mesoscale model (at 10 km resolution) using conventional and non-conventional observations from Doppler Weather Radar (DWR) and satellites. Composite characteristics of the Nor'wester have been made based upon the simulations. Results indicate that the Nor'westers occur generally when the CAPE increases above 1500 J Kg -1. They have updraft speeds up to 3-4 m s -1, while the downdrafts have magnitudes of about 0.4 - 0.5 m s -1. The updrafts can extend up to 8-9 km altitudes. The total amount of hydrometeors simulated inside the Nor'westers is up to 600-800 mg kg -1. Large amount of ice and snow exist at upper levels, while liquid water is present in the lower levels. The magnitudes of the ice, snow and liquid water depend on the stage of their life cycle.

  11. Sensitivity of Spacebased Microwave Radiometer Observations to Ocean Surface Evaporation

    NASA Technical Reports Server (NTRS)

    Liu, Timothy W.; Li, Li

    2000-01-01

    Ocean surface evaporation and the latent heat it carries are the major components of the hydrologic and thermal forcing on the global oceans. However, there is practically no direct in situ measurements. Evaporation estimated from bulk parameterization methods depends on the quality and distribution of volunteer-ship reports which are far less than satisfactory. The only way to monitor evaporation with sufficient temporal and spatial resolutions to study global environment changes is by spaceborne sensors. The estimation of seasonal-to-interannual variation of ocean evaporation, using spacebased measurements of wind speed, sea surface temperature (SST), and integrated water vapor, through bulk parameterization method,s was achieved with reasonable success over most of the global ocean, in the past decade. Because all the three geophysical parameters can be retrieved from the radiance at the frequencies measured by the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7, the feasibility of retrieving evaporation directly from the measured radiance was suggested and demonstrated using coincident brightness temperatures observed by SMMR and latent heat flux computed from ship data, in the monthly time scale. However, the operational microwave radiometers that followed SMMR, the Special Sensor Microwave/Imager (SSM/I), lack the low frequency channels which are sensitive to SST. This low frequency channels are again included in the microwave imager (TMI) of the recently launched Tropical Rain Measuring Mission (TRMM). The radiance at the frequencies observed by both TMI and SSM/I were simulated through an atmospheric radiative transfer model using ocean surface parameters and atmospheric temperature and humidity profiles produced by the reanalysis of the European Center for Medium Range Weather Forecast (ECMWF). From the same ECMWF data set, coincident evaporation is computed using a surface layer turbulent transfer model. The sensitivity of the radiance to

  12. Global surface-based cloud observation for ISCCP

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Visual observations of cloud cover are hindered at night due to inadequate illumination of the clouds. This usually leads to an underestimation of the average cloud cover at night, especially for the amounts of middle and high clouds, in climatologies on surface observations. The diurnal cycles of cloud amounts, if based on all the surface observations, are therefore in error, but they can be obtained more accurately if the nighttime observations are screened to select those made under sufficient moonlight. Ten years of nighttime weather observations from the northern hemisphere in December were classified according to the illuminance of moonlight or twilight on the cloud tops, and a threshold level of illuminance was determined, above which the clouds are apparently detected adequately. This threshold corresponds to light from a full moon at an elevation angle of 6 degrees or from a partial moon at higher elevation, or twilight from the sun less than 9 degrees below the horizon. It permits the use of about 38% of the observations made with the sun below the horizon. The computed diurnal cycles of total cloud cover are altered considerably when this moonlight criterion is imposed. Maximum cloud cover over much of the ocean is now found to be at night or in the morning, whereas computations obtained without benefit of the moonlight criterion, as in our published atlases, showed the time of maximum to be noon or early afternoon in many regions. Cloud cover is greater at night than during the day over the open oceans far from the continents, particularly in summer. However, near noon maxima are still evident in the coastal regions, so that the global annual average oceanic cloud cover is still slightly greater during the day than at night, by 0.3%. Over land, where daytime maxima are still obtained but with reduced amplitude, average cloud cover is 3.3% greater during the daytime. The diurnal cycles of total cloud cover we obtain are compared with those of ISCCP for a

  13. Observation of local cloud and moisture feedbacks over high ocean and desert surface temperatures

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1995-01-01

    New data on clouds and moisture, made possible by reanalysis of weather satellite observations, show that the atmosphere reacts to warm clusters of very high sea surface temperatures in the western Pacific Ocean with increased moisture, cloudiness, and convection, suggesting a negative feedback limiting the sea surface temperature rise. The reverse was observed over dry and hot deserts where both moisture and cloudiness decrease, suggesting a positive feedback perpetuating existing desert conditions. In addition, the observations show a common critical surface temperature for both oceans and land; the distribution of atmospheric moisture is observed to reach a maximum value when the daily surface temperatures approach 304 +/- 1 K. These observations reveal complex dynamic-radiative interactions where multiple processes act simultaneously at the surface as well as in the atmosphere to regulate the feedback processes.

  14. The Main Pillar: Assessment of Space Weather Observational Asset Performance Supporting Nowcasting, Forecasting and Research to Operations

    NASA Technical Reports Server (NTRS)

    Posner, Arik; Hesse, Michael; SaintCyr, Chris

    2014-01-01

    Space weather forecasting critically depends upon availability of timely and reliable observational data. It is therefore particularly important to understand how existing and newly planned observational assets perform during periods of severe space weather. Extreme space weather creates challenging conditions under which instrumentation and spacecraft may be impeded or in which parameters reach values that are outside the nominal observational range. This paper analyzes existing and upcoming observational capabilities for forecasting, and discusses how the findings may impact space weather research and its transition to operations. A single limitation to the assessment is lack of information provided to us on radiation monitor performance, which caused us not to fully assess (i.e., not assess short term) radiation storm forecasting. The assessment finds that at least two widely spaced coronagraphs including L4 would provide reliability for Earth-bound CMEs. Furthermore, all magnetic field measurements assessed fully meet requirements. However, with current or even with near term new assets in place, in the worst-case scenario there could be a near-complete lack of key near-real-time solar wind plasma data of severe disturbances heading toward and impacting Earth's magnetosphere. Models that attempt to simulate the effects of these disturbances in near real time or with archival data require solar wind plasma observations as input. Moreover, the study finds that near-future observational assets will be less capable of advancing the understanding of extreme geomagnetic disturbances at Earth, which might make the resulting space weather models unsuitable for transition to operations.

  15. The main pillar: Assessment of space weather observational asset performance supporting nowcasting, forecasting, and research to operations

    NASA Astrophysics Data System (ADS)

    Posner, A.; Hesse, M.; St. Cyr, O. C.

    2014-04-01

    Space weather forecasting critically depends upon availability of timely and reliable observational data. It is therefore particularly important to understand how existing and newly planned observational assets perform during periods of severe space weather. Extreme space weather creates challenging conditions under which instrumentation and spacecraft may be impeded or in which parameters reach values that are outside the nominal observational range. This paper analyzes existing and upcoming observational capabilities for forecasting, and discusses how the findings may impact space weather research and its transition to operations. A single limitation to the assessment is lack of information provided to us on radiation monitor performance, which caused us not to fully assess (i.e., not assess short term) radiation storm forecasting. The assessment finds that at least two widely spaced coronagraphs including L4 would provide reliability for Earth-bound CMEs. Furthermore, all magnetic field measurements assessed fully meet requirements. However, with current or even with near term new assets in place, in the worst-case scenario there could be a near-complete lack of key near-real-time solar wind plasma data of severe disturbances heading toward and impacting Earth's magnetosphere. Models that attempt to simulate the effects of these disturbances in near real time or with archival data require solar wind plasma observations as input. Moreover, the study finds that near-future observational assets will be less capable of advancing the understanding of extreme geomagnetic disturbances at Earth, which might make the resulting space weather models unsuitable for transition to operations.

  16. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2.

    SciTech Connect

    Thornton, Peter E; Thornton, Michele M; Mayer, Benjamin W; Wilhelmi, Nate; Wei, Yaxing; Devarakonda, Ranjeet; Cook, Robert B

    2014-01-01

    More information: http://daymet.ornl.gov Presenter: Ranjeet Devarakonda Environmental Sciences Division Oak Ridge National Laboratory (ORNL) Daymet: Daily Surface Weather Data and Climatological Summaries provides gridded estimates of daily weather parameters for North America, including daily continuous surfaces of minimum and maximum temperature, precipitation occurrence and amount, humidity, shortwave radiation, snow water equivalent, and day length. The current data product (Version 2) covers the period January 1, 1980 to December 31, 2013 [1]. The prior product (Version 1) only covered from 1980-2008. Data are available on a daily time step at a 1-km x 1-km spatial resolution in Lambert Conformal Conic projection with a spatial extent that covers the conterminous United States, Mexico, and Southern Canada as meteorological station density allows. Daymet data can be downloaded from 1) the ORNL Distributed Active Archive Center (DAAC) search and order tools (http://daac.ornl.gov/cgi-bin/cart/add2cart.pl?add=1219) or directly from the DAAC FTP site (http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1219) and 2) the Single Pixel Tool [2] and THREDDS (Thematic Real-time Environmental Data Services) Data Server [3]. The Single Pixel Data Extraction Tool allows users to enter a single geographic point by latitude and longitude in decimal degrees. A routine is executed that translates the (lon, lat) coordinates into projected Daymet (x,y) coordinates. These coordinates are used to access the Daymet database of daily-interpolated surface weather variables. Daily data from the nearest 1 km x 1 km Daymet grid cell are extracted from the database and formatted as a table with one column for each Daymet variable and one row for each day. All daily data for selected years are returned as a single (long) table, formatted for display in the browser window. At the top of this table is a link to the same data in a simple comma-separated text format, suitable for import into a

  17. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  18. Oxidative Weathering of Earth's Surface 3.7 Billion Years ago? - A Chromium Isotope Perspective

    NASA Astrophysics Data System (ADS)

    Frei, R.; Crowe, S.; Bau, M.; Polat, A.; Fowle, D. A.; Døssing, L. N.

    2015-12-01

    The Great Oxidation Event signals the first large-scale oxygenation of the atmosphere roughly 2.4 Gyr ago. Geochemical signals diagnostic of oxidative weathering, however, extend as far back as 3.3-2.9 Gyr ago. 3.8-3.7 Gyr old rocks from Isua, Greenland stand as a deep time outpost, recording information on Earth's earliest surface chemistry and the low oxygen primordial biosphere. We find positive Cr isotope values (average δ53Cr = +0.05 +/- 0.10 permil; δ53Cr = (53Cr/52Cr)sample/(53Cr/52Cr)SRM 979 - 1) x 1000, where SRM 979 denotes Standard Reference Material 979 in both the Fe and Si-rich mesobands of 7 compositionally distinct quartz-magnetite and magnesian banded iron formation (BIF) samples collected from the eastern portion of the Isua BIF (Western Greenland). These postively fractioned Cr isotopes, relative to the igneous silicate Earth reservoir, in metamorphosed BIFs from Isua indicate oxidative Cr cycling 3.8-3.7 Gyr ago. We also examined the distribution of U, which is immobile in its reduced state but mobile when it is oxidized. Elevated U/Th ratios (mean U/Th ratio of 0.70 ± 0.29) in these BIFs relative to the contemporary crust, also signal oxidative mobilization of U. We suggest that reactive oxygen species (ROS) accumulated in Earth's surface environment inducing the oxidative weathering of rocks during the deposition of the Isua BIFs. The precise threshold atmospheric O2 concentrations for the induction of Cr isotope fractionation remain uncertain, but we argue that our data are consistent with the very low levels of oxygen or other ROS indicated by other proxies. Importantly, any trace of Cr that cycled through redox reactions on land would tend both to be heavy, and to mobilize into the contemporaneous run-off more readily than Cr weathered directly as Cr(III). Once having reached the oceans, this fractionated Cr would have been stripped from seawater by Fe (oxy)hydroxides formed during the deposition of BIFs from low oxygen oceans. The

  19. Lunar Surface Properties from Diviner Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Hayne, Paul; Paige, David; Greenhagen, Benjamin; Bandfield, Joshua; Siegler, Matthew; Lucey, Paul

    2015-04-01

    The thermal behavior of planetary bodies can reveal information about fundamental processes shaping their surfaces and interiors. Diviner [1] has been mapping the Moon's diurnal temperatures since the Lunar Reconnaissance Orbiter (LRO) arrived in 2009, yielding new insights into regolith formation [2, 3], the distribution of volatiles [4, 5], lunar volcanism [6, 7, 8], and impact processes [9]. The Moon's cooling during eclipse provides complementary information on the physical properties of the uppermost surface layer, which can be used to further investigate these and other processes. We used data from Diviner's seven thermal infrared spectral channels to measure surface temperatures before, during and after the 8 Oct., 2014 eclipse. In its standard nadir-pushbroom mode, Diviner maps surface temperatures in a ~6-km swath with a spatial resolution of ~250 m. Using Diviner's independent scanning capability [11], we also targeted two regions of interest on sequential orbits to create a time series of thermal observations: 1) Kepler crater (-38°E, 8°N) and 2) an unnamed nighttime "cold spot" (-33.3°E, 3°N). Pre-eclipse surface temperatures in these regions were ~380 K. As a relatively young Copernican-aged impact crater, Kepler was selected to investigate the abundance and size distribution of rocks in the ejecta and interior. Lunar nighttime "cold spots" are anomalous features around very young impact craters, extending for up to hundreds of crater radii, notable for their low temperatures in the Diviner nighttime data [9]. Although their origins are not fully explained, they are likely the result of in-situ disruption and decompression of regolith during the impact process. The selected cold spot (one of hundreds or even thousands on the lunar surface) was located with good viewing ge- ometry from LRO, and had a diameter of ~10 km surrounding a crater < 1 km in diameter. At Kepler crater, we observed dramatic differences in the amount of cooling related to the

  20. Observation and research for strong meteor shower and related catastrophic space weather

    NASA Astrophysics Data System (ADS)

    Ma, Y. H.; He, Y. W.; Xu, P. X.; Zhao, H. B.

    2007-07-01

    During the first international joint observation for strong meteor shower, we made multi-subject observations for Leonids and Draconids and their disaster space weather events by several methods. Combining the synthetical analysis of Leonids, Perseids and Draconids and their related data from 1957 to 2003, we sufficiently confirm that the periodic strong meteor showers can result in the formation of catastrophic space weather events. The following summing-up is confirmed basically: 1.The formation mechanism of the strong meteor shower There are meteoroids with high density and uneven distribution close the cometary nucleus, especially in the direction of opposite the Sun and backside of the nucleus. They can stretch 1-11AU along the cometary orbit and 1-5 (&sim10^3AU) cross the orbit. Therefore good displays of meteor shower (10---100 times as usual) or storms (103---104 times as usual) can occur when the Earth passes a high density meteoroid stream during the period of 3 years before and 5 years after the perihelion passage of the comet. During that period, bolides or shooting stars which are serious harmful to spaceflight security increase greatly to 3%~10%. This corrects the wrong point of view that the harmful micro-meteoroids to spaceflight security in period meteor showers are <1 g only. 2. The cosmic dust maintaining mechanism of long-life Es layer in mid-latitude area It is proved the life of Es layer increased greatly when most ions are long-life metal type ions (Fe +, Mg + ?? ) which composite coefficient is much smaller than that of molecule type ions(O2 + , NO + ?? ). The observation for about 50 years roughly approves that the blanketing frequency of Es layer (fb Es) abnormally increase in large area (>105km2) and lasting long time (>15 min) only when strong meteor shower occurred at night. It is not f, l and c type Es layer evolved from sequence Es layer. This shows that the cause of fb Es increase is that the ionosphere was bombarded by an additional

  1. Sensitivity of free tropospheric carbon monoxide to atmospheric weather states and their persistency: an observational assessment over the Nordic countries

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; Devasthale, A.

    2014-04-01

    Among various factors that influence the long-range transport of pollutants in the free troposphere (FT), the prevailing atmospheric weather states probably play the most important role in governing characteristics and efficacy of such transport. The weather states, such as a particular wind pattern, cyclonic or anticyclonic conditions etc, and their degree of persistency determine the spatio-temporal distribution and the final fate of the pollutants. This is especially true in the case of Nordic countries, where baroclinic disturbances and associated weather fronts primarily regulate local meteorology, in contrast to the lower latitudes where convective paradigm plays similar important role. Furthermore, the long-range transport of pollutants in the FT has significant contribution to the total column burden over the Nordic countries. However, there is insufficient knowledge on the large-scale co-variability of pollutants in the FT and atmospheric weather states based solely on observational data over this region. The present study attempts to quantify and understand this statistical co-variability while providing relevant meteorological background. To that end, we select eight weather states that predominantly occur over the Nordic countries and three periods of their persistency (3 days, 5 days, and 7 days), thus providing in total 24 cases to investigate sensitivity of free tropospheric carbon monoxide, an ideal tracer for studying pollutant transport, to these selected weather states. The eight states include four dominant wind directions (namely, NW, NE, SE and SW), cyclonic and anticyclonic conditions, and the enhanced positive and negative phases of the North Atlantic Oscillation (NAO). For our sensitivity analysis, we use recently released Version 6 retrievals of CO at 500 hPa from the Atmospheric Infrared Sounder (AIRS) onboard Aqua satellite covering 11 yr period from September 2002 through August 2013 and winds from the ECMWF's ERA-Interim project to

  2. Sensitivity of free tropospheric carbon monoxide to atmospheric weather states and their persistency: an observational assessment over the Nordic countries

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; Devasthale, A.

    2014-11-01

    Among various factors that influence the long-range transport of pollutants in the free troposphere (FT), the prevailing atmospheric weather states probably play the most important role in governing characteristics and efficacy of such transport. The weather states, such as a particular wind pattern, cyclonic or anticyclonic conditions, and their degree of persistency determine the spatio-temporal distribution and the final fate of the pollutants. This is especially true in the case of Nordic countries, where baroclinic disturbances and associated weather fronts primarily regulate local meteorology, in contrast to the lower latitudes where a convective paradigm plays a similarly important role. Furthermore, the long-range transport of pollutants in the FT has significant contribution to the total column burden over the Nordic countries. However, there is insufficient knowledge on the large-scale co-variability of pollutants in the FT and atmospheric weather states based solely on observational data over this region. The present study attempts to quantify and understand this statistical co-variability while providing relevant meteorological background. To that end, we select eight weather states that predominantly occur over the Nordic countries and three periods of their persistency (3 days, 5 days, and 7 days), thus providing in total 24 cases to investigate sensitivity of free tropospheric carbon monoxide, an ideal tracer for studying pollutant transport, to these selected weather states. The eight states include four dominant wind directions (namely, NW, NE, SE and SW), cyclonic and anticyclonic conditions, and the enhanced positive and negative phases of the North Atlantic Oscillation (NAO). For our sensitivity analysis, we use recently released Version 6 retrievals of CO at 500 hPa from the Atmospheric Infrared Sounder (AIRS) onboard Aqua satellite covering the 11-year period from September 2002 through August 2013 and winds from the ECMWF's ERA

  3. Weather in the News.

    ERIC Educational Resources Information Center

    Markle, Sandra

    1989-01-01

    A discussion of TV weather forecasting introduces this article which features several hands-on science activities involving observing, researching, and experimenting with the weather. A reproducible worksheet on the reliability of weather forecasts is included. (IAH)

  4. Integrating Satellite, Radar and Surface Observation with Time and Space Matching

    NASA Astrophysics Data System (ADS)

    Ho, Y.; Weber, J.

    2015-12-01

    The Integrated Data Viewer (IDV) from Unidata is a Java™-based software framework for analyzing and visualizing geoscience data. It brings together the ability to display and work with satellite imagery, gridded data, surface observations, balloon soundings, NWS WSR-88D Level II and Level III RADAR data, and NOAA National Profiler Network data, all within a unified interface. Applying time and space matching on the satellite, radar and surface observation datasets will automatically synchronize the display from different data sources and spatially subset to match the display area in the view window. These features allow the IDV users to effectively integrate these observations and provide 3 dimensional views of the weather system to better understand the underlying dynamics and physics of weather phenomena.

  5. Earth surface erosion and weathering from the 10Be (meteoric)/9Be ratio

    NASA Astrophysics Data System (ADS)

    von Blanckenburg, F.; Bouchez, J.; Wittmann, H.; Dannhaus, N.

    2012-12-01

    A perfect clock of the stability of the Earth surface is one that combines a first isotope the flux of which depends on the release rate during erosion, and a second isotope produced at constant rate. The ratio of the meteoric cosmogenic nuclide 10Be to stable 9Be is such a system. We provide a quantitative framework for its use. In a weathering zone some of the 9Be, present typically in 2.5ppm concentrations in silicate minerals, is released and partitioned between a reactive phase (adsorbed to clay and hydroxide surfaces, given the high partition coefficients at intermediate pH), and into the dissolved phase. The combined mass flux of both phases is defined by the soil formation rate and a mineral dissolution rate - and is hence proportional to the chemical weathering rate and the denudation rate. At the same time, the surface of the weathering zone is continuously exposed to fallout of meteoric 10Be. This 10Be percolates into the weathering zone where it mixes with dissolved 9Be. Both isotopes may exchange with the adsorbed Be, given that equilibration rate of Be is fast relative to soil residence times. Hence a 10Be/9Be(reactive) ratio results in soils from which the total denudation rate can be calculated. A prerequisite is that the flux of meteoric 10Be is known from field experiments or from global production models [1], that the 9Be concentration in bedrock (mostly 2.5ppm) is known [2], and that the reactive Be can be chemically extracted from soil or sediment [3]. In rivers, when reactive Be and dissolved Be equilibrate, a catchment-wide denudation rate can be determined from both sediment and a sample of filtered river water, where the sediment 10Be/9Be ratio is independent of grain size. We have tested this approach in sediment-bound Be and dissolved Be in water of the Amazon and Orinoco basin. The reactive Be was extracted from sediment by combined hydroxylamine and HCl leaches [2]. In the Amazon trunk stream, the Orinoco, Apure, and La Tigra river 10Be

  6. Surface dynamics of crude and weathered oil in the presence of dispersants: Laboratory experiment and numerical simulation

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander V.; Haus, Brian. K.; McGauley, Michael G.; Dean, Cayla W.; Ortiz-Suslow, David G.; Laxague, Nathan J. M.; Özgökmen, Tamay M.

    2016-05-01

    Marine oil spills can have dire consequences for the environment. Research on their dynamics is important for the well-being of coastal communities and their economies. Propagation of oil spills is a very complex physical-chemical process. As seen during the Deepwater Horizon event in the Gulf of Mexico during 2010, one of the critical problems remaining for prediction of oil transport and dispersion in the marine environment is the small-scale structure and dynamics of surface oil spills. The laboratory experiments conducted in this work were focused on understanding the differences between the dynamics of crude and weathered oil spills and the effect of dispersants. After deposition on the still water surface, a drop of crude oil quickly spread into a thin slick; while at the same time, a drop of machine (proxy for weathered) oil did not show significant evolution. Subsequent application of dispersant to the crude oil slick resulted in a quick contraction or fragmentation of the slick into narrow wedges and tiny drops. Notably, the slick of machine oil did not show significant change in size or topology after spraying dispersant. An advanced multi-phase, volume of fluid computational fluid dynamics model, incorporating capillary forces, was able to explain some of the features observed in the laboratory experiment. As a result of the laboratory and modeling experiments, the new interpretation of the effect of dispersant on the oil dispersion process including capillary effects has been proposed, which is expected to lead to improved oil spill models and response strategies.

  7. The rate of chemical weathering of pyrite on the surface of Venus

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Lodders, K.

    1993-01-01

    This abstract reports results of an experimental study of the chemical weathering of pyrite (FeS2) under Venus-like conditions. This work, which extends the earlier study by Fegley and Treiman, is part of a long range research program to experimentally measure the rates of thermochemical gas-solid reactions important in the atmospheric-lithospheric sulfur cycle on Venus. The objectives of this research are (1) to measure the kinetics of thermochemical gas-solid reactions responsible for both the production (e.g., anhydrite formation) and destruction (e.g., pyrrhotite oxidation) of sulfur-bearing minerals on the surface of Venus and (2) to incorporate these and other constraints into holistic models of the chemical interactions between the atmosphere and surface of Venus. Experiments were done with single crystal cubes of natural pyrite (Navajun, Logrono, Spain) that were cut and polished into slices of known weight and surface area. The slices were isothermally heated at atmospheric pressure in 99.99 percent CO2 (Coleman Instrument Grade) at either 412 C (685 K) or 465 C (738 K) for time periods up to 10 days. These two isotherms correspond to temperatures at about 6 km and 0 km altitude, respectively, on Venus. The reaction rate was determined by measuring the weight loss of the reacted slices after removal from the furnace. The reaction products were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy on the SEM.

  8. GEM: Statistical weather forecasting procedure

    NASA Technical Reports Server (NTRS)

    Miller, R. G.

    1983-01-01

    The objective of the Generalized Exponential Markov (GEM) Program was to develop a weather forecast guidance system that would: predict between 0 to 6 hours all elements in the airways observations; respond instantly to the latest observed conditions of the surface weather; process these observations at local sites on minicomputing equipment; exceed the accuracy of current persistence predictions at the shortest prediction of one hour and beyond; exceed the accuracy of current forecast model output statistics inside eight hours; and be capable of making predictions at one location for all locations where weather information is available.

  9. Annual carbon dioxide cycle in a montane soil: observations, modeling, and implications for weathering

    SciTech Connect

    Solomon, D.K.; Cerling, T.E.

    1987-12-01

    Profiles of CO/sub 2/ concentrations in soil and snow, soil respiration, soil and snow temperatures, and shallow ground water chemistry were monitored from March 1984 to July 1985 in a montane region neat Brighton, Utah. Significant seasonal variations in the concentrations of CO/sub 2/ in soil and snow occurred, and two principal rise-decline cycles were observed. During the first cycle the concentration of soil CO/sub 2/ at 35 cm rose from 4200 ppmv in July to a maximum of 12,400 ppmv in August and then declined to 4300 ppmv by October. This cycle is attributed to the changing production rate of soil CO/sub 2/ during the growing season. During the second cycle the concentration of CO/sub 2/ at 35 cm began to rise in November, reached a maximum of 7200 ppmv in early spring, and quickly declined to 3200 ppmv by late spring shortly after the snow cover had melted. This cycle is attributed to deterioration in the exchange of CO/sub 2/ between the soil and atmosphere due to a deep snowpack. A model based on Fick's second law of diffusion was developed to account for the temporal and spatial distribution of soil CO/sub 2/. The model predicts that soil CO/sub 2/ at 35 cm is increased by as much as 15 times due to the deep snowpack. The elevated concentration of soil CO/sub 2/, abundance of water, and above-freezing soil temperatures imply that significant soil weathering occurs during the winter in montane regions.

  10. Satellite-observed sensitivity of weather condition for forecasting malaria vector distribution in Bandarban District, Bangladesh

    NASA Astrophysics Data System (ADS)

    Nizamuddin, Mohammad; Rahman, Atiqur; Roytman, Leonid; Kogan, Felix; Powell, Al; Goldberg, Mitch; Khan, Mohammad M.

    2008-10-01

    Malaria is a serious public health problem in Bangladesh. Almost thirteen districts in Bangladesh experience epidemics of malaria. Epidemics occur mainly in the highlands of Bangladesh, notably in Bandarban district. This study examined the relationship between environmental factors and malaria incidence in Bandarban district in Bangladesh. This paper examines the association between malaria cases and weekly vegetation health condition index for the region for last fourteen years. The vegetation health index derived from a combination of Advance Very High Resolution Radiometer based normalized difference vegetation index and 10 micrometer (μm) to 11 micrometer (μm) thermal radiances, was designed for monitoring moisture and thermal impacts on vegetation health. It estimates the correlation between malaria cases and Vegetation Health (VH) Indices (Vegetation Condition Index (VCI) and Temperature Condition Index (TCI)) computed for each week over a period of 14 years (1992-2005). Following the results of correlation analysis the principal components regression (PCR) method was performed on weather components of satellite data and climate variability during each of the two annual malaria seasons to construct a model to predict malaria as a function of the TCI computed for this period. A good correlation was found between malaria cases and TCI characterizing thermal condition during the month of August and September. Furthermore the simulated results found from PCR model were compared with observed malaria statistics showing that the error of the estimates of malaria is less than 10%. Remote sensing therefore demonstrates the potential of a seasonal forecasting which can provide information about peak mosquito to breading conditions. The derived results are potential important for decision makers in the region to control malaria particularly under constraint of limited budget allocations.

  11. Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania)

    NASA Astrophysics Data System (ADS)

    Estrade, Nicolas; Cloquet, Christophe; Echevarria, Guillaume; Sterckeman, Thibault; Deng, Tenghaobo; Tang, YeTao; Morel, Jean-Louis

    2015-08-01

    to be isotopically heavier than the soil (Δ60Niwhole plant-soil up to 0.40‰). Fractions of Ni extracted by DTPA (diethylenetriaminepentaacetic acid) presented isotopically heavy compositions compared to the soil (Δ60NiDTPA-soil up to 0.89‰), supporting the hypothesis that the dissolved Ni fraction controlled by weathering has a heavy isotope signature. The non-hyperaccumulators (n = 2) were inclined to take up and translocate light Ni isotopes with a large degree of fractionation (Δ60Nileaves-roots up to - 0.60 ‰). For Ni-hyperaccumulators (n = 7), significant isotopic fractionation was observed in the plants in their early growth stages, while no fractionation occurred during later growth stages, when plants are fully loaded with Ni. This suggests that (i) the high-efficiency translocation process involved in hyperaccumulators does not fractionate Ni isotopes, and (ii) the root uptake process mainly controls the isotopic composition of the plant. In ultramafic contexts, vegetation composed of hyperaccumulators can significantly influence isotopic compositions through its remobilization in the upper soil horizon, thereby influencing the isotopic balance of Ni exported to rivers.

  12. Fundamental statistical relationships between monthly and daily meteorological variables: Temporal downscaling of weather based on a global observational dataset

    NASA Astrophysics Data System (ADS)

    Sommer, Philipp; Kaplan, Jed

    2016-04-01

    Accurate modelling of large-scale vegetation dynamics, hydrology, and other environmental processes requires meteorological forcing on daily timescales. While meteorological data with high temporal resolution is becoming increasingly available, simulations for the future or distant past are limited by lack of data and poor performance of climate models, e.g., in simulating daily precipitation. To overcome these limitations, we may temporally downscale monthly summary data to a daily time step using a weather generator. Parameterization of such statistical models has traditionally been based on a limited number of observations. Recent developments in the archiving, distribution, and analysis of "big data" datasets provide new opportunities for the parameterization of a temporal downscaling model that is applicable over a wide range of climates. Here we parameterize a WGEN-type weather generator using more than 50 million individual daily meteorological observations, from over 10'000 stations covering all continents, based on the Global Historical Climatology Network (GHCN) and Synoptic Cloud Reports (EECRA) databases. Using the resulting "universal" parameterization and driven by monthly summaries, we downscale mean temperature (minimum and maximum), cloud cover, and total precipitation, to daily estimates. We apply a hybrid gamma-generalized Pareto distribution to calculate daily precipitation amounts, which overcomes much of the inability of earlier weather generators to simulate high amounts of daily precipitation. Our globally parameterized weather generator has numerous applications, including vegetation and crop modelling for paleoenvironmental studies.

  13. Weather types across the Caribbean basin and their relationship with rainfall and sea surface temperature

    NASA Astrophysics Data System (ADS)

    Moron, Vincent; Gouirand, Isabelle; Taylor, Michael

    2016-07-01

    Eight weather types (WTs) are computed over 98.75°W-56.25°W, 8.75°N-31.25°N using cluster analysis of daily low-level (925 hPa) winds and outgoing longwave radiation, without removing the mean annual cycle, by a k-means algorithm from 1979 to 2013. The WTs can be firstly interpreted as snapshots of the annual cycle with a clear distinction between 5 "wintertime" and 3 "summertime" WTs, which account together for 70 % of the total mean annual rainfall across the studied domain. The wintertime WTs occur mostly from late November to late April and are characterized by varying intensity and location of the North Atlantic subtropical high (NASH) and transient synoptic troughs along the northern edge of the domain. Large-scale subsidence dominates the whole basin but rainfall can occur over sections of the basin, especially on the windward shores of the troughs associated with the synoptic waves. The transition between wintertime and summertime WTs is rather abrupt, especially in May. One summertime WT (WT 4) is prevalent in summer, and almost exclusive around late July. It is characterized by strong NASH, fast Caribbean low level jet and rainfall mostly concentrated over the Caribbean Islands, the Florida Peninsula, the whole Central America and the tropical Eastern Pacific. The two remaining summertime WTs display widespread rainfall respectively from Central America to Bermuda (WT 5) and over the Eastern Caribbean (WT 6). Both WTs combine reduced regional scale subsidence and weaker Caribbean low-level jet relatively to WT 4. The relationships between WT frequency and El Niño Southern Oscillation (ENSO) events are broadly linear. Warm central and eastern ENSO events are associated with more WT 4 (less WT 5-6) during boreal summer and autumn (0) while this relationship is reversed during boreal summer (+1) for central events only. In boreal winter, the largest anomalies are observed for two WTs consistent with negative (WT 2) and positive (WT 8) phases of the

  14. Fluorescent beeswax for surface flow velocity observations

    NASA Astrophysics Data System (ADS)

    Grimaldi, S.; Tauro, F.; Petroselli, A.; Mocio, G.; Capocci, I.; Rapiti, E.; Rapiti, R.; Cipollari, G.; Porfiri, M.

    2012-12-01

    Watershed surface processes control downstream runoff phenomena, waste and pollutant diffusion, erosion mechanics, and sediment transport. A quantitative understanding of the flow physics is currently limited by the lack of effective tracing techniques suitable for basin-scale observations. More specifically, field experiments require environmentally resilient, non-invasive, and low cost measurement systems that can potentially operate in remotely-controlled or unmanned conditions. Traditional tracing methodologies are largely not capable to cope with extreme in-situ conditions, including practical logistic challenges as well as inherent flow complexity. Specifically, most of available technologies need physical sampling to estimate the tracer concentration and do not allow for continuous-time measurements. In addition, commonly used tracers, such as isotopes, dyes, and chemicals, are not directly applicable to monitor surface hillslope processes and large-scale microchannel networks due to elaborate detection processes and dispersion issues. In this context, the feasibility of using buoyant fluorescent microspheres as particle tracers in natural water flows is investigated. Specifically, a novel fabrication methodology is designed to manufacture particles from natural beeswax and a highly diluted solution of a nontoxic fluorescent red dye. The fabrication procedure allows for adjusting the size of the particles from tens of microns up to a few millimeters and their density from positively to negatively-buoyant with respect to water. An array of experimental techniques is employed to conduct a thorough characterization of the fluorescence and morphology of the tracers. In addition, ad-hoc experiments are designed to assess the fluorescence response due to Ultra Violet (UV) exposure and thermal processes. Proof-of-concept laboratory analysis are conducted to illustrate the integration of the novel particle tracers in existing tracing methods for surface flow

  15. Modelled and observed continental surface heat fluxes

    NASA Astrophysics Data System (ADS)

    Beltrami, H.; MacDougall, A. H.; Gonzalez-Rouco, F. J.; Stevens, M. B.; Bourlon, E.

    2009-12-01

    Heat fluxes in the continental subsurface were estimated from general circulation model (GCM) simulations of the climate of the last millennium and compared to those obtained from subsurface geothermal data. Since GCMs have bottom boundary conditions (BBCs) that are less than 10 m deep and thus may be thermodynamically restricted in the continental subsurface, we used an idealized land surface model (LSM) with a very deep BBC to estimate the potential for realistic subsurface heat storage in the absence of bottom boundary constraints. Results indicate that there is good agreement between observed fluxes and GCM simulated fluxes for the 1780-1980 period when the GCM simulated temperatures are coupled to the LMS with deep BBC. These results emphasize the importance of placing a deep BBC in GCM soil components for the proper simulation of the overall continental heat budget. In addition, the agreement between the LSM surface fluxes and the borehole temperature reconstructed fluxes lends additional support to the overall quality of the GCM (ECHO-G) paleoclimatic simulations. Simulations to 2100 show a divergence between the LSM simulated subsurface heat content and the heat gain in the ECHO-G soil model, with the placement of the BBCs surpassing the thermodynamical effect of the choice of emission scenario as the most important factor determining heat absorption in the simulated subsurface.

  16. Comparison of surface water chemistry and weathering effects of two lake basins in the Changtang Nature Reserve, China.

    PubMed

    Wang, Rui; Liu, Zhaofei; Jiang, Liguang; Yao, Zhijun; Wang, Junbo; Ju, Jianting

    2016-03-01

    The geochemistry of natural waters in the Changtang Nature Reserve, northern Tibet, can help us understand the geology of catchments, and provide additional insight in surface processes that influence water chemistry such as rock weathering on the Qinghai-Tibet Plateau. However, severe natural conditions are responsible for a lack of scientific data for this area. This study represents the first investigation of the chemical composition of surface waters and weathering effects in two lake basins in the reserve (Lake Dogaicoring Qiangco and Lake Longwei Co). The results indicate that total dissolved solids (TDS) in the two lakes are significantly higher than in other gauged lakes on the Qinghai-Tibet Plateau, reaching 20-40g/L, and that TDS of the tectonic lake (Lake Dogaicoring Qiangco) is significantly higher than that of the barrier lake (Lake Longwei Co). Na(+) and Cl(-) are the dominant ions in the lake waters as well as in the glacier-fed lake inflows, with chemical compositions mainly affected by halite weathering. In contrast, ion contents of inflowing rivers fed by nearby runoff are lower and concentrations of dominant ions are not significant. Evaporite, silicate, and carbonate weathering has relatively equal effects on these rivers. Due to their limited scope, small streams near the lakes are less affected by carbonate than by silicate weathering.

  17. Labrador Sea surface temperature control on the summer weather in the Eastern Europe

    NASA Astrophysics Data System (ADS)

    Gnatiuk, Natalia; Vihma, Timo; Bobylev, Leonid

    2016-04-01

    Many studies have addressed the linkages between the Arctic Amplification and mid-latitude weather patterns. Most of them have focused on the effects of changes in sea ice, terrestrial snow or open ocean SST on the air temperature in selected mid-latitude areas. However, when analysing such potential linkages, one should be aware that from the point of view of the atmosphere it is almost the same whether the thermal forcing originates from the sea ice melt, snowmelt, or changes in SST. Most important is to quantify how the atmosphere responds to anomalies in the surface temperature and then affects weather patterns in remote areas. For this purpose, we studied the hemispheric-scale relationships between anomalies in the Northern Hemisphere Earth surface temperature (Ts) and 2-m air temperature (T2m) in mid-latitudes (Central and Eastern Europe). Using regression analyses based on the ERA-Interim reanalysis data, we assessed the said temperature relationships with focus on the lagged monthly and inter-seasonal linkages. Technically we divided the Northern Hemisphere in equal areas with a size of 15x10 degrees and calculated correlation coefficients for the monthly mean temperatures between all defined regions from one side and the Central/East European study regions from another side over the period 1979-2014. Using this approach, we found that the strongest links in the considered kind of relationships take place between spring sea surface temperature in the Labrador Sea and summer air (T2m) temperature in the Eastern Europe. In order to confirm the correlation results obtained, to identify thermal forcing factors and to assess their relative importance, we analysed the multiyear averages and anomalies of various meteorological parameters for 10 coldest and 10 warmest springs and summers in the period 1979-2014: surface pressure, total precipitation, sea-ice and total cloud cover, wind components, surface solar radiation downwards, surface heat fluxes and air

  18. Soil, snow, weather, and sub-surface storage data from a mountain catchment in the rain-snow transition zone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comprehensive hydroclimatic data set is presented for the 2011 water year to improve understanding of hydrologic processes in the rain-snow transition zone. Catchment soil depths and surface texture from 57 points are presented along with soil moisture, snow cover, weather data, and associated hy...

