Anisotropic Solar Wind Sputtering of the Lunar Surface Induced by Crustal Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Sarantos, M.; Halekas, J. S.; Delory, G. T.; Saito, Y.; Nishino, M.
2014-01-01
The lunar exosphere is generated by several processes each of which generates neutral distributions with different spatial and temporal variability. Solar wind sputtering of the lunar surface is a major process for many regolith-derived species and typically generates neutral distributions with a cosine dependence on solar zenith angle. Complicating this picture are remanent crustal magnetic anomalies on the lunar surface, which decelerate and partially reflect the solar wind before it strikes the surface. We use Kaguya maps of solar wind reflection efficiencies, Lunar Prospector maps of crustal field strengths, and published neutral sputtering yields to calculate anisotropic solar wind sputtering maps. We feed these maps to a Monte Carlo neutral exospheric model to explore three-dimensional exospheric anisotropies and find that significant anisotropies should be present in the neutral exosphere depending on selenographic location and solar wind conditions. Better understanding of solar wind/crustal anomaly interactions could potentially improve our results.
Determination of tropical cyclone surface pressure and winds from satellite microwave data
NASA Technical Reports Server (NTRS)
Kidder, S. Q.
1979-01-01
An approach to the problem of deducing wind speed and pressure around tropical cyclones is presented. The technique, called the Surface Wind Inference from Microwave data (SWIM technique, uses satellites microwave sounder data to measure upper tropospheric temperature anomalies which may then be related to surface pressure anomalies through the hydrostatic and radiative transfer equations. Surface pressure gradients outside of the radius of maximum wind are estimated for the first time. Future instruments may be able to estimate central pressure with + or - 0/1 kPa accuracy.
Causes of Upper-Ocean Temperature Anomalies in the Tropical North Atlantic
NASA Astrophysics Data System (ADS)
Rugg, A.; Foltz, G. R.; Perez, R. C.
2016-02-01
Hurricane activity and regional rainfall are strongly impacted by upper ocean conditions in the tropical North Atlantic, defined as the region between the equator and 20°N. A previous study analyzed a strong cold sea surface temperature (SST) anomaly that developed in this region during early 2009 and was recorded by the Pilot Research Array in the Tropical Atlantic (PIRATA) moored buoy at 4°N, 23°W (Foltz et al. 2012). The same mooring shows a similar cold anomaly in the spring of 2015 as well as a strong warm anomaly in 2010, offering the opportunity for a more comprehensive analysis of the causes of these events. In this study we examine the main causes of the observed temperature anomalies between 1998 and 2015. Basin-scale conditions during these events are analyzed using satellite SST, wind, and rain data, as well as temperature and salinity profiles from the NCEP Global Ocean Data Assimilation System. A more detailed analysis is conducted using ten years of direct measurements from the PIRATA mooring at 4°N, 23°W. Results show that the cooling and warming anomalies were caused primarily by wind-driven changes in surface evaporative cooling, mixed layer depth, and upper-ocean vertical velocity. Anomalies in surface solar radiation acted to damp the wind-driven SST anomalies in the latitude bands of the ITCZ (3°-8°N). Basin-scale analyses also suggest a strong connection between the observed SST anomalies and the Atlantic Meridional Mode, a well-known pattern of SST and surface wind anomalies spanning the tropical Atlantic.
NASA Technical Reports Server (NTRS)
Liu, W. Timothy
1989-01-01
The Nimbus-7 Scanning Multichannel Microwave Radiometer (SSMR) provided simultaneous measurements of three geophysical parameters, each of which describing a certain aspect of the evolution of the 1982-1983 ENSO: the sea-surface temperature (T), precipitable water (W), and surface-wind speed (U). In this paper, values derived from the SSMR were compared with in situ measurements from ships, research buoys, and operational island stations in the tropical Pacific between January 1980 and October 1983, demonstrating the temporal and spatial coherence of the SSMR measurements. The results show that the variabilities of the surface convergence, sea surface temperature, and precipitable water are related. It was found that W anomalies were not always colocated with T anomalies, and that W anomalies were often associated with negative U anomalies, interpreted as surface convergence.
NASA Astrophysics Data System (ADS)
Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.
2016-04-01
The British Isles experienced exceptional stormy and rainy weather conditions in winter 2013-2014 while large parts of central North America recorded near record minimum surface temperatures values. Potential drivers for these cold conditions include increasingly warm surface waters of the tropical west Pacific. It has been suggested these increasing sea surface temperatures could also be the cause for extreme weather over the Europe, particularly the UK. Testing this hypothesis, we investigate mechanisms linking the tropical west Pacific and European wind storm activity. We will firstly analyse anomaly patterns along such a potential link in winter 2013-14. Secondly, we will investigate whether these identified anomaly patterns show a strong interannual relationship in the recent past. Our results, using primarily ERA-Interim Reanalysis from 1979 to 2014, show an absolute maximum of wind storm frequency over the northeast Atlantic and the British Isles in winter 2013-14. We also find absolute minimum surface temperatures in central North America and increased convective activity over the tropical west Pacific in the same season. The winter 2013-14 was additionally characterized by anomalous warm sea surface temperatures over the subtropical northwest Atlantic. Although the interannual variability of wind storms in the northeast Atlantic and surface temperatures in North America are significantly anti-correlated, we cannot directly relate wind storm frequency with tropical west Pacific anomalies. We thus conclude that the conditions over the Pacific in winter 2013-14 were favourable but not sufficient to explain the record number of wind storms in this season. Instead, we suggest that warm north Atlantic sea surface temperature anomalies in combination with cold surface temperatures over North America played a more important role for generating higher wind storm counts over the northeast Atlantic and the UK.
NASA Technical Reports Server (NTRS)
Otterman, Joseph; Atlas, R.; Ingraham, J.; Ardizzone, J.; Starr, D.; Terry, J.
1998-01-01
Surface winds over the oceans are derived from Special Sensor Microwave Imager (SSM/I) measurements, assigning direction by Variational Analysis Method (VAM). Validations by comparison with other measurements indicate highly-satisfactory data quality. Providing global coverage from 1988, the dataset is a convenient source for surface-wind climatology. In this study, the interannual variability of zonal winds is analyzed concentrating on the westerlies in North Atlantic and North Pacific, above 30 N. Interannual differences in the westerlies exceeding 10 m sec (exp -1) are observed over large regions, often accompanied by changes of the same magnitude in the easterlies below 30 N. We concentrate on February/March, since elevated temperatures, by advancing snow-melt, can produce early spring. The extremely strong westerlies in 1997 observed in these months over North Atlantic (and also North Pacific) apparently contributed to large surface-temperature anomalies in western Europe, on the order of +3 C above the climatic monthly average for England and France. At these latitudes strong positive anomalies extended in a ring around the globe. We formulated an Index of South westerlies for the North Atlantic, which can serve as an indicator for day-by-day advection effects into Europe. In comparing 1997 and 1998 with the previous years, we establish significant correlations with the temperature anomalies (one to five days later, depending on the region, and on the season). This variability of the ocean-surface winds and of the temperature anomalies on land may be related to the El Nino/La Nina oscillations. Such large temperature fluctuations over large areas, whatever the cause, can be regarded as noise in attempts to assess long-term trends in global temperature.
NASA Technical Reports Server (NTRS)
Liu, W.; Hu, H.; Xie, X.
1999-01-01
Liu et al.[1998] (hereafter referred as LTH), superimposed wind velocity anomalies observed by the NASA Scatterometer (NSCAT) on the map of sea surface temperature (SST) anomalies observed by the Advanced Very High Resolution Radiometer (AVHRR) in the Pacific at the end of May 1997, and illustrated that the three regions of anomalous warming in the North Pacific Ocean are related to wind anomalies through different mechanisms.
Interaction between Solar Wind and Lunar Magnetic Anomalies observed by Kaguya MAP-PACE
NASA Astrophysics Data System (ADS)
Saito, Yoshifumi; Yokota, Shoichiro; Tanaka, Takaaki; Asamura, Kazushi; Nishino, Masaki; Yamamoto, Tadateru; Uemura, Kota; Tsunakawa, Hideo
2010-05-01
It is known that Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. Since the discovery of the lunar crustal magnetic field in 1960s, several papers have been published concerning the interaction between the solar wind and the lunar magnetic anomalies. MAG/ER on Lunar Prospector found heating of the solar wind electrons presumably due to the interaction between the solar wind and the lunar magnetic anomalies and the existence of the mini-magnetosphere was suggested. However, the detailed mechanism of the interaction has been unclear mainly due to the lack of the in-situ observed data of low energy ions. MAgnetic field and Plasma experiment - Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its ˜1.5-year observation of the low energy charged particles around the Moon on 10 June, 2009. Kaguya was launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. Kaguya was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to ˜50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of ˜10km after April 2009. MAP-PACE consisted of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). All the sensors performed quite well as expected from the laboratory experiment carried out before launch. Since each sensor had hemispherical field of view, two electron sensors and two ion sensors that were installed on the spacecraft panels opposite to each other could cover full 3-dimensional phase space of low energy electrons and ions. One of the ion sensors IMA was an energy mass spectrometer. IMA measured mass identified ion energy spectra that had never been obtained at 100km altitude polar orbit around the Moon. When Kaguya flew over South Pole Aitken region, where strong magnetic anomalies exist, solar wind ions reflected by magnetic anomalies were observed. These ions had much higher flux than the solar wind protons scattered at the lunar surface. The magnetically reflected ions had nearly the same energy as the incident solar wind ions while the solar wind protons scattered at the lunar surface had slightly lower energy than the incident solar wind ions. At 100km altitude, when the reflected ions were observed, the simultaneously measured electrons were often heated and the incident solar wind ions were sometimes slightly decelerated. At ~50km altitude, when the reflected ions were observed, proton scattering at the lunar surface clearly disappeared. It suggests that there exists an area on the lunar surface where solar wind does not impact. At ~10km altitude, the interaction between the solar wind ions and the lunar magnetic anomalies was remarkable with clear deceleration of the incident solar wind ions and heating of the reflected ions as well as significant heating of the electrons. Calculating velocity moments including density, velocity, temperature of the ions and electrons, we have found that there exists 100km scale regions over strong magnetic anomalies where plasma parameters are quite different from the outside. Solar wind ions observed at 10km altitude show several different behaviors such as deceleration without heating and heating in a limited region inside the magnetic anomalies that may be caused by the magnetic field structure. The deceleration of the solar wind has the same ΔE/q (ΔE : deceleration energy, q: charge) for different species, which constraints the possible mechanisms of the interaction between solar wind and magnetic anomalies.
Wu, Xiangyu; Xie, Qiang; He, Zhigang; Wang, Dongxiao
2008-01-01
Data from a subsurface mooring deployed in the western South China Sea shows clear intra-seasonal oscillations (ISO) at the period of 40∼70 days. Analysis of remotely-sensed sea surface height (SSH) anomalies in the same area indicates that these ISO signals propagate both eastward and westward. Time-longitude diagrams of ISO signals in SSH anomalies and wind-stress curl indicate that the eastward propagating SSH anomalies is forced by wind-stress curl. This is also confirmed by lag correlation between SSH anomalies and the wind-stress-curl index (wind stress curl averaged over 109.5°E -115°E and 12°N -13.5°N). Lag correlation of SSH anomaly suggests that the westward propagating signals are free Rossby waves. PMID:27879897
NASA Astrophysics Data System (ADS)
Chamorro, Adolfo; Echevin, Vincent; Colas, François; Oerder, Vera; Tam, Jorge; Quispe-Ccalluari, Carlos
2018-01-01
The physical processes driving the wind intensification in a coastal band of 100 km off Peru during the intense 1997-1998 El Niño (EN) event were studied using a regional atmospheric model. A simulation performed for the period 1994-2000 reproduced the coastal wind response to local sea surface temperature (SST) forcing and large scale atmospheric conditions. The model, evaluated with satellite data, represented well the intensity, seasonal and interannual variability of alongshore (i.e. NW-SE) winds. An alongshore momentum budget showed that the pressure gradient was the dominant force driving the surface wind acceleration. The pressure gradient tended to accelerate the coastal wind, while turbulent vertical mixing decelerated it. A quasi-linear relation between surface wind and pressure gradient anomalies was found. Alongshore pressure gradient anomalies were caused by a greater increase in near-surface air temperature off the northern coast than off the southern coast, associated with the inhomogeneous SST warming. Vertical profiles of wind, mixing coefficient, and momentum trends showed that the surface wind intensification was not caused by the increase of turbulence in the planetary boundary layer. Moreover, the temperature inversion in the vertical mitigated the development of pressure gradient due to air convection during part of the event. Sensitivity experiments allowed to isolate the respective impacts of the local SST forcing and large scale condition on the coastal wind intensification. It was primarily driven by the local SST forcing whereas large scale variability associated with the South Pacific Anticyclone modulated its effects. Examination of other EN events using reanalysis data confirmed that intensifications of alongshore wind off Peru were associated with SST alongshore gradient anomalies, as during the 1997-1998 event.
How predictable are equatorial Atlantic surface winds?
NASA Astrophysics Data System (ADS)
Richter, Ingo; Doi, Takeshi; Behera, Swadhin
2017-04-01
Sensitivity tests with the SINTEX-F general circulation model (GCM) as well as experiments from the Coupled Model Intercomparison Project phase 5 (CMIP5) are used to examine the extent to which sea-surface temperature (SST) anomalies contribute to the variability and predictability of monthly mean surface winds in the equatorial Atlantic. In the SINTEX-F experiments, a control experiment with prescribed observed SST for the period 1982-2014 is modified by inserting climatological values in certain regions, thereby eliminating SST anomalies. When SSTs are set to climatology in the tropical Atlantic only (30S to 30N), surface wind variability over the equatorial Atlantic (5S-5N) decreases by about 40% in April-May-June (AMJ). This suggests that about 60% of surface wind variability is due to either internal atmospheric variability or SSTs anomalies outside the tropical Atlantic. A further experiment with climatological SSTs in the equatorial Pacific indicates that another 10% of variability in AMJ may be due to remote influences from that basin. Experiments from the CMIP5 archive, in which climatological SSTs are prescribed globally, tend to confirm the results from SINTEX-F but show a wide spread. In some models, the equatorial Atlantic surface wind variability decreases by more than 90%, while in others it even increases. Overall, the results suggest that about 50-60% of surface wind variance in AMJ is predictable, while the rest is due to internal atmospheric variability. Other months show significantly lower predictability. The relatively strong internal variability as well as the influence of remote SSTs suggest a limited role for coupled ocean-atmosphere feedbacks in equatorial Atlantic variability.
Interaction between solar wind and lunar magnetic anomalies observed by MAP-PACE on Kaguya
NASA Astrophysics Data System (ADS)
Saito, Yoshifumi; Yokota, Shoichiro; Tanaka, Takaaki; Asamura, Kazushi; Nishino, Masaki N.; Yamamoto, Tadateru I.; Tsunakawa, Hideo
It is well known that the Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. MAgnetic field and Plasma experiment -Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its 1.5-year observation of the low energy charged particles around the Moon on 10 June 2009. Kaguya was launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. Kaguya was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to 50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of 10km after April 2009. MAP-PACE consisted of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). Since each sensor had hemispherical field of view, two electron sensors and two ion sensors that were installed on the spacecraft panels opposite to each other could cover full 3-dimensional phase space of low energy electrons and ions. One of the ion sensors IMA was an energy mass spectrometer. IMA measured mass identified ion energy spectra that had never been obtained at 100km altitude polar orbit around the Moon. When Kaguya flew over South Pole Aitken region, where strong magnetic anomalies exist, solar wind ions reflected by magnetic anomalies were observed. These ions had much higher flux than the solar wind protons scattered at the lunar surface. The magnetically reflected ions had nearly the same energy as the incident solar wind ions while the solar wind protons scattered at the lunar surface had slightly lower energy than the incident solar wind ions. At 100km altitude, when the reflected ions were observed, the simultaneously measured electrons were often heated and the incident solar wind ions were sometimes slightly decelerated. At 50km altitude, when the reflected ions were observed, proton scattering at the lunar surface clearly disappeared. It suggests that there exists an area on the lunar surface where solar wind does not impact. At 10km altitude, the interaction between the solar wind ions and the lunar magnetic anomalies was remarkable with clear deceleration of the incident solar wind ions and heating of the reflected ions as well as significant heating of the electrons. Calculating velocity moments including density, velocity, temperature of the ions and electrons, we have found that there exists 100km scale regions over strong magnetic anomalies where plasma parameters are quite different from the outside. Solar wind ions observed at 10km altitude show several different behaviors such as deceleration without heating and heating in a limited region inside the magnetic anomalies that may be caused by the magnetic field structure. The deceleration of the solar wind has the same ∆E/q (∆E : deceleration energy, q: charge) for different species, which constraints the possible mechanisms of the interaction between solar wind and magnetic anomalies.
Dynamics of Monsoon-Induced Biennial Variability in ENSO
NASA Technical Reports Server (NTRS)
Kim, Kyu-Myong; Lau, K.-M.; Einaudi, Franco (Technical Monitor)
2000-01-01
The mechanism of the quasi-biennial tendency in El Nino Southern Oscillation (ENSO)-monsoon coupled system is investigated using an intermediate coupled model. The monsoon wind forcing is prescribed as a function of Sea Surface Temperature (SST) anomalies based on the relationship between zonal wind anomalies over the western Pacific to sea level change in the equatorial eastern Pacific. The key mechanism of quasi-biennial tendency in El Nino evolution is found to be in the strong coupling of ENSO to monsoon wind forcing over the western Pacific. Strong boreal summer monsoon wind forcing, which lags the maximum SST anomaly in the equatorial eastern Pacific approximately 6 months, tends to generate Kelvin waves of the opposite sign to anomalies in the eastern Pacific and initiates the turnabout in the eastern Pacific. Boreal winter monsoon forcing, which has zero lag with maximum SST in the equatorial eastern Pacific, tends to damp the ENSO oscillations.
The solar wind - Moon interaction discovered by MAP-PACE on KAGUYA
NASA Astrophysics Data System (ADS)
Saito, Y.; Yokota, S.; Tanaka, T.; Asamura, K.; Nishino, M. N.; Yamamoto, T.; Tsunakawa, H.; Shibuya, H.; Shimizu, H.; Takahashi, F.
2009-12-01
Magnetic field And Plasma experiment - Plasma energy Angle and Composition Experiment (MAP-PACE) on KAGUYA (SELENE) completed its ˜1.5-year observation of the low energy charged particles around the Moon. SELENE was successfully launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. SELENE was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to ˜50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of ˜10km after April 2009. The newly observed data showed characteristic ion distributions around the Moon. Besides the solar wind, one of the MAP-PACE sensors MAP-PACE-IMA (Ion Mass Analyzer) discovered four clearly distinguishable ion distributions on the dayside of the Moon: 1) Solar wind ions backscattered at the lunar surface, 2) Solar wind ions reflected by magnetic anomalies on the lunar surface, 3) Ions that are originating from the reflected / backscattered solar wind ions and are pick-up accelerated by the solar wind convection electric field, and 4) Ions originating from the lunar surface / lunar atmosphere. One of the most important discoveries of the ion mass spectrometer (MAP-PACE-IMA) is the first in-situ measurements of the alkali ions originating from the Moon surface / atmosphere. The ions generated on the lunar surface by solar wind sputtering, solar photon stimulated desorption, or micro-meteorite vaporization are accelerated by the solar wind convection electric field and detected by IMA. The mass profiles of these ions show ions including He+, C+, O+, Na+, and K+/Ar+. The heavy ions were also observed when the Moon was in the Earth’s magnetotail where no solar wind ions impinged on the lunar surface. This discovery strongly restricts the possible generation mechanisms of the ionized alkali atmosphere around the Moon. When KAGUYA flew over South Pole Aitken region, where strong magnetic anomalies exist, solar wind ions reflected by magnetic anomalies were observed. These reflected ions had nearly the same energy as the incident solar wind ions, and their flux was more than 10% of the incident solar wind ions. At 100km altitude, when the reflected ions were observed, the simultaneously measured electrons were often heated and the incident solar wind ions were sometimes slightly decelerated. At ~50km altitude, when the reflected ions were observed, proton scattering at the lunar surface clearly disappeared. At ~10km altitude, the interaction between the solar wind ions and the lunar magnetic anomalies was remarkable with clear deceleration of the incident solar wind ions and heating of the reflected ions as well as significant heating of the electrons. These newly discovered plasma signatures around the Moon are the evidences of the smallest magnetosphere ever observed.
Atmospheric forcing of sea ice anomalies in the Ross Sea Polynya region
NASA Astrophysics Data System (ADS)
Dale, Ethan; McDonald, Adrian; Rack, Wolfgang
2016-04-01
Despite warming trends in global temperatures, sea ice extent in the southern hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce the vast amount of the sea ice in the region. We investigate the impacts of strong wind events on polynyas and the subsequent sea ice production. We utilize Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperature images. These are compared with surface wind measurements made by automatic weather stations of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the winter period defined as 1st April to 1st November in this study. Wind data was used to classify each day into characteristic regimes based on the change of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya area (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analyzing sea ice motion vectors derived from SSM/I brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wing event. Strong, negative correlations are found between SIC within the RSP and wind speed indicating that strong winds cause significant advection of sea ice in the RSP. This rapid decrease in SIC is followed by a more gradual recovery in SIC. This increase occurs on a time scale greater than the average persistence of strong wind events and the resulting Sea ice motion anomalies, highlighting the production of new sea ice through thermodynamic processes.
NASA Astrophysics Data System (ADS)
Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.
2018-02-01
The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.
Lunar magnetic fields - Implications for utilization and resource extraction
NASA Technical Reports Server (NTRS)
Hood, Lon L.
1992-01-01
Numerical simulations are used to show that solar wind ion deflection by strong lunar magnetic anomalies can produce local increases, as well as decreases, in the implantation rate of solar wind hydrogen. Model simulations suggest that the ability of magnetic anomalies to shield the surface from incident ions increases with the angle of incidence and therefore for most particle sources, with selenographic latitude. The possibility that relatively strong anomalies can provide significant protection of materials and men against major solar flare particle events is found to be unlikely.
What caused the Extreme Storm Season over the North Atlantic and the UK in Winter 2013-14?
NASA Astrophysics Data System (ADS)
Leckebusch, G. C.; Wild, S.; Befort, D. J.
2015-12-01
In winter 2013-2014, the UK experienced exceptional stormy and rainy weather conditions. Concurrently, surface temperatures over large parts of central North America fell to near record minimum values. One potential driver for these cold conditions is discussed to be the increasingly warm surface waters of the tropical west Pacific. It has been suggested these increasing sea surface temperatures could also be the cause for extreme weather over the British Isles. Testing this hypothesis, we investigate mechanisms linking the tropical west Pacific and European wind storm activity. We focus on two research questions. Firstly: Was a chain of anomaly patterns with origin in the west Pacific present in the winter 2013-14? And secondly: Can centres of action along such a chain be identified with a strong interannual relationship in the recent past? Our results, using primarily ERA-Interim Reanalysis from 1979 to 2014, show an absolute maximum of wind storm frequency over the northeast Atlantic and the British Isles in winter 2013-14. We also find absolute minimum surface temperatures in central North America and increased convective activity over the tropical west Pacific in the same season. The winter 2013-14 was additionally characterized by anomalous warm sea surface temperatures over the subtropical northwest Atlantic. Although the interannual variability of wind storms in the northeast Atlantic and surface temperatures in North America are significantly anti-correlated, we cannot directly relate wind storm frequency with tropical west Pacific anomalies. We thus conclude that the conditions over the Pacific in winter 2013-14 were favourable but not sufficient to explain the record number of wind storms in this season. Instead, we suggest that warm north Atlantic sea surface temperature anomalies in combination with cold surface temperatures over North America played a more important role for generating higher wind storm counts over the northeast Atlantic and the UK.
Suppression of ENSO in a coupled model without water vapor feedback
NASA Astrophysics Data System (ADS)
Hall, A.; Manabe, S.
We examine 800-year time series of internally generated variability in both a coupled ocean-atmosphere model where water vapor anomalies are not allowed to interact with longwave radiation and one where they are. The ENSO-like phenomenon in the experiment without water vapor feedback is drastically suppressed both in amplitude and geographic extent relative to the experiment with water vapor feedback. Surprisingly, the reduced amplitude of ENSO-related sea surface temperature anomalies in the model without water vapor feedback cannot be attributed to greater longwave damping of sea surface temperature. (Differences between the two experiments in radiative feedback due to clouds counterbalance almost perfectly the differences in radiative feedback due to water vapor.) Rather, the interaction between water vapor anomalies and longwave radiation affects the ENSO-like phenomenon through its influence on the vertical structure of radiative heating: Because of the changes in water vapor associated with it, a given warm equatorial Pacific sea surface temperature anomaly is associated with a radiative heating profile that is much more gravitationally unstable when water vapor feedback is present. The warm sea surface temperature anomaly therefore results in more convection in the experiment with water vapor feedback. The increased convection, in turn, is related to a larger westerly wind-stress anomaly, which creates a larger decrease in upwelling of cold water, thereby enhancing the magnitude of the original warm sea surface temperature anomaly. In this manner, the interaction between water vapor anomalies and longwave radiation magnifies the air-sea interactions at the heart of the ENSO phenomenon; without this interaction, the coupling between sea surface temperature and wind stress is effectively reduced, resulting in smaller amplitude ENSO episodes with a more limited geographical extent.
Stable near-surface ocean salinity stratifications due to evaporation observed during STRASSE
NASA Astrophysics Data System (ADS)
Asher, William E.; Jessup, Andrew T.; Clark, Dan
2014-05-01
Under conditions with a large solar flux and low wind speed, a stably stratified warm layer forms at the ocean surface. Evaporation can then lead to an increase in salinity in the warm layer. A large temperature gradient will decrease density enough to counter the density increase caused by the salinity increase, forming a stable positive salinity anomaly at the surface. If these positive salinity anomalies are large in terms of the change in salinity from surface to the base of the gradient, if their areal coverage is a significant fraction of the satellite footprint, and if they persist long enough to be in the satellite field of view, they could be relevant for calibration and validation of L-band microwave salinity measurements. A towed, surface-following profiler was deployed from the N/O Thalassa during the Subtropical Atlantic Surface Salinity Experiment (STRASSE). The profiler measured temperature and conductivity in the surface ocean at depths of 10, 50, and 100 cm. The measurements show that positive salinity anomalies are common at the ocean surface for wind speeds less than 4 m s-1 when the average daily insolation is >300 W m-2 and the sea-to-air latent heat flux is greater than zero. A semiempirical model predicts the observed dependence of measured anomalies on environmental conditions. However, the model results and the field data suggest that these ocean surface salinity anomalies are not large enough in terms of the salinity difference to significantly affect microwave radiometric measurements of salinity.
NASA Astrophysics Data System (ADS)
Deca, J.; Lapenta, G.; Divin, A. V.; Lembege, B.; Markidis, S.
2013-12-01
Unlike the Earth and Mercury, our Moon has no global magnetic field and is therefore not shielded from the impinging solar wind by a magnetosphere. However, lunar magnetic field measurements made by the Apollo missions provided direct evidence that the Moon has regions of small-scale crustal magnetic fields, ranging up to a few 100km in scale size with surface magnetic field strengths up to hundreds of nanoTeslas. More recently, the Lunar Prospector spacecraft has provided high-resolution observations allowing to construct magnetic field maps of the entire Moon, confirming the earlier results from Apollo, but also showing that the lunar plasma environment is much richer than earlier believed. Typically the small-scale magnetic fields are non-dipolar and rather tiny compared to the lunar radius and mainly clustered on the far side of the moon. Using iPic3D we present the first 3D fully kinetic and electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies. We study the behaviour of a dipole model with variable surface magnetic field strength under changing solar wind conditions and confirm that lunar crustal magnetic fields may indeed be strong enough to stand off the solar wind and form a mini-magnetosphere, as suggested by MHD and hybrid simulations and spacecraft observations. 3D-PIC simulations reveal to be very helpful to analyze the diversion/braking of the particle flux and the characteristics of the resulting particles accumulation. The particle flux to the surface is significantly reduced at the magnetic anomaly, surrounded by a region of enhanced density due to the magnetic mirror effect. Second, the ability of iPic3D to resolve all plasma components (heavy ions, protons and electrons) allows to discuss in detail the electron physics leading to the highly non-adiabatic interactions expected as well as the implications for solar wind shielding of the lunar surface, depending on the scale size (solar wind protons typically have gyroradii larger than the magnetic anomaly scale size) and magnetic field strength. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement SWIFF (project 2633430, swiff.eu). Cut along the dipole axis of the lunar anomaly, showing the electron density structure.
NASA Astrophysics Data System (ADS)
Nobre, Paulo; Srukla, J.
1996-10-01
Empirical orthogonal functions (E0Fs) and composite analyses are used to investigate the development of sea surface temperature (SST) anomaly patterns over the tropical Atlantic. The evolution of large-scale rainfall anomaly patterns over the equatorial Atlantic and South America are also investigated. 71e EOF analyses revealed that a pattern of anomalous SST and wind stress asymmetric relative to the equator is the dominant mode of interannual and longer variability over the tropical Atlantic. The most important findings of this study are as follows.Atmospheric circulation anomalies precede the development of basinwide anomalous SST patterns over the tropical Atlantic. Anomalous SST originate off the African coast simultaneously with atmospheric circulation anomalies and expand westward afterward. The time lag between wind stress relaxation (strengthening) and maximum SST warming (cooling) is about two months.Anomalous atmospheric circulation patterns over northern tropical Atlantic are phase locked to the seasonal cycle. Composite fields of SLP and wind stress over northern tropical Atlantic can be distinguished from random only within a few months preceding the March-May (MAM) season. Observational evidence is presented to show that the El Niño-Southern Oscillation phenomenon in the Pacific influences atmospheric circulation and SST anomalies over northern tropical Atlantic through atmospheric teleconnection patterns into higher latitudes of the Northern Hemisphere.The well-known droughts over northeastern Brazil (Nordeste) are a local manifestation of a much larger-scale rainfall anomaly pattern encompassing the whole equatorial Atlantic and Amazon region. Negative rainfall anomalies to the south of the equator during MAM, which is the rainy season for the Nordeste region, are related to an early withdrawal of the intertropical convergence zone toward the warm SST anomalies over the northern tropical Atlantic. Also, it is shown that precipitation anomalies over southern and northern parts of the Nordeste are out of phase: drought years over the northern Nordeste are commonly preceded by wetter years over the southern Nordeste, and vice versa.
NASA Astrophysics Data System (ADS)
Xu, Tengfei; Li, Shujiang; Hamzah, Faisal; Setiawan, Agus; Susanto, R. Dwi; Cao, Guojiao; Wei, Zexun
2018-06-01
Sunda Strait is the outflow strait of the South China Sea branch of the Pacific to Indian Ocean Throughflow. The annual mean volume transport through the Sunda Strait is around 0.25 Sv from the Java Sea to the eastern Indian Ocean, only 2.5% of the IndonesianThroughflow, and thus has been ignored by previous investigations. However, the Nutrient concentrations in the Sunda Strait and its vicinity are found highly related to the water transport through the Sunda Strait. Particularly, our observation shows significant intraseasonal variability (ISV) of currents at period around 25-45 days in the Sunda Strait. Both remote and local wind forcing contribute to the ISVs in the Sunda Strait. The intraseasonal oscillation of sea surface wind in the central Indian Ocean drives upwelling/downwelling equatorial Kelvin waves to propagate along the equator and subsequently along the Sumatra-Java coasts, resulting in negative/positive sea level anomalies in the south of the Sunda Strait. The local intraseasonal sea surface wind anomalies also tend to induce negative/positive sea level anomalies in the south of the Sunda Strait by offshore/onshore Ekman transport while there are upwelling/downwelling events. The ensuring sea level gradient associated with the sea level anomalies in the south of the Sunda Strait induces intraseasonal outflow (from Indian Ocean to Java Sea) and inflow (from Java Sea to Indian Ocean) through the strait. Analyses also show that the chlorophyll-a concentrations in the south of the Sunda Strait are lower/higher during the inflow/outflow period of the ISV events in March through May. The mechanism attributes to both the nutrient-rich water transported by the intraseasonal flow in the Sunda Strait and by the upwelling and Ekman transport driven by the local sea surface wind anomalies.
Ocean Chlorophyll as a Precursor of ENSO: An Earth System Modeling Study
NASA Astrophysics Data System (ADS)
Park, Jong-Yeon; Dunne, John P.; Stock, Charles A.
2018-02-01
Ocean chlorophyll concentration, a proxy for phytoplankton, is strongly influenced by internal ocean dynamics such as those associated with El Niño-Southern Oscillation (ENSO). Observations show that ocean chlorophyll responses to ENSO generally lead sea surface temperature (SST) responses in the equatorial Pacific. A long-term global Earth system model simulation incorporating marine biogeochemical processes also exhibits a preceding chlorophyll response. In contrast to simulated SST anomalies, which significantly lag the wind-driven subsurface heat response to ENSO, chlorophyll anomalies respond rapidly. Iron was found to be the key factor connecting the simulated surface chlorophyll anomalies to the subsurface ocean response. Westerly wind bursts decrease central Pacific chlorophyll by reducing iron supply through wind-driven thermocline deepening but increase western Pacific chlorophyll by enhancing the influx of coastal iron from the maritime continent. Our results mechanistically support the potential for chlorophyll-based indices to inform seasonal ENSO forecasts beyond previously identified SST-based indices.
Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region
NASA Astrophysics Data System (ADS)
Dale, Ethan R.; McDonald, Adrian J.; Coggins, Jack H. J.; Rack, Wolfgang
2017-01-01
We investigate the impacts of strong wind events on the sea ice concentration within the Ross Sea polynya (RSP), which may have consequences on sea ice formation. Bootstrap sea ice concentration (SIC) measurements derived from satellite SSM/I brightness temperatures are correlated with surface winds and temperatures from Ross Ice Shelf automatic weather stations (AWSs) and weather models (ERA-Interim). Daily data in the austral winter period were used to classify characteristic weather regimes based on the percentiles of wind speed. For each regime a composite of a SIC anomaly was formed for the entire Ross Sea region and we found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya and vice versa. By analyzing sea ice motion vectors derived from the SSM/I brightness temperatures we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events, which persist for several days after a strong wind event has ended. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to partially recreate these correlations using colocated, modeled ERA-Interim wind speeds. However, large AWS and model differences are observed in the vicinity of Ross Island, where ERA-Interim underestimates wind speeds by a factor of 1.7 resulting in a significant misrepresentation of RSP processes in this area based on model data. Thus, the cross-correlation functions produced by compositing based on ERA-Interim wind speeds differed significantly from those produced with AWS wind speeds. In general the rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. The SIC recovery continues over a time period greater than the average persistence of strong wind events and sea ice motion anomalies. This suggests that sea ice recovery occurs through thermodynamic rather than dynamic processes.
Feedback process responsible for intermodel diversity of ENSO variability
NASA Astrophysics Data System (ADS)
An, Soon-Il; Heo, Eun Sook; Kim, Seon Tae
2017-05-01
The origin of the intermodel diversity of the El Niño-Southern Oscillation (ENSO) variability is investigated by applying a singular value decomposition (SVD) analysis between the intermodel tropical Pacific sea surface temperature anomalies (SSTA) variance and the intermodel ENSO stability index (BJ index). The first SVD mode features an ENSO-like pattern for the intermodel SSTA variance (74% of total variance) and the dominant thermocline feedback (TH) for the BJ index (51%). Intermodel TH is mainly modified by the intermodel sensitivity of the zonal thermocline gradient response to zonal winds over the equatorial Pacific (βh), and the intermodel βh is correlated higher with the intermodel off-equatorial wind stress curl anomalies than the equatorial zonal wind stress anomalies. Finally, the intermodel off-equatorial wind stress curl is associated with the meridional shape and intensity of ENSO-related wind patterns, which may cause a model-to-model difference in ENSO variability by influencing the off-equatorial oceanic Rossby wave response.
Interannual-to-decadal air-sea interactions in the tropical Atlantic region
NASA Astrophysics Data System (ADS)
Ruiz-Barradas, Alfredo
2001-09-01
The present research identifies modes of atmosphere-ocean interaction in the tropical Atlantic region and the mechanisms by which air-sea interactions influence the regional climate. Novelties of the present work are (1)the use of relevant ocean and atmosphere variables important to identity coupled variability in the system. (2)The use of new data sets, including realistic diabatic heating. (3)The study of interactions between ocean and atmosphere relevant at interannual-to-decadal time scales. Two tropical modes of variability are identified during the period 1958-1993, the Atlantic Niño mode and the Interhemispheric mode. Those modes have defined structures in both ocean and atmosphere. Anomalous sea surface temperatures and winds are associated to anomalous placement of the Intertropical Convergence Zone (ITCZ). They develop maximum amplitude during boreal summer and spring, respectively. The anomalous positioning of the ITCZ produces anomalous precipitation in some places like Nordeste, Brazil and the Caribbean region. Through the use of a diagnostic primitive equation model, it is found that the most important terms controlling local anomalous surface winds over the ocean are boundary layer temperature gradients and diabatic heating anomalies at low levels (below 780 mb). The latter is of particular importance in the deep tropics in producing the anomalous meridional response to the surface circulation. Simulated latent heat anomalies indicate that a thermodynamic feedback establishes positive feedbacks at both sides of the equator and west of 20°W in the deep tropics and a negative feedback in front of the north west coast of Africa for the Interhemispheric mode. This thermodynamic feedback only establishes negative feedbacks for the Atlantic Niño mode. Transients establish some connection between the tropical Atlantic and other basins. Interhemispheric gradients of surface temperature in the tropical Atlantic influence winds in the midlatitude North Atlantic but winds and heating of the midlatitude North Atlantic have little impact on the deep tropics. The remote influence of El Niño-Southern Oscillation in the tropical Atlantic, similar to the Interhemispheric mode, is the result of two mechanisms triggered by anomalous warming in the central and eastern tropical Pacific: enhancement of the Atlantic Walker circulation, and coupled intrusion of negative 200 mb geopotential height anomalies and negative sea level pressure anomalies that induce southwesterly surface wind anomalies in the northern tropical Atlantic.
NASA Astrophysics Data System (ADS)
Park, Jae-Heung; An, Soon-Il; Kug, Jong-Seong
2017-12-01
In this study, the interannual variability of sea surface temperature (SST) and its atmospheric teleconnection over the western North Pacific (WNP) toward the North Pacific/North America during boreal winter are investigated. First, we defined the WNP mode as the first empirical orthogonal function (EOF) mode of SST anomalies over the WNP region (100-165°E, 0-35°N), of which the principle component time-series are significantly correlated with several well-known climate modes such as the warm pool mode which is the second EOF mode of the tropical to North Pacific SST anomalies, North Pacific oscillation (NPO), North Pacific gyre oscillation (NPGO), and central Pacific (CP)-El Niño at 95% confidence level, but not correlated with the eastern Pacific (EP)-El Niño. The warm phase of the WNP mode (sea surface warming) is initiated by anomalous southerly winds through reduction of wind speed with the background of northerly mean winds over the WNP during boreal winter, i.e., reduced evaporative cooling. Meanwhile, the atmospheric response to the SST warming pattern and its diabatic heating further enhance the southerly wind anomaly, referred to the wind-evaporation-SST (WES) feedback. Thus, the WNP mode is developed and maintained through winter until spring, when the northerly mean wind disappears. Furthermore, it is also known that anomalous upper-level divergence associated with WNP mode leads to the NPO-like structure over the North Pacific and the east-west pressure contrast pattern over the North America through Rossby wave propagation, impacting the climate over the North Pacific and North America.
Investigation of Surface Flux Feedbacks for Coupled Atmosphere-Ocean Anomalies
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Robertson, Pete
2010-01-01
The use of "dynamical coupling" rules allows for identifying coupled vs. uncoupled anomalies and one-way interaction. Results of this study are consistent with those of Pena et al. (2003,2004) although using a more recent reanalysis at higher resolution. Find more atmosphere-forcing coupled anomalies in the extratropics and ocean-forcing anomalies in the tropics. The LHF and SWR show the largest magnitude anomalies in the composite analysis. The turbulent flux responses are due to interactions between the differing responses in wind speed and near-surface gradients. The radiative fluxes responses are primarily tied to changes in cloud fraction, as expected, though longwave response can be tied more to changes in the upwelling component.
2017-01-01
The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years. PMID:28178351
Zhao, Xia; Yang, Guang
2017-01-01
The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.
Mesosphere-Stratosphere Coupling: Implications for Climate Variability and Trends
NASA Technical Reports Server (NTRS)
Baldwin, Mark P.
2004-01-01
A key aspect of this project is the establishment of a causal link from circulation anomalies in the lower mesosphere and stratopause region downward through the stratosphere to the troposphere. The observational link for stratospheric sudden warmings and surface climate is fairly clear. However, our understanding of the dynamics is incomplete. We have been making significant progress in the area of dynamical mechanisms by which circulation anomalies in the stratosphere affect the troposphere. We are trying to understand the details and sequence of events that occur when a middle atmosphere (wind) anomaly propagates downward to near the tropopause. The wind anomaly could be caused by a warming or solar variations in the low-latitude stratopause region, or could have other causes. The observations show a picture that is consistent with a circulation anomaly that descends to the tropopause region, and can be detected as low as the mid-troposphere. Processes near the stratopause in the tropics appear to be important precursors to the wintertime development of the northern polar vortex. This may affect significantly our understanding of the process by which low-latitude wind anomalies in the low mesosphere and upper stratosphere evolve through the winter and affect the polar vortex.
The role of external forcing and Pacific trade winds in recent changes of the global climate system
NASA Astrophysics Data System (ADS)
Friedman, Andrew; Gastineau, Guillaume; Khodri, Myriam
2017-04-01
The Pacific trade winds experienced an unprecedented strengthening since the mid 1990s. Several studies have proposed that the increased Pacific trade winds were associated with the reduced rate of global mean surface temperature warming in the first decade of the 21st century, as well as far-reaching atmospheric teleconnections. We designed a set of ensemble partial coupling experiments using the IPSL-CM5A-LR coupled model that allow us to cleanly distinguish the influence of Pacific trade wind variability from that of external forcing over the past few decades. In this study, we quantify the respective impacts of these processes on surface temperature, ocean heat content, and atmospheric teleconnections. We designed two ensembles of coupled simulations using partial coupling with the IPSL-CM5A-LR model to separate the Pacific internal variability and that of external radiative forcing. We prescribe surface wind stress in the tropical Pacific (20°S to 20°N) from 1979-2014 in two ensembles of 30 members each: (1) Prescribed climatological model wind stress, which allows us to estimate the influence of external radiative forcing in the absence of variability within the Pacific Ocean. (2) Wind stress anomalies from ERA-Interim reanalysis added to the model wind stress climatology, which accounts for the effects of both external radiative forcing and the wind stress variability. We find that the observed wind stress anomalies account for the pattern of eastern tropical Pacific cooling when compared to the climatology experiment, so that it resembles the observed trends from 1992-2011. The tropical Pacific shows dominant heat uptake in the western Pacific above the 20°C isotherm, which contributed to slow the warming of tropical SST during the 2000s. The trade wind increase is associated with a strengthening of the Pacific Walker circulation, and zonal shifts in tropical rainfall. Despite tropical SST biases which affect the response of tropical rainfall and the location of deep convection, the wind stress anomaly forcing effectively simulates the wave train pattern emanating from the tropical Pacific, and associated extratropical teleconnections such as a weakening of the Aleutian Low and drought in North America.
NASA Astrophysics Data System (ADS)
Zaba, Katherine D.; Rudnick, Daniel L.
2016-02-01
Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.
CPC - Climate Weather Linkage: El Niño Southern Oscillation
Equatorial Pacific Temperature Depth Anomalies Animation Time longitude section of Anomalous OLR 850 hecto Temperatures anomalies Time series of weekly sea surface temperatures anomalies for the 4 Niño regions Time (OLR) Pentad mean and anomalous OLR Time-longitude section of anomalous OLR 850-hPa Zonal Wind Time
Predictability of the 1997 and 1998 South Asian Summer Monsoons
NASA Technical Reports Server (NTRS)
Schubert, Siegfred D.; Wu, Man Li
2000-01-01
The predictability of the 1997 and 1998 south Asian summer monsoon winds is examined from an ensemble of 10 Atmospheric General Circulation Model (AGCM) simulations with prescribed sea surface temperatures (SSTs) and soil moisture, The simulations are started in September 1996 so that they have lost all memory of the atmospheric initial conditions for the periods of interest. The model simulations show that the 1998 monsoon is considerably more predictable than the 1997 monsoon. During May and June of 1998 the predictability of the low-level wind anomalies is largely associated with a local response to anomalously warm Indian Ocean SSTs. Predictability increases late in the season (July and August) as a result of the strengthening of the anomalous Walker circulation and the associated development of easterly low level wind anomalies that extend westward across India and the Arabian Sea. During these months the model is also the most skillful with the observations showing a similar late-season westward extension of the easterly CD wind anomalies. The model shows little predictability or skill in the low level winds over southeast Asia during, 1997. Predictable wind anomalies do occur over the western Indian Ocean and Indonesia, however, over the Indian Ocean they are a response to SST anomalies that were wind driven and they show no skill. The reduced predictability in the low level winds during 1997 appears to be the result of a weaker (compared with 1998) simulated anomalous Walker circulation, while the reduced skill is associated with pronounced intraseasonal activity that is not well captured by the model. Remarkably, the model does produce an ensemble mean Madden-Julian Oscillation (MJO) response that is approximately in phase with (though weaker than) the observed MJ0 anomalies. This is consistent with the idea that SST coupling may play an important role in the MJO.
Ocean-Atmosphere Interaction in Climate Changes
NASA Technical Reports Server (NTRS)
Liu, W. Timothy
1999-01-01
The diagram, which attests the El Nino teleconnection observed by the NASA Scatterometer (NSCAT) in 1997, is an example of the results of our research in air-sea interaction - the core component of our three-part contribution to the Climate Variability Program. We have established an interplay among scientific research, which turns spacebased data into knowledge, a push in instrument technology, which improves observations of climate variability, and an information system, which produces and disseminates new data to support our scientific research. Timothy Liu led the proposal for advanced technology, in response to the NASA Post-2002 Request for Information. The sensor was identified as a possible mission for continuous ocean surface wind measurement at higher spatial resolution, and with the unique capability to measure ocean surface salinity. He is participating in the Instrument Incubator Program to improve the antenna technology, and is initiating a study to integrate the concept on Japanese missions. He and his collaborators have set up a system to produce and disseminate high level (gridded) ocean surface wind/stress data from NSCAT and European missions. The data system is being expanded to produce real-time gridded ocean surface winds from Quikscat, and precipitation and evaporation from the Tropical Rain Measuring Mission. It will form the basis for a spacebased data analysis system which will include momentum, heat and water fluxes. The study on 1997 El Nino teleconnection illustrates our interdisciplinary and multisensor approach to study climate variability. The diagram shows that the collapse of trade wind and the westerly wind anomalies in the central equatorial Pacific led to the equatorial ocean warming. The equatorial wind anomalies are connected to the anomalous cyclonic wind pattern in the northeast Pacific. The anomalous warming along the west coast of the United States is the result of the movement of the pre-existing warm sea surface temperature anomalies with the cyclonic wind anomalies toward the coast. The results led to a new study which identifies decadal ocean variations in the Northeast Pacific. Three studies of oceanic responses to wind forcing caused by the seasonal change of monsoons, the passage of a typhoon, and the 1997 El Nino, were successfully conducted. Besides wind forcing, we continue to examine new techniques for estimating thermal and hydrologic fluxes, through the inverse ocean mixed-layer model, through divergence of atmospheric water transport, and by direct retrieval from radiances observed by microwave radiometers. Greenhouse warming has been linked to water vapor measured by two spaceborne sensors in two studies. In the first study, strong baroclinicity and deep convection were found to transport water vapor to the upper atmosphere and increase greenhouse trapping over the storm tracks of the North Pacific and Atlantic. In another study, the annual cycle of greenhouse warming were related to sea surface temperature (SST) and integrated water vapor, and the latitudinal dependence of the magnitudes and phases of the annual cycles were compared.
Simulating the Reiner Gamma Lunar Swirl: Solar Wind Standoff Works!
NASA Astrophysics Data System (ADS)
Deca, Jan; Divin, Andrey; Lue, Charles; Ahmadi, Tara; Horányi, Mihály
2017-04-01
Discovered by early astronomers during the Renaissance, the Reiner Gamma formation is a prominent lunar surface feature. Observations have shown that the tadpole-shaped albedo marking, or swirl, is co-located with one of the strongest crustal magnetic anomalies on the Moon. The region therefore presents an ideal test case to constrain the kinetic solar wind interaction with lunar magnetic anomalies and its possible consequences for lunar swirl formation. All known swirls have been associated with magnetic anomalies, but the opposite does not hold. The evolutionary scenario of the lunar albedo markings has been under debate since the Apollo era. By coupling fully kinetic simulations with a surface vector mapping model based on Kaguya and Lunar Prospector magnetic field measurements, we show that solar wind standoff is the dominant process to have formed the lunar swirls. It is an ion-electron kinetic interaction mechanism that locally prevents weathering by solar wind ions and the subsequent formation of nanophase iron. The correlation between the surface weathering process and the surface reflectance is optimal when evaluating the proton energy flux, rather than the proton density or number flux. This is an important result to characterise the primary process for surface darkening. In addition, the simulated proton reflection rate is for the first time directly compared with in-orbit flux measurements from the SARA:SWIM ion sensor onboard the Chandrayaan-1 spacecraft. The agreement is found excellent. Understanding the relation between the lunar surface albedo features and the co-located magnetic anomaly is essential for our interpretation of the Moon's geological history, space weathering, and to evaluate future lunar exploration opportunities. This work was supported in part by NASA's Solar System Exploration Research Virtual Institute (SSERVI): Institute for Modeling Plasmas, Atmosphere, and Cosmic Dust (IMPACT). The work by C.L. was supported by NASA grant NNX15AP89G. Resources were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. Part of this work was inspired by discussions within International Team 336: "Plasma Surface Interactions with Airless Bodies in Space and the Laboratory" at the International Space Science Institute, Bern, Switzerland. The LRO-WAC data are publicly available from the NASA PDS Imaging Node. The Wind/MFI and Wind/SWE data used in this study are available via the NASA National Space Science Data Center, Space Physics Data Facility, and the MIT Space Plasma Group. The Chandrayaan-1/SARA data are available via the Indian Space Science Data Center.
Mechanism for Surface Warming in the Equatorial Pacific during 1994-95
NASA Technical Reports Server (NTRS)
Rienecker, Michele M.; Borovikov, Anna; Schopf, Paul S.
1999-01-01
Mechanisms controlling the variation in sea surface temperature warm event in the equatorial Pacific were investigated through ocean model simulations. In addition, the mechanisms of the climatological SST cycle were investigated. The dominant mechanisms governing the seasonal cycle of SST vary significantly across the basin. In the western Pacific the annual cycle of SST is primarily in response to external heat flux. In the central basin the magnitude of zonal advection is comparable to that of the external heat flux. In the eastern basin the role of zonal advection is reduced and the vertical mixing is more important. In the easternmost equatorial Pacific the vertical entrainment contribution is as large as that of vertical diffusion. The model estimate of the vertical mixing contribution to the mixed layer heat budget compared well with estimates obtained by analysis of observations using the same diagnostic vertical mixing scheme. During 1994- 1995 the largest positive SST anomaly was observed in the mid-basin and was related to reduced latent heat flux due to weak surface winds. In the western basin the initial warming was related to enhanced external heating and reduced cooling effects of both vertical mixing and horizontal advection associated with weaker than usual wind stress. In the eastern Pacific where winds were not significantly anomalous throughout 1994-1995, only a moderate warm surface anomaly was detected. This is in contrast to strong El Nino events where the SST anomaly is largest in the eastern basin and, as shown by previous studies, the anomaly is due to zonal advection rather than anomalous surface heat flux. The end of the warm event was marked by cooling in July 1995 everywhere across the equatorial Pacific.
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Hurley, D. M.; Esposito, V. J.; Mclain, J. L.; Zimmerman, M. I.
2017-01-01
We present a new formalism to describe the outgassing of hydrogen initially implanted by the solar wind protons into exposed soils on airless bodies. The formalism applies a statistical mechanics approach similar to that applied recently to molecular adsorption onto activated surfaces. The key element enabling this formalism is the recognition that the interatomic potential between the implanted H and regolith-residing oxides is not of singular value but possess a distribution of trapped energy values at a given temperature, F(U,T). All subsequent derivations of the outward diffusion and H retention rely on the specific properties of this distribution. We find that solar wind hydrogen can be retained if there are sites in the implantation layer with activation energy values exceeding 0.5eV. We especially examine the dependence of H retention applying characteristic energy values found previously for irradiated silica and mature lunar samples. We also apply the formalism to two cases that differ from the typical solar wind implantation at the Moon. First, we test for a case of implantation in magnetic anomaly regions where significantly lower-energy ions of solar wind origin are expected to be incident with the surface. In magnetic anomalies, H retention is found to be reduced due to the reduced ion flux and shallower depth of implantation. Second, we also apply the model to Phobos where the surface temperature range is not as extreme as the Moon. We find the H atom retention in this second case is higher than the lunar case due to the reduced thermal extremes (that reduces outgassing).
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Short, D. A.
1984-01-01
Monthly mean distributions of water vapor and liquid water contained in a vertical column of the atmosphere and the surface wind speed were derived from Nimbus Scanning Multichannel Microwave Radiometer (SMMR) observations over the global oceans for the period November 1978 to November 1979. The remote sensing techniques used to estimate these parameters from SMMR are presented to reveal the limitations, accuracies, and applicability of the satellite-derived information for climate studies. On a time scale of the order of a month, the distribution of atmospheric water vapor over the oceans is controlled by the sea surface temperature and the large scale atmospheric circulation. The monthly mean distribution of liquid water content in the atmosphere over the oceans closely reflects the precipitation patterns associated with the convectively and baroclinically active regions. Together with the remotely sensed surface wind speed that is causing the sea surface stress, the data collected reveal the manner in which the ocean-atmosphere system is operating. Prominent differences in the water vapor patterns from one year to the next, or from month to month, are associated with anomalies in the wind and geopotential height fields. In association with such circulation anomalies the precipitation patterns deduced from the meteorological network over adjacent continents also reveal anomalous distributions.
Wind regimes and their relation to synoptic variables using self-organizing maps
NASA Astrophysics Data System (ADS)
Berkovic, Sigalit
2018-01-01
This study exemplifies the ability of the self-organizing maps (SOM) method to directly define well known wind regimes over Israel during the entire year, except summer period, at 12:00 UTC. This procedure may be applied at other hours and is highly relevant to future automatic climatological analysis and applications. The investigation is performed by analysing surface wind measurements from 53 Israel Meteorological Service stations. The relation between the synoptic variables and the wind regimes is revealed from the averages of ECMWF ERA-INTERIM reanalysis variables for each SOM wind regime. The inspection of wind regimes and their average geopotential anomalies has shown that wind regimes relate to the gradient of the pressure anomalies, rather than to the specific isobars pattern. Two main wind regimes - strong western and the strong eastern or northern - are well known over this region. The frequencies of the regimes according to seasons is verified. Strong eastern regimes are dominant during winter, while strong western regimes are frequent in all seasons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, B.; Schneider, E.K.
1995-10-01
Two surface wind stress datasets for 1979-91, one based on observations and the other from an investigation of the COLA atmospheric general circulation model (AGCM) with prescribed SST, are used to drive the GFDL ocean general circulation model. These two runs are referred to as the control and COLA experiments, respectively. Simulated SST and upper-ocean heat contents (HC) in the tropical Pacific Ocean are compared with observations and between experiments. Both simulation reproduced the observed mean SST and HC fields as well as their annual cycles realistically. Major errors common to both runs are colder than observed SST in themore » eastern equatorial ocean and HC in the western Pacific south of the equator, with errors generally larger in the COLA experiment. New errors arising from the AGCM wind forcing include higher SST near the South American coast throughout the year and weaker HC gradients along the equator in boreal spring. The former is associated with suppressed coastal upwelling by weak along shore AGCM winds, and the latter is caused by weaker equatorial easterlies in boreal spring. The low-frequency ENSO fluctuations are also realistic for both runs. Correlations between the observed and simulated SST anomalies from the COLA simulation are as high as those from the control run in the central equatorial Pacific. A major problem in the COLA simulation is the appearance of unrealistic tropical cold anomalies during the boreal spring of mature El Nino years. These anomalies propagate along the equator from the western Pacific to the eastern coast in about three months, and temporarily eliminate the warm SST and HC anomalies in the eastern Pacific. This erroneous oceanic response in the COLA simulation is caused by a reversal of the westerly wind anomalies on the equator, associated with an unrealistic southward shift of the ITCZ in boreal spring during El Nino events. 66 refs., 16 figs.« less
NASA Technical Reports Server (NTRS)
Miller, Ron; Jiang, Xing-Jian; Travis, Larry (Technical Monitor)
2001-01-01
Tropical Atlantic SST shows a (statistically well-defined) decadal time scale in a 104-year simulation of unforced variability by a coupled general circulation model (CGCM). The SST anomalies superficially resemble observed Tropical Atlantic variability (TAV), and are associated with changes in the atmospheric circulation. Brazilian rainfall is modulated with a decadal time scale, along with the strength of the Atlantic trade winds, which are associated with variations in evaporation and the net surface heat flux. However, in contrast to observed tropical Atlantic variability, the trade winds damp the associated anomalies in ocean temperature, indicating a negative feedback. Tropical SST anomalies in the CGCM, though opposed by the surface heat flux, are advected in from the Southern Hemisphere mid-latitudes. These variations modulate the strength of the thermohaline circulation (THC): warm, salty anomalies at the equator sink drawing cold, fresh mid-latitude water. Upon reaching the equator, the latter inhibit vertical overturning and advection from higher latitudes, which allows warm, salty anomalies to reform, returning the cycle to its original state. Thus, the cycle results from advection of density anomalies and the effect of these anomalies upon the rate of vertical overturning and surface advection. This decadal modulation of Tropical Atlantic SST and the thermohaline circulation is correlated with ocean heat transport to the Northern Hemisphere high latitudes and Norwegian Sea SST. Because of the central role of equatorial convection, we question whether this mechanism is present in the current climate, although we speculate that it may have operated in palaeo times, depending upon the stability of the tropical water column.