  19. Open Surface Solar Irradiance Observations - A Challenge

    NASA Astrophysics Data System (ADS)

    Menard, Lionel; Nüst, Daniel; Jirka, Simon; Maso, Joan; Ranchin, Thierry; Wald, Lucien

    2015-04-01

    The newly started project ConnectinGEO funded by the European Commission aims at improving the understanding on which environmental observations are currently available in Europe and subsequently providing an informational basis to close gaps in diverse observation networks. The project complements supporting actions and networking activities with practical challenges to test and improve the procedures and methods for identifying observation data gaps, and to ensure viability in real world scenarios. We present a challenge on future concepts for building a data sharing portal for the solar energy industry as well as the state of the art in the domain. Decision makers and project developers of solar power plants have identified the Surface Solar Irradiance (SSI) and its components as an important factor for their business development. SSI observations are crucial in the process of selecting suitable locations for building new plants. Since in-situ pyranometric stations form a sparse network, the search for locations starts with global satellite data and is followed by the deployment of in-situ sensors in selected areas for at least one year. To form a convincing picture, answers must be sought in the conjunction of these EO systems, and although companies collecting SSI observations are willing to share this information, the means to exchange in-situ measurements across companies and between stakeholders in the market are still missing. We present a solution for interoperable exchange of SSI data comprising in-situ time-series observations as well as sensor descriptions based on practical experiences from other domains. More concretely, we will apply concepts and implementations of the Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC). The work is based on an existing spatial data infrastructure (SDI), which currently comprises metadata, maps and coverage data, but no in-situ observations yet. This catalogue is already registered in the

  20. Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Bullen, T.D.; Harden, J.W.; Peterson, M.L.

    1996-01-01

    Mineral weathering rates are determined for a series of soils ranging in age from 0.2-3000 Ky developed on alluvial terraces near Merced in the Central Valley of California. Mineralogical and elemental abundances exhibit time-dependent trends documenting the chemical evolution of granitic sand to residual kaolinite and quartz. Mineral losses with time occur in the order: hornblende > plagioclase > K-feldspar. Maximum volume decreases of >50% occur in the older soils. BET surface areas of the bulk soils increase with age, as do specific surface areas of aluminosilicate mineral fractions such as plagioclase, which increases from 0.4-1.5 m2 g-1 over 600 Ky. Quartz surface areas are lower and change less with time (0.11-0.23 m2 g-1). BET surface areas correspond to increasing external surface roughness (?? = 10-600) and relatively constant internal surface area (??? 1.3 m2 g-1). SEM observations confirm both surface pitting and development of internal porosity. A numerical model describes aluminosilicate dissolution rates as a function of changes in residual mineral abundance, grain size distributions, and mineral surface areas with time. A simple geometric treatment, assuming spherical grains and no surface roughness, predicts average dissolution rates (plagioclase, 10-17.4; K-feldspar, 10-17.8; and hornblende, 10-17.5 mol cm-1 s-1) that are constant with time and comparable to previous estimates of soil weathering. Average rates, based on BET surface area measurements and variable surface roughnesses, are much slower (plagioclase, 10-19.9; K-feldspar, 10-20.5; and hornblende 10-20.1 mol cm-2 s-1). Rates for individual soil horizons decrease by a factor of 101.5 over 3000 Ky indicating that the surface reactivities of minerals decrease as the physical surface areas increase. Rate constants based on BET estimates for the Merced soils are factors of 103-104 slower than reported experimental dissolution rates determined from freshly prepared silicates with low surface

  1. Quantifying Surface Energy Flux Estimation Uncertainty Using Land Surface Temperature Observations

    NASA Astrophysics Data System (ADS)

    French, A. N.; Hunsaker, D.; Thorp, K.; Bronson, K. F.

    2015-12-01

    Remote sensing with thermal infrared is widely recognized as good way to estimate surface heat fluxes, map crop water use, and detect water-stressed vegetation. When combined with net radiation and soil heat flux data, observations of sensible heat fluxes derived from surface temperatures (LST) are indicative of instantaneous evapotranspiration (ET). There are, however, substantial reasons LST data may not provide the best way to estimate of ET. For example, it is well known that observations and models of LST, air temperature, or estimates of transport resistances may be so inaccurate that physically based model nevertheless yield non-meaningful results. Furthermore, using visible and near infrared remote sensing observations collected at the same time as LST often yield physically plausible results because they are constrained by less dynamic surface conditions such as green fractional cover. Although sensitivity studies exist that help identify likely sources of error and uncertainty, ET studies typically do not provide a way to assess the relative importance of modeling ET with and without LST inputs. To better quantify model benefits and degradations due to LST observational inaccuracies, a Bayesian uncertainty study was undertaken using data collected in remote sensing experiments at Maricopa, Arizona. Visible, near infrared and thermal infrared data were obtained from an airborne platform. The prior probability distribution of ET estimates were modeled using fractional cover, local weather data and a Penman-Monteith mode, while the likelihood of LST data was modeled from a two-source energy balance model. Thus the posterior probabilities of ET represented the value added by using LST data. Results from an ET study over cotton grown in 2014 and 2015 showed significantly reduced ET confidence intervals when LST data were incorporated.

  2. Near-Real Time Satellite-Retrieved Cloud and Surface Properties for Weather and Aviation Safety Applications

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Smith, William L., Jr.; Bedka, Kristopher M.; Nguyen, Louis; Palikonda, Rabindra; Hong, Gang; Trepte, Qing Z.; Chee, Thad; Scarino, Benjamin; Spangenberg, Douglas A.; Sun-Mack, Szedung; Fleeger, Cecilia; Ayers, J. Kirk; Chang, Fu-Lung; Heck, Patrick M.

    2014-01-01

    Cloud properties determined from satellite imager radiances provide a valuable source of information for nowcasting and weather forecasting. In recent years, it has been shown that assimilation of cloud top temperature, optical depth, and total water path can increase the accuracies of weather analyses and forecasts. Aircraft icing conditions can be accurately diagnosed in near-­-real time (NRT) retrievals of cloud effective particle size, phase, and water path, providing valuable data for pilots. NRT retrievals of surface skin temperature can also be assimilated in numerical weather prediction models to provide more accurate representations of solar heating and longwave cooling at the surface, where convective initiation. These and other applications are being exploited more frequently as the value of NRT cloud data become recognized. At NASA Langley, cloud properties and surface skin temperature are being retrieved in near-­-real time globally from both geostationary (GEO) and low-­-earth orbiting (LEO) satellite imagers for weather model assimilation and nowcasting for hazards such as aircraft icing. Cloud data from GEO satellites over North America are disseminated through NCEP, while those data and global LEO and GEO retrievals are disseminated from a Langley website. This paper presents an overview of the various available datasets, provides examples of their application, and discusses the use of the various datasets downstream. Future challenges and areas of improvement are also presented.

  3. Generation of an all-weather land surface temperature product from MODIS and AMSR-E data

    NASA Astrophysics Data System (ADS)

    Duan, Si-Bo; Li, Zhao-Liang; Leng, Pei; Han, Xiao-Jing; Chen, Yuanyuan

    2015-12-01

    Land surface temperature (LST) is widely used in a variety of applications, such as meteorology, climatology, and ecology. Up to now, there are no all-weather LST products at high spatial resolution. In this study, we propose a method to generate an all-weather LST product by merging MODIS and AMSR-E data. Two main processes are performed in this method, including retrieving AMSR-E LST and downscaling AMSR-E LST to MODIS pixel resolution. After the implement of these two processes, MODIS LSTs under clear-sky conditions and AMSR-E LSTs under cloudy conditions are merged to generate an all-weather LST product. Results indicate that the merged LSTs filled up the missing data in the original MODIS LSTs due to the effects of cloud when compared with the original MODIS LSTs.

  4. Space Weathering of Small Bodies

    NASA Astrophysics Data System (ADS)

    McFadden, L. A.

    2002-12-01

    Space weathering is defined as any process that wears away and alters surfaces, here confined to small bodies in the Solar System. Mechanisms which possibly alter asteroid and comet surfaces include solar wind bombardment, UV radiation, cosmic ray bombardment, micrometeorite bombardment. These processes are likely to contribute to surface processes differently. For example, solar wind bombardment would be more important on a body closer to the Sun compared to a comet where cosmic ray bombardment might be a more significant weathering mechanism. How can we measure the effects of space weathering? A big problem is that we don't know the nature of the surface before it was weathered. We are in a new era in the study of surface processes on small bodies brought about by the availability of spatially resolved, color and spectral measurements of asteroids from Galileo and NEAR. What processes are active on which bodies? What physics controls surface processes in different regions of the solar system? How do processes differ on different bodies of different physical and chemical properties? What combinations of observable parameters best address the nature of surface processes? Are there alternative explanations for the observed parameters that have been attributed to space weathering? Should we retain the term, space weathering? How can our understanding of space weathering on the Moon help us understand it on asteroids and comets? Finally, we have to leave behind some presuppositions, one being that there is evidence of space weathering based on the fact that the optical properties of S-type asteroids differs from those of ordinary chondrites.

  5. Spectral observations of 19 weathered and 23 fresh NEAs and their correlations with orbital parameters

    NASA Astrophysics Data System (ADS)

    Fevig, Ronald A.; Fink, Uwe

    2007-05-01

    Results of our visible to near-infrared spectrophotometric observations of 41 near-Earth asteroids (NEAs) are reported. These moderate-resolution spectra, along with 14 previously published spectra from our earlier survey [Hicks, M.D., Fink, U., Grundy, W.M., 1998. Icarus 133, 69-78] show a preponderance of spectra consistent with ordinary chondrites (23 NEAs with this type of spectrum, along with 19 S-types and 13 in other taxonomic groups). There exists statistically significant evidence for orbit-dependent trends in our data. While S-type NEAs from our survey reside primarily in (1) Amor orbits or (2) Aten or Apollo orbits which do not cross the asteroid main-belt, the majority of objects with spectra consistent with ordinary chondrites in our survey are in highly eccentric Apollo orbits which enter the asteroid main-belt. This trend toward fresh, relatively unweathered NEAs with ordinary chondrite type spectra in highly eccentric Apollo orbits is attributed to one or a combination of three possible causes: (1) the chaotic nature of NEA orbits can easily result in high eccentricity orbits/large aphelion distances so that they can enter the collisionally enhanced environment in the main-belt, exposing fresh surfaces, (2) they have recently been injected into such orbits after a collision in the main-belt, or (3) such objects cross the orbits of several terrestrial planets, causing tidal disruption events that expose fresh surfaces.

  6. Comparative Analysis of Thunderstorm Activity in the West Caucasus According to the Instrumental Measurements and Weather Stations Observations

    NASA Astrophysics Data System (ADS)

    Knyazeva, Zalina; Gergokova, Zainaf; Gyatov, Ruslan; Boldyreff, Anton

    2014-05-01

    The number of thunderstorms days is one of the main characteristics of thunderstorms. In most cases, the number of days with different meteorological phenomena are the climate characteristic of the area. This characteristic is a common climate indicator. The comparative analysis of thunderstorms days quantity, received with lightning detector LS 8000 by Vaisala and weather stations of Krasnodar District (Russia), is presented. For this purpose the Krasnodar region was divided into 19 sites. The thunderstorm days amount and their comparison were conducted for each site according to the data of weather stations and LS 8000 lightning detectors. Totally 29 weather stations are located in this area. The number of thunderstorm days per year for the period of 2009-2012 was determined according to data, received from stations. It was received that average annual number of thunderstorm days for this area was from 33 to 39 days. The majority of thunderstorm days per year (up to 77) was registered in the south of Krasnodar region and on the Black Sea coast. The lowest thunderstorm activity (about 20 days) was observed in the North of the region. To compare visual and voice data for calculating thunderstorm days quantity of the Krasnodar region, the day was considered thundery if at least one weather station registered a storm. These instrumental observations of thunderstorms allow to obtain the basic characteristics and features of the distribution of thunderstorm activity over a large territory for a relatively short period of time. However, some characteristics such as thunderstorms intensity, damages from lightning flashes and others could be obtained only with instrumental observations. The territory of gathering thunderstorm discharges data by system LS8000 is limited by perimeter of 2250 km and square of 400 000 km2. According to the instrumental observations, the majority of storm activity also takes place on the Black Sea coast, near the cities of Sochi and Tuapse

  7. BET surface area distributions in polar stream sediments: Implications for silicate weathering in a cold-arid environment

    USGS Publications Warehouse

    Marra, Kristen R.; Elwood Madden, Megan E; Soreghan, Gerilyn S.; Hall, Brenda L

    2014-01-01

    BET surface area values are critical for quantifying the amount of potentially reactive sediments available for chemical weathering and ultimately, prediction of silicate weathering fluxes. BET surface area values of fine-grained (<62.5 μm) sediment from the hyporheic zone of polar glacial streams in the McMurdo Dry Valleys, Antarctica (Wright and Taylor Valleys) exhibit a wide range (2.5–70.6 m2/g) of surface area values. Samples from one (Delta Stream, Taylor Valley) of the four sampled stream transects exhibit high values (up to 70.6 m2/g), which greatly exceed surface area values from three temperate proglacial streams (0.3–12.1 m2/g). Only Clark stream in Wright Valley exhibits a robust trend with distance, wherein surface area systematically decreases (and particle size increases) in the mud fraction downstream, interpreted to reflect rapid dissolution processes in the weathering environment. The remaining transects exhibit a range in variability in surface area distributions along the length of the channel, likely related to variations in eolian input to exposed channel beds, adjacent snow drifts, and to glacier surfaces, where dust is trapped and subsequently liberated during summer melting. Additionally, variations in stream discharge rate, which mobilizes sediment in pulses and influences water:rock ratios, the origin and nature of the underlying drift material, and the contribution of organic acids may play significant roles in the production and mobilization of high-surface area sediment. This study highlights the presence of sediments with high surface area in cold-based glacier systems, which influences models of chemical denudation rates and the impact of glacial systems on the global carbon cycle.

  8. Impact of atmospheric CO2 rise on chemical weathering of the continental surfaces

    NASA Astrophysics Data System (ADS)

    Godderis, Y.; Roelandt, C.; Beaulieu, E.; Kaplan, J. O.; Schott, J.

    2009-04-01

    Continental weathering consumes atmospheric CO2. Recent analysis of field data has shown that this flux is rapidly reacting to ongoing climate (ref 1) and land use changes (ref 2), displaying an increase of up to 40 % over a few decades. Weathering processes are thus a potentially important component of the present day global carbon cycle. We developed numerical model describing continental weathering reactions based on laboratory kinetic laws and coupled to numerical model of the productivity of the biosphere (B-WITCH)(ref 3,4). This model is able to simulate the chemical composition of streams for both small and large continental watersheds. In this model, we emphasized the role of land plants in controlling belowground hydrological fluxes and decreasing the pH of percolating water through root respiration, both of which heavily impact weathering rates. Both climate change and increasing atmospheric CO2 concentrations affect the productivity and biogeography of the terrestrial biosphere through direct climate effects and CO2 fertilization. With our weathering model coupled to a dynamic global vegetation model, we have the capability to explore the impact of CO2 and climate change on rock weathering. With regards to CO2 fertilization, we calculate that the overall weathering rate may potentially rise by 20 % when CO2 increases up to 8 times the present day pressure for a large tropical watershed (Orinoco). This change is driven by a decrease in evapotranspiration when CO2 rises, and thus by an increase in the weathering profile drainage. We extend our sensitivity tests to the fertilization effect to 20 sites all over the world under various climatic, biospheric and lithologic conditions, and the results will be discussed. ref 1: Gislason et al., EPSL, 277, 213-222, 2008 ref 2: Raymond et al.,Nature, 451, 449-452, 2008 ref 3: Godd

  9. All-Weather Sounding of Moisture and Temperature From Microwave Sensors Using a Coupled Surface/Atmosphere Inversion Algorithm

    NASA Astrophysics Data System (ADS)

    Boukabara, S. A.; Garrett, K.

    2014-12-01

    A one-dimensional variational retrieval system has been developed, capable of producing temperature and water vapor profiles in clear, cloudy and precipitating conditions. The algorithm, known as the Microwave Integrated Retrieval System (MiRS), is currently running operationally at the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data and Information Service (NESDIS), and is applied to a variety of data from the AMSU-A/MHS sensors on board the NOAA-18, NOAA-19, and MetOp-A/B polar satellite platforms, as well as SSMI/S on board both DMSP F-16 and F18, and from the NPP ATMS sensor. MiRS inverts microwave brightness temperatures into atmospheric temperature and water vapor profiles, along with hydrometeors and surface parameters, simultaneously. This atmosphere/surface coupled inversion allows for more accurate retrievals in the lower tropospheric layers by accounting for the surface emissivity impact on the measurements. It also allows the inversion of the soundings in all-weather conditions thanks to the incorporation of the hydrometeors parameters in the inverted state vector as well as to the inclusion of the emissivity in the same state vector, which is accounted for dynamically for the highly variable surface conditions found under precipitating atmospheres. The inversion is constrained in precipitating conditions by the inclusion of covariances for hydrometeors, to take advantage of the natural correlations that exist between temperature and water vapor with liquid and ice cloud along with rain water. In this study, we present a full assessment of temperature and water vapor retrieval performances in all-weather conditions and over all surface types (ocean, sea-ice, land, and snow) using matchups with radiosonde as well as Numerical Weather Prediction and other satellite retrieval algorithms as references. An emphasis is placed on retrievals in cloudy and precipitating atmospheres, including extreme weather events

  10. Cloud Observation and Modeling Test Bed for Air Force Weather Applications: Overview and First Results

    NASA Astrophysics Data System (ADS)

    Nobis, T. E.

    2012-12-01

    Air Force Weather (AFW) has documented requirements for real-time cloud analysis and short range cloud forecasts to support DoD missions around the world. To meet these needs, AFW utilizes the Cloud Depiction and Forecast System (CDFS) II system to develop a hourly cloud analysis and short range forecast. The system creates cloud masks from 16 different satellite sources and optimally merges them to create the analysis. This analysis then forms the initialization field for a short range 'advective' based cloud forecast. Northrop Grumman Corp. has recently delivered a CDFS II based Cloud Model Test Bed. This system offers the ability to test several aspects of the CDFS II system including: the effect of adding and subtracting sources of cloud imagery, the effect of changing source and skill of required external data sources, and the impact of changing the cloud information merge process among the various sources. In addition, the test bed offers a capability to generate a robust cloud modeling baseline against which to measure progress of a next generation Numerical Weather Prediction (NWP) based advanced data assimilation system. Finally, the test bed allows the development and testing of new cloud modeling validation techniques (and sources) to provide greater confidence in results generated from the test bed. This presentation will provide a basic overview of the CDFS II system and of the newly developed Test Bed and will include results from the first series of experiments conducted using the Test Bed.

  11. Aquarius Observations of Sea Surface Salinity

    NASA Video Gallery

    This visualization shows changes in global sea surface salinity, as measured by NASA’s Aquarius instrument aboard the Aquarius/SAC-D spacecraft, from December 2011 through December 2012. Red repr...

  12. Comparative study of pulsed laser cleaning applied to weathered marble surfaces

    NASA Astrophysics Data System (ADS)

    Ortiz, P.; Antúnez, V.; Ortiz, R.; Martín, J. M.; Gómez, M. A.; Hortal, A. R.; Martínez-Haya, B.

    2013-10-01

    The removal of unwanted matter from surface stones is a demanding task in the conservation of cultural heritage. This paper investigates the effectiveness of near-infrared (IR) and ultraviolet (UV) laser pulses for the cleaning of surface deposits, iron oxide stains and different types of graffiti (black, red and green sprays and markers, and black cutting-edge ink) on dolomitic white marble. The performance of the laser techniques is compared to common cleaning methods on the same samples, namely pressurized water and chemical treatments. The degree of cleaning achieved with each technique is assessed by means of colorimetric measurements and X-ray microfluorescence. Eventual morphological changes induced on the marble substrate are monitored with optical and electronic microscopy. It is found that UV pulsed laser ablation at 266 nm manages to clean all the stains except the cutting-edge ink, although some degree of surface erosion is produced. The IR laser pulses at 1064 nm can remove surface deposits and black spray acceptably, but a yellowing is observed on the stone surface after treatment. An economic evaluation shows that pulsed laser cleaning techniques are advantageous for the rapid cleaning of small or inaccessible surface areas, although their extensive application becomes expensive due to the long operating times required.

  13. Road Weather and Connected Vehicles

    NASA Astrophysics Data System (ADS)

    Pisano, P.; Boyce, B. C.

    2015-12-01

    On average, there are over 5.8 M vehicle crashes each year of which 23% are weather-related. Weather-related crashes are defined as those crashes that occur in adverse weather or on slick pavement. The vast majority of weather-related crashes happen on wet pavement (74%) and during rainfall (46%). Connected vehicle technologies hold the promise to transform road-weather management by providing improved road weather data in real time with greater temporal and geographic accuracy. This will dramatically expand the amount of data that can be used to assess, forecast, and address the impacts that weather has on roads, vehicles, and travelers. The use of vehicle-based measurements of the road and surrounding atmosphere with other, more traditional weather data sources, and create road and atmospheric hazard products for a variety of users. The broad availability of road weather data from mobile sources will vastly improve the ability to detect and forecast weather and road conditions, and will provide the capability to manage road-weather response on specific roadway links. The RWMP is currently demonstrating how weather, road conditions, and related vehicle data can be used for decision making through an innovative Integrated Mobile Observations project. FHWA is partnering with 3 DOTs (MN, MI, & NV) to pilot these applications. One is a mobile alerts application called the Motorists Advisories and Warnings (MAW) and a maintenance decision support application. These applications blend traditional weather information (e.g., radar, surface stations) with mobile vehicle data (e.g., temperature, brake status, wiper status) to determine current weather conditions. These weather conditions, and other road-travel-relevant information, are provided to users via web and phone applications. The MAW provides nowcasts and short-term forecasts out to 24 hours while the EMDSS application can provide forecasts up to 72 hours in advance. The three DOTs have placed readers and external

  14. Problems at the Leading Edge of Space Weathering as Revealed by TEM Combined with Surface Science Techniques

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Dukes, C. A.; Keller, L. P.; Rahman, Z.; Baragiola, R. A.

    2015-01-01

    Both transmission electron micros-copy (TEM) and surface analysis techniques such as X-ray photoelectron spectroscopy (XPS) were instrumen-tal in making the first characterizations of material generated by space weathering in lunar samples [1,2]. Without them, the nature of nanophase metallic Fe (npFe0) correlated with the surface of lunar regolith grains would have taken much longer to become rec-ognized and understood. Our groups at JSC and UVa have been using both techniques in a cross-correlated way to investigate how the solar wind contributes to space weathering [e.g., 3]. These efforts have identified a number of ongoing problems and knowledge gaps. Key insights made by UVa group leader Raul Barag-iola during this work are gratefully remembered.

  15. Space Weathering Products Found on the Surfaces of the Itokawa Dust Particles: A Summary of the Initial Analysis

    NASA Technical Reports Server (NTRS)

    Noguchi, T.; Kimura, M.; Hashimoto, T.; Konno, M.; Nakamura, T.; Ogami, T.; Ishida, H.; Sagae, R.; Tsujimoto, S.; Tsuchiyama, A,; Zolensky, M. E.; Tanaka, M.; Fujimura, A.; Abe, M.; Yada, T.; Mukai, T.; Ueno, M.; Okada, T.; Shirai, K.; Ishibashi, Y.; Okazaki, R.

    2012-01-01

    Surfaces of airless bodies exposed to interplanetary space gradually have their structures, optical properties, chemical compositions, and mineralogy changed by solar wind implantation and sputtering, irradiation by galactic and solar cosmic rays, and micrometeorite bombardment. These alteration processes and the resultant optical changes are known as space weathering [1, 2, 3]. Our knowledge of space weathering has depended almost entirely on studies of the surface materials returned from the Moon and regolith breccia meteorites [1, 4, 5, 6] until the surface material of the asteroid Itokawa was returned to the Earth by the Hayabusa spacecraft [7]. Lunar soil studies show that space weathering darkens the albedo of lunar soil and regolith, reddens the slopes of their reflectance spectra, and attenuates the characteristic absorption bands of their reflectance spectra [1, 2, 3]. These changes are caused by vapor deposition of small (<40 nm) metallic Fe nanoparticles within the grain rims of lunar soils and agglutinates [5, 6, 8]. The initial analysis of the Itokawa dust particles revealed that 5 out of 10 particles have nanoparticle-bearing rims, whose structure varies depending on mineral species. Sulfur-bearing Fe-rich nanoparticles (npFe) exist in a thin (5-15 nm) surface layer (zone I) on olivine, low-Ca pyroxene, and plagioclase, suggestive of vapor deposition. Sulfur-free npFe exist deeper inside (<60 nm) ferromagnesian silicates (zone II). Their texture suggests formation by amorphization and in-situ reduction of Fe2+ in ferromagnesian silicates [7]. On the other hand, nanophase metallic iron (npFe0) in the lunar samples is embedded in amorphous silicate [5, 6, 8]. These textural differences indicate that the major formation mechanisms of the npFe0 are different between the Itokawa and the lunar samples. Here we report a summary of the initial analysis of space weathering of the Itokawa dust particles.

  16. IRAC Observations of Weather and Tidal Heating on Gliese 436 b

    NASA Astrophysics Data System (ADS)

    Laughlin, Gregory; Deming, Drake; Langton, Jonathan

    2008-03-01

    We propose to use IRAC at 8 microns to observe eight successive secondary eclipses of the P=2.644d, Neptune-mass planet that transits the red dwarf star Gliese 436. Initial measurements of the Gliese 436b secondary transits suggested that the planet's high (e=0.15) eccentricity is generating signficant tidal luminosity. The eccentric orbit of the planet will lead to 83-percent variations in received flux over the course of half an orbit. Additionally, the planet will be rotating pseudo-synchronously, with a spin period P ~2.3 days that is significantly less than the orbital period. These factors will contribute to interesting global flow patterns on the planetary surface. Our hydrodynamical model predicts a sinusoidal time-dependent flux variation of amplitude 0.00012 and period ~ 3 days. By measuring the 8-micron flux at successive secondary transits, we will detect this oscillation, and obtain a data set that can be compared with both our model as well as models being developed by other workers in the field. In addition, our flux measurements can be averaged to obtain an improved estimate of the planet's tidal luminosity. This quantity allows us to derive a tidal quality factor, Q, which in turn gives important clues to the interior structure of this remarkable planet.

  17. Assimilation of GOES Land Surface Data: Benefits to Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Dembek, Scott; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The technique has been employed on a semi-operational basis at the GHCC within the PSU/CAR MM5 since 1 November 1998. A one-way nested grid configuration was employed with a 75 kin CONUS domain and a 25 km grid over the southeastern United States. Initial conditions were obtained from the 12 UTC Early Eta Data Assimilation System analyses and lateral boundary conditions from the Early Eta forecast available at 3 hour intervals. The satellite-derived land surface temperature tendencies and insolation were assimilated between two and five hours (1400 and 1650 UTC) of the forecast. We performed the assimilation on the Southeastern domain only. In addition, a control run without assimilation was performed to provide insight into the performance of the assimilation technique.

  18. Two rare northern Entoloma species observed in Sicily under exceptionally cold weather conditions.

    PubMed

    Venturella, Giuseppe; Saitta, Alessandro; Mandracchia, Gerlando; Gargano, Maria Letizia

    2012-01-01

    The biology and ecology of many Entoloma species is still poorly known as well as their geographical distribution. In Italy, there are no studies on the influence of weather on fungal abundance and richness and our knowledge on the ecology and distribution of Entoloma species needs to be improved. The discovery of two Entoloma species in Sicily (southern Italy), reported in the literature as belonging to the habitat of north European countries, was the basis leading to the assumption that anomalous climatic conditions could stimulate the growth of northern entolomas in the southernmost Mediterranean regions. The results of this study show that the presence of northern Entoloma species in Sicily is not influenced by the Mediterranean type of vegetation, by edaphic or altitudinal factors but by anomalous climatic trends of precipitations and temperatures which stimulate the fructification of basidiomata in correspondence with a thermal shock during autumn.

  19. Identification of weathered structures and aquifers from resistivity observations in the Strengbach catchment (Vosges, France).

    NASA Astrophysics Data System (ADS)

    Gance, Julien; Sailhac, Pascal; Malet, Jean-Philippe; Viville, Daniel; Pierret, Marie-Claire

    2015-04-01

    In low mountain regions, natural water resources used for agriculture or drinking water generally come from natural sources. Management of these water resources is complex for some catchments where most of the water flows is exfiltrating from bedrock aquifers characterized by important spatial heterogeneity and different connectivity levels in space and time. The Strengbach catchment (Vosges, North East France) is a hydro-geochemical observatory monitored for more than 25 years. The numerous geochemical studies have highlighted the existence of different lithological and structural units in the catchment constituted by different weathered granitic aquifers. Their spatial extension has been determined through the measurement of the soil electrical resistivity using 20 Electrical Resistivity Tomography (ERT) profiles. The profiles have been inverted separately with the BERT software in 2D and compared to 2.5 D inversions, where the inversion accounts for the profile crossings. The comparison between 2D and 2.5D inversion results allows validating the 2-D assumption. The 20 profiles are distributed over the complete catchment and cover more densely the water source area of the Strengbach stream. The shallow resistivities (5-10 m) measured highlight several weathered zones possibly characterized by different porosity. A combined analysis with soil water conductivity measurements in boreholes allows proposing a map of the spatial extension of these units. The resistivity data are also used to assess the depth of the main reservoir at the scale of the catchment. The hypothesis of the existence of a deeper reservoir is brought out by Audio-Magneto Telluric (AMT) and Very Low Frequency (VLF) measurements.

  20. Seasonal changes in Titan's weather patterns and the evolution and implications of accompanying surface changes

    NASA Astrophysics Data System (ADS)

    Turtle, Elizabeth; McEwen, Alfred

    2012-07-01

    Post-equinox changes in Titan's atmospheric circulation brought clouds and extensive methane rain to low latitudes [1,2]. Observations by Cassini ISS over the ensuing ~1.5 yr revealed surface changes to be short-lived; few rain-darkened areas persisted through 2011. In an unsaturated permeable medium, infiltration rates are >20 mm/week [3], so persistence of surface liquids over several months suggests that either an impermeable layer or the local methane table lies close to the surface. Evaporation rates >1 mm/week are predicted at low latitudes [4] and 20 mm/week has been documented at Titan's poles [5], thus areas where darkening persisted must be saturated ground at the level of a methane table or have had ponded liquid 2.5-50 cm deep. Several smaller areas of surface brightening were also observed, a phenomenon that is less well understood. Cassini VIMS spectra of these regions do not match clouds or other surface units [6]. Interpretations include cleaning by runoff [2] or deposition of a fine-grained volatile solid as the result of evaporative cooling of the surface [6]. In general, brightening has persisted longer than darkening, but these areas are also reverting to their original appearance, possibly due to evaporation/sublimation of the bright material or re-deposition of darker hydrocarbons by aeolian transport or precipitation from the atmosphere. Cassini and Earth-based observers monitor Titan frequently, but few clouds have been observed since Fall 2010, which may indicate that enough methane was removed from the atmosphere and the lapse rate stabilized sufficiently that activity will not resume until the onset of convection at mid-northern latitudes later in northern spring. A similar lapse followed a 2004 outburst of south-polar clouds [7], which also appeared to produce significant rainfall [8]. [1] Turtle et al., GRL 38, L03203, doi:10.1029/2010GL046266, 2011. [2] Turtle et al., Science 331, 10.1126/science.1201063. 2011. [3] Hayes et al., GRL 35

  1. Environmental Education Tips: Weather Activities.

    ERIC Educational Resources Information Center

    Brainard, Audrey H.

    1989-01-01

    Provides weather activities including questions, on weather, heating the earth's surface, air, tools of the meteorologist, clouds, humidity, wind, and evaporation. Shows an example of a weather chart activity. (RT)

  2. Meteorite Falls Observed in U.S. Weather Radar Data in 2015 and 2016 (To Date)

    NASA Technical Reports Server (NTRS)

    Fries, Marc; Fries, Jeffrey; Hankey, Mike; Matson, Robert

    2016-01-01

    To date, over twenty meteorite falls have been located in the weather radar imagery of the National Oceanic and Atmospheric Administration (NOAA)'s NEXRAD radar network. We present here the most prominent events recorded since the last Meteoritical Society meeting, covering most of 2015 and early 2016. Meteorite Falls: The following events produced evidence of falling meteorites in radar imagery and resulted in meteorites recovered at the fall site. Creston, CA (24 Oct 2015 0531 UTC): This event generated 218 eyewitness reports submitted to the American Meteor Society (AMS) and is recorded as event #2635 for 2015 on the AMS website. Witnesses reported a bright fireball with fragmentation terminating near the city of Creston, CA, north of Los Angeles. Sonic booms and electrophonic noise were reported in the vicinity of the event. Weather radar imagery records signatures consistent with falling meteorites in data from the KMUX, KVTX, KHNX and KVBX. The Meteoritical Society records the Creston fall as an L6 meteorite with a total recovered mass of 688g. Osceola, FL (24 Jan 2016 1527 UTC): This daytime fireball generated 134 eyewitness reports on AMS report number 266 for 2016, with one credible sonic boom report. The fireball traveled roughly NE to SW with a terminus location north of Lake City, FL in sparsely populated, forested countryside. Radar imagery shows distinct and prominent evidence of a significant meteorite fall with radar signatures seen in data from the KJAX and KVAX radars. Searchers at the fall site found that recoveries were restricted to road sites by the difficult terrain, and yet several meteorites were recovered. Evidence indicates that this was a relatively large meteorite fall where most of the meteorites are unrecoverable due to terrain. Osceola is an L6 meteorite with 991 g total mass recovered to date. Mount Blanco, TX (18 Feb 2016 0343 UTC): This event produced only 39 eyewitness reports and is recorded as AMS event #635 for 2016. No

  3. Sea surface temperature: Observations from geostationary satellites

    NASA Astrophysics Data System (ADS)

    Bates, John J.; Smith, William L.

    1985-11-01

    A procedure is developed for estimating sea surface temperatures (SST) from multispectral image data acquired from the VISSR atmospheric sounder (VAS) on the geostationary GOES satellites. Theoretical regression equations for two and three infrared window channels are empirically tuned by using clear field of view satellite radiances matched with reports of SST from NOAA fixed environmental buoys from 1982. The empirical regression equations are then used to produce daily regional analyses of SST. The daily analyses are used to study the response of SST's to the passage of Hurricane Alicia (1983) and Hurricane Debbie (1982) and are also used as a first guess surface temperature in the retrieval of atmospheric temperature and moisture profiles over the oceanic regions. Monthly mean SST's for the western North Atlantic and the eastern equatorial Pacific during March and July 1982 were produced for use in the NASA/JPL SST intercomparison workshop series. Workshop results showed VAS SST's have a scatter of 0.8°-1.0°C and a slight warm bias with respect to the other measurements of SST. Subsequently, a second set of VAS/ buoy matches collected during 1983 and 1984 was used to produce a set of bias corrected regression relations for VAS.

  4. Observing Ocean Surface Wind-stress With Spacebased Scatterometers

    NASA Astrophysics Data System (ADS)

    Liu, W.

    2007-12-01

    Seven microwave scatterometers have been launched since the short life span of Seasat in 1978; they have provided ocean surface wind-stress vectors, night and days, under clear and cloudy conditions. The evolution of their capability will be summarized. The unique capability of measuring stress, as distinguished from winds, will be clarified, and major impact on scientific research and operational application will be highlighted. Potential increase in spatial resolution, reduction in directional ambiguities, improvement in strong wind retieval, and reduction rain attenuation will be discussed. Future international constellation in meeting the operational weather application requirement of six-hourly revisit time will be described.

  5. Frost Monitoring and Forecasting Using MODIS Land Surface Temperature Data and a Numerical Weather Prediction Model Forecasts for Eastern Africa

    NASA Technical Reports Server (NTRS)

    Kabuchanga, Eric; Flores, Africa; Malaso, Susan; Mungai, John; Sakwa, Vincent; Shaka, Ayub; Limaye, Ashutosh

    2014-01-01

    Frost is a major challenge across Eastern Africa, severely impacting agricultural farms. Frost damages have wide ranging economic implications on tea and coffee farms, which represent a major economic sector. Early monitoring and forecasting will enable farmers to take preventive actions to minimize the losses. Although clearly important, timely information on when to protect crops from freezing is relatively limited. MODIS Land Surface Temperature (LST) data, derived from NASA's Terra and Aqua satellites, and 72-hr weather forecasts from the Kenya Meteorological Service's operational Weather Research Forecast model are enabling the Regional Center for Mapping of Resources for Development (RCMRD) and the Tea Research Foundation of Kenya to provide timely information to farmers in the region. This presentation will highlight an ongoing collaboration among the Kenya Meteorological Service, RCMRD, and the Tea Research Foundation of Kenya to identify frost events and provide farmers with potential frost forecasts in Eastern Africa.

  6. Frost monitoring and forecasting using MODIS Land Surface Temperature data and a Numerical Weather Prediction model forecasts for Eastern Africa

    NASA Astrophysics Data System (ADS)

    Limaye, A. S.; Kabuchanga, E. S.; Flores, A.; Mungai, J.; Sakwa, V. N.; Shaka, A.; Malaso, S.; Irwin, D.

    2014-12-01

    Frost is a major challenge across Eastern Africa, severely impacting agriculture. Frost damages have wide ranging economic implications on tea and coffee farms, which represent a major economic sector. Early monitoring and forecasting will enable farmers to take preventive actions to minimize the losses. Although clearly important, timely information on when to protect crops from freezing is relatively limited. MODIS Land Surface Temperature (LST) data, derived from NASA's Terra and Aqua satellites, and 72-hr weather forecasts from the Kenya Meteorological Service's operational Weather Research Forecast model are enabling the Regional Center for Mapping of Resources for Development (RCMRD) and the Tea Research Foundation of Kenya to provide timely information to farmers in the region. This presentation will highlight an ongoing collaboration among the Kenya Meteorological Service, RCMRD, and the Tea Research Foundation of Kenya to identify frost events and provide farmers with potential frost forecasts in Eastern Africa.

  7. Surface analysis and anti-graffiti behavior of a weathered polyurethane-based coating embedded with hydrophobic nano silica

    NASA Astrophysics Data System (ADS)

    Rabea, A. Mohammad; Mohseni, M.; Mirabedini, S. M.; Tabatabaei, M. Hashemi

    2012-03-01

    In this study, a permanent anti-graffiti polyurethane coating was prepared using concomitant loading of an OH-functional silicone modified polyacrylate additive ranging from 2 to 15 mol% and hydrophobic silica nanoparticles from 1 to 5 wt%. UV-visible spectroscopy, contact angle measurement and dynamic mechanical thermal analysis (DMTA) analysis were conducted on selected samples to study the weathering performance of samples containing various amounts of silica nanoparticles before and after accelerated weathering conditions. The results showed that higher amounts of additive had inferior effects on the anti-graffiti performance of the coating samples after exposure. However, silica nanoparticles could positively affect the anti-graffiti performance against ageing cycles. This improvement was attributed to lower degradation of samples containing silica nanoparticles and barrier property of nanoparticles against graffiti penetration. The presence of silica nanoparticles did not have any significant effect on the surface free energy of the samples prior and after ageing.

  8. Seasonal changes in Titan's weather patterns and the evolution and implications of accompanying surface changes

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Perry, J.; McEwen, A. S.; Barbara, J. M.; Del Genio, A. D.; West, R. A.; Barnes, J. W.; Hayes, A.; Lorenz, R. D.; Lunine, J. I.; Stofan, E. R.; Schaller, E. L.; Lopes, R. M.; Ray, T. L.

    2012-12-01

    Post-equinox changes in Titan's atmospheric circulation brought clouds and extensive methane rain to Titan's low latitudes [1,2]. Observations by Cassini ISS over the ~2 years since the storm revealed most of the changes to be short-lived; only a few darkened patches persisted through Fall 2011. In an unsaturated permeable medium, infiltration rates exceed 20 mm/week [3], so persistence of surface liquids over several months suggests either a shallow impermeable layer or that the local methane table lies close to the surface. Evaporation rates greater than 1 mm/week are predicted in equatorial regions [4] and rates of 20 mm/week have been documented at Titan's poles [5], thus areas where darkening persisted must be saturated ground at the level of a methane table or have had liquid ponded to depths of 2.5-50 cm. Several smaller areas of surface brightening were also observed, a phenomenon that is less well understood. Cassini VIMS spectra of these regions do not match those of clouds or other surface units [6, 7]. Interpretations include cleaning by runoff [2] or deposition of a fine-grained volatile solid as the result of evaporative cooling [6, 7]. In general, brightening has persisted longer than darkening, but these areas are also reverting to their original appearance, which could constrain rates of evaporation/sublimation of the bright material or re-deposition of darker hydrocarbons by aeolian transport or precipitation from the atmosphere. Cassini and Earth-based observers monitor Titan frequently (typically at least a few times per month), but few clouds have been observed since Fall 2010, which may indicate that enough methane was removed from the atmosphere and the lapse rate stabilized sufficiently that activity will not resume until the onset of convection at mid-northern latitudes later in northern spring. A similar lapse followed a 2004 outburst of south-polar clouds [8], which also appeared to produce significant rainfall [9]. [1] Turtle et al., GRL

  9. Evolution of Titan's equinoctial weather patterns and accompanying surface changes and implications thereof

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Perry, J. E.; Barnes, J. W.; McEwen, A. S.; Barbara, J. M.; Del Genio, A. D.; Hayes, A. G.; West, R. A.; Lorenz, R. D.; Schaller, E. L.; Lunine, J. I.; Ray, T. L.; Lopes, R. M. C.; Stofan, E. R.

    2012-04-01

    Post-equinox changes in Titan's atmospheric circulation brought clouds and extensive methane rain to Titan's low latitudes [1,2]. Observations by Cassini ISS over the ~1.5 years since the storm revealed most of the changes to be short-lived; only a few darkened patches persisted through Fall 2011. In an unsaturated permeable medium, infiltration rates are >20 mm/week [3], so persistence of surface liquids over several months suggests either a shallow impermeable layer or that the local methane table lies close to the surface. Evaporation rates >1 mm/week are predicted in equatorial regions [4] and rates of 20 mm/week have been documented at the poles [5], thus areas where darkening persisted must be saturated ground at the level of a methane table or have had liquid ponded to depths of 2.5-50 cm. Several smaller areas of surface brightening were also observed, a phenomenon that is less well understood. Cassini VIMS spectra of these regions do not match those of clouds or other surface units [6, 7]. Interpretations include cleaning by runoff [2] or deposition of fresh methane ice [6, 7]. In general, brightening has persisted longer than darkening, but these areas are also reverting to their original appearance, which could constrain the rate of re-deposition of darker hydrocarbon materials by aeolian transport or possibly precipitation of aerosols from the atmosphere. Although we monitor Titan frequently (at least a few times per month), little cloud activity has been observed since Fall 2010. This lack of clouds may indicate that the outbreak removed enough methane from the atmosphere and the lapse rate stabilized sufficiently that activity will not resume until the onset of convection at mid-northern latitudes later in northern spring. A similar lapse followed a large outbreak of south-polar clouds in Fall 2004 [8], which also appeared to produce significant rainfall [9]. References: [1] Turtle et al., GRL 38, L03203, doi: 10.1029/2010GL046266, 2011. [2] Turtle et

  10. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the SPoRT-MODIS GVF dataset on a land surface model (LSM) apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. In the West, higher latent heat fluxes prevailed, which enhanced the rates of evapotranspiration and soil moisture depletion in the LSM. By late Summer and Autumn, both the average sensible and latent heat fluxes increased in the West as a result of the more rapid soil drying and higher coverage of GVF. The impacts of the SPoRT GVF dataset on NWP was also examined for a single severe weather case study using the Weather Research and Forecasting (WRF) model. Two separate coupled LIS/WRF model simulations were made for the 17 July 2010 severe weather event in the Upper Midwest using the NCEP and SPoRT GVFs, with all other model parameters remaining the same. Based on the sensitivity results, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and

  11. The Role of Model and Initial Condition Error in Numerical Weather Forecasting Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.; Errico, Ronald M.

    2013-01-01

    A series of experiments that explore the roles of model and initial condition error in numerical weather prediction are performed using an observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO). The use of an OSSE allows the analysis and forecast errors to be explicitly calculated, and different hypothetical observing networks can be tested with ease. In these experiments, both a full global OSSE framework and an 'identical twin' OSSE setup are utilized to compare the behavior of the data assimilation system and evolution of forecast skill with and without model error. The initial condition error is manipulated by varying the distribution and quality of the observing network and the magnitude of observation errors. The results show that model error has a strong impact on both the quality of the analysis field and the evolution of forecast skill, including both systematic and unsystematic model error components. With a realistic observing network, the analysis state retains a significant quantity of error due to systematic model error. If errors of the analysis state are minimized, model error acts to rapidly degrade forecast skill during the first 24-48 hours of forward integration. In the presence of model error, the impact of observation errors on forecast skill is small, but in the absence of model error, observation errors cause a substantial degradation of the skill of medium range forecasts.

  12. National Weather Service

    MedlinePlus

    ... Days Monthly Temperatures Records Astronomical Data SAFETY Floods Tsunami Beach Hazards Wildfire Cold Tornadoes Fog Air Quality ... Water GIS International Weather Cooperative Observers Storm Spotters Tsunami Facts and Figures National Water Center WEATHER SAFETY ...

  13. Surface plasmon observed for carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bursill, L. A.; Stadelmann, P. A.; Peng, J. L.; Prawer, S.

    Parallel electron energy loss spectra (PEELS) results obtained for individual carbon nanotubes, using nanoprobe techniques (1-2 nm diameter electron beam), energy resolution 0.5 eV and collection times of 4-25 sec are presented. The aim was to use a nanoprobe to compare PEELS spectra from different parts of a tube, in order to search for variations in sp(exp 2)/sp(exp 3) bonding ratios as well as to look for orientation dependent plasmon and core-loss phenomena. It also seemed interesting to compare results for nanotubes with those for other varieties of graphitized carbons. The most interesting result so far was the appearance of a 15 eV plasmon peak, which appeared only for tubes containing less than or equal to about 12 graphite-like layers. This peak did not shift significantly with tube size. A low-loss peak at 6 eV of variable relative intensity was also observed. This peak was relatively very weak for amorphous tubes; it appears to be characteristic of graphite-like layers, as found for nanotubes and, of course, graphite itself. This paper is restricted to discussion of the low-loss results. The experimental techniques are first described, including some details of the methods which may be used to disperse and support sooty carbons for high-resolution transmission electron microscopy. The results are then presented, followed by an interpretation of all the low-loss PEELS results.

  14. Vertical structure of the wind field during the Special Observing Period I of the Global Weather Experiment

    NASA Technical Reports Server (NTRS)

    Paegle, J. N.; Paegle, J.; Zhen, Z.; Sampson, G.

    1986-01-01

    The vertical structure of the global atmosphere is analyzed for selected periods of the Special Observing Period I (SOP-I) for the Global Weather Experiment (GWE). The analysis consists of projection of the stream-function and velocity potential at 200 and 850 mb on spherical harmonics and of the wind and height fields on the normal modes of a linearized form of the primitive equations for a basic state at rest. The kinematic vertical structure is discussed in terms of correlation coefficients of the 200 mb and 850 mb winds and analysis of the internal and external normal modes of the primitive equations. The reliability of the results is checked by applying the same analysis methods to data sets obtained from three different institutions: Geophysical Fluid Dynamics Laboratory (GFDL), European Center for Medium Range Weather Forecasting (ECMWF), and Goddard Laboratory for the Atmospheres (GLA). It is found that, on a global basis, vertically reversing circulations are as important as the equivalent barotropic structures. For the verticaly reversing components, the gravity and mixed Rossby-gravity modes have contributions of the same order of magnitude as those of the Rossby modes in tropical latitudes.

  15. Simulation and Observation of Global Variations in Surface Exchange and Atmospheric Mixing Ratios of CO2

    NASA Astrophysics Data System (ADS)

    Denning, A.; Conner-Gausepohl, S.; Kawa, S.; Baker, I. T.; Zhu, Z.; Brown, M.; Vay, S.; Wofsy, S. C.; Philpott, A.; Collatz, G.; Schaefer, K.; Kleist, J.

    2005-12-01

    We have performed a simulation of hourly variations of terrestrial surface fluxes and the atmospheric mixing ratio of carbon dioxide from January 1, 2000 through December 31, 2004, and have evaluated the simulation by comparison to a number of observations. Terrestrial photosynthesis and ecosystem respiration were computed using the Simple Biosphere Model (SiB), driven by diurnally-varying weather analyzed by the NASA Goddard Earth Observing System (GEOS) Data Assimilation System (DAS), with vegetation parameters specified using imagery from the NOAA Advanced High Resolution Radiometer (AVHRR). CO2 emissions due to the combustion of fossil fuel and to air-sea gas exchange were also prescribed as boundary forcing to the atmospheric transport Parameterized Chemical Transport model (PCTM). Preliminary results showed reasonable agreement with spatial and synoptic variations, but suffered from a systematic offset with respect to the observed seasonal cycle of CO2 at many flask observing stations. Subsequent analysis showed that these problems were traceable to temporal interpolation of the satellite vegetation imagery and the treatment of leaf-to-canopy scaling in SiB, which have both been substantially revised as a result of these analyses. Comparisons to eddy covariance data at several sites, to tower-based continuous observations of CO2 mixing ratio, and to data collected by airborne sampling show that the coupled simulation successfully captures many features of the observed temporal and spatial variations of terrestrial surface exchange and atmospheric transport of CO2. The simulations demonstrate the sensitivity of both surface exchange and atmospheric transport of CO2 to synoptic weather events in middle latitudes, and suggest that high-frequency variations in continental [CO2] data can be interpreted in terms of surface flux anomalies.

  16. Ground-based microwave weather radar observations and retrievals during the 2014 Holuhraun eruption (Bárðarbunga, Iceland)

    NASA Astrophysics Data System (ADS)

    Mereu, Luigi; Silvio Marzano, Frank; Barsotti, Sara; Montopoli, Mario; Yeo, Richard; Arngrimsson, Hermann; Björnsson, Halldór; Bonadonna, Costanza

    2015-04-01

    During an eruptive event the real-time forecasting of ash dispersal into the atmosphere is a key factor to prevent air traffic disasters. The ash plume is extremely hazardous to aircraft that inadvertently may fly through it. Real-time monitoring of such phenomena is crucial, particularly to obtain specific data for the initialization of eruption and dispersion models in terms of source parameters. The latter, such as plume height, ash concentration, mass flow rate and size spectra, are usually very difficult to measure or to estimate with a relatively good accuracy. Over the last years different techniques have been developed to improved ash plume detection and retrieval. Satellite-based observations, using multi-frequency visible and infrared radiometers, are usually exploited for monitoring and measuring dispersed ash clouds. The observations from geostationary orbit suffer from a relatively poor spatial resolution, whereas the low orbit level has a relatively poor temporal resolution. Moreover, the field-of-view of infrared radiometric measurements may be reduced by obstructions caused by water and ice clouds lying between the ground and the sensor's antenna. Weather radar-based observations represent an emerging technique to detect and, to a certain extent, mitigate the hazard from the ash plumes. Ground-based microwave scanning radar systems can provide the three-dimensional information about the detected ash volume with a fairly high spatial resolution every few minutes and in all weather conditions. Methodological studies have recently investigated the possibility of using single-polarization and dual-polarization ground-based radar for the remote sensing of volcanic ash cloud. In this respect, radar observations can be complementary to satellite observations. A microphysical electromagnetic characterization of volcanic ash was carried out in terms of dielectric properties, composition, size and orientation of ash particles. An extended Volcanic Ash Radar

  17. Evaluation of Integrated Multi-satellitE Retrievals for GPM with All Weather Gauge Observations over CONUS

    NASA Astrophysics Data System (ADS)

    Chen, S.; Qi, Y.; Hu, B.; Hu, J.; Hong, Y.

    2015-12-01

    The Global Precipitation Measurement (GPM) mission is composed of an international network of satellites that provide the next-generation global observations of rain and snow. Integrated Multi-satellitE Retrievals for GPM (IMERG) is the state-of-art precipitation products with high spatio-temporal resolution of 0.1°/30min. IMERG unifies precipitation measurements from a constellation of research and operational satellites with the core sensors dual-frequency precipitation radar (DPR) and microwave imager (GMI) on board a "Core" satellite. Additionally, IMERG blends the advantages of currently most popular satellite-based quantitative precipitation estimates (QPE) algorithms, i.e. TRMM Multi-satellite Precipitation Analysis (TMPA), Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). The real-time and post real-time IMERG products are now available online at https://stormpps.gsfc.nasa.gov/storm. In this study, the final run post real-time IMERG is evaluated with all-weather manual gauge observations over CONUS from June 2014 through May 2015. Relative Bias (RB), Root-Mean-Squared Error (RMSE), Correlation Coefficient (CC), Probability Of Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI) are used to quantify the performance of IMERG. The performance of IMERG in estimating snowfall precipitation is highlighted in the study. This timely evaluation with all-weather gauge observations is expected to offer insights into performance of IMERG and thus provide useful feedback to the algorithm developers as well as the GPM data users.

  18. PV powering a weather station for severe weather

    SciTech Connect

    Young, W. Jr.; Schmidt, J.

    1997-12-31

    A natural disaster, such as Hurricane Andrew, destroys thousands of homes and businesses. The destruction from this storm left thousands of people without communications, potable water, and electrical power. This prompted the Florida Solar Energy Center to study the application of solar electric power for use in disasters. During this same period, volunteers at the Tropical Prediction Center at the National Hurricane Center (NHC), Miami, Florida and the Miami Office of the National Weather Service (NWS) were working to increase the quantity and quality of observations received from home weather stations. Forecasters at NHC have found surface reports from home weather stations a valuable tool in determining the size, strength and course of hurricanes. Home weather stations appear able to record the required information with an adequate level of accuracy. Amateur radio, utilizing the Automatic Packet Report System, (APRS) can be used to transmit this data to weather service offices in virtually real time. Many weather data collecting stations are at remote sites which are not readily serviced by dependable commercial power. Photovoltaic (solar electric) modules generate electricity and when connected to a battery can operate as a stand alone power system. The integration of these components provides an inexpensive standalone system. The system is easy to install, operates automatically and has good communication capabilities. This paper discusses the design criteria, operation, construction and deployment of a prototype solar powered weather station.

  19. Micro-mapping Meteorite Surfaces on Mars using Microscopic Imager Mosaics — A Tool for Unraveling Weathering History at Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Ashley, J. W.; Herkenhoff, K. E.; Golombek, M. P.; Johnson, J. R.

    2012-12-01

    Meteorites found on Mars provide valuable insights into martian surface processes. During the course of Mars Exploration Rover (MER) extended missions, Spirit and Opportunity have identified 17 confirmed and candidate meteorites on Mars, most of which are irons. The iron meteorites exhibit morphologies and coatings that communicate complex post-fall exposure histories relevant to an understanding of climate near the martian equator [1-4]. Both chemical and mechanical weathering effects are represented. Among the more significant of these are: 1) cm-scale hollowing, 2) surficial rounding, 3) mass excavation/dissolution and removal, 4) differential etching of kamacite plates and taenite lamellae, revealing Widmanstätten patterns, 5) discontinuous iron oxide coatings, and 6) the effects of cavernous weathering, which often penetrate to rock interiors. Determining the nature, magnitude, and timing of each process and its associated features is a complex problem that will be aided by laboratory experiments, image processing, and careful surface evaluation. Because some features appear to superpose others in ways analogous to stratigraphic relationships, Microscopic Imager (MI) mosaics are useful for sketching "geologic maps" of meteorite surfaces. Employing the techniques of conventional planetary mapping [5], each map was drafted manually using full-resolution MI mosaics and Adobe Photoshop software. Units were selected to represent the oxide coating, dust-coated surfaces, sand-coated surfaces, taenite lamellae, and uncoated metal. Also included are areas in shadow, and regions of blooming caused by specular reflection of metal. Regmaglypt rim crests are presented as lineations. As with stratigraphic relationships, noting embayments and other cross-cutting relationships assists with establishing the relative timing for observed weathering effects. In addition to suggesting alternating sequences of wind and water exposure [1], patterns in oxide coating occurrence show

  20. Physical Simulation of Maximum Seasonal Soil Freezing Depth in the United States Using Routine Weather Observations.

    NASA Astrophysics Data System (ADS)

    Degaetano, Arthur T.; Cameron, Michael D.; Wilks, Daniel S.

    2001-03-01

    An existing, physically based soil freezing model applicable to humid climates is modified for use in the central and western United States. Simulations using the state-of-the-art Simultaneous Heat and Water (SHAW) model indicated that the original model required the addition of a water budgeting scheme and alteration of the equation for soil thermal conductivity. Using only daily temperature, liquid precipitation, snowfall, and snow cover, this new model allows the simulation of maximum seasonal frost depths at several thousand U.S. stations.Comparison of the model-derived maximum frost depths with observed and soil temperature-inferred soil freezing maxima at 32 arid and semiarid locations indicates excellent agreement. Observed maximum soil freezing depths, ranging from 0 to over 100 cm, are simulated, with an average absolute error of 5.4 cm. At individual stations, the seasonal penetration and thawing of soil freezing tracks that of the observations very closely, regardless of ambient soil moisture conditions.

  1. Space Weathering Processes on Mercury

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Pieters, C. M.

    2002-01-01

    Like the Moon, Mercury has no atmosphere to protect it from the harsh space environment and therefore it is expected that it will incur the effects of space weathering. These weathering processes are capable of both creating regolith and altering its optical properties. However, there are many important differences between the environments of Mercury and the Moon. These environmental differences will almost certainly affect the weathering processes as well as the products of those processes. It should be possible to observe the effects of these differences in Vis/NIR spectra of the type expected to be returned by MESSENGER. More importantly, understanding these weathering processes and their consequences is essential for evaluating the spectral data returned from MESSENGER and other missions in order to determine the mineralogy and the iron content of the Mercurian surface. Theoretical and experimental work has been undertaken in order to better understand these consequences.

  2. Plasmon Surface Polariton Dispersion by Direct Optical Observation.

    ERIC Educational Resources Information Center

    Swalen, J. D.; And Others

    1980-01-01

    Describes several simple experiments that can be used to observe directly the dispersion curve of plasmon surface polaritons (PSP) on flat metal surfaces. A method is described of observing the increonental change in the wave vector of the PSP due to coatings that differ in thickness by a few nanometers. (Author/CS)

  3. A Global Analysis of the ZWD/PW Conversion Methods using Radiosonde Observations and Numerical Weather Models

    NASA Astrophysics Data System (ADS)

    Rozsa, S.

    2014-12-01

    Water vapor plays an important role as a basic climate variable in the thermodynamics and dynamics of the storm systems at the atmosphere and in hydrological cycles of local, regional and global scales. Moreover, the distribution of atmospheric water vapor is difficult to determine because of its rapid change in spatial and temporal scales. Atmospheric water vapor can be estimated by the zenith delay derived from ground-based GNSS data. Ground-based GNSS receivers are a valuable source for determining total zenith delay (ZTD) and precipitable water vapor (PW) data for meteorology since they are portable, economic and provide measurements that are not affected by weather conditions. They cannot provide a humidity profile as radiosondes can, however they have the advantage of producing automated continuous data as opposed to operational radiosondes usually providing two measurements in a day. Therefore, tropospheric delay modeling methods for estimating precipitable water vapor using GNSS signals are being developed frequently. Wet and hydrostatic zenith delays can be computed by applying the mapping functions which are mathematical equations using elevation angles. The observed tropospheric delays can be used for monitoring the water vapor content of the troposphere. In several regions of the world GNSS derived products are already used on a routine basis for numerical weather prediction. In this study, PW values obtained from radiosonde profiles and the ones derived from ground-based GNSS data are processed both with BERNESE v5.0 using Niell mapping function and GAMIT/GLOBK using empirical model GPT (Global Pressure and Temperature) are compared with the values computed from radiosonde analysis algorithm under severe storm conditions. In order to convert the ZWD to PW new, locally fitted models are derived using local radiosonde observations and ECMWF model data.

  4. Doppler weather radar observations of the 2009 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Schneider, David J.; Hoblitt, Richard P.

    2013-01-01

    The U.S. Geological Survey (USGS) deployed a transportable Doppler C-band radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska that provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data captured during the Redoubt eruption. The MiniMax 250-C (MM-250C) radar detected seventeen of the nineteen largest explosive events between March 23 and April 4, 2009. Sixteen of these events reached the stratosphere (above 10 km) within 2–5 min of explosion onset. High column and proximal cloud reflectivity values (50 to 60 dBZ) were observed from many of these events, and were likely due to the formation of mm-sized accretionary tephra-ice pellets. Reflectivity data suggest that these pellets formed within the first few minutes of explosion onset. Rapid sedimentation of the mm-sized pellets was observed as a decrease in maximum detection cloud height. The volcanic cloud from the April 4 explosive event showed lower reflectivity values, due to finer particle sizes (related to dome collapse and related pyroclastic flows) and lack of significant pellet formation. Eruption durations determined by the radar were within a factor of two compared to seismic and pressure-sensor derived estimates, and were not well correlated. Ash dispersion observed by the radar was primarily in the upper troposphere below 10 km, but satellite observations indicate the presence of volcanogenic clouds in the stratosphere. This study suggests that radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.

  5. Coastal Observations of Weather Features in Senegal during the AMMA SOP-3 Period

    NASA Technical Reports Server (NTRS)

    Jenkins, G.; Kucera, P.; Joseph, E.; Fuentes, J.; Gaye, A.; Gerlach, J.; Roux, F.; Viltard, N.; Papazzoni, M.; Protat, A.; Bouniol, D.; Reynolds, A.; Arnault, J.; Badiane, D.; Kebe, F.; Camara, M.; Sall, S.

    2009-01-01

    During 15 August through 30 September 2006, ground and aircraft measurements were obtained from a multi-national group of students and scientists in Senegal. Key measurements were aimed at investigating and understanding precipitation processes, thermodynamic and dynamic environmental conditions, cloud, aerosol and microphysical processes and spaceborne sensors (TRMM, CloudSat/Calipso) validation. Ground and aircraft instruments include: ground based polarimetric radar, disdrometer measurements, a course and a high-density rain gauge network, surface chemical measurements, a 10 m flux tower, broadband IR, solar and microwave measurements, rawinsonde and radiosonde measurements, FA-20 dropsonde, in situ microphysics and cloud radar measurements. Highlights during SOP3 include ground and aircraft measurements of squall lines, African Easterly Waves (AEWs), Saharan Air Layer advances into Senegal, and aircraft measurements of AEWs -- including the perturbation that became Hurricane Isaac.

  6. An assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements

    NASA Astrophysics Data System (ADS)

    Holmes, Thomas R. H.; Jackson, Thomas J.; Reichle, Rolf H.; Basara, Jeffrey B.

    2012-02-01

    Surface soil temperature estimates at approximately 0.05 m depth are needed to retrieve soil moisture from the planned Soil Moisture Active Passive (SMAP) L-band (1.4 GHz) satellite. Numerical weather prediction (NWP) systems as operated by various weather centers produce global estimates of soil temperature. In this study in situ data collected over the state of Oklahoma are used to assess surface (soil) temperature from three NWP systems: (1) the integrated forecast system from the European Center for Medium range Weather Forecasts (ECMWF), (2) the modern-era retrospective analysis for research and applications (MERRA) from the NASA Global Modeling and Assimilation Office, and (3) the global data assimilation system used by the National Center for Environmental Prediction (NCEP). The results are presented by hour of day with specific attention directed to the SMAP early morning overpass time at around 6 A.M. local time, and the period of 1 April to 1 October 2009. It was found that the NWP systems estimate the 0.05 m soil temperature at this time of day with an overall root mean square error of 1.9 to 2.0 K. It is shown that this error can be reduced to 1.6 to 1.8 K when differences between the modeling and measurement depth are accounted for by synchronizing each NWP set to match the mean phase of the in situ data and adjusting the amplitude in accordance with heat flow principles. These results indicate that with little calibration all products meet the SMAP error budget criteria over Oklahoma.

  7. Characterization of Surface Heterogeneity among Asteroid Taxonomic Classes according to Sloan Digital Sky Survey Observations

    NASA Astrophysics Data System (ADS)

    Pinkham, Sunny; Ziffer, Julie; Nelson, Tyler

    2016-10-01

    This research characterizes the extent of surface heterogeneity among asteroid classes by the extent of Sloan Digital Sky Survey (SDSS) color variance within multiple observations of the same asteroid. The SDSS MOC4 database includes data from 220,101 observations of 104,449 unique objects. The amount of multiple observations of one target makes it ideal for statistically analyzing the surface inhomogeneity of asteroid surfaces. Information from the SDSS MOC4 database (below an error threshold determined from standard error propagation techniques and the interquartile range) is combined with information from the classification in Carvano et al. (2010) to analyze asteroid surface heterogeneity based on taxonomic class. Individual observations are grouped by asteroid, and asteroids are grouped by class. The standard deviation of each normalized SDSS color (i.e. u-r, g-r, r-i, r-z) for each asteroid with multiple observations is calculated. The mean of the standard deviations is then computed for a given class. Comparison of the size of the average standard deviation to the size of the error determines the extent of true variance within a normalized color in a class. The effect of phase angles on SDSS data, as discussed in Carvano et al. (2015), are considered. Additionally, implications for space weathering and evolutionary relationships between taxonomic classes are explored.

  8. Detection of Rain-on-Snow (ROS) Events Using the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Weather Station Observations

    NASA Astrophysics Data System (ADS)

    Ryan, E. M.; Brucker, L.; Forman, B. A.

    2015-12-01

    During the winter months, the occurrence of rain-on-snow (ROS) events can impact snow stratigraphy via generation of large scale ice crusts, e.g., on or within the snowpack. The formation of such layers significantly alters the electromagnetic response of the snowpack, which can be witnessed using space-based microwave radiometers. In addition, ROS layers can hinder the ability of wildlife to burrow in the snow for vegetation, which limits their foraging capability. A prime example occurred on 23 October 2003 in Banks Island, Canada, where an ROS event is believed to have caused the deaths of over 20,000 musk oxen. Through the use of passive microwave remote sensing, ROS events can be detected by utilizing observed brightness temperatures (Tb) from AMSR-E. Tb observed at different microwave frequencies and polarizations depends on snow properties. A wet snowpack formed from an ROS event yields a larger Tb than a typical dry snowpack would. This phenomenon makes observed Tb useful when detecting ROS events. With the use of data retrieved from AMSR-E, in conjunction with observations from ground-based weather station networks, a database of estimated ROS events over the past twelve years was generated. Using this database, changes in measured Tb following the ROS events was also observed. This study adds to the growing knowledge of ROS events and has the potential to help inform passive microwave snow water equivalent (SWE) retrievals or snow cover properties in polar regions.

  9. Observation of Fermi surface deformation in a dipolar quantum gas

    NASA Astrophysics Data System (ADS)

    Aikawa, K.; Baier, S.; Frisch, A.; Mark, M.; Ravensbergen, C.; Ferlaino, F.

    2014-09-01

    In the presence of isotropic interactions, the Fermi surface of an ultracold Fermi gas is spherical. Introducing anisotropic interactions can deform the Fermi surface, but the effect is subtle and challenging to observe experimentally. Here, we report on the observation of a Fermi surface deformation in a degenerate dipolar Fermi gas of erbium atoms. The deformation is caused by the interplay between strong magnetic dipole-dipole interaction and the Pauli exclusion principle. We demonstrate the many-body nature of the effect and its tunability with the Fermi energy. Our observation provides a basis for future studies on anisotropic many-body phenomena in normal and superfluid phases.

  10. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  11. Evaluation of Nimbus 7 SMMR sensor with airborne radiometers and surface observations in the Norwegian Sea

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Cavalieri, D.; Crawford, J.; Campbell, W. J.; Farrelly, B.; Johannessen, J.; Johannessen, O. M.; Svendsen, E.; Kloster, K.

    1981-01-01

    Measurements made by the Nimbus 7 SMMR are compared with near simultaneous observations using the airborne SMMR simulator and with surface observations. The area of the test is in the Norwegian Sea between Bear Island and Northern Norway. It is noted that during the observation period two low-pressure systems were located in the test area, giving a spatial wind variation from 3-20 m/s. It is shown that the use of the currently available brightness temperatures and algorithms for SMMR does not give universally satisfactory results for SST and wind speed under extreme weather conditions. In addition, the SMMR simulator results are seen as indicating the need for more work on calibration.

  12. Understanding the coupled surface energy flux-valley wind system using observations in an alpine valley

    NASA Astrophysics Data System (ADS)

    Daniels, M. H.; Pardyjak, E.; Brutsaert, W. H.; Mage, R.; Parlange, M. B.

    2010-12-01

    Buoyancy-driven diurnal valley winds depend on relative partitioning of incoming solar radiation into the sensible and latent heat fluxes. Evaporation and transpiration at the surface contribute to the latent heat flux, while heating of the air near the surface results from the sensible heat flux. Thus if more moisture is available at the surface, (e.g. as soil moisture or dew) then more energy will be partitioned into the latent heat flux, and less will be available for the sensible heat flux. Presented here is an analysis of observations from surface weather stations placed throughout the La Fouly catchment (~20 km^2) in southern Switzerland during the summers of 2009 and 2010. The stations were equipped with sensors to measure atmospheric and land surface variables including: incoming solar radiation, 2 m air temperature, skin temperature, wind speed and direction, relative humidity, precipitation, soil moisture, and soil temperature. Scaling analysis is used to show how the balance between sensible and latent heat fluxes influences the buoyancy-driven valley winds. A preliminary analysis indicates that increased surface soil moisture tends to decrease the strength of slope winds both during the day and at night, while decreased soil moisture has the opposite effect. While this type of relation has been previously investigated through numerical simulations of valley or slope flows, it has not (to the authors' knowledge), been previously observed in the field.

  13. Field observations, experiments, and modeling of sediment production from freeze and thaw action on a bare, weathered granite slope in a temperate region of Japan

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Daizo; Fujita, Masaharu

    2016-08-01

    In the present study, field observations and model simulations were conducted to examine the process of sediment production due to freeze and thaw action in a temperate climate region. Two small areas were designated and observations were conducted to determine the mechanisms of sediment production due to freeze and thaw action on a bare, weathered granite slope in the Tanakami Mountains in the southern part of Shiga Prefecture, Japan. During the cold season from 2004 to 2005, air, surface, and subsurface temperatures were measured at 10-min intervals. The sediment produced on plot 1 was collected and weighed once per week, whereas the sediment produced on plot 2 was left untouched until the end of the cold season. The freeze and thaw cycle occurred repeatedly, with the frozen zone (i.e., temperature < 0 °C) extending to a depth of 10 cm. Sediment was produced as a result of active freeze and thaw processes and, accordingly, there was no longer sediment production at the end of the cold season. Plots 1 and 2 produced 108 and 44 kg m- 2 year- 1 of sediment, respectively. This difference indicates that sediment cover of the saprolite surface mitigated the destructive effects of freezing. During the cold season from 2005 to 2006, a half of plot 1 was covered by broadleaves (Quercus serrata) and the other half was covered by coniferous leaves (Pinus densiflora); plot 2 was covered by no leaves to understand the effects of surface cover on the reduction in sediment production. The results showed that surface leaf cover dramatically decreased sediment production due to freeze and thaw action versus the no-surface cover. A simulation model combining a thermal conductivity analysis and a simple and empirical sediment production model was developed to estimate the amount of sediment produced by the freeze and thaw action. The observation results of temperature change and amount of sediment during the first season, from 2004 to 2005, were simulated with the model. The model

  14. Greenland surface albedo changes 1981-2012 from satellite observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant melt over Greenland has been observed during the last several decades associated with extreme warming events over the northern Atlantic Ocean. An analysis of surface albedo change over Greenland is presented, using a 32-year consistent satellite albedo product from the Global Land Surfac...

  15. Climate change effects on Glacier recession in Himalayas using Multitemporal SAR data and Automatic Weather Station observations

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Singh, S. K.; Venkataraman, G.

    2009-04-01

    The Himalaya is the highest but the youngest mountain belt (20 to 60 million years B.P.) of the earth running in arc shape for about 2500 km. It has more than 90 peaks above 6000 m and contains about 50% of all glaciers outside of the polar environments (Bahadur, 1993). All glaciers in this region are in general recession since last 150 years (Paul et al.,1979). Gangotri, Siachen, Bara Shigri and Patsio are major glaciers in this region which are showing retreat with different rates and their respective tributary glaciers are completely disconnected from main body of glaciers. Spaceborne synthetic aperture radar data provide an important tool for monitoring the fluctuation of the glaciers. In this paper attempt has been made for quantifying the glacier retreat using multitemporal synthetic aperture radar (SAR) data. SAR intensity and phase information will be exploited separately under SAR intensity tracking and interferometric SAR (InSAR) coherence tracking (Strozzi et al., 2002) respectively. Glacier retreat study have been done using time series coregistered multi temporal SAR images. Simultaneously InSAR coherence thresholding is applied for tracking the snout of Gangotri glacier. It is observed that glacier is retreating at the rate of 21 m/a. Availability of high resolution spotlight mode TerraSAR-X SAR data will supplement the ENVISAT ASAR and ERS-1/2 based observations. The observatory in the proximity of Gangotri glacier has been made functional at Bhojbasa and all weather parameters viz. Snow fall, temperature, pressure, air vector, column water vapor and humidity are recorded twice a day as per WMO standards manually and automatically. Three Automatic Weather Stations (AWS) have been established in the glacier area at Bhojbasa , Kalindipass and Nandaban. Since Himalayan environment is presently under great stress of decay and degeneration, AWS data will be analyzed in the context of climate change effects on fluctuation of glaciers. References 1.Jagdish

  16. Climatological characteristics of fronts in the western North Pacific based on surface weather charts

    NASA Astrophysics Data System (ADS)

    Utsumi, Nobuyuki; Kim, Hyungjun; Seto, Shinta; Kanae, Shinjiro; Oki, Taikan

    2014-08-01

    Composite front climatology in the western North Pacific is determined using a newly developed 1.0° gridded data set. Here we propose a research strategy for determining the spatiotemporal distribution of fronts using weather chart images published by the Japan Meteorological Agency, one of the major data providers in the region. A preliminarily investigation of the internal data characteristics for the period of 2000-2010 is undertaken, and the final 4 years of data are used for an analysis of front climatology to avoid the effect of any spurious trends. This enables in-depth analyses to be conducted, which have not previously been possible in the region, including the composites of cross-sectional patterns for the thermal fields and precipitation near fronts, front length seasonality, and the significance of the thermal gradient near the fronts, in addition to determining the frontal frequency and spatial distribution of frontal precipitation. Pixel-wise analysis reveals that 56% of the local precipitation maximum is located on the warm side of a cold front caused by less tilted upward motion on the warm side, with the intrusion of the upper level cold dry air into the warm side. This new data set also enables a further analysis of the occluded fronts, which are not correctly distinguished in the existing objective detection method.

  17. Weather Watch

    ERIC Educational Resources Information Center

    Bratt, Herschell Marvin

    1973-01-01

    Suggests a number of ways in which Federal Aviation Agency weather report printouts can be used in teaching the weather section of meteorology. These weather sequence reports can be obtained free of charge at most major airports. (JR)

  18. Using Microwave Observations to Estimate Land Surface Temperature during Cloudy Conditions

    NASA Astrophysics Data System (ADS)

    Holmes, T. R.; Crow, W. T.; Hain, C.; Anderson, M. C.

    2014-12-01

    Land surface temperature (LST), a key ingredient for physically-based retrieval algorithms of hydrological states and fluxes, remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observations and passive microwave observations (MW). TIR is the most commonly used approach and the method of choice to provide standard LST products for various satellite missions. MW-based LST retrievals on the other hand are not as widely adopted for land applications; currently their principle use is in soil moisture retrieval algorithms. MW and TIR technologies present two highly complementary and independent means of measuring LST. MW observations have a high tolerance to clouds but a low spatial resolution, and TIR has a high spatial resolution with temporal sampling restricted to clear skies. The nature of the temperature at the very surface layer of the land makes it difficult to combine temperature estimates between different methods. The skin temperature is characterized by a strong diurnal cycle that is dependant in timing and amplitude on the exact sensing depth and thermal properties of the vegetation. This paper builds on recent progress in characterizing the main structural components of the DTC that explain differences in TIR and MW estimates of LST. Spatial patterns in DTC timing (phase lag with solar noon) and DTC amplitude have been calculated for TIR, MW and compared to weather prediction estimates. Based on these comparisons MW LST can be matched to the TIR record. This paper will compare in situ measurements of LST with satellite estimates from (downscaled) TIR and (reconciled) MW products. By contrasting the validation results of clear sky days with those of cloudy days the expected tolerance to clouds of the MW observations will be tested. The goal of this study is to determine the weather conditions in which MW can supplement the TIR LST record.

  19. Spectroscopic analyses of Fe and water in clays: A Martian surface weathering study

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, Carle M.; Edwards, J. O.; Coyne, L. M.; Chang, S.

    1991-01-01

    Martian surface morphology suggests the presence of liquid H2O on Mars in the past. Reflectance spectra of the Martian surface include features which correspond to the crystal field transitions of iron, as well as features supporting the presence of ice and minerals containing structural OH and surface water. Researchers initiated further spectroscopic studies of surface iron and water and structural OH in clays in order to determine what remotely obtained spectra can indicate about the presence of clays on Mars based on a clearer understanding of the factors influencing the spectral features. Current technology allows researchers to better correlate the low frequency fundamental stretching and bending vibrations of O-H bonds with the diagnostic near infrared overtone and combination bands used in mineral characterization and identification.

  20. Observation of water condensate on hydrophobic micro textured surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Ki Wook; Do, Sang Cheol; Ko, Jong Soo; Jeong, Ji Hwan

    2013-07-01

    We visually observed that a dropwise condensation occurred initially and later changed into a filmwise condensation on hydrophobic textured surface at atmosphere pressure condition. It was observed that the condensate nucleated on the pillar side walls of the micro structure and the bottom wall adhered to the walls and would not be lifted to form a spherical water droplet using environmental scanning electron microscope.

  1. Applications of Land Surface Temperature from Microwave Observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature (LST) is a key input for physically-based retrieval algorithms of hydrological states and fluxes. Yet, it remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observation...

  2. Shortwave surface radiation budget network for observing small-scale cloud inhomogeneity fields

    NASA Astrophysics Data System (ADS)

    Madhavan, B. L.; Kalisch, J.; Macke, A.