NASA Astrophysics Data System (ADS)
Chen, Shangfeng; Song, Linye
2018-06-01
This study analyzes the impact of the winter North Pacific Oscillation (NPO) on the surface air temperature (SAT) variations over Eurasia and North America based on six different NPO indices. Results show that the influences of the winter NPO on the SAT over Eurasia and North America are sensitive to the definition of the NPO index. The impact of the winter NPO on the SAT variations over Eurasia (North America) is significant (insignificant) when the anticyclonic anomaly associated with the NPO index over the North Pacific midlatitudes shifts westward and pronounced northerly wind anomalies appear around Lake Baikal. By contrast, the impact of the winter NPO on the SAT variations over Eurasia (North America) is insignificant (significant) when the anticyclonic anomaly over the North Pacific related to the NPO index shifts eastward and the associated northerly wind anomalies to its eastern flank extend to North America. The present study suggests that the NPO definition should be taken into account when analyzing the impact of the winter NPO on Eurasian and North American SAT variations.
The surface latent heat flux anomalies related to major earthquake
NASA Astrophysics Data System (ADS)
Jing, Feng; Shen, Xuhui; Kang, Chunli; Xiong, Pan; Hong, Shunying
2011-12-01
SLHF (Surface Latent Heat Flux) is an atmospheric parameter, which can describe the heat released by phase changes and dependent on meteorological parameters such as surface temperature, relative humidity, wind speed etc. There is a sharp difference between the ocean surface and the land surface. Recently, many studies related to the SLHF anomalies prior to earthquakes have been developed. It has been shown that the energy exchange enhanced between coastal surface and atmosphere prior to earthquakes can increase the rate of the water-heat exchange, which will lead to an obviously increases in SLHF. In this paper, two earthquakes in 2010 (Haiti earthquake and southwest of Sumatra in Indonesia earthquake) have been analyzed using SLHF data by STD (standard deviation) threshold method. It is shows that the SLHF anomaly may occur in interpolate earthquakes or intraplate earthquakes and coastal earthquakes or island earthquakes. And the SLHF anomalies usually appear 5-6 days prior to an earthquake, then disappear quickly after the event. The process of anomaly evolution to a certain extent reflects a dynamic energy change process about earthquake preparation, that is, weak-strong-weak-disappeared.
Far-Field Simulation of the Hawaiian Wake: Sea Surface Temperature and Orographic Effects(.
NASA Astrophysics Data System (ADS)
Hafner, Jan; Xie, Shang-Ping
2003-12-01
Recent satellite observations reveal far-reaching effects of the Hawaiian Islands on surface wind, cloud, ocean current, and sea surface temperature (SST) that extend leeward over an unusually long distance (>1000 km). A three-dimensional regional atmospheric model with full physics is used to investigate the cause of this long wake. While previous wind wake studies tend to focus on regions near the islands, the emphasis here is the far-field effects of SST and orography well away from the Hawaiian Islands. In response to an island-induced SST pattern, the model produces surface wind and cloud anomaly patterns that resemble those observed by satellites. In particular, anomalous surface winds are found to converge onto a zonal band of warmer water, with cloud liquid water content enhanced over it but reduced on the northern and southern sides. In the vertical, a two-cell meridional circulation develops of a baroclinic structure with the rising motion and thicker clouds over the warm water band. The model response in the wind and cloud fields supports the hypothesis that ocean atmosphere interaction is crucial for sustaining the island effects over a few thousand kilometers.Near Hawaii, mountains generate separate wind wakes in the model lee of individual islands as observed by satellites. Under orographic forcing, the model simulates the windward cloud line and the southwest-tilted cloud band leeward of the Big Island. In the far field, orographically induced wind perturbations are found to be in geostrophic balance with pressure anomalies, indicative of quasigeostrophic Rossby wave propagation. A shallow-water model is developed for disturbances trapped in the inversion-capped planetary boundary layer. The westward propagation of Rossby waves is found to increase the wake length significantly, consistent with the three-dimensional simulation.
Interbasin effects of the Indian Ocean on Pacific decadal climate change
NASA Astrophysics Data System (ADS)
Mochizuki, Takashi; Kimoto, Masahide; Watanabe, Masahiro; Chikamoto, Yoshimitsu; Ishii, Masayoshi
2016-07-01
We demonstrate the significant impact of the Indian Ocean on the Pacific climate on decadal timescales by comparing two sets of data assimilation experiments (pacemaker experiments) conducted over recent decades. For the Indian Ocean of an atmosphere-ocean coupled global climate model, we assimilate ocean temperature and salinity anomalies defined as deviations from climatology or as anomalies with the area-averaged changes for the Indian Ocean subtracted. When decadal sea surface temperature (SST) trends are observed to be strong over the Indian Ocean, the equatorial thermocline uniformly deepens, and the model simulates the eastward tendencies of surface wind aloft. Surface winds strongly converge around the maritime continent, and the associated strengthening of the Walker circulation suppresses an increasing trend in the equatorial Pacific SST through ocean thermocline shoaling, similar to common changes associated with seasonal Indian Ocean warming.
Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations
NASA Astrophysics Data System (ADS)
Su, Hua; Li, Wene; Yan, Xiao-Hai
2018-01-01
Retrieving the subsurface and deeper ocean (SDO) dynamic parameters from satellite observations is crucial for effectively understanding ocean interior anomalies and dynamic processes, but it is challenging to accurately estimate the subsurface thermal structure over the global scale from sea surface parameters. This study proposes a new approach based on Random Forest (RF) machine learning to retrieve subsurface temperature anomaly (STA) in the global ocean from multisource satellite observations including sea surface height anomaly (SSHA), sea surface temperature anomaly (SSTA), sea surface salinity anomaly (SSSA), and sea surface wind anomaly (SSWA) via in situ Argo data for RF training and testing. RF machine-learning approach can accurately retrieve the STA in the global ocean from satellite observations of sea surface parameters (SSHA, SSTA, SSSA, SSWA). The Argo STA data were used to validate the accuracy and reliability of the results from the RF model. The results indicated that SSHA, SSTA, SSSA, and SSWA together are useful parameters for detecting SDO thermal information and obtaining accurate STA estimations. The proposed method also outperformed support vector regression (SVR) in global STA estimation. It will be a useful technique for studying SDO thermal variability and its role in global climate system from global-scale satellite observations.
Sand/dust storm processes in Northeast Asia and associated large-scale circulations
NASA Astrophysics Data System (ADS)
Yang, Y. Q.; Hou, Q.; Zhou, C. H.; Liu, H. L.; Wang, Y. Q.; Niu, T.
2008-01-01
This paper introduces a definition of sand/dust storm process as a new standard and idea of sand/dust storm (SDS) groups a number of SDS-events in Northeast Asia. Based on the meteorological data from WMO/GOS network, 2456 Chinese surface stations and NCEP-NCAR reanalysis, the sand/dust storm processes in Northeast Asia in spring 2000-2006 are investigated. And the evolutions of anomalies of general circulation in the troposphere are analyzed by comparing the spring having most and least occurrences of SDS in year 2006 and 2003. Associated with the noticeably increased occurrence of SDS processes in spring 2006, the anomalies in 3-D structure of general circulation especially in the mid-and high latitudes of the Northen Hemisphere (NH) are revealed. The transition period from the winter of 2005 to spring 2006 has witnessed a fast-developed high center over the circumpolar vortex area in the upper troposphere, which pushes the polar vortex more southwards to mid-latitudes with a more extensive area over the east NH. In spring 2006, there are the significant circulation anomalies in the middle troposphere from the Baikal Lake to northern China with a stronger southward wind anomaly over Northeast Asia. Compared with a normal year, stronger meridional wind with a southward wind anomaly also in the lower troposphere prevail over the arid and semiarid regions in Mongolia and northern China during spring 2006. The positive anomalies of surface high pressure registered an abnormal high of 4-10 hPa in the Tamil Peninsular make a stronger cold air source for the repeated cold air outbreak across the desert areas in spring 2006 resulting in the most frequent SDS seasons in the last 10 years in Northeast Asia.
U.S. Hail Frequency and the Global Wind Oscillation
NASA Astrophysics Data System (ADS)
Gensini, Vittorio A.; Allen, John T.
2018-02-01
Changes in Earth relative atmospheric angular momentum can be described by an index known as the Global Wind Oscillation. This global index accounts for changes in Earth's atmospheric budget of relative angular momentum through interactions of tropical convection anomalies, extratropical dynamics, and engagement of surface torques (e.g., friction and mountain). It is shown herein that U.S. hail events are more (less) likely to occur in low (high) atmospheric angular momentum base states when excluding weak Global Wind Oscillation days, with the strongest relationships found in the boreal spring and fall. Severe, significant severe, and giant hail events are more likely to occur during Global Wind Oscillation phases 8, 1, 2, and 3 during the peak of U.S. severe weather season. Lower frequencies of hail events are generally found in Global Wind Oscillation phases 4-7 but vary based on Global Wind Oscillation amplitude and month. In addition, probabilistic anomalies of atmospheric ingredients supportive of hail producing supercell thunderstorms closely mimic locations of reported hail frequency, helping to corroborate report results.
NASA Astrophysics Data System (ADS)
Chapa, C.; Beier, E.; Durazo, R.; Martin Hernandez-Ayon, J. M.; Alin, S. R.; Lopez-Perez, A.
2016-12-01
The relationship between the surface enrichment of dissolved inorganic carbon (DIC) and wind variability and circulation in the Gulf of Tehuantepec (GT) was examined from satellite images and in situ data from three cruises (June 2010; April and November 2013). Monthly mean wind climatologies (and derived variables), sea surface temperature and sea surface height anomaly fields were analyzed in the GT and part of the NETP. Signal decomposition according to circulation scales (seasonal, inter-annual, mesoscale) was performed using harmonic analysis for the seasonal components, and empirical orthogonal functions for the residuals, applied to satellite sea-level anomaly data. The results show that wind is the main driving force of the variability in the GT. Mesoscale is the variable with the highest percent of local variance (25-75%), due mainly to mesoscale eddies, followed by seasonality (20-55%), and finally the inter-annual signal (10-30%), dominated by ENSO. Mesoscale and seasonality prevailed during the samplings. The changes in circulation led to variations in the concentration of surface DIC ranging between 100 and 300 µmol kg-1 (436 µatm) due to Ekman pumping. The largest enrichment occurred in November 2013 after a strong northerly wind event. However, the predominance of mesoscale events suggests that changes in dissolved inorganic carbon resulting from mesoscale- derived Ekman pumping may become important in the long term and with a larger spatial and temporal coverage. The results suggest that the seasonal cycle of dissolved inorganic carbon may be linked to wind seasonality.
Deca, J; Divin, A; Lapenta, G; Lembège, B; Markidis, S; Horányi, M
2014-04-18
We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs.
Mini-Magnetospheres at the Moon in the Solar Wind and the Earth's Plasma Sheet
NASA Astrophysics Data System (ADS)
Harada, Y.; Futaana, Y.; Barabash, S. V.; Wieser, M.; Wurz, P.; Bhardwaj, A.; Asamura, K.; Saito, Y.; Yokota, S.; Tsunakawa, H.; Machida, S.
2014-12-01
Lunar mini-magnetospheres are formed as a consequence of solar-wind interaction with remanent crustal magnetization on the Moon. A variety of plasma and field perturbations have been observed in a vicinity of the lunar magnetic anomalies, including electron energization, ion reflection/deflection, magnetic field enhancements, electrostatic and electromagnetic wave activities, and low-altitude ion deceleration and electron acceleration. Recent Chandrayaan-1 observations of the backscattered energetic neutral atoms (ENAs) from the Moon in the solar wind revealed upward ENA flux depletion (and thus depletion of the proton flux impinging on the lunar surface) in association with strongly magnetized regions. These ENA observations demonstrate that the lunar surface is shielded from the solar wind protons by the crustal magnetic fields. On the other hand, when the Moon was located in the Earth's plasma sheet, no significant depletion of the backscattered ENA flux was observed above the large and strong magnetic anomaly. It suggests less effective magnetic shielding of the surface from the plasma sheet protons than from the solar wind protons. We conduct test-particle simulations showing that protons with a broad velocity distribution are more likely to reach a strongly magnetized surface than those with a beam-like velocity distribution. The ENA observations together with the simulation results suggest that the lunar crustal magnetic fields are no longer capable of standing off the ambient plasma when the Moon is immersed in the hot magnetospheric plasma.
White, Warren B.; Tourre, Y.M.; Barlow, M.; Dettinger, M.
2003-01-01
Biennial, interannual, and decadal signals in the Pacific basin are observed to share patterns and evolution in covarying sea surface temperature (SST), 18??C isotherm depth (Z18), zonal surface wind (ZSW), and wind stress curl (WSC) anomalies from 1955 to 1999. Each signal has warm SST anomalies propagating slowly eastward along the equator, generating westerly ZSW anomalies in their wake. These westerly ZSW anomalies produce cyclonic WSC anomalies off the equator which pump baroclinic Rossby waves in the western/central tropical North Pacific Ocean. These Rossby waves propagate westward, taking ???6, ???12, and ???36 months to reach the western boundary near ???7??N, ???12??N, and ???18??N on biennial, interannual, and decadal period scales, respectively. There, they reflect as equatorial coupled waves, propagating slowly eastward in covarying SST, Z18, and ZSW anomalies, taking ???6, ???12, and ???24 months to reach the central/eastern equatorial ocean. These equatorial coupled waves produce a delayed-negative feedback to the warm SST anomalies there. The decrease in Rossby wave phase speed with latitude, the increase in meridional scale of equatorial SST anomalies with period scale, and the associated increase in latitude of Rossby wave forcing are consistent with the delayed action oscillator (DAO) model used to explain El Nin??o. However, this is not true of the western-boundary reflection of Rossby waves into slow equatorial coupled waves. This requires modification of the extant DAO model. We construct a modified DAO model, demonstrating how the various mechanisms and the size and sources of their delays yield the resulting frequency of each signal.
Response of near-surface currents in the Indian Ocean to the anomalous atmospheric condition in 2015
NASA Astrophysics Data System (ADS)
Utari, P. A.; Nurkhakim, M. Y.; Setiabudidaya, D.; Iskandar, I.
2018-05-01
Anomalous ocean-atmosphere conditions were detected in the tropical Indian Ocean during boreal spring to boreal winter 2015. It was suggested that the anomalous conditions were characteristics of the positive Indian Ocean Dipole (pIOD) event. The purpose of this investigation was to investigate the response of near-surface currents in the tropical Indian Ocean to the anomalous atmospheric condition in 2015. Near-surface current from OSCAR (Ocean Surface Current Analyses Real Time) reanalysis data combined with the sea surface temperature (SST) data from OISST – NOAA, sea surface height (SSH) and surface winds from the ECMWF were used in this investigation. The analysis showed that the evolution of 2015 pIOD started in June/July, peaked in the September and terminated in late November 2015. Correlated with the evolution of the pIOD, easterly winds anomalies were detected along the equator. As the oceanic response to these easterly wind anomalies, the surface currents anomalously westward during the peak of the pIOD. It was interesting to note that the evolution of 2015 pIOD event was closely related to the ocean wave dynamics as revealed by the SSH data. Downwelling westward propagating Rossby waves were detected in the southwestern tropical Indian Ocean. Once reached the western boundary of the Indian Ocean, they were redirected back into interior Indian Ocean and propagating eastward as the downwelling Kelvin waves.
Land-atmosphere-ocean interactions in the southeastern Atlantic: interannual variability
NASA Astrophysics Data System (ADS)
Sun, Xiaoming; Vizy, Edward K.; Cook, Kerry H.
2018-02-01
Land-atmosphere-ocean interactions in the southeastern South Atlantic and their connections to interannual variability are examined using a regional climate model coupled with an intermediate-level ocean model. In austral summer, zonal displacements of the South Atlantic subtropical high (SASH) can induce variations of mixed-layer currents in the Benguela upwelling region through surface wind stress curl anomalies near the Namibian coast, and an eastward shifted SASH is related to the first Pacific-South American mode. When the SASH is meridionally displaced, mixed layer vertically-integrated Ekman transport anomalies are mainly a response to the change of alongshore surface wind stress. The latitudinal shift of the SASH tends to dampen the anomalous alongshore wind by modulating the land-sea thermal contrast, while opposed by oceanic diffusion. Although the position of the SASH is closely linked to the phase of El Niño-Southern Oscillation (ENSO) and the southern annular mode (SAM) in austral summer, an overall relationship between Benguela upwelling strength and ENSO or SAM is absent. During austral winter, variations of the mixed layer Ekman transport in the Benguela upwelling region are connected to the strength of the SASH through its impact on both coastal wind stress curl and alongshore surface wind stress. Compared with austral summer, low-level cloud cover change plays a more important role. Although wintertime sea surface temperature fluctuations in the equatorial Atlantic are strong and may act to influence variability over the northern Benguela area, the surface heat budget analysis suggests that local air-sea interactions dominate.
Northerly surface winds over the eastern North Pacific Ocean in spring and summer
Taylor, S.V.; Cayan, D.R.; Graham, N.E.; Georgakakos, K.P.
2008-01-01
Persistent spring and summer northerly surface winds are the defining climatological feature of the western coast of North America, especially south of the Oregon coast. Northerly surface winds are important for upwelling and a vast array of other biological, oceanic, and atmospheric processes. Intermittence in northerly coastal surface wind is characterized and wind events are quantitatively defined using coastal buoy data south of Cape Mendocino on the northern California coast. The defined wind events are then used as a basis for composites in order to explain the spatial evolution of various atmospheric and oceanic processes. Wind events involve large-scale changes in the three-dimensional atmospheric circulation including the eastern North Pacific subtropical anticyclone and southeast trade winds. Composites of QSCAT satellite scatterometer wind estimates from 1999 to 2005 based on a single coastal buoy indicate that wind events typically last 72-96 h and result in anomalies in surface wind and Ekman pumping that extend over 1000 kin from the west coast of North America. It may be useful to consider ocean circulation and dependent ecosystem dynamics and the distribution of temperature, moisture, and aerosols in the atmospheric boundary layer in the context of wind events defined herein. Copyright 2008 by the American Geophysical Union.
Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation
NASA Astrophysics Data System (ADS)
Kucharski, F.; Sun, C.; Li, J.; Jin, F. F.; Kang, I. S.; Ding, R.
2017-12-01
Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO-WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind-evaporation-SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST-sea level pressure-cloud-longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability.
Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation
NASA Astrophysics Data System (ADS)
Sun, Cheng; Kucharski, Fred; Li, Jianping; Jin, Fei-Fei; Kang, In-Sik; Ding, Ruiqiang
2017-07-01
Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO-WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind-evaporation-SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST-sea level pressure-cloud-longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability.
Interaction of Solar Wind and Magnetic Anomalies - Modelling from Moon to Mars
NASA Astrophysics Data System (ADS)
Alho, Markku; Kallio, Esa; Wedlund, Cyril Simon; Wurz, Peter
2015-04-01
The crustal magnetic anomalies on both the Moon and Mars strongly affect the local plasma environment. On the Moon, the impinging solar wind is decelerated or deflected when interacting with the magnetic field anomaly, visible in the lunar surface as energetic neutral atom (ENA) emissions or as reflected protons, and may play a part in the space weathering of the lunar soil. At Mars, the crustal magnetic fields have been shown to be associated with, e.g., enhanced electron scale heights and modified convection of ionospheric plasma, resulting in the plasma environment being dominated by crustal magnetic fields up to altitudes of 400km. Our previous modelling work suggested that Hall currents are a dominant feature in a Moon-like magnetic anomaly interaction at scales at or below the proton inertial length. In this work we study the solar wind interaction with magnetic anomalies and compare the plasma environments of a Moon-like anomaly with a Mars-like anomaly by introducing an ionosphere and an exosphere to probe the transition from an atmosphere-less anomaly interaction to an ionospheric one. We utilize a 3D hybrid plasma model, in which ions are modelled as particles while electrons form a charge-neutralizing massless fluid. The hybrid model gives a full description of ion kinetics and associated plasma phenomena at the simulation region ranging from instabilities to possible reconnection. The model can thus be used to interpret both in-situ particle and field observations and remotely-sensed ENA emissions. A self-consistent ionosphere package for the model is additionally in development.
NASA Astrophysics Data System (ADS)
Vaid, B. H.
2017-02-01
The association of the biweekly intraseasonal (BWI) oscillation in the Sea Surface Temperature (SST) over the South China Sea (SCS) and the Western North Pacific Summer Monsoon is authenticated using version 4 the Tropical Rainfall Measuring Mission Microwave Imager data (SST and rain) and heat fluxes from Ocean Atmosphere Flux project data during 1998-2012. The results suggest that the SCS involves ocean-atmosphere coupling on biweekly timescales. The positive biweekly SST anomalies lead the rain anomalies over the SCS by 3 days, with a significant correlation coefficient ( r = 0.6, at 99 % significance levels) between the SST-rain anomalies. It is evident from lead/lag correlation between biweekly SST and zonal wind shear that warm ocean surface induced by wind shear may contribute to a favorable condition of the convective activity over the SCS. The present study suggests that ocean-to-atmospheric processes induced by the BWI oscillation in the SCS SST results in enhanced sea level pressure and surface shortwave radiation flux during the summer monsoon. Besides, it is observed that the SCS BWI oscillation in the changes of SST causes a feedback in the atmosphere by modifying the atmospheric instability. This suggests that the active/break biweekly cycle of the SST over the SCS is related by sea level pressure, surface heat fluxes and atmospheric instability. The potential findings here indicate that the biweekly SST over the SCS play an important role in the eastward and the southward propagation of the biweekly anomalies in the Western North Pacific.
NASA Astrophysics Data System (ADS)
He, Shengping; Liu, Yang; Wang, Huijun
2017-04-01
This study investigates a cross-seasonal influence of the Silk Road Pattern (SRP) in July and discusses the related mechanism. Both the reanalysis and observational datasets indicate that the July SRP is closely related to the following January temperature over East Asia during 1958/59-2001/02. Linear regression results reveal that, following a higher-than-normal SRP index in July, the Siberian high, Aleutian low, Urals high, East Asian trough, and meridional shear of the East Asian jet intensify significantly in January. Such atmospheric circulation anomalies are favorable for northerly wind anomalies over East Asia, leading to more southward advection of cold air and causing a decrease in temperature. Further analysis indicates that the North Pacific sea surface temperature anomalies (SSTAs) might play a critical role in storing the anomalous signal of the July SRP. The significant SSTAs related to the July SRP weaken in October and November, re-emerge in December, and strengthen in the following January. Such an SSTA pattern in January can induce a surface anomalous cyclone over North Pacific and lead to dominant convergence anomalies over northwestern Pacific. Correspondingly, significant divergence anomalies appear, collocated in the upper-level troposphere in situ. Due to the advection of vorticity by divergent wind, which can be regarded as a wave source, a stationary Rossby wave originates from North Pacific and propagates eastward to East Asia, leading to temperature anomalies through its influence on the large-scale atmospheric circulation.
NASA Technical Reports Server (NTRS)
Robertson, F. R.; Fitzjarrald, D. E.; Sohn, B.-J.; Arnold, James E. (Technical Monitor)
2001-01-01
The da Silva, Young and Levitus Surface Marine Atlas, based on observations from the Comprehensive Ocean Atmosphere Data Set (COADS) Release 1, has been used to investigate the relationship between evaporation and sea-surface temperature (SST) over the global oceans. For the period 1950 to 1987 SST, surface latent heat flux, and other related variables have been filtered to minimize data uncertainties and to focus upon interannual variations associated with warm (El Nino) and cold (La Nina) ENSO events. Compositing procedures have enabled identification of systematic variations in latent heat fluxes accompanying these events and the relationship to spatial anomalies in ocean surface wind speed and humidity. The evaporation response associated with ENSO sea surface temperature (SST) variability is systematic in nature and composed of offsetting contributions from the surface wind and humidity variations. During warm events exceeding 1.0 S.D. delta SST, increases in the surface humidity deficit, delta(qs-qa), between the surface and 2m height dominate regions of positive SST anomalies and lead to increases in evaporation of almost 2 Wm (exp -2) at deltaSST = 0.23 K. Despite the increases in specific humidity, relative humidity decreases slightly in regions of elevated SSTs. For the most part, variations in wind speed are consistent with previous investigations. Weakening of the equatorial easterlies (and generation of westerlies) between 160 degrees E and 140 degrees W dominates during the early phases of warm events. Elevated wind speeds in adjacent subtropical regions and in the eastern equatorial Pacific subsequently develop too. The net contribution of these winds, which reflect adjustments in Hadley and Walker circulation components is toward reduced evaporation. Results for cold periods are approximately similar, but opposite in sign to warm events, though evidence of different temporal evolution is noted.
NASA Astrophysics Data System (ADS)
Maksimovich, E.
2010-09-01
The spring onset of snow melt on the Arctic sea ice shows large inter-annual variability. Surface melt triggers positive feedback mechanisms between the albedo, snow properties and thickness, as well as sea ice thickness. Hence, it is important to quantify the factors contributing to inter-annual variability of the melt onset (MO) in various parts of the Arctic Ocean. Meteorological factors controlling surface heat budget and surface melting/freezing are the shortwave and longwave radiative fluxes and the turbulent fluxes of sensible and latent heat. These fluxes depend on the weather conditions, including the radiative impact of clouds, heat advection and wind speed. We make use of SSM/I-based MO time series (Markus, Miller and Stroeve) and the ECMWF ERA Interim reanalysis on the meteorological conditions and surface fluxes, both data sets spanning the period 1989-2008 and covering recent years with a rapid sea ice decline. The advantage is that SSM/I-based MO time series are independent of the ERA-Interim data. Our objective is to investigate if there exists a physically consistent and statistically significant relationship between MO timing and corresponding meteorological conditions. Results based on the regression analysis between the MO timing and seasonal anomalies of surface longwave radiative fluxes reveal strong relationships. Synoptic scale (3-14 days) anomalies in downward longwave radiation are essential in the Western Arctic. Regarding the longer history (20-60 days) the distinct contribution from the downward longwave radiative fluxes is captured within the whole study region. Positive anomalies in the downward longwave radiation dominate over the simultaneous negative anomalies in the downward shortwave radiation. The anomalies in downward radiative fluxes are consistent with the total column water vapor, sea level pressure and 10-m wind direction. Sensible and latent heat fluxes affect surface melt timing in the Beaufort Sea and in the Atlantic sector of the Arctic Basin. Stronger winds strengthen the relationship between the turbulent fluxes and the MO timing. The turbulent surface fluxes in spring are relatively weak, of the order of 1-10W/m2, compared to the downward shortwave and longwave radiative fluxes, which are of the order of 100-150W/m2. As soon as data uncertainties are comparable to the anomaly in turbulent fluxes, statistical relationships found between MO timing and preceding anomaly in turbulent fluxes do not necessarily prove their reasonal-causal relationship. This joint study of SSM/I-based MO record and the ERA-Interim meteorological fields region-wide with a focus on the seasonal transition demonstrates their consistency in time and space. Such result could be regarded as an important indicator that both data sets have the appropriate performance of the surface state in the Arctic Ocean. Nevertheless, an important additional effort is needed for to resolve better the cloud radiative and boundary layer turbulent processes over the sea ice.
The Widespread Distribution of Swirls in Lunar Reconnaissance Orbiter Camera Images
NASA Astrophysics Data System (ADS)
Denevi, B. W.; Robinson, M. S.; Boyd, A. K.; Blewett, D. T.
2015-10-01
Lunar swirls, the sinuous high-and low-reflectance features that cannot be mentioned without the associated adjective "enigmatic,"are of interest because of their link to crustal magnetic anomalies [1,2]. These localized magnetic anomalies create mini-magnetospheres [3,4] and may alter the typical surface modification processes or result in altogether distinct processes that form the swirls. One hypothesis is that magnetic anomalies may provide some degree of shielding from the solar wind [1,2], which could impede space weathering due to solar wind sputtering. In this case, swirls would serve as a way to compare areas affected by typical lunar space weathering (solar wind plus micrometeoroid bombardment) to those where space weathering is dominated by micrometeoroid bombardment alone, providing a natural means to assess the relative contributions of these two processes to the alteration of fresh regolith. Alternately,magnetic anomalies may play a role in the sorting of soil grains, such that the high-reflectance portion of swirls may preferentially accumulate feldspar-rich dust [5]or soils with a lower component of nanophase iron [6].Each of these scenarios presumes a pre-existing magnetic anomaly; swirlshave also been suggested to be the result of recent cometary impacts in which the remanent magnetic field is generated by the impact event[7].Here we map the distribution of swirls using ultraviolet and visible images from the Lunar Reconnaissance Orbiter Camera(LROC) Wide Angle Camera (WAC) [8,9]. We explore the relationship of the swirls to crustal magnetic anomalies[10], and examine regions with magnetic anomalies and no swirls.
Scientific opportunities using satellite surface wind stress measurements over the ocean
NASA Technical Reports Server (NTRS)
1982-01-01
Scientific opportunities that would be possible with the ability to collect wind data from space are highlighted. Minimum requirements for the space platform and ground data reduction system are assessed. The operational uses that may develop in government and commercial applications of these data are reviewed. The opportunity to predict the large-scale ocean anomaly called El Nino is highlighted.
Lunar Ion Transport Near Magnetic Anomalies: Possible Implications for Swirl Formation
NASA Technical Reports Server (NTRS)
Keller, J. W.; Killen, R. M.; Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.
2011-01-01
The bright swirling features on the lunar surface in areas around the Moon but most prominently at Reiner Gamma, have intrigued scientists for many years. After Apollo and later Lunar Prospector (LP} mapped the Lunar magnetic fields from orbit, it was observed that these features are generally associated with crustal magnetic anomalies. This led researchers to propose a number of explanations for the swirls that invoke these fields. Prominent among these include magnetic shielding in the form of a mini-magnetosphere which impedes space weathering by the solar wind, magnetically controlled dust transport, and cometary or asteroidal impacts that would result in shock magnetization with concomitant formation ofthe swirls. In this presentation, we will consider another possibility, that the ambient magnetic and electric fields can transport and channel secondary ions produced by micrometeorite or solar wind ion impacts. In this scenario, ions that are created in these impacts are under the influence of these fields and can drift for significant distances before encountering the magnetic anomalies when their trajectories are disrupted and concentrated onto nearby areas. These ions may then be responsible for chemical alteration of the surface leading either to a brightening effect or a disruption of space weathering processes. To test this hypothesis we have run ion trajectory simulations that show ions from regions about the magnetic anomalies can be channeled into very small areas near the anomalies and although questions remain as to nature of the mechanisms that could lead to brightening of the surface it appears that the channeling effect is consistent with the existence of the swirls.
Modulation of the Seasonal Cycle of Antarctic Sea Ice Extent Related to the Southern Annular Mode
NASA Astrophysics Data System (ADS)
Doddridge, Edward W.; Marshall, John
2017-10-01
Through analysis of remotely sensed sea surface temperature (SST) and sea ice concentration data, we investigate the impact of winds related to the Southern Annular Mode (SAM) on sea ice extent around Antarctica. We show that positive SAM anomalies in the austral summer are associated with anomalously cold SSTs that persist and lead to anomalous ice growth in the following autumn, while negative SAM anomalies precede warm SSTs and a reduction in sea ice extent during autumn. The largest effect occurs in April, when a unit change in the detrended summertime SAM is followed by a 1.8±0.6 ×105 km2 change in detrended sea ice extent. We find no evidence that sea ice extent anomalies related to the summertime SAM affect the wintertime sea ice extent maximum. Our analysis shows that the wind anomalies related to the negative SAM during the 2016/2017 austral summer contributed to the record minimum Antarctic sea ice extent observed in March 2017.
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.
2012-01-01
As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.
NASA Astrophysics Data System (ADS)
Han, Tingting; He, Shengping; Wang, Huijun; Hao, Xin
2017-04-01
The relationship between the tropical Indian Ocean (TIO) and East Asian summer monsoon/precipitation has been documented in many studies. However, the precursor signals of summer precipitation in the TIO sea surface temperature (SST), which is important for climate prediction, have drawn little attention. This study identified a strong relationship between early-spring TIO SST and subsequent early-summer precipitation in Northeast China (NEC) since the late 1980s. For 1961-1986, the correlations between early-spring TIO SST and early-summer NEC precipitation were statistically insignificant; for 1989-2014, they were positively significant. Since the late 1980s, the early-spring positive TIO SST anomaly was generally followed by a significant anomalous anticyclone over Japan; that facilitated anomalous southerly winds over NEC, conveying more moisture from the North Pacific. Further analysis indicated that an early TIO SST anomaly showed robust persistence into early summer. However, the early-summer TIO SST anomaly displayed a more significant influence on simultaneous atmospheric circulation and further affected NEC precipitation since the late 1980s. In 1989-2014, the early-summer Hadley and Ferrell cell anomalies associated with simultaneous TIO SST anomaly were much more significant and extended further north to mid-latitudes, which provided a dynamic foundation for the TIO-mid-latitude connection. Correspondingly, the TIO SST anomaly could lead to significant divergence anomalies over the Mediterranean. The advections of vorticity by the divergent component of the flow effectively acted as a Rossby wave source. Thus, an apparent Rossby wave originated from the Mediterranean and propagated east to East Asia; that further influenced the NEC precipitation through modulation to the atmospheric circulation (e.g., surface wind, moisture, vertical motion).
NASA Astrophysics Data System (ADS)
Chen, Zesheng; Du, Yan; Wen, Zhiping; Wu, Renguang; Wang, Chunzai
2018-06-01
This study investigates the influence of southeast tropical Indian Ocean (SETIO) sea surface temperature (SST) warming on Indo-Pacific climate during the decaying phase of the 2015/16 El Niño by using observations and model experiments. The results show that the SETIO SST warming in spring 2016 enhanced local convection and forced a "C-shape" wind anomaly pattern in the lower troposphere. The "C-shape" wind anomaly pattern over the eastern tropical Indian Ocean consists of anomalous westerly flow south of the equator and anomalous easterly flow north of the equator. The anomalous easterly flow then extended eastward into the western North Pacific (WNP) and facilitates the development or the maintenance of an anomalous anticyclone over the South China Sea (SCS). Correspondingly, the eastern part of the Bay of Bengal, the SCS and the WNP suffered less rainfall. Such precipitation features and the associated "C-shape" wind anomaly pattern shifted northward about five latitudes in summer 2016. Additionally, the SETIO warming can induce local meridional circulation anomalies, which directly affect Indo-Pacific climate. Numerical model experiments further confirm that the SETIO SST warming plays an important role in modulating Indo-Pacific climate.
Atlantic-induced pan-tropical climate change over the past three decades
NASA Astrophysics Data System (ADS)
Li, Xichen; Xie, Shang-Ping; Gille, Sarah T.; Yoo, Changhyun
2016-03-01
During the past three decades, tropical sea surface temperature (SST) has shown dipole-like trends, with warming over the tropical Atlantic and Indo-western Pacific but cooling over the eastern Pacific. Competing hypotheses relate this cooling, identified as a driver of the global warming hiatus, to the warming trends in either the Atlantic or Indian Ocean. However, the mechanisms, the relative importance and the interactions between these teleconnections remain unclear. Using a state-of-the-art climate model, we show that the Atlantic plays a key role in initiating the tropical-wide teleconnection, and the Atlantic-induced anomalies contribute ~55-75% of the tropical SST and circulation changes during the satellite era. The Atlantic warming drives easterly wind anomalies over the Indo-western Pacific as Kelvin waves and westerly anomalies over the eastern Pacific as Rossby waves. The wind changes induce an Indo-western Pacific warming through the wind-evaporation-SST effect, and this warming intensifies the La Niña-type response in the tropical Pacific by enhancing the easterly trade winds and through the Bjerknes ocean dynamical processes. The teleconnection develops into a tropical-wide SST dipole pattern. This mechanism, supported by observations and a hierarchy of climate models, reveals that the tropical ocean basins are more tightly connected than previously thought.
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2004-01-01
We investigate the use of multiple simultaneous solar wind plasma compositional anomalies, relative to the composition of the ambient solar wind, for identifying interplanetary coronal mass ejection (ICME) plasma. We first summarize the characteristics of several solar wind plasma composition signatures (O(+7)/O(+6), Mg/O, Ne/O, Fe charge states, He/p) observed by the ACE and WIND spacecraft within the ICMEs during 1996 - 2002 identsed by Cane and Richardson. We then develop a set of simple criteria that may be used to identify such compositional anomalies, and hence potential ICMEs. To distinguish these anomalies from the normal variations seen in ambient solar wind composition, which depend on the wind speed, we compare observed compositional signatures with those 'expected' in ambient solar wind with the same solar wind speed. This method identifies anomalies more effectively than the use of fixed thresholds. The occurrence rates of individual composition anomalies within ICMEs range from approx. 70% for enhanced iron and oxygen charge states to approx. 30% for enhanced He/p (> 0.06) and Ne/O, and are generally higher in magnetic clouds than other ICMEs. Intervals of multiple anomalies are usually associated with ICMEs, and provide a basis for the identification of the majority of ICMEs. We estimate that Cane and Richardson, who did not refer to composition data, probably identitied approx. 90% of the ICMEs present. However, around 10% of their ICMEs have weak compositional anomalies, suggesting that the presence of such signatures does not provide a necessary requirement for an ICME. We note a remarkably similar correlation between the Mg/O and O(7)/O(6) ratios in hourly-averaged data both within ICMEs and the ambient solar wind. This 'universal' relationship suggests that a similar process (such as minor ion heating by waves inside coronal magnetic field loops) produces the first-ionization potential bias and ion freezing-in temperatures in the source regions of both ICMEs and the ambient solar wind.
Employing unmanned aerial vehicle to monitor the health condition of wind turbines
NASA Astrophysics Data System (ADS)
Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi
2018-04-01
Unmanned aerial vehicle (UAV) can gather the spatial information of huge structures, such as wind turbines, that can be difficult to obtain with traditional approaches. In this paper, the UAV used in the experiments is equipped with high resolution camera and thermal infrared camera. The high resolution camera can provide a series of images with resolution up to 10 Megapixels. Those images can be used to form the 3D model using the digital photogrammetry technique. By comparing the 3D scenes of the same wind turbine at different times, possible displacement of the supporting tower of the wind turbine, caused by ground movement or foundation deterioration may be determined. The recorded thermal images are analyzed by applying the image segmentation methods to the surface temperature distribution. A series of sub-regions are separated by the differences of the surface temperature. The high-resolution optical image and the segmented thermal image are fused such that the surface anomalies are more easily identified for wind turbines.
Constraining storm-scale forecasts of deep convective initiation with surface weather observations
NASA Astrophysics Data System (ADS)
Madaus, Luke
Successfully forecasting when and where individual convective storms will form remains an elusive goal for short-term numerical weather prediction. In this dissertation, the convective initiation (CI) challenge is considered as a problem of insufficiently resolved initial conditions and dense surface weather observations are explored as a possible solution. To better quantify convective-scale surface variability in numerical simulations of discrete convective initiation, idealized ensemble simulations of a variety of environments where CI occurs in response to boundary-layer processes are examined. Coherent features 1-2 hours prior to CI are found in all surface fields examined. While some features were broadly expected, such as positive temperature anomalies and convergent winds, negative temperature anomalies due to cloud shadowing are the largest surface anomaly seen prior to CI. Based on these simulations, several hypotheses about the required characteristics of a surface observing network to constrain CI forecasts are developed. Principally, these suggest that observation spacings of less than 4---5 km would be required, based on correlation length scales. Furthermore, it is anticipated that 2-m temperature and 10-m wind observations would likely be more relevant for effectively constraining variability than surface pressure or 2-m moisture observations based on the magnitudes of observed anomalies relative to observation error. These hypotheses are tested with a series of observing system simulation experiments (OSSEs) using a single CI-capable environment. The OSSE results largely confirm the hypotheses, and with 4-km and particularly 1-km surface observation spacing, skillful forecasts of CI are possible, but only within two hours of CI time. Several facets of convective-scale assimilation, including the need for properly-calibrated localization and problems from non-Gaussian ensemble estimates of the cloud field are discussed. Finally, the characteristics of one candidate dense surface observing network are examined: smartphone pressure observations. Available smartphone pressure observations (and 1-hr pressure tendency observations) are tested by assimilating them into convective-allowing ensemble forecasts for a three-day active convective period in the eastern United States. Although smartphone observations contain noise and internal disagreement, they are effective at reducing short-term forecast errors in surface pressure, wind and precipitation. The results suggest that smartphone pressure observations could become a viable mesoscale observation platform, but more work is needed to enhance their density and reduce error. This work concludes by reviewing and suggesting other novel candidate observation platforms with a potential to improve convective-scale forecasts of CI.
The Low-Frequency Variability of the Tropical Atlantic Ocean
NASA Technical Reports Server (NTRS)
Haekkinen, Sirpa; Mo, Kingtse C.; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Upper ocean temperature variability in the tropical Atlantic is examined from the Comprehensive Ocean Atmosphere Data Set (COADS) as well as from an ocean model simulation forced by COADS anomalies appended to a monthly climatology. Our findings are as follows: Only the sea surface temperatures (SST) in the northern tropics are driven by heat fluxes, while the southern tropical variability arises from wind driven ocean circulation changes. The subsurface temperatures in the northern and southern tropics are found to have a strong linkage to buoyancy forcing changes in the northern North Atlantic. Evidence for Kelvin-like boundary wave propagation from the high latitudes is presented from the model simulation. This extratropical influence is associated with wintertime North Atlantic Oscillation (NAO) forcing and manifests itself in the northern and southern tropical temperature anomalies of the same sign at depth of 100-200 meters as result of a Rossby wave propagation away from the eastern boundary in the wake of the boundary wave passage. The most apparent association of the southern tropical sea surface temperature anomalies (STA) arises with the anomalous cross-equatorial winds which can be related to both NAO and the remote influence from the Pacific equatorial region. These teleconnections are seasonal so that the NAO impact on the tropical SST is the largest it mid-winter but in spring and early summer the Pacific remote influence competes with NAO. However, NAO appears to have a more substantial role than the Pacific influence at low frequencies during the last 50 years. The dynamic origin of STA is indirectly confirmed from the SST-heat flux relationship using ocean model experiments which remove either anomalous wind stress forcing or atmospheric forcing anomalies contributing to heat exchange.
Gravitational Anomalies Caused by Zonal Winds in Jupiter
NASA Astrophysics Data System (ADS)
Schubert, G.; Kong, D.; Zhang, K.
2012-12-01
We present an accurate three-dimensional non-spherical numerical calculation of the gravitational anomalies caused by zonal winds in Jupiter. The calculation is based on a three-dimensional finite element method and accounts for the full effect of significant departure from spherical geometry caused by rapid rotation. Since the speeds of Jupiter's zonal winds are much smaller than that of its rigid-body rotation, our numerical calculation is carried out in two stages. First, we compute the non-spherical distributions of density and pressure at the equilibrium within Jupiter via a hybrid inverse approach by determining an a priori unknown coefficient in the polytropic equation of state that results in a match to the observed shape of Jupiter. Second, by assuming that Jupiter's zonal winds extend throughout the interior along cylinders parallel to the rotation axis, we compute gravitational anomalies produced by the wind-related density anomalies, providing an upper bound to the gravitational anomalies caused by the Jovian zonal winds.
NASA Astrophysics Data System (ADS)
Baehr, Johanna; Schmidt, Christian
2016-04-01
The seasonal cycle of the Atlantic Meridional Overturning Circulation (AMOC) at 26.5 N has been shown to arise predominantly from sub-surface density variations at the Eastern boundary. Here, we suggest that these sub-surface density variations have their origin in the seasonal variability of the Canary Current system, in particular the Poleward Undercurrent (PUC). We use a high-resolution ocean model (STORM) for which we show that the seasonal variability resembles observations for both sub-surface density variability and meridional transports. In particular, the STORM model simulation density variations at the eastern boundary show seasonal variations reaching down to well over 1000m, a pattern that most model simulations systematically underestimate. We find that positive wind stress curl anomalies in late summer and already within one degree off the eastern boundary result -through water column stretching- in strong transport anomlies in PUC in fall, coherent down to 1000m depth. Simultaneously with a westward propagation of these transport anomalies, we find in winter a weak PUC between 200 m and 500m, and southward transports between 600m and 1300m. This variability is in agreement with the observationally-based suggestion of a seasonal reversal of the meridional transports at intermediate depths. Our findings extend earlier studies which suggested that the seasonal variability at of the meridional transports across 26N is created by changes in the basin-wide thermocline through wind-driven upwelling at the eastern boundary analyzing wind stress curl anomalies 2 degrees off the eastern boundary. Our results suggest that the investigation of AMOC variability and particular its seasonal cycle modulations require the analysis of boundary wind stress curl and the upper ocean transports within 1 degree off the eastern boundary. These findings also implicate that without high-resolution coverage of the eastern boundary, coarser model simulation might not fully represent the AMOC's seasonal variability.
NASA Astrophysics Data System (ADS)
Yamaguchi, R.; Suga, T.
2016-12-01
Recent observational studies show that, during the warming season, a large amount of heat flux is penetrated through the base of thin mixed layer by vertical eddy diffusion, in addition to penetration of solar radiation [1]. In order to understand this heat penetration process due to vertical eddy diffusivity and its contribution to seasonal variation of sea surface temperature, we investigated the evolution of thermal stratification below the summertime thin mixed layer (i.e. evolution of seasonal thermocline) and its vertical structure in the North Pacific using high vertical resolution temperature profile observed by Argo floats. We quantified the vertical structure of seasonal thermocline as deviations from the linear structure where the vertical gradient of temperature is constant, that is, "shape anomaly". The shape anomaly is variable representing the extent of the bend of temperature profiles. We found that there are larger values of shape anomaly in the region where the seasonal sea surface temperature warming is relatively faster. To understand the regional difference of shape anomalies, we investigated the relationship between time changes in shape anomalies and net surface heat flux and surface kinetic energy flux. From May to July, the analysis indicated that, in a large part of North Pacific, there's a tendency for shape anomalies to develop strongly (weakly) under the conditions of large (small) downward net surface heat flux and small (large) downward surface kinetic energy flux. Since weak (strong) development of shape anomalies means efficient (inefficient) downward heat transport from the surface, these results suggest that the regional difference of the downward heat penetration below mixed layer is explained reasonably well by differences in surface heat forcing and surface wind forcing in a vertical one dimensional framework. [1] Hosoda et al. (2015), J. Oceanogr., 71, 541-556.
Relationship between Mean Winds and Large 10-day Precipitation Anomalies over the Continental U.S.
NASA Technical Reports Server (NTRS)
Helfand, H. Mark
2008-01-01
To better understand the role of surface boundary forcing upon interannual and decadal variability of droughts and precipitation excesses over the continental U. S., an observational study has been carried out to better investigate the dynamical linkages between surface boundary forcing and droughts/floods. This study examines the relationship during the warm season between observed mean wind patterns on the 10-15 day time scale and anomalies in precipitation on that same time scale over the U. S. Each of the 7 cases of significant 10-day, warm-season drought over the U, S. since 1948 that has been investigated was accompanied by significant continental-scale ridging of the mean 10-day 250 mb wind pattern over the continental U.S. and a mid-Pacific relative maximum of 250 mb wind speed of at least 30 m/sec within 20 degrees of the international Date Line. This perhaps suggests the presence of a wave-guide phenomenon over the Pacific. The drought signal for each of these cases was still quite evident when averaged over the monthly time scale. While peak magnitudes of the precipitation anomalies were much larger for the 7 chosen cases of significant of precipitation excess were than for the drought cases none of the patterns of precipitation excess were as unambiguous or wide-spread as the drought cases. In only 2 to 3 cases was there evidence of a continental trough in the 250 mb winds. In fact, one case showed slight ridging over Canada and the extreme northern U.S. Strong southerly low-level jets, however, were evident in the 925 mb winds over south-central Texas or the nearby Gulf of Mexico in virtually all of the excessive precipitation cases, while the Great Plains LLJ was weak or displaced to the north of Texas in most of the drought cases. We will further investigate the asymmetry between droughts and precipitation excesses in their horizontal homogeneity and extent, in their temporal evolution, and in how the are forced by the combined effects of the mean 250 mb westerlies and the mean 925 mb southerly winds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perigaud C.; Dewitte, B.
The Zebiak and Cane model is used in its {open_quotes}uncoupled mode,{close_quotes} meaning that the oceanic model component is driven by the Florida State University (FSU) wind stress anomalies over 1980-93 to simulate sea surface temperature anomalies, and these are used in the atmospheric model component to generate wind anomalies. Simulations are compared with data derived from FSU winds, International Satellite Cloud Climatology Project cloud convection, Advanced Very High Resolution Radiometer SST, Geosat sea level, 20{degrees}C isotherm depth derived from an expendable bathythermograph, and current velocities estimated from drifters or current-meter moorings. Forced by the simulated SST, the atmospheric model ismore » fairly successful in reproducing the observed westerlies during El Nino events. The model fails to simulate the easterlies during La Nina 1988. The simulated forcing of the atmosphere is in very poor agreement with the heating derived from cloud convection data. Similarly, the model is fairly successful in reproducing the warm anomalies during El Nino events. However, it fails to simulate the observed cold anomalies. Simulated variations of thermocline depth agree reasonably well with observations. The model simulates zonal current anomalies that are reversing at a dominant 9-month frequency. Projecting altimetric observations on Kelvin and Rossby waves provides an estimate of zonal current anomalies, which is consistent with the ones derived from drifters or from current meter moorings. Unlike the simulated ones, the observed zonal current anomalies reverse from eastward during El Nino events to westward during La Nina events. The simulated 9-month oscillations correspond to a resonant mode of the basin. They can be suppressed by cancelling the wave reflection at the boundaries, or they can be attenuated by increasing the friction in the ocean model. 58 refs., 14 figs., 6 tabs.« less
NASA Astrophysics Data System (ADS)
Huang, Wenyu; Chen, Ruyan; Yang, Zifan; Wang, Bin; Ma, Wenqian
2017-09-01
To examine the combined effects of the different spatial patterns of the Arctic Oscillation (AO)-related sea level pressure (SLP) anomalies and the El Niño-Southern Oscillation (ENSO)-related sea surface temperature (SST) anomalies on the wintertime surface temperature anomalies over East Asia, a nonlinear method based on self-organizing maps is employed. Investigation of identified regimes reveals that the AO can affect East Asian temperature anomalies when there are significant SLP anomalies over the Arctic Ocean and northern parts of Eurasian continent. Analogously, ENSO is found to affect East Asian temperature anomalies when significant SST anomalies are present over the tropical central Pacific. The regimes with the warmest and coldest temperature anomalies over East Asia are both associated with the negative phase of the AO. The ENSO-activated, Pacific-East Asian teleconnection pattern could affect the higher latitude continental regions when the impact of the AO is switched off. When the spatial patterns of the AO and ENSO have significant, but opposite, impacts on the coastal winds, no obvious temperature anomalies can be observed over south China. Further, the circulation state with nearly the same AO and Niño3 indices may drive rather different responses in surface temperature over East Asia. The well-known continuous weakening (recovery) of the East Asian winter monsoon that occurred around 1988 (2009) can be attributed to the transitions of the spatial patterns of the SLP anomalies over the Arctic Ocean and Eurasian continent, through their modulation on the occurrences of the Ural and central Siberian blocking events.
Impact of the 2015 El Nino event on winter air quality in China
NASA Astrophysics Data System (ADS)
Chang, Luyu; Xu, Jianming; Tie, Xuexi; Wu, Jianbin
2016-09-01
During the winter of 2015, there was a strong El Nino (ENSO) event, resulting in significant anomalies for meteorological conditions in China. Analysis shows that the meteorological conditions in December 2015 (compared to December 2014) had several important anomalies, including the following: (1) the surface southeasterly winds were significantly enhanced in the North China Plain (NCP); (2) the precipitation was increased in the south of eastern China; and (3) the wind speeds were decreased in the middle-north of eastern China, while slightly increased in the south of eastern China. These meteorological anomalies produced important impacts on the aerosol pollution in eastern China. In the NCP region, the PM2.5 concentrations were significantly increased, with a maximum increase of 80-100 μg m-3. A global chemical/transport model (MOZART-4) was applied to study the individual contribution of the changes in winds and precipitation to PM2.5 concentrations. This study suggests that the 2015El Nino event had significant effects on air pollution in eastern China, especially in the NCP region, including the capital city of Beijing, in which aerosol pollution was significantly enhanced in the already heavily polluted capital city of China.
NASA Astrophysics Data System (ADS)
Kim, Taekyun; Choo, Sung-Ho; Moon, Jae-Hong; Chang, Pil-Hun
2017-12-01
Unusual sea surface temperature (SST) warming occurred over the Yellow Sea (YS) in December 2004. To identify the causes of the abnormal SST warming, we conducted an analysis on atmospheric circulation anomalies induced by tropical cyclones (TCs) and their impacts on upper ocean characteristics using multiple datasets. With the analysis of various datasets, we explored a new aspect of the relationship between TC activity and SST. The results show that there is a significant link between TC activity over the Northwest Pacific (NWP) and SST in the YS. The integrated effect of consecutive TCs activity induces a large-scale atmospheric cyclonic circulation anomaly over the NWP and consequently anomalous easterly winds over the YS and East China Sea. The mechanism of the unusually warm SST in the YS can be explained by considering TCs acting as an important source of Ekman heat transport that results in substantial intrusion of relatively warm surface water into the YS interior. Furthermore, TC-related circulation anomalies contribute to the retention of the resulting warm SST anomalies in the entire YS.
NASA Astrophysics Data System (ADS)
Radenac, Marie-Hélène; Léger, Fabien; Messié, Monique; Dutrieux, Pierre; Menkes, Christophe; Eldin, Gérard
2016-04-01
Satellite observations of wind, sea level and derived currents, sea surface temperature (SST), and chlorophyll are used to expand our understanding of the physical and biological variability of the ocean surface north of New Guinea. Based on scarce cruise and mooring data, previous studies differentiated a trade wind situation (austral winter) when the New Guinea Coastal Current (NGCC) flows northwestward and a northwest monsoon situation (austral summer) when a coastal upwelling develops and the NGCC reverses. This circulation pattern is confirmed by satellite observations, except in Vitiaz Strait where the surface northwestward flow persists. We find that intraseasonal and seasonal time scale variations explain most of the variance north of New Guinea. SST and chlorophyll variabilities are mainly driven by two processes: penetration of Solomon Sea waters and coastal upwelling. In the trade wind situation, the NGCC transports cold Solomon Sea waters through Vitiaz Strait in a narrow vein hugging the coast. Coastal upwelling is generated in westerly wind situations (westerly wind event, northwest monsoon). Highly productive coastal waters are advected toward the equator and, during some westerly wind events, toward the eastern part of the warm pool. During El Niño, coastal upwelling events and northward penetration of Solomon Sea waters combine to influence SST and chlorophyll anomalies.
NASA Astrophysics Data System (ADS)
Dong, Shenfu; Volkov, Denis; Goni, Gustavo; Lumpkin, Rick; Foltz, Gregory R.
2017-07-01
Three surface drifters equipped with temperature and salinity sensors at 0.2 and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.
NASA Astrophysics Data System (ADS)
Dong, S.; Volkov, D.; Goni, G. J.; Lumpkin, R.; Foltz, G. R.
2017-12-01
Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.
Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation
Sun, Cheng; Kucharski, Fred; Li, Jianping; Jin, Fei-Fei; Kang, In-Sik; Ding, Ruiqiang
2017-01-01
Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO–WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind–evaporation–SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST–sea level pressure–cloud–longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability. PMID:28685765
Severe haze in Hangzhou in winter 2013/14 and associated meteorological anomalies
NASA Astrophysics Data System (ADS)
Chen, Yini; Zhu, Zhiwei; Luo, Ling; Zhang, Jiwei
2018-03-01
Aerosol pollution over eastern China has worsened considerably in recent years, resulting in heavy haze weather with low visibility and poor air quality. The present study investigates the characteristics of haze weather in Hangzhou city, and aims to unravel the meteorological anomalies associated with the heavy haze that occurred over Hangzhou in winter 2013/14. On the interannual timescale, because of the neutral condition of tropical sea surface temperature anomalies during winter 2013/14, no significant circulation and convection anomalies were induced over East Asia, leading to a stable atmospheric condition favorable for haze weather in Hangzhou. Besides, the shift of the polar vortex, caused by changes in surface temperature and ice cover at high latitudes, induced a barotropic anomalous circulation dipole pattern. The southerly anomaly associated with this anomalous dipole pattern hindered the transportation of cold/clear air mass from Siberia to central-eastern China, leading to abnormal haze during winter 2013/14 in Hangzhou. On the intraseasonal timescale, an eastward-propagating mid-latitude Rossby wave train altered the meridional wind anomaly over East Asia, causing the intraseasonal variability of haze weather during 2013/14 in Hangzhou.
NASA Astrophysics Data System (ADS)
Xu, Xinping; He, Shengping; Li, Fei; Wang, Huijun
2018-03-01
The connection between Eurasian snow cover (SC) in autumn and Eurasian winter mean surface air temperature (SAT) has been identified by many studies. However, some recent observations indicate that early and late winter climate sometimes shows an out-of-phase relationship, suggesting that the winter mean situation might obscure the important relationships that are relevant for scientific research and applications. This study investigates the relationship between October northern Eurasian SC (NESC; 58°-68°N, 30°-90°E) and Eurasian SAT during the winter months and finds a significant relationship only exists in January. Generally, following reduced October NESC, the East Asian trough and Ural high are intensified in January, and anomalous northeasterly winds prevail in mid-latitudes, causing cold anomalies over Eurasia. Meanwhile, anomalous southwesterly winds along the northern fringe of the Ural high favor warm anomalies in the Arctic. The dynamical mechanism for the connection between NESC in October and the warm Arctic-cold Eurasia (WACE) anomaly in January is further investigated from the perspective of quasi-stationary planetary wave activity. It is found that planetary waves with zonal wavenumber-1 (ZWN1) play a dominant role in this process. Specifically, the ZWN1 pattern of planetary-scale waves concurrent with October NESC anomaly extends from the surface to the upper-stratosphere. It persists in the stratosphere through November-December and propagates downward to the surface by the following January, making the connection between October NESC and January climate possible. Additionally, the influence of October NESC on the January WACE pattern has intensified since the early-2000s.
NASA Astrophysics Data System (ADS)
Munsat, Tobin; Deca, Jan; Han, Jia; Horanyi, Mihaly; Wang, Xu; Werner, Greg; Yeo, Li Hsia; Fuentes, Dominic
2017-10-01
Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection of the charged particles and thus localized surface charging. This interaction is studied in the Colorado Solar Wind Experiment with large-cross-section ( 300 cm2) high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole embedded under various insulating surfaces. Measured 2D plasma potential profiles indicate that in the dipole lobe regions, the surfaces are charged to high positive potentials due to the collection of unmagnetized ions, while the electrons are magnetically shielded. At low ion beam energies, the surface potential follows the beam energy in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of studies indicate that secondary electrons are likely to play a dominant role in determining the surface potential. Early results will also be presented from a second experiment, in which a strong permanent magnet with large dipole moment (0.55 T, 275 A*m2) is inserted into the flowing plasma beam to replicate aspects of the solar wind interaction with the earth's magnetic field. This work is supported by the NASA SSERVI program.
Air-Sea Interaction in the Somali Current Region
NASA Astrophysics Data System (ADS)
Jensen, T. G.; Rydbeck, A.
2017-12-01
The western Indian Ocean is an area of high eddy-kinetic energy generated by local wind-stress curl, instability of boundary currents as well as Rossby waves from the west coast of India and the equatorial wave guide as they reflect off the African coast. The presence of meso-scale eddies and coastal upwelling during the Southwest Monsoon affects the air-sea interaction on those scales. The U.S. Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is used to understand and quantify the surface flux, effects on surface waves and the role of Sea Surface Temperature anomalies on ocean-atmosphere coupling in that area. The COAMPS atmosphere model component with 9 km resolution is fully coupled to the Navy Coastal Ocean Model (NCOM) with 3.5 km resolution and the Simulating WAves Nearshore (SWAN) wave model with 10 km resolution. Data assimilation using a 3D-variational approach is included in hindcast runs performed daily since June 1, 2015. An interesting result is that a westward jet associated with downwelling equatorial Rossy waves initiated the reversal from the southward Somali Current found during the northeast monsoon to a northward flow in March 2016 more than a month before the beginning of the southwest monsoon. It is also found that warm SST anomalies in the Somali Current eddies, locally increase surface wind speed due to an increase in the atmospheric boundary layer height. This results in an increase in significant wave height and also an increase in heat flux to the atmosphere. Cold SST anomalies over upwelling filaments have the opposite impacts on air-sea fluxes.
Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America
NASA Astrophysics Data System (ADS)
Münnich, M.; Neelin, J. D.
2005-11-01
In late boreal spring, especially May, a strong relationship exists in observations among precipitation anomalies over equatorial South America and the Atlantic intertropical convergence zone (ITCZ), and eastern equatorial Pacific and central equatorial Atlantic sea surface temperature anomalies (SSTA). A chain of correlations of equatorial Pacific SSTA, western equatorial Atlantic wind stress (WEA), equatorial Atlantic SSTA, sea surface height, and precipitation supports a causal chain in which El Niño/Southern Oscillation (ENSO) induces WEA stress anomalies, which in turn affect Atlantic equatorial ocean dynamics. These correlations show strong seasonality, apparently arising within the atmospheric links of the chain. This pathway and the influence of equatorial Atlantic SSTA on South American rainfall in May appear independent of that of the northern tropical Atlantic. Brazil's Nordeste is affected by the northern tropical Atlantic. The equatorial influence lies further to the north over the eastern Amazon and the Guiana Highlands.
Mechanisms of Ocean Heat Uptake
NASA Astrophysics Data System (ADS)
Garuba, Oluwayemi
An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical diffusion takes over transport in the tropics; in the Atlantic, the MOC transports heat as deep 2000m in about 30 years. Redistributive surface heat uptake alters the total amount surface heat uptake among the basins. Compared to the passive-only heat uptake, which is about the same among the basins, redistribution nearly doubles the surface heat input into the Atlantic but makes smaller increases in the Indian and Pacific oceans for a net global increase of about 25%, in the perturbation experiment with winds unchanged. The passive and redistributive heat uptake components are further distributed among the basins through the global conveyor belt. The Pacific gains twice the surface heat input into it through lateral transport from the other two basins, as a result, the Atlantic and Pacific gain similar amounts of heat even though surface heat input is in the Atlantic is much bigger. Of this heat transport, most of the passive component comes from the Indian and the redistributive component comes from the Atlantic. Different surface forcing perturbation gives different circulation change pattern and as a result yield different redistributive uptake. Ocean heat uptake is more sensitive to wind forcing perturbation than to thermohaline forcing perturbation. About 2% reduction in subtropical cells transport and southern ocean transport, in the wind-change perturbation experiment, resulted in about 10% reduction in the global ocean heat uptake of wind-unchanged experiment. The AMOC weakened by about 35% and resulted in a 25% increase in passive heat uptake in the wind-unchanged experiment. Surface winds weakening reduces heat uptake by warming the reservoir surface temperatures, while MOC weakening increases heat input by a cooling reservoir surface temperatures. Thermohaline forcing perturbation is combination of salinity and temperature perturbations, both weaken the AMOC, however, they have opposite redistributive effects. Ocean surface freshening gives positive redistributive effect, while surface temperature increase gives negative redistributive effect on heat uptake. The salinity effect dominates the redistributive effect for thermohaline perturbation.
Sensitivity of ocean oxygenation to variations in tropical zonal wind stress magnitude
NASA Astrophysics Data System (ADS)
Ridder, Nina N.; England, Matthew H.
2014-09-01
Ocean oxygenation has been observed to have changed over the past few decades and is projected to change further under global climate change due to an interplay of several mechanisms. In this study we isolate the effect of modified tropical surface wind stress conditions on the evolution of ocean oxygenation in a numerical climate model. We find that ocean oxygenation varies inversely with low-latitude surface wind stress. Approximately one third of this response is driven by sea surface temperature anomalies; the remaining two thirds result from changes in ocean circulation and marine biology. Global mean O2 concentration changes reach maximum values of +4 μM and -3.6 μM in the two most extreme perturbation cases of -30% and +30% wind change, respectively. Localized changes lie between +92 μM under 30% reduced winds and -56 μM for 30% increased winds. Overall, we find that the extent of the global low-oxygen volume varies with the same sign as the wind perturbation; namely, weaker winds reduce the low-oxygen volume on the global scale and vice versa for increased trade winds. We identify two regions, one in the Pacific Ocean off Chile and the other in the Indian Ocean off Somalia, that are of particular importance for the evolution of oxygen minimum zones in the global ocean.
Modulation of ENSO evolution by strong tropical volcanic eruptions
NASA Astrophysics Data System (ADS)
Wang, Tao; Guo, Dong; Gao, Yongqi; Wang, Huijun; Zheng, Fei; Zhu, Yali; Miao, Jiapeng; Hu, Yongyun
2017-11-01
The simulated responses of the El Niño-Southern Oscillation (ENSO) to volcanic forcings are controversial, and some mechanisms of these responses are not clear. We investigate the impacts of volcanic forcing on the ENSO using a long-term simulation covering 1400-1999 as simulated by the Bergen Climate Model (BCM) and a group of simulations performed with the Community Atmosphere Model version 4.0 (CAM4) and the BCM's ocean component Miami Isopycanic Coordinated Ocean Model (MICOM). The analysis of the long-term BCM simulation indicates that ENSO has a negative-positive-negative response to strong tropical volcanic eruptions (SVEs), which corresponds to the different stages of volcanic forcing. In the initial forcing stage, a brief and weak La Niña-like response is caused by the cooling along the west coast of the South American continent and associated enhancement of the trade winds. In the peak forcing stage, westerly wind anomalies are excited by both reduced east-west sea level pressure gradients and weakened and equatorward shifted tropical convergence zones. These westerly wind anomalies extend to the equatorial eastern Pacific, leading to an El Niño-like response. At the same time, easterly wind anomalies west of 120°E and strong cooling effects can promote a discharged thermocline state and excite an upwelling Kelvin wave in the western Pacific. In the declining forcing stage, forced by the recovered trade winds, the upwelling Kelvin wave propagates eastward and reaches the equatorial eastern Pacific. Through the Bjerknes feedback, a strong and temporally extended La Niña-like response forms. Additional CAM4 simulations suggest a more important role of the surface cooling over the Maritime Continent and surrounding ocean in shaping the westerly wind anomalies over the equatorial central-eastern Pacific and the easterly wind anomalies west of 120° E, which are key to causing the El Niño-like responses and subsequent La Niña-like responses, respectively. The MICOM sensitivity simulations confirm that SVE-induced tropical atmospheric circulation anomalies play a dominant role in regulating post-eruption ENSO evolution in the observation, while the influences of anomalous buoyance forcing (heat and freshwater fluxes) are secondary. Therefore, SVEs play an important role in modulating the ENSO evolution. Compared with proxy data, the simulated El Niño-like responses and subsequent La Niña-like responses are consistent with the reconstructed ENSO responses to SVEs. However, the simulated initial brief La Niña-like response, which is reproduced by most models, is seen in only one proxy dataset and is absent in most of the reconstructed ENSOs and those observed. The reason for this model-data mismatch will require further investigation.
Identification of best particle radiation shielded region through Energetic Neutral Atoms mapping
NASA Astrophysics Data System (ADS)
Milillo, A.; De Angelis, E.; Mura, A.; Orsini, S.; Mangano, V.; Massetti, S.; Rispoli, R.; Lazzarotto, F.; Vertolli, N.; Lavagna, M.; Ferrari, F.; Lunghi, P.; Attinà, P.; Parissenti, G.
2017-09-01
The lunar surface is directly exposed either to direct solar wind, or to Earth's magnetospheric plasma due to the Moon's lack of a magnetosphere or a dense atmosphere. This exposure could create inhospitable conditions for a possible human presence on the Moon, so it is crucial to investigate the close-to-surface environment for establishing the best reliable locations for future human bases. Although it lacks a global magnetic field, the Moon possesses magnetic anomalies that create mini-magnetospheres, where the solar wind is partly deflected. The local protection of the surface from the solar wind radiation inside the mini-magnetospheres could make these sites preferred for future lunar colonization. It is crucial a detailed characterization of these sites. In this paper, an investigation based on the detection of Energetic Neutral Atoms (ENA) from the surface for identifying the best particle radiation shielded region is proposed. A high spatial resolution mapping via ENA is a feasible and it is powerful way for reaching this goal.
Indo-Pacific sea level variability during recent decades
NASA Astrophysics Data System (ADS)
Yamanaka, G.; Tsujino, H.; Nakano, H.; Urakawa, S. L.; Sakamoto, K.
2016-12-01
Decadal variability of sea level in the Indo-Pacific region is investigated using a historical OGCM simulation. The OGCM driven by the atmospheric forcing removing long-term trends clearly exhibits decadal sea level variability in the Pacific Ocean, which is associated with eastern tropical Pacific thermal anomalies. During the period of 1977-1987, the sea level anomalies are positive in the eastern equatorial Pacific and show deviations from a north-south symmetric distribution, with strongly negative anomalies in the western tropical South Pacific. During the period of 1996-2006, in contrast, the sea level anomalies are negative in the eastern equatorial Pacific and show a nearly north-south symmetric pattern, with positive anomalies in both hemispheres. Concurrently, sea level anomalies in the south-eastern Indian Ocean vary with those in the western tropical Pacific. These sea level variations are closely related to large-scale wind fields. Indo-Pacific sea level distributions are basically determined by wind anomalies over the equatorial region as well as wind stress curl anomalies over the off-equatorial region.
SELMA mission: revealing the origin of lunar water
NASA Astrophysics Data System (ADS)
Barabash, Stas; Selma Team
2013-04-01
We propose a very low cost lunar mission to cover a poorly investigated inter-disciplinary area in the lunar science. The mission SELMA (Surface, Environment, and Lunar Magnetic Anomalies) investigates the interaction of the neutral and plasma environment with the lunar surface and the impact of this interaction on the surface composition, in the first hand, on the presence of water. The mission focuses on the fundamental question: What is the origin of the water in the lunar soil? The mission also addresses the questions: What are the lunar exosphere content and composition and how does the exosphere interact with the surface? How do the lunar magnetic anomalies interact with the solar wind and affect the surface? SELMA investigates the origin of the water in the lunar soil via simultaneous measurements of the OH/H2O abundance in the soil, the proton flux deposited to the surface, and transient changes in the exospheric gas content and composition. The water content in the surface is mapped via measurements of the 2700 - 3300 nm OH/H2O/ice absorption lines. The proton flux at the surface is measured remotely via backscattered hydrogen flux (energetic neutral atoms, ENAs). The exospheric gas content and composition and possible transient changes due to micrometeoroid influx or outgassing are monitored by a neutral gas mass spectrometer. Little is known about the tenuous lunar exosphere, its composition, structure, and relation to the plasma environment. The reasons for the present poor knowledge of the lunar exosphere is the difficulty of observations due to the low number densities, and the complexity of models due to the multiplicity of the mechanisms responsible for the input and loss of exospheric species. To investigate the lunar exosphere SELMA is equipped with state-of-the-art time-of-flight neutral gas mass spectrometer with unprecedented sensitivity and mass resolution. The Moon does not have a global magnetic field but possesses local magnetizations. The magnetizations interact with the solar wind plasma creating highly variable mini-magnetospheres affecting, through an as yet unknown mechanism, the surface visible albedo. The electrodynamical interaction is very complex being one of the fundamental solar wind interactions in the solar system. SELMA studies how the magnetic anomaly interact with the solar wind and surface via simultaneous measurements of 3D ion and electron distribution functions, the local magnetic field, solar wind flux variations on the surface through ENA imaging of the backscattered hydrogen flux, imaging in the visible range, and measuring the surface IR spectrum. The SELMA results will be of critical importance for the interpretation of data from Mercury to be collected by the ESA BepiColombo mission in 2020 - 2022. To address its scientific objectives SELMA carries a highly focused suite of instruments including an IR spectrometer, an ENA telescope, an ion and electron spectrometer, a neutral gas mass spectrometer, a magnetometer, and a visible camera. SELMA is a spinning platform to be inserted on a low maintenance quasi-frozen polar orbit of 30 km x 216 km by a dedicated launch and a solid state fuel kick stage. SELMA was proposed to ESA as a candidate for the S-class mission.
Simulating the Reiner Gamma Lunar Swirl: Influence of the Upstream Plasma Conditions
NASA Astrophysics Data System (ADS)
Deca, J.; Gerard, M. J.; Divin, A. V.; Lue, C.; Ahmadi, T.; Lembege, B.; Horanyi, M.
2017-12-01
The Reiner Gamma swirl formation, co-located with one of our Moon's strongest crustal magnetic anomalies, is one of the most prominent lunar surface features. Due to Reiner Gamma's fairly moderate spatial scales, it presents an ideal test case to study the solar wind interaction with its magnetic topology from an ion-electron kinetic perspective. Using a fully kinetic particle-in-cell approach, coupled with a surface vector mapping magnetic field model based on Kaguya and Lunar Prospector observations, we are able to constrain both the reflected as well as the incident flux patterns to the lunar surface. Finding excellent agreement with the in-orbit flux measurements from the SARA:SWIM ion sensor onboard the Chandrayaan-1 spacecraft and the surface albedo images from the Lunar Reconnaissance Orbiter Wide Angle Camera we conclude that (from a pure plasma physics point of view) that solar wind standoff is a viable mechanism for the formation of lunar swirls. Here we show how the reflected and incident flux patterns change under influence of the upstream plasma and magnetic field conditions. The possible consequences of crustal magnetic anomalies for lunar swirl formation are essential for the interpretation of our Moon's geological history and evolution, space weathering, and to evaluate the needs and targets for future lunar exploration opportunities.
How autumn Eurasian snow anomalies affect east asian winter monsoon: a numerical study
NASA Astrophysics Data System (ADS)
Luo, Xiao; Wang, Bin
2018-03-01
Previous studies have found that snow Eurasian anomalies in autumn can affect East Asian winter monsoon (EAWM), but the mechanisms remain controversial and not well understood. The possible mechanisms by which Eurasian autumn snow anomalies affect EAWM are investigated by numerical experiments with a coupled general circulation model and its atmospheric general circulation model component. The leading empirical orthogonal function mode of the October-November mean Eurasian snow cover is characterized by a uniform anomaly over a broad region of central Eurasia (40°N-65°N, 60°E-140°E). However, the results from a 150-ensemble mean simulation with snow depth anomaly specified in October and November reveal that the Mongolian Plateau and Vicinity (MPV, 40°-55°N, 80°-120°E) is the key region for autumn snow anomalies to affect EAWM. The excessive snow forcing can significantly enhance EAWM and the snowfall over the northwestern China and along the EAWM front zone stretching from the southeast China to Japan. The physical process involves a snow-monsoon feedback mechanism. The excessive autumn snow anomalies over the MPV region can persist into the following winter, and significantly enhance winter snow anomalies, which increase surface albedo, reduce incoming solar radiation and cool the boundary layer air, leading to an enhanced Mongolian High and a deepened East Asian trough. The latter, in turn, strengthen surface northwesterly winds, cooling East Asia and increasing snow accumulation over the MPV region and the southeastern China. The increased snow covers feedback to EAWM system through changing albedo, extending its influence southeastward. It is also found that the atmosphere-ocean coupling process can amplify the delayed influence of Eurasian snow mass anomaly on EAWM. The autumn surface albedo anomalies, however, do not have a lasting "memory" effect. Only if the albedo anomalies are artificially extended into December and January, will the EAWM be affected in a similar way as the impacts of autumn snow mass anomalies.
NASA Astrophysics Data System (ADS)
McCarter, R.; Kohfeld, K. E.; Schepanski, K.; Gill, T. E.
2016-12-01
In 2011 the Mid-Continental United States of America experienced its worst drought since the 1930s `Dust Bowl` and subsequent 1950s Southwest drought. Both the 1950s and 2010s droughts have had negative ecological and economic impacts the Mid-Continental US (i.e. crops, livestock, fuel, and transportation). Drought distribution, severity, and duration in North America are influenced by large-scale ocean-atmosphere climate variability as well as mesoscale land-surface forcing. Intense surface heating during a drought's summer months promotes dry convection and convergence thereby indirectly increasing dust emissions through increased surface-winds. Thus, drought years are frequently linked with increased dust storms and overall dust production that can affect visibility, crop production, and human health. Another important aspect that influences dust production is the potential change in behavior of surface winds during different drought and non-drought regimes over the past 60 years. This investigation compares historic and modern surface winds to determine if the wind-driven drought and dust producing conditions have changed. We examine hourly wind speed data from 79 meteorological stations distributed over the mid-continental USA (25° to 49°N,-116° to -93°W) for two drought periods (1954-1956, 2011-2013), and two relatively wet time periods (1983-1987, 1992-1998), as determined using the Palmer-Drought Severity Index. Our preliminary examination of annual and seasonal distributions of wind speed and show that wind speeds were statistically higher during the 1950s compared with the 2010s drought and wind speeds were also greater during the spring months compared to other seasons. Characterizing these winds is a first step in identifying if these changes are a result of land surface changes, general circulation changes associated with atmospheric anomalies, and/or climate change.
NASA Astrophysics Data System (ADS)
Hermann, Albert J.; Curchitser, Enrique N.; Haidvogel, Dale B.; Dobbins, Elizabeth L.
2009-12-01
A set of spatially nested circulation models is used to explore interannual change in the northeast Pacific (NEP) during 1997-2002, and remote vs. local influence of the 1997-1998 El Niño on this region. Our nested set is based on the primitive equations of motion, and includes a basin-scale model of the north Pacific at ˜40-km resolution (NPac), and a regional model of the Northeast Pacific at ˜10-km resolution. The NEP model spans an area from Baja California through the Bering Sea, from the coast to ˜2000-km offshore. In this context, "remote influence" refers to effects driven by changes in ocean velocity and temperature outside of the NEP domain; "local influence" refers to direct forcing by winds and runoff within the NEP domain. A base run of this model using hindcast winds and runoff for 1996-2002 replicates the dominant spatial modes of sea-surface height anomalies from satellite data, and coastal sea level from tide gauges. We have performed a series of sensitivity runs with the NEP model for 1997-1998, which analyze the response of coastal sea level to: (1) hindcast winds and coastal runoff, as compared to their monthly climatologies and (2) hindcast boundary conditions (from the NPac model), as compared to their monthly climatologies. Results indicate penetration of sea-surface height (SSH) from the basin-scale model into the NEP domain (e.g., remote influence), with propagation as coastal trapped waves from Baja up through Alaska. Most of the coastal sea-level anomaly off Alaska in El Niño years appears due to direct forcing by local winds and runoff (local influence), and such anomalies are much stronger than those produced off California. We quantify these effects as a function of distance along the coastline, and consider how they might impact the coastal ecosystems of the NEP.
NASA Astrophysics Data System (ADS)
Yeo, L. H.; Han, J.; Wang, X.; Werner, G.; Deca, J.; Munsat, T.; Horanyi, M.
2017-12-01
Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection/reflection of thecharged particles. Consequently, surface charging in these regions will be modified. Using the Colorado Solar Wind Experiment facility, this interaction is investigated with high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole (0.13 T) embedded under various insulating surfaces. The dipole moment is perpendicular to the surface. Using an emissive probe, 2D plasma potential profiles are obtained above the surface. In the dipole lobe regions, the surfaces are charged to significantly positive potentials due to the impingement of the unmagnetized ions while the electrons are magnetically shielded. At low ion beam energies, the results agree with the theoretical predictions, i.e., the surface potential follows the energy of the beam ions in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of investigations have been conducted and indicate that the surface properties (e.g., modified surface conductance, ion induced secondary electrons and electron-neutral collision at the surface) are likely to play a role in determining the surface potential.
NASA Astrophysics Data System (ADS)
Pal, J.; Chaudhuri, S.; Mukherjee, S.; Chowdhury, A. Roy
2017-10-01
Inter-annual variability in the onset of monsoon over Kerala (MOK), India, is investigated using daily temperature; mean sea level pressure; winds at 850, 500 and 200 hPa pressure levels; outgoing longwave radiation (OLR); sea surface temperature (SST) and vertically integrated moisture content anomaly with 32 years (1981-2013) observation. The MOK is classified as early, delayed, or normal by considering the mean monsoon onset date over Kerala to be the 1st of June with a standard deviation of 8 days. The objective of the study is to identify the synoptic setup during MOK and comparison with climatology to estimate the predictability of the onset type (early, normal, or delayed) with 5, 10, and 15 days lead time. The study reveals that an enhanced convection observed over the Bay of Bengal during early MOK is found to shift over the Arabian Sea during delayed MOK. An intense high-pressure zone observed over the western south Indian Ocean during early MOK shifts to the east during delayed MOK. Higher tropospheric temperature (TT) over the western Equatorial Ocean during early MOK and lower TT over the Indian subcontinent intensify the land-ocean thermal contrast that leads to early MOK. The sea surface temperature (SST) over the Arabian Sea is observed to be warmer during delayed than early MOK. During early MOK, the source of 850 hPa southwesterly wind shifts to the west equatorial zone while a COL region has been found during delayed MOK at that level. The study further reveals that the wind speed anomaly at the 200-hPa pressure level coincides inversely with the anomaly of tropospheric temperature.
Neutral Solar Wind Generated by Lunar Exospheric Dust at the Terminator
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Stubbs, Timothy J.
2007-01-01
We calculate the flux of neutral solar wind observed on the lunar surface at the terminator due to solar wind protons penetrating exospheric dust with: (1) grains larger that 0.1 microns and (2) grains larger than 0.01 microns. For grains larger than 0.1 microns, the ratio of the neutral solar wind to solar wind flux is estimated to be approx.10(exp -4)-10(exp -3) at solar wind speeds in excess of 800 km/s, but much lower (less than 10(exp -5) at average to low solar wind speeds. However, when the smaller grain sizes are considered, the ratio of the neutral solar wind flux to solar wind flux is estimated to be greater than or equal to 10(exp -5) at all speeds and at speeds in excess of 700 km/s reaches 10(exp -3)-10(exp -2). These neutral solar wind fluxes are easily measurable with current low energy neutral atom instrumentation. Observations of neutral solar wind from the surface of the Moon could provide a very sensitive determination of the distribution of very small dust grains in the lunar exosphere and would provide data complementary to optical measurements at ultraviolet and visible wavelengths. Furthermore, neutral solar wind, unlike its ionized counterpart, is .not held-off by magnetic anomalies, and may contribute to greater space weathering than expected in certain lunar locations.
Marginal sea surface temperature variation as a pre-cursor of heat waves over the Korean Peninsula
NASA Astrophysics Data System (ADS)
Ham, Yoo-Geun; Na, Hye-Yun
2017-11-01
This study examines the role of the marginal sea surface temperature (SST) on heat waves over Korea. It is found that sea surface warming in the south sea of Korea/Japan (122-138°E, 24- 33°N) causes heat waves after about a week. Due to the frictional force, the positive geopotential height anomalies associated with the south sea warming induce divergent flows over the boundary layer. This divergent flow induces the southerly in Korea, which leads to a positive temperature advection. On the other hand, over the freeatmosphere, the geostrophic wind around high-pressure anomalies flows in a westerly direction over Korea during the south sea warming, which is not effective in temperature advection. Therefore, the positive temperature advection in Korea due to the south sea warming decreases with height. This reduces the vertical potential temperature gradient, which indicates a negative potential vorticity (PV) tendency over Korea. Therefore, the high-pressure anomaly over the south sea of Korea is propagated northward, which results in heat waves due to more incoming solar radiation.
NASA Astrophysics Data System (ADS)
Krishnamurti, T. N.; Bedi, H. S.; Subramaniam, M.
1989-04-01
In this paper we have examined the evolution of a number of parameters we believe were important for our understanding of the drought over India during the summer of 1987. The list of parameters includes monthly means or anomalies of the following fields: sea surface temperatures, divergent circulations, outgoing longwave radiation, streamfunction of the lower and upper troposphere, and monthly precipitation (expressed as a percentage departure from a long-term mean). The El Niño related warm sea surface temperature anomaly and a weaker warm sea surface temperature anomaly over the equatorial Indian Ocean provide sustained convection, as reflected by the negative values of the outgoing longwave radiation. With the seasonal heating, a pronounced planetary-scale divergent circulation evolved with a center along the western Pacific Ocean. The monsoonal divergent circulation merged with that related to the El Niño, maintaining most of the heavy rainfall activity between the equatorial Pacific Ocean and east Asia. Persistent convective activity continued south of India during the entire monsoon season. Strong Hadley type overturnings with rising motions over these warm SST anomaly regions and descent roughly near 20° to 25°S was evident as early as April 1987. The subtropical high pressure areas near 20° to 25°S showed stronger than normal circulations. This was revealed by the presence of a counterclockwise streamfunction anomaly at 850 mb during April 1987. With the seasonal heating, this anomaly moved northwards and was located over the Arabian Sea and India. This countermonsoon circulation anomaly at the low levels was associated with a weaker than normal Somali jet and Arabian Sea circulation throughout this summer. The monsoon remained active along northeast India, Bangladesh, northern lndochina, and central China during the summer monsoon season. This was related to the eastward shift of the divergent circulation. An eastward shift of the upper tropospheric anticyclone bell near 25° to 30°N resulted in the continued presence of a westerly wind anomaly north of India. The westerly winds brought in very dry air over the tropical upper troposphere. The dry air penetrated eastwards to central Uttar Pradesh and this seemed to have a major role in inhibiting organized deep convection over most of central, northern and western parts of the Indian subcontinent. The westward extension of the planetary-scale divergent circulation over North and South Africa and the continued drought over the regions are also briefly addressed.
Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa.
Khodri, Myriam; Izumo, Takeshi; Vialard, Jérôme; Janicot, Serge; Cassou, Christophe; Lengaigne, Matthieu; Mignot, Juliette; Gastineau, Guillaume; Guilyardi, Eric; Lebas, Nicolas; Robock, Alan; McPhaden, Michael J
2017-10-03
Stratospheric aerosols from large tropical explosive volcanic eruptions backscatter shortwave radiation and reduce the global mean surface temperature. Observations suggest that they also favour an El Niño within 2 years following the eruption. Modelling studies have, however, so far reached no consensus on either the sign or physical mechanism of El Niño response to volcanism. Here we show that an El Niño tends to peak during the year following large eruptions in simulations of the Fifth Coupled Model Intercomparison Project (CMIP5). Targeted climate model simulations further emphasize that Pinatubo-like eruptions tend to shorten La Niñas, lengthen El Niños and induce anomalous warming when occurring during neutral states. Volcanically induced cooling in tropical Africa weakens the West African monsoon, and the resulting atmospheric Kelvin wave drives equatorial westerly wind anomalies over the western Pacific. This wind anomaly is further amplified by air-sea interactions in the Pacific, favouring an El Niño-like response.El Niño tends to follow 2 years after volcanic eruptions, but the physical mechanism behind this phenomenon is unclear. Here the authors use model simulations to show that a Pinatubo-like eruption cools tropical Africa and drives westerly wind anomalies in the Pacific favouring an El Niño response.
NASA Astrophysics Data System (ADS)
Fu, Chen; Wang, Dongxiao; Yang, Lei; Luo, Yao; Zhou, Fenghua; Priyadarshana, Tilak; Yao, Jinglong
2018-05-01
Based on reanalysis data, we find that the Indian Ocean Dipole (IOD) plays an important role in the variability of wave climate in the equatorial Northern Indian Ocean (NIO). Significant wave height (SWH) in the equatorial NIO, especially over the waters southeast to Sri Lanka, exhibits strong interannual variations. SWH anomalies in the waters southeast to Sri Lanka correlate well with dipole mode index (DMI) during both summer and autumn. Negative SWH anomalies occur over the oceanic area southeast to Sri Lanka during positive IOD events and vary with different types of IOD. During positive prolonged (unseasonable) IOD, the SWH anomalies are the strongest in autumn (summer); while during positive normal IOD, the SWH anomalies are weak in both summer and autumn. Strong easterly wind anomalies over the southeast oceanic area of Sri Lanka during positive IOD events weaken the original equatorial westerly wind stress, which leads to the decrease in wind-sea waves. The longer wave period during positive IOD events further confirms less wind-sea waves. The SWH anomaly pattern during negative IOD events is nearly opposite to that during positive IOD events.
NASA Astrophysics Data System (ADS)
Fu, Chen; Wang, Dongxiao; Yang, Lei; Luo, Yao; Zhou, Fenghua; Priyadarshana, Tilak; Yao, Jinglong
2018-06-01
Based on reanalysis data, we find that the Indian Ocean Dipole (IOD) plays an important role in the variability of wave climate in the equatorial Northern Indian Ocean (NIO). Significant wave height (SWH) in the equatorial NIO, especially over the waters southeast to Sri Lanka, exhibits strong interannual variations. SWH anomalies in the waters southeast to Sri Lanka correlate well with dipole mode index (DMI) during both summer and autumn. Negative SWH anomalies occur over the oceanic area southeast to Sri Lanka during positive IOD events and vary with different types of IOD. During positive prolonged (unseasonable) IOD, the SWH anomalies are the strongest in autumn (summer); while during positive normal IOD, the SWH anomalies are weak in both summer and autumn. Strong easterly wind anomalies over the southeast oceanic area of Sri Lanka during positive IOD events weaken the original equatorial westerly wind stress, which leads to the decrease in wind-sea waves. The longer wave period during positive IOD events further confirms less wind-sea waves. The SWH anomaly pattern during negative IOD events is nearly opposite to that during positive IOD events.
Kinetic Interactions Between the Solar Wind and Lunar Magnetic Fields
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Poppe, A. R.; Fatemi, S.; Turner, D. L.; Holmstrom, M.
2016-12-01
Despite their relatively weak strength, small scale, and incoherence, lunar magnetic anomalies can affect the incoming solar wind flow. The plasma interaction with lunar magnetic fields drives significant compressions of the solar wind plasma and magnetic field, deflections of the incoming flow, and a host of plasma waves ranging from the ULF to the electrostatic range. Recent work suggests that the large-scale features of the solar wind-magnetic anomaly interactions may be driven by ion-ion instabilities excited by reflected ions, raising the possibility that they are analogous to ion foreshock phenomena. Indeed, despite their small scale, many of the phenomena observed near lunar magnetic anomalies appear to have analogues in the foreshock regions of terrestrial planets. We discuss the charged particle distributions, fields, and waves observed near lunar magnetic anomalies, and place them in a context with the foreshocks of the Earth, Mars, and other solar system objects.
NASA Astrophysics Data System (ADS)
Zhang, Xinchang; Zhong, Shanshan; Wu, Zhiwei; Li, Yun
2017-06-01
This study investigates the typhoon genesis frequency (TGF) in the dominant season (July to October) in Western North Pacific (WNP) using observed data in 1965-2015. Of particular interest is the predictability of the TGF and associated preseason sea surface temperature (SST) in the Pacific. It is found that, the TGF is positively related to a tri-polar pattern of April SST anomalies in North Pacific (NP{T}_{Apr}), while it is negatively related to SST anomalies over the Coral Sea (CSS{T}_{Apr}) off east coast of Australia. The NP{T}_{Apr} leads to large anomalous cyclonic circulation over North Pacific. The anomalous southwesterly weakens the northeast trade wind, decreases evaporation, and induces warm water in central tropical North Pacific. As such, the warming effect amplifies the temperature gradient in central tropical North Pacific, which in turn maintains the cyclonic wind anomaly in the west tropical Pacific, which favors the typhoon genesis in WNP. In the South Pacific, the CSS{T}_{Apr} supports the typhoon formation over the WNP by (a) strengthening the cross-equatorial flows and enhancing the Inter-tropical Convergence Zone; (b) weakening southeast and northeast trade wind, and keeping continuous warming in the center of tropical Pacific. The influence of both NP{T}_{Apr} and CSS{T}_{Apr} can persistently affect the zonal wind in the tropical Pacific and induce conditions favorable for the typhoon genesis in the typhoon season. A Poisson regression model using NP{T}_{Apr} and CSS}{T}_{Apr} is developed to predict the TGF and a promising skill is achieved.
Exploring the Propagation of the Madden-Julian Oscillation (MJO) across the Maritime Continent
orthogonal function analysis was developed to identify phases of thestratospheric Quasi-Biennial Oscillation (QBO) by direction and altitude of zonal wind...centers. In the troposphere, positive specifichumidity anomalies within the MJO active envelope and a near-surface moisture foot region in the lower troposphere east of the activeenvelope favor MJO propagation.
NASA Astrophysics Data System (ADS)
Lebeaupin Brossier, Cindy; Arsouze, Thomas; Béranger, Karine; Bouin, Marie-Noëlle; Bresson, Emilie; Ducrocq, Véronique; Giordani, Hervé; Nuret, Mathieu; Rainaud, Romain; Taupier-Letage, Isabelle
2014-12-01
The western Mediterranean Sea is a source of heat and humidity for the atmospheric low-levels in autumn. Large exchanges take place at the air-sea interface, especially during intense meteorological events, such as heavy precipitation and/or strong winds. The Ocean Mixed Layer (OML), which is quite thin at this time of year (∼ 20 m-depth), evolves rapidly under such intense fluxes. This study investigates the ocean responses under intense meteorological events that occurred during HyMeX SOP1 (5 September-6 November 2012). The OML conditions and tendencies are derived from a high-resolution ocean simulation using the sub-regional eddy-resolving NEMO-WMED36 model (1/36°-resolution), driven at the surface by hourly air-sea fluxes from the AROME-WMED forecasts (2.5 km-resolution). The high space-time resolution of the atmospheric forcing allows the highly variable surface fluxes, which induce rapid changes in the OML, to be well represented and linked to small-scale atmospheric processes. First, the simulation results are compared to ocean profiles from several platforms obtained during the campaign. Then, this study focuses on the short-term OML evolution during three events. In particular, we examine the OML cooling and mixing under strong wind events, potentially associated with upwelling, as well as the surface freshening under heavy precipitation events, producing low-salinity lenses. Tendencies demonstrate the major role of the surface forcing in the temperature and/or salinity anomaly formation. At the same time, mixing [restratification] rapidly occurs. As expected, the sign of this tendency term is very dependent on the local vertical stratification which varies at fine scale in the Mediterranean. It also controls [disables] the vertical propagation. In the Alboran Sea, the strong dynamics redistribute the OML anomalies, sometimes up to 7 days after their formation. Elsewhere, despite local amplitude modulations due to internal wave excitation by strong winds, the integrated effect of the horizontal advection is almost null on the anomalies' spread and decay. Finally, diffusion has a small contribution.
NASA Astrophysics Data System (ADS)
Deng, Xueliang; Cao, Weihua; Huo, Yanfeng; Yang, Guanying; Yu, Caixia; He, Dongyan; Deng, Weitao; Fu, Wei; Ding, Heming; Zhai, Jing; Cheng, Long; Zhao, Xuhui
2018-03-01
A severe, prolonged and harmful regional heavy air pollution episode occurred in eastern China from December 2016 to January 2017. In this paper, the pollutant characteristics and the meteorological formation mechanism of this pollution event, including climate anomalies, surface weather conditions, planetary boundary layer structure and large-scale circulation features, were analysed based on observational pollution data, surface meteorological data, sounding data and ERA-Interim reanalysis data. The results are as follows. (1) Five pollution stages were identified in eastern China. The two most severe episodes occurred from December 27, 2016 to January 4, 2017 and from January 8 to 12 2017. During these two pollution episodes, fine mode particles were major contributors, and hourly PM2.5 concentrations often exceeded 150 μg/m3, reaching a maximum of 333 μg/m3 at Fuyang station. Gaseous pollutants were transformed into secondary aerosols through heterogeneous reactions on the surface of PM2.5. (2) Compared with the same period over the years 2000-2016, 2017 presented meteorological field climate anomalies in conjunction with unfavourable surface conditions (weak winds, high relative humidity, fewer hours of sunshine, high cloud cover) and adverse atmospheric circulation (weak East Asian winter monsoon and an abnormal geopotential height of 500 hPa), which caused poorer visibility in 2017 than in the other analysed years. (3) During the development of heavy pollution event, unfavourable surface weather conditions, including poorer visibility, weaker pressure, higher relative humidity, lower wind speed with unfavourable wind direction and less precipitation suppressed the horizontal diffusion ability of air pollutants. Furthermore, the unfavourable structure of the atmospheric boundary layer was the key cause of the rapid PM2.5 increase. The deep, strong temperature inversion layer and weak vertical wind velocity could have suppressed vertical motion and enhanced the stability of the near-surface atmosphere, causing the air pollutants to accumulate at low levels and exacerbating the air pollution problem. Finally, a persistent stagnant weather system with a weak geopotential height field of 1000 hPa and warm air advection at 850 hPa was the main feature of atmospheric circulation associated with the heavy pollution.
NASA Astrophysics Data System (ADS)
Hatchett, Benjamin J.; Smith, Craig M.; Nauslar, Nicholas J.; Kaplan, Michael L.
2018-02-01
Downslope Sundowner winds in southern California's Santa Ynez Mountains favor wildfire growth. To explore differences between Sundowners and Santa Ana winds (SAWs), we use surface observations from 1979 to 2014 to develop a climatology of extreme Sundowner days. The climatology was compared to an existing SAW index from 1979 to 2012. Sundowner (SAW) occurrence peaks in late spring (winter). SAWs demonstrate amplified 500 hPa geopotential heights over western North America and anomalous positive inland mean sea-level pressures. Sundowner-only conditions display zonal 500 hPa flow and negative inland sea-level pressure anomalies. A low-level northerly coastal jet is present during Sundowners but not SAWs.
Midlatitude atmosphere-ocean interaction during El Nino. Part II. The northern hemisphere atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, M.A.
The influence of midlatitude air-sea interaction on the atmospheric anomalies associated with El Nino is investigated by coupling the Community Climate Model to a mixed-layer ocean model in the North Pacific. Prescribed El Nino conditions, warm sea surface temperatures (SST) in the tropical Pacific, cause a southward displacement and strengthening of the Aleutian Low. This results in enhanced (reduced) advection of cold Asian air over the west-central (northwest) Pacific and northward advection of warm air over the eastern Pacific. Allowing air-sea feedback in the North Pacific slightly modified the El Nino-induced near-surface wind, air temperature, and precipitation anomalies. The anomalousmore » cyclonic circulation over the North Pacific is more concentric and shifted slightly to the east in the coupled simulations. Air-sea feedback also damped the air temperature anomalies over most of the North Pacific and reduced the precipitation rate above the cold SST anomaly that develops in the central Pacific. The simulated North Pacific SST anomalies and the resulting Northern Hemisphere atmospheric anomalies are roughly one-third as large as those related to the prescribed El Nino conditions in a composite of five cases. The composite geopotential height anomalies associated with changes in the North Pacific SSTs have an equivalent barotropic structure and range from -65 m to 50 m at the 200-mb level. Including air-sea feedback in the North Pacific tended to damp the atmospheric anomalies caused by the prescribed El Nino conditions in the tropical Pacific. As a result, the zonally elongated geopotential height anomalies over the West Pacific are reduced and shifted to the east. However, the atmospheric changes associated with the North Pacific SST anomalies vary widely among the five cases.« less
An interannual link between Arctic sea-ice cover and the North Atlantic Oscillation
NASA Astrophysics Data System (ADS)
Caian, Mihaela; Koenigk, Torben; Döscher, Ralf; Devasthale, Abhay
2018-01-01
This work investigates links between Arctic surface variability and the phases of the winter (DJF) North Atlantic Oscillation (NAO) on interannual time-scales. The analysis is based on ERA-reanalysis and model data from the EC-Earth global climate model. Our study emphasizes a mode of sea-ice cover variability that leads the NAO index by 1 year. The mechanism of this leading is based on persistent surface forcing by quasi-stationary meridional thermal gradients. Associated thermal winds lead a slow adjustment of the pressure in the following winter, which in turn feeds-back on the propagation of sea-ice anomalies. The pattern of the sea-ice mode leading NAO has positive anomalies over key areas of South-Davis Strait-Labrador Sea, the Barents Sea and the Laptev-Ohkostsk seas, associated to a high pressure anomaly over the Canadian Archipelago-Baffin Bay and the Laptev-East-Siberian seas. These anomalies create a quasi-annular, quasi-steady, positive gradient of sea-ice anomalies about coastal line (when leading the positive NAO phase) and force a cyclonic vorticity anomaly over the Arctic in the following winter. During recent decades in spite of slight shifts in the modes' spectral properties, the same leading mechanism remains valid. Encouraging, actual models appear to reproduce the same mechanism leading model's NAO, relative to model areas of persistent surface forcing. This indicates that the link between sea-ice and NAO could be exploited as a potential skill-source for multi-year prediction by addressing the key problem of initializing the phase of the NAO/AO (Arctic Oscillation).
NASA Astrophysics Data System (ADS)
Carella, G.; Kennedy, J. J.; Berry, D. I.; Hirahara, S.; Merchant, C. J.; Morak-Bozzo, S.; Kent, E. C.
2018-01-01
Lack of reliable observational metadata represents a key barrier to understanding sea surface temperature (SST) measurement biases, a large contributor to uncertainty in the global surface record. We present a method to identify SST measurement practice by comparing the observed SST diurnal cycle from individual ships with a reference from drifting buoys under similar conditions of wind and solar radiation. Compared to existing estimates, we found a larger number of engine room-intake (ERI) reports post-World War II and in the period 1960-1980. Differences in the inferred mixture of observations lead to a systematic warmer shift of the bias adjusted SST anomalies from 1980 compared to previous estimates, while reducing the ensemble spread. Changes in mean field differences between bucket and ERI SST anomalies in the Northern Hemisphere over the period 1955-1995 could be as large as 0.5°C and are not well reproduced by current bias adjustment models.
Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures?
NASA Astrophysics Data System (ADS)
Newman, Matthew; Sardeshmukh, Prashant D.
2017-08-01
The predictability of seasonal anomalies worldwide rests largely on the predictability of tropical sea surface temperature (SST) anomalies. Tropical forecast skill is also a key metric of climate models. We find, however, that despite extensive model development, the tropical SST forecast skill of the operational North American Multi-Model Ensemble (NMME) of eight coupled atmosphere-ocean models remains close both regionally and temporally to that of a vastly simpler linear inverse model (LIM) derived from observed covariances of SST, sea surface height, and wind fields. The LIM clearly captures the essence of the predictable SST dynamics. The NMME and LIM skills also closely track and are only slightly lower than the potential skill estimated using the LIM's forecast signal-to-noise ratios. This suggests that the scope for further skill improvement is small in most regions, except in the western equatorial Pacific where the NMME skill is currently much lower than the LIM skill.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Li, Tim
2017-02-01
Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.
Eddy energy and shelf interactions in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Ohlmann, J. Carter; Niiler, P. Peter; Fox, Chad A.; Leben, Robert R.
2001-02-01
Sea surface height anomaly data from satellite are continuously available for the entire Gulf of Mexico. Surface current velocities derived from these remotely sensed data are compared with surface velocities from drifting buoys. The comparison shows that satellite altimetry does an excellent job resolving gulf eddies over the shelf rise (depths between ˜200 and 2000 m) if the proper length scale is used. Correlations between altimeter- and drifter-derived velocities are statistically significant (r>0.5) when the surface slope is computed over 125 km, indicating that remotely sensed sea surface height anomaly data can be used to aid the understanding of circulation over the shelf rise. Velocity variance over the shelf rise from the altimetry data shows regions of pronounced eddy energy south of the Mississippi outflow, south of the Texas-Louisiana shelf, and in the northwest and northeast corners of the gulf. These are the same locations where surface drifters are most likely to cross the shelf rise, suggesting gulf eddies promote cross-shore flows. This is clearly exemplified with both warm and cold eddies. Finally, the contribution of gulf eddies and wind stress to changes in the mean circulation are compared. Results indicate that the eddy-generated vorticity flux to the mean flow is greater than the contribution from the surface wind stress curl, especially in the region of the Loop current and along the shelf rise base in the western gulf. Future modeling efforts must not neglect the role of eddies in driving gulf circulation over the shelf rise.
NASA Astrophysics Data System (ADS)
Yao, Chenyu; Huang, Qian; Zhu, Bin; Liu, Fei
2018-06-01
Using ECMWF ERA-Interim 6-h reanalysis data, zonal wind intra-seasonal oscillations (ISOs) in the entrance region of the East Asian subtropical westerly jet (EASWJ) in winter from 1979/1980 to 2012/2013 are studied. The results first show that there is an area with large ISO strength in the northwest of the EASWJ; in the key region, zonal wind has a dominant period of 10-30 days. The composite analysis reveals that zonal wind at 200 hPa in this key region has 10-30-day oscillation characteristics. On the 10-30-day time scale, the center of zonal wind anomaly moves eastward. The propagation of zonal wind oscillation relates to temperature tendencies at different latitudes. The remarkable increase (or decrease) in zonal wind in the key region is mostly determined by temperature anomalies to the north. The 10-30-day filtered temperature advection to the north of the key region leads to either a decrease or an increase in temperature; on the other hand, temperature variations south of the key region have trends opposite of the northern trends, which changes the temperature gradient. On the 10-30-day time scale, zonal wind anomalies are associated with precipitation in southern China. When there are easterly wind anomalies over the key region, precipitation occurs over the Yangtze River basin and its south. Diabatic heating during precipitation corresponds with warming to the south of the key region, which combines with the temperature advection to weaken the easterly wind and strengths the westerly wind. Then, the intra-seasonal precipitation moves to southwest China with warm advection and the enhanced westerly wind, which brings the positive relative vorticity advection there.
NASA Technical Reports Server (NTRS)
Drinkwater, Mark R.
1999-01-01
Strong seasonal and interannual signals in Antarctic bottom-water outflow remain unexplained yet are highly correlated with anomalies in net sea-ice growth in coastal polynyas. The mechanisms responsible for driving salination and replenishment and rejuvenation of the dense shelf "source" waters likely also generate pulses of bottom water outflow. The objective of this research is to investigate time-scales of variability in the dynamics of sea-ice in the Southern Ocean in order to determine the primary sites for production of dense shelf waters. We are using a merged satellite/buoy sea-ice motion data set for the period 1978-present day to compute the dynamics of opening and closing of coastal polynyas over the continental shelf. The Ocean Circulation and Climate Advanced Model (OCCAM) ocean general circulation model with coupled sea-ice dynamics is presently forced using National Center for Environmental Prediction (NCEP) data to simulate fluxes and the salination impact of the ocean shelf regions. This work is relevant in the context of measuring the influence of polar sea-ice dynamics upon polar ocean characteristics, and thereby upon global thermohaline ocean circulation. Interannual variability in simulated net freezing rate in the Southern Weddell Sea is shown for the period 1986-1993. There is a pronounced maximum of ice production in 1988 and minimum in 1991 in response to anomalies in equatorward meridional wind velocity. This follows a similar approximate 8-year interannual cycle in Sea Surface Temperature (SST) and satellite-derived ice-edge anomalies reported elsewhere as the "Antarctic Circumpolar Wave." The amplitude of interannual fluctuations in annual net ice production are about 40% of the mean value, implying significant interannual variance in brine rejection and upper ocean heat loss. Southward anomalies in wind stress induce negative anomalies in open water production, which are observed in passive microwave satellite images. Thus, cycles of enhanced poleward wind stress reduce ice growth by compacting the ice along the coastline and closing open water in leads and polynyas. Model simulations confirm that years of low ice production, such as 1991, coincide with years of lower than normal bottom water outflow. Future plans include the assimilation of satellite ice concentrations and ice drift dynamics to more accurately constrain boundary conditions in the model.
Is climate change intensifying the drying-trend in the Caribbean?
NASA Astrophysics Data System (ADS)
Herrera, D. A.; Ault, T.; Fasullo, J.; Carrillo, C. M.
2017-12-01
Since 1950, the Caribbean (11ºN-25ºN; 85ºW-60ºW) has seen a significant drying trend characterized by several recent droughts, some of them contemporaneous with El Niño events. Moreover, the most recent drought from 2013 to 2016 was both the most severe and widespread event since at least 1950, and was associated with high temperatures, likely driven in part by climate change. This work examines the role of increased evaporative demand resulting from warmer temperatures on the drying trend observed in the Caribbean since 1950, using observations and model simulations. Large-scale dynamics associated with drought are also analyzed using sea surface temperature, geopotential height, wind, and precipitation anomalies, as well as radiative fluxes anomalies. Furthermore, land surface model soil moisture and high-resolution self-calibrated Palmer Drought Severity Index (scPDSI) datasets are used to quantify drought severity at local scales. The anthropogenic contribution to drought severity is estimated as the difference between the scPDSI calculated using linearly-detrended temperatures, and the scPDSI computed with the observed trend, with unadjusted precipitation, net radiation, and wind speed. Soil moisture anomalies driven by climate change are derived by comparing a large ensemble of forced simulations against a pre-industrial control. The resulting analysis indicates that anthropogenic forcing has intensified the drying trend in the Caribbean by -0.4 scPDSI-units over 60 years, and has increased the dry-land area by 10%. These findings are consistent with observed potential evapotranspiration (PET) anomalies, which are 30% higher than PET-anomalies estimated using detrended temperatures. These results suggest that climate change is already increasing the risk of drought in the Caribbean by enhancing the atmospheric demand of moisture through temperature, and provide insights into the role of climate change in future drought risk in the region.
NASA Astrophysics Data System (ADS)
Plumley, William J.
1994-01-01
Before World War II, weather forecasters had little knowledge of upper-air wind patterns above 20000 feet. Data were seldom avai able at these heights, and the need was not great because commercial aircraft seldom flew at these altitudes. The war in the Pacific changed all that. Wind forecasts for 30000 feet plus became urgent to support the XXI Bomber Command in its bombing mission over Japan.The U.S. Army Air Force Pacific Ocean Area (AAFPOA) placed a Weather Central in the Marianas Islands in 1944 (Saipan in 1944 and Guam in 1945) to provide forecasting support for this mission. A forecasting procedure was put into operation that combined the elements known as "single-station forecasting" and an advanced procedure that used "altirmeter corrections" to analyze upper-airdata and make prognoses. Upper-air charts were drawn for constant pressure surfaces rather than constant height surfaces. The constant pressure surfaces were tied together by means of the atmospheric temperature field represented by specific temperature anomalies between pressure surfaces. Wind forecasts over the Marianas-Japan route made use of space cross sections that provided the data to forecast winds at each 5000-ft level to 35000 ft along the mission flight path. The new procedures allowed the forecaster to construct internally consistent meteorological charts in three dimensions in regions of sparse data.Army air force pilots and their crews from the Marianas were among the first to experience the extreme wind conditions now known as the "jet stream". Air force forecasters demonstrated that, with experience, such winds could reasonably be forecast under difficult operational conditions.
NASA Astrophysics Data System (ADS)
Osman, Marisol; Vera, C. S.
2017-10-01
This work presents an assessment of the predictability and skill of climate anomalies over South America. The study was made considering a multi-model ensemble of seasonal forecasts for surface air temperature, precipitation and regional circulation, from coupled global circulation models included in the Climate Historical Forecast Project. Predictability was evaluated through the estimation of the signal-to-total variance ratio while prediction skill was assessed computing anomaly correlation coefficients. Both indicators present over the continent higher values at the tropics than at the extratropics for both, surface air temperature and precipitation. Moreover, predictability and prediction skill for temperature are slightly higher in DJF than in JJA while for precipitation they exhibit similar levels in both seasons. The largest values of predictability and skill for both variables and seasons are found over northwestern South America while modest but still significant values for extratropical precipitation at southeastern South America and the extratropical Andes. The predictability levels in ENSO years of both variables are slightly higher, although with the same spatial distribution, than that obtained considering all years. Nevertheless, predictability at the tropics for both variables and seasons diminishes in both warm and cold ENSO years respect to that in all years. The latter can be attributed to changes in signal rather than in the noise. Predictability and prediction skill for low-level winds and upper-level zonal winds over South America was also assessed. Maximum levels of predictability for low-level winds were found were maximum mean values are observed, i.e. the regions associated with the equatorial trade winds, the midlatitudes westerlies and the South American Low-Level Jet. Predictability maxima for upper-level zonal winds locate where the subtropical jet peaks. Seasonal changes in wind predictability are observed that seem to be related to those associated with the signal, especially at the extratropics.
Change of ENSO characteristics in response to global warming
NASA Astrophysics Data System (ADS)
Sun, X.; Xia, Y.; Yan, Y.; Feng, W.; Huang, F.; Yang, X. Q.
2017-12-01
By using datasets of HadISST monthly SST from 1895 to 2014 and 600-year simulations of two CESM model experiments with/without doubling of CO2 concentration, ENSO characteristics are compared pre- and post- global warming. The main results are as follows. Due to global warming, the maximum climatological SST warming occurs in the tropical western Pacific (La Niña-like background warming) and the tropical eastern Pacific (El Niño-like background warming) for observations and model, respectively, resulting in opposite zonal SST gradient anomalies in the tropical Pacific. The La Niña-like background warming induces intense surface divergence in the tropical central Pacific, which enhances the easterly trade winds in the tropical central-western Pacific and shifts the strongest ocean-atmosphere coupling westward, correspondingly. On the contrary, the El Niño-like background warming causes westerly winds in the whole tropical Pacific and moves the strongest ocean-atmosphere coupling eastward. Under the La Niña-like background warming, ENSO tends to develop and mature in the tropical central Pacific, because the background easterly wind anomaly weakens the ENSO-induced westerly wind anomaly in the tropical western Pacific, leading to the so-called "Central Pacific ENSO (CP ENSO)". However, the so-called "Eastern Pacific ENSO (EP ENSO)" is likely formed due to increased westerly wind anomaly by the El Niño-like background warming. ENSO lifetime is significantly extended under both the El Niño-like and the La Niña-like background warmings, and especially, it can be prolonged by up to 3 months in the situation of El Niño-like background warming. The prolonged El Nino lifetime mainly applies to extreme El Niño events, which is caused by earlier outbreak of the westerly wind bursts, shallower climatological thermocline depth and weaker "discharge" rate of the ENSO warm signal in response to global warming. Results from both observations and the model also show that the frequency of ENSO events greatly increases due to global warming, and many more extreme El Niño and La Niña events appear under the El Niño-like and the La Niña-like background warmings, respectively. This study reconciles the phenomena and mechanisms of different characteristics of ENSO changes in observations and models.
Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China
Wang, Lingqing; Liang, Tao
2015-01-01
Rare earth mine tailing dumps are environmental hazards because tailing easily leaches and erodes by water and wind. To assess the influence of mine tailing on the geochemical behavior of rare earth elements (REEs) in soil, sixty-seven surface soil samples and three soil profile samples were collected from different locations near China’s largest rare earth mine tailing. The total concentration of REEs in surface soils ranged from 156 to 5.65 × 104 mg·kg−1 with an average value of 4.67 × 103 mg·kg−1, which was significantly higher than the average value in China (181 mg·kg−1). We found obvious fractionation of both light and heavy REEs, which was supported by the North American Shale Composite (NASC) and the Post-Archean Average Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (LaN/YbN, LaN/SmN and GdN/YbN). A slightly positive Ce anomaly and a negative Eu anomaly were also found. For all 14 REEs in soils, enrichment was intensified by the mine tailing sources and influenced by the prevailing wind. PMID:26198417
Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China.
Wang, Lingqing; Liang, Tao
2015-07-22
Rare earth mine tailing dumps are environmental hazards because tailing easily leaches and erodes by water and wind. To assess the influence of mine tailing on the geochemical behavior of rare earth elements (REEs) in soil, sixty-seven surface soil samples and three soil profile samples were collected from different locations near China's largest rare earth mine tailing. The total concentration of REEs in surface soils ranged from 156 to 5.65 × 10(4) mg·kg(-1) with an average value of 4.67 × 10(3) mg·kg(-1), which was significantly higher than the average value in China (181 mg·kg(-1)). We found obvious fractionation of both light and heavy REEs, which was supported by the North American Shale Composite (NASC) and the Post-Archean Average Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (La(N)/Yb(N), La(N)/Sm(N) and Gd(N)/Yb(N)). A slightly positive Ce anomaly and a negative Eu anomaly were also found. For all 14 REEs in soils, enrichment was intensified by the mine tailing sources and influenced by the prevailing wind.
NASA Technical Reports Server (NTRS)
Halekas, Jasper S.; Poppe, A.; Delory, G. T.; Farrell, W. M.; Horanyi, M.
2012-01-01
Electron distributions measured by Lunar Prospector above the dayside lunar surface in the solar wind often have an energy dependent loss cone, inconsistent with adiabatic magnetic reflection. Energy dependent reflection suggests the presence of downward parallel electric fields below the spacecraft, possibly indicating the presence of a standing electrostatic structure. Many electron distributions contain apparent low energy (<100 eV) upwardgoing conics (58% of the time) and beams (12% of the time), primarily in regions with non-zero crustal magnetic fields, implying the presence of parallel electric fields and/or wave-particle interactions below the spacecraft. Some, but not all, of the observed energy dependence comes from the energy gained during reflection from a moving obstacle; correctly characterizing electron reflection requires the use of the proper reference frame. Nonadiabatic reflection may also play a role, but cannot fully explain observations. In cases with upward-going beams, we observe partial isotropization of incoming solar wind electrons, possibly indicating streaming and/or whistler instabilities. The Moon may therefore influence solar wind plasma well upstream from its surface. Magnetic anomaly interactions and/or non-monotonic near surface potentials provide the most likely candidates to produce the observed precursor effects, which may help ensure quasi-neutrality upstream from the Moon.
Configuration and Intraseasonal Duration of Interannual Anomalies of the Great Plains Low-Level Jet
NASA Technical Reports Server (NTRS)
Helfand, H. M.
2002-01-01
Despite the fact that the low-level jet of the southern Great Plains (the GPLLJ) of the U.S. is primarily a nocturnal phenomenon that virtually vanishes during the daylight hours, it is one of the most persistent and stable climatological features of the low-level continental flow during the warm-season months, May through August. We have used significant-level data to validate the skill of the GEOS-1 Data Assimilation System (DAS) in realistically detecting this jet and inferring its structure and evolution. We have then carried out a 15-year reanalysis with the GEOS-1 DAS to determine its climatology and mean diurnal cycle and to study its interannual variability. Interannual anomalies of the meridional flow associated with the GPLLJ are much smaller than the mean diurnal fluctuations, than random intraseasonal anomalies, and than the mean wind itself. There are three maxima of low-level meridional flow variance over the Great Plains and the Gulf of Mexico: a 1.2 m2 s-2 peak over the southeast Texas, to the east and south of the mean velocity peak, a 1.0 m2 s-2 peak over the western Gulf of Mexico, and a .8 m2 s-2 peak over the upper Great Plains (UGP), near the Nebraska/South Dakota border. Each of the three variance maxima corresponds to a spatially coherent, jet-like pattern of low-level flow interannual variability. There are also three dominant modes of interannual variability corresponding to the three variance maxima, but not in a simple one-to-one relationship. Cross-sectional profiles of mean southerly wind over Texas remain relatively stable and recognizable from year to year with only its eastward flank showing significant variability. This variability, however, exhibits a distinct, biennial oscillation during the first six to seven years of the reanalysis period and only then. This intermittent biennial oscillation (IBO, one of the three modes discussed in the previous paragraph) in the lowlevel flow is restricted to the region surrounding eastern Texas and is also evident in the NCEP/NCAR reanalysis data set from about 1978 to 1985 or 1986 and again from 1995 to 2000. It is evident as well in surface pressure in both the GEOS-1 and NCEP/NCAR sets. The interannual anomalies do not necessarily persist uniformly throughout an entire season, but can fluctuate from one part of the season to the next. To estimate the characteristic sub-seasonal time scales for coherence of these fluctuations, we have taken the weekly anomaly of low-level wind at each point of the domain from the climatological average for that given point and that given week of the season and computed the covariance of its fluctuations over all weeks and over all years with the weekly climatological anomaly of the meridional wind at each of the three reference points discussed above. The typical duration of a coherent interannual anomaly within a given warm season increases with decreasing latitude from 2 to 3 weeks over the UGP, to 6 to 7 weeks over eastern Texas. Coherence over the western Gulf of Mexico is intermediate between the two with a typical duration of 4 to 5 weeks. There appears to be evidence that the interannual anomalies over Texas the Gulf propagate to the UGP after a week and those over the Gulf propagate there after 2 to 3 weeks. There also appears to be some reverse propagation of interannual anomalies over the UGP to Texas and to the Gulf after a period of about one week. The interannual anomalies in southerly flow over eastern Texas seem to correlate well with interannual anomalies of surface temperature and (negative) ground wetness and over western Texas.
Role of sea surface wind stress forcing on transport between Tropical Pacific and Indian Ocean
NASA Astrophysics Data System (ADS)
Zhao, Q.
Using an Indian-Pacific Ocean Circulation Model (IPOM) a simulation study on the Transports of between Tropical Pacific and Indian Ocean such as Indonesian Through flow (ITF) has been done. IPOM covered the area 25°E-70°W, 35°S-60°N. There are 31 levels in the vertical with 22 levels upper 400m in it. The horizontal resolution is 1/3° lat x 1.5° lon between 10°S and 10°N. The coastline and ocean topography of IPOM is prepared from Scripps topography data on 1x1°grid. Forcing IPOM with monthly observational wind stress in 1990-1999 the interannual variation of sea temperature has been reproduced well, not only on El Nino in the Pacific but also on Indian Ocean Dipole (IOD). Therefore, the oceanic circulations in the tropical ocean are reasonable. The analyses of the oceanic circulations from the simulations suggest that the transport southward through Makassar Strait is the primary route of thermocline water masses from the North Pacific to the Indonesian sea. The transport westward through Bali-Western Australian Transect (BWAT, at 117.5E) can be thought as the final output of ITF through the archipelago to Indian Ocean. The transport westward through BWAT is in 8-12S above 150m, its core centered near surface 10S, which looks like a jet. The westward velocity is more than 50 cm/s. The transport shows significant seasonal and interannual variations. The maximum is in Jul-Oct, minimum in Jan-Mar. These results are consistent with some observation basically. The correlation analyses indict that the variations of transport westward is related with the southeasterly anomaly in the east tropical Indian ocean. The transport variation lags wind anomaly about 3 months. The correlation coefficient is more than 0.6. The transport is strong during IOD, for example in 1994 and 1997. The variations are also related with the northwesterly anomaly in the center equatorial Pacific and the easterly in the eastern equatorial Pacific. The transport is strong in most ENSO events. The above results suggest the sea surface wind stress from satellite is widely useful.
NASA Astrophysics Data System (ADS)
Wang, X.; Robertson, S. H.; Horanyi, M.; NASA Lunar Science Institute: Colorado CenterLunar Dust; Atmospheric Studies
2011-12-01
The Moon does not have a global magnetic field, unlike the Earth, rather it has strong crustal magnetic anomalies. Data from Lunar Prospector and SELENE (Kaguya) observed strong interactions between the solar wind and these localized magnetic fields. In the laboratory, a configuration of a horseshoe permanent magnet below an insulating surface is used as an analogue of lunar crustal magnetic anomalies. Plasmas are created above the surface by a hot filament discharge. Potential distributions are measured with an emissive probe and show complex spatial structures. In our experiments, electrons are magnetized with gyro-radii r smaller than the distance from the surface d (r < d) and ions are un-magnetized with r > d. Unlike negative charging on surfaces with no magnetic fields, the surface potential at the center of the magnetic dipole is found close to the plasma bulk potential. The surface charging is dominated by the cold unmagnetized ions, while the electrons are shielded away. A potential minimum is formed between the center of the surface and the bulk plasma, most likely caused by the trapped electrons between the two magnetic mirrors at the cusps. The value of the potential minimum with respect to the bulk plasma potential decreases with increasing plasma density and neutral pressure, indicating that the mirror-trapped electrons are scattered by electron-electron and electron-neutral collisions. The potential at the two cusps are found to be more negative due to the electrons following the magnetic field lines onto the surface.
Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation
NASA Technical Reports Server (NTRS)
Kwok, R.; Comiso, J. C.
2001-01-01
The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-year of data set from 1982 through 1998. We correlate the polar climate anomalies with the Southern Oscillation index (SOI) and examine the composites of these anomalies under the positive (SOI > 0), neutral (0 > SOI > -1), and negative (SOI < -1) phases of SOL The climate data set consists of sea-level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea ice data set describes its extent, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables and the SOL The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen and Ross sea sectors. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillating climate anomalies that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea-level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea ice cover are clearly evident. Recent anomalies in the sea ice cover that are apparently associated with the SOI include: the record decrease in the sea ice extent in the Bellingshausen Sea from mid- 1988 through early 199 1; the relationship between Ross Sea SST and ENSO signal, and reduced sea ice concentration in the Ross Sea; and, the shortening of the ice season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea, and the lengthening of the ice season in the western Ross Sea, Bellingshausen Sea and central Weddell Sea gyre over the period 1988-1994. Four ENSO episodes over the last 17 years contributed to a negative mean in the SOI (-0.5). In each of these episodes, significant retreats in the Bellingshausen/Amundsen Sea were observed providing direct confirmation of the impact of SO on the Antarctic sea ice cover.
The effect of the MJO on the energetics of El Niño
NASA Astrophysics Data System (ADS)
Lybarger, Nicholas D.; Stan, Cristiana
2017-12-01
The energy budget of the Pacific Ocean is evaluated in the Super-Parameterized Community Climate Model version 4 (SP-CCSM4) on intraseasonal time scales. The budget terms are decomposed to isolate the MJO influence and the ocean current associated with Kelvin waves. Using this decomposition, one can distinguish between El Niño events with strong and weak MJO influence. Composites of El Niño events based on the wind power component associated with the MJO induced wind stress and oceanic Kelvin waves ({{W}_{{MJO},{K}}} ) are compared with composites based only on the atmospheric variability and based only on the oceanic variability. It was found that the composite of events when {{W}_{{MJO},{K}}} is near maximum (+ NMJO,K) shows a greater magnitude of mean perturbation wind power, buoyancy power, and available potential energy than any other case, which is consistent with the greater amplitude Kelvin wave perturbations on the thermocline, as well as the greater amplitude of SST anomalies at the peak of the event. For + NMJO,K, latent heat flux anomalies out of the ocean along the coast of New Guinea are seen coincident with deepening of the mixed layer depth there, suggesting that this is an important region for the thermodynamic influence of the MJO on the ocean. Latent heat flux anomalies into the ocean are seen across the ITCZ in the spring, suggesting a basin wide influence by the MJO on the ocean surface radiation budget in + NMJO,K.
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Marshall, Susan; Oglesby, Robert; Roads, John; Sohn, Byung-Ju; Arnold, James E. (Technical Monitor)
2001-01-01
The continuing debate over feedback mechanisms governing tropical sea surface temperatures (SSTs) and tropical climate in general has highlighted the diversity of potential checks and balances within the climate system. Competing feedbacks due to changes in surface evaporation, water vapor, and cloud long- and shortwave radiative properties each may serve critical roles in stabilizing or destabilizing the climate system. It is also intriguing that even those climate variations having origins internal to the climate system - changes in ocean heat transport for example, apparently require complementary equilibrating effects by changes in atmospheric energy fluxes. Perhaps the best observational evidence of this is the relatively invariant nature of tropically averaged net radiation exiting the top-of-atmosphere (TOA) as measured by broadband satellite sensors over the past two decades. Thus, analyzing how these feedback mechanisms are operating within the context of current interannual variability may offer considerable insight for anticipating future climate change. In this paper we focus primarily on interannual variations of ocean evaporative fluxes and their significance for coupled water and energy cycles within the tropical climate system. In particular, we use both the da Silva estimates of surface fluxes (based on the Comprehensive Ocean Atmosphere Data Set, COADS) and numerical simulations from several global climate models to examine evaporation sensitivity to perturbations in SST associated with warm and cold ENSO events. The specific questions we address are as follows: (1) What recurring patterns of surface wind and humidity anomalies are present during ENSO and how do they combine to yield systematic evaporation anomalies?, (2) What is the resulting tropical ocean mean evaporation-SST sensitivity associated with this climate perturbation?, and (3) What role does this evaporation play in tropical heat and water balance over tropical oceanic regions? We use the da Silva ocean flux data to identify composite structure of departures of latent heat flux from climatology. We also show how these patterns arise out of associated wind and humidity anomaly distributions. Our preliminary work shows that evaporation sensitivity estimates from the da Silva / COADS data, computed for the tropical oceans (30 degrees N/S) are in the neighborhood of 5 to 6 W/square m K. Model estimates are also quite close to this figure. This rate is only slightly less than a rate corresponding to constant relative humidity; however, substantial regional departures from constant relative humidity are present. These patterns are robust and we relate the associated wind and humidity fluctuations noted in previous investigations to the derived evaporation anomalies. Finally, these results are interpreted with other data from the Earth radiation Budget Experiment (ERBE), Global Precipitation Climatology Project (GPCP) and NASA's Surface Radiation Budget (SRB) data set to characterize the tropical energetics of ENSO-related climate variability.
Atmosphere-Warm Ocean Interaction and Its Impacts on Asian-Australian Monsoon Variation(.
NASA Astrophysics Data System (ADS)
Wang, Bin; Wu, Renguang; Li, Tim
2003-04-01
Asian-Australian monsoon (A-AM) anomalies depend strongly on phases of El Niño (La Niña). Based on this distinctive feature, a method of extended singular value decomposition analysis was developed to analyze the changing characteristics of A-AM anomalies during El Niño (La Niña) from its development to decay. Two off-equatorial surface anticyclones dominate the A-AM anomalies during an El Niño-one over the south Indian Ocean (SIO) and the other over the western North Pacific (WNP). The SIO anticyclone, which affects climate conditions over the Indian Ocean, eastern Africa, and India, originates during the summer of a growing El Niño, rapidly reaches its peak intensity in fall, and decays when El Niño matures. The WNP anticyclone, on the other hand, forms in fall, attains maximum intensity after El Niño matures, and persists through the subsequent spring and summer, providing a prolonged impact on the WNP and east Asian climate. The monsoon anomalies associated with a La Niña resemble those during an El Niño but with cyclonic anomalies. From the development summer to the decay summer of an El Niño (La Niña), the anomalous sea level pressure, low-level winds, and vertical motion tend to reverse their signs in the equatorial Indian and western Pacific Oceans (10°S-20°N, 40°-160°E). This suggests that the tropospheric biennial oscillation is intimately linked to the turnabouts of El Niño and La Niña.The remote El Niño forcing alone can explain neither the unusual amplification of the SIO anticyclone during a developing El Niño nor the maintenance of the WNP anticyclone during a decaying El Niño. The atmosphere-ocean conditions in the two anticyclone regions are similar, namely, a zonal sea surface temperature (SST) dipole with cold water to the east and warm water to the west of the anticyclone center. These conditions result from positive feedback between the anomalous anticyclone and the SST dipole, which intensifies the coupled mode in the SIO during El Niño growth and maintains the coupled mode in the WNP during El Niño decay. The interactions in the two anticyclone regions share common wind evaporation/entrainment and cloud-radiation feedback processes but they differ with regard to the oceanic dynamics (vertical and horizontal advection and thermocline adjustment by oceanic waves). The outcome of the interactions in both regions, however, depends crucially on the climatological surface winds. The SIO-coupled mode is triggered by El Niño-induced subsidence and alongshore winds off the coast of Sumatra. However, other independent El Niño local and remote forcing can also trigger this coupled mode.The traditional view has regarded SST anomalies in the Indian and western Pacific Oceans as causing the A-AM variability. The present analysis suggests that the SST anomalies in these warm ocean regions are, to a large extent, a result of anomalous monsoons. Thus, the atmosphere-warm ocean interaction may significantly modify the impacts of remote El Niño forcing and should be regarded as one of the physical factors that determine the variability of the A-AM.During the summer of El Niño development, the remote El Niño forcing plays a major role in the A-AM anomalies that exhibit obvious equatorial asymmetry. A tilted anticyclonic ridge originates in the Maritime Continent and extends to southern India, weakening the Indian monsoon while strengthening the WNP monsoon. Numerical modeling experiments suggest that the mean monsoon circulation enhances the equatorial Rossby wave response in the easterly vertical shear region of the Northern Hemisphere and creates the equatorial asymmetry.
The 2014-2015 Warming Anomaly in the Southern California Current System: Glider Observations
NASA Astrophysics Data System (ADS)
Zaba, K. D.; Rudnick, D. L.
2016-02-01
During 2014-2015, basin-wide patterns of oceanic and atmospheric anomalies affected surface waters throughout the North Pacific Ocean. We present regional physical and biological effects of the warming, as observed by our autonomous underwater gliders in the southern California Current System (SCCS). Established in 2006, the California Glider Network provides sustained subsurface observations for monitoring the coastal effects of large-scale climate variability. Along repeat sections that extend to 350-500 km in offshore distance and 500 m in depth, Spray gliders have continuously occupied CalCOFI lines 66.7, 80, and 90 for nearly nine years. Following a sawtooth trajectory, the gliders complete each dive in approximately 3 hours and over 3 km. Measured variables include pressure, temperature, salinity, chlorophyll fluorescence, and velocity. For each of the three lines, a comprehensive climatology has been constructed from the multiyear timeseries. The ongoing surface-intensified warming anomaly, which began locally in early 2014 and persists through present, is unprecedented in the glider climatology. Reaching up to 5°C, positive temperature anomalies have been generally confined to the upper 50 m and persistent for over 20 months. The timing of the warming was in phase along each glider line but out of phase with equatorial SST anomalies, suggesting a decoupling of tropical and mid-latitude dynamics. Concurrent physical oceanographic anomalies included a depressed thermocline and high stratification. An induced biological response was apparent in the deepening of the subsurface chlorophyll fluorescence maximum. Ancillary atmospheric data from the NCEP North American Mesoscale (NAM) model indicate that a combination of surface forcing anomalies, namely high downward heat flux and weak wind stress magnitude, caused the unusual warm, downwelling conditions. With a strong El Niño event in the forecast for winter 2015-2016, our sustained glider network will continue to measure the evolution of the shallow warm pool in the SCCS and its potential interaction with ENSO-related anomalies.
A wind comparison study using an ocean general circulation model for the 1997-1998 El Niño
NASA Astrophysics Data System (ADS)
Hackert, Eric C.; Busalacchi, Antonio J.; Murtugudde, Ragu
2001-02-01
Predictions of the 1997-1998 El Niño exhibited a wide range of forecast skill that were dependent, in part, on the wind-driven initial conditions for the ocean. In this study the results of a reduced gravity, primitive equation, sigma coordinate ocean general circulation model are compared and contrasted when forced by several different wind products for the 1997-1998 El Niño/La Niña. The different wind products include atmospheric model winds, satellite wind products, and a subjective analysis of ship and in situ winds. The model results are verified against fields of observed sea level anomalies from TOPEX/Poseidon data, sea surface temperature analyses, and subsurface temperature from the Tropical Atmosphere-Ocean buoy array. Depending on which validation data type one chooses, different wind products provide the best forcing fields for simulating the observed signal. In general, the model results forced by satellite winds provide the best simulations of the spatial and temporal signal of the observed sea level. This is due to the accuracy of the meridional gradient of the zonal wind stress component that these products provide. Differences in wind forcing also affect subsurface dynamics and thermodynamics. For example, the wind products with the weakest magnitude best reproduce the sea surface temperature (SST) signal in the eastern Pacific. For these products the mixed layer is shallower, and the thermocline is closer to the surface. For such simulations the subsurface thermocline variability influences the variation in SST more than in reality. The products with the greatest wind magnitude have a strong cold bias of >1.5°C in the eastern Pacific because of increased mixing. The satellite winds along with the analysis winds correctly reproduce the depth of the thermocline and the general subsurface temperature structure.
Increasing of eddy activity in the northeastern Pacific during 1993-2011
NASA Astrophysics Data System (ADS)
Ding, M.; Lin, P.; Liu, H.; Chai, F.
2017-12-01
We study the long-term behaviors of eddy activity in the northeastern Pacific (NEP) and the dynamic mechanism behind them based on the 3rd version of the mesoscale eddy trajectories dataset released by Chelton et al. (2013) combined with other observation and reanalysis datasets. Both the eddy kinetic energy (EKE) and eddy occurrence number (EON) present prominent increasing trends, with inter-annual and decadal variabilities northeast of the Hawaii-Emperor seamounts. The increasing trend of the EON is mainly due to prolongation of the eddy lifetime associated with the eddy intensification, particularly for anticyclonic eddies (AEs). Weakened surface winds tend to prolong the eddy lifetimes, as the eddy attenuation time scale is inversely proportional to the wind speed. The enhanced anticyclonic wind stress curl (WSC) anomalies inject more energy into the AE over the study region and provide a more suitable environment for AEs growth. The decadal climate modes, such as the Pacific decadal oscillation (PDO) and the North Pacific gyre oscillation (NPGO), may also modulate eddy activities in the NEP by exerting fluctuations in the surface wind system.
The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011
NASA Astrophysics Data System (ADS)
Ogi, M.; Wallace, J. M.
2012-12-01
Masayo Ogi 1 and John M. Wallace 2 masayo.ogi@jamstec.go.jp wallace@atmos.washington.edu 1Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan 2 Department of Atmospheric Sciences, University of Washington, Seattle, Washington The seasonal evolutions of Arctic sea ice extent (SIE) during the summers of 2010 and 2011 are contrasted with that in 2007. The June SIE in 2010 was lower than that in 2007 and was the lowest for that calendar month in the 32-year (1979-2010) record. The September SIE in 2010 would have set a new record low had it not been for the fact that the ice retreated more slowly during the summer months in that year than it did in 2007. Hence from early July onward, the SIE in 2010 remained at levels above those observed in 2007. The SIE minimum in September 2010 proved to be the third lowest on record, eclipsed by values in both 2007 and 2008. In spring and summer of 2011, the Arctic SIE was as low as it was in 2007, but the SIE in September 2011 did not reach record low levels. The SIE minimum in 2011 proved to be the second lowest on record for the period of 1979-2011. Summertime atmospheric conditions play an important role in controlling the variations in Arctic SIE. In a previous study based on statistical analysis of data collected prior to 2007, we showed that anticyclonic summertime circulation anomalies over the Arctic Ocean during the summer months favor low September SIE. We also found that the record-low ice summer year 2007 was characterized by a strong anticyclonic circulation anomaly, accompanied by an Ekman drift of ice out of the marginal seas toward the central Arctic and eventually toward the Fram Strait, as evidenced by the tracks of drifting buoys. Here we assess the extent to which year-to-year differences in summer winds over the Arctic might have contributed to the differing rates of retreat of ice during the summers of 2007, 2010, and 2011. Our results show that the May-June (MJ) pattern in 2010 is characterized by strong anticyclonic wind anomalies over the Arctic Ocean. The corresponding pattern for July-August-September (JAS) is dominated by a cyclonic gyre centered over the Kara Sea. The corresponding patterns for 2007 are weak in MJ and strongly anticyclonic in JAS. The JJA pattern in 2011 is characterized by anticyclonic wind anomalies over the Arctic directed toward the Fram Strait, whereas the September pattern exhibits wind anomalies directed away from the Fram Strait across the central Arctic Ocean toward the Chukchi Sea. The corresponding patterns for 2007 are strongly anticyclonic and directed toward the Fram Strait in both JJA and September. In the absence of the late season push by the winds, the ice did not retreat quite as far in 2011 as it did in 2007. We have shown evidence that low level winds over the Arctic play an important role in mediating the rate of retreat of sea ice during summer. Anomalous anticyclonic flow over the interior of the Arctic directed toward the Fram Strait favors rapid retreat and vice versa. We have argued that the relative rankings of the September SIE for the years 2007, 2010 and 2011 are largely attributable to the differing rates of decrease of SIE during these summers, which are a consequence of year-to-year differences in the seasonal evolution of summertime winds over the Arctic.
ENSO Transition Asymmetry: Internal and External Causes and Intermodel Diversity
NASA Astrophysics Data System (ADS)
An, Soon-Il; Kim, Ji-Won
2018-05-01
El Niño is frequently followed by La Niña, but the opposite case rarely happens. Here we explore a mechanism for such an asymmetrical transition and its future changes. Internally, the asymmetrical response of upper ocean waves against surface wind stress anomaly exerts a primary cause of El Niño-Southern Oscillation (ENSO) transition asymmetry. Externally, the asymmetrical capacitor effects of both Indian and Atlantic Oceans play some roles in driving the ENSO transition asymmetry via the interbasin interactions. The historical runs of Coupled Model Intercomparison Project Phase 5 show that the intermodel transition asymmetry is significantly correlated with the intermodel asymmetry in ocean wave response to surface wind forcing but not with that in the interbasin interactions. In addition, the El Niño-to-La Niña transition tendency was weaker in moderate global warming scenario runs (Representative Concentration Pathway 4.5) while slightly enhanced in strong warming scenario runs (Representative Concentration Pathway 8.5). Similar changes also appeared in the asymmetrical response of ocean waves against the surface wind forcing.
Cayan, Daniel R.; Miller, Arthur J.; Barnett, Tim P.; Graham, Nicholas E.; Ritchie, Jack N.; Oberhuber, Josef M.
1995-01-01
The 19-year simulation of the Pacific basin by the monthly marine data-forced OPYC model displays good skill in reproducing SST variability. These results represent the first hindcast of which we are aware that uses both observed total heat-flux and wind-stress anomalies as forcing for such a long time interval. There is close agreement between the model SSTs and those observed in many regions of the Pacific, including the tropics and the northern extratropics. Besides performing credibly on the monthly time scale, the model captures the essence of low-frequency variability over the North Pacific, including aspects of a marked basin-wide change that occurred in 1976-1977. In the model's detailed heat budget, the anomalous air-sea heat fluxes, entrainment, and to a lesser extent horizontal advection, force thermal-anomaly changes in the mixed layer. Each of these components was apparently involved in the 1976-1977 decadal SST shift.
NASA Astrophysics Data System (ADS)
Liguori, Giovanni; Di Lorenzo, Emanuele; Cabos, William
2017-02-01
Changes in surface heat fluxes affect several climate processes controlling the Mediterranean climate. These include the winter formation of deep waters, which is the primary driver of the Mediterranean Sea overturning circulation. Previous studies that characterize the spatial and temporal variability of surface heat flux anomalies over the basin reveal the existence of two statistically dominant patterns of variability: a monopole of uniform sign and an east-west dipole of opposite signs. In this work, we use the 12 regional climate model ensemble from the EU-FP6 ENSEMBLES project to diagnose the large-scale atmospheric processes that control the variability of heat fluxes over the Mediterranean Sea from interannual to decadal timescales (here defined as timescales > 6 year). Our findings suggest that while the monopole structure captures variability in the winter-to-winter domain-average net heat flux, the dipole pattern tracks changes in the Mediterranean climate that are connected to the East Atlantic/Western Russia (EA/WR) atmospheric teleconnection pattern. Furthermore, while the monopole exhibits significant differences in the spatial structure across the multi-model ensemble, the dipole pattern is very robust and more clearly identifiable in the anomaly maps of individual years. A heat budget analysis of the dipole pattern reveals that changes in winds associated with the EA/WR pattern exert dominant control through both a direct effect on the latent heat flux (i.e., wind speed) and an indirect effect through specific humidity (e.g., wind advection). A simple reconstruction of the heat flux variability over the deep-water formation regions of the Gulf of Lion and the Aegean Sea reveals that the combination of the monopole and dipole time series explains over 90 % of the heat flux variance in these regions. Given the important role that surface heat flux anomalies play in deep-water formation and the regional climate, improving our knowledge on the dynamics controlling the leading modes of heat flux variability may enhance our predictability of the climate of the Mediterranean area.
Forced synchronization of large-scale circulation to increase predictability of surface states
NASA Astrophysics Data System (ADS)
Shen, Mao-Lin; Keenlyside, Noel; Selten, Frank; Wiegerinck, Wim; Duane, Gregory
2016-04-01
Numerical models are key tools in the projection of the future climate change. The lack of perfect initial condition and perfect knowledge of the laws of physics, as well as inherent chaotic behavior limit predictions. Conceptually, the atmospheric variables can be decomposed into a predictable component (signal) and an unpredictable component (noise). In ensemble prediction the anomaly of ensemble mean is regarded as the signal and the ensemble spread the noise. Naturally the prediction skill will be higher if the signal-to-noise ratio (SNR) is larger in the initial conditions. We run two ensemble experiments in order to explore a way to reduce the SNR of surface winds and temperature. One ensemble experiment is AGCM with prescribing sea surface temperature (SST); the other is AGCM with both prescribing SST and nudging the high-level temperature and winds to ERA-Interim. Each ensemble has 30 members. Larger SNR is expected and found over the tropical ocean in the first experiment because the tropical circulation is associated with the convection and the associated surface wind convergence as these are to a large extent driven by the SST. However, small SNR is found over high latitude ocean and land surface due to the chaotic and non-synchronized atmosphere states. In the second experiment the higher level temperature and winds are forced to be synchronized (nudged to reanalysis) and hence a larger SNR of surface winds and temperature is expected. Furthermore, different nudging coefficients are also tested in order to understand the limitation of both synchronization of large-scale circulation and the surface states. These experiments will be useful for the developing strategies to synchronize the 3-D states of atmospheric models that can be later used to build a super model.
NASA Astrophysics Data System (ADS)
Leifer, Ira; Melton, Christopher; Fischer, Marc L.; Fladeland, Matthew; Frash, Jason; Gore, Warren; Iraci, Laura T.; Marrero, Josette E.; Ryoo, Ju-Mee; Tanaka, Tomoaki; Yates, Emma L.
2018-03-01
Methane (CH4) inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne-surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL) and combines downwind trace gas concentration anomaly (plume) above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX - the Alpha Jet Atmospheric eXperiment) and mobile surface (collected by AMOG - the AutoMObile trace Gas - Surveyor) data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV) floor into the Sierra Nevada (0.1-2.2 km altitude), validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10-20 km downwind, highlighting the importance of the experimental design.
NASA Technical Reports Server (NTRS)
Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.
2013-01-01
A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.
Kinetic Modeling of the Lunar Dust-Plasma Environment
NASA Astrophysics Data System (ADS)
Kallio, Esa; Alho, Markku; Alvarez, Francisco; Barabash, Stas; Dyadechkin, Sergey; Fernandes, Vera; Futaana, Yoshifumi; Harri, Ari-Matti; Haunia, Touko; Heilimo, Jyri; Holmström, Mats; Jarvinen, Riku; Lue, Charles; Makela, Jakke; Porjo, Niko; Schmidt, Walter; Shahab, Fatemi; Siili, Tero; Wurz, Peter
2014-05-01
Modeling of the lunar dust and plasma environment is a challenging task because a self-consistent model should include ions, electrons and dust particles and numerous other factors. However, most of the parameters are not well established or constrained by measurements in the lunar environment. More precisely, a comprehensive model should contain electrons originating from 1) the solar wind, 2) the lunar material (photoelectrons, secondary electrons) and 3) the lunar dust. Ions originate from the solar wind, the lunar material, the lunar exosphere and the dust. To model the role of the dust in the lunar plasma environment is a highly complex task since the properties of the dust particles in the exosphere are poorly known (e.g. mass, size, shape, conductivity) or not known (e.g. charge and photoelectron emission) and probably are time dependent. Models should also include the effects of interactions between the surface and solar wind and energetic particles, and micrometeorites. Largely different temporal and spatial scales are also a challenge for the numerical models. In addition, the modeling of a region on the Moon - for example on the South Pole - at a given time requires also knowledge of the solar illumination conditions at that time, mineralogical and electric properties of the local lunar surface, lunar magnetic anomalies, solar UV flux and the properties of the solar wind. Harmful effects of lunar dust to technical devices and to human health as well as modeling of the properties of the lunar plasma and dust environment have been topics of two ESA funded projects L-DEPP and DPEM. In the presentation we will summarize some basic results and characteristics of plasma and fields near and around the Moon as studied and discovered in these projects. Especially, we analyse three different space and time scales by kinetic models: [1] the "microscale" region near surface with an electrostatic PIC (ions and electrons are particles) model, [2] the "mesoscale" region including lunar magnetic anomalies and [3] the global scale Moon-solar wind interaction with hybrid (ions as particles in massless electron fluid) models.
Intraseasonal variability in the summer South China Sea: Wind jet, cold filament, and recirculations
NASA Astrophysics Data System (ADS)
Xie, Shang-Ping; Chang, Chueh-Hsin; Xie, Qiang; Wang, Dongxiao
2007-10-01
A recent study shows that the blockage of the southwest monsoon by the mountain range on the east coast of Indochina triggers a chain of ocean-atmospheric response, including a wind jet and cold filament in the South China Sea (SCS). We extend this climatological analysis by using higher temporal resolution (weekly) to study intraseasonal variability in summer. Our analysis shows that the development of the wind jet and cold filament is not a smooth seasonal process but consists of several intraseasonal events each year at about 45-day intervals. In a typical intraseasonal event, the wind jet intensifies to above 12 m/s, followed in a week by the development of a cold filament advected by an offshore jet east of South Vietnam on the boundary of a double gyre circulation in the ocean. The double gyre circulation itself also strengthens in response to the intraseasonal wind event via Rossby wave adjustment, reaching the maximum strength in 2 to 3 weeks. The intraseasonal cold filaments appear to influence the surface wind, reducing the local wind speed because of the increased static stability in the near-surface atmosphere. To first order, the above sequence of events may be viewed as the SCS response to atmospheric intraseasonal wind pulses, which are part of the planetary-scale boreal summer intraseasonal oscillation characterized by the northeastward propagation of atmospheric deep convection. The intraseasonal anomalies of sea surface temperature and precipitation are in phase over the SCS, suggesting an oceanic feedback onto the atmosphere. As wind variations are now being routinely monitored by satellite, the lags of 1-3 weeks in oceanic response offer useful predictability that may be exploited.
Abrupt Decline in the Arctic Winter Sea Ice Cover
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.
2007-01-01
Maximum ice extents in the Arctic in 2005 and 2006 have been observed to be significantly lower (by about 6%) than the average of those of previous years starting in 1979. Since the winter maxima had been relatively stable with the trend being only about -1.5% per decade (compared to about -10% per decade for the perennial ice area), this is a significant development since signals from greenhouse warming are expected to be most prominent in winter. Negative ice anomalies are shown to be dominant in 2005 and 2006 especially in the Arctic basin and correlated with winds and surface temperature anomalies during the same period. Progressively increasing winter temperatures in the central Arctic starting in 1997 is observed with significantly higher rates of increase in 2005 and 2006. The Atlantic Oscillation (AO) indices correlate weakly with the sea ice and surface temperature anomaly data but may explain the recent shift in the perennial ice cover towards the western region. Results suggest that the trend in winter ice is finally in the process of catching up with that of the summer ice cover.
NASA Astrophysics Data System (ADS)
Gomez, F. A.; Lee, S. K.; Liu, Y.; Hernandez, F., Jr.; Lamkin, J. T.
2017-12-01
Previous studies have suggested that El Nino-Southern Oscillation (ENSO) plays a role in modulating phytoplankton biomass and the reproductive success of marine species in the Gulf of Mexico (GoM). However, characterizations of ENSO-related ecosystem responses such as plankton production have not been fully addressed for the region. Here we examine ENSO impacts on biogeochemical processes within coastal and open ocean domains in the GoM, using a three dimensional high-resolution ocean-biogeochemical model, forced with historical surface fluxes and river run-off for 1979 - 2014. Enhanced precipitation across southern US during El Nino winter increases freshwater discharge and nutrient load into the GoM mainly via the Mississippi-Atchafalaya River. Those anomalies lead to reduced salinity and greater concentration of dissolved inorganic nitrogen and plankton production in the northern shelf especially during winter. In addition, the frequency of northerly wind anomalies that cool the upper ocean increases during El Nino. The negative surface heat flux anomalies further decrease vertical thermal stratification and thus increase phytoplankton production during early spring in the northern deep GoM.
Diagnostics of Rainfall Anomalies in the Nordeste During the Global Weather Experiment
NASA Technical Reports Server (NTRS)
Sikdar, D. M.
1984-01-01
The relationship of the daily variability of large-scale pressure, cloudiness and upper level wind patterns over the Brazil-Atlantic sector during March/April 1979 to rainfall anomalies in northern Nordeste was investigated. The experiment divides the rainy season (March/April) of 1979 into wet and dry days, then composites bright cloudiness, sea level pressure, and upper level wind fields with respect to persistent rainfall episodes. Wet and dry anomalies are analyzed along with seasonal mean conditions.
Surface magnetic field mapping on high albedo marking areas of the moon
NASA Astrophysics Data System (ADS)
Shibuya, H.; Aikawa, K.; Tsunakawa, H.; Takahashi, F.; Shimizu, H.; Matsushima, M.
2009-12-01
The correlation between high albedo markings (HAM) on the surface of the moon and strong magnetic anomalies has been claimed since the early time of the lunar magnetic field study (Hood and Schubert, 1980). Hood et al. (1989) mapped the smoothed magnetic field over the Reiner Gamma region using Lunar Prospector magnetometer (LP-MAG) data, and showed that the position of them matches well. We have developed a method to recover the 3-d magnetic field from satellite field observations (EPR method which stands for Equivalent Pole Reduction; Toyoshima et al. 2008). Applying EPR to the several areas of strong magnetic anomalies, we calculated the magnetic anomaly maps of near surface regions, to see how the anomaly and the HAM correlate each other. The data used is of the Lunar Prospector magnetometer (LP-MAG). They are selected from low altitude observations performed in 1998 to 1999. The areas studied are Reiner Gamma, Airy, Descartes, Abel, and Crisium Antipode regions. The EPR determines a set of magnetic monopoles at the moon surface which produce the magnetic field of the observation. In each studied area, we put poles in 0.1° intervals of both latitude and longitude, then the magnetic field at 5km in altitude is calculated. The field distribution is superimposed with the albedo map made from Clementine data. The total force (Bf) maps indicate that the HMA occurs at the strong anomaly regions, but their shape does not quite overlie. However, taking horizontal component (Bh), not only position but the shape and size of the anomalies coincide with HMA regions. It is particularly true for the Reiner Gamma, and Descartes regions. The shape of HMA fits in a Bh contour. The HMA is argued to be formed by the reduction of solar wind particles which are shielded by the magnetic field. Since the deflection of the charged particle becomes large at large horizontal component, the Bh distribution showed here support the argument.
Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation.
NASA Astrophysics Data System (ADS)
Kwok, R.; Comiso, J. C.
2002-03-01
The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-yr dataset from 1982 to 1998. The polar climate anomalies are correlated with the Southern Oscillation index (SOI) and the composites of these anomalies are examined under the positive (SOI > 0), neutral (0 > SOI > 1), and negative (SOI < 1) phases of SOI. The climate dataset consists of sea level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea ice dataset describes its extent, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables with the SOI. The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen, and Ross Seas. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillations that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea ice cover are evident. Recent anomalies in the sea ice cover that are clearly associated with the SOI include the following: the record decrease in the sea ice extent in the Bellingshausen Sea from mid-1988 to early 1991; the relationship between Ross Sea SST and the ENSO signal, and reduced sea ice concentration in the Ross Sea; and the shortening of the ice season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea and lengthening of the ice season in the western Ross Sea, Bellinghausen Sea, and central Weddell Sea gyre during the period 1988-94. Four ENSO episodes over the last 17 years contributed to a negative mean in the SOI (0.5). In each of these episodes, significant retreats in ice cover of the Bellingshausen and Amundsen Seas were observed showing a unique association of this region of the Antarctic with the Southern Oscillation.
Lunar plasma measurement by MAP-PACE onboard KAGUYA (SELENE)
NASA Astrophysics Data System (ADS)
Saito, Yoshifumi
Low energy charged particles around the Moon were vigorously observed by Moon orbiting satellites and plasma instrumentation placed on the lunar surface in 1960s and 1970s. Though there were some satellites that explored the Moon afterwards, most of them were dedicated to the global mapping of the lunar surface. KAGUYA(SELENE) is a Japanese lunar orbiter that studies the origin and evolution of the Moon by means of global mapping of element abundances, mineralogical composition, and surface geographical mapping from 100km altitude. KAGUYA was successfully launched on 14 September 2007 by HIIA launch vehicle from Tanegashima Space Center in Japan. KAGUYA was inserted into a circular lunar polar orbit of 100km altitude and started continuous observation in mid-December 2007. One of the fourteen science instruments MAP-PACE (MAgnetic field and Plasma experiment - Plasma energy Angle and Composition Experiment) was developed for the comprehensive three-dimensional plasma measurement around the Moon. MAP-PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). ESA-S1 and S2 measure the distribution function of low energy electrons below 15keV. IMA and IEA measure the distribution function of low energy ions below 28keV/q. IMA has an ability to discriminate the ion mass with high mass resolution. PACE sensors have been measuring solar wind, plasmas in the wake region of the Moon and plasmas in the Earth's magnetosphere. ESA sensors have discovered electron heating over magnetic anomalies on the lunar surface. ESA sensors have also observed electrons accelerated from the lunar surface in the wake region. PACE ion sensors have discovered new features of low energy ions around the Moon. IMA has discovered the existence of alkali ions that are originated from the lunar surface or lunar atmosphere and are picked up by the solar wind. IEA and IMA sensors discovered solar wind reflection by the Moon. PACE ion sensors also discovered that ions are rarefied over the magnetic anomaly on the lunar surface while electrons are heated. MAP-PACE has been revealing unexpectedly active plasma environment around the Moon.
Seasonal variability of the Canary Current: A numerical study
NASA Astrophysics Data System (ADS)
Mason, Evan; Colas, Francois; Molemaker, Jeroen; Shchepetkin, Alexander F.; Troupin, Charles; McWilliams, James C.; Sangrã, Pablo
2011-06-01
A high-resolution numerical model study of the Canary Basin in the northeast subtropical Atlantic Ocean is presented. A long-term climatological solution from the Regional Oceanic Modeling System (ROMS) reveals mesoscale variability associated with the Azores and Canary Current systems, the northwest African coastal upwelling, and the Canary Island archipelago. The primary result concerns the Canary Current (CanC) which, in the solution, transports ˜3 Sv southward in line with observations. The simulated CanC has a well-defined path with pronounced seasonal variability. This variability is shown to be mediated by the westward passage of two large annually excited counterrotating anomalous structures that originate at the African coast. The anomalies have a sea surface expression, permitting their validation using altimetry and travel at the phase speed of baroclinic planetary (Rossby) waves. The role of nearshore wind stress curl variability as a generating mechanism for the anomalies is confirmed through a sensitivity experiment forced by low-resolution winds. The resulting circulation is weak in comparison to the base run, but the propagating anomalies are still discernible, so we cannot discount a further role in their generation being played by annual reversals of the large-scale boundary flow that are known to occur along the African margin. An additional sensitivity experiment, where the Azores Current is removed by closing the Strait of Gibraltar presents the same anomalies and CanC behavior as the base run, suggesting that the CanC is rather insensitive to upstream variability from the Azores Current.
NASA Astrophysics Data System (ADS)
Buckley, Martha W.; Marshall, John
2016-03-01
This is a review about the Atlantic Meridional Overturning Circulation (AMOC), its mean structure, temporal variability, controlling mechanisms, and role in the coupled climate system. The AMOC plays a central role in climate through its heat and freshwater transports. Northward ocean heat transport achieved by the AMOC is responsible for the relative warmth of the Northern Hemisphere compared to the Southern Hemisphere and is thought to play a role in setting the mean position of the Intertropical Convergence Zone north of the equator. The AMOC is a key means by which heat anomalies are sequestered into the ocean's interior and thus modulates the trajectory of climate change. Fluctuations in the AMOC have been linked to low-frequency variability of Atlantic sea surface temperatures with a host of implications for climate variability over surrounding landmasses. On intra-annual timescales, variability in AMOC is large and primarily reflects the response to local wind forcing; meridional coherence of anomalies is limited to that of the wind field. On interannual to decadal timescales, AMOC changes are primarily geostrophic and related to buoyancy anomalies on the western boundary. A pacemaker region for decadal AMOC changes is located in a western "transition zone" along the boundary between the subtropical and subpolar gyres. Decadal AMOC anomalies are communicated meridionally from this region. AMOC observations, as well as the expanded ocean observational network provided by the Argo array and satellite altimetry, are inspiring efforts to develop decadal predictability systems using coupled atmosphere-ocean models initialized by ocean data.
NASA Technical Reports Server (NTRS)
Malloy, Kelsey; Folmer, Michael J.; Phillips, Joseph; Sienkiewicz, Joseph M.; Berndt, Emily
2017-01-01
Motivation: Ocean data is sparse: reliance on satellite imagery for marine forecasting; Ocean Prediction Center (OPC) –“mariner’s weather lifeline”. Responsible for: Pacific, Atlantic, Pacific Alaska surface analyses –24, 48, 96 hrs.; Wind & wave analyses –24, 48, 96 hrs.; Issue warnings, make decisions, Geostationary Operational Environmental Satellite –R Series (now GOES-16), Compared to the old GOES: 3 times spectral resolution, 4 times spatial resolution, 5 times faster coverage; Comparable to Japanese Meteorological Agency’s Himawari-8, used a lot throughout this research. Research Question: How can integrating satellite data imagery and derived products help forecasters improve prognosis of rapid cyclogenesis and hurricane-force wind events? Phase I –Identifying stratospheric air intrusions: Water Vapor –6.2, 6.9, 7.3 micron channels; Airmass RGB Product; AIRS, IASI, NUCAPS total column ozone and ozone anomaly; ASCAT (A/B) and AMSR-2 wind data.
NASA Technical Reports Server (NTRS)
Colon, Edward; Lindesay, James; Suarez, Max J.
1998-01-01
An examination of simulated Madden-Julian Oscillation (MJO) response to active and suppressed air-sea interactions is made using an aquaplanet model employing a realistic representation of the hydrologic cyle. In general, the evaporation-wind feedback (EWF) results from a coupling between tropical zonal surface wind stresses and evaporation anomalies. Recent observational and theoretical studies have questioned the significance of EWF in sustaining the predominantly wavenumber 1 eastward propagating mode commonly attributed to the interaction between large scale convergence and cumulus-scale convection (conditional instability of the second kind, CISK). To ascertain the nature of the EWF dependence on lower boundary conditions and thus quantify its effect on MJO development, a series of numerical experiments were conducted employing various zonally symmetric sea surface temperature (SST) distributions with active and suppressed EWF mechanisms. Results suggest that a correlation exists between tropical SSTs and the efficacy of the EWF in vertically redistributing heat acquired through surface wind stresses. It has been determined that the removal of the EWF is not a crucial factor in the dampening of the simulated MJO at high equatorial SSTs. The additional energy fed into the developing convective mode by the EWF selectively amplifies higher order wave modes in all numerical experiments thus boosting overall variances in oscillatory responses.
Impacts of winter NPO on subsequent winter ENSO: sensitivity to the definition of NPO index
NASA Astrophysics Data System (ADS)
Chen, Shangfeng; Wu, Renguang
2018-01-01
This study investigates the linkage between boreal winter North Pacific Oscillation (NPO) and subsequent winter El Niño-Southern Oscillation (ENSO) based on seven different NPO indices. Results show that the influence of winter NPO on the subsequent winter El Niño is sensitive to how the NPO is defined. A significant NPO-El Niño connection is obtained when the NPO-related anomalous cyclone over the subtropical North Pacific extends to near-equatorial regions. The anomalous cyclone induces warm sea surface temperature (SST) anomalies through modulating surface heat fluxes. These warm SST anomalies are able to maintain into the following spring and summer through an air-sea coupled process and in turn induce significant westerly wind anomalies over the tropical western Pacific. In contrast, the NPO-El Niño relationship is unclear when the NPO-related anomalous cyclone over the subtropical North Pacific is confined to off-equatorial regions and cannot induce significant warm SST anomalies over the subtropical North Pacific. The present study suggests that definitions of NPO should be taken into account when using NPO to predict ENSO. In particular, we recommend defining the NPO index based on the empirical orthogonal function technique over appropriate region that does not extend too far north.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiquan; Zib, Benjamin J.; Xi, Baike
A warming Arctic climate is undergoing significant e 21 nvironmental change, most evidenced by the reduction of Arctic sea-ice extent during the summer. In this study, we examine two extreme anomalies of September sea-ice extent in 2007 and 1996, and investigate the impacts of cloud fraction (CF), atmospheric precipitable water vapor (PWV), downwelling longwave flux (DLF), surface air temperature (SAT), pressure and winds on the sea-ice variation in 2007 and 1996 using both satellite-derived sea-ice products and MERRA reanalysis. The area of the Laptev, East Siberian and West Chukchi seas (70-90oN, 90-180oE) has experienced the largest variation in sea-ice extentmore » from year-to-year and defined here as the Area Of Focus (AOF). The record low September sea-ice extent in 2007 was associated with positive anomalies 30 of CF, PWV, DLF, and SAT over the AOF. Persistent anti-cyclone positioned over the Beaufort Sea coupled with low pressure over Eurasia induced easterly zonal and southerly meridional winds. In contrast, negative CF, PWV, DLF and SAT anomalies, as well as opposite wind patterns to those in 2007, characterized the 1996 high September sea-ice extent. Through this study, we hypothesize the following positive feedbacks of clouds, water vapor, radiation and atmospheric variables on the sea-ice retreat during the summer 2007. The record low sea-ice extent during the summer 2007 is initially triggered by the atmospheric circulation anomaly. The southerly winds across the Chukchi and East Siberian seas transport warm, moist air from the north Pacific, which is not only enhancing sea-ice melt across the AOF, but also increasing clouds. The positive cloud feedback results in higher SAT and more sea-ice melt. Therefore, 40 more water vapor could be evaporated from open seas and higher SAT to form more clouds, which will enhance positive cloud feedback. This enhanced positive cloud feedback will then further increase SAT and accelerate the sea-ice retreat during the summer 2007.« less
Estimation of the surface stress near the eye wall of hurricanes using WSR-88D radar data
NASA Astrophysics Data System (ADS)
Businger, S.; Morrison, I.; Marks, F.; Dodge, P.; Businger, J. A.
2003-04-01
Analysis of Doppler velocity data from the WSR-88D radar during hurricane landfall reveals evidence of organized secondary circulations in the vicinity of the hurricane eye wall at low elevations. A Fourier analysis of the Velocity-Azimuthal Display (VAD) provides estimates of divergence (0th harmonic), wind speed and direction (1st harmonic), and deformation (2nd harmonic). A residual velocity field is obtained by subtracting the mean VAD velocity from the radial Doppler velocity for elevation angles between 0.5 and 5.5 degrees. The wavelength, length, depth, magnitude, and motion of velocity anomalies are then compiled from the residual velocity displays. The resulting statistics suggest the presence of organized secondary circulations or boundary layer (BL) rolls in the marine boundary layer of the hurricanes. To date, three storms have been examined: Fran (1996), Bonnie (1998), and Georges (1998) using WSR-88D data from Wilmington, N.C.; Morehead City, N.C.; and Key West, FL, respectively. The analysis focuses on the period between the time the first BL roll is identified and hurricane landfall. The number of BL rolls tracked in Bonnie, Fran, and Georges was 44, 56, and 24, respectively. BL rolls were less frequent in Georges, and the magnitude of the velocity anomalies was less than those in Fran and Bonnie. The average low-level (800 m--50 m) shear in Georges was substantially less than in the other storms, likely contributing to the fewer number of rolls identified and a lower intensity of the rolls. The wavelength of the observed BL rolls is about twice the horizontal distance between adjacent positive and negative velocity anomalies. Georges had the largest average wavelength (˜1400 m), followed by Fran (˜1320 m) and Bonnie (˜1200 m). The gradient between adjacent positive and negative anomalies corresponds to a horizontal wind shear of ˜14 m s-1 over 660 m, and a vertical shear component of vorticity of 2.0×10-2 s-1. Momentum fluxes associated with the secondary circulations are estimated with reference to mixing length theory. Estimates of the surface stress are obtained from the radar derived wind profiles using a modified momentum budget approach. The impact of secondary circulations on the magnitude of the surface stress in the hurricane eye wall will be discussed and contrasted with other approaches for estimating the stress.
Reflected Charged Particle Populations around Dipolar Lunar Magnetic Anomalies
NASA Astrophysics Data System (ADS)
Deca, Jan; Divin, Andrey
2016-10-01
In this work we analyze and compare the reflected particle populations for both a horizontal and a vertical dipole model embedded in the lunar surface, representing the solar wind interaction with two different lunar magnetic anomaly (LMA) structures. Using the 3D full-kinetic electromagnetic code iPic3D, in combination with a test-particle approach to generate particle trajectories, we focus on the ion and electron dynamics. Whereas the vertical model electrostatically reflects ions upward under both near-parallel and near-perpendicular angles with respect to the lunar surface, the horizontal model only has a significant shallow component. Characterizing the electron dynamics, we find that the interplay of the mini-magnetosphere electric and magnetic fields is capable of temporarily trapping low-energy electrons and possibly ejecting them upstream. Our results are in agreement with recent high-resolution observations. Low- to medium-altitude ion and electron observations might be excellent indicators to complement orbital magnetic field measurements and better uncover the underlying magnetic field structure. The latter is of particular importance in defining the correlation between LMAs and lunar swirls, and further testing the solar wind shielding hypothesis for albedo markings due to space weathering. Observing more reflected ions does not necessarily point to the existence of a mini-magnetosphere.