    2015-03-01

    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high spatial density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km x 12 km area) from April to July 2013, to capture the variability in the radiation field at the surface induced by small-scale cloud inhomogeneity. Each of these autonomously operated pyranometer stations was equipped with weather sensors for simultaneous measurements of ambient air temperature and relative humidity. In this paper, we provide the details of this unique setup of the pyranometer network and the data analysis with initial quality screening procedure we adopted. We also present some exemplary cases consisting of the days with clear, broken cloudy and overcast skies to assess our spatio-temporal observations from the network, and validate their consistency with other collocated radiation measurements available during the HOPE period.

  3. Association of winter weather variability in Central and Eastern North America with tropical Pacific sea surface temperature

    NASA Astrophysics Data System (ADS)

    Montroy, David L.

    Many authors have statistically documented the seasonal precipitation and temperature patterns linked to tropical Pacific (TP) SST anomaly (SSTA) events. Only recently have changes in the daily distributions of observed surface precipitation and temperature begun to be analyzed in this context. But no extensive linkage of TP SSTs with daily North American weather observations has been established. The present research contributes to the need for such a linkage using a comprehensive set of analyses relating monthly composite patterns to daily atmospheric flow. First, the approach used in an earlier analysis of precipitation data is applied to monthly averages of daily maximum/minimum temperatures during warm and cold TP SSTA events, providing a set of regions with notable precipitation or temperature anomalies during warm and cold TP SSTA events. The associated series of daily precipitation and temperature anomalies during warm TP SSTA events are examined to document the change in the frequency of daily observations, the duration of consecutive days of daily anomalies, and the antecedent North Pacific-North American atmospheric conditions. Additionally, for all results, the modulation of the TP SSTA-North American teleconnections by other atmospheric modes is examined. The monthly composite temperature analyses demonstrated that, similar to the earlier precipitation analysis, the patterns of monthly average daily temperature extremes yielded previously unknown regions associated with TP SSTAs. In particular, new regions found to be characterized by strong temperature anomalies included the eastern U.S. (warm, December), the central U.S. Great Plains (warm, February), and the U.S. Great Plains (cool, October-November) during warm TP SSTA events, and south central Canada (March-April) and the southern U.S. Great Plains (warm, December-April) during cold TP SSTA events. Additionally, the observed monthly precipitation/temperature anomalies during SSTA events after 1992

  4. Low Cloud Type over the Ocean from Surface Observations. Part III: Relationship to Vertical Motion and the Regional Surface Synoptic Environment.

    NASA Astrophysics Data System (ADS)

    Norris, Joel R.; Klein, Stephen A.

    2000-01-01

    Composite large-scale dynamical fields contemporaneous with low cloud types observed at midlatitude Ocean Weather Station (OWS) C and eastern subtropical OWS N are used to establish representative relationships between low cloud type and the synoptic environment. The composites are constructed by averaging meteorological observations of surface wind and sea level pressure from volunteering observing ships (VOS) and analyses of sea level pressure, 1000-mb wind, and 700-mb pressure vertical velocity from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis project on those dates and times of day when a particular low cloud type was reported at the OWS.VOS and NCEP results for OWS C during summer show that bad-weather stratus occurs with strong convergence and ascent slightly ahead of a surface low center and trough. Cumulus-under-stratocumulus and moderate and large cumulus occur with divergence and subsidence in the cold sector of an extratropical cyclone. Both sky-obscuring fog and no-low-cloud typically occur with southwesterly flow from regions of warmer sea surface temperature and differ primarily according to slight surface convergence and stronger warm advection in the case of sky-obscuring fog or surface divergence and weaker warm advection in the case of no-low-cloud. Fair-weather stratus and ordinary stratocumulus are associated with a mixture of meteorological conditions, but differ with respect to vertical motion in the environment. Fair-weather stratus occurs most commonly in the presence of slight convergence and ascent, while stratocumulus often occurs in the presence of divergence and subsidence.Surface divergence and estimated subsidence at the top of the boundary layer are calculated from VOS observations. At both OWS C and OWS N during summer and winter these values are large for ordinary stratocumulus, less for cumulus-under-stratocumulus, and least (and sometimes slightly negative) for

  5. Surface Turbulent Fluxes Over Pack Ice Inferred from TOVS Observations

    NASA Technical Reports Server (NTRS)

    Lindsay, R. W.; Francis, J. A.; Persson, P. O. G.; Rothrock, D. A.; Schweiger, A. J.

    1996-01-01

    A one-dimensional, atmospheric boundary layer model is coupled to a thermodynamic ice model to estimate the surface turbulent fluxes over thick sea ice. The principal forcing parameters in this time-dependent model are the air temperature, humidity, and wind speed at a specified level (either at 2 m or at 850 mb) and the downwelling surface radiative fluxes. The free parameters. are the air temperature, humidity, and wind speed profiles below the specified level, the surface skin temperature, the ice temperature profile, and the surface turbulent fluxes. The goal is to determine how well we can estimate the turbulent surface heat and momentum fluxes using forcing parameters from atmospheric temperatures and radiative fluxes retrieved from the TIROS-N Operational Vertical Sounder (TOVS) data. Meteorological observations from the Lead Experiment (LeadEx, April 1992) ice camp are used to validate turbulent fluxes computed with the surface observations and the results are used to compare with estimates based on radio-sonde observations or with estimates based on TOVS data. We find that the TOVS-based estimates of the stress are significantly more accurate than those found with a constant geostrophic drag coefficient, with a root-mean-square error about half as large. This improvement is due to stratification effects included in the boundary layer model. The errors in the sensible heat flux estimates, however, are large compared to the small mean values observed during the field experiment.

  6. Coupling fast all-season soil strength land surface model with weather research and forecasting model to assess low-level icing in complex terrain

    NASA Astrophysics Data System (ADS)

    Sines, Taleena R.

    Icing poses as a severe hazard to aircraft safety with financial resources and even human lives hanging in the balance when the decision to ground a flight must be made. When analyzing the effects of ice on aviation, a chief cause for danger is the disruption of smooth airflow, which increases the drag force on the aircraft therefore decreasing its ability to create lift. The Weather Research and Forecast (WRF) model Advanced Research WRF (WRF-ARW) is a collaboratively created, flexible model designed to run on distributed computing systems for a variety of applications including forecasting research, parameterization research, and real-time numerical weather prediction. Land-surface models, one of the physics options available in the WRF-ARW, output surface heat and moisture flux given radiation, precipitation, and surface properties such as soil type. The Fast All-Season Soil STrength (FASST) land-surface model was developed by the U.S. Army ERDC-CRREL in Hanover, New Hampshire. Designed to use both meteorological and terrain data, the model calculates heat and moisture within the surface layer as well as the exchange of these parameters between the soil, surface elements (such as snow and vegetation), and atmosphere. Focusing on the Presidential Mountain Range of New Hampshire under the NASA Experimental Program to Stimulate Competitive Research (EPSCoR) Icing Assessments in Cold and Alpine Environments project, one of the main goals is to create a customized, high resolution model to predict and assess ice accretion in complex terrain. The purpose of this research is to couple the FASST land-surface model with the WRF to improve icing forecasts in complex terrain. Coupling FASST with the WRF-ARW may improve icing forecasts because of its sophisticated approach to handling processes such as meltwater, freezing, thawing, and others that would affect the water and energy budget and in turn affect icing forecasts. Several transformations had to take place in order

  7. Observing submesoscale currents from high resolution surface roughness images

    NASA Astrophysics Data System (ADS)

    Rascle, N.; Chapron, B.; Nouguier, F.; Mouche, A.; Ponte, A.

    2015-12-01

    At times, high resolution sea surface roughness variations can provide stunning details of submesoscale upper ocean dynamics. As interpreted, transformations of short scale wind waves by horizontal current gradients are responsible for those spectacular observations. Here we present tow major advances towards the quantitative interpretation of those observations. First, we show that surface roughness variations mainly trace two particular characteristics of the current gradient tensor, the divergence and the strain in the wind direction. Local vorticity and shear in the wind direction should not affect short scale roughness distribution and would not be detectable. Second, we discuss the effect of the viewing direction using sets of quasi-simultaneous sun glitter images, taken from different satellites to provide different viewing configurations. We show that upwind and crosswind viewing observations can be markedly different. As further confirmed with idealized numerical simulations, this anisotropy well traces surface current strain area, while more isotropic contrasts likely trace areas dominated by surface divergence conditions. These findings suggest the potential to directly observe surface currents at submesoscale by using high resolution roughness observations at multiple azimuth viewing angles.

  8. An observational correlation between stellar brightness variations and surface gravity.

    PubMed

    Bastien, Fabienne A; Stassun, Keivan G; Basri, Gibor; Pepper, Joshua

    2013-08-22

    Surface gravity is a basic stellar property, but it is difficult to measure accurately, with typical uncertainties of 25 to 50 per cent if measured spectroscopically and 90 to 150 per cent if measured photometrically. Asteroseismology measures gravity with an uncertainty of about 2 per cent but is restricted to relatively small samples of bright stars, most of which are giants. The availability of high-precision measurements of brightness variations for more than 150,000 stars provides an opportunity to investigate whether the variations can be used to determine surface gravities. The Fourier power of granulation on a star's surface correlates physically with surface gravity: if brightness variations on timescales of hours arise from granulation, then such variations should correlate with surface gravity. Here we report an analysis of archival data that reveals an observational correlation between surface gravity and root mean squared brightness variations on timescales of less than eight hours for stars with temperatures of 4,500 to 6,750 kelvin, log surface gravities of 2.5 to 4.5 (cgs units) and overall brightness variations of less than three parts per thousand. A straightforward observation of optical brightness variations therefore allows a determination of the surface gravity with a precision of better than 25 per cent for inactive Sun-like stars at main-sequence to giant stages of evolution. PMID:23969460

  9. An observational correlation between stellar brightness variations and surface gravity.

    PubMed

    Bastien, Fabienne A; Stassun, Keivan G; Basri, Gibor; Pepper, Joshua

    2013-08-22

    Surface gravity is a basic stellar property, but it is difficult to measure accurately, with typical uncertainties of 25 to 50 per cent if measured spectroscopically and 90 to 150 per cent if measured photometrically. Asteroseismology measures gravity with an uncertainty of about 2 per cent but is restricted to relatively small samples of bright stars, most of which are giants. The availability of high-precision measurements of brightness variations for more than 150,000 stars provides an opportunity to investigate whether the variations can be used to determine surface gravities. The Fourier power of granulation on a star's surface correlates physically with surface gravity: if brightness variations on timescales of hours arise from granulation, then such variations should correlate with surface gravity. Here we report an analysis of archival data that reveals an observational correlation between surface gravity and root mean squared brightness variations on timescales of less than eight hours for stars with temperatures of 4,500 to 6,750 kelvin, log surface gravities of 2.5 to 4.5 (cgs units) and overall brightness variations of less than three parts per thousand. A straightforward observation of optical brightness variations therefore allows a determination of the surface gravity with a precision of better than 25 per cent for inactive Sun-like stars at main-sequence to giant stages of evolution.

  10. Estimating long-term surface hydrological components by coupling remote sensing observation with surface flux model.

    SciTech Connect

    Song, J.; Wesely, M. L.

    2002-05-02

    A model framework for parameterized subgrid-scale surface fluxes (PASS) has been applied to use satellite data, models, and routine surface observations to infer root-zone available moisture content and evapotranspiration rate with moderate spatial resolution within Walnut River Watershed in Kansas. Biweekly composite normalized difference vegetative index (NDVI) data are derived from observations by National Oceanic and Atmospheric Administration (NOAA) satellites. Local surface observations provide data on downwelling solar irradiance, air temperature, relative humidity, and wind speed. Surface parameters including roughness length, albedo, surface water conductance, and the ratio of soil heat flux to net radiation are estimated; pixel-specific near-surface meteorological conditions such as air temperature, vapor pressure, and wind speed are adjusted according to local surface forcing. The PASS modeling system makes effective use of satellite data and can be run for large areas for which flux data do not exist and surface meteorological data are available from only a limited number of ground stations. The long-term surface hydrological budget is evaluated using radar-derived precipitation estimates, surface meteorological observations, and satellite data. The modeled hydrological components in the Walnut River Watershed compare well with stream gauge data and observed surface fluxes during 1999.

  11. Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1996-08-01

    This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.

  12. Observations of Land Surface Variability Using Passive Microwave Sensing

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.

    1999-01-01

    Understanding the global variability of land surface wetness (soil moisture), skin temperature, and related surface fluxes of heat and moisture is key to assessing the importance of the land surface in influencing climate. The feasibility of producing model estimates of these quantities is being studied as part of the International Satellite Land Surface Climatology Project (ISLSCP) Global Soil Wetness Project (GSWP). In the GSWP approach, meteorological observations and analyses are used to drive global circulation models. Satellite measurements can provide independent estimates of key land surface parameters that are needed for initializing and validating the climate models and for monitoring long-term change. Satellite observations of the land surface can also be assimilated into soil models to estimate moisture in the root zone. In our research, passive microwave satellite data recorded during 1978-1987 from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) are being used to examine spatial and temporal trends in surface soil moisture, vegetation, and temperature. These data include observations at C and X bands (6.6 and 10.7 GHz), which are not available on the current Special Sensor Microwave/Imager (SSM/I) and are precursors to data that will become available from the Advanced Microwave Scanning Radiometer (AMSR) on Advanced Earth Observing Satellite (ADEOS-II) and Earth Observing System (EOS) PM1 in the year 2000. A chart shows a time-series of SMMR-derived surface temperature, T-e and surface soil moisture M, retrieved on a 0.5 deg x 0.5 deg grid and further averaged over a 4 deg x 10 deg study region in the African Sahel. Also shown are National Center for Environmental Prediction (NCEP) model outputs of surface temperature, T-sfc, and soil wetness, Soil-w. The variables have been scaled to have similar dynamic ranges on the plots. The NCEP data from the NCEP Reanalysis Project are monthly averages on a 2.5 deg x 2.5 deg grid averaged over

  13. SEM and TEM Observation of the Surfaces of the Fine-Grained Particles Retrieved from the Muses-C Regio on the Asteroid 25413 Itokawa

    NASA Technical Reports Server (NTRS)

    Noguchi, T.; Nakamura, T.; Zolensky, Michael E.; Tanaka, M.; Hashimoto, T.; Konno, M.; Nakato, A.; Ogami, T.; Fujimura, A.; Abe, M.; Yada, T.; Mukai, T.; Ueno, M.; Okada, T.; Shirai, K.; Ishibashi, Y.; Okazaki, R.

    2011-01-01

    Surface materials on airless solar system bodies exposed to interplanetary space are gradually changed their visible to near-infrared reflectance spectra by the process called "space weathering", which makes the spectra darker and redder. Hapke et al. proposed a model of space weathering: vapor deposition of nanophase reduced iron (npFe(sup 0)) on the surfaces of the grains within the very surface of lunar regolith. This model has been proved by detailed observation of the surfaces of the lunar soil grains by transmission electron microscope (TEM). They demonstrated that npFe(sup 0) was formed by a combination of vapor deposition and irradiation effects. In other words, both micrometeorite impacts and irradiation by solar wind and galactic cosmic ray play roles on the space weathering on the Moon. Because there is a continuum of reflectance spectra from those of Q-type asteroids (almost the same as those of ordinary chondrites) to those of S-type asteroids, it is strongly suggested that reflectance spectra of asteroids composed of ordinary chondrite-like materials were modified over time to those of S-type asteroids due to space weathering. It is predicted that a small amount of npFe(sup 0) on the surface of grains in the asteroidal regolith composed of ordinary chondrite-like materials is the main agent of asteroidal space weathering.

  14. RECONSTRUCTING CORONAL MASS EJECTIONS WITH COORDINATED IMAGING AND IN SITU OBSERVATIONS: GLOBAL STRUCTURE, KINEMATICS, AND IMPLICATIONS FOR SPACE WEATHER FORECASTING

    SciTech Connect

    Liu Ying; Luhmann, Janet G.; Lin, Robert P.; Bale, Stuart D.; Thernisien, Arnaud; Vourlidas, Angelos; Davies, Jackie A.

    2010-10-20

    We reconstruct the global structure and kinematics of coronal mass ejections (CMEs) using coordinated imaging and in situ observations from multiple vantage points. A forward modeling technique, which assumes a rope-like morphology for CMEs, is used to determine the global structure (including orientation and propagation direction) from coronagraph observations. We reconstruct the corresponding structure from in situ measurements at 1 AU with the Grad-Shafranov method, which gives the flux-rope orientation, cross section, and a rough knowledge of the propagation direction. CME kinematics (propagation direction and radial distance) during the transit from the Sun to 1 AU are studied with a geometric triangulation technique, which provides an unambiguous association between solar observations and in situ signatures; a track fitting approach is invoked when data are available from only one spacecraft. We show how the results obtained from imaging and in situ data can be compared by applying these methods to the 2007 November 14-16 and 2008 December 12 CMEs. This merged imaging and in situ study shows important consequences and implications for CME research as well as space weather forecasting: (1) CME propagation directions can be determined to a relatively good precision as shown by the consistency between different methods; (2) the geometric triangulation technique shows a promising capability to link solar observations with corresponding in situ signatures at 1 AU and to predict CME arrival at the Earth; (3) the flux rope within CMEs, which has the most hazardous southward magnetic field, cannot be imaged at large distances due to expansion; (4) the flux-rope orientation derived from in situ measurements at 1 AU may have a large deviation from that determined by coronagraph image modeling; and (5) we find, for the first time, that CMEs undergo a westward migration with respect to the Sun-Earth line at their acceleration phase, which we suggest is a universal

  15. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This article deals with a poster entitled, "Severe Weather," that has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in…

  16. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This month's insert, Severe Weather, has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in this poster are hurricanes,…

  17. Direct observation of negative-index microwave surface waves.

    PubMed

    Dockrey, J A; Horsley, S A R; Hooper, I R; Sambles, J R; Hibbins, A P

    2016-01-01

    Waves propagating in a negative-index material have wave-front propagation (wavevector, k) opposite in direction to that of energy flow (Poynting vector, S). Here we present an experimental realisation at microwave frequencies of an analogous surface wave phenomenon whereby a metasurface supports a surface mode that has two possible wavevector eigenstates within a narrow band of frequencies: one that supports surface waves with positive mode index, and another that supports surface waves with negative mode index. Phase sensitive measurements of the near-field of surface waves across the metasurface show the contrasting spatial evolution of the two eigenstates, providing a unique opportunity to directly observe the negative-index phenomenon. PMID:26903284

  18. Direct observation of negative-index microwave surface waves

    PubMed Central

    Dockrey, J. A.; Horsley, S. A. R.; Hooper, I. R.; Sambles, J. R.; Hibbins, A. P.

    2016-01-01

    Waves propagating in a negative-index material have wave-front propagation (wavevector, k) opposite in direction to that of energy flow (Poynting vector, S). Here we present an experimental realisation at microwave frequencies of an analogous surface wave phenomenon whereby a metasurface supports a surface mode that has two possible wavevector eigenstates within a narrow band of frequencies: one that supports surface waves with positive mode index, and another that supports surface waves with negative mode index. Phase sensitive measurements of the near-field of surface waves across the metasurface show the contrasting spatial evolution of the two eigenstates, providing a unique opportunity to directly observe the negative-index phenomenon. PMID:26903284

  19. Observation of Surface Layering in a Nonmetallic Liquid

    SciTech Connect

    Mo,H.; Evmenenko, G.; Kewalramani, S.; Kim, K.; Ehrlich, S.; Dutta, P.

    2006-01-01

    Oscillatory density profiles (layers) have previously been observed at the free surfaces of liquid metals but not in other isotropic liquids. We have used x-ray reflectivity to study a molecular liquid, tetrakis(2-ethylhexoxy)silane. When cooled to T/T{sub c}{approx}0.25 (well above the freezing point for this liquid), density oscillations appear at the surface. Lateral order within the layers is liquidlike. Our results confirm theoretical predictions that a surface-layered state will appear even in dielectric liquids at sufficiently low temperatures, if not preempted by freezing.

  20. Observation of surface layering in a nonmetallic liquid.

    PubMed

    Mo, Haiding; Evmenenko, Guennadi; Kewalramani, Sumit; Kim, Kyungil; Ehrlich, Steven N; Dutta, Pulak

    2006-03-10

    Oscillatory density profiles (layers) have previously been observed at the free surfaces of liquid metals but not in other isotropic liquids. We have used x-ray reflectivity to study a molecular liquid, tetrakis(2-ethylhexoxy)silane. When cooled to T/Tc approximately 0.25 (well above the freezing point for this liquid), density oscillations appear at the surface. Lateral order within the layers is liquidlike. Our results confirm theoretical predictions that a surface-layered state will appear even in dielectric liquids at sufficiently low temperatures, if not preempted by freezing.

  1. Thermal infrared spectroscopic observations of Mars from the Kuiper Airborne Observatory (KAO): Constraints on past climates and weathering products

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Pollack, James B.; Witteborn, Fred C.; Bregman, Jesse D.; Bell, James F., III; Sitton, Bradley

    1995-01-01

    Spectral observations providing evidence for the presence of volatile-bearing minerals on the surface of Mars were obtained in 1988 and 1990 from the KAO. The 1988 data suggest the presence of 1-3 weight percent (wt%) of carbonate/bicarbonate and 10-15 wt% sulfate/bisulfate associated with martian atmospheric dust. Estimates of the optical depths are approximately 0.60 and approximately 0.35 in 1988 and 1990, respectively.

  2. Cassini ISS observations of Titan's surface and changes in its south-polar lakes

    NASA Astrophysics Data System (ADS)

    Turtle, Elizabeth; Perry, Jason; McEwen, Alfred; Hayes, Alexander; West, Robert

    Cassini's Imaging Science Subsystem (ISS) has been returning images of Titan since early 2004, continuing through the 65 close Titan encounters that have been performed to date. These ob-servations have been combined to produce a 938-nm albedo map of the surface with resolutions ranging from several kilometers to several hundred meters. The morphologies observed on Titan's surface reflect a wide variety of geological features [1]: roughly east-west streamlined shapes, suggestive of aeolian processes, consistent with Cassini RADAR observations of dunes at low latitudes [2]; narrow, curvilinear channels; dark lakes and seas at high latitudes [e.g., 3]; rare impact structures, further evidence for a geologically young surface; and possible tec-tonic and cryovolcanic structures. Changes have also been observed: a new large dark area appeared between July 2004 and June 2005 [3] and may have subsequently faded. Recent ISS observations of Ontario Lacus suggest that its shoreline may have receded as well [cf. 4]. Such changes are interpreted to be the result of precipitation and ponding of liquid methane and the subsequent infiltration into the subsurface or evaporation thereof [3]. No changes have been observed to date in the lakes and seas at high northern latitudes. We will present ISS' most recent map of Titan's surface, documenting changes that may have resulted from weather and seasonal changes and their implications for Titan's active methane cycle. References: [1] Porco et al. (2005) Nature 434, 159-168. [2] Lorenz et al. (2006) Science 312, 724-727. [3] Turtle et al. (2009) GRL 36, DOI 0.1029/2008GL036186. [4] Hayes et al. (2009) Eos Trans. AGU, 90, Abstract P54C-02.

  3. Quasi-liquid states observed on ion beam microtextured surfaces

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Robinson, R. S.

    1982-01-01

    Liquid-like properties have been observed on surface structures developed by means of ion beam microtexturing. The structures include cones, pyramids, or wavelike formations. The observed liquid-like effects are drips and ripples on the sides of cones, droplet formation, the apparent flow and coalescence of closely packed structures, wetting angle and other surface tension effects, and the bending of cones by additional heating. The bulk temperatures are in the range of 50-600 C. These effects are seen to some extent on Cu, Al, Au, Pb, and Ni substrates.

  4. Progress in Space Weather Modeling and Observations Needed to Improve the Operational NAIRAS Model Aircraft Radiation Exposure Predictions

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Kress, B. T.; Wiltberger, M. J.; Tobiska, W.; Xu, X.

    2011-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. During the development of the NAIRAS model, new science questions were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. Addressing these science questions require improvements in both space weather modeling and observations. The focus of this talk is to present these science questions, the proposed methodologies for addressing these science questions, and the anticipated improvements to the operational predictions of atmospheric radiation exposure. The overarching goal of this work is to provide a decision support tool for the aviation industry that will enable an optimal balance to be achieved between minimizing health risks to passengers and aircrew while simultaneously minimizing costs to the airline companies.

  5. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  6. Use of weather research and forecasting model outputs to obtain near-surface refractive index structure constant over the ocean.

    PubMed

    Qing, Chun; Wu, Xiaoqing; Li, Xuebin; Zhu, Wenyue; Qiao, Chunhong; Rao, Ruizhong; Mei, Haipin

    2016-06-13

    The methods to obtain atmospheric refractive index structure constant (Cn2) by instrument measurement are limited spatially and temporally and they are more difficult and expensive over the ocean. It is useful to forecast Cn2 effectively from Weather Research and Forecasting Model (WRF) outputs. This paper introduces a method that WRF Model is used to forecast the routine meteorological parameters firstly, and then Cn2 is calculated based on these parameters by the Bulk model from the Monin-Obukhov similarity theory (MOST) over the ocean near-surface. The corresponding Cn2 values measured by the micro-thermometer which is placed on the ship are compared with the ones forecasted by WRF model to determine how this method performs. The result shows that the forecasted Cn2 is consistent with the measured Cn2 in trend and the order of magnitude as a whole, as well as the correlation coefficient is up to 77.57%. This method can forecast some essential aspects of Cn2 and almost always captures the correct magnitude of Cn2, which experiences fluctuations of two orders of magnitude. Thus, it seems to be a feasible and meaningful method that using WRF model to forecast near-surface Cn2 value over the ocean.

  7. Use of weather research and forecasting model outputs to obtain near-surface refractive index structure constant over the ocean.

    PubMed

    Qing, Chun; Wu, Xiaoqing; Li, Xuebin; Zhu, Wenyue; Qiao, Chunhong; Rao, Ruizhong; Mei, Haipin

    2016-06-13

    The methods to obtain atmospheric refractive index structure constant (Cn2) by instrument measurement are limited spatially and temporally and they are more difficult and expensive over the ocean. It is useful to forecast Cn2 effectively from Weather Research and Forecasting Model (WRF) outputs. This paper introduces a method that WRF Model is used to forecast the routine meteorological parameters firstly, and then Cn2 is calculated based on these parameters by the Bulk model from the Monin-Obukhov similarity theory (MOST) over the ocean near-surface. The corresponding Cn2 values measured by the micro-thermometer which is placed on the ship are compared with the ones forecasted by WRF model to determine how this method performs. The result shows that the forecasted Cn2 is consistent with the measured Cn2 in trend and the order of magnitude as a whole, as well as the correlation coefficient is up to 77.57%. This method can forecast some essential aspects of Cn2 and almost always captures the correct magnitude of Cn2, which experiences fluctuations of two orders of magnitude. Thus, it seems to be a feasible and meaningful method that using WRF model to forecast near-surface Cn2 value over the ocean. PMID:27410347

  8. Lunar Far-UV Dayside Albedo Maps: LRO/LAMP Investigations of Surface Hydration and Space Weathering

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Hendrix, A. R.; Gladstone, G. R.; Stern, S. A.; Miles, P. F.; Egan, A. F.; Kaufmann, D. E.; Feldman, P. D.; Hurley, D. M.; Greathouse, T. K.; Parker, J. W.; Bayless, A. J.; Davis, M. W.; Cook, J. C.; Mukherjee, J.

    2012-10-01

    The Lyman Alpha Mapping Project (LAMP) is an ultraviolet (UV) spectrograph on the Lunar Reconnaissance Orbiter (LRO) that is currently mapping the lunar albedo at far-UV wavelengths. LAMP primarily measures faint interplanetary HI Lyman-alpha sky-glow and far-UV starlight reflected from the nightside lunar surface to pioneer an innovative technique for studying the permanently shadowed regions (PSRs) near the poles. Far-UV reflectance measurements of the bright lunar dayside are also frequently obtained. LAMP dayside measurements utilize a "pinhole" aperture with a factor of 736 less throughput to obtain a comparable dynamic range of detector count rates as for the nightside measurements. Initial spectral analysis of broad ( 10 deg latitude) regions within the dayside dataset indicate evidence for latitudinal and diurnal trends that are diagnostic of surface hydration and space weathering, as reported by Hendrix et al. 2012. We report initial results from follow on analyses of high spatial resolution maps produced using the LAMP dayside reflectance dataset.

  9. COSMO-SkyMed measurements in precipitation over the sea: analysis of Louisiana summer thunderstorms by simultaneous weather radar observations

    NASA Astrophysics Data System (ADS)

    Roberto, N.; Baldini, L.; Gorgucci, E.; Facheris, L.; Chandrasekar, V.

    2012-04-01

    Radar signatures of rain cells are investigated using X-band synthetic aperture radar (X-SAR) images acquired from COSMO-SkyMed constellation over oceans off the coast of Louisiana in summer 2010 provided by ASI archive. COSMO-SkyMed (CSK) monitoring of Deepwater Horizon oil spill provided a big amount of data during the period April-September 2010 and in July-August when several thunderstorms occurred in that area. In X-SAR images, radar signatures of rain cells over the sea usually consist of irregularly shaped bright and dark patches. These signatures originate from 1) the scattering and attenuation of radiation by hydrometers in the rain cells and 2) the modification of the sea roughness induced by the impact of raindrops and by wind gusts associated with rain cell. However, the interpretation of precipitation signatures in X-SAR images is not completely straightforward, especially over sea. Coincident measurements from ground based radars and an electromagnetic (EM) model predicting radar returns from the sea surface corrugated by rainfall are used to support the analysis. A dataset consisting of 4 CSK images has been collected over Gulf of Mexico while a WSR-88D NEXRAD S-band Doppler radar (KLIX) located in New Orleans was scanning the nearby portion of ocean. Terrestrial measurements have been used to reconstruct the component of X-SAR returns due to precipitation by modifying the known technique applied on measurements over land (Fritz et al. 2010, Baldini et al. 2011). Results confirm that the attenuation signature in X-SAR images collected over land, particularly pronounced in the presence of heavy precipitation cells, can be related to the S-band radar reflectivity integrated along the same path. The Normalized Radar Cross Section (NRCS) of land is considered to vary usually up to a few dBs in case of rain but with strong dependency on the specific type and conditions of land cover. While the NRCS of sea surface in clear weather condition can be

  10. Geostatistical improvements of evapotranspiration spatial information using satellite land surface and weather stations data

    NASA Astrophysics Data System (ADS)

    de Carvalho Alves, Marcelo; de Carvalho, Luiz Gonsaga; Vianello, Rubens Leite; Sediyama, Gilberto C.; de Oliveira, Marcelo Silva; de Sá Junior, Arionaldo

    2013-07-01

    The objective of the present study was to use the simple cokriging methodology to characterize the spatial variability of Penman-Monteith reference evapotranspiration and Thornthwaite potential evapotranspiration methods based on Moderate Resolution Imaging Spetroradiometer (MODIS) global evapotranspiration products and high-resolution surfaces of WordClim temperature and precipitation data. The climatic element data referred to 39 National Institute of Meteorology climatic stations located in Minas Gerais state, Brazil and surrounding states. The use of geostatistics and simple cokriging technique enabled the characterization of the spatial variability of the evapotranspiration providing uncertainty information on the spatial prediction pattern. Evapotranspiration and precipitation surfaces were implemented for the climatic classification in Minas Gerais. Multivariate geostatistical determined improvements of evapotranspiration spatial information. The regions in the south of Minas Gerais derived from the moisture index estimated with the MODIS evapotranspiration (2000-2010), presented divergence of humid conditions when compared to the moisture index derived from the simple kriged and cokriged evapotranspiration (1961-1990), indicating climate change in this region. There was stronger pattern of crossed covariance between evapotranspiration and precipitation rather than temperature, indicating that trends in precipitation could be one of the main external drivers of the evapotranspiration in Minas Gerais state, Brazil.

  11. Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah

    2014-01-01

    Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.

  12. Observations During GRIP from HIRAD: Ocean Surface Wind Speed and Rain Rate

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Jones, L.; Ruf, C. S.; Uhlhorn, E. W.; Bailey, M. C.; Buckley, C. D.; Simmons, D. E.; Johnstone, S.; Peterson, A.; Schultz, L. A.; Biewas, S.; Johnson, J. W.; Shah, G.; Feingstein, D.; Cleveland, W. H.; Johnson, J.; Hood, R. E.

    2011-01-01

    HIRAD (Hurricane Imaging Radiometer) flew on the WB-57 during NASA's GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be inferred. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years. The advantage of HIRAD over SFMR is that HIRAD can observe a +/- 60-degree swath, rather than a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. To the extent possible, comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  13. Weather & Weather Maps. Teacher's Manual.

    ERIC Educational Resources Information Center

    Metro, Peter M.; Green, Rachel E.

    This guide is intended to provide an opportunity for students to work with weather symbols used for reporting weather. Also included are exercises in location of United States cities by latitude and longitude, measurement of distances in miles and kilometers, and prediction of weather associated with various types of weather fronts. (RE)

  14. Observational & modeling analysis of surface heat and moisture fluxes

    SciTech Connect

    Smith, E.

    1995-09-01

    An observational and modeling study was conducted to help assess how well current GCMs are predicting surface fluxes under the highly variable cloudiness and flow conditions characteristic of the real atmosphere. The observational data base for the study was obtained from a network of surface flux stations operated during the First ISLSCP Field Experiment (FIFE). The study included examination of a surface-driven secondary circulation in the boundary layer resulting from a persistent cross-site gradient in soil moisture, to demonstrate the sensitivity of boundary layer dynamics to heterogeneous surface fluxes, The performance of a biosphere model in reproducing the measured surface fluxes was evaluated with and without the use of satellite retrieval of three key canopy variables with RMS uncertainties commensurate with those of the measurements themselves. Four sensible heat flux closure schemes currently being used in GCMs were then evaluated against the FIFE observations. Results indicate that the methods by which closure models are calibrated lead to exceedingly large errors when the schemes are applied to variable boundary layer conditions. 4 refs., 2 figs.

  15. Observations of Heliospheric Faraday Rotation (FR) and Interplanetary Scintillation (IPS) with the LOw Frequency ARray (LOFAR): Steps Towards Improving Space-Weather Forecasting Capabilities

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Fallows, R. A.; Sobey, C.; Eftekhari, T.; Jensen, E. A.; Jackson, B. V.; Yu, H. S.; Hick, P. P.; Odstrcil, D.; Tokumaru, M.

    2015-12-01

    The phenomenon of space weather - analogous to terrestrial weather which describes the changing pressure, temperature, wind, and humidity conditions on Earth - is essentially a description of the changes in velocity, density, magnetic field, high-energy particles, and radiation in the near-Earth space environment including the effects of such changes on the Earth's magnetosphere, radiation belts, ionosphere, and thermosphere. Space weather can be considered to have two main strands: (i) scientific research, and (ii) applications. The former is self-explanatory, but the latter covers operational aspects which includes its forecasting. Understanding and forecasting space weather in the near-Earth environment is vitally important to protecting our modern-day reliance (militarily and commercially) on satellites, global-communication and navigation networks, high-altitude air travel (radiation concerns particularly on polar routes), long-distance power/oil/gas lines and piping, and for any future human exploration of space to list but a few. Two ground-based radio-observing remote-sensing techniques that can aid our understanding and forecasting of heliospheric space weather are those of interplanetary scintillation (IPS) and heliospheric Faraday rotation (FR). The LOw Frequency ARray (LOFAR) is a next-generation 'software' radio telescope centered in The Netherlands with international stations spread across central and northwest Europe. For several years, scientific observations of IPS on LOFAR have been undertaken on a campaign basis and the experiment is now well developed. More recently, LOFAR has been used to attempt scientific heliospheric FR observations aimed at remotely sensing the magnetic field of the plasma traversing the inner heliosphere. We present our latest progress using these two radio heliospheric-imaging remote-sensing techniques including the use of three-dimensional (3-D) modeling and reconstruction techniques using other, additional data as input

  16. Optical observation of evanescent surface magnons in thin magnetic films

    SciTech Connect

    Srinivasan, G.; Emtage, P.R.; Booth, J.G.; Patton, C.E.

    1988-04-15

    A new type of nonpropagating surface-wave-like magnon has been detected in yttrium iron garnet films (YIG) in a magnetostatic wave (MSW) device structure using Brillouin light scattering. The measurements were carried out on a YIG film stripline device operated at 2--4 GHz. With an applied magnetic field parallel to the stripline, magnon signals were observed at fields above the surface wave band edge. Theory shows that highly localized, evanescent surface modes can exist at such fields, but only when a ground plane is present; the bandwidth in field or frequency is inversely proportional to the separation between the film and the ground plane. The observed evanescent wave band limits are in good agreement with the theoretical values.

  17. Correlating CCM upper atmosphere parameters to surface observations for regional climate change predictions

    SciTech Connect

    Li, Xiangshang; Sailor, D.J.

    1997-11-01

    This paper explores the use of statistical downscaling of General Circulation Model (GCM) results for the purpose of regional climate change analysis. The strong correlation between surface observations and GCM upper air predictions is used in an approach very similar to the Model Output Statistics approach used in numerical weather prediction. The primary assumption in this analysis is that the statistical relationships remain unchanged under conditions of climatic change. These relations are applied to GCM upper atmosphere predictions for future (2*CO{sub 2}) climate predictions. The result is a set of regional climate change predictions conceptually valid at the scale of cities. The downscaling for specific cities within a GCM grid cell reveals some of the anticipated variability within the grid cell. In addition, multiple linear regression analysis may indicate warming that is significantly higher or lower for a particular region than the raw data from the GCM runs. 3 refs., 3 figs., 2 tabs.

  18. Comparison between AVHRR surface temperature data and in-situ weather station temperatures over the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Rezvanbehbahani, S.; Csatho, B. M.; Comiso, J. C.; Babonis, G. S.

    2011-12-01

    Advanced Very-High Resolution Radiometer (AVHRR) images have been exhaustively used to measure surface temperature time series of the Greenland Ice sheet. The purpose of this study is to assess the accuracy of monthly average ice sheet surface temperatures, derived from thermal infrared AVHRR satellite imagery on a 6.25 km grid. In-situ temperature data sets are from the Greenland Collection Network (GC-Net). GC-Net stations comprise sensors monitoring air temperature at 1 and 2 meter above the snow surface, gathered at every 60 seconds and monthly averaged to match the AVHRR temporal resolution. Our preliminary results confirm the good agreement between satellite and in-situ temperature measurements reported by previous studies. However, some large discrepancies still exist. While AVHRR provides ice surface temperature, in-situ stations measure air temperatures at different elevations above the snow surface. Since most in-situ data on ice sheets are collected by Automatic Weather Station (AWS) instruments, it is important to characterize the difference between surface and air temperatures. Therefore, we compared and analyzed average monthly AVHRR ice surface temperatures using data collected in 2002. Differences between these temperatures correlate with in-situ temperatures and GC-Net station elevations, with increasing differences at lower elevations and higher temperatures. The Summit Station (3199 m above sea level) and the Swiss Camp (1176 m above sea level) results were compared as high altitude and low altitude stations for 2002, respectively. Our results show that AVHRR derived temperatures were 0.5°K warmer than AWS temperature at the Summit Station, while this difference was 2.8°K in the opposite direction for the Swiss Camp with surface temperatures being lower than air temperatures. The positive bias of 0.5°K at the high altitude Summit Station (surface warmer than air) is within the retrieval error of AVHRR temperatures and might be in part due to

  19. Estimating Long Term Surface Soil Moisture in the GCIP Area From Satellite Microwave Observations

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Vrije; VandeGriend, Adriaan A.

    2000-01-01

    Soil moisture is an important component of the water and energy balances of the Earth's surface. Furthermore, it has been identified as a parameter of significant potential for improving the accuracy of large-scale land surface-atmosphere interaction models. However, accurate estimates of surface soil moisture are often difficult to make, especially at large spatial scales. Soil moisture is a highly variable land surface parameter, and while point measurements are usually accurate, they are representative only of the immediate site which was sampled. Simple averaging of point values to obtain spatial means often leads to substantial errors. Since remotely sensed observations are already a spatially averaged or areally integrated value, they are ideally suited for measuring land surface parameters, and as such, are a logical input to regional or larger scale land process models. A nine-year database of surface soil moisture is being developed for the Central United States from satellite microwave observations. This region forms much of the GCIP study area, and contains most of the Mississippi, Rio Grande, and Red River drainages. Daytime and nighttime microwave brightness temperatures were observed at a frequency of 6.6 GHz, by the Scanning Multichannel Microwave Radiometer (SMMR), onboard the Nimbus 7 satellite. The life of the SMMR instrument spanned from Nov. 1978 to Aug. 1987. At 6.6 GHz, the instrument provided a spatial resolution of approximately 150 km, and an orbital frequency over any pixel-sized area of about 2 daytime and 2 nighttime passes per week. Ground measurements of surface soil moisture from various locations throughout the study area are used to calibrate the microwave observations. Because ground measurements are usually only single point values, and since the time of satellite coverage does not always coincide with the ground measurements, the soil moisture data were used to calibrate a regional water balance for the top 1, 5, and 10 cm

  20. Large Scale Surface Radiation Budget from Satellite Observation

    NASA Technical Reports Server (NTRS)

    Pinker, R. T.

    1995-01-01

    During the current reporting period, the focus of our work was on preparing and testing an improved version of our Surface Radiation Budget algorithm for processing the ISCCP D1 data routinely at the SRB Satellite Data Analysis Center (SDAC) at NASA Langley Research Center. The major issues addressed are related to gap filling and to testing whether observations made from ERBE could be used to improve current procedures of converting narrowband observations, as available from ISCCP, into broadband observations at the TOA. The criteria for selecting the optimal version are to be based on results of intercomparison with ground truth.

  1. On comparison of modeled surface flux variations to aircraft observations.

    SciTech Connect

    Song, J.; Wesely, M. L.; Environmental Research; Northern Illinois Univ.

    2003-07-30

    Evaluation of models of air-surface exchange is facilitated by an accurate match of areas simulated with those seen by micrometeorological flux measurements. Here, spatial variations in fluxes estimated with the parameterized subgrid-scale surface (PASS) flux model were compared to flux variations seen aboard aircraft above the Walnut River Watershed (WRW) in Kansas. Despite interference by atmospheric eddies, the areas where the modeled sensible and latent heat fluxes were most highly correlated with the aircraft flux estimates were upwind of the flight segments. To assess whether applying a footprint function to the surface values would improve the model evaluation, a two-dimensional correlation distribution was used to identify the locations and relative importance of contributing modeled surface pixels upwind of each segment of the flight path. The agreement between modeled surface fluxes and aircraft measurements was improved when upwind fluxes were weighted with an optimized footprint parameter {var_phi}, which can be estimated from wind profiler data and surface eddy covariance. Variations of the flight-observed flux were consistently greater than those modeled at the surface, perhaps because of the smoothing effect of using 1 km pixels in the model. In addition, limited flight legs prevented sufficient filtering of the effects of atmospheric convection, possibly accounting for some of the more prominent changes in fluxes measured along the flight paths.

  2. Emergent relation between surface vapor conductance and relative humidity profiles yields evaporation rates from weather data

    NASA Astrophysics Data System (ADS)

    Salvucci, Guido D.; Gentine, Pierre

    2013-04-01

    The ability to predict terrestrial evapotranspiration (E) is limited by the complexity of rate-limiting pathways as water moves through the soil, vegetation (roots, xylem, stomata), canopy air space, and the atmospheric boundary layer. The impossibility of specifying the numerous parameters required to model this process in full spatial detail has necessitated spatially upscaled models that depend on effective parameters such as the surface vapor conductance (Csurf). Csurf accounts for the biophysical and hydrological effects on diffusion through the soil and vegetation substrate. This approach, however, requires either site-specific calibration of Csurf to measured E, or further parameterization based on metrics such as leaf area, senescence state, stomatal conductance, soil texture, soil moisture, and water table depth. Here, we show that this key, rate-limiting, parameter can be estimated from an emergent relationship between the diurnal cycle of the relative humidity profile and E. The relation is that the vertical variance of the relative humidity profile is less than would occur for increased or decreased evaporation rates, suggesting that land-atmosphere feedback processes minimize this variance. It is found to hold over a wide range of climate conditions (arid-humid) and limiting factors (soil moisture, leaf area, energy). With this relation, estimates of E and Csurf can be obtained globally from widely available meteorological measurements, many of which have been archived since the early 1900s. In conjunction with precipitation and stream flow, long-term E estimates provide insights and empirical constraints on projected accelerations of the hydrologic cycle.

  3. Using Three-Dimensional Passive Seismic Imaging to Capture Near-Surface Weathering and Its Influence on Overlying Vegetation

    NASA Astrophysics Data System (ADS)

    Taylor, N. J.; Dueker, K. G.; Riebe, C. S.; Chen, P.; Flinchum, B. A.; Holbrook, W. S.

    2015-12-01

    In mountain landscapes, vegetation is tightly coupled to elevation through orographic effects on temperature and precipitation. However, at any given elevation, vegetation can vary markedly due to non-climatic factors such as lithology. For example, tree-canopy cover correlates strongly with bedrock composition in the Sierra Nevada, California, via mechanisms that remain poorly understood. We are exploring the hypothesis that vegetation varies across bedrock types in the Sierra Nevada due to differences in near-surface fracture density that influence the availability of water for plants. Our approach uses data collected from autonomous seismic nodes that record seismic energy generated by ambient sources such as wind, rivers, and road traffic. By deploying the nodes across the landscape in arrays spanning 200 m on a side, we can obtain a three-dimensional image of spatial variations in near-surface weathering. Data presented here will be derived from arrays deployed for 3 days each spanning an area of 0.04 km2 at each of three sites underlain by Sierra Nevada granites and granodiorites. To isolate the effects of lithology on vegetation, we chose sites that span a range of forest cover and mafic-mineral content but have similar microclimate (i.e., with similar aspect and elevation). Our data will provide a three-dimensional model of P- and S-wave velocity structure, which we can invert using a Hertz-Mindlin porosity model to constrain the thickness and degree of fracturing and thus the subsurface water-holding potential for plants. We will explore the hypothesis that the densest vegetation occurs within bedrock with the densest fracturing, due to enhanced availability of water in the near surface. We will present a comparison of our results from the Sierra Nevada and results from similar experiments at the Snowy Range and Blair Wallis field sites of the Wyoming Center for Environmental Hydrology and Geophysics.

  4. On surface temperature, greenhouse gases, and aerosols: models and observations

    SciTech Connect

    Mitchell, J.F.B.; Davis, R.A.; Ingram, W.J.; Senior, C.A.

    1995-10-01

    The effect of changes in atmospheric carbon dioxide concentrations and sulphate aerosols on near-surface temperature is investigated using a version of the Hadley Centre atmospheric model coupled to a mixed layer ocean. The scattering of sunlight by sulphate aerosols is represented by appropriately enhancing the surface albedo. On doubling atmospheric carbon dioxide concentrations, the global mean temperature increases by 5.2 K. An integration with a 39% increase in CO{sub 2}, giving the estimated change in radiative heating due to increases in greenhouse gases since 1900, produced an equilibrium warming of 2.3 K, which, even allowing for oceanic inertia, is significantly higher than the observed warming over the same period. Furthermore, the simulation suggests a substantial warming everywhere, whereas the observations indicate isolated regions of cooling, including parts of the northern midlatitude continents. The addition of an estimate of the effect of scattering by current industrial aerosols (uncertain by a factor of at least 3) leads to improved agreement with the observed pattern of changes over the northern continents and reduces the global mean warming by about 30%. Doubling the aerosol forcing produces patterns that are still compatible with the observations, but further increase leads to unrealistically extensive cooling in the midlatitudes. The diurnal range of surface temperature decreases over most of the northern extratropics on increasing CO{sub 2}, in agreement with recent observations. The addition of the current industrial aerosol had little detectable effect on the diurnal range in the model because the direct effect of reduced solar heating at the surface is approximately balanced by the indirect effects of cooling. Thus, the ratio of the reduction in diurnal range to the mean warming is increased, in closer agreement with observations. Results from further sensitivity experiments with larger increases in aerosol and CO{sub 2} are presented.

  5. Emergent relation between surface vapor conductance and relative humidity profiles yields evaporation rates from weather data.

    PubMed

    Salvucci, Guido D; Gentine, Pierre

    2013-04-16

    The ability to predict terrestrial evapotranspiration (E) is limited by the complexity of rate-limiting pathways as water moves through the soil, vegetation (roots, xylem, stomata), canopy air space, and the atmospheric boundary layer. The impossibility of specifying the numerous parameters required to model this process in full spatial detail has necessitated spatially upscaled models that depend on effective parameters such as the surface vapor conductance (C(surf)). C(surf) accounts for the biophysical and hydrological effects on diffusion through the soil and vegetation substrate. This approach, however, requires either site-specific calibration of C(surf) to measured E, or further parameterization based on metrics such as leaf area, senescence state, stomatal conductance, soil texture, soil moisture, and water table depth. Here, we show that this key, rate-limiting, parameter can be estimated from an emergent relationship between the diurnal cycle of the relative humidity profile and E. The relation is that the vertical variance of the relative humidity profile is less than would occur for increased or decreased evaporation rates, suggesting that land-atmosphere feedback processes minimize this variance. It is found to hold over a wide range of climate conditions (arid-humid) and limiting factors (soil moisture, leaf area, energy). With this relation, estimates of E and C(surf) can be obtained globally from widely available meteorological measurements, many of which have been archived since the early 1900s. In conjunction with precipitation and stream flow, long-term E estimates provide insights and empirical constraints on projected accelerations of the hydrologic cycle. PMID:23576717

  6. Weather and climate

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Recommendations for using space observations of weather and climate to aid in solving earth based problems are given. Special attention was given to: (1) extending useful forecasting capability of space systems, (2) reducing social, economic, and human losses caused by weather, (3) development of space system capability to manage and control air pollutant concentrations, and (4) establish mechanisms for the national examination of deliberate and inadvertent means for modifying weather and climate.

  7. Lunar Surface Habitat Configuration Assessment: Methodology and Observations

    NASA Technical Reports Server (NTRS)

    Carpenter, Amanda

    2008-01-01

    The Lunar Habitat Configuration Assessment evaluated the major habitat approaches that were conceptually developed during the Lunar Architecture Team II Study. The objective of the configuration assessment was to identify desired features, operational considerations, and risks to derive habitat requirements. This assessment only considered operations pertaining to the lunar surface and did not consider all habitat conceptual designs developed. To examine multiple architectures, the Habitation Focus Element Team defined several adequate concepts which warranted the need for a method to assess the various configurations. The fundamental requirement designed into each concept included the functional and operational capability to support a crew of four on a six-month lunar surface mission; however, other conceptual aspects were diverse in comparison. The methodology utilized for this assessment consisted of defining figure of merits, providing relevant information, and establishing a scoring system. In summary, the assessment considered the geometric configuration of each concept to determine the complexity of unloading, handling, mobility, leveling, aligning, mating to other elements, and the accessibility to the lunar surface. In theory, the assessment was designed to derive habitat requirements, potential technology development needs and identify risks associated with living and working on the lunar surface. Although the results were more subjective opposed to objective, the assessment provided insightful observations for further assessments and trade studies of lunar surface habitats. This overall methodology and resulting observations will be describe in detail and illustrative examples will be discussed.

  8. Observation of Sea Ice Surface Thermal States Under Cloud Cover

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Perovich, D. K.; Gow, A. J.; Kwok, R.; Barber, D. G.; Comiso, J. C.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Clouds interfere with the distribution of short-wave and long-wave radiations over sea ice, and thereby strongly affect the surface energy balance in polar regions. To evaluate the overall effects of clouds on climatic feedback processes in the atmosphere-ice-ocean system, the challenge is to observe sea ice surface thermal states under both clear sky and cloudy conditions. From laboratory experiments, we show that C-band radar (transparent to clouds) backscatter is very sensitive to the surface temperature of first-year sea ice. The effect of sea ice surface temperature on the magnitude of backscatter change depends on the thermal regimes of sea ice thermodynamic states. For the temperature range above the mirabilite (Na2SO4.10H20) crystallization point (-8.2 C), C-band data show sea ice backscatter changes by 8-10 dB for incident angles from 20 to 35 deg at both horizontal and vertical polarizations. For temperatures below the mirabilite point but above the crystallization point of MgCl2.8H2O (-18.0 C), relatively strong backwater changes between 4-6 dB are observed. These backscatter changes correspond to approximately 8 C change in temperature for both cases. The backscattering mechanism is related to the temperature which determines the thermodynamic distribution of brine volume in the sea ice surface layer. The backscatter is positively correlated to temperature and the process is reversible with thermodynamic variations such as diurnal insolation effects. From two different dates in May 1993 with clear and overcast conditions determined by the Advanced Very High Resolution Radiometer (AVHRR), concurrent Earth Resources Satellite 1 (ERS-1) C-band ice observed with increases in backscatter over first-year sea ice, and verified by increases in in-situ sea ice surface temperatures measured at the Collaborative-Interdisciplinary Cryosphere Experiment (C-ICE) site.

  9. Global Surface Thermal Inertia Derived from Dawn VIR Observations

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Becker, K. J.; Anderson, J.; Capria, M.; Tosi, F.; Prettyman, T. H.; De Sanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.; McCord, T. B.; Li, J. Y.; Russell, C. T.; Raymond, C. A.

    2012-12-01

    Comparisons of surface temperatures, derived from Dawn [1] Visible and Infrared Mapping Spectrometer (VIR-MS) [2] observations , to thermal models suggest that Vesta generally has a low-thermal-inertia surface, between 25 and 35 J m^-2 K^-1 s^-½, consistent with a thick layer of fine-grain material [3]. Temperatures were calculated using a Bayesian approach to nonlinear inversion as described by Tosi et al. [4]. In order to compare observed temperatures of Vesta to model calculations, several geometric and photometric parameters must be known or estimated. These include local mean solar time, latitude, local slope, bond bolometric albedo, and the effective emissivity at 5μm. Local time, latitude, and local slope are calculated using the USGS ISIS software system [5]. We employ a multi-layered thermal-diffusion model called 'KRC' [6], which has been used extensively in the study of Martian thermophysical properties. This thermal model is easily modified for use with Vesta by replacing the Martian ephemeris input with the Vesta ephemeris and disabling the atmosphere. This model calculates surface temperatures throughout an entire Vesta year for specific sets of slope, azimuth, latitude and elevation, and a range of albedo and thermal-inertia values. The ranges of albedo and thermal inertia values create temperature indices that are closely matched to the dates and times observed by VIR. Based on observed temperatures and best-fit KRC thermal models, estimates of the annual mean surface temperatures were found to range from 176 K - 188 K for flat zenith-facing equatorial surfaces, but these temperatures can drop as low as 112 K for polar-facing slopes at mid-latitudes. [7] In this work, we will compare observed temperatures of the surface of Vesta (using data acquired by Dawn VIR-MS [2] during the approach, survey, high-altitude mapping and departure phases) to model temperature results using the KRC thermal model [5]. Where possible, temperature observations from

  10. Observations of the urban land surface energy balance in a Phoenix, AZ, residential suburb

    NASA Astrophysics Data System (ADS)

    Chow, W. T.; Volo, T. J.; Vivoni, E. R.; Jenerette, D.; Ruddell, B. L.

    2012-12-01

    Direct measurements of the surface energy balance (SEB) in urban areas through micro-meteorological observation platforms are relatively uncommon, but these observations are critical for a scientific understanding the connections between urban anthropogenic activity and the Earth's local and global climate. Observations of the SEB may be applied to assess the accuracy of urban canopy models and to understand urban climate phenomena, such as the heat island and its human health, energy, and water impacts. We present initial results of local-scale (~1 km2) eddy covariance observations taken from a 23 meter tall micro-meteorological eddy-covariance flux tower sited within a typical residential suburb located in the hot semiarid city of Phoenix, Arizona. Diurnal ensemble patterns of SEB for summer (MJJ) and winter (DJF) are presented, with consideration for synoptic and regional weather conditions (e.g. cloud/non-cloud conditions, as well as the onset of the North American Monsoon), as well as several descriptive statistics (e.g. mean and variability of each flux, as well as the relative partitioning of each flux over time). Comparisons with SEB fluxes measured in other cities of similar climates will also be discussed, along with the implications of these new observations for urban climate science.

  11. Observing the surface of Venus with VIRTIS on Venus Express

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Mariangeli, L.; Baines, K. H.; Garcia, R.; Erard, S.; Piccioni, G.; Drossart, P.; Müller, N.; Hashimoto, G.; Kostama, P.; Virtis Team

    The M channel of VIRTIS will allow the first systematic mapping of the surface and of the near-surface atmosphere of Venus in the near infrared wavelengths range This will be done using the atmospheric windows located at 1 10 1 18 mu m and if possible additionally using the window at 1 02 mu m Wattson and Rothman 1986 Kamp et al 1988 Moroz 2002 The latter is unfortunately right at the low end of the wavelength range of the IR channel and at the upper end of the VIS channel Therefore the usability of this window is unclear until first data from Venus are obtained The atmospheric windows will allow measuring the thermal emission of the surface as was demonstrated by Galileo NIMS Carlson et al 1991 and Cassini VIMS Baines et al 2000 While the atmospheric windows show no or little CO 2 absorption the radiance from the surface is still affected by scattering in the clouds This effect varies based on the optical thickness of the clouds We have developed a quicklook processing procedure which allows deriving surface emissivity variations from nighttime observations correcting for the atmospheric effects We will present the first version of this algorithm During the mission the algorithm will be refined based on the data returned from the different instruments on Venus Express The final goal is to derive maps of the absolute surface emissivity Based on these data two main science tasks for the surface analysis will be pursued Classification of the surface composition and study the interaction between low atmosphere and

  12. Sunspots, Space Weather and Climate

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Four hundred years ago this year the telescope was first used for astronomical observations. Within a year, Galileo in Italy and Harriot in England reported seeing spots on the surface of the Sun. Yet, it took over 230 years of observations before a Swiss amateur astronomer noticed that the sunspots increased and decreased in number over a period of about 11 years. Within 15 years of this discovery of the sunspot cycle astronomers made the first observations of a flare on the surface of the Sun. In the 150 years since that discovery we have learned much about sunspots, the sunspot cycle, and the Sun s explosive events - solar flares, prominence eruptions and coronal mass ejections that usually accompany the sunspots. These events produce what is called Space Weather. The conditions in space are dramatically affected by these events. Space Weather can damage our satellites, harm our astronauts, and affect our lives here on the surface of planet Earth. Long term changes in the sunspot cycle have been linked to changes in our climate as well. In this public lecture I will give an introduction to sunspots, the sunspot cycle, space weather, and the possible impact of solar variability on our climate.

  13. Weathering of Martian Evaporites

    NASA Technical Reports Server (NTRS)

    Wentworth, S. J.; Velbel, M. A.; Thomas-Keprta, K. L.; Longazo, T. G.; McKay, D. S.

    2001-01-01

    Evaporites in martian meteorites contain weathering or alteration features that may provide clues about the martian near-surface environment over time. Additional information is contained in the original extended abstract.

  14. High-frequency radar observations of ocean surface currents.

    PubMed

    Paduan, Jeffrey D; Washburn, Libe

    2013-01-01

    This article reviews the discovery, development, and use of high-frequency (HF) radio wave backscatter in oceanography. HF radars, as the instruments are commonly called, remotely measure ocean surface currents by exploiting a Bragg resonant backscatter phenomenon. Electromagnetic waves in the HF band (3-30 MHz) have wavelengths that are commensurate with wind-driven gravity waves on the ocean surface; the ocean waves whose wavelengths are exactly half as long as those of the broadcast radio waves are responsible for the resonant backscatter. Networks of HF radar systems are capable of mapping surface currents hourly out to ranges approaching 200 km with a horizontal resolution of a few kilometers. Such information has many uses, including search and rescue support and oil-spill mitigation in real time and larval population connectivity assessment when viewed over many years. Today, HF radar networks form the backbone of many ocean observing systems, and the data are assimilated into ocean circulation models.

  15. Surface moisture and satellite microwave observations in semiarid southern Africa

    SciTech Connect

    Owe, M.; Chang, A.T.C. ); Van de Griend, A.A. )

    1992-03-01

    Nimbus 7 scanning multichannel microwave radiometer 6.6-GHz passive microwave data were studied in relation to large-scale soil moisture estimates over a 3-year period in southeastern Bostwana. An extensive data base of weekly surface soil moisture measurements was used with meteorological data to estimate pixel average soil moisture on a daily basis. The influence of the vegetation canopy on the surface emissivity was studied by partitioning the data set into classes on the basis of the normalized difference vegetation index. After correcting for the vegetation optical depth, a correlation of r = 0.84 was established between the normalized brightness temperature observations and surface soil moisture for the 3-year period.

  16. ATLAS-3 correlative measurement opportunities with UARS and surface observations

    NASA Technical Reports Server (NTRS)

    Harrison, Edwin F.; Denn, Fred M.; Gibson, Gary G.

    1995-01-01

    The third ATmospheric Laboratory for Applications and Science (ATLAS-3) mission was flown aboard the Space Shuttle launched on November 3, 1994. The mission length was approximately 10 days and 22 hours. The ATLAS-3 Earth-viewing instruments provided a large number of measurements which were nearly coincident with observations from experiments on the Upper Atmosphere Research Satellite (UARS). Based on ATLAS-3 instrument operating schedules, simulations were performed to determine when and where correlative measurements occurred between ATLAS and UARS instruments, and between ATLAS and surface observations. Results of these orbital and instrument simulations provide valuable information for scientists to compare measurements between various instruments on the two satellites and at selected surface sites.

  17. Locating potential biosignatures on Europa from surface geology observations.

    PubMed

    Figueredo, Patricio H; Greeley, Ronald; Neuer, Susanne; Irwin, Louis; Schulze-Makuch, Dirk

    2003-01-01

    We evaluated the astrobiological potential of the major classes of geologic units on Europa with respect to possible biosignatures preservation on the basis of surface geology observations. These observations are independent of any formational model and therefore provide an objective, though preliminary, evaluation. The assessment criteria include high mobility of material, surface concentration of non-ice components, relative youth, textural roughness, and environmental stability. Our review determined that, as feature classes, low-albedo smooth plains, smooth bands, and chaos hold the highest potential, primarily because of their relative young age, the emplacement of low-viscosity material, and indications of material exchange with the subsurface. Some lineaments and impact craters may be promising sites for closer study despite the comparatively lower astrobiological potential of their classes. This assessment will be expanded by multidisciplinary examination of the potential for habitability of specific features.

  18. Surface dynamics as part of the European Plate Observing System

    NASA Astrophysics Data System (ADS)

    Ludden, John

    2010-05-01

    The European Plate Observing System proposal includes a "surface dynamics" part to its objectives. EPOS will create and integrate "Dedicated observatories for multidisciplinary local data acquisition (volcanoes, in-situ fault-zone monitoring experiments, geothermal and deep drilling experiments, including the application of geophysics to Earth's surface dynamics and environmental changes)". As geologists and geophysicists we have a good idea how to measure ground motions related to earth quakes, volcanoes, landslides etc. We also know that through integration of these measurements in large arrays we gain resolution and general background information that allows a much better understanding of ground motion, rates of deformation and the driving forces. How can these geophysical measurements be applied to other environmental geoscience problems? What sorts of observations might one include in EPOS? Surface dynamic processes that can be measured by geophysical techniques include permafrost changes, coastline retreat, catchment morphology, post-glacial ice rebound, groundwater variation etc.. Some of these processes are driven by factors inherent to the deep Earth (lithosphere, mantle) interaction with surface processes (erosion, climate, sea level) which control the development of topography and are the focus of the TopoEurope project an ILP and an ESF-sponsored multidisciplinary research addresses within EPOS. Others processes are driven by climate change, population dynamics and people living on and interacting with the Earth's surface and subsurface. Where should the EPOS role focus? When do these problems become global in impact? When does geological engineering become a focus for EPOS - should it? The aim of this paper is to stimulate discussion on how surface dynamics should be integrated into EPOS.

  19. Experimental Observation of Bohr's Nonlinear Fluidic Surface Oscillation.

    PubMed

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-25

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η(2) for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr's hydrodynamic theory.

  20. CIRs Observed by MSL/RAD on the Martian Surface

    NASA Astrophysics Data System (ADS)

    Lohf, Henning; Zeitlin, Cary; Rafkin, Scot; Koehler, Jan; Posner, Arik; Hassler, Donald M.; Heber, Bernd; Ehresmann, Bent; Wimmer-Schweingruber, Robert; Guo, Jingnan; Appel, Jan Kristoffer

    2016-07-01

    Co-rotating Interaction Regions (CIRs) are recurrent Stream Interaction Regions in the solar wind which are stable transient plasma structures lasting several solar rotations. They can modulate Galactic Cosmic Rays (GCRs) and to some extent result in a modulation of GCR induced secondary energetic particles on the Martian surface. The Mars Science Laboratory/ Radiation Assessment Detector (MSL/RAD) has been measuring the Martian Surface Radiation Environment for more than three years and observes this modulation effect. We will show that the effect of CIRs can be measured on the Martian surface with MSL/RAD and this can be used to derive the arrival times of CIRs at Mars. These can provide (limited) solar wind plasma properties in the vicinity of Mars and thus serve as important constraints for modeling atmospheric response to variations in the solar wind. We use multi spacecraft observations of the solar wind and compare them with the heliospheric MHD Model ENLIL to verify that a certain class of dose rate variation we see on the Martian surface is due to CIRs. We use ballistic back-mapping as well as a time-shift algorithm to map the plasma properties measured at individual spacecraft locations and times to Mars. We compare these predictions with those of the CCMC ENLIL heliospheric MHD simulations.

  1. Experimental Observation of Bohr’s Nonlinear Fluidic Surface Oscillation

    NASA Astrophysics Data System (ADS)

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-01

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η2 for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr’s hydrodynamic theory.

  2. Experimental Observation of Bohr’s Nonlinear Fluidic Surface Oscillation

    PubMed Central

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-01

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η2 for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr’s hydrodynamic theory. PMID:26803911

  3. Experimental Observation of Bohr's Nonlinear Fluidic Surface Oscillation.

    PubMed

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-01

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η(2) for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr's hydrodynamic theory. PMID:26803911

  4. TIMS observations of surface emissivity in HAPEX-Sahel

    NASA Technical Reports Server (NTRS)

    Schmugge, Thomas; Hook, Simon; Kahle, Anne

    1995-01-01

    The Thermal Infrared Multispectral Scanner (TIMS) was flown on the NASA C-130 aircraft for a series of 12 flights during HAPEX-Sahel at altitudes ranging from 0.25 to 6 km (0.6 to 15 m resolution). TIMS provides coverage of the 8 to 12 micrometer thermal infrared band in 6 contiguous channels. Thus it is possible to observe the spectral behavior of the surface emissivity over this wavelength interval.

  5. Attribution of observed surface humidity changes to human influence.

    PubMed

    Willett, Katharine M; Gillett, Nathan P; Jones, Philip D; Thorne, Peter W

    2007-10-11

    Water vapour is the most important contributor to the natural greenhouse effect, and the amount of water vapour in the atmosphere is expected to increase under conditions of greenhouse-gas-induced warming, leading to a significant feedback on anthropogenic climate change. Theoretical and modelling studies predict that relative humidity will remain approximately constant at the global scale as the climate warms, leading to an increase in specific humidity. Although significant increases in surface specific humidity have been identified in several regions, and on the global scale in non-homogenized data, it has not been shown whether these changes are due to natural or human influences on climate. Here we use a new quality-controlled and homogenized gridded observational data set of surface humidity, with output from a coupled climate model, to identify and explore the causes of changes in surface specific humidity over the late twentieth century. We identify a significant global-scale increase in surface specific humidity that is attributable mainly to human influence. Specific humidity is found to have increased in response to rising temperatures, with relative humidity remaining approximately constant. These changes may have important implications, because atmospheric humidity is a key variable in determining the geographical distribution and maximum intensity of precipitation, the potential maximum intensity of tropical cyclones, and human heat stress, and has important effects on the biosphere and surface hydrology.

  6. Arecibo radar observations of Martian surface characteristics near the equator

    NASA Technical Reports Server (NTRS)

    Simpson, R. A.; Tyler, G. L.; Campbell, D. B.

    1978-01-01

    Mars radar observations at 12.6-cm wavelength indicate that many of what were potential Viking landing sites along the planet's equator are rougher than interpretations of Mariner 9 images suggested. Root mean square surface slopes are typically 5 degrees in the region bounded by 160 and 200 degrees W, 0 and 12 degrees S. From Tharsis Montes west to 160 degrees W, radar-scattering characteristics suggest extreme roughness on small scales, perhaps exceeding 10 degrees in rms magnitude. East of Tharsis and north of Valles Marineris the surface is smooth, with values of rms slope as low as 1 degree; the elevation of this plateau was too high for a Viking landing. Study of spectral shapes indicates the Hagfors scattering law remains the best descriptor of quasi-specular surface scattering properties in an average sense; widespread variations in the surface argue against its indiscriminate use, however. Backscattering at moderate (25-40 degrees) incidence angles was studied qualitatively and was found to be significantly above the level predicted by a strictly quasi-specular (e.g., Hagfors) process; it also is variable over the surface.

  7. Observation of dynamic water microadsorption on Au surface

    SciTech Connect

    Huang, Xiaokang Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  8. Sensitivity of surface meteorological analyses to observation networks

    NASA Astrophysics Data System (ADS)

    Tyndall, Daniel Paul

    A computationally efficient variational analysis system for two-dimensional meteorological fields is developed and described. This analysis approach is most efficient when the number of analysis grid points is much larger than the number of available observations, such as for large domain mesoscale analyses. The analysis system is developed using MATLAB software and can take advantage of multiple processors or processor cores. A version of the analysis system has been exported as a platform independent application (i.e., can be run on Windows, Linux, or Macintosh OS X desktop computers without a MATLAB license) with input/output operations handled by commonly available internet software combined with data archives at the University of Utah. The impact of observation networks on the meteorological analyses is assessed by utilizing a percentile ranking of individual observation sensitivity and impact, which is computed by using the adjoint of the variational surface assimilation system. This methodology is demonstrated using a case study of the analysis from 1400 UTC 27 October 2010 over the entire contiguous United States domain. The sensitivity of this approach to the dependence of the background error covariance on observation density is examined. Observation sensitivity and impact provide insight on the influence of observations from heterogeneous observing networks as well as serve as objective metrics for quality control procedures that may help to identify stations with significant siting, reporting, or representativeness issues.

  9. Probing surface properties of Jupiter Trojans by polarimetric observations

    NASA Astrophysics Data System (ADS)

    Belskaya, I.; Bagnulo, S.; Stinson, A.; Christou, A.; Muinonen, K.

    2014-07-01

    We present the first polarimetric observations of six Jupiter Trojans, namely (588) Achilles, (1583) Antilochus, (3548) Eurybates, (4543) Phoinix, (6545) 1986 TR_6, and (21601) 1998 XO_{89}. All these objects belong to the L4 population of Jupiter Trojans and have diameters in the range of 50-160 km (Grav et al. 2011). The observations were carried out in 2013 at ESO VLT. Each object was observed at 3-4 different phase angles in the phase-angle range from 7 deg up to 11-12 deg, the largest possible phase angles in the ground-based observations of Trojans. Observations were made in the R band with a typical accuracy of 0.05 %. We have measured negative polarization branch for each object with polarization minima varying from -1 % to -1.3 %. The polarization-phase-angle behavior of the observed Trojans is found to be very similar to that of some low-albedo main-belt asteroids, in particular, the P-type asteroids. We compare photometric and polarimetric phase dependencies of Trojans to the phase curves of inner and outer Solar System bodies. Possible relationships of phase-curve parameters with albedos and spectral properties are investigated. Constraints on the surface properties of Jupiter Trojans from the polarimetric observations are discussed.

  10. Diurnal Variations of Titan's Surface Temperatures From Cassini -CIRS Observations

    NASA Astrophysics Data System (ADS)

    Cottini, Valeria; Nixon, Conor; Jennings, Don; Anderson, Carrie; Samuelson, Robert; Irwin, Patrick; Flasar, F. Michael

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 m (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the in-strument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature pro-file by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). The application of our methodology over wide areas has increased the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. In particular we had the chance to look for diurnal variations in surface temperature around the equator: a trend with slowly increasing temperature toward the late afternoon reveals that diurnal temperature changes are present on Titan surface. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp

  11. World weather program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A brief description of the Global Weather Experiment is presented. The world weather watch program plan is described and includes a global observing system, a global data processing system, a global telecommunication system, and a voluntary cooperation program. A summary of Federal Agency plans and programs to meet the challenges of international meteorology for the two year period, FY 1980-1981, is presented.

  12. The Home Weather Station.

    ERIC Educational Resources Information Center

    Steinke, Steven D.

    1991-01-01

    Described is how an amateur weather observer measures and records temperature and precipitation at a well-equipped, backyard weather station. Directions for building an instrument shelter and a description of the instruments needed for measuring temperature and precipitation are included. (KR)

  13. Quantifying the surface energy fluxes in South Greenland during the 2012 high melt episodes using in-situ observations

    NASA Astrophysics Data System (ADS)

    Fausto, Robert; van As, Dirk; Box, Jason; Colgan, William; Langen, Peter

    2016-09-01

    Two high melt episodes occurred on the Greenland ice sheet in July 2012, during which nearly the entire ice sheet surface experienced melting. Observations from an automatic weather station (AWS) in the lower ablation area in South Greenland reveal the largest daily melt rates (up to 28 cm d-1 ice equivalent) ever recorded on the ice sheet. The two melt episodes lasted 6 days, equivalent to 6% of the June-August melt period, but contributed 14 % to the total annual ablation of 8.5 m ice equivalent. We employ a surface energy balance model driven by AWS data to quantify the relative importance of the energy budget components contributing to melt through the melt season. During the days with largest daily melt rates, surface turbulent heat input peaked at 552 Wm-2, 77 % of the surface melt energy, which is otherwise typically dominated by absorbed solar radiation. We find that rain contributed ca. 7 % to melt during these episodes.

  14. The Development of a Gridded Weather Typing Classification Scheme

    NASA Astrophysics Data System (ADS)

    Lee, Cameron C.

    Since their development in the 1990s, gridded reanalysis data sets have proven quite useful for a broad range of synoptic climatological analyses, especially those utilizing a map pattern classification approach. However, their use in broad-scale, surface weather typing classifications and applications have not yet been explored. This research details the development of such a gridded weather typing classification (GWTC) scheme using North American Regional Reanalysis data for 1979-2010 for the continental United States. Utilizing eight-times daily observations of temperature, dew point, pressure, cloud cover, u-wind and v-wind components, the GWTC categorizes the daily surface weather of 2,070 locations into one of 11 discrete weather types, nine core types and two transitional types, that remain consistent throughout the domain. Due to the use of an automated deseasonalized z-score initial typing procedure, the character of each type is both geographically and seasonally relative, allowing each core weather type to occur at every location, at any time of the year. Diagnostic statistics reveal a high degree of spatial cohesion among the weather types classified at neighboring locations, along with an effective partitioning of the climate variability of individual locations (via a Variability Skill Score metric) into these 11 weather types. Daily maps of the spatial distribution of GWTC weather types across the United States correspond well to traditional surface weather maps, and comparisons of the GWTC with the Spatial Synoptic Classification are also favorable. While the potential future utility of the classification is expected to be primarily for the resultant calendars of daily weather types at specific locations, the automation of the methodology allows the classification to be easily repeatable, and therefore, easily transportable to other locations, atmospheric levels, and data sets (including output from gridded general circulation models). Further, the

  15. Space Weather Simulators Developed at NICT : the Solar Surface-Solar Wind Coupling Model and the Next Generation Magnetosphere-Ionosphere Coupling Model

    NASA Astrophysics Data System (ADS)

    Den, Mitsue; Nagatsuma, Tsutomu; Watari, Shinichi; Tanaka, Takashi; Ishii, Mamoru; Kubo, Yuki; Kubota, Yasubumi; Washimi, Haruichi

    We report two global MHD simulators developed at NICT (National Institute of Information and Communications Technology): one is for the solar surface-solar wind coupling system and the other is for the magnetosphere-ionosphere coupling system. One important feature of our simulation model is the 3-D grid system, which has no polar singularity despite of a spherical grid configuration. By this grid system, fine grids can be allocated near the inner boundary which represents the sun or the earth. Some complicated magnetic structures on the solar surface is closely related with the solar disturbances, and in the same way the ionospheric aurora is closely related with the the magnetospheric reconfiguration processes. In views of these situation, it is very crucial for both models to achieve the simultaneous implementations for the fine grid structure on the inner boundary and the wide range grids in global configuration. For the solar surface-solar wind coupling system, the observed magnetic field data are input at the inner boundary, and the solar wind structure can be updated at every day by optimizing the simulation code. For the magnetospheric model, we are developing "the next generation" realtime MHD simulation system. The model is developed by NICT and co-workers, and the extreme phenomena such as the magnetopause crossing are simulated successfully. For the magnetic disturbance event, the westward traveling surge, the most characteristic feature of the substorm, is reproduced quite realistically. In this paper, we describe those two space weather simulator systems and represent several numerical results obtained by using these models.

  16. Thermophysical Properties of the Lunar Surface from Diviner Observations

    NASA Astrophysics Data System (ADS)

    Hayne, Paul; Bandfield, Joshua; Vasavada, Ashwin; Ghent, Rebecca; Siegler, Matthew; Williams, Jean-Pierre; Greenhagen, Benjamin; Aharonson, Oded; Paige, David

    2013-04-01

    Orbital thermal infrared measurements are sensitive to a variety of properties of the Moon's surface layer, including rock abundance, regolith cover and porosity, and small-scale surface roughness. With its multiple spectral channels and large dynamic temperature range, the Diviner Lunar Radiometer [1] on NASA's LRO spacecraft has enabled the first global, high-resolution maps of these important thermophysical properties. Here we present a summary of the results of Diviner's thermophysical investigation thus far. Maps of surface rock abundance show low typical values of <1% with higher abundances for recent craters and their blocky ejecta, as well as mass wasting on crater walls, rilles, and impact melt features [2]. The extent and abundance of surface rocks decrease systematically with crater age, and rocky surfaces are only preserved on the youngest craters (<1 Ga). We used nighttime regolith surface temperatures and eclipse cooling observations to constrain profiles of density and conductivity in the upper ~1 m, revealing a remarkably homogeneous subsurface structure [3]. Geographic variations in upper regolith density are nonetheless apparent. For example, buried rocks are suggested within young impact ejecta showing strong radar backscatter, high subsurface density, and a lack of surface rocks [2,4]. Rock fragmentation and regolith accumulation rates can be quantified by comparison of the Diviner data with published crater ages, yielding typical erosion rates which rapidly decrease from ~10 kg m-2 yr-1 for crater ages of ~1 Ma to ~1 mg m-2 yr-1 at ~1 Ga [4]. Variations in upper regolith density correlate with the ages of individual mare basalt units, suggesting this layer is actively processed by impacts on geologically short timescales, which may reveal age relationships previously unseen [5]. Vast cold regions surrounding fresh impact craters during lunar night (termed "cold spots") are only apparent in thermal infrared data [2]. These features cannot be

  17. Improving Numerical Weather Predictions of Summertime Precipitation Over the Southeastern U.S. Through a High-Resolution Initialization of the Surface State

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Kumar, Sujay V.; Krikishen, Jayanthi; Jedlovec, Gary J.