REFLECTED CHARGED PARTICLE POPULATIONS AROUND DIPOLAR LUNAR MAGNETIC ANOMALIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deca, Jan; Divin, Andrey
2016-10-01
In this work we analyze and compare the reflected particle populations for both a horizontal and a vertical dipole model embedded in the lunar surface, representing the solar wind interaction with two different lunar magnetic anomaly (LMA) structures. Using the 3D full-kinetic electromagnetic code iPic3D, in combination with a test-particle approach to generate particle trajectories, we focus on the ion and electron dynamics. Whereas the vertical model electrostatically reflects ions upward under both near-parallel and near-perpendicular angles with respect to the lunar surface, the horizontal model only has a significant shallow component. Characterizing the electron dynamics, we find that themore » interplay of the mini-magnetosphere electric and magnetic fields is capable of temporarily trapping low-energy electrons and possibly ejecting them upstream. Our results are in agreement with recent high-resolution observations. Low- to medium-altitude ion and electron observations might be excellent indicators to complement orbital magnetic field measurements and better uncover the underlying magnetic field structure. The latter is of particular importance in defining the correlation between LMAs and lunar swirls, and further testing the solar wind shielding hypothesis for albedo markings due to space weathering. Observing more reflected ions does not necessarily point to the existence of a mini-magnetosphere.« less
Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode
NASA Astrophysics Data System (ADS)
Sallée, J. B.; Speer, K. G.; Rintoul, S. R.
2010-04-01
Interactions between the atmosphere and ocean are mediated by the mixed layer at the ocean surface. The depth of this layer is determined by wind forcing and heating from the atmosphere. Variations in mixed-layer depth affect the rate of exchange between the atmosphere and deeper ocean, the capacity of the ocean to store heat and carbon and the availability of light and nutrients to support the growth of phytoplankton. However, the response of the Southern Ocean mixed layer to changes in the atmosphere is not well known. Here we analyse temperature and salinity data from Argo profiling floats to show that the Southern Annular Mode (SAM), the dominant mode of atmospheric variability in the Southern Hemisphere, leads to large-scale anomalies in mixed-layer depth that are zonally asymmetric. From a simple heat budget of the mixed layer we conclude that meridional winds associated with departures of the SAM from zonal symmetry cause anomalies in heat flux that can, in turn, explain the observed changes of mixed-layer depth and sea surface temperature. Our results suggest that changes in the SAM, including recent and projected trends attributed to human activity, drive variations in Southern Ocean mixed-layer depth, with consequences for air-sea exchange, ocean sequestration of heat and carbon, and biological productivity.
Link between the Barents Oscillation and recent boreal winter cooling over the Asian midlatitudes
NASA Astrophysics Data System (ADS)
Shu, Qi; Qiao, Fangli; Song, Zhenya; Song, Yajuan
2018-01-01
The link between boreal winter cooling over the midlatitudes of Asia and the Barents Oscillation (BO) since the late 1980s is discussed in this study, based on five datasets. Results indicate that there is a large-scale boreal winter cooling during 1990-2015 over the Asian midlatitudes, and that it is a part of the decadal oscillations of long-term surface air temperature (SAT) anomalies. The SAT anomalies over the Asian midlatitudes are significantly correlated with the BO in boreal winter. When the BO is in its positive phase, anomalously high sea level pressure over the Barents region, with a clockwise wind anomaly, causes cold air from the high latitudes to move over the midlatitudes of Asia, resulting in anomalous cold conditions in that region. Therefore, the recent increasing trend of the BO has contributed to recent winter cooling over the Asian midlatitudes.
Time Scales and Sources of European Temperature Variability
NASA Astrophysics Data System (ADS)
Årthun, Marius; Kolstad, Erik W.; Eldevik, Tor; Keenlyside, Noel S.
2018-04-01
Skillful predictions of continental climate would be of great practical benefit for society and stakeholders. It nevertheless remains fundamentally unresolved to what extent climate is predictable, for what features, at what time scales, and by which mechanisms. Here we identify the dominant time scales and sources of European surface air temperature (SAT) variability during the cold season using a coupled climate reanalysis, and a statistical method that estimates SAT variability due to atmospheric circulation anomalies. We find that eastern Europe is dominated by subdecadal SAT variability associated with the North Atlantic Oscillation, whereas interdecadal and multidecadal SAT variability over northern and southern Europe are thermodynamically driven by ocean temperature anomalies. Our results provide evidence that temperature anomalies in the North Atlantic Ocean are advected over land by the mean westerly winds and, hence, provide a mechanism through which ocean temperature controls the variability and provides predictability of European SAT.
Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean
Byrne, D.; Münnich, M.; Frenger, I.; Gruber, N.
2016-01-01
Although it is well established that the large-scale wind drives much of the world's ocean circulation, the contribution of the wind energy input at mesoscales (10–200 km) remains poorly known. Here we use regional simulations with a coupled high-resolution atmosphere–ocean model of the South Atlantic, to show that mesoscale ocean features and, in particular, eddies can be energized by their thermodynamic interactions with the atmosphere. Owing to their sea-surface temperature anomalies affecting the wind field above them, the oceanic eddies in the presence of a large-scale wind gradient provide a mesoscale conduit for the transfer of energy into the ocean. Our simulations show that this pathway is responsible for up to 10% of the kinetic energy of the oceanic mesoscale eddy field in the South Atlantic. The conditions for this pathway to inject energy directly into the mesoscale prevail over much of the Southern Ocean north of the Polar Front. PMID:27292447
Coupled ocean-atmosphere surface variability and its climate impacts in the tropical Atlantic region
NASA Astrophysics Data System (ADS)
Fontaine, B.; Janicot, Serge; Roucou, P.
This study examines time evolution and statistical relationships involving the two leading ocean-atmosphere coupled modes of variability in the tropical Atlantic and some climate anomalies over the tropical 120°W-60°W region using selected historical files (75-y near global SSTs and precipitation over land), more recent observed data (30-y SST and pseudo wind stress in the tropical Atlantic) and reanalyses from the US National Centers for Environmental Prediction (NCEP/NCAR) reanalysis System on the period 1968-1997: surface air temperature, sea level pressure, moist static energy content at 850 hPa, precipitable water and precipitation. The first coupled mode detected through singular value decomposition of the SST and pseudo wind-stress data over the tropical Atlantic (30°N-20°S) expresses a modulation in the thermal transequatorial gradient of SST anomalies conducted by one month leading wind-stress anomalies mainly in the tropical north Atlantic during northern winter and fall. It features a slight dipole structure in the meridional plane. Its time variability is dominated by a quasi-decadal signal well observed in the last 20-30 ys and, when projected over longer-term SST data, in the 1920s and 1930s but with shorter periods. The second coupled mode is more confined to the south-equatorial tropical Atlantic in the northern summer and explains considerably less wind-stress/SST cross-covariance. Its time series features an interannual variability dominated by shorter frequencies with increased variance in the 1960s and 1970s before 1977. Correlations between these modes and the ENSO-like Nino3 index lead to decreasing amplitude of thermal anomalies in the tropical Atlantic during warm episodes in the Pacific. This could explain the nonstationarity of meridional anomaly gradients on seasonal and interannual time scales. Overall the relationships between the oceanic component of the coupled modes and the climate anomaly patterns denote thermodynamical processes at the ocean/atmosphere interface that create anomaly gradients in the meridional plane in a way which tends to alter the north-south movement of the seasonal cycle. This appears to be consistent with the intrinsic non-dipole character of the tropical Atlantic surface variability at the interannual time step and over the recent period, but produces abnormal amplitude and/or delayed excursions of the intertropical convergence zone (ITCZ). Connections with continental rainfall are approached through three (NCEP/NCAR and observed) rainfall indexes over the Nordeste region in Brazil, and the Guinea and Sahel zones in West Africa. These indices appear to be significantly linked to the SST component of the coupled modes only when the two Atlantic modes+the ENSO-like Nino3 index are taken into account in the regressions. This suggests that thermal forcing of continental rainfall is particularly sensitive to the linear combinations of some basic SST patterns, in particular to those that create meridional thermal gradients. The first mode in the Atlantic is associated with transequatorial pressure, moist static energy and precipitable water anomaly patterns which can explain abnormal location of the ITCZ particularly in northern winter, and hence rainfall variations in Nordeste. The second mode is more associated with in-phase variations of the same variables near the southern edge of the ITCZ, particularly in the Gulf of Guinea during the northern spring and winter. It is primarily linked to the amplitude and annual phase of the ITCZ excursions and thus to rainfall variations in Guinea. Connections with Sahel rainfall are less clear due to the difficulty for the model to correctly capture interannual variability over that region but the second Atlantic mode and the ENSO-like Pacific variability are clearly involved in the Sahel climate interannual fluctuations: anomalous dry (wet) situations tend to occur when warmer (cooler) waters are present in the eastern Pacific and the gulf of Guinea in northern summer which contribute to create a northward (southward) transequatorial anomaly gradient in sea level pressure over West Africa.
Ryan, H.F.; Noble, M.
2002-01-01
Long-term monthly sea level and sea surface temperature (SST) anomalies from central California show that during winter months, positive anomalies are associated with El Nin??o events and the negative ones with La Nin??a events. There is no significant impact on monthly mean anomalies associated with Pacific decadal oscillations, although there is a tendency for more extreme events and greater variance during positive decadal oscillations. The very strong 1997-1998 El Nin??o was analyzed with respect to the long-term historic record to assess the forcing mechanisms for sea level and SST. Beginning in the spring of 1997, we observed several long-period (> 30days) fluctuations in daily sea level with amplitudes of over 10 cm at San Francisco, California. Fluctuations of poleward long-period alongshore wind stress anomalies (AWSA) are coherent with the sea level anomalies. However, the wind stress cannot entirely account for the observed sea level signals. The sea level fluctuations are also correlated with sea level fluctuations observed further south at Los Angeles and Tumaco, Columbia, which showed a poleward phase propagation of the sea level signal. We suggest that the sea level fluctuations were, to a greater degree, forced by the passage of remotely generated and coastally trapped waves that were generated along the equator and propagated to the north along the west coast of North America. However, both local and remote AWSA can significantly modulate the sea level signals. The arrival of coastally trapped waves began in the spring of 1997, which is earlier than previous strong El Nin??o events such as the 1982-1983 event. Published by Elsevier Science Ltd.
On Simulating the Mid-western-us Drought of 1988 with a GCM
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Mocko, D. M.; Lau, William K.-M.; Atlas, R.
2002-01-01
The primary cause of the midwestern North American drought in the summer of 1988 has been identified to be the La Nina SST anomalies. Yet with the SST anomalies prescribed, this drought has not been simulated satisfactorily by any general circulation model. Seven simulation-experiments, each containing an ensemble of 4-sets of simulations, were conducted with the GEOS GCM for both 1987 and 1988. All simulations started from January 1 and continued through the end of August. In the first baseline case, Case 1, only the SST anomalies and some vegetation parameters were prescribed, while everything else (such as soil moisture, snow-cover, and clouds) was interactive. The GCM did produce some of the circulation features of a drought over North America, but they could only be identified on the planetary scales. The 1988 minus 1987 precipitation differences show that the GCM was successful in simulating reduced precipitation in the mid-west, but the accompanying circulation anomalies were not well simulated, leading one to infer that the GCM has simulated the drought for the wrong reason. To isolate the causes for this unremarkable circulation, analyzed winds and soil moisture were prescribed in Case 2 and Case 3 as continuous updates by direct replacement of the GCM-predicted fields. These cases show that a large number of simulation biases emanate from wind biases that are carried into the North American region from surroundings regions. Inclusion of soil moisture also helps to ameliorate the strong feedback, perhaps even stronger than that of the real atmosphere, between soil moisture and precipitation. Case 2 simulated one type of surface temperature anomaly pattern, whereas Case 3 with the prescribed soil moisture produced another.
NASA Astrophysics Data System (ADS)
Long, Craig S.; Fujiwara, Masatomo; Davis, Sean; Mitchell, Daniel M.; Wright, Corwin J.
2017-12-01
Two of the most basic parameters generated from a reanalysis are temperature and winds. Temperatures in the reanalyses are derived from conventional (surface and balloon), aircraft, and satellite observations. Winds are observed by conventional systems, cloud tracked, and derived from height fields, which are in turn derived from the vertical temperature structure. In this paper we evaluate as part of the SPARC Reanalysis Intercomparison Project (S-RIP) the temperature and wind structure of all the recent and past reanalyses. This evaluation is mainly among the reanalyses themselves, but comparisons against independent observations, such as HIRDLS and COSMIC temperatures, are also presented. This evaluation uses monthly mean and 2.5° zonal mean data sets and spans the satellite era from 1979-2014. There is very good agreement in temperature seasonally and latitudinally among the more recent reanalyses (CFSR, MERRA, ERA-Interim, JRA-55, and MERRA-2) between the surface and 10 hPa. At lower pressures there is increased variance among these reanalyses that changes with season and latitude. This variance also changes during the time span of these reanalyses with greater variance during the TOVS period (1979-1998) and less variance afterward in the ATOVS period (1999-2014). There is a distinct change in the temperature structure in the middle and upper stratosphere during this transition from TOVS to ATOVS systems. Zonal winds are in greater agreement than temperatures and this agreement extends to lower pressures than the temperatures. Older reanalyses (NCEP/NCAR, NCEP/DOE, ERA-40, JRA-25) have larger temperature and zonal wind disagreement from the more recent reanalyses. All reanalyses to date have issues analysing the quasi-biennial oscillation (QBO) winds. Comparisons with Singapore QBO winds show disagreement in the amplitude of the westerly and easterly anomalies. The disagreement with Singapore winds improves with the transition from TOVS to ATOVS observations. Temperature bias characteristics determined via comparisons with a reanalysis ensemble mean (MERRA, ERA-Interim, JRA-55) are similarly observed when compared with Aura HIRDLS and Aura MLS observations. There is good agreement among the NOAA TLS, SSU1, and SSU2 Climate Data Records and layer mean temperatures from the more recent reanalyses. Caution is advised for using reanalysis temperatures for trend detection and anomalies from a long climatology period as the quality and character of reanalyses may have changed over time.
NASA Astrophysics Data System (ADS)
Cross, B.; Kohfeld, K. E.; Cooper, A.; Bailey, H. J.; Rucker, M.
2013-12-01
The use of wind power is growing rapidly in the Pacific Northwest (PNW ) due to environmental concerns, decreasing costs of implementation, strong wind speeds, and a desire to diversify electricity sources to minimize the impacts of streamflow variability on electricity prices and system flexibility. In hydroelectric dominated systems, like the PNW, the benefits of wind power can be maximized by accounting for the relationship between long term variability in wind speeds and reservoir inflows. Clean energy policies in British Columbia make the benefits of increased wind power generation during low streamflow periods particularly large, by preventing the overbuilding of marginal hydroelectric projects. The goal of this work was to quantify long-term relationships between wind speed and streamflow behavior in British Columbia. Wind speed data from the North American Regional Reanalysis (NARR) and cumulative usable inflows (CUI) from BC Hydro were used to analyze 10m wind speed and density (WD) trends, WD-CUI correlations, and WD anomalies during low and high inflow periods in the PNW (40°N to 65°N, 110°W to 135°W) from 1979-2010. Statistically significant positive wind speed and density trends were found for most of the PNW, with the largest increases along the Pacific Coast. CUI-WD correlations were weakly positive for most regions, with the highest values along the US coast (r ~0.55), generally weaker correlations to the north, and negative correlations (r ~ -0.25) along BC's North Coast. When considering seasonal relationships, the Spring freshet was coincident with lower WD anomalies west of the Rocky Mountains and higher WDs to the east. A similar but opposite pattern was observed for low inflow winter months. When considering interannual variability, lowest inflow years experienced positive WD anomalies (up to 40% increases) for the North Coast. In highest inflow years, positive WD anomalies were widespread in the US and for smaller patches of central BC. By accounting for regional and temporal differences in the relationship between wind (WD) and streamflow (CUI) behaviour during wind farm site selection, the benefits of energy diversification can be maximized.
NASA Astrophysics Data System (ADS)
Kaneko, D.; Sakuma, H.
2014-12-01
The first author has been developing RSEM crop-monitoring system using satellite-based assessment of photosynthesis, incorporating meteorological conditions. Crop production comprises of several stages and plural mechanisms based on leaf photosynthesis, surface energy balance, and the maturing of grains after fixation of CO2, along with water exchange through soil vegetation-atmosphere transfer. Grain production in prime countries appears to be randomly perturbed regionally and globally. Weather for crop plants reflects turbulent phenomena of convective and advection flows in atmosphere and surface boundary layer. It has been difficult for scientists to simulate and forecast weather correctly for sufficiently long terms to crop harvesting. However, severely poor harvests related to continental events must originate from a consistent mechanism of abnormal energetic flow in the atmosphere through both land and oceans. It should be remembered that oceans have more than 100 times of energy storage compared to atmosphere and ocean currents represent gigantic energy flows, strongly affecting climate. Anomalies of Sea Surface Temperature (SST), globally known as El Niño, Indian Ocean dipole, and Atlantic Niño etc., affect the seasonal climate on a continental scale. The authors aim to combine monitoring and seasonal forecasting, considering such mechanisms through land-ocean biosphere transfer. The present system produces assessments for all continents, specifically monitoring agricultural fields of main crops. Historical regions of poor and good harvests are compared with distributions of SST anomalies, which are provided by NASA GSFC. Those comparisons fairly suggest that the Worst harvest in 1993 and the Best in 1994 relate to the offshore distribution of low temperature anomalies and high gaps in ocean surface temperatures. However, high-temperature anomalies supported good harvests because of sufficient solar radiation for photosynthesis, and poor harvests because of insufficient precipitation. Integrated rates of photosynthesis on prime grains with planted areas were compared with the SST anomalies in poor and good harvests years. Other factors for poor harvest such as rainfall, solar radiation in addition to the intensity of winds as a measure of pressure perturbations need to be studied.
WES feedback and the Atlantic Meridional Mode: observations and CMIP5 comparisons
NASA Astrophysics Data System (ADS)
Amaya, Dillon J.; DeFlorio, Michael J.; Miller, Arthur J.; Xie, Shang-Ping
2017-09-01
The Atlantic Meridional Mode (AMM) is the dominant mode of tropical SST/wind coupled variability. Modeling studies have implicated wind-evaporation-SST (WES) feedback as the primary driver of the AMM's evolution across the Atlantic basin; however, a robust coupling of the SST and winds has not been shown in observations. This study examines observed AMM growth, propagation, and decay as a result of WES interactions. Investigation of an extended maximum covariance analysis shows that boreal wintertime atmospheric forcing generates positive SST anomalies (SSTA) through a reduction of surface evaporative cooling. When the AMM peaks in magnitude during spring and summer, upward latent heat flux anomalies occur over the warmest SSTs and act to dampen the initial forcing. In contrast, on the southwestern edge of the SSTA, SST-forced cross-equatorial flow reduces the strength of the climatological trade winds and provides an anomalous latent heat flux into the ocean, which causes southwestward propagation of the initial atmosphere-forced SSTA through WES dynamics. Additionally, the lead-lag relationship of the ocean and atmosphere indicates a transition from an atmosphere-forcing-ocean regime in the northern subtropics to a highly coupled regime in the northern tropics that is not observed in the southern hemisphere. CMIP5 models poorly simulate the latitudinal transition from a one-way interaction to a two-way feedback, which may explain why they also struggle to reproduce spatially coherent interactions between tropical Atlantic SST and winds. This analysis provides valuable insight on how meridional modes act as links between extratropical and tropical variability and focuses future research aimed at improving climate model simulations.
NASA Astrophysics Data System (ADS)
Parker-Stetter, Sandra; Urmy, Samuel; Horne, John; Eisner, Lisa; Farley, Edward
2016-12-01
Hypotheses on the factors affecting forage fish species distributions are often proposed but rarely evaluated using a comprehensive suite of indices. Using 24 predictor indices, we compared competing hypotheses and calculated average models for the distributions of capelin, age-0 Pacific cod, and age-0 pollock in the eastern Bering Sea from 2006 to 2010. Distribution was described using a two stage modeling approach: probability of occurrence ("presence") and density when fish were present. Both local (varying by location and year) and annual (uniform in space but varying by year) indices were evaluated, the latter accounting for the possibility that distributions were random but that overall presence or densities changed with annual conditions. One regional index, distance to the location of preflexion larvae earlier in the year, was evaluated for age-0 pollock. Capelin distributions were best predicted by local indices such as bottom depth, temperature, and salinity. Annual climate (May sea surface temperature (SST), sea ice extent anomaly) and wind (June wind speed cubed) indices were often important for age-0 Pacific cod in addition to local indices (temperature and depth). Surface, midwater, and water column age-0 pollock distributions were best described by a combination of local (depth, temperature, salinity, zooplankton) and annual (May SST, sea ice anomaly, June wind speed cubed) indices. Our results corroborated some of those in previous distribution studies, but suggested that presence and density may also be influenced by other factors. Even though there were common environmental factors that influenced all species' distributions, it is not possible to generalize conditions for forage fish as a group.
NASA Astrophysics Data System (ADS)
Su, H.; Yan, X. H.
2017-12-01
Subsurface thermal structure of the global ocean is a key factor that reflects the impact of the global climate variability and change. Accurately determining and describing the global subsurface and deeper ocean thermal structure from satellite measurements is becoming even more important for understanding the ocean interior anomaly and dynamic processes during recent global warming and hiatus. It is essential but challenging to determine the extent to which such surface remote sensing observations can be used to develop information about the global ocean interior. This study proposed a Support Vector Regression (SVR) method to estimate Subsurface Temperature Anomaly (STA) in the global ocean. The SVR model can well estimate the global STA upper 1000 m through a suite of satellite remote sensing observations of sea surface parameters (including Sea Surface Height Anomaly (SSHA), Sea Surface Temperature Anomaly (SSTA), Sea Surface Salinity Anomaly (SSSA) and Sea Surface Wind Anomaly (SSWA)) with in situ Argo data for training and testing at different depth levels. Here, we employed the MSE and R2 to assess SVR performance on the STA estimation. The results from the SVR model were validated for the accuracy and reliability using the worldwide Argo STA data. The average MSE and R2 of the 15 levels are 0.0090 / 0.0086 / 0.0087 and 0.443 / 0.457 / 0.485 for 2-attributes (SSHA, SSTA) / 3-attributes (SSHA, SSTA, SSSA) / 4-attributes (SSHA, SSTA, SSSA, SSWA) SVR, respectively. The estimation accuracy was improved by including SSSA and SSWA for SVR input (MSE decreased by 0.4% / 0.3% and R2 increased by 1.4% / 4.2% on average). While, the estimation accuracy gradually decreased with the increase of the depth from 500 m. The results showed that SSSA and SSWA, in addition to SSTA and SSHA, are useful parameters that can help estimate the subsurface thermal structure, as well as improve the STA estimation accuracy. In future, we can figure out more potential and useful sea surface parameters from satellite remote sensing as input attributes so as to further improve the STA sensing accuracy from machine learning. This study can provide a helpful technique for studying thermal variability in the ocean interior which has played an important role in recent global warming and hiatus from satellite observations over global scale.
A Preliminary Assessment of the S-3A SRAL Performances in SAR Mode
NASA Astrophysics Data System (ADS)
Dinardo, Salvatore; Scharroo, Remko; Bonekamp, Hans; Lucas, Bruno; Loddo, Carolina; Benveniste, Jerome
2016-08-01
The present work aims to assess and characterize the S3-A SRAL Altimeter performance in closed-loop tracking mode and in open ocean conditions. We have processed the Sentinel-3 SAR data products from L0 until L2 using an adaptation of the ESRIN GPOD CryoSat-2 Processor SARvatore.During the Delay-Doppler processing, we have chosen to activate the range zero-padding option.The L2 altimetric geophysical parameters, that are to be validated, are the sea surface height above the ellipsoid (SSH), sea level anomaly (SLA), the significant wave height (SWH) and wind speed (U10), all estimated at 20 Hz.The orbit files are the POD MOE, while the geo- corrections are extracted from the RADS database.In order to assess the accuracy of the wave&wind products, we have been using an ocean wave&wind speed model output (wind speed at 10 meter high above the sea surface) from the ECMWF.We have made a first order approximation of the sea state bias as -4.7% of the SWH.In order to assess the precision performance of SRAL SAR mode, we compute the level of instrumental noise (range, wave height and wind speed) for different conditions of sea state.
NASA Astrophysics Data System (ADS)
Nogueira, Miguel; Soares, Pedro M. M.; Tomé, Ricardo; Cardoso, Rita M.
2018-05-01
We present a detailed evaluation of wind energy density (WED) over Portugal, based on the EURO-CORDEX database of high-resolution regional climate model (RCM) simulations. Most RCMs showed reasonable accuracy in reproducing the observed near-surface wind speed. The climatological patterns of WED displayed large sub-regional heterogeneity, with higher values over coastal regions and steep orography. Subsequently, we investigated the future changes of WED throughout the twenty-first century, considering mid- and end-century periods, and two emission scenarios (RCP4.5 and RCP8.5). On the yearly average, the multi-model ensemble WED changes were below 10% (15%) under RCP4.5 (RCP8.5). However, the projected WED anomalies displayed strong seasonality, dominated by low positive values in summer (< 10% for both scenarios), negative values in winter and spring (up to - 10% (- 20%) under RCP4.5 (RCP8.5)), and stronger negative anomalies in autumn (up to - 25% (- 35%) under RCP4.5 (RCP8.5)). These projected WED anomalies displayed large sub-regional variability. The largest reductions (and lowest increases) are linked to the northern and central-eastern elevated terrain, and the southwestern coast. In contrast, the largest increases (and lowest reductions) are linked to the central-western orographic features of moderate elevation. The projections also showed changes in inter-annual variability of WED, with small increases for annual averages, but with distinct behavior when considering year-to-year variability over a specific season: small increases in winter, larger increases in summer, slight decrease in autumn, and no relevant change in spring. The changes in inter-annual variability also displayed strong dependence on the underlying terrain. Finally, we found significant model spread in the magnitude of projected WED anomalies and inter-annual variability, affecting even the signal of the changes.
Surface ozone concentrations in Europe: Links with the regional-scale atmospheric circulation
NASA Astrophysics Data System (ADS)
Davies, T. D.; Kelly, P. M.; Low, P. S.; Pierce, C. E.
1992-06-01
Daily surface ozone observations from 1978 (1976 for some analyses) to 1988 for Bottesford (United Kingdom), Cabauw, Kloosterburen (The Netherlands), Hohenpeissenberg, Neuglobsow, Hamburg, and Arkona (Germany) are used to analyze links between surface ozone variations and the atmospheric circulation. A daily Europe-wide synoptic classification highlights marked differences between surface ozone/meteorology relationships in summer and winter. These relationships are characterized by correlations between daily surface ozone concentrations at each station and a local subregional surface pressure gradient (a wind speed index). Although there are geographical variations, which are explicable in terms of regional climatology, there are distinct annual cycles. In summer, the surface ozone/wind speed relationship exhibits the expected negative sign; however, in winter, the relationship is, in the main, strongly positive, especially at those stations which are more influenced by the vigorous westerlies. Spring and autumn exhibit negative, positive, or transitional (between summer and winter) behavior, depending on geographical position. It is suggested that these relationships reflect the importance of vertical exchange from the free troposphere to the surface in the nonsummer months. Composite surface pressure patterns and surface pressure anomaly (from the long-term mean) patterns associated with high surface ozone concentrations on daily and seasonal time scales are consistent with the surface ozone/wind speed relationships. Moreover, they demonstrate that high surface ozone concentrations, in a climatological time frame, can be associated with mean surface pressure patterns which have a synoptic reality and are robust. Such an approach may be useful in interpreting past variations in surface ozone and may help to isolate the effect of human activity. It is also possible that assessments can be made of the effect of projected future changes in the atmospheric circulation. This potential is illustrated by the fact that up to 65% of the interannual variance in 6-month mean surface ozone concentrations can be explained by the subregional wind speed index.
Atmospheric responses to sensible and latent heating fluxes over the Gulf Stream
NASA Astrophysics Data System (ADS)
Minobe, S.; Ida, T.; Takatama, K.
2016-12-01
Air-sea interaction over mid-latitude oceanic fronts such as the Gulf Stream attracted large attention in the last decade. Observational analyses and modelling studies revealed that atmospheric responses over the Gulf Stream including surface wind convergence, enhanced precipitation and updraft penetrating to middle-to-upper troposphere roughly on the Gulf Stream current axis or on the warmer flank of sea-surface temperature (SST) front of the Gulf Stream . For these atmospheric responses, oceanic information should be transmitted to the atmosphere via turbulent heat fluxes, and thus the mechanisms for atmospheric responses can be understood better by examining latent and sensible air-sea heat fluxes more closely. Thus, the roles of the sensible and latent heat fluxes are examined by conducting a series of numerical experiments using the IPRC Regional Atmospheric Model over the Gulf Stream by applying SST smoothing for latent and sensible heating separately. The results indicate that the sensible and latent heat fluxes affect the atmosphere differently. Sensible heat flux intensifies surface wind convergence to produce sea-level pressure (SLP) anomaly. Latent heat flux supplies moistures and maintains enhanced precipitation. The different heat flux components cause upward wind velocity at different levels.
Interdecadal Change in SST Anomalies Associated with Winter Rainfall over South China
NASA Astrophysics Data System (ADS)
Liantong, Z.
2012-04-01
The present study investigates the interdecadal change in winter (January-February-March, or "JFM") rainfall over South China and in South China JFM rainfall-sea surface temperature (SST) relationship by using station observations for the period of 1958-2002, the Met Office Hadley Center's SST data for the period of 1900-2008, and the ERA-40 re-analysis for the period of 1958-2002. It is found that the relationship between South China JFM rainfall and SST experienced an obvious interdecadal change around the year 1978. The analyses show that the JFM rainfall anomalies during 1960-1977 and 1978-2002 were closely associated with the South China Sea (SCS) SST and El Niño-Southern Oscillation (ENSO), respectively. Moreover, southwesterly anomalies at 700 hPa dominate over the South China Sea for positive SCS SST anomaly years during 1960-1977, and for El Niño years during 1978-2002, respectively. These wind anomalies, which are associated with the enhancement of the western Pacific subtropical high, transport more moisture into South China, favoring increases in rainfall. KEY WORDS: ENSO; SCS SST; South China winter rainfall, western Pacific subtropical high.
Laureano-Rosario, Abdiel E; Symonds, Erin M; Rueda-Roa, Digna; Otis, Daniel; Muller-Karger, Frank E
2017-12-19
Enterococci concentration variability at Escambron Beach, San Juan, Puerto Rico, was examined in the context of environmental conditions observed during 2005-2015. Satellite-derived sea surface temperature (SST), turbidity, direct normal irradiance, and dew point were combined with local precipitation, winds, and mean sea level (MSL) observations in a stepwise multiple regression analyses (Akaike Information Criteria model selection). Precipitation, MSL, irradiance, SST, and turbidity explained 20% of the variation in observed enterococci concentrations based upon these analyses. Changes in these parameters preceded increases in enterococci concentrations by 24 h up to 11 days, particularly during positive anomalies of turbidity, SST, and 480-960 mm of accumulated (4 days) precipitation, which relates to bacterial ecology. Weaker, yet still significant, increases in enterococci concentrations were also observed during positive dew point anomalies. Enterococci concentrations decreased with elevated irradiance and MSL anomalies. Unsafe enterococci concentrations per US EPA recreational water quality guidelines occurred when 4-day cumulative precipitation ranged 481-960 mm; irradiance < 667 W·m -2 ; daily average turbidity anomaly >0.005 sr -1 ; SST anomaly >0.8 °C; and 3-day average MSL anomaly <-18.8 cm. This case study shows that satellite-derived environmental data can be used to inform future water quality studies and protect human health.
A U.S. Wind Climatology: new tools to monitor wind trends across the contiguous United States
NASA Astrophysics Data System (ADS)
Crouch, J.; Wallis, T. W.; Arndt, D.
2010-12-01
NOAA’s National Climatic Data Center has developed a new monthly and seasonal product to provide a spatially continuous wind climatology for the contiguous U.S. using NCEP reanalysis data. Surface wind observations are sparse over specific regions of the country, and are subject to many local effects. By utilizing the sigma .995 level of the reanalysis data we can monitor wind conditions and trends of the lower troposphere across the entire U.S. The wind data are interpolated from a 2.5 x 2.5 degree grid to 0.25 degrees to provide additional detail. Data are analyzed from January 1950 to the most current month. Monthly averaged winds and wind anomalies are calculated with respect to the 1971-2000 base period, and time series for each grid point show how regional winds have changed over the 60 year period of record. The goal of this new climatology product is to provide regional decision support for the emerging wind energy sector, in addition to others who are interested in the current state of wind conditions. The U.S. Department of Energy has outlined a plan for 20 percent of U.S. electricity production to be from wind by 2030, and having a temporally and spatially continuous wind dataset, updated on a monthly basis, will be beneficial to understanding wind trends nationwide.
Application and verification of ECMWF seasonal forecast for wind energy
NASA Astrophysics Data System (ADS)
Žagar, Mark; Marić, Tomislav; Qvist, Martin; Gulstad, Line
2015-04-01
A good understanding of long-term annual energy production (AEP) is crucial when assessing the business case of investing in green energy like wind power. The art of wind-resource assessment has emerged into a scientific discipline on its own, which has advanced at high pace over the last decade. This has resulted in continuous improvement of the AEP accuracy and, therefore, increase in business case certainty. Harvesting the full potential output of a wind farm or a portfolio of wind farms depends heavily on optimizing operation and management strategy. The necessary information for short-term planning (up to 14 days) is provided by standard weather and power forecasting services, and the long-term plans are based on climatology. However, the wind-power industry is lacking quality information on intermediate scales of the expected variability in seasonal and intra-annual variations and their geographical distribution. The seasonal power forecast presented here is designed to bridge this gap. The seasonal power production forecast is based on the ECMWF seasonal weather forecast and the Vestas' high-resolution, mesoscale weather library. The seasonal weather forecast is enriched through a layer of statistical post-processing added to relate large-scale wind speed anomalies to mesoscale climatology. The resulting predicted energy production anomalies, thus, include mesoscale effects not captured by the global forecasting systems. The turbine power output is non-linearly related to the wind speed, which has important implications for the wind power forecast. In theory, the wind power is proportional to the cube of wind speed. However, due to the nature of turbine design, this exponent is close to 3 only at low wind speeds, becomes smaller as the wind speed increases, and above 11-13 m/s the power output remains constant, called the rated power. The non-linear relationship between wind speed and the power output generally increases sensitivity of the forecasted power to the wind speed anomalies. On the other hand, in some cases and areas where turbines operate close to, or above the rated power, the sensitivity of power forecast is reduced. Thus, the seasonal power forecasting system requires good knowledge of the changes in frequency of events with sufficient wind speeds to have acceptable skill. The scientific background for the Vestas seasonal power forecasting system is described and the relationship between predicted monthly wind speed anomalies and observed wind energy production are investigated for a number of operating wind farms in different climate zones. Current challenges will be discussed and some future research and development areas identified.
Climate anomalies generate an exceptional dinoflagellate bloom in San Francisco Bay
Cloern, J.E.; Schraga, T.S.; Lopez, C.B.; Knowles, N.; Grover, Labiosa R.; Dugdale, R.
2005-01-01
We describe a large dinoflagellate bloom, unprecedented in nearly three decades of observation, that developed in San Francisco Bay (SFB) during September 2004. SFB is highly enriched in nutrients but has low summer-autumn algal biomass because wind stress and tidally induced bottom stress produce a well mixed and light-limited pelagic habitat. The bloom coincided with calm winds and record high air temperatures that stratified the water column and suppressed mixing long enough for motile dinoflagellates to grow and accumulate in surface waters. This event-scale climate pattern, produced by an upper-atmosphere high-pressure anomaly off the U.S. west coast, followed a summer of weak coastal upwelling and high dinoflagellate biomass in coastal waters that apparently seeded the SFB bloom. This event suggests that some red tides are responses to changes in local physical dynamics that are driven by large-scale atmospheric processes and operate over both the event scale of biomass growth and the antecedent seasonal scale that shapes the bloom community. Copyright 2005 by the American Geophysical Union.
Positive Low Cloud and Dust Feedbacks Amplify Tropical North Atlantic Multidecadal Variability
NASA Technical Reports Server (NTRS)
Yuan, Tianle; Oraiopoulos, Lazaros; Zelinka, Mark; Yu, Hongbin; Norris, Joel R.; Chin, Mian; Platnick, Steven; Meyer, Kerry
2016-01-01
The Atlantic Multidecadal Oscillation (AMO) is characterized by a horseshoe pattern of sea surface temperature (SST) anomalies and has a wide range of climatic impacts. While the tropical arm of AMO is responsible for many of these impacts, it is either too weak or completely absent in many climate model simulations. Here we show, using both observational and model evidence, that the radiative effect of positive low cloud and dust feedbacks is strong enough to generate the tropical arm of AMO, with the low cloud feedback more dominant. The feedbacks can be understood in a consistent dynamical framework: weakened tropical trade wind speed in response to a warm middle latitude SST anomaly reduces dust loading and low cloud fraction over the tropical Atlantic, which warms the tropical North Atlantic SST. Together they contribute to appearance of the tropical arm of AMO. Most current climate models miss both the critical wind speed response and two positive feedbacks though realistic simulations of them may be essential for many climatic studies related to the AMO.
Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation
Yuan, Tianle; Oreopoulos, Lazaros; Zelinka, Mark; ...
2016-02-04
The Atlantic Multidecadal Oscillation (AMO) is characterized by a horseshoe pattern of sea surface temperature (SST) anomalies and has a wide range of climatic impacts. While the tropical arm of AMO is responsible for many of these impacts, it is either too weak or completely absent in many climate model simulations. Here we show, using both observational and model evidence, that the radiative effect of positive low cloud and dust feedbacks is strong enough to generate the tropical arm of AMO, with the low cloud feedback more dominant. The feedbacks can be understood in a consistent dynamical framework: weakened tropicalmore » trade wind speed in response to a warm middle latitude SST anomaly reduces dust loading and low cloud fraction over the tropical Atlantic, which warms the tropical North Atlantic SST. Together they contribute to the appearance of the tropical arm of AMO. Most current climate models miss both the critical wind speed response and two positive feedbacks though realistic simulations of them may be essential for many climatic studies related to the AMO.« less
NASA Astrophysics Data System (ADS)
Kajtar, Jules B.; Santoso, Agus; McGregor, Shayne; England, Matthew H.; Baillie, Zak
2018-02-01
The strengthening of the Pacific trade winds in recent decades has been unmatched in the observational record stretching back to the early twentieth century. This wind strengthening has been connected with numerous climate-related phenomena, including accelerated sea-level rise in the western Pacific, alterations to Indo-Pacific ocean currents, increased ocean heat uptake, and a slow-down in the rate of global-mean surface warming. Here we show that models in the Coupled Model Intercomparison Project phase 5 underestimate the observed range of decadal trends in the Pacific trade winds, despite capturing the range in decadal sea surface temperature (SST) variability. Analysis of observational data suggests that tropical Atlantic SST contributes considerably to the Pacific trade wind trends, whereas the Atlantic feedback in coupled models is muted. Atmosphere-only simulations forced by observed SST are capable of recovering the time-variation and the magnitude of the trade wind trends. Hence, we explore whether it is the biases in the mean or in the anomalous SST patterns that are responsible for the under-representation in fully coupled models. Over interannual time-scales, we find that model biases in the patterns of Atlantic SST anomalies are the strongest source of error in the precipitation and atmospheric circulation response. In contrast, on decadal time-scales, the magnitude of the model biases in Atlantic mean SST are directly linked with the trade wind variability response.
Wind Speed Measurement from Bistatically Scattered GPS Signals
NASA Technical Reports Server (NTRS)
Garrison, James L.; Komjathy, Attila; Zavorotny, Valery U.; Katzberg, Stephen J.
1999-01-01
Instrumentation and retrieval algorithms are described which use the forward, or bistatically scattered range-coded signals from the Global Positioning System (GPS) radio navigation system for the measurement of sea surface roughness. This roughness is known to be related directly to the surface wind speed. Experiments were conducted from aircraft along the TOPEX ground track, and over experimental surface truth buoys. These flights used a receiver capable of recording the cross correlation power in the reflected signal. The shape of this power distribution was then compared against analytical models derived from geometric optics. Two techniques for matching these functions were studied. The first recognized the most significant information content in the reflected signal is contained in the trailing edge slope of the waveform. The second attempted to match the complete shape of the waveform by approximating it as a series expansion and obtaining the nonlinear least squares estimate. Discussion is also presented on anomalies in the receiver operation and their identification and correction.
Variability and trends in surface seawater pCO2 and CO2 flux in the Pacific Ocean
NASA Astrophysics Data System (ADS)
Sutton, A. J.; Wanninkhof, R.; Sabine, C. L.; Feely, R. A.; Cronin, M. F.; Weller, R. A.
2017-06-01
Variability and change in the ocean sink of anthropogenic carbon dioxide (CO2) have implications for future climate and ocean acidification. Measurements of surface seawater CO2 partial pressure (pCO2) and wind speed from moored platforms are used to calculate high-resolution CO2 flux time series. Here we use the moored CO2 fluxes to examine variability and its drivers over a range of time scales at four locations in the Pacific Ocean. There are significant surface seawater pCO2, salinity, and wind speed trends in the North Pacific subtropical gyre, especially during winter and spring, which reduce CO2 uptake over the 10 year record of this study. Starting in late 2013, elevated seawater pCO2 values driven by warm anomalies cause this region to be a net annual CO2 source for the first time in the observational record, demonstrating how climate forcing can influence the timing of an ocean region shift from CO2 sink to source.
NASA Astrophysics Data System (ADS)
Wu, Renguang; Cao, Xi
2017-06-01
The present study contrasts interannual variations in the intensity of boreal summer 10-20-day and 30-60-day intraseasonal oscillations (ISOs) over the tropical western North Pacific and their factors. A pronounced difference is found in the relationship of the two ISOs to El Niño-Southern Oscillation. The 10-20-day ISO intensity is enhanced during El Niño developing summer, whereas the 30-60-day ISO intensity is enhanced during La Niña decaying summer. The above different relationship is interpreted as follows. The equatorial central and eastern Pacific SST anomalies modify vertical wind shear, lower-level moisture, and vertical motion in a southeast-northwest oriented band from the equatorial western Pacific to the tropical western North Pacific where the 10-20-day ISOs originate and propagate. These background field changes modulate the amplitude of 10-20-day ISOs. Preceding equatorial central and eastern Pacific SST anomalies induce SST anomalies in the North Indian Ocean in summer, which in turn modify vertical wind shear and vertical motion over the tropical western North Pacific. The modified background fields influence the amplitude of the 30-60-day ISOs when they reach the tropical western North Pacific from the equatorial region. A feedback of ISO intensity on local SST change is identified in the tropical western North Pacific likely due to a net effect of ISOs on surface heat flux anomalies. This feedback is more prominent from the 10-20-day than the 30-60-day ISO intensity change.
Fresh Water Content Variability in the Arctic Ocean
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa; Proshutinsky, Andrey
2003-01-01
Arctic Ocean model simulations have revealed that the Arctic Ocean has a basin wide oscillation with cyclonic and anticyclonic circulation anomalies (Arctic Ocean Oscillation; AOO) which has a prominent decadal variability. This study explores how the simulated AOO affects the Arctic Ocean stratification and its relationship to the sea ice cover variations. The simulation uses the Princeton Ocean Model coupled to sea ice. The surface forcing is based on NCEP-NCAR Reanalysis and its climatology, of which the latter is used to force the model spin-up phase. Our focus is to investigate the competition between ocean dynamics and ice formation/melt on the Arctic basin-wide fresh water balance. We find that changes in the Atlantic water inflow can explain almost all of the simulated fresh water anomalies in the main Arctic basin. The Atlantic water inflow anomalies are an essential part of AOO, which is the wind driven barotropic response to the Arctic Oscillation (AO). The baroclinic response to AO, such as Ekman pumping in the Beaufort Gyre, and ice meldfreeze anomalies in response to AO are less significant considering the whole Arctic fresh water balance.
Seasonal prediction of hurricane activity reaching the coast of the United States.
Saunders, Mark A; Lea, Adam S
2005-04-21
Much of the property damage from natural hazards in the United States is caused by landfalling hurricanes--strong tropical cyclones that reach the coast. For the southeastern Atlantic coast of the US, a statistical method for forecasting the occurrence of landfalling hurricanes for the season ahead has been reported, but the physical mechanisms linking the predictor variables to the frequency of hurricanes remain unclear. Here we present a statistical model that uses July wind anomalies between 1950 and 2003 to predict with significant and useful skill the wind energy of US landfalling hurricanes for the following main hurricane season (August to October). We have identified six regions over North America and over the east Pacific and North Atlantic oceans where July wind anomalies, averaged between heights of 925 and 400 mbar, exhibit a stationary and significant link to the energy of landfalling hurricanes during the subsequent hurricane season. The wind anomalies in these regions are indicative of atmospheric circulation patterns that either favour or hinder evolving hurricanes from reaching US shores.
Atlantic Induced Pan-tropical Climate Variability in the Upper-ocean and Atmosphere
NASA Astrophysics Data System (ADS)
Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.
2016-02-01
During the last three decades, tropical sea surface temperature (SST) exhibited dipole-like trends, with warming over the tropical Atlantic and Indo-Western Pacific but cooling over the Eastern Pacific. The Eastern Pacific cooling has recently been identified as a driver of the global warming hiatus. Previous studies revealed atmospheric bridges between the tropical Pacific, Atlantic, and Indian Ocean, which could potentially contribute to this zonally asymmetric SST pattern. However, the mechanisms and the interactions between these teleconnections remain unclear. To investigate these questions, we performed a `pacemaker' simulation by restoring the tropical Atlantic SST changes in a state-of-the-art climate model - the CESM1. Results show that the Atlantic plays a key role in initiating the tropical-wide teleconnections, and the Atlantic-induced anomalies contribute 55%-75% of the total tropical SST and circulation changes during the satellite era. A hierarchy of oceanic and atmospheric models are then used to investigate the physical mechanisms of these teleconnections: the Atlantic warming enhances atmospheric deep convection, drives easterly wind anomalies over the Indo-Western Pacific through the Kelvin wave, and westerly anomalies over the eastern Pacific as Rossby waves, in line with Gill's solution (Fig1a). These wind changes induce an Indo-Western Pacific warming via the wind-evaporation-SST effect, and this warming intensifies the La Niña-type response in the upper Pacific Ocean by enhancing the easterly trade winds and through the Bjerknes ocean-dynamical processes (Fig1b). The teleconnection finally develops into a tropical-wide SST dipole pattern with an enhanced trade wind and Walker circulation, similar as the observed changes during the satellite era. This mechanism reveals that the tropical ocean basins are more tightly connected than previously thought, and the Atlantic plays a key role in the tropical climate pattern formation and further the global warming hiatus. The tropical Atlantic warming is likely due to radiative forcing and Atlantic meridional overturning circulation (AMOC). Our study suggests that the AMOC may force the decadal variability of the tropical ocean and atmosphere, and thus contributes to the decadal predictability of the global climate.
NASA Technical Reports Server (NTRS)
Boulanger, Jean-Philippe; Fu, Lee-Lueng
1996-01-01
The TOPEX/POSEIDON sea level data lead to new opportunities to investigate some theoretical mechanisms suggested to be involved in the El Nino-Southern Oscillation phenomenon in the tropical Pacific ocean. In particular, we are interested in studying the western boundary reflection, a process crucial for the delayed action oscillator theory, by using the TOPEX/POSEIDON data from November 1992 to May 1995. We first projected the sea level data onto Kelvin and first-mode Ross waves. Then we estimated the contribution of wind forcing to these waves by using a single baroclinic mode simple wave model forced by the ERS-1 wind data. Wave propagation was clearly observed with amplitudes well explained by the wind forcing in the ocean interior. Evidence of wave reflection was detected at both the western and eastern boundaries of the tropical Pacific ocean. At the eastern boundary, Kelvin waves were seen to reflect as first-mode Rossby waves during the entire period. The reflection efficiency (in terms of wave amplitude) of the South American coasts was estimated to be 80% of that of an infinite meridional wall. At the western boundary, reflection was observed in April-August 1993, in January-June 1994, and, later, in December 1994 to February 1995. Although the general roles of these reflection events in the variability observed in the equatorial Pacific ocean are not clear, the data suggest that the reflections in January-June 1994 have played a role in the onset of the warm conditions observed in late 1994 to early 1995. Indeed, during the January-June 1994 period, as strong downwelling first-mode Rossby waves reflected into downwelling Kelvin waves, easterly wind and cold sea surface temperature anomalies located near the date line weakened and eventually reversed in June-July 1994. The presence of the warm anomalies near the date line then favored convection and westerly wind anomalies that triggered strong downwelling Kelvin waves propagating throughout the basin simultaneously with the beginning of the 1994-1995 warm conditions.
Magnetic Sorting of the Regolith on the Moon: Lunar Swirls
NASA Astrophysics Data System (ADS)
Pieters, C. M.; Garrick-Bethell, I.; Hemingway, D.
2014-12-01
All of the mysterious albedo features on the Moon called "lunar swirls" are associated with magnetic anomalies, but not all magnetic anomalies are associated with lunar swirls [1]. It is often hypothesized that the albedo markings are tied to immature regolith on the surface, perhaps due to magnetic shielding of the solar wind and prevention of normal space weathering of the soil. Although interaction of the solar wind with the surface at swirls is indeed affected by the local magnetic field [2], this does not appear to result in immature soils on the surface. Calibrated spectra from the Moon Mineralogy Mapper [M3] (in image format) demonstrate that the high albedo markings for swirls are simply not consistent with immature regolith as is now understood from detailed analyses of lunar samples [eg 3]. However, M3 data show that the high albedo features of swirls are distinct and quite different from normal soils (in both the highlands and the mare). They allexhibit a flatter continuum across the near-infrared, but the actual band strength of ferrous minerals shows little (if any) deviation [4]. Recent analyses of magnetic field direction at swirls [5] mimic the observed albedo patterns (horizontal surface fields in bright areas, vertical surface fields in dark lanes). When coupled with the optical properties of magnetic separates of lunar soils [6] and our knowledge that the magnetic component of the soil results from space weathering [3,6], we propose a new and very simple explanation for these enigmatic albedo markings: the lunar swirls result from magnetic sorting of a well developed regolith. With time, normal gardening of the soil over a magnetic anomaly causes some of the dark magnetic component of the soil to be gradually removed from regions (high albedo areas) and accumulated in others (dark lanes). We are modeling predicted sorting rates using realistic rates of dust production. If this mechanism is tenable, only the origin of these magnetic anomalies (their magnitude, size, orientation, and depth) remains to be resolved. Refs: 1. Blewett, DT et al. 2011, JGR , 116. 2. Wieser, M et al. 2010, GRL 37. 3. Taylor, LA et al., 2001 & 2010 JGR; Pieters, CM et al., 2000, MaPS. 4. Pieters et al., 2014, LPSC45 1408. 5. Hemingway, D., and I. Garrick-Bethell 2012, JGR, 117. 6. Adams, JB and TB McCord 1973, 4th LPSC. Cosmochim. Acta, 1, 163-177.
How are warm and cool years in the California Current related to ENSO?
NASA Astrophysics Data System (ADS)
Fiedler, Paul C.; Mantua, Nathan J.
2017-07-01
The tropical El Niño-Southern Oscillation (ENSO) is a dominant mode of interannual variability that impacts climate throughout the Pacific. The California Current System (CCS) in the northeast Pacific warms and cools from year to year, with or without a corresponding tropical El Niño or La Niña event. We update the record of warm and cool events in the CCS for 1950-2016 and use composite sea level pressure (SLP) and surface wind anomalies to explore the atmospheric forcing mechanisms associated with tropical and CCS warm and cold events. CCS warm events are associated with negative SLP anomalies in the NE Pacific—a strong and southeastward displacement of the wintertime Aleutian Low, a weak North Pacific High, and a regional pattern of cyclonic wind anomalies that are poleward over the CCS. We use a first-order autoregressive model to show that regional North Pacific forcing is predominant in SST variations throughout most of the CCS, while remote tropical forcing is more important in the far southern portion of the CCS. In our analysis, cool events in the CCS tend to be more closely associated with tropical La Niña than are warm events in the CCS with tropical El Niño; the forcing of co-occurring cool events is analogous, but nearly opposite, to that of warm events.
Indian Ocean warming during 1958-2004 simulated by a climate system model and its mechanism
NASA Astrophysics Data System (ADS)
Dong, Lu; Zhou, Tianjun; Wu, Bo
2014-01-01
The mechanism responsible for Indian Ocean Sea surface temperature (SST) basin-wide warming trend during 1958-2004 is studied based on both observational data analysis and numerical experiments with a climate system model FGOALS-gl. To quantitatively estimate the relative contributions of external forcing (anthropogenic and natural forcing) and internal variability, three sets of numerical experiments are conducted, viz. an all forcing run forced by both anthropogenic forcing (greenhouse gases and sulfate aerosols) and natural forcing (solar constant and volcanic aerosols), a natural forcing run driven by only natural forcing, and a pre-industrial control run. The model results are compared to the observations. The results show that the observed warming trend during 1958-2004 (0.5 K (47-year)-1) is largely attributed to the external forcing (more than 90 % of the total trend), while the residual is attributed to the internal variability. Model results indicate that the anthropogenic forcing accounts for approximately 98.8 % contribution of the external forcing trend. Heat budget analysis shows that the surface latent heat flux due to atmosphere and surface longwave radiation, which are mainly associated with anthropogenic forcing, are in favor of the basin-wide warming trend. The basin-wide warming is not spatially uniform, but with an equatorial IOD-like pattern in climate model. The atmospheric processes, oceanic processes and climatological latent heat flux together form an equatorial IOD-like warming pattern, and the oceanic process is the most important in forming the zonal dipole pattern. Both the anthropogenic forcing and natural forcing result in easterly wind anomalies over the equator, which reduce the wind speed, thereby lead to less evaporation and warmer SST in the equatorial western basin. Based on Bjerknes feedback, the easterly wind anomalies uplift the thermocline, which is unfavorable to SST warming in the eastern basin, and contribute to SST warming via deeper thermocline in the western basin. The easterly anomalies also drive westward anomalous equatorial currents, against the eastward climatology currents, which is in favor of the SST warming in the western basin via anomalous warm advection. Therefore, both the atmospheric and oceanic processes are in favor of the IOD-like warming pattern formation over the equator.
Salty Anomalies Forced by Central American Gap Winds: Aquarius Observations
NASA Astrophysics Data System (ADS)
Grodsky, S. A.; Carton, J.; Bentamy, A.
2014-12-01
Although upwelling normally doesn't have direct impact on the sea surface salinity (SSS), we present observational evidence of upwelling-induced SSS patterns off the Pacific Central American coast. This area is characterized by stable near-surface salinity stratification that is produced by the mixed layer dilution by local rainfall. Here the fresh and warm mixed layer is periodically disrupted by the gap wind-induced uplifts of colder and saltier water. Aquarius SSS data capture these high SSS events. In boreal winter when the intense gap winds are frequent, two tongues of anomalously salty water develop off the Gulfs of Tehuantepec and Papagayo. During that season the average SSS in the meridionally oriented Tehuantepec tongue is about 0.4 psu saltier than background SSS. The zonally elongated Papagayo tongue stands out even more strongly, being 1 to 2 psu saltier than SSS in the neighboring Panama Bight. The spatial locations and orientations of these salty tongues closely correspond to the locations and orientations of the cool SST tongues suggesting they have similar governing mechanisms.
Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?
Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao
2015-12-04
High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy-atmosphere interaction in forecast and climate models.
Characterization of Lunar Swirls at Mare Ingenii: A Model for Space Weathering at Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Kramer, Georgianna Y.; Combe, Jean-Philippe; Harnett, Erika M.; Hawke, Bernard Ray; Noble, Sarah K.; Blewett, David T.; McCord, Thomas B.; Giguere, Thomas A.