    2011-01-01

    It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high resolution models. This paper presents model verification results of a case study period from June-August 2008 over the Southeastern U.S. using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the NASA Land Information System (LIS) and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spin-up run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer, but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS/MODIS data substantially impact surface and boundary layer properties.

  18. Differentiating the roles of photooxidation and biodegradation in the weathering of Light Louisiana Sweet crude oil in surface water from the Deepwater Horizon site.

    PubMed

    Bacosa, Hernando P; Erdner, Deana L; Liu, Zhanfei

    2015-06-15

    We determined the contributions of photooxidation and biodegradation to the weathering of Light Louisiana Sweet crude oil by incubating surface water from the Deepwater Horizon site under natural sunlight and temperature conditions. N-alkane biodegradation rate constants were ca. ten-fold higher than the photooxidation rate constants. For the 2-3 ring and 4-5 ring polycyclic aromatic hydrocarbons (PAHs), photooxidation rate constants were 0.08-0.98day(-1) and 0.01-0.07day(-1), respectively. The dispersant Corexit enhanced degradation of n-alkanes but not of PAHs. Compared to biodegradation, photooxidation increased transformation of 4-5 ring PAHs by 70% and 3-4 ring alkylated PAHs by 36%. For the first time we observed that sunlight inhibited biodegradation of pristane and phytane, possibly due to inhibition of the bacteria that can degrade branched-alkanes. This study provides quantitative measures of oil degradation under relevant field conditions crucial for understanding and modeling the fate of spilled oil in the northern Gulf of Mexico. PMID:25899525

  19. Differentiating the roles of photooxidation and biodegradation in the weathering of Light Louisiana Sweet crude oil in surface water from the Deepwater Horizon site.

    PubMed

    Bacosa, Hernando P; Erdner, Deana L; Liu, Zhanfei

    2015-06-15

    We determined the contributions of photooxidation and biodegradation to the weathering of Light Louisiana Sweet crude oil by incubating surface water from the Deepwater Horizon site under natural sunlight and temperature conditions. N-alkane biodegradation rate constants were ca. ten-fold higher than the photooxidation rate constants. For the 2-3 ring and 4-5 ring polycyclic aromatic hydrocarbons (PAHs), photooxidation rate constants were 0.08-0.98day(-1) and 0.01-0.07day(-1), respectively. The dispersant Corexit enhanced degradation of n-alkanes but not of PAHs. Compared to biodegradation, photooxidation increased transformation of 4-5 ring PAHs by 70% and 3-4 ring alkylated PAHs by 36%. For the first time we observed that sunlight inhibited biodegradation of pristane and phytane, possibly due to inhibition of the bacteria that can degrade branched-alkanes. This study provides quantitative measures of oil degradation under relevant field conditions crucial for understanding and modeling the fate of spilled oil in the northern Gulf of Mexico.

  20. A System for Monitoring and Forecasting Land Surface Phenology Using Time Series of JPSS VIIRS Observations and Its Applications

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Yu, Y.; Liu, L.

    2015-12-01

    Land surface phenology quantifies seasonal dynamics of vegetation properties including the timing and magnitude of vegetation greenness from satellite observations. Over the last decade, historical time series of AVHRR and MODIS data has been used to characterize the seasonal and interannual variation in terrestrial ecosystems and their responses to a changing and variable climate. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on board the operational JPSS satellites provides land surface observations in a timely fashion, which has the capability to monitor phenological development in near real time. This capability is particularly important for assisting agriculture, natural resource management, and land modeling for weather prediction systems. Here we introduce a system to monitor in real time and forecast in the short term phenological development based on daily VIIRS observations available with a one-day latency. The system integrates a climatological land surface phenology from long-term MODIS data and available VIIRS observations to simulate a set of potential temporal trajectories of greenness development at a given time and pixel. The greenness trajectories, which are qualified using daily two-band Enhanced Vegetation Index (EVI2), are applied to identify spring green leaf development and autumn color foliage status in real time and to predict the occurrence of future phenological events. This system currently monitors vegetation development across the North America every three days and makes prediction to 10 days ahead. We further introduce the applications of near real time spring green leaf and fall color foliage. Specifically, this system is used for tracing the crop progress across the United States, guiding the field observations in US National Phenology Network, servicing tourists for the observation of color fall foliage, and parameterizing seasonal surface physical conditions for numerical weather prediction models.

  1. Dust events in Arizona: Long-term satellite and surface observations, and the National Air Quality Forecasting Capability CMAQ simulations

    NASA Astrophysics Data System (ADS)

    Huang, M.; Tong, D.; Lee, P.; Pan, L.; Tang, Y.; Stajner, I.; Pierce, R. B.; McQueen, J.

    2015-12-01

    Dust events in Arizona: An analysis integrating satellite and surface weather and aerosol measurements, and National Air Quality Forecasting Capability CMAQ simulations Dust records in Arizona during 2005-2013 are developed using multiple observation datasets, including level 2 deep blue aerosol product by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the in-situ measurements at the surface Air Quality System (AQS) and Interagency Monitoring of Protected Visual Environments (IMPROVE) sites in Phoenix. The satellite and surface aerosol observations were anti-correlated with three drought indicators (i.e., MODIS vegetation index, a European satellite soil moisture dataset, and Palmer Drought Severity Index). During the dusty year of 2007, we show that the dust events were stronger and more frequent in the afternoon hours than in the morning due to faster winds and drier soil, and the Sonoran and Chihuahuan deserts were important dust source regions during identified dust events in Phoenix as indicated by NOAA's Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model calculations. Based on these findings, we suggested a potential for use of satellite soil moisture and vegetation index products to interpret and predict dust activity. We also emphasized the importance of using hourly observations for better capturing dust events, and expect the hourly geostationary satellite observations in the future to well complement the current surface PM and meteorological observations considering their broader spatial coverage. Additionally, the performance of the National Air Quality Forecasting Capability (NAQFC) 12 km CMAQ model simulation is evaluated during a recent strong dust event in the western US accompanied by stratospheric ozone intrusion. The current modeling system well captured the temporal variability and the magnitude of aerosol concentrations during this event. Directions of integrating satellite weather and vegetation observations

  2. Space Weathering in the Mercurian Environment

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Pieters, C. M.

    2001-01-01

    Space weathering processes are known to be important on the Moon. These processes both create the lunar regolith and alter its optical properties. Like the Moon, Mercury has no atmosphere to protect it from the harsh space environment and therefore it is expected that it will also incur the effects of space weathering. However, there are many important differences between the environments of Mercury and the Moon. These environmental differences will almost certainly affect the weathering processes and the products of those processes. It should be possible to observe the effects of these differences in Vis (visible)/NIR (near infrared) spectra of the type expected to be returned by MESSENGER. More importantly, understanding these weathering processes and their consequences is essential for evaluating the spectral data returned from MESSENGER and other missions in order to determine the mineralogy and the Fe content of the Mercurian surface. Additional information is contained in the original extended abstract.

  3. Ocean Surface Carbon Dioxide Fugacity Observed from Space

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Xie, Xiaosu

    2014-01-01

    We have developed and validated a statistical model to estimate the fugacity (or partial pressure) of carbon dioxide (CO2) at sea surface (pCO2sea) from space-based observations of sea surface temperature (SST), chlorophyll, and salinity. More than a quarter million in situ measurements coincident with satellite data were compiled to train and validate the model. We have produced and made accessible 9 years (2002-2010) of the pCO2sea at 0.5 degree resolutions daily over the global ocean. The results help to identify uncertainties in current JPL Carbon Monitoring System (CMS) model-based and bottom-up estimates over the ocean. The utility of the data to reveal multi-year and regional variability of the fugacity in relation to prevalent oceanic parameters is demonstrated.

  4. Shortwave spectral radiative forcing of cumulus clouds from surface observations

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Barnard, J.; Berg, L. K.; Long, C. N.; Flynn, C.

    2011-04-01

    The spectral changes of the shortwave total, direct and diffuse cloud radiative forcing (CRF) at surface are examined for the first time using spectrally resolved all-sky flux observations and clear-sky fluxes. The latter are computed applying a physically based approach, which accounts for the spectral changes of aerosol optical properties and surface albedo. Application of this approach to 13 summertime days with single-layer continental cumuli demonstrates: (i) the substantial contribution of the diffuse component to the total CRF, (ii) the well-defined spectral variations of total CRF in the visible spectral region, and (iii) the strong statistical relationship between spectral (500 nm) and shortwave broadband values of total CRF. Our results suggest that the framework based on the visible narrowband fluxes can provide important radiative quantities for rigorous evaluation of radiative transfer parameterizations and also can be applied for estimation of the shortwave broadband CRF.

  5. Some observations on vortex-ring collisions upon inclined surfaces

    NASA Astrophysics Data System (ADS)

    New, T. H.; Shi, Shengxian; Zang, B.

    2016-06-01

    This paper reports upon a laser-induced fluorescence visualization and time-resolved particle image velocimetry study to resolve the detailed dynamics associated with Re = 2000 and 4000 circular vortex rings colliding with 30°-75° inclined surfaces. Two-dimensional visualization results show that larger inclination angles lead to increasingly rapid size reduction in the primary vortex-ring core closer to the surface, faster formation of the secondary vortex-ring core, and subsequent ingestion by the former. In contrast, primary vortex-ring core further away from the surface becomes physically larger and incoherent more rapidly, with slower formation and entrainment of the secondary vortex-ring core. Interestingly, a vortex dipole and small vortex-ring-like structure are produced for the largest inclination angle of 75°, possibly due to vortex disconnection and reconnection processes. Results taken along the non-inclined plane show significant bulging of the primary vortex-ring cores when the inclination angle increases from 30° onwards. More importantly, additional vortex cores are observed to entwine with the primary vortex-ring core and provide strong direct evidence for the bi-helical vortex line flow mechanism put forward by Lim (Exp Fluids 7:453-463, 1989). Lastly, the behaviour of the primary and secondary vortex-ring cores further away from the surface is highly sensitive towards the state of the bi-helical lines compressed at that region. Strong compression driven by circumferential flows due to large inclination angles may explain the unique flow structures and behaviour observed for 75° inclination angle here.

  6. Comparison of ECMWF surface meteorology and buoy observations in the Ligurian Sea

    NASA Astrophysics Data System (ADS)

    Bozzano, R.; Siccardi, A.; Schiano, M.; Borghini, M.; Castellari, S.

    2004-02-01

    . Since numerical weather prediction (NWP) models are usually used to force ocean circulation models, it is important to investigate their skill in reproducing surface meteorological parameters in open sea conditions. Near-surface meteorological data (air temperature, relative humidity, barometric pressure, wind speed and direction) have been acquired from several sensors deployed on an offshore large spar buoy in the Ligurian Sea (Northern Mediterranean Sea) from February to December 2000. The buoy collected 7857 valid records out of 8040 during 335 days at sea. These observations have been compared with data from NWP models and specifically, the outputs of the ECMWF analysis in the two grid points closest to the buoy position. Hourly data acquired by the buoy have been undersampled to fit the data set of the model composed by values computed at the four synoptic hours. For each mentioned meteorological parameter an analysis has been performed by evaluating instantaneous synoptic differences, distributions, daily and annual variations and related statistics. The comparison shows that the model reproduces correctly the baric field while significant differences result for the other variables, which are more affected by local conditions. This suggests that the observed discrepancies may be due to the poor resolution of the model that probably is not sufficient to appropriately discriminate between land and ocean surfaces in a small basin such as the Ligurian Sea and to take into account local peculiarities. The use of time- and space-averaged model data reduces the differences with respect to the in situ observations, thus making the model data usable for analysis with minor requirements about time and space resolution. Although this comparison is strongly limited and we cannot exclude measurement errors, its results suggest a great caution in the use of the model data, especially at high frequency resolution. They may lead to incorrect estimates of atmospheric

  7. Adatom Fe(III) on the hematite surface: Observation of a key reactive surface species

    PubMed Central

    Eggleston, Carrick M; Stack, Andrew G; Rosso, Kevin M; Bice, Angela M

    2004-01-01

    The reactivity of a mineral surface is determined by the variety and population of different types of surface sites (e.g., step, kink, adatom, and defect sites). The concept of "adsorbed nutrient" has been built into crystal growth theories, and many other studies of mineral surface reactivity appeal to ill-defined "active sites." Despite their theoretical importance, there has been little direct experimental or analytical investigation of the structure and properties of such species. Here, we use ex-situ and in-situ scanning tunneling microcopy (STM) combined with calculated images based on a resonant tunneling model to show that observed nonperiodic protrusions and depressions on the hematite (001) surface can be explained as Fe in an adsorbed or adatom state occupying sites different from those that result from simple termination of the bulk mineral. The number of such sites varies with sample preparation history, consistent with their removal from the surface in low pH solutions.

  8. Probing the Arctic - insights from combining surface station observations and model analyses

    NASA Astrophysics Data System (ADS)

    Haiden, Thomas

    2016-04-01

    The Arctic system is changing, and to understand the mechanisms and feedback processes contributing to these changes, an integrated spatial-temporal approach is needed. International Arctic Systems for Observing the Atmosphere (IASOA) observatories are predominantly located at coastal locations, which makes their data potentially relevant for both land and ocean areas. Numerical weather prediction (NWP) model analyses and forecasts provide a means of relating such point measurements to the atmospheric state over a larger area. Using ECMWF's re-analysis and forecasting system it is shown how comparison of station observations with NWP output provides insight into the flow-dependence of spatial representativeness. It also reveals systematic shortcomings in the model which need to be considered when the model is used as a tool to gain a better understanding of relevant physical processes. Well-known modelling challenges in the Arctic are discussed, such as the representation of low cloud, in particular at low temperatures, as well as ice/ocean/land-atmosphere interactions. The importance of surface-based observations, such as provided by IASOA observatories, is considered in light of the scientific plan for the Year of Polar Prediction 2017-19.

  9. Interannual variation of the surface temperature of tropical forests from satellite observations

    SciTech Connect

    Gao, Huilin; Zhang, Shuai; Fu, Rong; Li, Wenhong; Dickinson, Robert E.

    2016-01-01

    Land surface temperatures (LSTs) within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS), providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability of cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Lastly, the differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP) reanalysis data).

  10. Interannual variation of the surface temperature of tropical forests from satellite observations

    DOE PAGES

    Gao, Huilin; Zhang, Shuai; Fu, Rong; Li, Wenhong; Dickinson, Robert E.

    2016-01-01

    Land surface temperatures (LSTs) within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS), providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability ofmore » cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Lastly, the differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP) reanalysis data).« less

  11. Analysis of Surface and Radar Rainfall Observations during Two Tropical Systems in South Louisiana

    NASA Astrophysics Data System (ADS)

    Habib, E.; Tokay, A.; Meselhe, E.; Malakpet, C.

    2006-05-01

    This study presents comparative analyses on rainfall observations made during two tropical systems that affected south Louisiana: tropical storm Matthew in October 2004, and Hurricane Rita in September 2005. Storm Matthew formed from a tropical wave in the southwestern Gulf of Mexico on October 6th and made landfall on south Louisiana on October 10th causing as much as 10 inches of rain. Hurricane Rita developed on September 18th from a tropical depression and tracked westward into the Gulf of Mexico to reach category 5-strength on September 21st. Rita made landfall at the Texas/Louisiana border on 24th causing as much as 8-9 inches of rain. The current study focuses on analysis of rainfall observations during these two storms using a combination of surface-based and weather radar measurements. The results are based on analyses of small-scale variability of rainfall collected using a dense network of rain gauges in south Louisiana which includes a total of 13 dual rain gauge sites. In addition, an impact-type disdrometer is used to examine the raindrop size spectra characteristics during the two storms. The study will also compare data from the Lake Charles WSR-88D Level II volume scan reflectivity observations to gauge and disdrometer estimates. Implications for the ability of the WSR-88D radar to accurately measure rainfall during these two tropical systems will be investigated and discussed.

  12. TES Observations of Chryse and Acidalia Planitiae: Multiple Working Hypotheses for Distributions of Surface Compositions

    NASA Technical Reports Server (NTRS)

    Wyatt, M. B.; Bandfield, J. L.; McSween, H. Y., Jr.; Christensen, P. R.; Moersch, J.

    2002-01-01

    A gradation of surface units represents either (1) an influx of basaltic sediment from southern highlands, deposited on andesitic volcanics, or (2) incompletely weathered basalt marking the geographic extent of submarine alteration of basaltic crust. Additional information is contained in the original extended abstract.

  13. Gravitational radiation antennas - History, observations, and lunar surface opportunities

    NASA Astrophysics Data System (ADS)

    Weber, J.

    1990-03-01

    The paper discusses the suitability of the lunar surface for observing the quadrupole modes with a long-period accelerometer as well as gravitational radiation by means of a low-frequency bar and interferometer antennas. The theoretical background of gravitational radiation antennas is described emphasizing the General theory of Relativity. One measurement method involves the use of an elastic solid such as an aluminum cylinder whose length changes as spacetime curvature changes. The second method described involves the use of a Michelson interferometer which measures fractional changes in length. Results of the measurements are given for the period during the supernova 1987A, and applications of the experimental apparatuses to lunar gravitational observations are discussed. The large cross sections of the lunar quadrupole modes make the moon a good place for the use of a long-period accelerometer.

  14. Geologic interpretation of new observations of the surface of Venus

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Malin, M. C.

    1977-01-01

    New radar observations of the surface of Venus provide further evidence of a diverse and complex geologic evolution. The radar bright feature 'Beta' (24 deg N, 85 deg W) is seen to be a 700 km diameter region elevated a maximum of approximately 10 km relative to its surroundings with a 60 x 90 km wide depression at its summit. 'Beta' is interpreted to be a large volcanic construct, analogous to terrestrial and Martian shield volcanoes. Two large, quasi-circular areas of low reflectivity, examples of a class of features interpreted to be impact basins by previous investigators who were without the benefit of actual topographic information, are shown in altimetry maps to be depressions. Thus the term 'basin' can be applied, although we urge a non-genetic usage until more complete understanding of their origin is achieved through analysis of future observations.

  15. Global Monitoring of Martian Surface Albedo Changes from Orbital Observations

    NASA Astrophysics Data System (ADS)

    Geissler, P.; Enga, M.; Mukherjee, P.

    2013-12-01

    Martian surface changes were first observed from orbit during the Mariner 9 and Viking Orbiter missions. They were found to be caused by eolian processes, produced by deposition of dust during regional and global dust storms and subsequent darkening of the surface through erosion and transportation of dust and sand. The albedo changes accumulated in the 20 years between Viking and Mars Global Surveyor were sufficient to alter the global circulation of winds and the climate of Mars according to model calculations (Fenton et al., Nature 2007), but little was known about the timing or frequency of the changes. Since 1999, we have had the benefit of continuous monitoring by a series of orbiting spacecraft that continues today with Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express. Daily synoptic observations enable us to determine whether the surface albedo changes are gradual or episodic in nature and to record the seasons that the changes take place. High resolution images of surface morphology and atmospheric phenomena help identify the physical mechanisms responsible for the changes. From these data, we hope to learn the combinations of atmospheric conditions and sediment properties that produce surface changes on Mars and possibly predict when they will take place in the future. Martian surface changes are particularly conspicuous in low albedo terrain, where even a thin layer of bright dust brightens the surface drastically. Equatorial dark areas are repeatedly coated and recoated by dust, which is later shed from the surface by a variety of mechanisms. An example is Syrtis Major, suddenly buried in bright dust by the global dust storm of 2001. Persistent easterly winds blew much of the dust cover away over the course of the next Martian year, but episodic changes continue today, particularly during southern summer when regional dust storms are rife. Another such region is Solis Planum, south of the Valles Marineris, where changes take place

  16. Structure-dependent degradation of polar compounds in weathered oils observed by atmospheric pressure photo-ionization hydrogen/deuterium exchange ultrahigh resolution mass spectrometry.

    PubMed

    Islam, Ananna; Kim, Donghwi; Yim, Un Hyuk; Shim, Won Joon; Kim, Sunghwan

    2015-10-15

    The resin fractions of fresh mixtures of three oils spilled during the M/V Hebei Spirit oil spill, as well as weathered oils collected at weathering stages II and IV from the oil spill site were analyzed and compared by atmospheric pressure photo-ionization hydrogen/deuterium exchange mass spectrometry (HDX MS). The significantly decreased abundance of N(+) and [N-H+D](+) ions suggested that secondary and tertiary amine-containing compounds were preferentially degraded during the early stage of weathering. [N+H](+) and [N+D](+) ions previously attributed to pyridine-type compounds degraded more slowly than secondary and tertiary amine-containing compounds. The preferential degradation of nitrogen-containing compounds was confirmed by photo-degradation experiments using 15 standard compounds. In addition, significant increases of [S1O1+H](+) and [S1O1+D](+) ions with higher DBE values were observed from fresh oil mixtures as compared to stages II and IV samples, and that could be linked with the decrease of higher DBE compounds of the S1 class. This study presented convincing arguments and evidence demonstrating that secondary and tertiary amines were more vulnerable to photo-degradation than compounds containing pyridine, and hence, preferential degradation depending on chemical structures must be considered in the production of hazardous or toxic components.

  17. Geochemical investigation of weathering processes in a forested headwater catchment: Mass-balance weathering fluxes

    USGS Publications Warehouse

    Jones, B.F.; Herman, J.S.

    2008-01-01

    Geochemical research on natural weathering has often been directed towards explanations of the chemical composition of surface water and ground water resulting from subsurface water-rock interactions. These interactions are often defined as the incongruent dissolution of primary silicates, such as feldspar, producing secondary weathering products, such as clay minerals and oxyhydroxides, and solute fluxes (Meunier and Velde, 1979). The chemical composition of the clay-mineral product is often ignored. However, in earlier investigations, the saprolitic weathering profile at the South Fork Brokenback Run (SFBR) watershed, Shenandoah National Park, Virginia, was characterized extensively in terms of its mineralogical and chemical composition (Piccoli, 1987; Pochatila et al., 2006; Jones et al., 2007) and its basic hydrology. O'Brien et al. (1997) attempted to determine the contribution of primary mineral weathering to observed stream chemistry at SFBR. Mass-balance model results, however, could provide only a rough estimate of the weathering reactions because idealized mineral compositions were utilized in the calculations. Making use of detailed information on the mineral occurrence in the regolith, the objective of the present study was to evaluate the effects of compositional variation on mineral-solute mass-balance modelling and to generate plausible quantitative weathering reactions that support both the chemical evolution of the surface water and ground water in the catchment, as well as the mineralogical evolution of the weathering profile. ?? 2008 The Mineralogical Society.

  18. Constraints on surface evapotranspiration: implications for modeling and observations

    NASA Astrophysics Data System (ADS)

    Gentine, P.

    2015-12-01

    The continental hydrological cycle and especially evapotranspiration are constrained by additional factors such as the energy availability and the carbon cycle. As a results trying to understand and predict the surface hydrologic cycle in isolation might be highly unreliable. We present two examples were constraints induced by 1) radiation control through cloud albedo feedback and 2) carbon control on the surface water use efficiency are essential to correctly predict the seasonal hydrologic cycle. In the first example we show that correctly modeling diurnal and seasonal convection and the associated cloud-albedo feedback (through land-atmosphere and convection-large-scale circulation feedbacks) is essential to correctly model the surface hydrologic cycle in the Amazon, and to correct biases observed in all general circulation models. This calls for improved modeling of convection to correctly predict the tropical continental hydrologic cycle.In the second example we show that typical drought index based only on energy want water availability misses vegetation physiological and carbon feedback and cannot correctly represent the seasonal cycle of soil moisture stress. The typical Palmer Drought Stress Index is shown to be incapable of rejecting water stress in the future. This calls for new drought assessment metrics that may include vegetation and carbon feedback.

  19. Passive Microwave Observation of Diurnal Surface Soil Moisture

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; ONeill, Peggy E.; Swift, Calvin T.

    1997-01-01

    Microwave radiometers operating at low frequencies are sensitive to surface soil moisture changes. Few studies have been conducted that have involved multifrequency observations at frequencies low enough to measure a significant soil depth and not be attenuated by the vegetation cover. Another unexplored aspect of microwave observations at low frequencies has been the impact of diurnal variations of the soil moisture and temperature on brightness temperature. In this investigation, observations were made using a dual frequency radiometer (1.4 and 2.65 GHz) over bare soil and corn for extended periods in 1994. Comparisons of emissivity and volumetric soil moisture at four depths for bare soils showed that there was a clear correspondence between the 1 cm soil moisture and the 2.65-GHz emissivity and between the 3-5 cm soil moisture and the 1.4-GHZ emissivity, which confirms previous studies. Observations during drying and rainfall demonstrate that new and unique information for hydrologic and energy balance studies can be extracted from these data.

  20. Weathering in a Cup.

    ERIC Educational Resources Information Center

    Stadum, Carol J.

    1991-01-01

    Two easy student activities that demonstrate physical weathering by expansion are described. The first demonstrates ice wedging and the second root wedging. A list of the needed materials, procedure, and observations are included. (KR)

  1. Assimilation of Smos Observations to Generate a Prototype SMAP Level 4 Surface and Root-Zone Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Crow, Wade T.; Koster, Randal D.; Kimball, John

    2012-01-01

    The Soil Moisture Active and Passive (SMAP; [1]) mission is being implemented by NASA for launch in October 2014. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high-resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. The Soil Moisture and Ocean Salinity (SMOS; [2]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. In this paper we describe our use of SMOS brightness temperature observations to generate a prototype of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product [5].

  2. Isotopic excesses of proton-rich nuclei related to space weathering observed in a gas-rich meteorite Kapoeta

    SciTech Connect

    Hidaka, Hiroshi; Yoneda, Shigekazu E-mail: s-yoneda@kahaku.go.jp

    2014-05-10

    The idea that solar system materials were irradiated by solar cosmic rays from the early Sun has long been suggested, but is still questionable. In this study, Sr, Ba, Ce, Nd, Sm, and Gd isotopic compositions of sequential acid leachates from the Kapoeta meteorite (howardite) were determined to find systematic and correlated variations in their isotopic abundances of proton-rich nuclei, leading to an understanding of the irradiation condition by cosmic rays. Significantly large excesses of proton-rich isotopes (p-isotopes), {sup 84}Sr, {sup 130}Ba, {sup 132}Ba, {sup 136}Ce, {sup 138}Ce, and {sup 144}Sm, were observed, particularly in the first chemical separate, which possibly leached out of the very shallow layer within a few μm from the surface of regolith grains in the sample. The results reveal the production of p-isotopes through the interaction of solar cosmic rays with the superficial region of the regolith grains before the formation of the Kapoeta meteorite parent body, suggesting strong activity in the early Sun.

  3. Surface contour radar observations of the directional wave spectrum during Fasinex

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Hancock, D. W., III; Hines, D. E.; Swift, R. N.; Scott, J. F.

    1988-01-01

    The surface control radar (SCR), a 36-GHz computer-controlled airborne radar which generates a false-color coded elevation map of the sea surface below the aircraft in real time, is described. The SCR turned out to be ideal for documenting the wave spectra during Fasinex (the Frontal Air-Sea Interaction Experiment) due to its high spatial resolution and rapid mapping capability over extensive areas. Synoptic weather maps for February 15-18, 1986 are presented.

  4. Land surface thermal environment during heat wave event measured by satellite observation

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Yang, Song

    2014-11-01

    In summer 2013, mainly from July to August, most parts of China continued to experience an unusually severe heat wave with exceptionally high air temperatures, based on the records measured at meteorological stations. As a supplement to the weather station networks, remotely sensed observation can quantify detailed variation of surface temperature at relatively high spatial resolution, owing to its ability to provide a complete and homogeneous data sources. In addition to the GHCN CAMS gridded land air surface temperature, land surface temperature products of MODIS including MOD11C3/MYD11C3 and MOD11A2/MYD11A2 were used to evaluate the anomaly of summertime thermal environment over the South China in 2013. To investigate the impacts of heat wave event on built environment, the MODIS Land Cover Type yearly product (MCD12Q1) was collected. Regional thermal anomaly was observed in both air and surface temperature measurements, especially for August. Statistics based on MOD11A2/MYD11A2 shows the spatio-temporal variation of land surface temperature at regional scale, and the heterogeneous characteristics in diurnal cycle are also shown. Compared with other types, the urban and built-up generally presents larger surface temperature at daytime. Detailed analyses were further conducted for three selected regions roughly covering the Yangtze River Delta, the Pearl River Delta, and the areas around Wuhan City respectively. Findings indicate that urban and built-up exhibits more distinct thermal contrast to its surroundings at daytime, in contrast to the situation at nighttime. This thermal contrast was defined as surface urban heat island intensity (UHII) calculated using a newly proposed procedure, in this paper. The UHII shows both time- and geography-dependent variations. Meanwhile, the UHII over medium and small cities was even more obvious and larger than that over megalopolitan areas. These preliminary findings suggest that land use and land cover changes as a

  5. Coupled atmosphere and land-surface assimilation of surface observations with a single column model and ensemble data assimilation

    NASA Astrophysics Data System (ADS)

    Rostkier-Edelstein, Dorita; Hacker, Joshua P.; Snyder, Chris

    2014-05-01

    Numerical weather prediction and data assimilation models are composed of coupled atmosphere and land-surface (LS) components. If possible, the assimilation procedure should be coupled so that observed information in one module is used to correct fields in the coupled module. There have been some attempts in this direction using optimal interpolation, nudging and 2/3DVAR data assimilation techniques. Aside from satellite remote sensed observations, reference height in-situ observations of temperature and moisture have been used in these studies. Among other problems, difficulties in coupled atmosphere and LS assimilation arise as a result of the different time scales characteristic of each component and the unsteady correlation between these components under varying flow conditions. Ensemble data-assimilation techniques rely on flow dependent observations-model covariances. Provided that correlations and covariances between land and atmosphere can be adequately simulated and sampled, ensemble data assimilation should enable appropriate assimilation of observations simultaneously into the atmospheric and LS states. Our aim is to explore assimilation of reference height in-situ temperature and moisture observations into the coupled atmosphere-LS modules(simultaneously) in NCAR's WRF-ARW model using the NCAR's DART ensemble data-assimilation system. Observing system simulation experiments (OSSEs) are performed using the single column model (SCM) version of WRF. Numerical experiments during a warm season are centered on an atmospheric and soil column in the South Great Plains. Synthetic observations are derived from "truth" WRF-SCM runs for a given date,initialized and forced using North American Regional Reanalyses (NARR). WRF-SCM atmospheric and LS ensembles are created by mixing the atmospheric and soil NARR profile centered on a given date with that from another day (randomly chosen from the same season) with weights drawn from a logit-normal distribution. Three

  6. Turbulence as observed by concurrent measurements made at NSSL using weather radar, Doppler radar, Doppler lidar and aircraft

    NASA Technical Reports Server (NTRS)

    Lee, Jean T.

    1987-01-01

    As air traffic increases and aircraft capability increases in range and operating altitude, the exposure to weather hazards increases. Turbulence and wind shears are two of the most important of these hazards that must be taken into account if safe flight operations are to be accomplished. Beginning in the early 1960's, Project Rough Rider began thunderstorm investigations. Past and present efforts at the National Severe Storm Laboratory (NSSL) to measure these flight safety hazards and to describe the use of Doppler radar to detect and qualify these hazards are summarized. In particular, the evolution of the Doppler-measured radial velocity spectrum width and its applicability to the problem of safe flight is presented.

  7. Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Kumar, Sujay V.; Mahanama, P. P.; Koster, Randal D.; Liu, Q.

    2010-01-01

    Land surface (or "skin") temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. Here we assimilate LST retrievals from the International Satellite Cloud Climatology Project (ISCCP) into the Noah and Catchment (CLSM) land surface models using an ensemble-based, off-line land data assimilation system. LST is described very differently in the two models. A priori scaling and dynamic bias estimation approaches are applied because satellite and model LST typically exhibit different mean values and variability. Performance is measured against 27 months of in situ measurements from the Coordinated Energy and Water Cycle Observations Project at 48 stations. LST estimates from Noah and CLSM without data assimilation ("open loop") are comparable to each other and superior to that of ISCCP retrievals. For LST, RMSE values are 4.9 K (CLSM), 5.6 K (Noah), and 7.6 K (ISCCP), and anomaly correlation coefficients (R) are 0.62 (CLSM), 0.61 (Noah), and 0.52 (ISCCP). Assimilation of ISCCP retrievals provides modest yet statistically significant improvements (over open loop) of up to 0.7 K in RMSE and 0.05 in anomaly R. The skill of surface turbulent flux estimates from the assimilation integrations is essentially identical to the corresponding open loop skill. Noah assimilation estimates of ground heat flux, however, can be significantly worse than open loop estimates. Provided the assimilation system is properly adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for both models.

  8. Daytime sensible heat flux estimation over heterogeneous surfaces using multitemporal land-surface temperature observations

    NASA Astrophysics Data System (ADS)

    Castellví, F.; Cammalleri, C.; Ciraolo, G.; Maltese, A.; Rossi, F.

    2016-05-01

    Equations based on surface renewal (SR) analysis to estimate the sensible heat flux (H) require as input the mean ramp amplitude and period observed in the ramp-like pattern of the air temperature measured at high frequency. A SR-based method to estimate sensible heat flux (HSR-LST) requiring only low-frequency measurements of the air temperature, horizontal mean wind speed, and land-surface temperature as input was derived and tested under unstable conditions over a heterogeneous canopy (olive grove). HSR-LST assumes that the mean ramp amplitude can be inferred from the difference between land-surface temperature and mean air temperature through a linear relationship and that the ramp frequency is related to a wind shear scale characteristic of the canopy flow. The land-surface temperature was retrieved by integrating in situ sensing measures of thermal infrared energy emitted by the surface. The performance of HSR-LST was analyzed against flux tower measurements collected at two heights (close to and well above the canopy top). Crucial parameters involved in HSR-LST, which define the above mentioned linear relationship, were explained using the canopy height and the land surface temperature observed at sunrise and sunset. Although the olive grove can behave as either an isothermal or anisothermal surface, HSR-LST performed close to H measured using the eddy covariance and the Bowen ratio energy balance methods. Root mean square differences between HSR-LST and measured H were of about 55 W m-2. Thus, by using multitemporal thermal acquisitions, HSR-LST appears to bypass inconsistency between land surface temperature and the mean aerodynamic temperature. The one-source bulk transfer formulation for estimating H performed reliable after calibration against the eddy covariance method. After calibration, the latter performed similar to the proposed SR-LST method.

  9. A systematic evaluation of the lagged effects of spatiotemporally relative surface weather types on wintertime cardiovascular-related mortality across 19 US cities.

    PubMed

    Lee, Cameron C

    2015-11-01

    Previous research using varying methods has shown that the day-to-day variability in cardiovascular (CV)-related mortality is correlated with a number of different meteorological variables, though these relationships can vary geographically. This research systematically examines the relationship between anomalous winter CV-related mortality and geographically and seasonally relative multivariate surface weather types derived from a recently developed gridded weather typing classification (GWTC) for cities in varying climate regions of the United States of America (USA). Results indicate that for all locations examined, during winter, a dry and cool (DC) weather type is significantly related to increased CV-related mortality, especially in the 2 weeks immediately after it occurs, with no apparent mortality displacement. Across the USA as a whole, the peak of this relationship is a 4.1% increase in CV-related mortality at a lag of 3 days. Spike days in CV-related mortality show similar trends, being over 50% more likely 2 to 4 days after the DC type occurs. A humid and warm (HW) weather type exhibited a significant and opposite relationship to that of DC. While these results for DC and HW were statistically significant at every location examined, the magnitudes were larger in the warmer locations. Among other weather types, Warm Front Passages (WFP) were also related to significant increases in CV-related mortality, especially 1 day after they occurred. Though this link was much more varied geographically than results found with DC or HW, it suggests that sequences of multiple DC days followed by WFP may result in increased CV-related mortality.

  10. Wacky Weather

    ERIC Educational Resources Information Center

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  11. Observed near-surface currents under four super typhoons

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chia; Chu, Peter C.; Centurioni, Luca R.; Tseng, Ruo-Shan

    2014-11-01

    The upper ocean currents under four category-5 (super) typhoons [Chaba (2004), Maon (2004), Saomai (2006), and Jangmi (2008)] were studied using data from four drifters of the Surface Velocity Program (SVP) (Niiler, 2001) in the northwestern Pacific. Maximum current velocities occurring to the right of the super typhoon tracks were observed as 2.6 m s- 1 for slow-moving (2.9 m s- 1) Maon, 2.1 m s- 1 for typical-moving Chaba (5.1 m s- 1), 1.4 m s- 1 for fast-moving Jangmi (6.8 m s- 1), and 1.2 m s- 1 for fast-moving Saomai (8.1 m s- 1). Furthermore, dependence of the mixed layer current velocity under a super typhoon on its translation speed and statistical relationships between the maximum current speed and the Saffir-Simpson hurricane scale are also provided.

  12. Observation and modeling of surface ozone over Greenland

    SciTech Connect

    Kiilsholm, I.S.; Mikkelsen, I.S.; Rasmussen, A.; Sorensen, J.H.

    1996-12-31

    DMI initiated continuous measurements of surface ozone concentration in Greenland during spring 1994 as apart of the ARCTOC project (ARCtic Tropospheric Ozone Chemistry). The ARCTOC project is partially financed by EU, and is coordinated by the Institute for Environmental Physics, University of Heidelberg. The objectives are to investigate the mechanism causing sudden arctic tropospheric ozone loss, spatial extent and possible consequences of the phenomenon. The observation sites in Greenland are Thule (76{degrees} 31{prime} N, 68{degrees} 50{prime} W), Sondre Stromfjord (67{degrees} 00{prime} N, 50{degrees} 48{prime}W) and Scoresbysund (70{degrees} 29{prime}N, 21{degrees} 58{prime} W). The instruments are photometric ozone analyzers. Preliminary results show that the air parcels with low ozone values have spent four days or more in the boundary layer and have recently passed the strait between Canada and Greenland.

  13. Enhancing Extreme Heat Health-Related Intervention and Preparedness Activities Using Remote Sensing Analysis of Daily Surface Temperature, Surface Observation Networks and Ecmwf Reanalysis

    NASA Astrophysics Data System (ADS)

    Garcia, R. L.; Booth, J.; Hondula, D.; Ross, K. W.; Stuyvesant, A.; Alm, G.; Baghel, E.

    2015-12-01

    Extreme heat causes more human fatalities in the United States than any other natural disaster, elevating the concern of heat-related mortality. Maricopa County Arizona is known for its high heat index and its sprawling metropolitan complex which makes this region a perfect candidate for human health research. Individuals at higher risk are unequally spatially distributed, leaving the poor, homeless, non-native English speakers, elderly, and the socially isolated vulnerable to heat events. The Arizona Department of Health Services, Arizona State University and NASA DEVELOP LaRC are working to establish a more effective method of placing hydration and cooling centers in addition to enhancing the heat warning system to aid those with the highest exposure. Using NASA's Earth Observation Systems from Aqua and Terra satellites, the daily spatial variability within the UHI was quantified over the summer heat seasons from 2005 - 2014, effectively establishing a remotely sensed surface temperature climatology for the county. A series of One-way Analysis of Variance revealed significant differences between daily surface temperature averages of the top 30% of census tracts within the study period. Furthermore, synoptic upper tropospheric circulation patterns were classified to relate surface weather types and heat index. The surface weather observation networks were also reviewed for analyzing the veracity of the other methods. The results provide detailed information regarding nuances within the UHI effect and will allow pertinent recommendations regarding the health department's adaptive capacity. They also hold essential components for future policy decision-making regarding appropriate locations for cooling centers and efficient warning systems.

  14. An attempt to comprehend Martian weathering conditions through the analysis of terrestrial palagonite samples

    NASA Technical Reports Server (NTRS)

    Douglas, C.; Wright, I. P.; Bell, J. B.; Morris, R. V.; Golden, D. C.; Pillinger, C. T.

    1993-01-01

    Spectroscopic observations of the Martian surface in the invisible to near infrared (0.4-1.0 micron), coupled with measurements made by Viking, have shown that the surface is composed of a mixture of fine-grained weathered and nonweathered minerals. The majority of the weathered components are thought to be materials like smectite clays, scapolite, or palagonite. Until materials are returned for analysis there are two possible ways of proceeding with an investigation of Martian surface processes: (1) the study of weathering products in meteorites that have a Martian origin (SNC's), and (2) the analysis of certain terrestrial weathering products as analogs to the material found in SNC's, or predicted to be present on the Martian surface. We describe some preliminary measurements of the carbon chemistry of terrestrial palagonite samples that exhibit spectroscopic similarities with the Martian surface. The data should aid the understanding of weathering in SNC's and comparisons between terrestrial palagonites and the Martian surface.

  15. Soil weathering rates in 21 catchments of the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Houle, D.; Lamoureux, P.; Bélanger, N.; Bouchard, M.; Gagnon, C.; Couture, S.; Bouffard, A.

    2012-03-01

    Soil mineral weathering represents an essential source of nutrient base cation (Ca, Mg and K) for forest growth in addition to provide a buffering power against precipitation acidity for soils and surface waters. Weathering rates of base cations were obtained for 21 catchments located within the temperate and the boreal forest of the Canadian Shield with the geochemical model PROFILE. Weathering rates ranged from 0.58 to 4.46 kmolc ha-1 yr-1 and their spatial variation within the studied area was mostly in agreement with spatial variations in soil mineralogy. Weathering rates of Ca and Mg were significantly correlated (r = 0.80 and 0.64) with their respective lake concentrations. Weathering rates of K and Na did not correlate with lake concentrations of K and Na. The modeled weathering rates for each catchment were also compared with estimations of net catchment exportations. The result show that modeled weathering rates of Ca were not significantly different than the net catchment exportations while modeled weathering rates of Mg were higher by 51%. Larger differences were observed for K and Na weathering rates that were significantly different than net catchment exportations being 6.9 and 2.2 times higher than net exportations, respectively. The results for K were expected given its high reactivity with biotic compartments and suggest that most of the K produced by weathering reactions was retained within soil catchments and/or above ground biomass. This explanation does not apply to Na, however, which is a conservative element in forest ecosystems because of the insignificant needs of Na for soil microorganisms and above ground vegetations. It raises concern about the liability of the PROFILE model to provide reliable values of Na weathering rates. Overall, we concluded that the PROFILE model is powerful enough to reproduce spatial geographical gradients in weathering rates for relatively large areas as well as adequately predict absolute weathering rates values

  16. Observations of Lightning on Earth from the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Buechler, D. E.; Christian, H. J., Jr.; Stahl, H. P.

    2007-01-01

    The NASA Optical Transient Detector (OTD) launched into a 70deg inclination orbit in April 1995 aboard the MicroLab-1 satellite and the Lightning Imaging Sensor (LIS) launched into a 35deg inclination orbit in November 1997 (and still operating today) aboard the Tropical Rainfall Measuring Mission have produced the most comprehensive global observations of lightning activity on Earth. The OTD collected data for 5-yr from an altitude of 740 km while the LIS, in its 10th year of operations, is still collecting data from its current altitude of 402 km. From these altitudes the OTD observes an individual storm within its field of view for approx.3 min and the LIS for approx.90 sec as the satellites orbit the earth. Figures 1-4 show the combined LIS/OTD distribution of lightning for day and night during the Northern Hemisphere warm season from April through August (Fig. 1,2) and the cool season from October through February (Fig. 3,4) as might be observed from the lunar surface (12-h daylight and 12-h nighttime observations). The day and night plots are for the twelve hour periods centered on local noon and midnight. The total viewtime of the global lightning activity is 200 hours or less, depending on latitude (Fig. 5). Most of the observed lightning occurs over the northern hemisphere land areas as reported in previous studies. More lightning activity is seen at the higher northern latitudes during the day. The greatest lightning maxima occurs in the southeastern US, during the day. The corresponding region at night shows much less lightning activity. In contrast, there is a maxima in lightning activity at night over the high Plains area of the U.S. This region had lower lightning rates during the daytime period. During the cold season, the southern hemisphere has significantly more lightning. The maxima in Central Africa is still present, and a secondary maxima is observed in South Africa. In South America, the maxima in Argentina occurs at night in association with

  17. Dissolution rates of subsoil limestone in a doline on the Akiyoshi-dai Plateau, Japan: An approach from a weathering experiment, hydrological observations, and electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Akiyama, Sanae; Hattanji, Tsuyoshi; Matsushi, Yuki; Matsukura, Yukinori

    2015-10-01

    This study aims at estimating the controlling factors for the denudation rates of limestone, which often forms solution dolines on karst tablelands. Our approaches include (1) electrical resistivity tomography (ERT) to reveal shallow subsurface structures and hydrological settings, (2) automated monitoring of volumetric water content in soil profiles and manual measurements of subsurface CO2 concentrations and soil water chemistry, and (3) a field weathering experiment using limestone tablets with the micro-weight loss technique for determining current denudation rates. The field experiment and monitoring were carried out over 768 days from 2009-2011 at four sites with varying topographic and hydrological conditions along the sideslope of a doline on the Akiyoshi-dai karst plateau in SW-Japan. The installation depths of the limestone tablets were 15 cm or 50 cm below the slope surface. The soil moisture conditions varied site by site. Water-saturated conditions continued for 40-50% of the whole experimental period at 50-cm depth of upper and middle sites, while only 0-10% of the experimental period was water-saturated at the other sites. Chemical analysis revealed that the soil water was chemically unsaturated with calcite for all the sites. Spatial differences in concentrations of CO2 in soil pore air were statistically less significant. The denudation rates of the buried limestone tablets were 17.7-21.9 mg cm- 2 a- 1 at the upper and middle slopes, where the soil was water-saturated for a long time after precipitation. The lowest denudation of 3.9 mg cm- 2 a- 1 was observed on lower slopes where soil was not capable of maintaining water at a near saturation level even after precipitation. Statistical analysis revealed that the denudation rates of the tablets were strongly controlled by the duration for which soil pores were saturated by water (the conditions defined here are degrees of water saturation greater than 97%). Electrical resistivity tomography

  18. History of Martian Surface Changes Observed by Mars Global Surveyor

    NASA Astrophysics Data System (ADS)

    Geissler, P. E.; Enga, M.; Mukherjee, P.

    2009-12-01

    The changing appearance of Mars has fascinated observers for centuries, yet much is still unknown about the winds and sediments that alter the albedo of vast areas of the planet’s surface. A variety of aeolian processes contribute to the deposition and erosion of dust on Mars, with distinct causes and timescales that vary with season and location. Over decadal timescales, these processes act to alter the planetary albedo distribution enough to significantly impact the climate and global circulation of winds on Mars (Geissler, JGR 110, E02001, 2005; Fenton et al., Nature 446, 646, 2007). We are documenting the extent and frequency of Martian surface changes by analyzing the rich record of observations made by the Mars Global Surveyor mission. We are currently completing a time-series of global mosaics produced from wide angle MOC images showing in detail how the planet’s surface changed in appearance between early 1999 and late 2006, a period of 4 Martian years. The MOC mosaics reveal a surprising range of temporal behavior among variable features in different regions of Mars. Episodic dust deposition followed by episodic clearing can be seen in Syrtis Major. Gradual erosion by persistent seasonal winds can be seen in many equatorial areas such as southern Alcyonius. Gradual erosion by dust-devils is prevalent at higher latitudes and notably in Nilosyrtis, where the albedo boundary dividing the high albedo tropics from the dark terrain to the north is slowly advancing southwards onto brighter terrain. Solis Planum, a high plateau south of the Valles Marineris, changes on a nearly continuous basis. Many of the moving albedo boundaries (such as those at Oxia Palus and the Southern tropical dark band) display high albedo margins that may be aprons of dust swept away by the advancing erosion. The data also show clear evidence for dust deposition onto already dust-covered regions, a phenomenon that was suspected but not demonstrated by Geissler (2005). The final MOC

  19. Degree of ice particle surface roughness inferred from polarimetric observations

    NASA Astrophysics Data System (ADS)

    Hioki, Souichiro; Yang, Ping; Baum, Bryan A.; Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Riedi, Jerome

    2016-06-01

    The degree of surface roughness of ice particles within thick, cold ice clouds is inferred from multi-directional, multi-spectral satellite polarimetric observations over oceans, assuming a column-aggregate particle habit. An improved roughness inference scheme is employed that provides a more noise-resilient roughness estimate than the conventional best-fit approach. The improvements include the introduction of a quantitative roughness parameter based on empirical orthogonal function analysis and proper treatment of polarization due to atmospheric scattering above clouds. A global 1-month data sample supports the use of a severely roughened ice habit to simulate the polarized reflectivity associated with ice clouds over ocean. The density distribution of the roughness parameter inferred from the global 1-month data sample and further analyses of a few case studies demonstrate the significant variability of ice cloud single-scattering properties. However, the present theoretical results do not agree with observations in the tropics. In the extratropics, the roughness parameter is inferred but 74 % of the sample is out of the expected parameter range. Potential improvements are discussed to enhance the depiction of the natural variability on a global scale.

  20. TOLNet Data Format for Lidar Ozone Profile & Surface Observations

    NASA Astrophysics Data System (ADS)

    Chen, G.; Aknan, A. A.; Newchurch, M.; Leblanc, T.

    2015-12-01

    The Tropospheric Ozone Lidar Network (TOLNet) is an interagency initiative started by NASA, NOAA, and EPA in 2011. TOLNet currently has six Lidars and one ozonesonde station. TOLNet provides high-resolution spatio-temporal measurements of tropospheric (surface to tropopause) ozone and aerosol vertical profiles to address fundamental air-quality science questions. The TOLNet data format was developed by TOLNet members as a community standard for reporting ozone profile observations. The development of this new format was primarily based on the existing NDAAC (Network for the Detection of Atmospheric Composition Change) format and ICARTT (International Consortium for Atmospheric Research on Transport and Transformation) format. The main goal is to present the Lidar observations in self-describing and easy-to-use data files. The TOLNet format is an ASCII format containing a general file header, individual profile headers, and the profile data. The last two components repeat for all profiles recorded in the file. The TOLNet format is both human and machine readable as it adopts standard metadata entries and fixed variable names. In addition, software has been developed to check for format compliance. To be presented is a detailed description of the TOLNet format protocol and scanning software.

  1. Coal weathering studies

    SciTech Connect

    Alvarez, R.; Barriocanal, C.; Casal, M.D.; Diez, M.A.; Gonzalez, A.I.; Pis, J.J.; Canga, C.S.

    1996-12-31

    Weathering studies were carried out on coal/blend piles stored in the open yard at the INCAR facilities. Firstly, a typical and complex coal blend used by the Spanish Steel Company, ENSIDESA, prepared and ground at industrial scale, was stored. Several methods have been applied for detecting weathering in coals, Gieseler maximum fluidity being the most sensitive indicator of the loss of thermoplastic properties. Carbonization tests were carried out in a semi-industrial and a movable-wall ovens available at the INCAR Coking Test Plant. In addition to the measurements of internal gas pressure and cooling pressure, laboratory tests to measure expansion/contraction behavior of coals were performed. There is a clear decrease in internal gas pressure with weathering, measured in the semi-industrial oven. A decrease in wall pressure after two months of weathering followed by a period of stabilization lasting practically ten months were observed. As regards coke quality, no significant changes were produced over a storing period of ten months, but after this date impairment was observed. The behavior of selected individual coals stored without grinding, which are components of the blend, was rather different. Some coals showed a maximum wall pressure through the weathering period. Coke quality improved with some coals and was impaired with others due to weathering. It should be pointed out that slight weathering improved coke quality not only in high-volatile and fluid coals but also in medium-volatile coals.

  2. Compressive Strength of Cometary Surfaces Derived from Radar Observations

    NASA Astrophysics Data System (ADS)

    ElShafie, A.; Heggy, E.

    2014-12-01

    Landing on a comet nucleus and probing it, mechanically using harpoons, penetrometers and drills, and electromagnetically using low frequency radar waves is a complex task that will be tackled by the Rosetta mission for Comet 67P/Churyumov-Gerasimenko. The mechanical properties (i.e. density, porosity and compressive strength) and the electrical properties (i.e. the real and imaginary parts of the dielectric constant) of the comet nucleus, constrain both the mechanical and electromagnetic probing capabilities of Rosetta, as well as the choice of landing site, the safety of the landing, and subsurface data interpretation. During landing, the sounding radar data that will be collected by Rosetta's CONSERT experiment can be used to probe the comet's upper regolith layer by assessing its dielectric properties, which are then inverted to retrieve the surface mechanical properties. These observations can help characterize the mechanical properties of the landing site, which will optimize the operation of the anchor system. In this effort, we correlate the mechanical and electrical properties of cometary analogs to each other, and derive an empirical model that can be used to retrieve density, porosity and compressive strength from the dielectric properties of the upper regolith inverted from CONSERT observations during the landing phase. In our approach we consider snow as a viable cometary material analog due to its low density and its porous nature. Therefore, we used the compressive strength and dielectric constant measurements conducted on snow at a temperature of 250 K and a density range of 0.4-0.9 g/cm3 in order to investigate the relation between compressive strength and dielectric constant under cometary-relevant density range. Our results suggest that compressive strength increases linearly as function of the dielectric constant over the observed density range mentioned above. The minimum and maximum compressive strength of 0.5 and 4.5 MPa corresponded to a

  3. Linking the Weather Generator with Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin; Farda, Ales; Skalak, Petr; Huth, Radan

    2013-04-01

    One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking the stochastic weather generator with the climate model output. The present contribution, in which the parametric daily surface weather generator (WG) M&Rfi is linked to the RCM output, follows two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate Regional Climate Model at 25 km resolution. The WG parameters are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series (including probability of wet day occurrence). (2) Presenting a methodology for linking the WG with RCM output. This methodology, which is based on merging information from observations and RCM, may be interpreted as a downscaling procedure, whose product is a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations. In this procedure, WG is calibrated with RCM-simulated multi-variate weather series in the first step, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with gridded RCM weather series and spatially scarcer observations. The quality of the weather series produced by the resultant gridded WG will be assessed in terms of selected climatic characteristics (focusing on characteristics related to variability and extremes of surface temperature and precipitation). Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102

  4. Long-term snow and weather observations at Weissfluhjoch and its relation to other high-altitude observatories in the Alps

    NASA Astrophysics Data System (ADS)

    Marty, Christoph; Meister, Roland

    2012-12-01

    Snow and weather observations at Weissfluhjoch were initiated in 1936, when a research team set a snow stake and started digging snow pits on a plateau located at 2,540 m asl above Davos, Switzerland. This was the beginning of what is now the longest series of daily snow depth, new snow height and bi-monthly snow water equivalent measurements from a high-altitude research station. Our investigations reveal that the snow depth at Weissfluhjoch with regard to the evolution and inter-annual variability represents a good proxy for the entire Swiss Alps. In order to set the snow and weather observations from Weissfluhjoch in a broader context, this paper also shows some comparisons with measurements from five other high-altitude observatories in the European Alps. The results show a surprisingly uniform warming of 0.8°C during the last three decades at the six investigated mountain stations. The long-term snow measurements reveal no change in mid-winter, but decreasing trends (especially since the 1980s) for the solid precipitation ratio, snow fall, snow water equivalent and snow depth during the melt season due to a strong temperature increase of 2.5°C in the spring and summer months of the last three decades.

  5. Where fast weathering creates thin regolith and slow weathering creates thick regolith

    SciTech Connect

    Bazilevskaya, Ekaterina; Lebedeva, Marina; Pavich, Milan; Rother, Gernot; Parkinson, D. Y.; Cole, David; Brantley, S. L.

    2012-01-01

    Weathering disaggregates rock into regolith the fractured or granular earthmaterial that sustains life on the continental land surface. Here, we investigate what controls the depth of regolith formed on ridges of two rock compositions with similar initial porosities in Virginia (USA).A priori, we predicted that the regolith on diabasewould be thicker than on granite because the dominant mineral (feldspar) in the diabase weathers faster than its granitic counterpart. However, weathering advanced 20deeper into the granite than the diabase. The 20-thicker regolith is attributed mainly to connected micron-sized pores, microfractures formed around oxidizing biotite at 20m depth, and the lower iron (Fe) content in the felsic rock. Such porosity allows pervasive advection and deep oxidation in the granite. These observations may explainwhy regolithworldwide is thicker on felsic compared tomafic rock under similar conditions. To understand regolith formationwill require better understanding of such deep oxidation reactions and how they impact fluid flow during weathering.

  6. Natural Weathering Rates of Silicate Minerals

    NASA Astrophysics Data System (ADS)

    White, A. F.

    2003-12-01

    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic

  7. Modeling electron density, temperature distribution in the solar corona based on solar surface magnetic field observations

    NASA Astrophysics Data System (ADS)

    Lago, A.; Rodríguez, J. M.; Vieira, L.; Coelho Stekel, T. R.; Costa, J. E. R.; Pinto, T. S. N.

    2015-12-01

    Magnetic fields constitute a natural link between the Sun, the Earth and the Heliosphere in general. The solar dynamo action maintains and strengthens the magnetic field in the solar interior. The structure of the solar corona is mostly determined by the configuration and evolution of the magnetic field. While open magnetic field lines carry plasma into the heliosphere, closed field lines confine plasma. Additionally, key physical processes that impact the evolution of Earth's atmosphere on time-scale from days to millennia, such as the soft X-ray and EUV emission, are also determined by the solar magnetic field. However, observations of the solar spectral irradiance are restricted to the last few solar cycles and are subject to large uncertainties. Here we present a physics-based model to reconstruct in near-real time the evolution of the solar EUV emission based on the configuration of the magnetic field imprinted on the solar surface and assuming that the emission lines are optically thin. The structure of the coronal magnetic field is estimated employing a potential field source surface extrapolation based on the synoptic charts. The coronal plasma temperature and density are described by a hydrostatic model. The emission is estimated to employ the CHIANTI database. The performance of the model is compared to the emission observed by EVE instrument on board SDO spacecraft. The preliminary results and uncertainties are discussed in details. Furthermore, we examine the possibility of delivery the reconstruction of the solar spectral irradiance in near-real time using the infrastructure provided by the Brazilian Space weather program (EMBRACE/INPE). This work is partially supported by CNPq/Brazil under the grant agreement no. 140779/2015-9.

  8. Surface Temperature of the Arctic: Comparison of TOVS Satellite Retrievals with Surface Observations.

    NASA Astrophysics Data System (ADS)

    Chen, Yonghua; Francis, Jennifer A.; Miller, James R.

    2002-12-01

    Surface temperature is a fundamental parameter for climate research. Over the Arctic Ocean and neighboring seas conventional temperature observations are often of uncertain quality, however, owing to logistical obstacles in making measurements over sea ice in harsh environmental conditions. Satellites offer an attractive alternative, but standard methods encounter difficulty in detecting clouds in the frequent surface-based temperature inversion and when solar radiation is absent. The Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder Polar Pathfinder (TOVS Path-P) dataset provides nearly 20 yr (1979-98) of satellite-derived, gridded surface skin temperatures for the Arctic region north of 60°N. Another dataset based on surface observations has also recently become available. The International Arctic Buoy Program/Polar Exchange at the Sea Surface (IABP/POLES) project provides a gridded near-surface air temperature dataset based on optimally interpolated observations from Russian drifting ice stations, buoys, and land stations from 1979 to 1997.In this study these two datasets are compared and areas with large differences (4 to 6 K) are found in both winter and summer. Over the ice-covered Arctic Ocean in both seasons TOVS temperatures are substantially colder than POLES and over the Greenland-Iceland-Norwegian (GIN) Seas TOVS is warmer. Using point measurements from manned ice stations and ships it is found that POLES is too warm (2 K on average) in January. The bias is larger (4 K) in regions where the primary source of data is buoys, which contain warm biases in winter owing to the insulation effect of snow covering the sensors. The difference between skin and 2-m temperatures accounts for approximately 1 K of the January discrepancy between POLES and TOVS. Over the GIN Seas in both seasons POLES is much too cold (7 K) where values are based primarily on analyses from the National Centers for Environmental Prediction (NCEP). In

  9. Inter-annual variation of the surface temperature of tropical forests from SSM/I observations

    NASA Astrophysics Data System (ADS)

    Gao, H.; Fu, R.; Li, W.; Zhang, S.; Dickinson, R. E.

    2014-12-01

    Land surface temperatures (LST) within tropical rain forests contribute to climate variation, but observational data are very limited in these regions. In this study, all weather canopy sky temperatures were retrieved using the passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager/Sounder (SSMIS) over the Amazon and Congo rainforests. The remote sensing data used were collected from 1996 to 2012 using two separate satellites—F13 (1996-2009) and F17 (2007-2012). An inter-sensor calibration between the brightness temperatures collected by the two satellites was conducted in order to ensure consistency amongst the instruments. The interannual changes of LST associated with the dry and wet anomalies were investigated in both regions. The dominant spatial and temporal patterns for inter-seasonal variations of the LST over the tropical rainforest were analyzed, and the impacts of droughts and El Niños (on LST) were also investigated. The remote sensing results suggest that the morning LST is mainly controlled by atmospheric humidity (which controls longwave radiation) whereas the late afternoon LST is controlled by solar radiation.

  10. Selective weathering of shocked minerals and chondritic enrichment of the Martian fines

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.

    1987-01-01

    In a recent paper, Boslough and Cygan reported the observation of shock-enhanced chemical weathering kinetics of three silicate minerals. Based on the experimental data and on those of Tyburczy and Ahrens for enhanced dehydration kinetics of shocked serpentine, a mechnaism is proposed by which shock-activated minerals are selectively weathered on the surface of Mars. The purpose of the present abstract is to argue on the basis of relative volumes of shocked materials that, as a direct consequence of selective weathering, the composition of the weathered surface units on Mars should be enriched in meteoritic material.

  11. Contrail Frequency over the United States from Surface Observations.

    NASA Astrophysics Data System (ADS)

    Minnis, Patrick; Ayers, J. Kirk; Nordeen, Michele L.; Weaver, Steven P.

    2003-11-01

    Contrails have the potential for affecting climate because they impact the radiation budget and the vertical distribution of moisture. Estimating the effect requires additional knowledge about the temporal and spatial variations of contrails. The mean hourly, monthly, and annual frequencies of daytime contrail occurrence are estimated using 2 yr of observations from surface observers at military installations scattered over the continental United States. During both years, persistent contrails are most prevalent in the winter and early spring and are seen least often during the summer. They co-occur with cirrus clouds 85% of the time. The annual mean persistent contrail frequencies in unobscured skies dropped from 0.152 during 1993-94 to 0.124 in 1998-99 despite a rise in air traffic. Mean hourly contrail frequencies reflect the pattern of commercial air traffic, with a rapid increase from sunrise to midmorning followed by a very gradual decrease during the remaining daylight hours. Although highly correlated with air traffic fuel use, contrail occurrence is governed by meteorological conditions. It is negatively and positively correlated with the monthly mean 300-hPa temperature and 300-hPa relative humidity, respectively, from the National Centers for Environmental Prediction (NCEP) reanalyses. A simple empirical model employing the fuel use and the monthly mean 300-hPa temperatures and relative humidities yields a reasonable representation of the seasonal variation in contrail frequency. The interannual drop in contrail frequency coincides with a decrease in mean 300-hPa relative humidities from 45.8% during the first period to 38.2% in 1998-99, one of the driest periods in the NCEP record.

  12. Determination of Granite Rock Massif Weathering and Cracking of Surface Layers in the Oldest Parts of Medieval Mine Depending on Used Mining Method

    NASA Astrophysics Data System (ADS)

    Lednická, Markéta; Kaláb, Zdeněk

    2016-06-01

    The paper presents the use of selected non-destructive testing methods for the purpose of specifying information on weathering and cracking of surface layers of granite rock massif in the medieval Jeroným Mine (the Czech Republic). This mine has been declared the National Heritage Site of the Czech Republic and its opening as a mining museum to the public is gradually prepared. Geological and geomechanical evaluation documents the possibility to find all kinds of weathering grades of rock massif in this mine. Two non-destructive methods have been tested, namely the measurement of ultrasonic pulse velocity and the measurement of Schmidt hammer rebound value. Field measurements were performed in two selected galleries to verify the application of such methods in specific conditions of underground spaces. Used mining method is one of the parameters later influencing cracking of rock massif. In selected galleries, two different mining methods were used which means that a part of a gallery profile was mined out by hand tools in the Middle Ages and another part of the profile was later mined out by blasting. Measurements in these galleries have enabled to analyse the influence of used mining methods on cracking of rock massif in the impaired zone, and, consequently, on ongoing weathering processes in those zones.

  13. Weatherizing America

    ScienceCinema

    Stewart, Zachary; Bergeron, T.J.; Barth, Dale; Qualis, Xavier; Sewall, Travis; Fransen, Richard; Gill, Tony

    2016-07-12

    As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working again, but also to find a calling.

  14. Weatherizing America

    SciTech Connect

    Stewart, Zachary; Bergeron, T.J.; Barth, Dale; Qualis, Xavier; Sewall, Travis; Fransen, Richard; Gill, Tony

    2009-01-01

    As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working again, but also to find a calling.

  15. Titan's Exotic Weather

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.

    2006-09-01

    Images of Titan, taken during the joint NASA and European Space Agency Cassini-Huygens mission, invoke a feeling of familiarity: washes wind downhill to damp lakebeds; massive cumuli form and quickly dissipate, suggestive of rain; and dark oval regions resemble lakes. These features arise from Titan's unique similarity with Earth: both cycle liquid between their surfaces and atmospheres, but in Titan's cool atmosphere it is methane that exists as a gas, liquid, and ice. While Titan enticingly resembles Earth, its atmosphere is 10 times thicker, so that its radiative time constant near the surface exceeds a Titan year, and prohibits large thermal gradients and seasonal surface temperature variations exceeding 3K. Titan also lacks oceans - central to Earth's climate - and instead stores much of its condensible in its atmosphere. As a result, Titan's weather differs remarkably from Earth's. Evidence for this difference appears in the location of Titan's large clouds, which frequent a narrow band at 40S latitude and a region within 30 latitude of the S. Pole. Ground-based and Cassini observations, combined with thermodynamic considerations, indicate that we are seeing large convective cloud systems. Detailed cloud models and general circulation models further suggest that these are severe rain storms, which will migrate with the change in season. Outside these migrating "gypsy" cloud bands, the atmosphere appears to be calm, humid and thus frequented by thin stratiform clouds. An intriguingly alien environment is predicted. Yet, the combined effects of Titan's patchy wet surface, atmospheric tides, possible ice volcanoes, and detailed seasonal variations remain unclear as we have witnessed only one season so far. This talk will review observations of Titan's lower atmosphere and modeling efforts to explain the observations, and explore the questions that still elude us.

  16. GNSS observations as a numerical weather prediction data source, a way forward to enhanced forecast quality; aims, challenges and plans for 2014-2017

    NASA Astrophysics Data System (ADS)

    Rohm, W.; Kryza, M.; Wilgan, K.; Kaplon, J.; Stanek, M.

    2014-12-01

    The GNSS signal propagating from the satellite to the receiver is subjected to the phase delay due to the presence of the atmosphere. The signal's troposphere phase delay is linked with the density of all gaseous constituencies, including one of the most important - water vapour. Current GNSS processing methodology does not provide a framework for effective estimation of line-of-sight troposphere delay between satellite and receiver because of that a new functional and stochastic modelling should be introduced. Coherently, assimilation of the GNSS observations is relatively new, but very promising approach, to improve the short range forecasts (especially in terms of medium and heavy rainfall systems). With these data it is possible to provide significant amount of information about the 3D structure of the atmosphere. However, there are still many unresolved problems related to the data assimilation; such as, modelling of signal propagation (forward model) as well as correlation in time and space between GNSS observations. This paper introduce the challenges that are going to be addressed within the course of this project: 1) The unique methodology for GNSS Slant Total Delay (STD) estimation will be developed, 2) The method to effectively assimilate the STDs into the NWP model will be investigated, 3) The impact of the GNSS data assimilation on NWP models performance will be derived for the area of Poland. This project requires extensive GNSS signal propagation simulations to establish effective functional and stochastic models of Slant Delay. The impact of additional artefacts (ionosphere, clocks, ambiguities and multipath) on the troposphere estimates will be assessed using synthetic observations derived from numerical weather prediction model fields. This part of research is also linked with establishment of the forward operator that transforms NWP variables into the GNSS observations space. The extensive covariance and auto-covariance analysis of NWP model

  17. Recent Variability Observations of Solar System Giant Planets: Fresh Context for Understanding Exoplanet and Brown Dwarf Weather

    NASA Astrophysics Data System (ADS)

    Marley, Mark S.; Kepler Giant Planet Variability Team, Spitzer Ice Giant Variability Team

    2016-10-01

    Over the past several years a number of of high cadence photometric observations of solar system giant planets have been acquired by various platforms. Such observations are of interest as they provide points of comparison to the already expansive set of brown dwarf variability observations and the small, but growing, set of exoplanet variability observations. By measuring how rapidly the integrated light from solar system giant planets can evolve, variability observations of substellar objects that are unlikely to ever be resolved can be placed in a fuller context. Examples of brown dwarf variability observations include extensive work from the ground (e.g., Radigan et al. 2014), Spitzer (e.g., Metchev et al. 2015), Kepler (Gizis et al. 2015), and HST (Yang et al. 2015). Variability has been measured on the planetary mass companion to the brown dwarf 2MASS 1207b (Zhou et al. 2016) and further searches are planned in thermal emission for the known directly imaged planets with ground based telescopes (Apai et al. 2016) and in reflected light with future space based telescopes. Recent solar system variability observations include Kepler monitoring of Neptune (Simon et al. 2016) and Uranus, Spitzer observations of Neptune (Stauffer et al. 2016), and Cassini observations of Jupiter (West et al. in prep). The Cassini observations are of particular interest as they measured the variability of Jupiter at a phase angle of ˜60○, comparable to the viewing geometry expected for space based direct imaging of cool extrasolar Jupiters in reflected light. These solar system analog observations capture many of the characteristics seen in brown dwarf variability, including large amplitudes and rapid light curve evolution on timescales as short as a few rotation periods. Simon et al. (2016) attribute such variations at Neptune to a combination of large scale, stable cloud structures along with smaller, more rapidly varying, cloud patches. The observed brown dwarf and exoplanet

  18. Recent Variability Observations of Solar System Giant Planets: Fresh Context for Understanding Exoplanet and Brown Dwarf Weather

    NASA Technical Reports Server (NTRS)

    Marley, Mark Scott

    2016-01-01

    Over the past several years a number of high cadence photometric observations of solar system giant planets have been acquired by various platforms. Such observations are of interest as they provide points of comparison to the already expansive set of brown dwarf variability observations and the small, but growing, set of exoplanet variability observations. By measuring how rapidly the integrated light from solar system giant planets can evolve, variability observations of substellar objects that are unlikely to ever be resolved can be placed in a fuller context. Examples of brown dwarf variability observations include extensive work from the ground (e.g., Radigen et al. 2014), Spitzer (e.g., Metchev et al. 2015), Kepler (Gizis et al. 2015), and HST (Yang et al. 2015).Variability has been measured on the planetary mass companion to the brown dwarf 2MASS 1207b (Zhou et al. 2016) and further searches are planned in thermal emission for the known directly imaged planets with ground based telescopes (Apai et al. 2016) and in reflected light with future space based telescopes. Recent solar system variability observations include Kepler monitoring of Neptune (Simon et al. 2016) and Uranus, Spitzer observations of Neptune (Stauffer et al. 2016), and Cassini observations of Jupiter (West et al. in prep). The Cassini observations are of particular interest as they measured the variability of Jupiter at a phase angle of approximately 60 deg, comparable to the viewing geometry expected for space based direct imaging of cool extrasolar Jupiters in reflected light. These solar system analog observations capture many of the characteristics seen in brown dwarf variability, including large amplitudes and rapid light curve evolution on timescales as short as a few rotation periods. Simon et al. (2016) attribute such variations at Neptune to a combination of large scale, stable cloud structures along with smaller, more rapidly varying, cloud patches. The observed brown dwarf and

  19. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    NASA Astrophysics Data System (ADS)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  20. An OSSE on Mesoscale Model Assimilation of Simulated HIRAD-Observed Hurricane Surface Winds

    NASA Technical Reports Server (NTRS)

    Albers, Cerese; Miller, Timothy; Uhlhorn, Eric; Krishnamurti, T. N.

    2012-01-01

    The hazards of landfalling hurricanes are well known, but progress on improving the intensity forecasts of these deadly storms at landfall has been slow. Many cite a lack of high-resolution data sets taken inside the core of a hurricane, and the lack of reliable measurements in extreme conditions near the surface of hurricanes, as possible reasons why even the most state-of-the-art forecasting models cannot seem to forecast intensity changes better. The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for observing hurricanes, and is operated and researched by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. This instrument?s purpose is to study the wind field of a hurricane, specifically observing surface wind speeds and rain rates, in what has traditionally been the most difficult areas for other instruments to study; the high wind and heavy rain regions. Dr. T. N. Krishnamurti has studied various data assimilation techniques for hurricane and monsoon rain rates, and this study builds off of results obtained from utilizing his style of physical initializations of rainfall observations, but obtaining reliable observations in heavy rain regions has always presented trouble to our research of high-resolution rainfall forecasting. Reliable data from these regions at such a high resolution and wide swath as HIRAD provides is potentially very valuable to mesoscale forecasting of hurricane intensity. This study shows how the data assimilation technique of Ensemble Kalman Filtering (EnKF) in the Weather Research and Forecasting (WRF) model can be used to incorporate wind, and later rain rate, data into a mesoscale model forecast of hurricane intensity. The study makes use of an Observing System Simulation Experiment (OSSE) with a simulated

  1. Collision and Break-off : Numerical models and surface observables

    NASA Astrophysics Data System (ADS)

    Bottrill, Andrew; van Hunen, Jeroen; Allen, Mark

    2013-04-01

    The process of continental collision and slab break-off has been explored by many authors using a number of different numerical models and approaches (Andrews and Billen, 2009; Gerya et al., 2004; van Hunen and Allen, 2011). One of the challenges of using numerical models to explore collision and break-off is relating model predictions to real observables from current collision zones. Part of the reason for this is that collision zones by their nature destroy a lot of potentially useful surface evidence of deep dynamics. One observable that offers the possibility for recording mantle dynamics at collision zones is topography. Here we present topography predictions from numerical models and show how these can be related to actual topography changes recoded in the sedimentary record. Both 2D and 3D numerical simulation of the closure of a small oceanic basin are presented (Bottrill et al., 2012; van Hunen and Allen, 2011). Topography is calculated from the normal stress at the surface applied to an elastic beam, to give a more realist prediction of topography by accounting for the expected elasticity of the lithosphere. Predicted model topography showed a number of interesting features on the overriding plate. The first is the formation of a basin post collision at around 300km from the suture. Our models also showed uplift postdating collision between the suture and this basin, caused by subduction of buoyant material. Once break-off has occurred we found that this uplift moved further into the overriding plate due to redistribution of stresses from the subducted plate. With our 3D numerical models we simulate a collision that propagates laterally along a subduction system. These models show that a basin forms, similar to that found in our 2D models, which propagates along the system at the same rate as collision. The apparent link between collision and basin formation leads to the investigation into the stress state in the overriding lithosphere. Preliminary

  2. Snowmelt and Surface Freeze/Thaw Timings over Alaska derived from Passive Microwave Observations using a Wavelet Classifier

    NASA Astrophysics Data System (ADS)

    Steiner, N.; McDonald, K. C.; Dinardo, S. J.; Miller, C. E.

    2015-12-01

    Arctic permafrost soils contain a vast amount of organic carbon that will be released into the atmosphere as carbon dioxide or methane when thawed. Surface to air greenhouse gas fluxes are largely dependent on such surface controls as the frozen/thawed state of the snow and soil. Satellite remote sensing is an important means to create continuous mapping of surface properties. Advances in the ability to determine soil and snow freeze/thaw timings from microwave frequency observations improves upon our ability to predict the response of carbon gas emission to warming through synthesis with in-situ observation, such as the 2012-2015 Carbon in Arctic Reservoir Vulnerability Experiment (CARVE). Surface freeze/thaw or snowmelt timings are often derived using a constant or spatially/temporally variable threshold applied to time-series observations. Alternately, time-series singularity classifiers aim to detect discontinuous changes, or "edges", in time-series data similar to those that occur from the large contrast in dielectric constant during the freezing or thaw of soil or snow. We use multi-scale analysis of continuous wavelet transform spectral gradient brightness temperatures from various channel combinations of passive microwave radiometers, Advanced Microwave Scanning Radiometer (AMSR-E, AMSR2) and Special Sensor Microwave Imager (SSM/I F17) gridded at a 10 km posting with resolution proportional to the observational footprint. Channel combinations presented here aim to illustrate and differentiate timings of "edges" from transitions in surface water related to various landscape components (e.g. snow-melt, soil-thaw). To support an understanding of the physical basis of observed "edges" we compare satellite measurements with simple radiative transfer microwave-emission modeling of the snow, soil and vegetation using in-situ observations from the SNOw TELemetry (SNOTEL) automated weather stations. Results of freeze/thaw and snow-melt timings and trends are

  3. Observations and Modeling of the Near Surface Vertical Structure of the Atmosphere in the Southern Appalachians during the Integrated Precipitation and Hydrology Experiment (IPHEx) Extended Observing Period

    NASA Astrophysics Data System (ADS)

    Wilson, A. M.; Barros, A. P.