2011-01-01
Analysis of spectra from the Clementine ultraviolet-visible and near-infrared cameras of small, immature craters and surface soils both on and adjacent to the lunar swirls at Marc Ingenii has yielded the following conclusions about space weathering at a magnetic anomaly. (l) Despite having spectral characteristics of immaturity, the lunar swirls arc not freshly exposed surfaces. (2) The swirl surfaces arc regions of retarded weathering, while immediately adjacent regions experience accelerated weathering, (3) Weathering in the off-swirl regions darkens and flattens the spectrum with little to no reddening, which suggests that the production of larger (greater than 40 nm) nanophase iron dominates in these locations as a result of charged particle sorting by the magnetic field. Preliminaty analysis of two other lunar swirl regions, Reiner Gamma and Mare Marginis, is consistent with our observations at Mare Ingenii. Our results indicate that sputtering/vapor deposition, implanted solar wind hydrogen, and agglutination share responsibility for creating the range in npFe(sup 0) particle sizes responsible for the spectral effects of space weathering.
NASA Astrophysics Data System (ADS)
Fegyveresi, John M.; Alley, Richard B.; Muto, Atsuhiro; Orsi, Anaïs J.; Spencer, Matthew K.
2018-01-01
Observations at the West Antarctic Ice Sheet (WAIS) Divide site show that near-surface snow is strongly altered by weather-related processes such as strong winds and temperature fluctuations, producing features that are recognizable in the deep ice core. Prominent glazed
surface crusts develop frequently at the site during summer seasons. Surface, snow pit, and ice core observations made in this study during summer field seasons from 2008-2009 to 2012-2013, supplemented by automated weather station (AWS) data with short- and longwave radiation sensors, revealed that such crusts formed during relatively low-wind, low-humidity, clear-sky periods with intense daytime sunshine. After formation, such glazed surfaces typically developed cracks in a polygonal pattern likely from thermal contraction at night. Cracking was commonest when several clear days occurred in succession and was generally followed by surface hoar growth; vapor escaping through the cracks during sunny days may have contributed to the high humidity that favored nighttime formation of surface hoar. Temperature and radiation observations show that daytime solar heating often warmed the near-surface snow above the air temperature, contributing to upward mass transfer, favoring crust formation from below, and then surface hoar formation. A simple surface energy calculation supports this observation. Subsequent examination of the WDC06A deep ice core revealed that crusts are preserved through the bubbly ice, and some occur in snow accumulated during winters, although not as commonly as in summertime deposits. Although no one has been on site to observe crust formation during winter, it may be favored by greater wintertime wind packing from stronger peak winds, high temperatures and steep temperature gradients from rapid midwinter warmings reaching as high as -15 °C, and perhaps longer intervals of surface stability. Time variations in crust occurrence in the core may provide paleoclimatic information, although additional studies are required. Discontinuity and cracking of crusts likely explain why crusts do not produce significant anomalies in other paleoclimatic records.
PCA and vTEC climatology at midnight over mid-latitude regions
NASA Astrophysics Data System (ADS)
Natali, M. P.; Meza, A.
2017-12-01
The effect of the thermospheric vertical neutral wind on vertical total electron content (vTEC) variations including longitudinal anomaly, remaining winter anomaly, mid-latitude summer night anomaly, and semiannual anomaly is studied at mid-latitude regions around zero magnetic declination at midnight during high solar activity. By using the principal component analysis (PCA) numerical technique, this work studies the spatial and temporal variations of the ionosphere at midnight over mid-latitude regions during 2000-2002. PCA is applied to a time series of global vTEC maps produced by the International Global Navigation Satellite System (GNSS) Service. Four regions were studied in particular, each located at mid-latitude and approximately centered at zero magnetic declination, with two in the northern hemisphere and two in southern hemisphere, and all are located near and far from geomagnetic poles in each case. This technique provides an effective method to analyze the main ionospheric variabilities at mid-latitudes. PCA is also applied to the vTEC computed using the International Reference Ionosphere (IRI) 2012 model, to analyze the capability of this model to represent ionospheric variabilities at mid-latitude. Also, the Horizontal Wind Model 2007 (HWM07) is used to improve our climatology interpretation, by analyzing the relationship between vTEC and thermospheric wind, both quantitatively and qualitatively. At midnight, the behavior of mean vTEC values strongly responds to vertical wind variation, experiencing a decrease of about 10-15% with the action of the positive vertical component of the field-aligned neutral wind lasting for 2 h in all regions except for Oceania. Notable results include: a significant increase toward higher latitudes during summer in the South America and Asia regions, associated with the mid-latitude summer night anomaly, and an increase toward higher latitudes in winter in the North America and Oceania regions, highlighting the remnant effect of the winter anomaly. Finally, the longitudinal variations of east-west differences, named longitudinal anomaly, show maximum values in March for North America, in December for South America and Oceania, and are not shown for Asia. Our results show that at mid-latitudes regions, the IRI model represents midnight ionospheric mean values with a similar spatial distribution, but the values are always lower than those obtained by GNSS. The differences between IRI and GNSS results include: the longitudinal anomaly is characterized by a stronger semiannual variation in both North America and South America, with a maximum in the equinoxes, while for the Asian region, the behavior is almost constant throughout the years, and finally, there is an absence of the winter anomaly remnant.
Theoretical study of the ionospheric plasma cave in the equatorial ionization anomaly region
NASA Astrophysics Data System (ADS)
Chen, Yu-Tsung; Lin, C. H.; Chen, C. H.; Liu, J. Y.; Huba, J. D.; Chang, L. C.; Liu, H.-L.; Lin, J. T.; Rajesh, P. K.
2014-12-01
This paper investigates the physical mechanism of an unusual equatorial electron density structure, plasma cave, located underneath the equatorial ionization anomaly by using theoretical simulations. The simulation results provide important new understanding of the dynamics of the equatorial ionosphere. It has been suggested previously that unusual E>⇀×B>⇀ drifts might be responsible for the observed plasma cave structure, but model simulations in this paper suggest that the more likely cause is latitudinal meridional neutral wind variations. The neutral winds are featured by two divergent wind regions at off-equator latitudes and a convergent wind region around the magnetic equator, resulting in plasma divergences and convergence, respectively, to form the plasma caves structure. The tidal-decomposition analysis further suggests that the cave related meridional neutral winds and the intensity of plasma cave are highly associated with the migrating terdiurnal tidal component of the neutral winds.
Basinwide response of the Atlantic Meridional Overturning Circulation to interannual wind forcing
NASA Astrophysics Data System (ADS)
Zhao, Jian
2017-12-01
An eddy-resolving Ocean general circulation model For the Earth Simulator (OFES) and a simple wind-driven two-layer model are used to investigate the role of momentum fluxes in driving the Atlantic Meridional Overturning Circulation (AMOC) variability throughout the Atlantic basin from 1950 to 2010. Diagnostic analysis using the OFES results suggests that interior baroclinic Rossby waves and coastal topographic waves play essential roles in modulating the AMOC interannual variability. The proposed mechanisms are verified in the context of a simple two-layer model with realistic topography and only forced by surface wind. The topographic waves communicate high-latitude anomalies into lower latitudes and account for about 50% of the AMOC interannual variability in the subtropics. In addition, the large scale Rossby waves excited by wind forcing together with topographic waves set up coherent AMOC interannual variability patterns across the tropics and subtropics. The comparisons between the simple model and OFES results suggest that a large fraction of the AMOC interannual variability in the Atlantic basin can be explained by wind-driven dynamics.
NASA Astrophysics Data System (ADS)
Gill, E.; Rajagopalan, B.; Molnar, P. H.; Marchitto, T. M., Jr.; Kushnir, Y.
2016-12-01
We develop a multiproxy reduced-dimension methodology that blends magnesium calcium (Mg/Ca) and alkenone (UK'37) paleo sea surface temperature (SST) records from the eastern and western equatorial Pacific to recreate snapshots of full field SSTs and zonal wind anomalies from 10 to 2 ka BP in 2000-year increments. In the reconstruction, the zonal SST difference (average west Pacific SST minus average east Pacific SST) is largest at 10 ka (0.26°C), with coldest SST anomalies of -0.9°C in the eastern equatorial Pacific and concurrent easterly maximum zonal wind anomalies of 7 m s-1 throughout the central Pacific. From 10 to 2 ka, the entire equatorial Pacific warms, but at a faster rate in the east than in the west. These patterns are broadly consistent with previous inferences of reduced El Niño-Southern Oscillation variability associated with a cooler and/or "La Niña-like" state during the early to middle Holocene. At present there is a strong negative correlation between tropical pacific SSTs and Indian summer monsoon strength. Assuming ENSO-monsoon teleconnections were the same during early Holocene, we would expect a cooler tropical Pacific to enhance the summer Indian monsoon. To test this idea, we used the same tropical Pacific SST proxy records and a similar reduced-dimension technique to reconstruct fields of Arabian Sea wind-stress curl and Indian summer monsoon precipitation. Reconstructions for 10 ka reveal wind-stress curl anomalies of 30% greater than present day off the coastlines of Oman and Yemen, which suggest greater coastal upwelling and an enhanced monsoon jet during this time. Spatial rainfall reconstructions reveal the greatest difference in precipitation at 10 ka over the core monsoon region ( 20-60% greater than present day). Specifically, reconstructions from 10 ka reveal 40-60% greater rainfall over North West India, a region home to abundant paleo-lake records spanning the Holocene but is at present remarkably dry ( 200-450 mm of annual rainfall). These findings advance the hypothesis that teleconnections from the tropical Pacific contributed to, if not accounted for, greater early to middle Holocene wetness over India as recorded by various (e.g., cave, lacustrine, river discharge) paleoclimate proxies throughout the monsoon region.
NASA Astrophysics Data System (ADS)
Emanuelsson, B. Daniel; Bertler, Nancy A. N.; Neff, Peter D.; Renwick, James A.; Markle, Bradley R.; Baisden, W. Troy; Keller, Elizabeth D.
2018-01-01
Persistent positive 500-hPa geopotential height anomalies from the ECMWF ERA-Interim reanalysis are used to quantify Amundsen-Bellingshausen Sea (ABS) anticyclonic event occurrences associated with precipitation in West Antarctica (WA). We demonstrate that multi-day (minimum 3-day duration) anticyclones play a key role in the ABS by dynamically inducing meridional transport, which is associated with heat and moisture advection into WA. This affects surface climate variability and trends, precipitation rates and thus WA ice sheet surface mass balance. We show that the snow accumulation record from the Roosevelt Island Climate Evolution (RICE) ice core reflects interannual variability of blocking and geopotential height conditions in the ABS/Ross Sea region. Furthermore, our analysis shows that larger precipitation events are related to enhanced anticyclonic circulation and meridional winds, which cause pronounced dipole patterns in air temperature anomalies and sea ice concentrations between the eastern Ross Sea and the Bellingshausen Sea/Weddell Sea, as well as between the eastern and western Ross Sea.
Role of ocean evaporation in California droughts and floods
NASA Astrophysics Data System (ADS)
Wei, Jiangfeng; Jin, Qinjian; Yang, Zong-Liang; Dirmeyer, Paul A.
2016-06-01
Since winter 2011, a record-breaking drought has occurred in California. Studies found that the drought is mainly caused by a persistent high-pressure system off the U.S. West Coast, which is linked to Pacific sea surface temperature anomalies. The water cycles associated with the droughts and floods are still not clearly understood. Here we show that the atmospheric circulation off the West Coast not only controls the atmospheric convergence and formation of precipitation but also largely determines surface wind speed, which further affects the evaporation over the eastern North Pacific, the major evaporative moisture source for California precipitation. Because of this mechanism, the ocean evaporation over the eastern North Pacific has been reduced during the recent drought. However, the ocean evaporation anomalies have little direct influence on California precipitation, especially during dry years, mainly because of their weak amplitudes. The California droughts cannot be readily attributed to the reduced ocean evaporation. The association between increased Pacific evaporation and floods over California is somewhat stronger.
Zhao, Jiuwei; Zhan, Ruifen; Wang, Yuqing
2018-04-16
The recent global warming hiatus (GWH) was characterized by a La Niña-like cooling in the tropical Eastern Pacific accompanied with the Indian Ocean and the tropical Atlantic Ocean warming. Here we show that the recent GWH contributed significantly to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia since 1998. The GWH associated sea surface temperature anomalies triggered a pair of anomalous cyclonic and anticyclonic circulations and equatorial easterly anomalies over the Northwest Pacific, which favored TC genesis and intensification over the western Northwest Pacific but suppressed TC genesis and intensification over the southeastern Northwest Pacific due to increased vertical wind shear and anticyclonic circulation anomalies. Results from atmospheric general circulation model experiments demonstrate that the Pacific La Niña-like cooling dominated the Indian Ocean and the tropical Atlantic Ocean warming in contributing to the observed GWH-related anomalous atmospheric circulation over the Northwest Pacific.
Rueda-Roa, Digna; Otis, Daniel; Muller-Karger, Frank E.
2017-01-01
Enterococci concentration variability at Escambron Beach, San Juan, Puerto Rico, was examined in the context of environmental conditions observed during 2005–2015. Satellite-derived sea surface temperature (SST), turbidity, direct normal irradiance, and dew point were combined with local precipitation, winds, and mean sea level (MSL) observations in a stepwise multiple regression analyses (Akaike Information Criteria model selection). Precipitation, MSL, irradiance, SST, and turbidity explained 20% of the variation in observed enterococci concentrations based upon these analyses. Changes in these parameters preceded increases in enterococci concentrations by 24 h up to 11 days, particularly during positive anomalies of turbidity, SST, and 480–960 mm of accumulated (4 days) precipitation, which relates to bacterial ecology. Weaker, yet still significant, increases in enterococci concentrations were also observed during positive dew point anomalies. Enterococci concentrations decreased with elevated irradiance and MSL anomalies. Unsafe enterococci concentrations per US EPA recreational water quality guidelines occurred when 4-day cumulative precipitation ranged 481–960 mm; irradiance < 667 W·m−2; daily average turbidity anomaly >0.005 sr−1; SST anomaly >0.8 °C; and 3-day average MSL anomaly <−18.8 cm. This case study shows that satellite-derived environmental data can be used to inform future water quality studies and protect human health. PMID:29257092
NASA Astrophysics Data System (ADS)
Clem, Kyle R.; Renwick, James A.; McGregor, James
2017-07-01
During 1979-2014, eastern tropical Pacific sea surface temperatures significantly cooled, which has generally been attributed to the transition of the Pacific Decadal Oscillation to its negative phase after 1999. We find the eastern tropical Pacific cooling to be associated with: (1) an intensified Walker Circulation during austral summer (December-February, DJF) and autumn (March-May, MAM); (2) a weakened South Pacific Hadley cell and subtropical jet during MAM; and (3) a strengthening of the circumpolar westerlies between 50 and 60°S during DJF and MAM. Observed cooling in the eastern tropical Pacific is linearly congruent with 60-80 % of the observed Southern Hemisphere positive zonal-mean zonal wind trend between 50 and 60°S during DJF ( 35 % of the interannual variability), and around half of the observed positive zonal-mean zonal wind trend during MAM ( 15 % of the interannual variability). Although previous studies have linked the strengthened DJF and MAM circumpolar westerlies to stratospheric ozone depletion and increasing greenhouse gases, we note that the continuation of the positive SAM trends into the twenty-first century is partially associated with eastern tropical Pacific cooling, especially during MAM when zonal wind anomalies associated with eastern tropical Pacific cooling project strongly onto the observed trends. Outside of DJF and MAM, eastern tropical Pacific cooling is associated with opposing zonal wind anomalies over the Pacific and Indian sectors, which we infer is the reason for the absence of significant positive SAM trends outside of DJF and MAM despite significant eastern tropical Pacific cooling seen during all seasons.
NASA Astrophysics Data System (ADS)
Sherriff-Tadano, Sam; Abe-Ouchi, Ayako; Yoshimori, Masakazu; Oka, Akira; Chan, Wing-Le
2018-04-01
Coupled modeling studies have recently shown that the existence of the glacial ice sheets intensifies the Atlantic meridional overturning circulation (AMOC). However, most models show a strong AMOC in their simulations of the Last Glacial Maximum (LGM), which is biased compared to reconstructions that indicate both a weaker and stronger AMOC during the LGM. Therefore, a detailed investigation of the mechanism behind this intensification of the AMOC is important for a better understanding of the glacial climate and the LGM AMOC. Here, various numerical simulations are conducted to focus on the effect of wind changes due to glacial ice sheets on the AMOC and the crucial region where the wind modifies the AMOC. First, from atmospheric general circulation model experiments, the effect of glacial ice sheets on the surface wind is evaluated. Second, from ocean general circulation model experiments, the influence of the wind stress change on the AMOC is evaluated by applying wind stress anomalies regionally or at different magnitudes as a boundary condition. These experiments demonstrate that glacial ice sheets intensify the AMOC through an increase in the wind stress at the North Atlantic mid-latitudes, which is induced by the North American ice sheet. This intensification of the AMOC is caused by the increased oceanic horizontal and vertical transport of salt, while the change in sea ice transport has an opposite, though minor, effect. Experiments further show that the Eurasian ice sheet intensifies the AMOC by directly affecting the deep-water formation in the Norwegian Sea.
NASA Astrophysics Data System (ADS)
Rai, P.; Joshi, M.; Dimri, A. P.; Turner, A. G.
2017-08-01
The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean-atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.
NASA Astrophysics Data System (ADS)
Rai, P.; Joshi, M.; Dimri, A. P.; Turner, A. G.
2018-06-01
The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean-atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.
2012-05-15
ET AL .: THE PACIFIC COLD TONGUE BIAS ANALYSIS C05024 circulation, which intensifies the surface easterly winds over the Pacific Basin, further...productivity, and in carbon cycling since it is the major oceanic source of C02 for the atmosphere [Field et al , 1998; Calvo et al , 2011]. Large SST anomalies...used for climate predictions and projec- tions [Neelin et al , 1992; Mechoso et al , 1995; Delecluse et al , 1998; Laufet al , 2001; Davey
Role of North Indian Ocean Air-Sea Interaction in Summer Monsoon Intraseasonal Oscillation
NASA Astrophysics Data System (ADS)
Zhang, L.; Han, W.; Li, Y.
2017-12-01
Air-sea coupling processes over the North Indian Ocean associated with Indian summer monsoon intraseasonal oscillation (MISO) are analyzed. Observations show that MISO convection anomalies affect underlying sea surface temperature (SST) through changes in surface shortwave radiation (via cloud cover change) and surface latent heat flux (associated with surface wind speed change). In turn, SST anomalies determine the changing rate of MISO precipitation (dP/dt): warm (cold) SST anomalies cause increasing (decreasing) precipitation rate through increasing (decreasing) surface convergence. Air-sea interaction gives rise to a quadrature relationship between MISO precipitation and SST anomalies. A local air-sea coupling model (LACM) is established based on these observed physical processes, which is a damped oscillatory system with no external forcing. The period of LACM is proportional to the square root of mean state mixed layer depth , assuming other physical parameters remain unchanged. Hence, LACM predicts a relatively short (long) MISO period over the North Indian Ocean during the May-June monsoon developing (July-August mature) phase when is shallow (deep). This result is consistent with observed MISO statistics. An oscillatory external forcing of a typical 30-day period is added to LACM, representing intraseasonal oscillations originated from the equatorial Indian Ocean and propagate into the North Indian Ocean. The period of LACM is then determined by both the inherent period associated with local air-sea coupling and the period of external forcing. It is found that resonance occurs when , amplifying the MISO in situ. This result explains the larger MISO amplitude during the monsoon developing phase compared to the mature phase, which is associated with seasonal cycle of . LACM, however, fails to predict the observed small MISO amplitude during the September-October monsoon decaying phase, when is also shallow. This deficiency might be associated with the neglect of oceanic processes in LACM.
NASA Astrophysics Data System (ADS)
Vorburger, Audrey; Wurz, Peter; Barabash, Stas; Wieser, Martin; Futaana, Yoshifumi; Bhardwaj, Anil; Dhanya, Mb; Asamura, Kazushi
2017-04-01
The Sub-keV Atom Reflecting Analyzer (SARA) instrument on board Chandrayaan-1 was exceptionally successful. The instrument not only achieved all its set science goals but also revealed several hitherto unknown and unexpected properties of the solar wind interaction with the lunar surface. SARA's scientific findings can be divided into two groups based on the nature of the particles detected: The first group contains findings gained from ion measurements (from SWIM, SARA's ion sensor) whereas the second group contains findings gained from energetic neutral atom (ENA) measurements (from CENA, SARA's ENA sensor). Here, we present a review of all scientific findings based on ENA measurements. Since the Moon is constantly bombarded by solar wind ions. Until recently, it was tacitly assumed that the ions that impinge onto the lunar surface are almost completely absorbed, with less than 1% reflection, (e.g. Crider and Vondrak, Adv. Space Res., 2002; Feldman et al., JGR, 2000). However, recent observations conducted showed that on average 16% of the impinging solar wind ions are reflected as ENAs (e.g. McComas et al., GRL, 2009; Wieser et al., PSS, 2009; Vorburger et al., JGR, 2013). The energy spectrum of the reflected ENAs is broader than the spectrum of the incident solar wind protons (Futaana et al., JGR, 2012; Harada et al., JGR, 2014), and the characteristic energy is < 50% of the incident solar wind characteristic energy. This hints at multiple scattering processes taking place on the lunar surface. Determination of the ENA angular backscatter function showed that, contrary to expectations, as the solar zenith angle (SZA) increases, particles scatter more toward the sunward direction than in the anti-sunward direction (Vorburger et al., GRL, 2011; Lue et al., JGR, 2016). The ENA reflection ratio is rather featureless over the lunar surface (Vorburger et al., JGR., 2013), showing only strong variations at local crustal magnetic fields due to the interaction of the plasma with so-called mini-magnetospheres (e.g., Wieser et al., GRL, 2010; Vorburger et al., JGR, 2012; Vorburger et al., JGR, 2013). CENA measurements were also used to derive the electric potential above a lunar magnetic anomaly (Futaana et al., GRL, 2012, Järvinen et al. GRL, 2014). Electrical potentials are of scientific interest because they can influence the local plasma and dust environment near the magnetic anomaly. CENA also presented the first-ever measurements of sputtered lunar oxygen (Vorburger et al., JGR., 2012) as well as the first-ever observations of backscattered solar wind helium (Vorburger et al., JGR., 2012). With the backscattered proton signal being unexpectedly large, these signals are small in comparison, but persistent nevertheless. Finally, recent CENA data analyses showed that a significant fraction of the solar wind plasma is able to reach far into the lunar nightside surface: CENA measured a 30 deg broad ENA ring parallel to the terminator, with a total flux equal to 1.5% of the total dayside flux (Vorburger et al., GR., 2016). These measurements shed light onto the expansion of plasma into voids as they occur in planetary wakes.
Revisiting the false alarm in the 2014 El Niño prediction
NASA Astrophysics Data System (ADS)
Shin, C. S.; Huang, B.
2016-12-01
In early 2014, most dynamic forecast models predicted a developing strong El Niño in the following winter. However, this forecast turned out to be a representative case of the false alarms since 2000. In this study, a set of CFSv2 ensemble seasonal reforecast is conducted to examine some possible causes of the unrealistic El Niño prediction in 2014. Zooming in on the NINO3.4 index, the ensemble-mean reforecast initialized in April 2014 predicted a very strong El Niño as the 1997-98 one with most ensemble members warmer than the observations. In contrast, the ensemble-mean reforecast initialized in January (July) 2014 predicted a slower growth (a decline) of the NINO3.4 index for 12-month lead (from November to the spring in 2015), with the spreads of the ensemble members enveloping the observations. Since the observed SST anomalies in equatorial eastern Pacific changed its polarity in late March from the coldest SST anomalies in February accompanied by strong easterly wind to warmer SST in mid April, the atmospheric and oceanic instantaneous initial states in early April 2014 may misrepresent these intra-seasonal variations, possibly resulting in warm bias in equatorial Pacific even at 0-month lead. Our experiments show that colder ocean surface initial conditions in tropical eastern Pacific tend to hinder developing warm SST anomalies in equatorial eastern Pacific and weaken the Bjerknes-type air-sea feedback in the summer of 2014, which reduce excessive westerly wind (warm SST anomalies) in equatorial western Pacific (near the Dateline) and decrease the air-sea feedback. As a result, the predicted amplitude of NINO3.4 at the peak phase is comparable to the observed one, suggesting that the initial condition errors are partially responsible for the false alarm in the 2014 El Niño prediction issued in the spring. Nonetheless, the initial condition errors could not account for easterly wind burst observed in mid June associated with enhanced extratropical anti-cyclonic atmospheric circulation anomalies in the Southern Hemisphere, which is regarded as another major factor to stall the El Niño occurrence in 2014. What drives this anomalous atmospheric forcing in mid June and how much it contributes to a more realistic prediction of the 2014 El Niño will also be discussed.
NASA Astrophysics Data System (ADS)
Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.
2015-04-01
The development of European surface wind storms out of normal mid-latitude cyclones is substantially influenced by upstream tropospheric growth factors over the Northern Atlantic. The main factors include divergence and vorticity advection in the upper troposphere, latent heat release and the presence of instabilities of short baroclinic waves of suitable wave lengths. In this study we examine a subset of these potential growth factors and their related influences on the transformation of extra-tropical cyclones into severe damage prone surface storm systems. Previous studies have shown links between specific growth factors and surface wind storms related to extreme cyclones. In our study we investigate in further detail spatial and temporal variability patterns of these upstream processes at different vertical levels of the troposphere. The analyses will comprise of the three growth factors baroclinicity, latent heat release and upper tropospheric divergence. Our definition of surface wind storms is based on the Storm Severity Index (SSI) alongside a wind tracking algorithm identifying areas of exceedances of the local 98th percentile of the 10m wind speed. We also make use of a well-established extra-tropical cyclone identification and tracking algorithm. These cyclone tracks form the base for a composite analysis of the aforementioned growth factors using ERA-Interim Reanalysis from 1979 - 2014 for the extended winter season (ONDJFM). Our composite analysis corroborates previous similar studies but extends them by using an impact based algorithm for the identification of strong wind systems. Based on this composite analysis we further identify variability patterns for each growth factor most important for the transformation of a cyclone into a surface wind storm. We thus also address the question whether the link between storm intensity and related growth factor anomaly taking into account its spatial variability is stable and can be quantified. While the robustness of our preliminary results is generally dependent on the growth factor investigated, some examples include i) the overall availability of latent heat seems to be less important than its spatial structure around the cyclone core and ii) the variability of upper-tropospheric baroclinicity appears to be highest north of the surface position of the cyclone, especially for those that transform into a surface storm.
SIPEX 2012: Extreme sea-ice and atmospheric conditions off East Antarctica
NASA Astrophysics Data System (ADS)
Heil, P.; Stammerjohn, S.; Reid, P.; Massom, R. A.; Hutchings, J. K.
2016-09-01
In 2012, Antarctic sea-ice coverage was marked by weak annual-mean climate anomalies that consisted of opposing anomalies early and late in the year (some setting new records) which were interspersed by near-average conditions for most of the austral autumn and winter. Here, we investigate the ocean-ice-atmosphere system off East Antarctica, prior to and during the Sea Ice Physics and Ecosystems eXperiment [SIPEX] 2012, by exploring relationships between atmospheric and oceanic forcing together with the sea-ice and snow characteristics. During August and September 2012, just prior to SIPEX 2012, atmospheric circulation over the Southern Ocean was near-average, setting up the ocean-ice-atmosphere system for near-average conditions. However, below-average surface pressure and temperature as well as strengthened circumpolar winds prevailed during June and July 2012. This led to a new record (19.48×106 km2) in maximum Antarctic sea-ice extent recorded in late September. In contrast to the weak circum-Antarctic conditions, the East Antarctic sector (including the SIPEX 2012 region) experienced positive sea-ice extent and concentration anomalies during most of 2012, coincident with negative atmospheric pressure and sea-surface temperature anomalies. Heavily deformed sea ice appeared to be associated with intensified wind stress due to increased cyclonicity as well as an increased influx of sea ice from the east. This increased westward ice flux is likely linked to the break-up of nearly 80% of the Mertz Glacier Tongue in 2010, which strongly modified the coastal configuration and hence the width of the westward coastal current. Combined with favourable atmospheric conditions the associated changed coastal configuration allowed more sea ice to remain within the coastal current at the expense of a reduced northward flow in the region around 141°-145°E. In addition a westward propagating positive anomaly of sea-ice extent from the western Ross Sea during austral winter 2012 has been identified to have fed into the westward current of the SIPEX 2012 region. A pair of large grounded icebergs appears to have modified the local stress state as well as the structure of the ice pack upstream and also towards the Dalton Glacier Tongue. Together with the increased influx of sea ice into the regions, this contributed to the difficulties in navigating the SIPEX 2012 region.
The Detection of Change in the Arctic Using Satellite and Buoy Data
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Yang, J.; Honjo, S.; Krishfield, R.; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
The decade of the 1990s is the warmest decade of the last century while the year 1998 is the warmest year ever observed by modern techniques with 9 out of 12 months of the year being the warmest month. Since the Arctic is expected to provide early signals of a possible warming scenario, detailed examination of changes in the Arctic environment is important. In this study, we examined available satellite ice cover and surface temperature data, wind and pressure data, and ocean hydrographic data to gain insights into the warming phenomenon. The areas of open water in both western and eastern regions of the Arctic were found to follow a cyclical pattern with approximately decadal period but with a lag of about three years between the two regions. The pattern was interrupted by unusually large anomalies in open water area in the western region in 1993 and 1998 and in the eastern region in 1995. The big 1998 open water anomaly occurred at the same time when a large surface temperature anomaly was also occurring in the area and adjacent regions. The infrared temperature data show for the first time the complete spatial scope of the warming anomalies and it is apparent that despite the magnitude of the 1998 anomaly, it is basically confined to North America and the Western Arctic. The large increases in open water areas in the Western Sector form 1996 to 1998 were observed to be coherent with changing wind directions which was predominantly cyclonic in 1996 and anti-cyclonic in 1997 and 1998. Detailed hydrography measurements up to 500 m depth over the same general area in April 1996 and April 1997 also indicate significant freshening and warming in the upper part of the mixed layer suggesting increases in ice melt. Continuous ocean temperature and salinity data from ocean buoys confirm this result and show significant seasonal changes from 1996 to 1998, at depths of 8 m, 45 m, and 75 m. Long data records of temperature and hydrography were also examined and the potential impact of a warming, freshening, and the presence of abnormally large open areas on the state of the Arctic climate system are discussed.
NASA Astrophysics Data System (ADS)
Cao, Xi; Wu, Renguang
2018-04-01
Large intraseasonal rainfall variations are identified over the southern South China Sea (SSCS), tropical southeastern Indian Ocean (SEIO), and east coast of the Philippines (EPHI) in boreal winter. The present study contrasts origins and propagations and investigates interrelations of intraseasonal rainfall variations on the 10-20- and 30-60-day time scales in these regions. Different origins are identified for intraseasonal rainfall anomalies over the SSCS, SEIO, and EPHI on both time scales. On the 10-20-day time scale, strong northerly or northeasterly wind anomalies related to the East Asian winter monsoon (EAWM) play a major role in intraseasonal rainfall variations over the SSCS and EPHI. On the 30-60-day time scale, both the intraseasonal signal from the tropical Indian Ocean and the EAWM-related wind anomalies contribute to intraseasonal rainfall variations over the SSCS, whereas the EAWM-related wind anomalies have a major contribution to the intraseasonal rainfall variations over the EPHI. No relation is detected between the intraseasonal rainfall variations over the SEIO and the EAWM on both the 10-20-day and 30-60-day time scales. The anomalies associated with intraseasonal rainfall variations over the SSCS and EPHI propagate northwestward and northeastward, respectively, on the 10-20- and 30-60-day time scales. The intraseasonal rainfall anomalies display northwestward and northward propagation over the Bay of Bengal, respectively, on the 10-20- and 30-60-day time scales.
NASA Astrophysics Data System (ADS)
Kawai, Y.; Osafune, S.; Masuda, S.; Komuro, Y.
2016-12-01
The relationship between the volumetric transport of the Bering Strait throughflow (BTF) and sea surface salinity (SSS) in the Bering Sea was investigated using an atmosphere-ocean-ice coupled model, MIROC4h, which includes an eddy-permitting ocean model. The MIROC4h simulated well the seasonal cycle of BTF transport, although it overestimated the transport compared with previous studies. The interannual variations of SSS in the Bering Sea were correlated with those of BTF transport: SSS in the northwestern Bering Sea was high when BTF transport was large. The SSS anomaly associated with the BTF anomaly became evident from late autumn to spring, and SSS lagged behind the BTF by a few months. The BTF transport was strongly correlated with the SSH in the eastern Bering Sea, the southwestern Chukchi Sea, and the East Siberian Sea. The low SSH along the Russian coast in the Arctic Ocean was uncorrelated with the high SSH in the Bering Sea. The Arctic SSH affected BTF transport and the SSS in the northwestern Bering Sea independently of the SSH in the Bering Sea. We evaluated the salt budget in the northwestern Bering Sea, including Anadyr Bay. When the BTF transport in October-March was large, the horizontal convergence of salt increased and sea-ice melting decreased; both changes contributed to the increase of salinity. In contrast, evaporation-minus-precipitation and the residual component had the opposite effect. The sea-ice retreat was closely related to meridional wind anomalies that also raised the SSH in the eastern Bering Sea. Changes in upper-layer currents caused by the southerly wind anomalies in the Bering Sea contributed to the increase of the horizontal convergence of salt. In addition, the SSH anomalies in the Arctic Ocean independently affected the currents in the Bering Strait and the northwestern Bering Sea, perhaps through the propagation of shelf waves, which also led to salinization.
CWRF performance at downscaling China climate characteristics
NASA Astrophysics Data System (ADS)
Liang, Xin-Zhong; Sun, Chao; Zheng, Xiaohui; Dai, Yongjiu; Xu, Min; Choi, Hyun I.; Ling, Tiejun; Qiao, Fengxue; Kong, Xianghui; Bi, Xunqiang; Song, Lianchun; Wang, Fang
2018-05-01
The performance of the regional Climate-Weather Research and Forecasting model (CWRF) for downscaling China climate characteristics is evaluated using a 1980-2015 simulation at 30 km grid spacing driven by the ECMWF Interim reanalysis (ERI). It is shown that CWRF outperforms the popular Regional Climate Modeling system (RegCM4.6) in key features including monsoon rain bands, diurnal temperature ranges, surface winds, interannual precipitation and temperature anomalies, humidity couplings, and 95th percentile daily precipitation. Even compared with ERI, which assimilates surface observations, CWRF better represents the geographic distributions of seasonal mean climate and extreme precipitation. These results indicate that CWRF may significantly enhance China climate modeling capabilities.
NASA Astrophysics Data System (ADS)
Wu, Lingjuan; Wang, Jia; Gao, Song; Zheng, Xiangrong; Huang, Rui
2017-02-01
The explosive growth of Nemopilema nomurai occurred near the coastal waters of Qinhuangdao in July 2013. However, it did not take place in 2012. In this paper, the dynamical factors of wind, ocean current and sea temperature on giant jellyfish bloom in 2013 is analyzed by a comprehensive investigation. The numerical experiments are based on a numerical trajectory model of the jellyfish particles, which are released into the waters from Feiyan Shoal to New Yellow River Mouth, where is speculated as the most likely remote source of Qinhuangdao jellyfish bloom. The results show that in surface layer the jellyfish drift is jointly driven by the surface wind and surface current. For example, in northeastern Bohai Bay, the giant jellyfish moved northwestward in surface layer with influence of the westward wind and current anomalies during the second half of May in 2013, then approached the south of Jingtang Port by early June, and accumulated near Qinhuangdao in early July. The 2012 scenario during the same period was quite different. The jellyfish particles influencing waters near Qinhuangdao decreased with depth and there was few (no) particles influencing Qinhuangdao in middle (bottom) layer because the anticyclonic residual circulation weakened with depth in Bohai Bay. Besides, in the potential source waters of jellyfish, sea temperature in 2012 was more suitable for jellyfish bloom than that in 2013 if there was adequate bait. Hence, the specified direction of wind and current pattern in the Bohai Sea in surface layer (especially in the northeastern Bohai Bay during the second half of May) was more important for jellyfish bloom near Qinhuangdao than the sea temperature in the potential source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poduval, B., E-mail: bpoduval@spacescience.org
2016-08-10
This Letter presents the results of an investigation into the controlling influence of large-scale magnetic field of the Sun in determining the solar wind outflow using two magnetostatic coronal models: current sheet source surface (CSSS) and potential field source surface. For this, we made use of the Wang and Sheeley inverse correlation between magnetic flux expansion rate (FTE) and observed solar wind speed (SWS) at 1 au. During the period of study, extended over solar cycle 23 and beginning of solar cycle 24, we found that the coefficients of the fitted quadratic equation representing the FTE–SWS inverse relation exhibited significantmore » temporal variation, implying the changing pattern of the influence of FTE on SWS over time. A particularly noteworthy feature is an anomaly in the behavior of the fitted coefficients during the extended minimum, 2008–2010 (CRs 2073–2092), which is considered due to the particularly complex nature of the solar magnetic field during this period. However, this variation was significant only for the CSSS model, though not a systematic dependence on the phase of the solar cycle. Further, we noticed that the CSSS model demonstrated better solar wind prediction during the period of study, which we attribute to the treatment of volume and sheet currents throughout the corona and the more accurate tracing of footpoint locations resulting from the geometry of the model.« less
Interannual and intra-annual variability of rainfall in Haiti (1905-2005)
NASA Astrophysics Data System (ADS)
Moron, Vincent; Frelat, Romain; Jean-Jeune, Pierre Karly; Gaucherel, Cédric
2015-08-01
The interannual variability of annual and monthly rainfall in Haiti is examined from a database of 78 rain gauges in 1905-2005. The spatial coherence of annual rainfall is rather low, which is partly due to Haiti's rugged landscape, complex shoreline, and surrounding warm waters (mean sea surface temperatures >27 °C from May to December). The interannual variation of monthly rainfall is mostly shaped by the intensity of the low-level winds across the Caribbean Sea, leading to a drier- (or wetter-) than-average rainy season associated with easterly (or westerly) anomalies, increasing (or decreasing) winds. The varying speed of low-level easterlies across the Caribbean basin may reflect at least four different processes during the year: (1) an anomalous trough/ridge over the western edge of the Azores high from December to February, peaking in January; (2) a zonal pressure gradient between Eastern Pacific and the tropical Northern Atlantic from May/June to September, with a peak in August (i.e. lower-than-average rainfall in Haiti is associated with positive sea level pressure anomalies over the tropical North Atlantic and negative sea level pressure anomalies over the Eastern Pacific); (3) a local ocean-atmosphere coupling between the speed of the Caribbean Low Level Jet and the meridional sea surface temperature (SST) gradient across the Caribbean basin (i.e. colder-than-average SST in the southern Caribbean sea is associated with increased easterlies and below-average rainfall in Haiti). This coupling is triggered when the warmest Caribbean waters move northward toward the Gulf of Mexico; (4) in October/November, a drier- (or wetter-) than-usual rainy season is related to an almost closed anticyclonic (or cyclonic) anomaly located ENE of Haiti on the SW edge of the Azores high. This suggests a main control of the interannual variations of rainfall by intensity, track and/or recurrence of tropical depressions traveling northeast of Haiti. During this period, the teleconnection of Haitian rainfall with synchronous Atlantic and Eastern Pacific SST is at a minimum.
Iglesias, Isabel; Lorenzo, M Nieves; Lázaro, Clara; Fernandes, M Joana; Bastos, Luísa
2017-12-31
Sea level anomaly (SLA), provided globally by satellite altimetry, is considered a valuable proxy for detecting long-term changes of the global ocean, as well as short-term and annual variations. In this manuscript, monthly sea level anomaly grids for the period 1993-2013 are used to characterise the North Atlantic Ocean variability at inter-annual timescales and its response to the North Atlantic main patterns of atmospheric circulation variability (North Atlantic Oscillation, Eastern Atlantic, Eastern Atlantic/Western Russia, Scandinavian and Polar/Eurasia) and main driven factors as sea level pressure, sea surface temperature and wind fields. SLA variability and long-term trends are analysed for the North Atlantic Ocean and several sub-regions (North, Baltic and Mediterranean and Black seas, Bay of Biscay extended to the west coast of the Iberian Peninsula, and the northern North Atlantic Ocean), depicting the SLA fluctuations at basin and sub-basin scales, aiming at representing the regions of maximum sea level variability. A significant correlation between SLA and the different phases of the teleconnection patterns due to the generated winds, sea level pressure and sea surface temperature anomalies, with a strong variability on temporal and spatial scales, has been identified. Long-term analysis reveals the existence of non-stationary inter-annual SLA fluctuations in terms of the temporal scale. Spectral density analysis has shown the existence of long-period signals in the SLA inter-annual component, with periods of ~10, 5, 4 and 2years, depending on the analysed sub-region. Also, a non-uniform increase in sea level since 1993 is identified for all sub-regions, with trend values between 2.05mm/year, for the Bay of Biscay region, and 3.98mm/year for the Baltic Sea (no GIA correction considered). The obtained results demonstrated a strong link between the atmospheric patterns and SLA, as well as strong long-period fluctuations of this variable in spatial and temporal scales. Copyright © 2017 Elsevier B.V. All rights reserved.
Díaz, Patricio A.; Reguera, Beatriz; Ruiz-Villarreal, Manuel; Pazos, Yolanda; Velo-Suárez, Lourdes; Berger, Henrick; Sourisseau, Marc
2013-01-01
In 2012, there were exceptional blooms of D. acuminata in early spring in what appeared to be a mesoscale event affecting Western Iberia and the Bay of Biscay. The objective of this work was to identify common climatic patterns to explain the observed anomalies in two important aquaculture sites, the Galician Rías Baixas (NW Spain) and Arcachon Bay (SW France). Here, we examine climate variability through physical-biological couplings, Sea Surface Temperature (SST) anomalies and time of initiation of the upwelling season and its intensity over several decades. In 2012, the mesoscale features common to the two sites were positive anomalies in SST and unusual wind patterns. These led to an atypical predominance of upwelling in winter in the Galician Rías, and increased haline stratification associated with a southward advection of the Gironde plume in Arcachon Bay. Both scenarios promoted an early phytoplankton growth season and increased stability that enhanced D. acuminata growth. Therefore, a common climate anomaly caused exceptional blooms of D. acuminata in two distant regions through different triggering mechanisms. These results increase our capability to predict intense diarrhetic shellfish poisoning outbreaks in the early spring from observations in the preceding winter. PMID:23959151
NASA Astrophysics Data System (ADS)
LIN, JYH-WOEI
2012-08-01
Principal Component Analysis (PCA) and image processing are used to determine Total Electron Content (TEC) anomalies in the F-layer of the ionosphere relating to Typhoon Nakri for 29 May, 2008 (UTC). PCA and image processing are applied to the global ionospheric map (GIM) with transforms conducted for the time period 12:00-14:00 UT on 29 May, 2008 when the wind was most intense. Results show that at a height of approximately 150-200 km the TEC anomaly is highly localized; however, it becomes more intense and widespread with height. Potential causes of these results are discussed with emphasis given to acoustic gravity waves caused by wind force.
Effect of AMOC collapse on ENSO in a high resolution general circulation model
NASA Astrophysics Data System (ADS)
Williamson, Mark S.; Collins, Mat; Drijfhout, Sybren S.; Kahana, Ron; Mecking, Jennifer V.; Lenton, Timothy M.
2018-04-01
We look at changes in the El Niño Southern Oscillation (ENSO) in a high-resolution eddy-permitting climate model experiment in which the Atlantic Meridional Circulation (AMOC) is switched off using freshwater hosing. The ENSO mode is shifted eastward and its period becomes longer and more regular when the AMOC is off. The eastward shift can be attributed to an anomalous eastern Ekman transport in the mean equatorial Pacific ocean state. Convergence of this transport deepens the thermocline in the eastern tropical Pacific and increases the temperature anomaly relaxation time, causing increased ENSO period. The anomalous Ekman transport is caused by a surface northerly wind anomaly in response to the meridional sea surface temperature dipole that results from switching the AMOC off. In contrast to a previous study with an earlier version of the model, which showed an increase in ENSO amplitude in an AMOC off experiment, here the amplitude remains the same as in the AMOC on control state. We attribute this difference to variations in the response of decreased stochastic forcing in the different models, which competes with the reduced damping of temperature anomalies. In the new high-resolution model, these effects approximately cancel resulting in no change in amplitude.
NASA Technical Reports Server (NTRS)
Cook, Benjamin; Seager, Richard; Miller, R. L.
2010-01-01
We use an early twentieth century (1908-1958) atmospheric reanalysis, based on assimilation of surface and sea level pressure observations, to contrast atmospheric circulation during two periods of persistent drought in North America: 1932-1939 (the Dust Bowl) and 1948-1957. Primary forcing for both droughts is believed to come from anomalous sea surface temperatures (SSTs): a warm Atlantic and a cool eastern tropical Pacific. For boreal winter (October-March) in the 1950s, a stationary wave pattern originating from the tropical Pacific is present, with positive centers over the north Pacific and north Atlantic ocean basins and a negative center positioned over northwest North America and the tropical/subtropical Pacific. This wave train is largely absent for the 1930s drought; boreal winter height anomalies are organized much more zonally, with positive heights extending across northern North America. For boreal summer (April-September) during the 1930s, a strong upper level ridge is centered over the Great Plains; this feature is absent during the 1950s and appears to be linked to a weakening of the Great Plains low-level jet (GPLLJ). Subsidence anomalies are co-located over the centers of each drought: in the central Great Plains for the 1930s and in a band extending from the southwest to the southeastern United States for the 1950s. The location and intensity of this subsidence during the 1948-1957 drought is a typical response to a cold eastern tropical Pacific, but for 1932-1939 deviates in terms of the expected intensity, location, and spatial extent. Overall, circulation anomalies during the 1950s drought appear consistent with the expected response to the observed SST forcing. This is not the case for the 1930s, implying some other causal factor may be needed to explain the Dust Bowl drought anomalies. In addition to SST forcing, the 1930s were also characterized by massive alterations to the land surface, including regional-scale devegetation from crop failures and intensive wind erosion and dust storms. Incorporation of these land surface factors into a general circulation model greatly improves the simulation of precipitation and subsidence anomalies during this drought, relative to simulations with SST forcing alone. Even with additional forcing from the land surface, however, the model still has difficulty reproducing some of the other circulation anomalies, including weakening of the GPLLJ and strengthening of the upper level ridge during AMJJAS. This may be due to either weaknesses in the model or uncertainties in the boundary condition estimates. Still, analysis of the circulation anomalies supports the conclusion of an earlier paper (Cook et al. in Proc Natl Acad Sci 106:4997, 2009), demonstrating that land degradation factors are consistent with the anomalous nature of the Dust Bowl drought.
December anomaly in ionosphere using FORMOSAT-3/COSMIC electron density profiles
NASA Astrophysics Data System (ADS)
Dashnyam, G.; Lin, C. C. H.; Rajesh, P. K.; Lin, J. T.
2017-12-01
December anomaly in ionosphere refers to the observation of greater value of global average ionospheric peak electron density (NmF2) in December-January months than in June-July months. So far there has been no satisfactory explanation to account for this difference, which is also known as annual asymmetry, leading to the speculation that forcing from lower atmosphere may be important. In this work, FORMOSAT-3/COSMIC electron density profiles are used to investigate the characteristics of December anomaly at different local times and longitudes in varying levels of solar activity. The observations in the years 2008, 2009 and 2012 are used for the study. The results suggest that the anomaly exists in all the three years, and is pronounced during day. Detailed analysis is carried out using latitude-altitude electron density profiles at selected longitude sectors, revealing that neutral wind may play dominant role. SAMI2 model is used to further examine the role of neutral wind influencing the electron density in different solstices. Tidal decomposition of the wind is carried out to understand the dominant tidal components that give rise to the larger electron density in the December-January months.
Precipitation Anomalies in the Tropical Indian Ocean and Possible Links to the Initiation of El Nino
NASA Technical Reports Server (NTRS)
Curtis, Scott; Adler, Robert F.; Huffman, George J.; Starr, David OC. (Technical Monitor)
2001-01-01
A pattern of variability in precipitation and 1000mb zonal winds for the tropical Indian Ocean during, 1979 to 1999 (AtmIO mode) is described using EOFs. The AtmIO mode consists of a cross-equatorial gradient of precipitation anomalies and equatorial wind anomalies of alternating signs on the Equator. The positive phase is defined as enhanced precipitation to the In "n south of the equator, suppressed precipitation to the north, and anomalous westerlies centered on the island of Sumatra. In September-October 1981, February-March 1990, and October-December 1996 the AtmIO mod-, was positive and there was a significant 30-60 day variability in the gradient of precipitation anomalies. These cases coincided with moderate to heavy ,activity in the Madden-Jullan Oscillation (MJO). Links between the AtmIO, MJO, and El Nino are discussed.
Tropical Atlantic Impacts on the Decadal Climate Variability of the Tropical Ocean and Atmosphere.
NASA Astrophysics Data System (ADS)
Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.
2015-12-01
Previous studies revealed atmospheric bridges between the tropical Pacific, Atlantic, and Indian Ocean. In particular, several recent works indicate that the Atlantic sea surface temperature (SST) may contribute to the climate variability over the equatorial Pacific. Inspired by these studies, our work aims at investigating the impact of the tropical Atlantic on the entire tropical climate system, and uncovering the physical dynamics under these tropical teleconnections. We first performed a 'pacemaker' simulation by restoring the satellite era tropical Atlantic SST changes in a fully coupled model - the CESM1. Results reveal that the Atlantic warming heats the Indo-Western Pacific and cools the Eastern Pacific, enhances the Walker circulation and drives the subsurface Pacific to a La Niña mode, contributing to 60-70% of the above tropical changes in the past 30 years. The same pan-tropical teleconnections have been validated by the statistics of observations and 106 CMIP5 control simulations. We then used a hierarchy of atmospheric and oceanic models with different complexities, to single out the roles of atmospheric dynamics, atmosphere-ocean fluxes, and oceanic dynamics in these teleconnections. With these simulations we established a two-step mechanism as shown in the schematic figure: 1) Atlantic warming generates an atmospheric deep convection and induces easterly wind anomalies over the Indo-Western Pacific in the form of Kelvin waves, and westerly wind anomalies over the eastern equatorial Pacific as Rossby waves, in line with Gill's solution. This circulation changes warms the Indo-Western Pacific and cools the Eastern Pacific with the wind-evaporation-SST effect, forming a temperature gradient over the Indo-Pacific basins. 2) The temperature gradient further generates a secondary atmospheric deep convection, which reinforces the easterly wind anomalies over the equatorial Pacific and enhances the Walker circulation, triggering the Pacific to a La Niña mode with Bjerknes ocean dynamical feedback. This mechanism contributes to the understanding of the global decadal climate variability and predictability. In particular, Atlantic contributes to the Eastern Pacific cooling, which is considered as an important source of the recent global warming hiatus.
Variability of Winter Air Temperature in Mid-Latitude Europe
NASA Technical Reports Server (NTRS)
Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.
2002-01-01
The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud cover and precipitable water are from the National Centers for Environmental Prediction (NCEP) Reanalysis.
Radiative effects of black carbon aerosols on Indian monsoon: a study using WRF-Chem model
NASA Astrophysics Data System (ADS)
Soni, Pramod; Tripathi, Sachchida Nand; Srivastava, Rajesh
2018-04-01
The Weather Research and Forecasting model with Chemistry (WRF-Chem) is utilized to examine the radiative effects of black carbon (BC) aerosols on the Indian monsoon, for the year 2010. Five ensemble simulations with different initial conditions (1st to 5th December, 2009) were performed and simulation results between 1st January, 2010 to 31st December, 2010 were used for analysis. Most of the BC which stays near the surface during the pre-monsoon season gets transported to higher altitudes with the northward migration of the Inter Tropical Convergence Zone (ITCZ) during the monsoon season. In both the seasons, strong negative SW anomalies are present at the surface along with positive anomalies in the atmosphere, which results in the surface cooling and lower tropospheric heating, respectively. During the pre-monsoon season, lower troposphere heating causes increased convection and enhanced meridional wind circulation, bringing moist air from Indian Ocean and Bay of Bengal to the North-East India, leading to increased rainfall there. However, during the monsoon season, along with cooling over the land regions, a warming over the Bay of Bengal is simulated. This differential heating results in an increased westerly moisture flux anomaly over central India, leading to increased rainfall over northern parts of India but decreased rainfall over southern parts. Decreased rainfall over southern India is also substantiated by the presence of increased evaporation over Bay of Bengal and decrease over land regions.
Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?
Ma, Xiaohui; Chang, Ping; Saravanan, R.; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao
2015-01-01
High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy–atmosphere interaction in forecast and climate models. PMID:26635077
NASA Technical Reports Server (NTRS)
Boulanger, J. P.; Delecluse, F.; Maes, C.; Levy, C.
1995-01-01
A high resolution oceanic general circulation model of the three topical oceans is used to investigate long equatorial wave activity in the Pacific Ocean during the 1985-1994 TOGA period. Zonal wind stress forcing and simulated dynamic height are interpreted using techniques previously applied to data. Kelvin and first Rossby waves are observed propagating during all the period. A seasonal cycle and interannual anomalies are computed for each long equatorial wave. The east Pacific basin is mainly dominated by seasonal cycle variations while strong interannual anomalies are observed west of the dateline. Long wave interannual anomalies are then compared to wave coefficients simulated by a simple wind-forced model. Our results outline the major role played by wind forcing on interannual time scales in generating long equatorial waves. However, near both eastern and western boundaries, some differences can be attributed to long wave reflections. A comparison to wave coefficients calculated from GEOSAT sea-level data gives some insight of the model behavior.
Using radon-222 to distinguish between vertical transport processes at Jungfraujoch
NASA Astrophysics Data System (ADS)
Griffiths, Alan; Chambers, Scott; Conen, Franz; Weingartner, Ernest; Zimmermann, Lukas; Williams, Alastair; Steinbacher, Martin
2015-04-01
Trace gases measured at Jungfrajoch, a key baseline monitoring station in the Swiss Alps, are tranported from the surface to the alpine ridge by several different processes. On clear days with weak synoptic forcing, thermally-driven upslope mountain winds (anabatic winds) are prevalent. Using hourly radon--222 observations, which are often used to identify air of terrestrial origin, we used the shape of the diurnal cycle to sort days according to the strength of anabatic winds. Radon is ideal as an airmass tracer because it is emitted from soil at a relatively constant rate, it is chemically inert, and decays with a half-life of 3.8 days. Because of its short half-life, radon concentrations are much lower in the free troposphere than in boundary-layer air over land. For comparable radon concentrations, anabatic wind days at Jungfraujoch are different from non-anabatic days in terms of the average wind speed, humidity, air temperature anomalies, and trace species. As a consequence, future studies could be devised which focus on a subset of days, e.g. by excluding anabatic days, with the intention of choosing a set of days which can be more accurately simulated by a transport model.
Mean state dependence of ENSO diversity resulting from an intermediate coupled model
NASA Astrophysics Data System (ADS)
Xie, Ruihuang; Jin, Fei-Fei; Mu, Mu
2016-04-01
ENSO diversity is referred to the event-to-event differences in the amplitude, longitudinal location of maximum sea surface temperature (SST) anomalies and evolutional mechanisms, as manifested in both observation data and climate model simulations. Previous studies argued that westerly wind burst (WWB) has strong influence on ENSO diversity. Here, we bring evidences, from a modified intermediate complexity Zebiak-Cane (ZC) coupled model, to illustrate that the ENSO diversity is also determined by the mean states. Stabilities of the linearized ZC model reveal that the mean state with weak (strong) wind stress and deep (shallow) thermocline prefers ENSO variation in the equitorial eastern (central) Pacific with a four-year (two-year) period. Weak wind stress and deep thermocline make the thermocline (TH) feedback the dominant contribution to the growth of ENSO SST anomalies, whereas the opposite mean state favors the zonal advective (ZA) feedback. Different leading dynamical SST-controller makes ENSO display its diversity. In a mean state that resembles the recent climate in the tropical Pacific, the four-year and two-year ENSO variations coexist with similar growth rate. Even without WWB forcing, the nonlinear integration results with adjusted parameters in this special mean state also present at least two types of El Niño, in which the maximum warming rates are contributed by either TH or ZA feedback. The consistency between linear and nonlinear model results indicates that the ENSO diversity is dependent on the mean states.
NASA Astrophysics Data System (ADS)
Greatbatch, Richard J.; Zhu, Xiaoting; Claus, Martin
2018-03-01
Monthly mean sea level anomalies in the tropical Pacific for the period 1961-2002 are reconstructed using a linear, multimode model driven by monthly mean wind stress anomalies from the NCEP/NCAR and ERA-40 reanalysis products. Overall, the sea level anomalies reconstructed by both wind stress products agree well with the available tide gauge data, although with poor performance at Kanton Island in the western-central equatorial Pacific and reduced amplitude at Christmas Island. The reduced performance is related to model error in locating the pivot point in sea level variability associated with the so-called "tilt" mode. We present evidence that the pivot point was further west during the period 1993-2014 than during the period 1961-2002 and attribute this to a persistent upward trend in the zonal wind stress variance along the equator west of 160° W throughout the period 1961-2014. Experiments driven by the zonal component of the wind stress alone reproduce much of the trend in sea level found in the experiments driven by both components of the wind stress. The experiments show an upward trend in sea level in the eastern tropical Pacific over the period 1961-2002, but with a much stronger upward trend when using the NCEP/NCAR product. We argue that the latter is related to an overly strong eastward trend in zonal wind stress in the eastern-central Pacific that is believed to be a spurious feature of the NCEP/NCAR product.