    2014-12-01

    Accurate, high resolution observations of precipitation accumulations and intensity in regions of complex terrain are largely unavailable, due to a lack of existing in situ observations and obstacles to remote sensing (radar and satellite observations) such as beam blockage and ground clutter. For the past six years, a high-elevation, high-density rain gauge network has been recording precipitation observations along ridgelines in the Pigeon River Basin in the Southern Appalachians. These longer term observations complement the 4-D database of observations, which are being collected in support of the Global Precipitation Mission (GPM) during the first field campaign after the launch of the GPM satellite, the Integrated Precipitation and Hydrology Experiment (IPHEx). The observations focused on here are those at the near surface, within 2 kilometers of the ground level. The IPHEx extended observation period lasts until the end of 2014. This presentation will focus on ground-based measurements made by MicroRain Radars, disdrometers, radiometers, rain gauges, fog collectors and aerosol spectrometers among others during the spring, summer and fall of 2014. These measurements will be analyzed to provide information on the diurnal cycle of microphysical and dynamical processes and properties in the region, with an emphasis on describing the characteristics of local cloud and fog. These observations will be discussed in the context of previous findings based on observations and model results (stochastic column model and the Advanced Research Weather and Forecasting Model (WRF)). Specifically, this presentation will address whether the IPHEx observations support the hypothesis, validated for specific case studies in previous work, that Bergeron processes govern the enhancement of light rainfall in the Southern Appalachians through increased coalescence efficiency in stratiform rainfall due to the interactions with low level clouds and topography modulated fog. WRF

  4. Weather and climate on Mars.

    PubMed

    Leovy, C

    2001-07-12

    Imagine a planet very much like the Earth, with similar size, rotation rate and inclination of rotation axis, possessing an atmosphere and a solid surface, but lacking oceans and dense clouds of liquid water. We might expect such a desert planet to be dominated by large variations in day-night and winter-summer weather. Dust storms would be common. Observations and simulations of martian climate confirm these expectations and provide a wealth of detail that can help resolve problems of climate evolution.

  5. Observing System Simulation Experiments to Determine the Potential Impact of Space-Based Lidar Wind Profiles on Weather Prediction

    NASA Technical Reports Server (NTRS)

    Atlas, Robert

    2003-01-01

    Observing system simulation experiments (OSSE's) provide an effective means to evaluate the potential impact of a proposed observing system, as well as to determine tradeoffs in their design, and to evaluate data assimilation methodology. Great care must be taken to ensure realism of the OSSE's, and in the interpretation of OSSE results. All of the OSSE's that have been conducted to date have demonstrated tremendous potential for space-based wind profile data to improve atmospheric analyses, forecasts, and research. This has been true for differing data assimilation systems, analysis methodology, and model resolutions. OSSE's clearly show much greater potential for observations of the complete wind profile than for single-level wind data or observations of the boundary layer alone.

  6. Fitting the observed changes of global surface temperatures

    NASA Astrophysics Data System (ADS)

    Courtillot, V.; Le Mouël, J.; Kossobokov, V. G.; Gibert, D.; Lopes, F.

    2012-12-01

    The quality of the fit of a trivial or, conversely, delicately-designed model to the observed natural phenomena is the fundamental pillar stone of any forecasting, including forecasting of the Earth's Climate. Using precise mathematical and logical systems outside their range of applicability can be scientifically groundless, unwise, and even dangerous. The temperature data sets are naturally in the basis of any hypothesizing on variability and forecasting the Earth's Climate. Leaving open the question of the global temperature definitions and their determination (T), we have analyzed hemispheric and global monthly temperature anomaly series produced by the Climate Research Unit of the University of East Anglia (CRUTEM4 database) and more recently by the Berkeley Earth Surface Temperature consortium (BEST database). We first fit the data in 1850-2010 with polynomials of degrees 1 to 9 and compare it with exponential fit by the adjusted R-squared criterion that takes into consideration the number of free parameters of the model. In all the cases considered, the adjusted R-squared values for polynomials are larger than for the exponential as soon as the degree exceeds 1 or 2. The polynomial fits become even more satisfactory as soon as degree 5 or 6 is reached. Extrapolations of these trends outside of the data domain show quick divergence. For example, the CRUTEM4vNH fit in the decade 2010-2020, for degrees 2 to 5, rises steeply then, for degrees 6 to 9, reverses to steep decreasing: the reversal in extrapolated trends arises from improved ability to fit the observed "~60-yr" wave in 150 years of data prior to 2010. The extrapolations prior to 1850 are even more erratic, linked with the increased dispersion of the early data. When focusing the analysis of fits on 1900-2010 we find that the apparent oscillations of T can be modeled by a series of linear segments: An optimal fit suggests 4 slope breaks indicating two clear transitions in 1940 and 1975, and two that

  7. Development of a New Data Tool for Computing Launch and Landing Availability with Respect to Surface Weather

    NASA Technical Reports Server (NTRS)

    Burns, K. Lee; Altino, Karen

    2008-01-01

    The Marshall Space Flight Center Natural Environments Branch has a long history of expertise in the modeling and computation of statistical launch availabilities with respect to weather conditions. Their existing data analysis product, the Atmospheric Parametric Risk Assessment (APRA) tool, computes launch availability given an input set of vehicle hardware and/or operational weather constraints by calculating the climatological probability of exceeding the specified constraint limits, APRA has been used extensively to provide the Space Shuttle program the ability to estimate impacts that various proposed design modifications would have to overall launch availability. The model accounts for both seasonal and diurnal variability at a single geographic location and provides output probabilities for a single arbitrary launch attempt. Recently, the Shuttle program has shown interest in having additional capabilities added to the APRA model, including analysis of humidity parameters, inclusion of landing site weather to produce landing availability, and concurrent analysis of multiple sites, to assist in operational landing site selection. In addition, the Constellation program has also expressed interest in the APRA tool, and has requested several additional capabilities to address some Constellation-specific issues, both in the specification and verification of design requirements and in the development of operations concepts. The combined scope of the requested capability enhancements suggests an evolution of the model beyond a simple revision process. Development has begun for a new data analysis tool that will satisfy the requests of both programs. This new tool, Probabilities of Atmospheric Conditions and Environmental Risk (PACER), will provide greater flexibility and significantly enhanced functionality compared to the currently existing tool.

  8. Weather Information Processing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  9. Estimation of soil moisture from diurnal surface temperature observations

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Camillo, P. J.

    1986-01-01

    A coupled heat and moisture balance model was used to determine the thermal inertia of a grass covered top soil under different meteorological conditions. Relations between thermal inertia and soil moisture were established using the De Vries models for thermal conductivity and heat capacity to relate soil moisture and thermal inertia as a function of soil type. A sensitivity study of the surface roughness length and thermal inertia on diurnal surface temperature shows the necessity of focusing on the night time surface temperature rather than on the day time surface temperature, in order to estimate the soil moisture content of the top soil.

  10. Cockpit weather information system

    NASA Technical Reports Server (NTRS)

    Tu, Jeffrey Chen-Yu (Inventor)

    2000-01-01

    Weather information, periodically collected from throughout a global region, is periodically assimilated and compiled at a central source and sent via a high speed data link to a satellite communication service, such as COMSAT. That communication service converts the compiled weather information to GSDB format, and transmits the GSDB encoded information to an orbiting broadcast satellite, INMARSAT, transmitting the information at a data rate of no less than 10.5 kilobits per second. The INMARSAT satellite receives that data over its P-channel and rebroadcasts the GDSB encoded weather information, in the microwave L-band, throughout the global region at a rate of no less than 10.5 KB/S. The transmission is received aboard an aircraft by means of an onboard SATCOM receiver and the output is furnished to a weather information processor. A touch sensitive liquid crystal panel display allows the pilot to select the weather function by touching a predefined icon overlain on the display's surface and in response a color graphic display of the weather is displayed for the pilot.

  11. Weather Measurements around Your School. Mapping Variations in Temperature and Humidity.

    ERIC Educational Resources Information Center

    Smith, David R.; And Others

    1991-01-01

    Presented is an activity where students conduct a micrometeorological study in their neighborhood using temperature, humidity measurements, and mapping skills. Included are a discussion of surface weather observations, the experiment, and directions. (KR)

  12. Synergy of Satellite-Surface Observations for Studying the Properties of Absorbing Aerosols in Asia

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2010-01-01

    Through interaction with clouds and alteration of the Earth's radiation budget, atmospheric aerosols significantly influence our weather and climate. Monsoon rainfalls, for example, sustain the livelihood of more than half of the world's population. Thus, understanding the mechanism that drives the water cycle and freshwater distribution is high-lighted as one of the major near-term goals in NASA's Earth Science Enterprise Strategy. Every cloud droplet/ice-crystal that serves as an essential element in portraying water cycle and distributing freshwater contains atmospheric aerosols at its core. In addition, the spatial and temporal variability of atmospheric aerosol properties is complex due to their dynamic nature. In fact, the predictability of the tropical climate system is much reduced during the boreal spring, which is associated with the peak season of biomass burning activities and regional/long-range transport of dust aerosols. Therefore, to accurately assess the impact of absorbing aerosols on regional-to-global climate requires not only modeling efforts but also continuous observations from satellites, aircraft, networks of ground-based instruments and dedicated field experiments. Since 1997 NASA has been successfully launching a series of satellites the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite

  13. Multilayer Perceptron Model for Nowcasting Visibility from Surface Observations: Results and Sensitivity to Dissimilar Station Altitudes

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sutapa; Das, Debanjana; Sarkar, Ishita; Goswami, Sayantika

    2015-10-01

    The reduction in the visibility during fog significantly influences surface as well as air transport operations. The prediction of fog remains difficult despite improvements in numerical weather prediction models. The present study aims at identifying a suitable neural network model with proper architecture to provide precise nowcast of the horizontal visibility during fog over the airports of three significantly affected metropolises of India, namely: Kolkata (22°32'N; 88°20'E), Delhi (28°38'N; 77°12'E) and Bengaluru (12°95'N; 77°72'E). The investigation shows that the multilayer perceptron (MLP) model provides considerably less error in nowcasting the visibility during fog over the said metropolises than radial basis function network, generalized regression neural network or linear neural network. The MLP models of different architectures are trained with the data and records from 2000 to 2010. The model results are validated with observations from 2011 to 2014. Our results reveal that MLP models with different configurations (1) four input layers, three hidden layers with three hidden nodes in each layer and a single output; (2) four input layers with two hidden layers having one hidden node in the first hidden layer and two hidden nodes in the second hidden layer, and a single output layer; and (3) four input layers with two hidden layers having two hidden nodes in each hidden layer and a single output layer] provide minimum error in nowcasting the visibility during fog over the airports of Kolkata, Delhi and Bengaluru, respectively. The results show that the MLP model is well suited for nowcasting visibility during fog with 6 h lead time, however, the study reveals that the MLP model sensitive to dissimilar station altitudes in nowcasting visibility, as the minimum prediction error for the three metropolises having dissimilar mean sea level altitudes is observed through different configurations of the model.

  14. If ionospheric and geomagnetic disturbances observed before strong earthquakes may result from simultaneous impact of space weather on all geospheres including solid earth

    NASA Astrophysics Data System (ADS)

    Khachikyan, Galina

    2016-07-01

    It is revealed in previous decades that ionospheric disturbances precede strong earthquakes, thus, the ionospheric precursors of strong earthquakes are now under developing [Pulinets and Boyarchuk, 2004]. Simultaneously, it is revealed that strong earthquakes may be preceded by geomagnetic disturbances as well, as a result, the geomagnetic variations, for example, in the ULF band, are considered now as precursory signals [Fraser-Smith, 1990, doi/10.1029/GL017i009p01465]. At the same time, there is currently no reliable theory nor for ionospheric or to magnetic precursors of earthquakes. Moreover, several researches have reexamined some of above results and concluded that observed magnetic disturbances before strong earthquakes could be generated by other sources, such as global magnetic activity [e.g. Campbell, 2009, doi/10.1029/2008JA013932], and that ionospheric anomalies can also be an effect of the increase of the global magnetic activity [e. g. Masci and Thomas, 2015, doi:10.1002/2015RS005734]. Taking into account such conclusions, one may suggest that the observed ionospheric and geomagnetic disturbances before strong earthquakes might be due to simultaneous influence of a space weather on the complicated surrounding system including the solid earth. This report presents some statistical results to prove such suggestion. In particular, it is shown [Khachikyan et al., 2012, doi:10.4236/ijg.2012.35109] that maximal possible earthquake magnitude (seismic potential) can be determined, in first approximation, on the base of geomagnetic Z-component measured in the Geocentric Solar Magnetosphere (GSM) coordinate system, in which the space weather impact on the earth's environment, due to reconnection of the solar wind magnetic field with the earth's magnetic field, is more ordered.

  15. Observations of acoustic surface waves in outdoor sound propagation

    NASA Astrophysics Data System (ADS)

    Albert, Donald G.

    2003-05-01

    Acoustic surface waves have been detected propagating outdoors under natural conditions. Two critical experimental conditions were employed to ensure the conclusive detection of these waves. First, acoustic pulses rather than a continuous wave source allowed an examination of the waveform shape and avoided the masking of wave arrivals. Second, a snow cover provided favorable ground impedance conditions for surface waves to exist. The acoustic pulses were generated by blank pistol shots fired 1 m above the snow. The resultant waveforms were measured using a vertical array of six microphones located 60 m away from the source at heights between 0.1 and 4.75 m. A strong, low frequency ``tail'' following the initial arrival was recorded near the snow surface. This tail, and its exponential decay with height (z) above the surface (~e-αz), are diagnostic features of surface waves. The measured attenuation coefficient α was 0.28 m-1. The identification of the surface wave is confirmed by comparing the measured waveforms with waveforms predicted by the theoretical evaluation of the explicit surface wave pole term using residue theory.

  16. Electrical Properties of the Venus Surface from Bistatic Radar Observations

    PubMed

    Pettengill; Ford; Simpson

    1996-06-14

    A bistatic radar experiment in 1994, involving reception on Earth of a specularly reflected, linearly polarized 13-centimeter-wavelength signal transmitted from the Magellan spacecraft in orbit around Venus, has established that the surface materials viewed at low and intermediate altitudes on Venus have a relative dielectric permittivity of 4.0 ± 0.5. However, bistatic results for the Maxwell Montes highlands imply an electrically lossy surface with an imaginary dielectric permittivity of -i 100 ± 50, probably associated with a specific conductivity of about 13 mhos per meter. Candidates for highlands surface composition include ferroelectrics, a thin frost of elemental tellurium, or a plating of magnetite or pyrites.

  17. Experimental Observation of Hairy Surface Exposed in Airflow

    NASA Astrophysics Data System (ADS)

    Hasegawa, Mitsugu; Sakaue, Hirotaka

    2015-11-01

    The development of drag reduction method is important to reduce the consumption of limited energy in the field of engineering. While active method which needs external energy has received significant attention, passive method which means no external energy use has been focused. As one of the potential passive drag reduction method for offshore structure, aircraft, wind turbine, flexible hair implanted on the object surface has been studied. Here we make hairy surface. We conduct flow visualization to investigate the behavior of hairy surface exposed in wind tunnel. In the presentation, a current status of this experiment will be presented.

  18. Microbial Weathering of Olivine

    NASA Technical Reports Server (NTRS)

    McKay, D. S.; Longazo, T. G.; Wentworth, S. J.; Southam, G.

    2002-01-01

    Controlled microbial weathering of olivine experiments displays a unique style of nanoetching caused by biofilm attachment to mineral surfaces. We are investigating whether the morphology of biotic nanoetching can be used as a biosignature. Additional information is contained in the original extended abstract.

  19. Investigation of planetary space weather effects at Venus observed by the ASPERA-4 particle analyzer and the magnetometer flying onboard of Venus Express Mission

    NASA Astrophysics Data System (ADS)

    Vech, Daniel; Szego, Karoly; Opitz, Andrea; Fraenz, Markus

    2014-05-01

    In this study we identified several coronal mass-ejections (CME's) interacting with the induced magnetosphere of Venus during 2010 and 2011 using STEREO observations and ENLIL simulations. Our purpose is to analyze the response of the induced magnetosphere and the ionosphere to these extreme conditions based on measurements made by the ASPERA-4 and MAG instruments on Venus Express. The parameters of the interplanetary magnetic field (IMF) during these solar events are also discussed. Previously we investigated the effects of the May 2007 solar eruption on the induced magnetosphere of Venus in a poster publication (EPSC2013-266). During the analyzed solar event large scale rotation of the interplanetary magnetic field was observed and in the polar region, the altitude where planetary ions were present decreased compared to the average cases. Polarity reversal of the induced magnetosphere also took place, similar to the cases discussed by Edberg et. al (2011). Several CME's interacted with Venus in November 2011. One of the largest lifted off on 3rd November and reached Venus on 5th November. The solar wind parameters showed large variations: the velocity peaked over 900 km/s, and the magnitude of the IMF suddenly increased threefold. The magnetic field reached 240 nT inside the induced magnetosphere, which is extremely high compared to normal conditions. The heavy ion density measured by VEX peaked over 1000 1/cm3 providing clear evidence for ionosphere crossing. Due to the orbit parameters it is possible to investigate the magnetic structure in the tail. The other selected solar eruptions caused similar changes including the sudden increase in the solar wind velocity and magnitude of the magnetic field in the magnetic barrier but due to the different orbital parameters other regions of the induced magnetosphere were investigated as well. In conclusion the observed planetary space weather effects include that in the shocked solar wind we observed Increased velocity

  20. Comparison of interplanetary type 2 radio burst observations by ISEE-3, Ulysses, and WIND with applications to space weather prediction

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Klimas, A. J.; Lengyel-Frey, D.; Stone, R. G.; Thejappa, G.

    1997-01-01

    Interplanetary (IP) type 2 radio bursts are produced by IP shocks driven by solar ejecta, presumably involving shock acceleration of electrons that leads to radio emission. These radio bursts, which can be detected remotely by a sensitive spacecraft radio receiver, provide a method of tracking the leading edge of solar ejecta moving outward from the sun. Consequently, observations of these bursts sometimes provide advance warning of one or more days prior to the onset of geomagnetic activity induced by the solar ejecta. A robust lower limit on the fraction of intense geomagnetic storms, that are preceded by IP type 2 bursts, is provided. It is shown that 41 percent of the geomagnetic storms occurring during the interval September 1978 to February 1983 were preceded by type 2 events in this catalog, and reasons why the fraction is not larger are addressed. Differences in the observing capabilities of the International Sun-Earth Explorer (ISEE) 3, Ulysses, and WIND, to explain why each of these similar spacecraft radio investigations provides a different perspective of IP type 2 emissions are reviewed.

  1. Space weather: recovering the variation of the stellar EUV spectral Energy distribution from the companion exoplanet FUV transit observation

    NASA Astrophysics Data System (ADS)

    Ben-Jaffel, Lotfi; Guo, Jianheng

    2016-07-01

    The stellar extreme ultraviolet (EUV) irradiation determines the atmospheric properties of exoplanets. Recently, by varying the profiles of the EUV spectral energy distribution (SED), we tested the influences of stellar EUV SEDs on the physical and chemical properties of the escaping atmosphere (Guo & Ben-Jaffel, 2015). One of our major results was that the composition and species distributions in the atmosphere could be dramatically modified by the different profiles of the EUV SED. For exoplanets with a high hydrodynamic escape rate, the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. For exoplanet HD 189733b, it was possible to explain the time variability observed during transit in the Lyman-α line by the Hubble Space Telescope (HST) between 2010 and 2011 by a change in the EUV SED of the host K star. Our proposed technique provides a straightforward and easy-to-follow proxy to connect the EUV SED of the star with the planetary companion Lyman--α transit absorption, the monitoring of which may provide a direct measure of the stellar EUV flux. Here, we extend our study using new HST FUV observations.

  2. Oil sheen weathering post Deepwater Horizon

    NASA Astrophysics Data System (ADS)

    Kellermann, M. Y.; Redmond, M. C.; Reddy, C. M.; Aeppli, C.; Nelson, R. K.; Valentine, D. L.

    2013-12-01

    A recently published study identified the source of the reoccurred oil sheens close to the Deepwater Horizon (DWH) disaster site as a finite contamination most likely derived from tanks and pits on the DWH wreckage itself. Here we use geochemical fingerprinting and microbial community analysis to better understand the fate and weathering processes affecting these surface oils. Both, alkanes and polycyclic aromatic hydrocarbons (PAHs) are shown to reflect a linear decrease of hydrocarbon compounds with increasing distance to the DWH wreckage site (equivalent to exposure time on the sea surface). These results indicate that in the early stage of weathering the combined effects of dissolution and evaporation dominate the degradation of these surface oils. Sheen microbial communities were dominated by Cyanobacteria, Planctomycetes, Verrucomicrobia, Flavobacteria, Alphaproteobacteria, and Deltaproteobacteria, with low relative abundances of Gammaproteobacteria likely to be hydrocarbon degraders (no more than 15% of sequences in each sample). However, some of these Gammaproteobacteria were closely related to putative hydrocarbon degraders observed in abundance in deep water plumes during the primary Deepwater Horizon spill, suggesting that very low levels of biodegradation may be also occurring. This in situ weathering experiment provides new insights in hydrocarbon weathering dynamics and shows how chemical and biological changes can potentially be masked by large evaporative losses of compounds smaller than C18 n-alkanes.

  3. Aerosol Observability and Predictability: From Research to Operations for Chemical Weather Forecasting. Lagrangian Displacement Ensembles for Aerosol Data Assimilation

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo

    2010-01-01

    A challenge common to many constituent data assimilation applications is the fact that one observes a much smaller fraction of the phase space that one wishes to estimate. For example, remotely sensed estimates of the column average concentrations are available, while one is faced with the problem of estimating 3D concentrations for initializing a prognostic model. This problem is exacerbated in the case of aerosols because the observable Aerosol Optical Depth (AOD) is not only a column integrated quantity, but it also sums over a large number of species (dust, sea-salt, carbonaceous and sulfate aerosols. An aerosol transport model when driven by high-resolution, state-of-the-art analysis of meteorological fields and realistic emissions can produce skillful forecasts even when no aerosol data is assimilated. The main task of aerosol data assimilation is to address the bias arising from inaccurate emissions, and Lagrangian misplacement of plumes induced by errors in the driving meteorological fields. As long as one decouples the meteorological and aerosol assimilation as we do here, the classic baroclinic growth of error is no longer the main order of business. We will describe an aerosol data assimilation scheme in which the analysis update step is conducted in observation space, using an adaptive maximum-likelihood scheme for estimating background errors in AOD space. This scheme includes e explicit sequential bias estimation as in Dee and da Silva. Unlikely existing aerosol data assimilation schemes we do not obtain analysis increments of the 3D concentrations by scaling the background profiles. Instead we explore the Lagrangian characteristics of the problem for generating local displacement ensembles. These high-resolution state-dependent ensembles are then used to parameterize the background errors and generate 3D aerosol increments. The algorithm has computational complexity running at a resolution of 1/4 degree, globally. We will present the result of

  4. Severe Weather Forecast Decision Aid

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark M.; Short, David A.

    2005-01-01

    This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.

  5. Observations of quenching of downward-facing surfaces

    SciTech Connect

    Chu, T.Y.; Bainbridge, B.L.; Bentz, J.H.; Simpson, R.B.

    1994-01-01

    This report documents results of a series of scoping experiments on boiling from downward-facing surfaces in support of the Sandia New Production Reactor, Vessel-Pool Boiling Heat Transfer task. Quenching experiments have been performed to examine the boiling processes from downward-facing surfaces using two 61-centimeter diameter test masses, one with a flat test surface and one with a curved test surface having a radius of curvature of 335 cm, matching that of the Cylindrical Boiling facility test vessel. Boiling curves were obtained for both test surfaces facing horizontally downward. The critical beat flux was found to be essentially the same, having an average value of approximately 0.5 MW/m{sup 2}. This value is substantially higher than current estimates of the heat dissipation rates required for in-vessel retention of core debris in the Heavy Water New Production Reactor as well as some of the advanced light water reactors under design. The nucleate boiling process was found to be cyclic with four relatively distinct phases: direct liquid/solid contact, nucleation and growth of bubbles, coalescence, and ejection.

  6. Simultaneous observations of the critical aeolian threshold of two surfaces

    NASA Astrophysics Data System (ADS)

    Stout, John E.

    2007-03-01

    Threshold is an important parameter in wind erosion research and in the field of aeolian research in general. A new technique was recently developed that provides a means of determining threshold with a sampling system that continuously collects wind data along with critical information regarding saltation activity. By employing two identical sampling systems, it was possible to monitor the threshold of a highly mobile sand surface while simultaneously monitoring the threshold of a less mobile playa surface. Results indicate that threshold could be measured at both locations with enough precision to establish clear differences between the surfaces. The sandy surface at the Morgenstern Dunes site was considerably more active than the Yellow Lake playa site over the 113-day sampling period because of its consistently lower threshold. The Morgenstern site tended to maintain a fairly constant threshold of around 5.4 to 5.5 m/s whereas the threshold of the Yellow Lake playa surface varied from a low of 6.4 m/s to values greater than 13.3 m/s. Limitations of this method lie in the fact that threshold can be determined only when winds are blowing sufficiently strongly to cause sediment transport.

  7. Observations During GRIP from HIRAD: Images of C-Band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Jones, W. L.; Ruf, C. S.; Uhlhorn, E. W.; Biswas, S.; May, C.; Shah, G.; Black, P.; Buckley, C. D.

    2012-01-01

    HIRAD (Hurricane Imaging Radiometer) flew on the WB-57 during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be inferred. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years. The advantage of HIRAD over SFMR is that HIRAD can observe a +/- 60-degree swath, rather than a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. To the extent possible, comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of vortex wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  8. Electrical Properties of the Venus Surface from Bistatic Radar Observations

    PubMed

    Pettengill; Ford; Simpson

    1996-06-14

    A bistatic radar experiment in 1994, involving reception on Earth of a specularly reflected, linearly polarized 13-centimeter-wavelength signal transmitted from the Magellan spacecraft in orbit around Venus, has established that the surface materials viewed at low and intermediate altitudes on Venus have a relative dielectric permittivity of 4.0 ± 0.5. However, bistatic results for the Maxwell Montes highlands imply an electrically lossy surface with an imaginary dielectric permittivity of -i 100 ± 50, probably associated with a specific conductivity of about 13 mhos per meter. Candidates for highlands surface composition include ferroelectrics, a thin frost of elemental tellurium, or a plating of magnetite or pyrites. PMID:8662473

  9. Direct observation of PMMA removal from graphene surface

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohan; Chou, Harry; Tao, Li; Dick, Andrew; Dolocan, Andrei; Akinwande, Deji; Willson, C. Grant

    PMMA is often used as a carrier layer for transfer of CVD graphene from copper to other substrates. After transfer, the PMMA is removed by chemical or thermal treatment. However, regardless of the method used, polymer residues are left on the graphene surface, which degrade the performance of graphene-based devices. Here, we present a systematic study of PMMA removal after graphene transfer. Raman and FET measurements were applied to monitor the polymer dissolution in an acetone bath. Isotope labeling and in-situ TOF-SIMS, XPS, Raman and AFM all show chemical changes in surface residues upon vacuum annealing. These data along with strategies to clean the graphene surface will be presented.

  10. Observations, models, and mechanisms of failure of surface rocks surrounding planetary surface loads

    NASA Technical Reports Server (NTRS)

    Schultz, R. A.; Zuber, M. T.

    1994-01-01

    Geophysical models of flexural stresses in an elastic lithosphere due to an axisymmetric surface load typically predict a transition with increased distance from the center of the load of radial thrust faults to strike-slip faults to concentric normal faults. These model predictions are in conflict with the absence of annular zones of strike-slip faults around prominent loads such as lunar maria, Martian volcanoes, and the Martian Tharsis rise. We suggest that this paradox arises from difficulties in relating failure criteria for brittle rocks to the stress models. Indications that model stresses are inappropriate for use in fault-type prediction include (1) tensile principal stresses larger than realistic values of rock tensile strength, and/or (2) stress differences significantly larger than those allowed by rock-strength criteria. Predictions of surface faulting that are consistent with observations can be obtained instead by using tensile and shear failure criteria, along with calculated stress differences and trajectories, with model stress states not greatly in excess of the maximum allowed by rock fracture criteria.

  11. In situ ionospheric observations of severe weather-related gravity waves and associated small-scale plasma structure

    NASA Astrophysics Data System (ADS)

    Kelley, Michael C.

    1997-01-01

    On July 27, 1988, two sounding rockets were launched over a small thunderstorm cell which constituted the remnants of a large frontal event which had lasted for several hours over the eastern seaboard. One of the rockets was instrumented for detection of the electromagnetic impulse from lightning strikes and its subsequent interaction with the ionospheric plasma [Kelley et al., 1990]. The second had on board an absolute electron density probe, the results from which we report here. We present evidence that a gravity wave was spawned by the front and propagated nearly to the F peak in the ionosphere, where it steepened and created structure in the medium at scales much less than the vertical wavenumber of the major disturbance. The fluctuation spectrum along the rocket path was elevated for scales from 25 km down to less than 10 m. At scales between 10 km and just under 100 m, characterization of the spectrum by a power law yields a spectral index less than that displayed by such well-studied processes as bottomside spread F and barium cloud striations. Similar results have been reported for gravity wave induced intermediate scale structures at midlatitudes [Wernik et al., 1986]. The mixing theory described by Fridman [1990] may be relevant to these observations.

  12. A comparison of limited-area energetic processes between observations and primitive equation model predictions. [cyclone Numerical Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Alpert, J. C.; Chen, T.-C.

    1979-01-01

    Energetic analyses of the NMC initial conditions and NMC six-layer primitive equation operational prediction model 12-hr forecast for a developing cyclone are presented. Consideration is given to the total kinetic energy, the energetics of the divergent and nondivergent flows and the baroclinic (vertical shear flow) and barotropic (vertical mean flow) components of the kinetic energy. It is found that the model initial conditions lose 10-15% of the kinetic energy at various levels compared to a limited-area multivariate statistical analysis of the observational data, leading to a decrease in the horizontal kinetic energy flux, a misrepresentation of the synoptic scale wave system in the 12-hr forecast. Similar results are obtained for the nondivergent flow, while the divergent flow energetics are not reproduced accurately by the model. The horizontal flux terms of the vertical mean and vertical shear energetics are also not found to be reproduced in the upper levels, although horizontal flux contributions to the baroclinic component are improved at middle and lower levels. Finally, vertical shear kinetic energy generation is found to be well represented in the model prediction, however kinetic energy conversion between vertical shear and mean flow is not reproduced in the lower layer.

  13. Direct Observations of Surface Thermal Fluctuations Below Shot Noise Levels

    NASA Astrophysics Data System (ADS)

    Aoki, Kenichiro; Mitsui, Takahisa

    Surface thermal fluctuation spectra are measured to previously unachieved precision, down to three orders of magnitude below the shot noise level. Such precision is achieved through statistical reduction of extraneous noise, including shot noise, using the averaged correlation of measurements. Both height and inclination fluctuations of surface fluctuations are measured for various materials and in the case of liquids, their hydrodynamical understanding is compared to the experimental results at unprecedented levels. They agree well for water, but for oil, deviations are seen at high frequencies, perhaps indicating its more complex underlying physics. Surface thermal fluctuation spectra of complex fluids (such as epoxy), rubber and biological materials have also been measured and have qualitatively diverse behavior. We discuss the physics underlying the various spectra and explain the experimental methods used to obtain them. The measurement is simple, requiring relatively a weak power light source, a short time and a small surface area, so that it should be useful for fluctuation measurements in various fields requiring precision, both within and outside physics.

  14. Upgrade Summer Severe Weather Tool in MIDDS

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.

    2010-01-01

    The goal of this task was to upgrade the severe weather database from the previous phase by adding weather observations from the years 2004 - 2009, re-analyze the data to determine the important parameters, make adjustments to the index weights depending on the analysis results, and update the MIDDS GUI. The added data increased the period of record from 15 to 21 years. Data sources included local forecast rules, archived sounding data, surface and upper air maps, and two severe weather event databases covering east-central Florida. Four of the stability indices showed increased severe weather predication. The Total Threat Score (TTS) of the previous work was verified for the warm season of 2009 with very good skill. The TTS Probability of Detection (POD) was 88% and the False alarm rate (FAR) of 8%. Based on the results of the analyses, the MIDDS Severe Weather Worksheet GUI was updated to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters and synoptic-scale dynamics.

  15. Estimation of Swiss methane emissions by near surface observations and inverse modeling

    NASA Astrophysics Data System (ADS)

    Henne, Stephan; Brian, Oney; Leuenberger, Markus; Bamberger, Ines; Eugster, Werner; Steinbacher, Martin; Meinhardt, Frank; Brunner, Dominik

    2015-04-01

    On a global scale methane (CH4) is the second most important long-lived greenhouse gas. It is released from both natural and anthropogenic processes and its atmospheric burden has more than doubled since preindustrial times. Current CH4 emission estimates are associated with comparatively large uncertainties both globally and regionally. For example, the Swiss national greenhouse gas inventory assigns an uncertainty of 18% to the country total anthropogenic CH4 emissions as compared to only 3% for anthropogenic CO2 emissions. In Switzerland, CH4 is thought to be mainly released by agricultural activities (ruminants and manure management >80%), while natural emissions from wetlands and wild animals represent a minor source (~3 %). The country total and especially the spatial distribution of CH4 emission within Switzerland strongly differs between the national and different European scale inventories. To validate the 'bottom-up' Swiss CH4 emission estimate and to reduce its uncertainty both in total and spatially, 'top-down' methods combining atmospheric CH4 observations and regional scale transport simulations can be used. Here, we analyse continuous, near surface observations of CH4 concentrations as collected within the newly established CarboCountCH measurement network (http://www.carbocount.ch). The network consists of 4 sites situated on the Swiss Plateau, comprising a tall tower site (217 m), two elevated (mountaintop) sites and a small tower site (32 m) in flat terrain. In addition, continuous CH4 observations from the nearby high-altitude site Jungfraujoch (Alps) and the mountaintop site Schauinsland (Germany) were used. Two inversion frameworks were applied to the CH4 observations in combination with source sensitivities (footprints) calculated with the regional scale version of the Lagrangian Particle Dispersion Model FLEXPART. One inversion system was based on a Bayesian framework, while the other utilized an extended Kalman filter approach. The transport

  16. Study of weathering processes developed on old piedmont surfaces in Western Spain: new contributions to the interpretation of the ``Raña'' profiles

    NASA Astrophysics Data System (ADS)

    Molina Ballesteros, E.; Cantano Martín, M.

    2002-01-01

    The Hercynian basement of the Iberian Peninsula was uplifted by the Alpine orogeny during the Tertiary. It gave rise to a set of block mountains and tectonic grabens, one of which is the Ciudad Rodrigo Basin. It is located in Western Spain and forms a westward extension of the great Tertiary Duero Basin. The sediments filling this graben are of continental origin, their ages ranging from Palaeogene to Quaternary. Morphologically, the southern part of this basin forms a set of piedmont surfaces (the "Raña" surfaces) appearing above the terrace system of the present rivers. This paper examines the weathering processes developed over these old piedmont surfaces using micromorphological, XR diffraction, scanning electron microscopy (SEM) and microporosity techniques. The Raña sediments are rich in quartzite pebbles and gravel within a clayey matrix. Once deposited, these materials underwent important in situ weathering processes under somewhat hydromorphic conditions, of which hydrolysis, ferrolysis and xerolysis were the most important. All these processes gave rise to: (1) transformation of most of the clasts of shists and slates into a matrix causing the destruction of the original sedimentary structures and a relative concentration of the resistant lithologies (quartzites and quartz); (2) important changes in the clay fraction, leading to a predominance of kaolinite in the upper levels of the profiles, (3) release of elements from primary minerals, Fe being one of the most important, and (4) redistribution of matter, mainly clay and Fe oxyhydroxides, within the profiles. The coexistence of seasonal periods with pF higher than 4.2 repeated over a long time, together with poor internal and external drainage conditions, are the cause of the special features displayed by Raña deposits.

  17. Meteorologically-adjusted trend analysis of surface observed ozone at three monitoring sites in Delhi, India: 2007-2011

    NASA Astrophysics Data System (ADS)

    Biswas, J.; Farooqui, Z.; Guttikunda, S. K.

    2012-12-01

    It is well known that meteorological parameters have significant impact on surface ozone concentrations. Therefore it is important to remove the effects of meteorology on ozone concentrations to correctly estimate long-term trends in ozone levels due to the alterations in precursor emissions. This is important for the development of effectual control strategies. In this study surface observed ozone trends in New Delhi are analyzed using Komogorov-Zurbenko (KZ) filter, US EPA ozone adjustment due to weather approach and the classification and regression tree method. The statistical models are applied to the ozone data at three observational sites in New Delhi metropolitan areas, 1) Income Tax Office (ITO) 2) Sirifort and 3) Delhi College of Engineering (DCE). The ITO site is located adjacent to a traffic crossing, Sirifort is an urban site and the DCE site is located in a residential area. The ITO site is also influenced by local industrial emissions. DCE has higher ozone levels than the other two sites. It was found that ITO has lowest ozone concentrations amongst the three sites due to ozone titrating due to industrial and on-road mobile NOx emissions. The statistical methods employed can assess ozone trends at these sites with a high degree of confidence and the results can be used to gauge the effectiveness of control strategies on surface ozone levels in New Delhi.

  18. Planetary Space Weather

    NASA Astrophysics Data System (ADS)

    Grande, M.

    2012-04-01

    Invited Talk - Space weather at other planets While discussion of space weather effects has so far largely been confined to the near-Earth environment, there are significant present and future applications to the locations beyond, and to other planets. Most obviously, perhaps, are the radiation hazards experienced by astronauts on the way to, and on the surface of, the Moon and Mars. Indeed, the environment experienced by planetary spacecraft in transit and at their destinations is of course critical to their design and successful operation. The case of forthcoming missions to Jupiter and Europa is an exreme example. Moreover, such craft can provide information which in turn increases our understanding of geospace. Indeed, space weather may be a significant factor in the habitability of other solar system and extrasolar planets, and the ability of life to travel between them.

  19. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  20. 78 FR 67418 - National Plan for Civil Earth Observations; Request for Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... observations to address specific scientific questions, further technological innovation, or improve services....g., weather forecasting, land surface change analysis, sea level monitoring, climate-change...

  1. Daymet: Gridded subdaily weather data for North America

    SciTech Connect

    Thornton, Michele M; Thornton, Peter E; Cook, Robert B; Wei, Yaxing; Eby, Pete I; Devarakonda, Ranjeet

    2011-01-01

    A core requirement for many ecosystem modeling approaches is surface weather fields, including temperature, precipitation, humidity, and incident solar radiation. Carbon dynamics and flux estimates from process models depend strongly on daily and subdaily weather conditions. One common obstacle to model implementation over continental scale regions is the difficulty of obtaining the relevant surface weather observations from in situ networks, and producing spatially interpolated (gridded) surfaces of the necessary weather fields at the appropriate spatial and temporal resolution. One approach that has been developed to overcome this obstacle is Daymet, a numerical method for producing gridded surfaces of subdaily temperature (daily maximum and minimum temperature), and daily precipitation, humidity, and radiation over large regions of complex terrain, using daily surface weather observations and an accurate elevation grid as input. We are providing a high-quality gridded surface weather product over North America for input to NACP process modeling studies by expanding on the conterminous U.S. Daymet domain to include Canada (south of 52N) and Mexico. Download Daymet Data: http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1219. Input data requirements for the conterminous US, Mexico, and Canada for 1980 - 2008 have been used to produce the Daymet product for these areas; the data will be released in Fall 2010. MAST-DC is developing several ways to select and distribute the Daymet data: ftp download, single-pixel extraction, and access through THREDDS (Thematic Real-time Environmental Distributed Data Services) Data Server (TDS). Periodic updates to the continental data set will be implemented as new years of surface observations become available.

  2. Assimilation of Surface Screen-Level and Space-Based L-Band Passive Observations for Soil Moisture Analysis

    NASA Astrophysics Data System (ADS)

    Bilair, S.; Bilodeau, B.; Carrera, M. L.; Solomon, S. J.

    2011-12-01

    Screen-level observations for air temperature and humidity are still playing a crucial role in land data assimilation systems at several national meteorological prediction centers (i.e., Meteorological Service of Canada, Meteo-France, European Centre for Medium-Range Weather Forecasts). The land surface initial conditions (soil moisture and surface temperature) prepared for these centers' numerica