SST cooling along coastal Java and Sumatra during positive Indian Ocean Dipole events
NASA Astrophysics Data System (ADS)
Delman, A. S.; McClean, J.; Sprintall, J.; Talley, L. D.; Bryan, F.; Johnson, B. K.; Carton, J.
2016-02-01
The evolution of positive Indian Ocean Dipole (pIOD) events is driven in part by anomalous SST cooling near the coasts of Java and Sumatra. However, the mechanisms and timeline of surface temperature changes near these two islands are distinct. Satellite data and mixed layer budgets in a forced ocean model simulation with 0.1° spatial resolution were used to characterize the dominant influences on SST in each region during pIOD events. Along the south coast of Java, where upwelling from southeasterly trade winds happens seasonally in June-September, strengthening/weakening of the trade winds has little effect on the interannual variability of SST. Instead, remotely-forced upwelling Kelvin waves are the primary mechanism for producing anomalous Java SST cooling in the early stages of a pIOD event. Other mechanisms that affect Java SST anomalies include inflows from the interior Indonesian Seas, mesoscale eddies, and air-sea heat fluxes; these influences can hasten the decay of cool Java SST anomalies and therefore may impact the strength and duration of pIOD events. Along the west coast of Sumatra, surface cooling is initially delayed by a deeper thermocline and a salinity-stratified barrier layer. Hence upwelling Kelvin waves do not substantially affect SST near Sumatra during the first 2-3 months of Java SST cooling; however, they do help drive surface cooling near Sumatra once the barrier layer has been sufficiently eroded by waters of decreasing temperature and increasing salinity. Upwelling Kelvin wave activity in the equatorial Indian Ocean starting in April is also shown to be a robust predictor of pIOD events later in the calendar year.
Is ENSO part of an Indo-Pacific phenomenon?
NASA Astrophysics Data System (ADS)
Wieners, Claudia; de Ruijter, Wilhelmus; Dijkstra, Henk
2015-04-01
The Seychelles Dome (SD) - a thermocline ridge in the West Indian Ocean - is a dynamically active region with a strong Sea Surface Temperature (SST)-atmosphere coupling and located at the origin of the Madden-Julian Oscillation. Analysis of observational data suggests that it might influence El Niño occurrence and evolution at a lead time of 1.5 years. We find a negative correlation between SD SST in boreal summer and Nino3.4 SST about 18 months later. Such a correlation might be a mere side-effect of the fact that ENSO has influence on the SD - El Niño (La Niña) is followed by a warm (cool) SD after about 3-6 months - and of the cyclicity of ENSO with a preferred period of about 4 years. However, we find the correlation to be significantly stronger than one would expect in that case, implying that the SD contains information linearly independent from ENSO. A Multi-channel Singular Spectrum analysis (MSSA) on tropical SST, zonal wind and zonal wind variability reveals three significant oscillations. All of these show ENSO-like behaviour in the Pacific Ocean, with East Pacific SST anomalies being followed by anomalies of the same sign in the SD region after 3-5 months. Wind patterns propagate from the Indian to the Pacific Ocean. These findings suggest that the Indian and Pacific Oceans act as a unified system. The slower two oscillations, with periods around 4 years, have the strongest ENSO signal in the East Pacific (like a `Cold Tongue El Niño'). Compared to them, the fastest oscillation, with a period of 2.5 years, has a stronger signal in the Central Pacific (more resembling a `Warm Pool El Niño'). Because of the short period of the fastest mode, the time elapsed between an SD anomaly and the following ENSO anomaly (of opposite sign) is only 11 months - much less than the 18 months lag at which the correlation between SD and ENSO is minimal. This suggests that while the Cold Tongue El Niño's tend to be preceded by a cool SD event at a lead time suitable for SD-ENSO influence, Warm Pool El Niño's are not. From the MSSA and a composite analysis we find evidence for two (possibly interrelated) physical mechanisms by which the SD might influence ENSO. In the first one, there is subsidence above the cool SD, leading to westerly winds in the Indian Ocean and inducing enhanced convection above Indonesia. The resulting inflow from the West Pacific (an easterly wind) favours the creation of a large Pacific Warm Water Volume that can be released into the East Pacific in boreal spring/summer following the cool SD event. In the second mechanism, the cool SD favours a strong zonal wind variability above the West Pacific on intraseasonal time scales, part of which can be attributed to SD influence on the Madden-Julian oscillation. This intraseasonal variability (westerly wind bursts...) can trigger warm Kelvin waves that might initiate El Niño.
NASA Astrophysics Data System (ADS)
Chen, Wei; Lee, June-Yi; Lu, Riyu; Dong, Buwen; Ha, Kyung-Ja
2015-10-01
The tropical North Atlantic (TNA) sea surface temperature (SST) has been identified as one of regulators on the boreal summer climate over the western North Pacific (WNP), in addition to SSTs in the tropical Pacific and Indian Oceans. The major physical process proposed is that the TNA warming induces a pair of cyclonic circulation anomaly over the eastern Pacific and negative precipitation anomalies over the eastern to central tropical Pacific, which in turn lead to an anticyclonic circulation anomaly over the western to central North Pacific. This study further demonstrates that the modulation of the TNA warming to the WNP summer climate anomaly tends to be intensified under background of the weakened Atlantic thermohaline circulation (THC) by using a water-hosing experiment. The results suggest that the weakened THC induces a decrease in thermocline depth over the TNA region, resulting in the enhanced sensitivity of SST variability to wind anomalies and thus intensification of the interannual variation of TNA SST. Under the weakened THC, the atmospheric responses to the TNA warming are westward shifted, enhancing the anticyclonic circulation and negative precipitation anomaly over the WNP. This study supports the recent finding that the negative phase of the Atlantic multidecadal oscillation after the late 1960s has been favourable for the strengthening of the connection between TNA SST variability and WNP summer climate and has important implications for seasonal prediction and future projection of the WNP summer climate.
Air-sea interaction over the Indian Ocean due to variations in the Indonesian throughflow
NASA Astrophysics Data System (ADS)
Wajsowicz, R. C.
The effects of the Indonesian throughflow on the upper thermocline circulation and surface heat flux over the Indian Ocean are presented for a 3-D ocean model forced by two different monthly wind-stress climatologies, as they show interesting differences, which could have implications for long-term variability in the Indian and Australasian monsoons. The effects are determined by contrasting a control run with a run in which the throughflow is blocked by an artificial land-bridge across the exit channels into the Indian Ocean. In the model forced by ECMWF wind stresses, there is little impact on the annual mean surface heat flux in the region surrounding the throughflow exit straits, whereas in the model forced by SSM/I-based wind stresses, a modest throughflow of less than 5 ×106 m3s-1 over the upper 300 m induces an extra 10-50 Wm-2 output. In the SSM/I-forced model, there is insignificant penetration of the throughflow into the northern Indian Ocean. However, in the ECMWF-forced model, the throughflow induces a 5-10 Wm-2 reduction in heat input into the ocean, i.e., an effective output, over the Somali Current in the annual mean. These differences are attributed to differences in the strength and direction of the Ekman transport of the ambient flow, and the vertical structure of the transport and temperature anomalies associated with the throughflow. In both models, the throughflow induces a 5-30 Wm-2 increase in net output over a broad swathe of the southern Indian Ocean, and a reduction in heat output of 10-60 Wm-2 in a large L-shaped band around Tasmania. Effective increases in throughflow-induced net output reach up to 40 (60) Wm-2 over the Agulhas Current retroflection in the ECMWF (SSM/I)-forced model. Seasonal variations in the throughflow's effect on the net surface heat flux are attributed to seasonal variations in the ambient circulation of the Indian Ocean, specifically in coastal upwelling along the south Javan, west Australian, and Somalian coasts, and in the depth of convective overturning between 40°S to 50°S, and its sensing of the mean throughflow's thermal anomaly. The seasonal anomalies plus annual mean yield maximum values for the throughflow-induced net surface heat output in boreal summer. Values may exceed 40 Wm-2 in the southern Indian Ocean interior in both models, exceed 60 Wm-2 over the Agulhas retroflection and immediate vicinity of the exit channels in the SSM/I-forced model, and reach 30 Wm-2 over the Somali jet in the ECMWF-forced model.
NASA Astrophysics Data System (ADS)
Kaneko, D.
2016-12-01
Climate change appears to have manifested itself along with abnormal meteorological disasters. Instability caused by drought and flood disasters is producing poor harvests because of poor photosynthesis and pollination. Fluctuations of extreme phenomena are increasing rapidly because amplitudes of change are much greater than average trends. A fundamental cause of these phenomena derives from increased stored energy inside ocean waters. Geophysical and biochemical modeling of crop production can elucidate complex mechanisms under seasonal climate anomalies. The models have progressed through their combination with global climate reanalysis, environmental satellite data, and harvest data on the ground. This study examined adaptation of crop production to advancing abnormal phenomena related to global climate change. Global environmental surface conditions, i.e., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. Basic streams of the concepts of modeling rely upon continental energy flow and carbon circulation among crop vegetation, land surface atmosphere combining energy advection from ocean surface anomalies. Global environmental surface conditions, e.g., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. The method of validating the modeling relies upon carbon partitioning in biomass and grains through carbon flow by photosynthesis using carbon dioxide unit in photosynthesis. Results of computations done for this study show global distributions of actual evaporation, stomata opening, and photosynthesis, presenting mechanisms related to advection effects from SST anomalies in the Pacific, Atlantic, and Indian oceans on global and continental croplands. For North America, climate effects appear clearly in severe atmospheric phenomena, which have caused drought and forest fires through seasonal advection thermal effects on potential evaporation by winds blowing eastward over California, the Grand Canyon, Monument Valley, and into the Great Plains. These coupled SST photosynthesis models constitute an advanced approach for crop modeling in the era of recent new climate.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Wang, Hailan; Suarez, Max
2010-01-01
This study examines the nature of boreal summer subseasonal atmospheric variability based on the new NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) for the period 1979-2010. An analysis of the June, July and August subseasonal 250hPa v-wind anomalies shows distinct Rossby wave-like structures that appear to be guided by the mean jets. On monthly subseasonal time scales, the leading waves (the first 10 rotated empirical orthogonal functions or REOFs of the 250hPa v-wind) explain about 50% of the Northern Hemisphere vwind variability, and account for more than 30% (60%) of the precipitation (surface temperature) variability over a number of regions of the northern middle and high latitudes, including the U.S. northern Great Plains, parts of Canada, Europe, and Russia. The first REOF in particular, consists of a Rossby wave that extends across northern Eurasia where it is a dominant contributor to monthly surface temperature and precipitation variability, and played an important role in the 2003 European and 2010 Russian heat waves. While primarily subseasonal in nature, the Rossby waves can at times have a substantial seasonal mean component. This is exemplified by REOF 4 which played a major role in the development of the most intense anomalies of the U.S. 1988 drought (during June) and the 1993 flooding (during July), though differed in the latter event by also making an important contribution to the seasonal mean anomalies. A stationary wave model (SWM) is used to reproduce some of the basic features of the observed waves and provide insight into the nature of the forcing. In particular, the responses to a set of idealized forcing functions are used to map the optimal forcing patterns of the leading waves. Also, experiments to reproduce the observed waves with the SWM using MERRA-based estimates of the forcing indicate that the wave forcing is dominated by sub-monthly vorticity transients.
NASA Astrophysics Data System (ADS)
Luo, Jing-Jia; Masson, Sebastien; Behera, Swadhin; Shingu, Satoru; Yamagata, Toshio
2005-11-01
Predictabilities of tropical climate signals are investigated using a relatively high resolution Scale Interaction Experiment Frontier Research Center for Global Change (FRCGC) coupled GCM (SINTEX-F). Five ensemble forecast members are generated by perturbing the model’s coupling physics, which accounts for the uncertainties of both initial conditions and model physics. Because of the model’s good performance in simulating the climatology and ENSO in the tropical Pacific, a simple coupled SST-nudging scheme generates realistic thermocline and surface wind variations in the equatorial Pacific. Several westerly and easterly wind bursts in the western Pacific are also captured.Hindcast results for the period 1982 2001 show a high predictability of ENSO. All past El Niño and La Niña events, including the strongest 1997/98 warm episode, are successfully predicted with the anomaly correlation coefficient (ACC) skill scores above 0.7 at the 12-month lead time. The predicted signals of some particular events, however, become weak with a delay in the phase at mid and long lead times. This is found to be related to the intraseasonal wind bursts that are unpredicted beyond a few months of lead time. The model forecasts also show a “spring prediction barrier” similar to that in observations. Spatial SST anomalies, teleconnection, and global drought/flood during three different phases of ENSO are successfully predicted at 9 12-month lead times.In the tropical North Atlantic and southwestern Indian Ocean, where ENSO has predominant influences, the model shows skillful predictions at the 7 12-month lead times. The distinct signal of the Indian Ocean dipole (IOD) event in 1994 is predicted at the 6-month lead time. SST anomalies near the western coast of Australia are also predicted beyond the 12-month lead time because of pronounced decadal signals there.
North Pacific Meridional Mode over the Common Era
NASA Astrophysics Data System (ADS)
Sanchez, S. C.; Charles, C. D.; Amaya, D. J.; Miller, A. J.
2016-12-01
The Pacific Meridional Mode (PMM) has been increasingly recognized as an influential mode of variability for channeling extratropical anomalies to the equatorial ocean-atmosphere system. The PMM has been identified as an important precursor for ENSO, a source of much decadal power in the tropical Pacific, and is potentially intensifying. It is still unknown why the Pacific Meridional Mode might be intensifying; most arguments center around the changing mean state associated with anthropogenic global warming. There are a number of processes by which the background state could influence the PMM: altering the location of trade winds, the characteristics of stochastic forcing, the sensitivity of latent heat flux to surface wind anomalies, the wind response to SST anomalies, or changing the Intertropical Convergence Zone (ITCZ) structure. Recent work has found that the PMM is particularly sensitive to ITCZ shifts in intensity and location (using a simple linear coupled model, [Martinez-Villalobos and Vimont 2016]). Over the last millennium the ITCZ has experienced epochs of notable latitudinal shifts to balance the cross equatorial energy transport. Here we investigate how the strength of the PMM may have varied with these shifts in the ITCZ over the Common Era using the CESM-Last Millennium Ensemble (LME). We assess the strength of the PMM pathway by the degree of air-sea coupling and the amplitude of tropical decadal variability. We expect the ITCZ location and the degree of air-sea coupling (WES feedback) to play a critical role in determining the effectiveness and intensity of the PMM pathway. We verify our inferences in the LME with coral paleoproxy records from the central tropical Pacific. Chiefly we target records from the Line Islands (spanning 1°N to 6°N) to infer variations in the location of the ITCZ and the amplitude of decadal variability. This work enables us to discuss the idea of an intensifying PMM in a more historical context.
USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 395
1977-04-15
of the air masses, wind condi- tions, cloudiness and precipitation in the eastern part of the Arabian Sea are related to the beginning of the monsoon...layer of the atmosphere which plays a large role in the air shifts near the earth’s surface. In the west- ern part of the Arabian Sea the "Yu. M...mod- el. Gravity anomalies can be used in both the Bouguer and in the Faye re- ductions. It is noted, in particular, that investigations of ocean
Energetic Neutral Atom Imaging of the Lunar Poles and Night-Side
NASA Astrophysics Data System (ADS)
Vorburger, Audrey; Wurz, Peter; Barabash, Stas; Wieser, Martin; Futaana, Yoshifumi; Bhardwaj, Anil; Dhanya, Mb; Asamura, Kazushi
2016-04-01
So far all reported scientific results derived from measurements of the Chandrayaan-1 Energetic Neutral Analyzer (CENA) on board the Indian lunar mission Chandrayaan-1 focused on the sun-lit part of the Moon. Here, for the first time, we present the analysis of the Moon - solar wind interaction in Energetic Neutral Atoms (ENAs) from measurements over the poles and the night-side of the Moon. The Moon, not being protected by a global magnetic field or an atmosphere, is constantly bombarded by solar wind ions. Until recently, it was tacitly assumed that the solar wind ions that impinge onto the lunar surface are almost completely absorbed ( < 1% reflection) by the lunar surface (e.g. Crider and Vondrak [Adv. Space Res., 2002]; Feldman et al. [J. Geophys. Res., 2000]). However, recent observations conducted by the two ENA sensors of NASA's Interstellar Boundary Explorer and by Chandrayaan-1/CENA showed an average global energetic neutral atom (ENA) albedo of 10% - 20% (e.g. McComas et al. [Geophys. Res. Lett., 2009], Wieser et al. [Planet. Space Sci., 2009], Vorburger et al. [J. Geophys. Res., 2013]). In the past 6 years, several studies have closely investigated this solar wind - lunar surface interaction from various viewpoints. The main findings of these studies include (1) the dependency of the hydrogen reflection ratio on the local crustal magnetic fields (e.g., Wieser et al. [Geophys. Res. Lett. ,2010] and Vorburger et al. [J. Geophys. Res., 2012]), (2) the determination of the energy spectra of backscattered neutralized solar wind protons (Futaana et al. [J. Geophys. Res., 2012]) (3) the use of the spectra shape to remotely define an electric potential above a lunar magnetic anomaly (Futaana et al. [Geophys. Res. Lett., 2012]), (4) the favouring of backscattering over forward-scattering of impinging solar wind hydrogen particles (Vorburger et al. [Geophys. Res. Lett., 2011]), (5) the first-ever measurements of sputtered lunar oxygen (Vorburger et al. [J. Geophys. Res., 2012]), (6) the first-ever observation of backscattered solar wind helium (Vorburger et al. [J. Geophys. Res., 2012]), and (7) the determination of the scattering properties of backscattered solar wind hydrogen measured when the Moon transversed Earth's magneto-sheath (Lue et al. [J. Geophys. Res., 2016]). All findings above are based on measurements from the sun-lit side of the Moon's surface, where solar wind particles can impinge freely onto the lunar surface. On the night-side, in contrast, a large scale wake structure is formed as a result of the high absorption of solar wind plasma on the lunar day-side. Very recent ion measurements of Chandrayaan-1's Solar Wind Monitor (SWIM) have revealed the presence of protons in the near-lunar wake, though (Dhanya et al., [Icarus 2016 (submitted)]). The presence of protons in the near lunar wake implies that there is also some sort of solar wind - lunar surface interaction on the lunar night-side. A complete analysis of this interaction will be presented herein.
NASA Astrophysics Data System (ADS)
Koplitz, S.; Mickley, L. J.; Jacob, D. J.; Kim, P. S.; DeFries, R. S.; Marlier, M. E.; Schwartz, J.; Buonocore, J.; Myers, S. S.
2014-12-01
Much of Equatorial Asia is currently undergoing extensive burning from agricultural fires and rapid land-use conversion to oil palm plantations, with substantial consequences for air quality and health. In June 2013, Singapore experienced severe smoke levels, with surface particulate matter concentrations greater than ten times average. Unlike past haze events in Singapore (e.g. September 1997 and October 2006), the June 2013 pollution event occurred during El Nino-neutral conditions. Using a combination of observations and chemical transport modeling, we examine relationships between sea surface temperatures, wind fields, fire patterns, and aerosol optical depth during the June 2013 haze event. We find reasonable agreement between satellite measurements of aerosol optical depth (AOD) from the MODIS and MISR instruments and in-situ measurements from the AERONET stations across Equatorial Asia for 2005-2010 (MODIS R2 = 0.39, bias = -1.6%; MISR R2 = 0.27, bias = -42%). However, AOD observations fail to capture the Singapore pollution event of June 2013. Simulations with the GEOS-Chem model suggest that anomalously high dust concentrations during June 2013 may have impaired the ability of MODIS to monitor the haze over Singapore. In contrast, we show that the OMI Aerosol Index can effectively capture these smoke events and may be used to monitor future haze episodes in Equatorial Asia. We find that the June 2013 haze in Singapore may be attributed to anomalously strong westerlies carrying smoke from Riau Province in Indonesia. These westerlies, 5 m s-1 faster than the 2005-2010 mean June winds, are consistent with the phase of the Madden-Julian Oscillation (MJO) crossing the Maritime Continent at that time. These westerlies may have been further enhanced by a negative phase of the Indian Ocean Dipole (IOD), an east-west gradient in sea surface temperature anomalies across the Indian Ocean, with cold sea surface temperature anomalies (-3 C°) off the Arabian coast and warm anomalies (+2 C°) in the East. These conditions appear to provide an important meteorological pathway by which land-use change fires in Indonesia may affect the health of large populations. Our work suggests that this pathway should be taken into account in the development of strategies to curb fire-related air pollution and health effects in Indonesia.
NASA Astrophysics Data System (ADS)
Otero, Federico; Norte, Federico; Araneo, Diego
2018-01-01
The aim of this work is to obtain an index for predicting the probability of occurrence of zonda event at surface level from sounding data at Mendoza city, Argentine. To accomplish this goal, surface zonda wind events were previously found with an objective classification method (OCM) only considering the surface station values. Once obtained the dates and the onset time of each event, the prior closest sounding for each event was taken to realize a principal component analysis (PCA) that is used to identify the leading patterns of the vertical structure of the atmosphere previously to a zonda wind event. These components were used to construct the index model. For the PCA an entry matrix of temperature ( T) and dew point temperature (Td) anomalies for the standard levels between 850 and 300 hPa was build. The analysis yielded six significant components with a 94 % of the variance explained and the leading patterns of favorable weather conditions for the development of the phenomenon were obtained. A zonda/non-zonda indicator c can be estimated by a logistic multiple regressions depending on the PCA component loadings, determining a zonda probability index \\widehat{c} calculable from T and Td profiles and it depends on the climatological features of the region. The index showed 74.7 % efficiency. The same analysis was performed by adding surface values of T and Td from Mendoza Aero station increasing the index efficiency to 87.8 %. The results revealed four significantly correlated PCs with a major improvement in differentiating zonda cases and a reducing of the uncertainty interval.
Local Atmospheric Response to an Open-Ocean Polynya in a High-Resolution Climate Model
Weijer, Wilbert; Veneziani, Milena; Stössel, Achim; ...
2017-03-01
For this scientific paper, we study the atmospheric response to an open-ocean polynya in the Southern Ocean by analyzing the results from an atmospheric and oceanic synoptic-scale resolving Community Earth System Model (CESM) simulation. While coarser-resolution versions of CESM generally do not produce open-ocean polynyas in the Southern Ocean, they do emerge and disappear on interannual timescales in the synoptic-scale simulation. This provides an ideal opportunity to study the polynya’s impact on the overlying and surrounding atmosphere. This has been pursued here by investigating the seasonal cycle of differences of surface and air-column variables between polynya and non-polynya years. Ourmore » results indicate significant local impacts on turbulent heat fluxes, precipitation, cloud characteristics, and radiative fluxes. In particular, we find that clouds over polynyas are optically thicker and higher than clouds over sea ice during non-polynya years. Although the lower albedo of polynyas significantly increases the net shortwave absorption, the enhanced cloud brightness tempers this increase by almost 50%. Also, in this model, enhanced longwave radiation emitted from the warmer surface of polynyas is balanced by stronger downwelling fluxes from the thicker cloud deck. Impacts are found to be sensitive to the synoptic wind direction. Strongest regional impacts are found when northeasterly winds cross the polynya and interact with katabatic winds. Finally, surface air pressure anomalies over the polynya are only found to be significant when cold, dry air masses strike over the polynya, i.e. in case of southerly winds.« less
A volcanic wind-stress origin of the Atlantic Multidecadal Oscillation
NASA Astrophysics Data System (ADS)
Birkel, S. D.; Mayewski, P. A.; Maasch, K. A.; Auger, J.; Lyon, B.
2016-12-01
The Atlantic Multidecadal Oscillation (AMO) is a mode of sea-surface temperature (SST) variability in the North Atlantic that has significant impact on global climate. Most previous studies ascribe the origin of the AMO to oceanic mechanisms, and suggest only a limited role for the atmosphere. Here, we suggest that the AMO is manifested from basin-wide changes in surface wind stress that arise in response to episodic volcanic activity. Our interpretation is based on historical SST, reanalysis, and stratospheric aerosol optical thickness data, wherein it is evident that cool (warm) intervals of the AMO coincide with emergence of strong (weak) winds and high (low) volcanic activity. We find that SST excursions ultimately develop from atmospheric forcing as volcanic events project onto the North Atlantic Oscillation (NAO). A volcanic signature is particularly evident beneath the westerlies in the subpolar region south of Greenland, where several large SST excursions occur coincident with identifiable major eruptions. High latitude surface waters cool when NAO+ circulation, which includes a deepened Icelandic Low, draws cold flow out of the Labrador Sea and into the subpolar region. Important feedbacks that cause SST anomalies to spread across the basin include cloud cover, wind-driven upwelling, and entrainment of Saharan dust into the tropical easterlies. Finally, we speculate that cooling in the North Atlantic observed since 2011 could be linked to renewed volcanic activity over Iceland, namely from the eruptions of Grímsvötn (2011) and Bárðarbunga (2014). An important question remains how North Atlantic SST variability will evolve as atmospheric circulation becomes increasingly modified by human activity.
Local Atmospheric Response to an Open-Ocean Polynya in a High-Resolution Climate Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weijer, Wilbert; Veneziani, Milena; Stössel, Achim
For this scientific paper, we study the atmospheric response to an open-ocean polynya in the Southern Ocean by analyzing the results from an atmospheric and oceanic synoptic-scale resolving Community Earth System Model (CESM) simulation. While coarser-resolution versions of CESM generally do not produce open-ocean polynyas in the Southern Ocean, they do emerge and disappear on interannual timescales in the synoptic-scale simulation. This provides an ideal opportunity to study the polynya’s impact on the overlying and surrounding atmosphere. This has been pursued here by investigating the seasonal cycle of differences of surface and air-column variables between polynya and non-polynya years. Ourmore » results indicate significant local impacts on turbulent heat fluxes, precipitation, cloud characteristics, and radiative fluxes. In particular, we find that clouds over polynyas are optically thicker and higher than clouds over sea ice during non-polynya years. Although the lower albedo of polynyas significantly increases the net shortwave absorption, the enhanced cloud brightness tempers this increase by almost 50%. Also, in this model, enhanced longwave radiation emitted from the warmer surface of polynyas is balanced by stronger downwelling fluxes from the thicker cloud deck. Impacts are found to be sensitive to the synoptic wind direction. Strongest regional impacts are found when northeasterly winds cross the polynya and interact with katabatic winds. Finally, surface air pressure anomalies over the polynya are only found to be significant when cold, dry air masses strike over the polynya, i.e. in case of southerly winds.« less
Seabird drift as a proxy to estimate surface currents in the western Mediterranean?
NASA Astrophysics Data System (ADS)
Gomez-Navarro, Laura; Sánchez-Román, Antonio; Pascual, Ananda; Fablet, Ronan; Hernandez-Carrasco, Ismael; Mason, Evan; Arcos, José Manuel; Oro, Daniel
2017-04-01
Seabird trajectories can be used as proxies to investigate the dynamics of marine systems and their spatiotemporal evolution. Previous studies have mainly been based on analyses of long range flights, where birds are travelling at high velocities over long time periods. Such data have been used to study wind patterns, and areas of avian feeding and foraging have also been used to study oceanic fronts. Here we focus on "slow moving" periods (which we associate to when birds appear to be drifting on the sea surface), in order to investigate bird drift as a proxy for sea surface currents in the western Mediterranean Sea. We analyse trajectories corresponding to "slow moving" periods recorded by GPSs attached to individuals of the species Calonectris diomedea ( Scopoli's shearwater) from mid August to mid September 2012. The trajectories are compared with sea level anomaly (SLA), sea surface temperature (SST), Finite Size Lyapunov Exponents (FSLE), wind fields, and the outputs from an automated sea-surface-height based eddy tracker. The SLA and SST datasets were obtained from the Copernicus Marine Environment Monitoring Service (CMEMS) with a spatial resolution of 1/8 ̊ and 1/100 ̊ respectively while the FSLEs were computed from the SLA dataset. Finally, the wind data comes from the outputs of the CCMPv2 numerical model. This model has a global coverage with a spatial resolution of 1/4 ̊. Interesting relationships between the trajectories and SLA fields are found. According to the angle between the SLA gradient and the trajectories of birds, we classify drifts into three scenarios: perpendicular, parallel and other, which are associated with different driving forces. The first scenario implies that bird drift is driven by geostrophic sea surface currents. The second we associate with wind drag as the main driving force. This is validated through the wind dataset. Moreover, from the SST, FSLEs and the eddy tracker, we obtain supplementary information on the presence of oceanic structures (such as eddies or fronts), not observed in the SLA field due to its limited spatial and temporal resolutions. Therefore, this data helps to explain some of the third case scenario trajectories.
Observation of El Nino by the Nimbus-7 SMMR
NASA Technical Reports Server (NTRS)
Hwang, P. H.; Macmillan, D. S.; Fu, C. C.; Kim, S. T.; Han, Daesoo; Gloersen, P.
1986-01-01
The quality of Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) derived SST, water vapor, and windspeed are assessed, and these parameters are used to study the El Nino event of 1982-1983 in the equatorial Pacific region from 120 deg to the South American coast. The features of the anomaly fields for these parameters, and the connections between these fields, are discussed. Anomaly fields are found to be qualitatively consistent with outgoing longwave radiation anomaly fields and wind vector anomaly fields.
Extreme pressure differences at 0900 NZST and winds across New Zealand
NASA Astrophysics Data System (ADS)
Salinger, M. James; Griffiths, Georgina M.; Gosai, Ashmita
2005-07-01
Trends in extremes in station daily sea-level pressure differences at 0900 NZST are examined, and extreme daily wind gusts, across New Zealand, since the 1960s. Annual time series were examined (with indices of magnitude and frequency over threshold percentiles) from the daily indices selected. These follow from earlier indices of normalized monthly mean sea-level pressure differences between station pairs, except the daily indices are not normalized. The frequency statistics quantify the number of extreme zonal (westerly and easterly), or extreme meridional (southerly or northerly), pressure gradient events. The frequency and magnitude of extreme westerly episodes has increased slightly over New Zealand, with a significant increase in the westerly extremes to the south of New Zealand. In contrast, the magnitude and frequency of easterly extremes has decreased over New Zealand, but increased to the south, with some trends weakly significant. The frequency and magnitude of daily southerly extremes has decreased significantly in the region.Extreme daily wind gust events at key climate stations in New Zealand and at Hobart, Australia, are highly likely to be associated with an extreme daily pressure difference. The converse was less likely to hold: extreme wind gusts were not always observed on days with extreme daily pressure difference, probably due to the strong influence that topography has on localized station winds. Significant correlations exist between the frequency indices and both annual-average mean sea-level pressures around the Australasian region and annual-average sea surface temperature (SST) anomalies in the Southern Hemisphere. These correlations are generally stronger for indices of extreme westerly or extreme southerly airflows. Annual-average pressures in the Tasman Sea or Southern Ocean are highly correlated to zonal indices (frequency of extreme westerlies). SST anomalies in the NINO3 region or on either side of the South Island are significantly correlated with the frequency of extreme westerly airflows.
Drijfhout, Sybren; Gleeson, Emily; Dijkstra, Henk A; Livina, Valerie
2013-12-03
Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice Age. The event was simulated in the preindustrial control run of a high-resolution climate model, without imposing external perturbations. Initial cooling started with a period of enhanced atmospheric blocking over the eastern subpolar gyre. In response, a southward progression of the sea-ice margin occurred, and the sea-level pressure anomaly was locked to the sea-ice margin through thermal forcing. The cold-core high steered more cold air to the area, reinforcing the sea-ice concentration anomaly east of Greenland. The sea-ice surplus was carried southward by ocean currents around the tip of Greenland. South of 70 °N, sea ice already started melting and the associated freshwater anomaly was carried to the Labrador Sea, shutting off deep convection. There, surface waters were exposed longer to atmospheric cooling and sea surface temperature dropped, causing an even larger thermally forced high above the Labrador Sea. In consequence, east of Greenland, anomalous winds changed from north to south, terminating the event with similar abruptness to its onset. Our results imply that only climate models that possess sufficient resolution to correctly represent atmospheric blocking, in combination with a sensitive sea-ice model, are able to simulate this kind of abrupt climate change.
Drijfhout, Sybren; Gleeson, Emily; Dijkstra, Henk A.; Livina, Valerie
2013-01-01
Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice Age. The event was simulated in the preindustrial control run of a high-resolution climate model, without imposing external perturbations. Initial cooling started with a period of enhanced atmospheric blocking over the eastern subpolar gyre. In response, a southward progression of the sea-ice margin occurred, and the sea-level pressure anomaly was locked to the sea-ice margin through thermal forcing. The cold-core high steered more cold air to the area, reinforcing the sea-ice concentration anomaly east of Greenland. The sea-ice surplus was carried southward by ocean currents around the tip of Greenland. South of 70°N, sea ice already started melting and the associated freshwater anomaly was carried to the Labrador Sea, shutting off deep convection. There, surface waters were exposed longer to atmospheric cooling and sea surface temperature dropped, causing an even larger thermally forced high above the Labrador Sea. In consequence, east of Greenland, anomalous winds changed from north to south, terminating the event with similar abruptness to its onset. Our results imply that only climate models that possess sufficient resolution to correctly represent atmospheric blocking, in combination with a sensitive sea-ice model, are able to simulate this kind of abrupt climate change. PMID:24248352
Contribution of tropical instability waves to ENSO irregularity
NASA Astrophysics Data System (ADS)
Holmes, Ryan M.; McGregor, Shayne; Santoso, Agus; England, Matthew H.
2018-05-01
Tropical instability waves (TIWs) are a major source of internally-generated oceanic variability in the equatorial Pacific Ocean. These non-linear phenomena play an important role in the sea surface temperature (SST) budget in a region critical for low-frequency modes of variability such as the El Niño-Southern Oscillation (ENSO). However, the direct contribution of TIW-driven stochastic variability to ENSO has received little attention. Here, we investigate the influence of TIWs on ENSO using a 1/4° ocean model coupled to a simple atmosphere. The use of a simple atmosphere removes complex intrinsic atmospheric variability while allowing the dominant mode of air-sea coupling to be represented as a statistical relationship between SST and wind stress anomalies. Using this hybrid coupled model, we perform a suite of coupled ensemble forecast experiments initiated with wind bursts in the western Pacific, where individual ensemble members differ only due to internal oceanic variability. We find that TIWs can induce a spread in the forecast amplitude of the Niño 3 SST anomaly 6-months after a given sequence of WWBs of approximately ± 45% the size of the ensemble mean anomaly. Further, when various estimates of stochastic atmospheric forcing are added, oceanic internal variability is found to contribute between about 20% and 70% of the ensemble forecast spread, with the remainder attributable to the atmospheric variability. While the oceanic contribution to ENSO stochastic forcing requires further quantification beyond the idealized approach used here, our results nevertheless suggest that TIWs may impact ENSO irregularity and predictability. This has implications for ENSO representation in low-resolution coupled models.
Global Specification of the Post-Sunset Equatorial Ionization Anomaly
NASA Astrophysics Data System (ADS)
Coker, C.; Dandenault, P. B.; Dymond, K.; Budzien, S. A.; Nicholas, A. C.; Chua, D. H.; McDonald, S. E.; Metzler, C. A.; Walker, P. W.; Scherliess, L.; Schunk, R. W.; Gardner, L. C.; Zhu, L.
2012-12-01
The Special Sensor Ultraviolet Limb Imager (SSULI) on the Defense Meteorological Satellite Program (DMSP) is used to specify the post-sunset Equatorial Ionization Anomaly. Ultraviolet emission profiles of 135.6 nm and 91.1 nm emissions from O++ e recombination are measured in successive altitude scans along the orbit of the satellite. The overlapping sample geometry provides for a high resolution reconstruction of the ionosphere in altitude and latitude for each pass of the satellite. Emission profiles are ingested by the Global Assimilation of Ionospheric Measurements (GAIM) space weather model, which was developed by Utah State University and is run operationally at the Air Force Weather Agency (AFWA). The resulting specification of the equatorial ionosphere reveals significant variability in the postsunset anomaly, which is reflective of the driving space weather processes, namely, electric fields and neutral winds. Significant longitudinal and day-to-day variability in the magnitude (or even existence) of the post-sunset anomaly reveal the influence of atmospheric tides and waves as well as geomagnetic disturbances on the pre-reversal enhancement of the electric field. Significant asymmetry between anomaly crests reveals the influence of atmospheric tides and waves on meridional neutral winds. A neutral wind parallel to the magnetic field line pushes plasma up (or down) the field lines, which raises (or lowers) the altitude of the crests and modifies the horizontal location and magnitude of the crests. The variability in the post-sunset anomaly is one of the largest sources of error in ionospheric specification models. The SSULI instrument provides critical data towards the reduction of this specification error and the determination of key driver parameters used in ionospheric forecasting. Acknowledgements: This research was supported by the USAF Space and Missile Systems Center (SMC), the Naval Research Laboratory (NRL) Base Program, and the Office of Naval Research (ONR).
Methods and apparatus for rotor blade ice detection
LeMieux, David Lawrence
2006-08-08
A method for detecting ice on a wind turbine having a rotor and one or more rotor blades each having blade roots includes monitoring meteorological conditions relating to icing conditions and monitoring one or more physical characteristics of the wind turbine in operation that vary in accordance with at least one of the mass of the one or more rotor blades or a mass imbalance between the rotor blades. The method also includes using the one or more monitored physical characteristics to determine whether a blade mass anomaly exists, determining whether the monitored meteorological conditions are consistent with blade icing; and signaling an icing-related blade mass anomaly when a blade mass anomaly is determined to exist and the monitored meteorological conditions are determined to be consistent with icing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Changhyun; Park, Sungsu; Kim, Daehyun
2015-10-01
The Madden-Julian Oscillation (MJO), the dominant mode of tropical intraseasonal variability, influences weather and climate in the extratropics through atmospheric teleconnection. In this study, two simulations using the Community Atmosphere Model version 5 (CAM5) - one with the default shallow and deep convection schemes and the other with the Unified Convection scheme (UNICON) - are employed to examine the impacts of cumulus parameterizations on the simulation of the boreal wintertime MJO teleconnection in the Northern Hemisphere. We demonstrate that the UNICON substantially improves the MJO teleconnection. When the UNICON is employed, the simulated circulation anomalies associated with the MJO bettermore » resemble the observed counterpart, compared to the simulation with the default convection schemes. Quantitatively, the pattern correlation for the 300-hPa geopotential height anomalies between the simulations and observation increases from 0.07 for the default schemes to 0.54 for the UNICON. These circulation anomalies associated with the MJO further help to enhance the surface air temperature and precipitation anomalies over North America, although room for improvement is still evident. Initial value calculations suggest that the realistic MJO teleconnection with the UNICON is not attributed to the changes in the background wind, but primarily to the improved tropical convective heating associated with the MJO.« less
Abdul-Hadi, Alaa; Mansor, Shattri; Pradhan, Biswajeet; Tan, C K
2013-05-01
A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements.
Atmospheric Ozone Response to the Disrupted 2015-2016 Quasi-Biennial Oscillation
NASA Technical Reports Server (NTRS)
Kramarova, N. A.; Tweedy, O. V.; Strahan, S. E.; Newman, P. A.; Coy, L.; Randel, W. J.; Park, M.; Waugh, D. W.; Frith, S.
2017-01-01
The quasi-biennial oscillation (QBO) - a quasi-periodic alternation between easterly and westerly zonal winds in the tropical stratosphere - is a main driver of inter-annual ozone variability in the stratosphere. During the late-2015 through 2016 time period, the QBO experienced a major disruption unlike any observed since wind measurements began in 1953. We examined the ozone response to this QBO disruption using profile ozone measurements from the Aura Microwave Limb Sounder (MLS) and Ozone Mapping and Profiler Suite Limb Profiler and total column measurements from the Solar Backscatter Ultraviolet (SBUV) Merged Ozone Data Set (MOD). Positive anomalies in stratospheric equatorial O3 developed between 50 and 30 hPa in May-September of 2016, and negative ozone anomalies were observed in the subtropics of both hemispheres. As a consequence of this QBO disruption, extratropical total ozone values during the spring-summer 2016 were at or near seasonal record lows over the more than 40 years of the total ozone record, resulting in an increase of surface UV index during northern hemisphere summer. We found very consistent responses in all considered ozone observations in terms of time, amplitude and spatial patterns. We will show the ozone changes associated with this disrupted QBO throughout the winter and spring 2017.
Seasonal variations of the ionospheric total electron content in Asian equatorial anomaly regions
NASA Astrophysics Data System (ADS)
Tsai, Ho-Fang; Liu, Jann-Yenq; Tsai, Wei-Hsiung; Liu, Chao-Han; Tseng, Ching-Liang; Wu, Chin-Chun
2001-12-01
The ionospheric total electron contents (TEC) in both northern and southern equatorial anomaly regions are examined by using the Global Positioning System (GPS) in Asian area. The TEC contour charts obtained at YMSM (25.2°N, 121.6°E 14.0°N geomagnetic) and DGAR (7.3°S, 72.4°E 16.2°S geomagnetic) stations in 1997, solar minimum, are investigated. It is found that the ionospheric crests manifest remarkable seasonal variations. The TEC values on both northern and southern equatorial anomaly crests yield their maximum values during the vernal and autumnal months, but the winter anomaly does not appear in the southern region. Results show that both crests are fully developed around midday in winter, postnoon in equinoxes and late afternoon in summer, and the two crests move significantly equatorward in winter but slightly poleward in summer and autumn. These phenomena can be fully explained by a combined theory of the transequatorial neutral wind, the subsolar point, and the auroral equatorward wind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lou, Sijia; Russell, Lynn M.; Yang, Yang
We used 150-year pre-industrial simulations of the Community Earth System Model (CESM) to quantify the impacts of interactively-modeled dust emissions on the interannual variations of temperature and precipitation over East Asia during the East Asian Winter Monsoon (EAWM) season. The simulated December-January-February dust column burden and dust optical depth are lower over northern China in the strongest EAWM years than those of the weakest years, with regional mean values lower by 38.3% and 37.2%, respectively. The decrease in dust over the dust source regions (the Taklamakan and Gobi Deserts) and the downwind region (such as the North China Plain) leadsmore » to an increase in direct radiative forcing (RF) both at the surface and top of atmosphere by up to 1.5 and 0.75 W m-2, respectively. The effects of EAWM-related variations in surface winds, precipitation and their effects on dust emissions and wet removal contribute about 67% to the total dust-induced variations of direct RF at the surface and partly offset the cooling that occurs with the EAWM strengthening by heating the surface. The variations of surface air temperature induced by the changes in wind and dust emissions increase by 0.4-0.6 K over eastern coastal China, northeastern China, and Japan, which weakens the impact of EAWM on surface air temperature by 3–18% in these regions. The warming results from the combined effects of changes in direct RF and easterly wind anomalies that bring warm air from the ocean to these regions. Moreover, the feedback of the changes in wind on dust emissions weakens the variations of the sea level pressure gradient on the Siberian High while enhancing the Maritime Continent Low. Therefore, cold air is prevented from being transported from Siberia, Kazakhstan, western and central China to the western Pacific Ocean and decreases surface air temperature by 0.6 K and 2 K over central China and the Tibetan Plateau, respectively. Over eastern coastal China, the variations of large-scale precipitation induced by the feedback of EAWM-related changes in wind on dust emissions increase by 10-30% in winter because of the increase in surface air temperature and the anomalous circulation.« less
NASA Technical Reports Server (NTRS)
Collette, J. G. R.
1984-01-01
A test was conducted in the NASA/Ames Research Center 9x7-foot Supersonic Wind Tunnel to help resolve an anomaly that developed during the STS-6 orbiter flight wherein sections of the Advanced Flexible Reusable Surface Insulation (AFRSI) covering the OMS pods suffered some damage. A one-third scale two-dimensional shell structure model of an OMS pod cross-section was employed to support the test articles. These consisted of 15 AFRSI blanket panels form-fitted over the shell structures for exposure to simulated flight conditions. Of six baseline blankets, two were treated with special surface coatings. Two other panels were configured with AFRSI sections removed from the OV099 orbiter vehicle after the STS-6 flight. Seven additional specimens incorporated alternative designs and repairs. Following a series of surface pressure calibration runs, the specimens were exposed to simulated ascent and entry dynamic pressure profiles. Entry conditions included the use of a vortex generator to evaluate the effect of shed vortices on the AFRSI located in the area of concern.
Mechanisms of northeastern Brazil rainfall anomalies due to Southern Tropical Atlantic variability
NASA Astrophysics Data System (ADS)
Neelin, J.; Su, H.
2004-05-01
Observational studies have shown that the rainfall anomalies in eastern equatorial South America, including Nordeste Brazil, have a positive correlation with tropical southern Atlantic sea surface temperature (SST) anomalies. Such relationships are reproduced in model simulations with the quasi-equilibrium tropical circulation model (QTCM), which includes a simple land model. A suite of model ensemble experiments is analysed using observed SST over the tropical oceans, the tropical Atlantic and the tropical southern Atlantic (30S-0), respectively (with climatological SST in the remainder of the oceans). Warm tropical south Atlantic SST anomalies yield positive precipitation anomalies over the Nordeste and the southern edge of the Atlantic marine intertropical convergence zone (ITCZ). Mechanisms associated with moisture variations are responsible for the land precipitation changes. Increases in moisture over the Atlantic cause positive anomalies in moisture advection, spreading increased moisture downwind. Where the basic state is far from the convective stability threshold, moisture changes have little effect, but the margins of the climatological convection zone are affected. The increased moisture supply due to advection is enhanced by increases in low-level convergence required by moist static energy balances. The moisture convergence term is several times larger, but experiments altering the moisture advection confirm that the feedback is initiated by wind acting on moisture gradient. This mechanism has several features in common with the recently published "upped-ante" mechanism for El Nino impacts on this region. In that case, the moisture gradient is initiated by warm free tropospheric temperature anomalies increasing the typical value of low-level moisture required to sustain convection in the convection zones. Both mechanisms suggest the usefulness of coordinating ocean and land in situ observations of boundary layer moisture.
NASA Astrophysics Data System (ADS)
Chowdary, Jasti S.; Srinivas, G.; Du, Yan; Gopinath, K.; Gnanaseelan, C.; Parekh, Anant; Singh, Prem
2018-03-01
Indian summer monsoon (ISM) rainfall during 2016 exhibited a prominent month-to-month fluctuations over India, with below normal rainfall in June and August and above normal rainfall in July. The factors determining the month-to-month fluctuations in ISM rainfall during 2016 are investigated with main focus on the Indo-Pacific climatic anomalies. Warm sea surface temperature (SST) anomalies associated with super El Niño 2015 disappeared by early summer 2016 over the central and eastern Pacific. On the other hand, negative Indian Ocean dipole (IOD) like SST anomaly pattern over the equatorial Indian Ocean and anomalous anticyclonic circulation over the western North Pacific (WNP) are reported in summer 2016 concurrently with decaying El Niño/developing La Niña phase. Observations revealed that the low rainfall over central north India in June is due to moisture divergence caused by the westward extension of ridge corresponding to WNP anticyclone and subsidence induced by local Hadley cell partly related to negative IOD. Low level convergence of southeasterly wind from Bay of Bengal associated with weak WNP anticyclone and northwesterly wind corresponding to anticyclonic circulation over the northwest India remarkably contributed to positive rainfall in July over most of the Indian subcontinent. While reduced rainfall over the Indian subcontinent in August 2016 is associated with the anomalous moisture transport from ISM region to WNP region, in contrast to July, due to local cyclogenesis corroborated by number of tropical cyclones in the WNP. In addition to this, subsidence related to strong convection supported by cyclonic circulation over the WNP also resulted in low rainfall over the ISM region. Coupled General Circulation model sensitivity experiments confirmed that strong convective activities associated with cyclonic circulation over the WNP is primarily responsible for the observed negative ISM rainfall anomalies in August 2016. It is noted that the Indo-Western Pacific circulation anomalies in August 2016 are well predicted when the coupled model is initiated with initial conditions from end of July and beginning of August compared to May. This analysis suggests the importance of the WNP circulation in forcing strong sub-seasonal/month to month rainfall variations over India.
NASA Astrophysics Data System (ADS)
Jayaram, Chiranjivi; Kumar, P. K. Dinesh
2018-03-01
Upwelling phenomenon along the eastern boundaries of global ocean has received greater attention in the recent times due to its environmental and economic significance in the global warming and the scenario of changing climate as opined by IPCC AR5. In this context, the availabile satellite data on sea surface winds, sea surface temperature (SST), sea level anomaly (SLA) and chlorophyll-a concentration (Chl-a), for the period 1981-2016 were analyzed to identify the coastal upwelling pattern in the Southeastern Arabian Sea (SEAS). Synergistic approach, using winds, SST, SLA and Chl-a revealed that strong upwelling was prevailing between 8°N and 12°N. During the study period, geographical differences existed in the peak values of upwelling favorable conditions considered for study. Analysis of the alongshore winds which are conducive for upwelling were observed to be curtailed towards the northern part of the study region between 2005 and 2010. Also, the strength of upwelling reduced during the strong ENSO years of 1997 and 2015. Linear regression based trend analysis of upwelling indices like Ekman transport, SST and chlorophyll along the coast, during the upwelling period, revealed slight increase in the strength towards the southern region while it decreased to the north during the study period.
Some anomalies between wind tunnel and flight transition results
NASA Technical Reports Server (NTRS)
Harvey, W. D.; Bobbitt, P. J.
1981-01-01
A review of environmental disturbance influence and boundary layer transition measurements on a large collection of reference sharp cone tests in wind tunnels and of recent transonic-supersonic cone flight results have previously demonstrated the dominance of free-stream disturbance level on the transition process from the beginning to end. Variation of the ratio of transition Reynolds number at onset-to-end with Mach number has been shown to be consistently different between flight and wind tunnels. Previous correlations of the end of transition with disturbance level give good results for flight and large number of tunnels, however, anomalies occur for similar correlation based on transition onset. Present cone results with a tunnel sonic throat reduced the disturbance level by an order of magnitude with transition values comparable to flight.
Analysis of the variability of the North Atlantic eddy-driven jet stream in CMIP5
NASA Astrophysics Data System (ADS)
Iqbal, Waheed; Leung, Wai-Nang; Hannachi, Abdel
2017-09-01
The North Atlantic eddy-driven jet is a dominant feature of extratropical climate and its variability is associated with the large-scale changes in the surface climate of midlatitudes. Variability of this jet is analysed in a set of General Circulation Models (GCMs) from the Coupled Model Inter-comparison Project phase-5 (CMIP5) over the North Atlantic region. The CMIP5 simulations for the 20th century climate (Historical) are compared with the ERA40 reanalysis data. The jet latitude index, wind speed and jet persistence are analysed in order to evaluate 11 CMIP5 GCMs and to compare them with those from CMIP3 integrations. The phase of mean seasonal cycle of jet latitude and wind speed from historical runs of CMIP5 GCMs are comparable to ERA40. The wind speed mean seasonal cycle by CMIP5 GCMs is overestimated in winter months. A positive (negative) jet latitude anomaly in historical simulations relative to ERA40 is observed in summer (winter). The ensemble mean of jet latitude biases in historical simulations of CMIP3 and CMIP5 with respect to ERA40 are -2.43° and -1.79° respectively. Thus indicating improvements in CMIP5 in comparison to the CMIP3 GCMs. The comparison of historical and future simulations of CMIP5 under RCP4.5 and RCP8.5 for the period 2076-2099, shows positive anomalies in the jet latitude implying a poleward shifted jet. The results from the analysed models offer no specific improvements in simulating the trimodality of the eddy-driven jet.
Process Contributions to Cool Java SST Anomalies at the Onset of Positive Indian Ocean Dipole Events
NASA Astrophysics Data System (ADS)
Delman, A. S.; McClean, J.; Sprintall, J.; Talley, L. D.
2016-12-01
The seasonal upwelling region along the south coast of Java is the first area to exhibit the negative SST anomalies associated with positive Indian Ocean Dipole (pIOD) events. The seasonal cooling in austral winter is driven by local wind forcing; however, recent observational studies have suggested that the anomalous Java cooling that starts during May-July of pIOD years is driven largely by intraseasonal wind variability along the equator, which forces upwelling Kelvin waves that propagate to the coast of Java. Using observations and an eddy-active ocean GCM simulation, the impacts of local wind stress and remotely-forced Kelvin waves are assessed and compared to the effects of mesoscale eddies and outflows from nearby Lombok Strait. A Kelvin wave coefficient computed from altimetry data shows anomalous levels of upwelling Kelvin wave activity during May-July of all pIOD years, indicating that Kelvin waves are an important and perhaps necessary precondition for pIOD events. Correlation analyses also suggest that flows through Lombok Strait and winds along the Indonesian Throughflow may be influential, though their impacts are more difficult to isolate. Composite temperature budgets from the ocean GCM indicate that advection and diabatic vertical mixing are the primary mechanisms for anomalous mixed layer cooling south of Java. The advection term is further decomposed by linearly regressing model velocity and temperature anomalies onto indices representing each process. According to this process decomposition, the local wind stress and Kelvin waves together account for most of the anomalous advective cooling, though the anomalous cooling effect of local wind stress may be overestimated in the model due to wind and stratification biases. The process decomposition also shows a very modest warming effect from mesoscale eddies. These results demonstrate both the IOD's resemblance to ENSO in the importance of Kelvin waves for its evolution, and notable differences from ENSO that arise from the complex interplay of local winds, planetary waves, stratification, eddies, and topography in the Indonesian region.
NASA Technical Reports Server (NTRS)
Coe, Charles F.
1985-01-01
Advanced Flexible Reusable Surface Insulation (AFRSI) was developed as a replacement for the low-temperature (white) tiles on the Space Shuttle. The first use of the AFRSI for an Orbiter flight was on the OMS POD of Orbiter (OV-099) for STS-6. Post flight examination after STS-6 showed that damage had occurred to the AFRSI during flight. The failure anomaly between previous wind-tunnel tests and STS-6 prompted a series of additional wind tunnel tests to gain an insight as to the cause of the failure. An assessment of all the past STS-6 wind tunnel tests pointed out the sensitivity of the test results to scaling of dynamic loads due to the difference of boundary layer thickness, and the material properties as a result of exposure to heating. The thread component of the AFRSI was exposed to fatigue testing using an apparatus that applied pulsating aerodynamic loads on the threads similar to the loads caused by an oscillating shock. Comparison of the mean values of the number-of-cycles to failure showed that the history of the thread was the major factor in its performance. The thread and the wind tunnel data suggests a mechanism of failure for the AFRSI.
Synoptic Regulation of The 3 May 1999 Oklahoma Tornado Outbreak
NASA Astrophysics Data System (ADS)
Schultz, D. M.; Roebber, P. J.; Romero, R.
Despite the relatively successful long-lead-time forecasts of the storms during the 3 May 1999 tornadic outbreak in Oklahoma and Kansas, forecasters were unable to predict with confidence details concerning convective initiation and convective mode. The forecasters identified three synoptic processes they were monitoring for clues as to how the event would unfold. These elements were (a) the absence of strong surface convergence along a dryline in western Oklahoma and the Texas panhandle, (b) the presence of a cirrus shield that was hypothesized to limit surface heating, and (c) the arrival into Oklahoma of an upper-level wind-speed maximum (associated with the so- called southern PV anomaly) that was responsible for favorable synoptic-scale ascent and the cirrus shield. The Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model Version 5 (MM5) is used in forecast mode (using the operational AVN run data to provide initial and lateral boundary conditions) to explore the sen- sitivity of the outbreak to these features using simulations down to 2-km horizontal grid spacing. A 30-h control simulation is compared to the available observations and captures important qualitative characteristics of the event, including convective initi- ation east of the dryline and organization of mesoscale convective systems into long lived, long-track supercells. Additional simulations in which the initial strength of the southern PV anomaly is altered suggest that synoptic regulation of the 3 May 1999 event was imposed by the effects of the southern PV anomaly. The model results in- dicate that: (1) convective initiation in the weakly forced environment was achieved through modification of the existing cap through both surface heating and synoptic- scale ascent associated with the southern PV anomaly; (2) supercellular organization was supported regardless of the strength of the southern PV anomaly, although weak- to-moderate forcing from this feature was most conducive to the production of long lived supercells and strong forcing resulted in a trend toward linear mesoscale convec- tive systems; (3) the cirrus shield was important in limiting development of convection and reducing competition between storms.
NASA Astrophysics Data System (ADS)
Thompson, C. K.; Bingham, A. W.; Hall, J. R.; Alarcon, C.; Plesea, L.; Henderson, M. L.; Levoe, S.
2011-12-01
The State of the Oceans (SOTO) web tool was developed at NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory (JPL) as an interactive means for users to visually explore and assess ocean-based geophysical parameters extracted from the latest archived data products. The SOTO system consists of four extensible modules, a data polling tool, a preparation and imaging package, image server software, and the graphical user interface. Together, these components support multi-resolution visualization of swath (Level 2) and gridded Level 3/4) data products as either raster- or vector- based KML layers on Google Earth. These layers are automatically updated periodically throughout the day. Current parameters available include sea surface temperature, chlorophyll concentration, ocean winds, sea surface height anomaly, and sea surface temperature anomaly. SOTO also supports mash-ups, allowing KML feeds from other sources to be overlaid directly onto Google Earth such as hurricane tracks and buoy data. A version of the SOTO software has also been installed at Goddard Space Flight Center (GSFC) to support the Land Atmosphere Near real-time Capability for EOS (LANCE). The State of the Earth (SOTE) has similar functionality to SOTO but supports different data sets, among them the MODIS 250m data product.
Oceanic Transport of Surface Meltwater from the Southern Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.
2016-01-01
The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamic1 and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.
Discrimination between pre-seismic electromagnetic anomalies and solar activity effects
NASA Astrophysics Data System (ADS)
Koulouras, G.; Balasis, G.; Kiourktsidis, I.; Nannos, E.; Kontakos, K.; Stonham, J.; Ruzhin, Y.; Eftaxias, K.; Cavouras, D.; Nomicos, C.
2009-04-01
Laboratory studies suggest that electromagnetic emissions in a wide frequency spectrum ranging from kilohertz (kHz) to very high megahertz (MHz) frequencies are produced by the opening of microcracks, with the MHz radiation appearing earlier than the kHz radiation. Earthquakes are large-scale fracture phenomena in the Earth's heterogeneous crust. Thus, the radiated kHz-MHz electromagnetic emissions are detectable not only in the laboratory but also at a geological scale. Clear MHz-to-kHz electromagnetic anomalies have been systematically detected over periods ranging from a few days to a few hours prior to recent destructive earthquakes in Greece. We should bear in mind that whether electromagnetic precursors to earthquakes exist is an important question not only for earthquake prediction but mainly for understanding the physical processes of earthquake generation. An open question in this field of research is the classification of a detected electromagnetic anomaly as a pre-seismic signal associated with earthquake occurrence. Indeed, electromagnetic fluctuations in the frequency range of MHz are known to be related to a few sources, including atmospheric noise (due to lightning), man-made composite noise, solar-terrestrial noise (resulting from the Sun-solar wind-magnetosphere-ionosphere-Earth's surface chain) or cosmic noise, and finally, the lithospheric effect, namely pre-seismic activity. We focus on this point in this paper. We suggest that if a combination of detected kHz and MHz electromagnetic anomalies satisfies the set of criteria presented herein, these anomalies could be considered as candidate precursory phenomena of an impending earthquake.
Discrimination between preseismic electromagnetic anomalies and solar activity effects
NASA Astrophysics Data System (ADS)
Koulouras, Gr; Balasis, G.; Kontakos, K.; Ruzhin, Y.; Avgoustis, G.; Kavouras, D.; Nomicos, C.
2009-04-01
Laboratory studies suggest that electromagnetic emissions in a wide frequency spectrum ranging from kHz to very high MHz frequencies are produced by the opening of microcracks, with the MHz radiation appearing earlier than the kHz radiation. Earthquakes are large-scale fracture phenomena in the Earth's heterogeneous crust. Thus, the radiated kHz-MHz electromagnetic emissions are detectable not only at laboratory but also at geological scale. Clear MHz-to-kHz electromagnetic anomalies have been systematically detected over periods ranging from a few days to a few hours prior to recent destructive earthquakes in Greece. We bear in mind that whether electromagnetic precursors to earthquakes exist is an important question not only for earthquake prediction but mainly for understanding the physical processes of earthquake generation. An open question in this field of research is the classification of a detected electromagnetic anomaly as a pre-seismic signal associated to earthquake occurrence. Indeed, electromagnetic fluctuations in the frequency range of MHz are known to related to a few sources, i.e., they might be atmospheric noise (due to lightning), man-made composite noise, solar-terrestrial noise (resulting from the Sun-solar wind-magnetosphere-ionosphere-Earth's surface chain) or cosmic noise, and finally, lithospheric effect, namely pre-seismic activity. We focus on this point. We suggest that if a combination of detected kHz and MHz electromagnetic anomalies satisfies the herein presented set of criteria these anomalies could be considered as candidate precursory phenomena of an impending earthquake.
NASA Astrophysics Data System (ADS)
Wang, Lei; Chen, Guanghua
2018-06-01
The present study identifies a significant influence of the sea surface temperature gradient (SSTG) between the tropical Indian Ocean (TIO; 15°S-15°N, 40°-90°E) and the western Pacific warm pool (WWP; 0°-15°N, 125°-155°E) in boreal spring on tropical cyclone (TC) landfall frequency in mainland China in boreal summer. During the period 1979-2015, a positive spring SSTG induces a zonal inter-basin circulation anomaly with lower-level convergence, mid-tropospheric ascendance and upper-level divergence over the west-central TIO, and the opposite situation over the WWP, which produces lower-level anomalous easterlies and upper-level anomalous westerlies between the TIO and WWP. This zonal circulation anomaly further warms the west-central TIO by driving warm water westward and cools the WWP by inducing local upwelling, which facilitates the persistence of the anomaly until the summer. Consequently, lower-level negative vorticity, strong vertical wind shear and lower-level anticyclonic anomalies prevail over most of the western North Pacific (WNP), which decreases the TC genesis frequency. Meanwhile, there is an anomalous mid-tropospheric anticyclone over the main WNP TC genesis region, meaning a westerly anomaly dominates over coastal regions of mainland China, which is unfavorable for steering TCs to make landfall in mainland China during summer. This implies that the spring SSTG may act as a potential indicator for TC landfall frequency in mainland China.
NASA Astrophysics Data System (ADS)
Dewitte, Boris; Takahashi, Ken
2017-12-01
In this paper we investigate the evolution of moderate El Niño events during their developing phase with the objective to understand why some of them did not evolve as extreme events despite favourable conditions for the non-linear amplification of the Bjerknes feedback (i.e. warm SST in Austral winter in the eastern equatorial Pacific). Among the moderate events, two classes are considered consisting in the Eastern Pacific (EP) El Niño events and Central Pacific (CP) events. We first show that the observed SST variability across moderate El Niño events (i.e. inter-event variability) is largest in the far eastern Pacific (east of 130°W) in the Austral winter prior to their peak, which is associated to either significant warm anomaly (moderate EP El Niño) or an anomaly between weak warm and cold (moderate CP El Niño) as reveals by the EOF analysis of the SST anomaly evolution during the development phase of El Niño across the El Niño years. Singular value decomposition (SVD) analysis of SST and wind stress anomalies across the El Niño years further indicates that the inter-event SST variability is associated with an air-sea mode explaining 31% of the covariance between SST and wind stress. The associated SST pattern consists in SST anomalies developing along the coast of Ecuador in Austral fall and expanding westward as far as 130°W in Austral winter. The associated wind stress pattern features westerlies (easterlies) west of 130°W along the equator peaking around June-August for EP (CP) El Niño events. This air-sea mode is interpreted as resulting from a developing seasonal Bjerknes feedback for EP El Niño events since it is shown to be associated to a Kelvin wave response at its peak phase. However equatorial easterlies east of 130°W emerge in September that counters the growing SST anomalies associated to the air-sea mode. These have been particularly active during both the 1972 and the 2015 El Niño events. It is shown that the easterlies are connected to an off-equatorial southerly wind off the coast of Peru and Ecuador. The southerly wind is a response to the coastal SST anomalies off Peru developing from Austral fall. Implications of our results for the understanding of the seasonal ENSO dynamics and diversity are discussed in the light of the analysis of two global climate models simulating realistically ENSO diversity (GFDL_CM2.1 and CESM).
Study on wind wave variability by inhomogeneous currents in the closed seas
NASA Astrophysics Data System (ADS)
Bakhanov, Victor V.; Bogatov, Nikolai A.; Ermoshkin, Aleksei V.; Ivanov, Andrei Yu.; Kemarskaya, Olga N.; Titov, Victor I.
2012-09-01
Complex experiments were performed in the north-eastern part of the Black Sea and in the south-eastern part of the White Sea to study variability of the current fields and other characteristics of the sea, wind waves, and parameters of the near-surface atmospheric layer. Measurements were carried out from the onboard of the scientific research vessels by optical, radar and acoustic sensors. The heterogeneity of bottom topography in Black Sea had quasi-one-dimensional character. The case of the two-dimensionally heterogeneous relief of the bottom was investigated in the White Sea. The peculiarity of these experiments was simultaneous measurements from onboard of vessel synchronously with acquisitions of synthetic aperture radar (SAR) images of the Envisat and TerraSAR-X satellites. We have detected for the case of the quasi-one-dimensionally heterogeneous current a difference between the sea surface roughness above the shelf zone and the roughness at the deep bottom. We found that the inhomogeneities of the bottom topography can manifest as a change not only in the amplitude of different characteristics of surface wave and atmospheric near-water layer, but also in their frequency spectrum. In White Sea the special features of the flow of the powerful tidal current (up to 1 m/s) around the secluded underwater elevation and the spatial structure of surface anomalies in the field of these two-dimensional-heterogeneous currents are analyzed. The numerical simulation of the wind wave transformation in the field of two-dimensional- heterogeneous flows is carried out. The qualitative agreement of the calculation results with the experimental data is shown.
Numerical Simulation of Atmospheric Response to Pacific Tropical Instability Waves(.
NASA Astrophysics Data System (ADS)
Small, R. Justin; Xie, Shang-Ping; Wang, Yuqing
2003-11-01
Tropical instability waves (TIWs) are 1000-km-long waves that appear along the sea surface temperature (SST) front of the equatorial cold tongue in the eastern Pacific. The study investigates the atmospheric planetary boundary layer (PBL) response to TIW-induced SST variations using a high-resolution regional climate model. An investigation is made of the importance of pressure gradients induced by changes in air temperature and moisture, and vertical mixing, which is parameterized in the model by a 1.5-level turbulence closure scheme. Significant turbulent flux anomalies of sensible and latent heat are caused by changes in the air sea temperature and moisture differences induced by the TIWs. Horizontal advection leads to the occurrence of the air temperature and moisture extrema downwind of the SST extrema. High and low hydrostatic surface pressures are then located downwind of the cold and warm SST patches, respectively. The maximum and minimum wind speeds occur in phase with SST, and a thermally direct circulation is created. The momentum budget indicates that pressure gradient, vertical mixing, and horizontal advection dominate. In the PBL the vertical mixing acts as a frictional drag on the pressure-gradient-driven winds. Over warm SST the mixed layer deepens relative to over cold SST. The model simulations of the phase and amplitude of wind velocity, wind convergence, and column-integrated water vapor perturbations due to TIWs are similar to those observed from satellite and in situ data.
NASA Astrophysics Data System (ADS)
Gomez, Fabian A.; Spitz, Yvette H.; Batchelder, Harold P.; Correa-Ramirez, Marco A.
2017-10-01
Subseasonal (5-130 days) environmental variability can strongly affect plankton dynamics, but is often overlooked in marine ecology studies. We documented the main subseasonal patterns of plankton biomass in the coastal upwelling system off central Chile, the southern part of the Humboldt System. Subseasonal variability was extracted from temporal patterns in satellite data of wind stress, sea surface temperature, and chlorophyll from the period 2003-2011, and from a realistically forced eddy-resolving physical-biochemical model from 2003 to 2008. Although most of the wind variability occurs at submonthly frequencies (< 30 days), we found that the dominant subseasonal pattern of phytoplankton biomass is within the intraseasonal band (30-90 days). The strongest intraseasonal coupling between wind and plankton is in spring-summer, when increased solar radiation enhances the phytoplankton response to upwelling. Biochemical model outputs show intraseasonal shifts in plankton community structure, mainly associated with the large fluctuations in diatom biomass. Diatom biomass peaks near surface during strong upwelling, whereas small phytoplankton biomass peaks at subsurface depths during relaxation or downwelling periods. Strong intraseasonally forced changes in biomass and species composition could strongly impact trophodynamics connections in the ecosystem, including the recruitment of commercially important fish species such as common sardine and anchovy. The wind-driven variability of chlorophyll concentration was connected to mid- and high-latitude atmospheric anomalies, which resemble disturbances with frequencies similar to the tropical Madden-Julian Oscillation.
The possible physical mechanism for the EAP-SR co-action
NASA Astrophysics Data System (ADS)
Gong, Zhiqiang; Feng, Guolin; Dogar, Muhammad Mubashar; Huang, Gang
2017-11-01
The anomalous characteristics of summer precipitation and atmospheric circulation in the East Asia-West Pacific Region (EA-WP) associated with the co-action of East Asia/Pacific teleconnection-Silk Road teleconnection (EAP-SR) are investigated in this study. The compositions of EAP-SR phase anomalies can be expressed as pattern I (+ +), pattern II (+ -), pattern III (- -), and pattern IV (- +) using EAP and SR indices. It is found that the spatial distribution of summer precipitation anomalies in EA-WP corresponding to pattern I (III) shows a tripole structure in the meridional direction and a zonal dipole structure in the subtropical region, while pattern II (IV) presents a tripole pattern in meridional direction with compressed and continuous anomalies in the zonal direction over the subtropical region. The similar meridional and zonal structures are also found in the geopotential height anomalies at 500-hPa, as well as wind anomalies and moisture convergence at 850-hPa. Finally, a schematic mechanism for the EAP-SR co-action upon the summer precipitation in EA-WP is built: (1) Pattern I (III) exhibits that the negative (positive) sea surface temperature (SST) anomalies over tropical East Pacific may cause the enhanced (weakened) convective activity dominating the West Pacific, trigger the positive (negative) EAP teleconnection and produce more (less) precipitation. Besides, the negative (positive) SST anomalies over the Indonesia Maritime Continent (IMC) may further weaken (strengthen) anomalous downward (upward) motion over the South China Sea (SCS), cause negative (positive) geopotential height anomalies at the middle troposphere and surrounding regions through the function of the tropical Hadley circulation. Then the negative (positive) geopotential height anomalies could motivate the positive (negative) EAP teleconnection through the northward propagation of wave-activity perturbation. Meanwhile, a positive (negative) geopotential height anomalous pattern over Eastern Europe motivates a Rossby wave train propagation from Western Europe to west-central Asia. This circumstance can cause suppressed (enhanced) convection and less (more) precipitation over northwestern India and Pakistan, which could strengthen the negative (positive) geopotential height and positive (negative) vorticity anomalies over central East Asia, resulting in a negative (positive) SR teleconnection along the Asian jet stream. A positive (negative) lobe over the Korean Peninsula and Japan corresponding to SR overlaps with a positive (negative) lobe of EAP, which strengthens the anomalous phase contrast on both sides of 120°E. Accordingly, summer precipitation anomalies in EA-WP exhibit the meridional tripole pattern and the zonal dipole pattern. (2) Pattern II (IV) indicates that the normal SST anomalies over the tropical East Pacific cause the weak tele-impact on the tropical West Pacific, while the positive (negative) SST anomalies over the IMC will lead to a negative (positive) lobe of EAP over the subtropical region. This circumstance can weaken the positive (negative) lobe of SR over subtropical region, causing compressed and continuous negative (positive) anomalies of 500-hPa geopotential height and positive (negative) surface precipitation anomalies from central East China to Japan.
Tropical Meridional Overturning Circulation Observed by Subsurface Moorings in the Western Pacific.
Song, Lina; Li, Yuanlong; Wang, Jianing; Wang, Fan; Hu, Shijian; Liu, Chuanyu; Diao, Xinyuan; Guan, Cong
2018-05-16
Meridional ocean current in the northwestern Pacific was documented by seven subsurface moorings deployed at 142°E during August 2014-October 2015. A sandwich structure of the tropical meridional overturning circulation (TMOC) was revealed between 0-6°N that consists of a surface northward flow (0-80 m), a thermocline southward flow (80-260 m; 22.6-26.5 σ θ ), and a subthermocline northward flow (260-500 m; 26.5-26.9 σ θ ). Based on mooring data, along with satellite and reanalysis data, prominent seasonal-to-interannual variations were observed in all three layers, and the equatorial zonal winds were found to be a dominant cause of the variations. The TMOC is generally stronger in boreal winter and weaker in summer. During 2014-2015, the TMOC was greatly weakened by westerly wind anomalies associated with the El Niño condition. Further analysis suggests that the TMOC can affect equatorial surface temperature in the western Pacific through anomalous upwelling/downwelling and likely plays a vital role in the El Niño-Southern Oscillation (ENSO).
NASA Astrophysics Data System (ADS)
Leifer, I.; Culling, D.; Schneising, O.; Bovensmann, H.; Buchwitz, M.; Burrows, J. P.
2012-12-01
A ground-based, transcontinental (Florida to California - i.e., satellite-scale) survey was conducted to understand better the role of fossil fuel industrial (FFI) fugitive emissions of the potent greenhouse gas, methane. Data were collected by flame ion detection gas chromatography (Fall 2010) and by a cavity ring-down sensor (Winter 2012) from a nearly continuously moving recreational vehicle, allowing 24/7 data collection. Nocturnal methane measurements for similar sources tended to be higher compared to daytime values, sometime significantly, due to day/night meteorological differences. Data revealed strong and persistent FFI methane sources associated with refining, a presumed major pipeline leak, and several minor pipeline leaks, a coal loading plant, and areas of active petroleum production. Data showed FFI source emissions were highly transient and heterogeneous; however, integrated over these large-scale facilities, methane signatures overwhelmed that of other sources, creating clearly identifiable plumes that were well elevated above ambient. The highest methane concentration recorded was 39 ppm at an active central valley California production field, while desert values were as low as 1.80 ppm. Surface methane data show similar trends with strong emissions correlated with FFI on large (4° bin) scales and positive methane anomalies centered on the Gulf Coast area of Houston, home to most of US refining capacity. Comparison with SCIAMACHY and GOSAT satellite data show agreement with surface data in the large-scale methane spatial patterns. Positive satellite methane anomalies in the southeast and Mexico largely correlated with methane anthropogenic and wetland inventory models suggests most strong ground methane anomalies in the Gulf of Mexico region were related to dominant FFI input for most seasons. Wind advection played a role, in some cases confounding a clear relationship. Results are consistent with a non-negligible underestimation of the FFI contribution to global methane budgets.; In situ methane concentrations during transcontinental survey Fall 2010.
The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models
Sperber, Kenneth R.; Gualdi, Silvio; Legutke, Stephanie; ...
2005-06-29
The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30–70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space–time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which ~100 years of daily data is available, Montemore » Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of ~0.5°C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air–sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat flux anomalies. However, the integrations with ECHO-G and SINTEX, which used T30 atmospheres, produce westward propagation of the latent heat flux anomalies, contrary to reanalysis. Furthermore, it is suggested that the differing ability of the models to represent the near-surface westerlies over the Indian Ocean is related to the different horizontal resolutions of the atmospheric model employed.« less
NASA Astrophysics Data System (ADS)
Bladé, Ileana
1997-08-01
This study examines the extent to which the thermodynamic interactions between the midlatitude atmosphere and the underlying oceanic mixed layer contribute to the low-frequency atmospheric variability. A general circulation model, run under perpetual northern winter conditions, is coupled to a motionless constant-depth mixed layer in midlatitudes, while elsewhere the sea surface temperature (SST) is kept fixed; interannual tropical SST forcing is not included. It is found that coupling does not modify the spatial organization of the variability. The influence of coupling is manifested as a slight reddening of the spectrum of 500-mb geopotential height and a significant enhancement of the lower-tropospheric thermal variance over the oceans at very low frequencies by virtue of the mixed-layer adjustment to surface air temperature variations that occurs on those timescales. This adjustment effectively reduces the thermal damping of the atmosphere associated with surface heat fluxes (or negative oceanic feedback), thus increasing the thermal variance and the persistence of circulation anomalies.In studying the covariability between ocean and atmosphere it is found that the dominant mode of natural atmospheric variability is coupled to the leading mode of SST in each ocean, with the atmosphere leading the ocean by about one month. The cross-correlation function between oceanic and atmospheric anomalies is strongly asymmetric about zero lag. The SST structures are consistent with direct forcing by the anomalous heat fluxes implied by the concurrent surface air temperature and wind fluctuations. Additionally, composites based on large amplitude SST anomaly events contain no evidence of direct driving of atmospheric perturbations by these SST anomalies. Thus, in terms of the spatial organization of the covariability and the evolution of the coupled system from one regime to another, large-scale air-sea interaction in the model is characterized by one-way atmospheric forcing of the mixed layer.These results are qualitatively consistent with those from an earlier idealized study. They imply a subtle but fundamental role for the midlatitude oceans as stabilizing rather than directly generating atmospheric anomalies. It is argued that this scenario is relevant to the dynamics of extratropical atmosphere-ocean coupling on intraseasonal timescales at least: the model is able to qualitatively reproduce the temporal and spatial characteristics of the observed dominant patterns of interaction on these timescales, particularly over the Atlantic.
Thermal Ion Transport on the Moon and the Formation of the Lunar Swirls
NASA Technical Reports Server (NTRS)
Keller, John W.; Killen, R. M.; Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.
2011-01-01
The bright "swirl" features observed on the lunar surface are generally associated with crustal magnetic anomalies. Prominent explanations that invoke these fields include: magnetic shielding in the form of a mini-magnetosphere, which impedes space weathering by the solar wind; magnetically controlled dust transport; and cometary or asteroidal impacts, that could result in shock magnetization with concomitant formation of the swirls. Here we consider another possibility in which the ambient magnetic and electric fields can transport and channel secondary ions produced by micrometeorite or solar wind ion impacts. We use a simplified model of the fields, which incorporates a two-dipole magnetic field model for Reiner Gamma, and typical solar wind conditions. We will present preliminarily results suggesting that ions created over significant regions of the lunar surface can be transported under the influence of local and interplanetary electromagnetic fields to narrow areas ncar arcas of high crustal magnetic field strength. The flux of these focused ions may be of sufficient intensity to chemically process (or otherwise bleach) the surface leading to the formation of the high albedo component of the lunar swirls. The theory is appealing since through a lensing effect, it is possible that this flux is sufficient to overcome other space weathering processes which would otherwise tend to erase the features. Also, with relatively low energy ions, and consistent with the observed focusing, the ion gyro radii in the local magnetic fields is small enough to resolve the swirls.
Intraseasonal and interannual oscillations in coupled ocean-atmosphere models
NASA Technical Reports Server (NTRS)
Hirst, Anthony C.; Lau, K.-M.
1990-01-01
An investigation is presented of coupled ocean-atmosphere models' behavior in an environment where atmospheric wave speeds are substantially reduced from dry atmospheric values by such processes as condensation-moisture convergence. Modes are calculated for zonally periodic, unbounded ocean-atmosphere systems, emphasizing the importance of an inclusion of prognostic atmosphere equations in simple coupled ocean-atmosphere models with a view to simulations of intraseasonal variability and its possible interaction with interannual variability. The dynamics of low and high frequency modes are compared; both classes are sensitive to the degree to which surface wind anomalies are able to affect the evaporation rate.
NASA Astrophysics Data System (ADS)
Ballabrera, Joaquim; Hoareau, Nina; Umbert, Marta; Martínez, Justino; Turiel, Antonio
2013-04-01
Prediction of El Niño/Southern Oscillation (ENSO), and its relation with global climate anomalies, continues to be an important research effort in short-term climate forecasting. This task has become even more challenging as researchers are becoming more and more convinced that there is not a single archetypical El Niño (or La Niña) pattern, but several. During some events (called now Standard or East Pacific), the largest temperature anomalies are located at the eastern part of the Pacific. However, during some of the most recent events, the largest anomalies are restricted to the central part of the Pacific Ocean, and are now called Central Pacific or Modoki (a Japanese word for "almost") events. Although the role of salinity in operational ENSO forecasting was initially neglected (in contrast with temperature, sea level, or surface winds), recent studies have shown that salinity does play a role in the preconditioning of ENSO. Moreover, some researchers suggest that sea surface salinity might play a role (through the modulation of the western Pacific barrier layer) to favor the Standard or the Modoki nature of each event. Sea Surface Salinity maps are being operationally generated from microwave (L-band, 1.4 Ghz) brightness temperature maps. The L-band frequency was chosen because is the optimal one for ocean salinity measurements. However, after three years of satellite data, it has been found that noise in brightness temperatures (due to natural and artificial sources) is larger than expected. Moreover, the retrieval of SSS information requires special care because of the low sensitivity of the brightness temperature to SSS: from 0.2-0.8 K per salinity unit. Despite of all these facts, current accuracy of SS maps ranges from 0.2-0.4, depending on the processing level and the region being considered. We present here our study about the salinity variability in the tropical Pacific Ocean from the 9-day, 0.25 bins salinity maps derived from the SMOS reprocessing campaign released to the SMOS user community on March 2011. During the period under study, the equatorial Pacific has been in a quasi-continuous La Niña state. During the cold phases of ENSO, positive anomalies of SSS are expected with the largest anomalous values in the western warm-fresh pool. The anomalies derived from the SMOS data do indeed display a positive anomaly. The persistence of the feature, its geographical pattern, the time modulation of the anomaly amplitude indicate, and its resemblance with in situ observations indicate this novel observation technology is currently able to capture seasonal and interannual signatures of climate interest.
Atmospheric Drivers of Greenland Surface Melt Revealed by Self-Organizing Maps
NASA Technical Reports Server (NTRS)
Mioduszewski, J. R.; Rennermalm, A. K.; Hammann, A.; Tedesco, M.; Noble, E. U.; Stroeve, J. C.; Mote, T. L.
2016-01-01
Recent acceleration in surface melt on the Greenland ice sheet (GrIS) has occurred concurrently with a rapidly warming Arctic and has been connected to persistent, anomalous atmospheric circulation patterns over Greenland. To identify synoptic setups favoring enhanced GrIS surface melt and their decadal changes, we develop a summer Arctic synoptic climatology by employing self-organizing maps. These are applied to daily 500 hPa geopotential height fields obtained from the Modern Era Retrospective Analysis for Research and Applications reanalysis, 1979-2014. Particular circulation regimes are related to meteorological conditions and GrIS surface melt estimated with outputs from the Modèle Atmosphérique Régional. Our results demonstrate that the largest positive melt anomalies occur in concert with positive height anomalies near Greenland associated with wind, temperature, and humidity patterns indicative of strong meridional transport of heat and moisture. We find an increased frequency in a 500 hPa ridge over Greenland coinciding with a 63% increase in GrIS melt between the 1979-1988 and 2005-2014 periods, with 75.0% of surface melt changes attributed to thermodynamics, 17% to dynamics, and 8.0% to a combination. We also confirm that the 2007-2012 time period has the largest dynamic forcing relative of any period but also demonstrate that increased surface energy fluxes, temperature, and moisture separate from dynamic changes contributed more to melt even during this period. This implies that GrIS surface melt is likely to continue to increase in response to an ever warmer future Arctic, regardless of future atmospheric circulation patterns.
Some anomalies observed in wind-tunnel tests of a blunt body at transonic and supersonic speeds
NASA Technical Reports Server (NTRS)
Brooks, J. D.
1976-01-01
An investigation of anomalies observed in wind tunnel force tests of a blunt body configuration was conducted at Mach numbers from 0.20 to 1.35 in the Langley 8-foot transonic pressure tunnel and at Mach numbers of 1.50, 1,80, and 2.16 in the Langley Unitary Plan wind tunnel. At a Mach number of 1.35, large variations occurred in axial force coefficient at a given angle of attack. At transonic and low supersonic speeds, the total drag measured in the wind tunnel was much lower than that measured during earlier ballistic range tests. Accurate measurements of total drag for blunt bodies will require the use of models smaller than those tested thus far; however, it appears that accurate forebody drag results can be obtained by using relatively large models. Shock standoff distance is presented from experimental data over the Mach number range from 1.05 to 4.34. Theory accurately predicts the shock standoff distance at Mach numbers up to 1.75.
The Pacific SST response to volcanic eruptions over the past millennium based on the CESM-LME
NASA Astrophysics Data System (ADS)
Man, W.; Zuo, M.
2017-12-01
The impact of the northern hemispheric, tropical and southern hemispheric volcanic eruptions on the Pacific sea surface temperature (SST) and its mechanism are investigated using the Community Earth System Model Last Millennium Ensemble. Analysis of the simulations indicates that the Pacific SST features a significant El Niño-like pattern a few months after the northern hemispheric and tropical eruptions, and with a weaker such tendency after the southern hemispheric eruptions. Furthermore, the Niño3 index peaks lagging one and a half years after the northern hemispheric and tropical eruptions. Two years after all three types of volcanic eruptions, a La Niña-like pattern over the equatorial Pacific is observed, which seems to form an El Niño-Southern Oscillation (ENSO) cycle. In addition, the westerly anomalies at 850 hPa over the western-to-central Pacific appear ahead of the warm SST; hence, the El Niño-like warming over the eastern Pacific can be attributed to the weakening of the trade winds. We further examined the causes of westerly anomalies and find that a shift of the intertropical convergence zone (ITCZ) can explain the El Niño-like response to the northern hemispheric eruptions, which is not applicable for tropical or southern hemispheric eruptions. Instead, the reduction in the zonal equatorial SST gradient through the ocean dynamical thermostat mechanism, combined with the land-sea thermal contrast between the Maritime Continent (MC) and the surrounding ocean and the divergent wind induced by the decreased precipitation over the MC, can trigger the westerly anomalies over the equatorial Pacific, which is applicable for all three types of eruptions.
Propagating and Non-propagating Annular Modes and Principal Oscillation Patterns
NASA Astrophysics Data System (ADS)
Plumb, R. A.; Sheshadri, A.
2016-12-01
The leading "annular mode" in each hemisphere — usually defined as the dominant EOF of surface pressure or of zonal mean zonal wind variability — appears as a dipolar structure straddling the mean midlatitude jet and thus seems to describe north-south wobbling of the jet latitude. However, extratropical zonal wind anomalies frequently tend to migrate poleward. This behavior can be described by the first two EOFs, the first (AM1) being the dipolar structure, and the second (AM2) having a tripolar structure centered on the mean jet. (AM2 explains a significant amount of variance, though less than AM1.) Taken in isolation, AM1 thus describes a north-south wobbling of the jet position, while AM2 describes a strengthening and narrowing (or weakening and broadening) of the jet. However, despite the fact that they are spatially orthogonal, and their corresponding time series temporally orthogonal, AM1 and AM2 are not independent, but show significant lag-correlations which reveal the poleward propagation. The EOFs are not modes of the underlying dynamical system governing the zonal flow evolution. The true modes can be estimated using principal oscillation pattern (POP) analysis. The leading POPs manifest themselves as a pair of complex conjugate structures with conjugate eigenvalues thus, in reality, constituting a single, complex, mode that describes poleward propagating anomalies. This mode then shows up as AM1 and AM2 in EOF analyses. Even though the principal components associated with the two leading EOFs decay at different rates, each decays faster than the true mode. In the propagating regime, these facts have implications for the use of autocorrelations and cross-correlations to quantify eddy feedback and the susceptibility of the mode to external perturbations, including the response to stratospheric anomalies.
Response of trace gases to the disrupted 2015-2016 quasi-biennial oscillation
NASA Astrophysics Data System (ADS)
Tweedy, Olga V.; Kramarova, Natalya A.; Strahan, Susan E.; Newman, Paul A.; Coy, Lawrence; Randel, William J.; Park, Mijeong; Waugh, Darryn W.; Frith, Stacey M.
2017-06-01
The quasi-biennial oscillation (QBO) is a quasiperiodic alternation between easterly and westerly zonal winds in the tropical stratosphere, propagating downward from the middle stratosphere to the tropopause with a period that varies from 24 to 32 months ( ˜ 28 months on average). The QBO wind oscillations affect the distribution of chemical constituents, such as ozone (O3), water vapor (H2O), nitrous oxide (N2O), and hydrochloric acid (HCl), through the QBO-induced meridional circulation. In the 2015-2016 winter, radiosonde observations revealed an anomaly in the downward propagation of the westerly phase, which was disrupted by the upward displacement of the westerly phase from ˜ 30 hPa up to 15 hPa and the sudden appearance of easterlies at 40 hPa. Such a disruption is unprecedented in the observational record from 1953 to the present. In this study we show the response of trace gases to this QBO disruption using O3, HCl, H2O, and temperature from the Aura Microwave Limb Sounder (MLS) and total ozone measurements from the Solar Backscatter Ultraviolet (SBUV) Merged Ozone Data Set (MOD). Results reveal the development of positive anomalies in stratospheric equatorial O3 and HCl over ˜ 50-30 hPa in May-September of 2016 and a substantial decrease in O3 in the subtropics of both hemispheres. The SBUV observations show near-record low levels of column ozone in the subtropics in 2016, resulting in an increase in the surface UV index during northern summer. Furthermore, cold temperature anomalies near the tropical tropopause result in a global decrease in stratospheric water vapor.
Space Weathering Trends (UV and NIR) at Lunar Magnetic Anomalies
NASA Astrophysics Data System (ADS)
Blewett, D. T.; Denevi, B. W.; Cahill, J. T.; Klima, R. L.
2017-12-01
Areas of magnetized crustal rocks on the Moon, known as magnetic anomalies, affect the flux of solar-wind ions that bombard the lunar surface. Hence, magnetically shielded areas could experience a space weathering regime different from the lunar norm. The unusual, high-albedo markings called lunar swirls are collocated with magnetic anomalies. The high albedo in the near-ultraviolet through near-infrared is consistent with the presence of material that is less weathered than that found in mature, non-shielded areas. We have undertaken an analysis of spectral trends associated with swirls in order to gain further insight into the nature and origin of these features. We examine swirls in the near-ultraviolet (Lunar Reconnaissance Orbiter LROC-WAC) and near-infrared (Chandrayaan Moon Mineralogy Mapper and Kaguya Spectral Profiler). We find that relative to the normal weathering trend, the swirls have a steeper NIR continuum slope (i.e., the continuum is redder than expected for their albedo) and steeper UV slope (i.e., greater UV drop-off than expected for their albedo). These trends can be understood in terms of differing relative abundances of microphase and nanophase metallic iron weathering products.
ENSO's far reaching connection to Indian cold waves.
Ratnam, J V; Behera, Swadhin K; Annamalai, H; Ratna, Satyaban B; Rajeevan, M; Yamagata, Toshio
2016-11-23
During boreal winters, cold waves over India are primarily due to transport of cold air from higher latitudes. However, the processes associated with these cold waves are not yet clearly understood. Here by diagnosing a suite of datasets, we explore the mechanisms leading to the development and maintenance of these cold waves. Two types of cold waves are identified based on observed minimum surface temperature and statistical analysis. The first type (TYPE1), also the dominant one, depicts colder than normal temperatures covering most parts of the country while the second type (TYPE2) is more regional, with significant cold temperatures only noticeable over northwest India. Quite interestingly the first (second) type is associated with La Niña (El Niño) like conditions, suggesting that both phases of ENSO provide a favorable background for the occurrence of cold waves over India. During TYPE1 cold wave events, a low-level cyclonic anomaly generated over the Indian region as an atmospheric response to the equatorial convective anomalies is seen advecting cold temperatures into India and maintaining the cold waves. In TYPE2 cold waves, a cyclonic anomaly generated over west India anomalously brings cold winds to northwest India causing cold waves only in those parts.
Modulation of Bjerknes feedback on the decadal variations in ENSO predictability
NASA Astrophysics Data System (ADS)
Zheng, Fei; Fang, Xiang-Hui; Zhu, Jiang; Yu, Jin-Yi; Li, Xi-Chen
2016-12-01
Clear decadal variations exist in the predictability of the El Niño-Southern Oscillation (ENSO), with the most recent decade having the lowest ENSO predictability in the past six decades. The Bjerknes Feedback (BF) intensity, which dominates the development of ENSO, has been proposed to determine ENSO predictability. Here we demonstrate that decadal variations in BF intensity are largely a result of the sensitivity of the zonal winds to the zonal sea level pressure (SLP) gradient in the equatorial Pacific. Furthermore, the results show that during low-ENSO predictability decades, zonal wind anomalies over the equatorial Pacific are more linked to SLP variations in the off-equatorial Pacific, which can then transfer this information into surface temperature and precipitation fields through the BF, suggesting a weakening in the ocean-atmosphere coupling in the tropical Pacific. This result indicates that more attention should be paid to off-equatorial processes in the prediction of ENSO.
NASA Astrophysics Data System (ADS)
Frolking, S. E.; Milliman, T.; Palace, M. W.; Wisser, D.; Lammers, R. B.; Fahnestock, M. A.
2010-12-01
A severe drought occurred in many portions of Amazonia in the dry season (June-September) of 2005. We analyzed ten years (7/99-10/09) of SeaWinds active microwave Ku-band backscatter data collected over the Amazon Basin, developing a monthly climatology and monthly anomalies from that climatology in an effort to detect landscape responses to this drought. We compared these to seasonal accumulating water deficit anomalies generated using Tropical Rainfall Monitoring Mission (TRMM) precipitation data (1999-2009) and 100 mm/mo evapotranspirative demand as a water deficit threshold. There was significant interannual variability in monthly mean backscatter only for ascending (early morning) overpass data, and little interannual variability in monthly mean backscatter for descending (late afternoon) overpass data. Strong negative anomalies in both ascending-overpass backscatter and accumulating water deficit developed during July-October 2005, centered on the southwestern Amazon Basin (Acre and western Amazonas states in Brazil; Madre de Dios state in Peru; Pando state in Bolivia). During the 2005 drought, there was a strong spatial correlation between morning overpass backscatter anomalies and water deficit anomalies. We hypothesize that as the drought persisted over several months, the forest canopy was increasingly unable to recover full leaf moisture content over night, and the early morning overpass backscatter data became anomalously low. This is the first reporting of tropical wet forest seasonal drought detection by active microwave scatterometry.
Stratification on the Skagit Bay Tidal Flats
2012-09-01
and wind -driven currents can 11 affect the potential energy anomaly balance in estuaries and ROFIs during storms (Yang and Khangaonkar, 2009...30 3.4.1 The Potential Energy Anomaly Balance...turbulent energy is dissipated by destabilizing the fluid rather than by slowing the upper water column (Turner, 1973). Overall, stratification tends to
Predictability of ENSO, the QBO, and European winter 2015/16
NASA Astrophysics Data System (ADS)
Scaife, A. A.; Ineson, S.; Ruth, C.; Dunstone, N. J.; Fereday, D.; Folland, C. K.; Good, E.; Gordon, M.; Hermanson, L.; Karpechko, A.; Knight, J. R.; MacLachlan, C.; Maidens, A. V.; Peterson, A.; Slingo, J.; Smith, D.; Walker, B.
2016-12-01
The northern winter of 2015/16 gave rise to the strongest El Niño event since 1997/8. Central and eastern Pacific sea surface temperature anomalies exceeded three degrees and closely resembled the strong El Niño in winter of 1982/3. A second feature of this winter was a strong westerly phase of the Quasi-Biennial Oscillation and very strong winds in the stratospheric polar night jet. At the surface, intense extratropical circulation anomalies occurred in both the North Pacific and North Atlantic that were consistent with known teleconnections to the observed phases of ENSO and the QBO. The North Atlantic Oscillation was very positive in the early winter period (Nov-Dec) and was more blocked in the late winter. Initialised climate predictions were able to capture these signals at seasonal lead times. This case study adds to the evidence that north Atlantic circulation exhibits predictability on seasonal timescales, and in this case we show that even aspects of the detailed pattern and sub-seasonal evolution were predicted, providing warning of increased risk of extreme events such as the intense rainfall which caused extreme flooding in the UK in December.
Anderson, Bruce T.; Hassanzadeh, Pedram; Caballero, Rodrigo
2017-08-31
Climates across both hemispheres are strongly influenced by tropical Pacific variability associated with the El Niño/Southern Oscillation (ENSO). Conversely, extratropical variability also can affect the tropics. In particular, seasonal-mean alterations of near-surface winds associated with the North Pacific Oscillation (NPO) serve as a significant extratropical forcing agent of ENSO. However, it is still unclear what dynamical processes give rise to year-to-year shifts in these long-lived NPO anomalies. Here in this paper we show that intraseasonal variability in boreal winter pressure patterns over the Central North Pacific (CNP) imparts a significant signature upon the seasonal-mean circulations characteristic of the NPO. Furthermore » we show that the seasonal-mean signature results in part from year-to-year variations in persistent, quasi-stationary low-pressure intrusions into the subtropics of the CNP, accompanied by the establishment of persistent, quasi-stationary high-pressure anomalies over high latitudes of the CNP. Overall, we find that the frequency of these persistent extratropical anomalies (PEAs) during a given winter serves as a key modulator of intraseasonal variability in extratropical North Pacific circulations and, through their influence on the seasonal-mean circulations in and around the southern lobe of the NPO, the state of the equatorial Pacific 9–12 months later.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Bruce T.; Hassanzadeh, Pedram; Caballero, Rodrigo
Climates across both hemispheres are strongly influenced by tropical Pacific variability associated with the El Niño/Southern Oscillation (ENSO). Conversely, extratropical variability also can affect the tropics. In particular, seasonal-mean alterations of near-surface winds associated with the North Pacific Oscillation (NPO) serve as a significant extratropical forcing agent of ENSO. However, it is still unclear what dynamical processes give rise to year-to-year shifts in these long-lived NPO anomalies. Here in this paper we show that intraseasonal variability in boreal winter pressure patterns over the Central North Pacific (CNP) imparts a significant signature upon the seasonal-mean circulations characteristic of the NPO. Furthermore » we show that the seasonal-mean signature results in part from year-to-year variations in persistent, quasi-stationary low-pressure intrusions into the subtropics of the CNP, accompanied by the establishment of persistent, quasi-stationary high-pressure anomalies over high latitudes of the CNP. Overall, we find that the frequency of these persistent extratropical anomalies (PEAs) during a given winter serves as a key modulator of intraseasonal variability in extratropical North Pacific circulations and, through their influence on the seasonal-mean circulations in and around the southern lobe of the NPO, the state of the equatorial Pacific 9–12 months later.« less
The influence of ENSO on an oceanic eddy pair in the South China Sea
NASA Astrophysics Data System (ADS)
Chu, Xiaoqing; Dong, Changming; Qi, Yiquan
2017-03-01
An eddy pair off the Vietnam coast is one of the most important features of the summertime South China Sea circulation. Its variability is of interest due to its profound impact on regional climate, ecosystems, biological processes, and fisheries. This study examines the influence of the El Niño-Southern Oscillation (ENSO), a basin-scale climatic mode, on the interannual variability of this regional eddy pair using satellite observational data and historical hydrographic measurements. Over the last three decades, the eddy pair strengthened in 1994 and 2002, and weakened in 2006, 2007, and 2008. It was absent in 1988, 1995, 1998, and 2010, coinciding with strong El Nino-to-La Nina transitions. Composite analyses showed that the strong transition events of ENSO led to radical changes in the summer monsoon, through the forcing of a unique sea surface temperature anomaly structure over the tropical Indo-Pacific basin. With weaker zonal wind, a more northward wind direction, and the disappearance of a pair of positive and negative wind stress curls, the eastward current jet turns northward along the Vietnam coast and the eddy pair disappears.
NASA Technical Reports Server (NTRS)
Shukla, J.; Moura, A. D.
1980-01-01
The monthly mean sea surface temperature anomalies over tropical Altantic and rainfall anomalies over two selected stations for 25 years (1948-1972) were examined. It is found that the most severe drought events are associated with the simultaneous occurrence of warm sea surface temperature anomalies over north and cold sea surface temperature anomalies over south tropical Atlantic. Simultaneous occurrences of warm sea surface temperature anomaly at 15 deg N, 45 deg W and cold sea surface temperature anomaly at 15 deg S, 5 deg W were always associated with negative anomalies of rainfall, and vice versa. A simple primitive equation model is used to calculate the frictionally controlled and thermally driven circulation due to a prescribed heating function in a resting atmosphere.
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Kaplan, Michael L.
1993-01-01
The first section is on 3-D numerical modeling of terrain-induced circulations and covers the following: (1) additional insights into gravity wave generation mechanisms based on the control simulation; (2) ongoing nested-grid numerical simulations; (3) work to be completed during the remainder of FY-93; and (4) work objectives for FY-94. The second section is on linear theory and theoretical modeling and covers the following: (1) the free response of a uniform barotropic flow to an initially stationary unbalanced (ageostrophic) zonal wind anomaly; and (2) the free response of a uniform barotropic flow to an initially stationary balanced zonal wind anomaly.
Modelled thermal and dynamical responses of the middle atmosphere to EPP-induced ozone changes
NASA Astrophysics Data System (ADS)
Karami, K.; Braesicke, P.; Kunze, M.; Langematz, U.; Sinnhuber, M.; Versick, S.
2015-11-01
Energetic particles including protons, electrons and heavier ions, enter the Earth's atmosphere over the polar regions of both hemispheres, where they can greatly disturb the chemical composition of the upper and middle atmosphere and contribute to ozone depletion in the stratosphere and mesosphere. The chemistry-climate general circulation model EMAC is used to investigate the impact of changed ozone concentration due to Energetic Particle Precipitation (EPP) on temperature and wind fields. The results of our simulations show that ozone perturbation is a starting point for a chain of processes resulting in temperature and circulation changes over a wide range of latitudes and altitudes. In both hemispheres, as winter progresses the temperature and wind anomalies move downward with time from the mesosphere/upper stratosphere to the lower stratosphere. In the Northern Hemisphere (NH), once anomalies of temperature and zonal wind reach the lower stratosphere, another signal develops in mesospheric heights and moves downward. Analyses of Eliassen and Palm (EP) flux divergence show that accelerating or decelerating of the stratospheric zonal flow is in harmony with positive and negative anomalies of the EP flux divergences, respectively. This results suggest that the oscillatory mode in the downwelling signal of temperature and zonal wind in our simulations are the consequence of interaction between the resolved waves in the model and the mean stratospheric flow. Therefore, any changes in the EP flux divergence lead to anomalies in the zonal mean zonal wind which in turn feed back on the propagation of Rossby waves from the troposphere to higher altitudes. The analyses of Rossby waves refractive index show that the EPP-induced ozone anomalies are capable of altering the propagation condition of the planetary-scale Rossby waves in both hemispheres. It is also found that while ozone depletion was confined to mesospheric and stratospheric heights, but it is capable to alter Rossby wave propagation down to tropospheric heights. In response to an accelerated polar vortex in the Southern Hemisphere (SH) late wintertime, we found almost two weeks delay in the occurrence of mean dates of Stratospheric Final Warming (SFW). These results suggest that the stratosphere is not merely a passive sink of wave activity from below, but it plays an active role in determining its own budget of wave activity.
Hydrological state of the Large Aral Sea in the fall season of 2013
NASA Astrophysics Data System (ADS)
Izhitskiy, Alexander; Zavialov, Peter
2014-05-01
We report here the results of the latest expedition of the Shirshov Institute to the Aral Sea. The survey encompassed 8 field days in October-November, 2013. Direct measurements of thermohaline characteristics and water currents were conducted in the western basin of the Large Aral Sea during the expedition. Vertical profiles of temperature and salinity were obtained using a CTD profiler at 9 stations, situated on two cross-sections of the western basin. Four mooring stations equipped with current meters, as well as pressure gauges, were deployed for 4-6 days on the slopes of the deepest portion of the western basin. A portable automatic meteorological station, continuously recording the variability of wind and principal meteorological parameters, was installed near the mooring sites. Analysis of the current measurements data along with the meteorological data records demonstrated the current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity series versus the wind stress allowed to quantify the response of the system to the wind forcing. Together with the similar results of more earlier surveys, recently collected data shows that the mean surface circulation of the western basin remains anti-cyclonic under the predominant winds. Character of the interannual variability of salinity values in the Aral Sea water manifested increase in the surface layer during last 5 years. On the other hand, salinity values in the bottom layer appear to be decreased due to ceasing of the influence of the interbasin water exchange since 2010. Water level of the Large Aral Sea is still falling. Assessment of the on-going changes holds promise to help predicting the subsequent state of the Aral Sea region.
Circulation and thermohaline structure of the Aral Sea in the last three years
NASA Astrophysics Data System (ADS)
Izhitskiy, A. S.; Zavialov, P. O.
2012-04-01
The results of the 3 latest expeditions (2009 - 2011) of the Shirshov Institute to the Aral Sea are reported. We analyze the interannual variability of the basin circulation together with the thermohaline structure in order to identify the underlying mechanisms. The study is based on the results of the field surveys of August, 2009, September, 2010, and November, 2011. The vertical profiles of temperature and salinity were obtained using a CTD profiler at 6 stations across the deepest part of the western basin in 2009 and 2010, and 3 stations in 2011. Additionally, during each of the surveys, mooring stations equipped with current meters and pressure gauges were deployed for 3-5 days in the deepest portion of the western basin. A portable automatic meteorological station, continuously recording the wind stress and the principal meteorological parameters, was installed near the mooring sites. The vertical stratification exhibited a 3-layered pattern, with local salinity maxima in the upper mixed layer and near the bottom, while the intermediate layer was characterized by a core of minimum salinity and temperature. Such a pattern persisted throughout the 3 years of observations. Analysis of the current measurements data along with the meteorological data records demonstrated that the mean basin-scale surface circulation of the Large Aral Sea is likely to have remained anticyclonic, whilst the near-bottom circulation appears to be cyclonic. The current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity and surface level series versus the wind stress allowed to quantify the response of the system to the wind forcing as well as to formulate a conceptual scheme of the lake's response to wind forcing at synoptic temporal scales.
Dehnhard, Nina; Ludynia, Katrin; Poisbleau, Maud; Demongin, Laurent; Quillfeldt, Petra
2013-01-01
Due to their restricted foraging range, flightless seabirds are ideal models to study the short-term variability in foraging success in response to environmentally driven food availability. Wind can be a driver of upwelling and food abundance in marine ecosystems such as the Southern Ocean, where wind regime changes due to global warming may have important ecological consequences. Southern rockhopper penguins (Eudyptes chrysocome) have undergone a dramatic population decline in the past decades, potentially due to changing environmental conditions. We used a weighbridge system to record daily foraging mass gain (the difference in mean mass of adults leaving the colony in the morning and returning to the colony in the evening) of adult penguins during the chick rearing in two breeding seasons. We related the day-to-day variability in foraging mass gain to ocean wind conditions (wind direction and wind speed) and tested for a relationship between wind speed and sea surface temperature anomaly (SSTA). Foraging mass gain was highly variable among days, but did not differ between breeding seasons, chick rearing stages (guard and crèche) and sexes. It was strongly correlated between males and females, indicating synchronous changes among days. There was a significant interaction of wind direction and wind speed on daily foraging mass gain. Foraging mass gain was highest under moderate to strong winds from westerly directions and under weak winds from easterly directions, while decreasing under stronger easterly winds and storm conditions. Ocean wind speed showed a negative correlation with daily SSTA, suggesting that winds particularly from westerly directions might enhance upwelling and consequently the prey availability in the penguins' foraging areas. Our data emphasize the importance of small-scale, wind-induced patterns in prey availability on foraging success, a widely neglected aspect in seabird foraging studies, which might become more important with increasing changes in climatic variability. PMID:24236139
NASA Astrophysics Data System (ADS)
Saatchi, S.; Asefi, S.
2012-04-01
During the last decade, strong precipitation anomalies resulted from increased sea surface temperature in the tropical Atlantic, have caused extensive drying trends in rainforests of western Amazonia, exerting water stress, tree mortality, biomass loss, and large-scale fire disturbance. In contrast, there have been no reports on large-scale disturbance in rainforests of west and central Africa, though being exposed to similar intensity of climate variability. Using data from Tropical Rainfall Mapping Mission (TRMM) (1999-2010), and time series of rainfall observations from meteorological stations (1971-2000), we show that both Amazonian and African rainforest experienced strong precipitation anomalies from 2005-2010. We monitored the response of forest to the climate variability by analyzing the canopy water content observed by SeaWinds Ku-band Scatterometer (QSCAT) (1999-2009) and found that more than 70 million ha of forests in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy backscatter that persisted until the next major drought in 2010. This decline in backscatter has been attributed to loss of canopy water content and large-scale tree mortality corroborated by ground and airborne observations. However, no strong impacts was observed on tropical forests of Africa, suggesting that the African rainforest may have more resilience to droughts. We tested this hypothesis by examining the seasonal rainfall patterns, maximum water deficit, and the surface temperature variations. Results show that there is a complex pattern of low annual rainfall, moderate seasonality, and lower surface temperature in Central Africa compared to Amazonia, indicating potentially a lower evapotranspiration circumventing strong water deficits
Response of Tropical Forests to Intense Climate Variability and Rainfall Anomaly of Last Decade
NASA Astrophysics Data System (ADS)
Saatchi, S. S.; Asefi Najafabady, S.
2011-12-01
During the last decade, strong precipitation anomalies resulted from increased sea surface temperature in the tropical Atlantic, have caused extensive drying trends in rainforests of western Amazonia, exerting water stress, tree mortality, biomass loss, and large-scale fire disturbance. In contrast, there have been no reports on large-scale disturbance in rainforests of west and central Africa, though being exposed to similar intensity of climate variability. Using data from Tropical Rainfall Mapping Mission (TRMM) (1999-2010), and time series of rainfall observations from meteorological stations (1971-2000), we show that both Amazonian and African rainforest experienced strong precipitation anomalies from 2005-2010. We monitored the response of forest to the climate variability by analyzing the canopy water content observed by SeaWinds Ku-band Scatterometer (QSCAT) (1999-2009) and found that more than 70 million ha of forests in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy backscatter that persisted until the next major drought in 2010. This decline in backscatter has been attributed to loss of canopy water content and large-scale tree mortality corroborated by ground and airborne observations. However, no strong impacts was observed on tropical forests of Africa, suggesting that the African rainforest may have more resilience to droughts. We tested this hypothesis by examining the seasonal rainfall patterns, maximum water deficit, and the surface temperature variations. Results show that there is a complex pattern of low annual rainfall, moderate seasonality, and lower surface temperature in Central Africa compared to Amazonia, indicating potentially a lower evapotranspiration circumventing strong water deficits.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); McClain, Charles R.; Darzi, Michael; Barnes, Robert A.; Eplee, Robert E.; Firestone, James K.; Patt, Frederick S.; Robinson, Wayne D.; Schieber, Brian D.;
1996-01-01
This document provides five brief reports that address several quality control procedures under the auspices of the Calibration and Validation Element (CVE) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter 1 describes analyses of the 32 sensor engineering telemetry streams. Anomalies in any of the values may impact sensor performance in direct or indirect ways. The analyses are primarily examinations of parameter time series combined with statistical methods such as auto- and cross-correlation functions. Chapter 2 describes how the various onboard (solar and lunar) and vicarious (in situ) calibration data will be analyzed to quantify sensor degradation, if present. The analyses also include methods for detecting the influence of charged particles on sensor performance such as might be expected in the South Atlantic Anomaly (SAA). Chapter 3 discusses the quality control of the ancillary environmental data that are routinely received from other agencies or projects which are used in the atmospheric correction algorithm (total ozone, surface wind velocity, and surface pressure; surface relative humidity is also obtained, but is not used in the initial operational algorithm). Chapter 4 explains the procedures for screening level-, level-2, and level-3 products. These quality control operations incorporate both automated and interactive procedures which check for file format errors (all levels), navigation offsets (level-1), mask and flag performance (level-2), and product anomalies (all levels). Finally, Chapter 5 discusses the match-up data set development for comparing SeaWiFS level-2 derived products with in situ observations, as well as the subsequent outlier analyses that will be used for evaluating error sources.
The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations
NASA Technical Reports Server (NTRS)
Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.
2014-01-01
The National Aeronautics and Space Administration Short-term Prediction Research and Transition Center (NASA SPoRT) has transitioned a total column ozone product from the Atmospheric Infrared Sounder (AIRS) retrievals to the Weather Prediction Center and Ocean Prediction Center. The total column ozone product is used to diagnose regions of warm, dry, ozone-rich, stratospheric air capable of descending to the surface to create high-impact non-convective winds. Over the past year, forecasters have analyzed the Red, Green, Blue (RGB) Air Mass imagery in conjunction with the AIRS total column ozone to aid high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. During the summer of 2013, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air. This paper describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the RGB Air Mass product to access the utility and transition of the products.
Observing and Studying Extreme Low Pressure Events with Altimetry
Carrère, Loren; Mertz, Françoise; Dorandeu, Joel; Quilfen, Yves; Patoux, Jerome
2009-01-01
The ability of altimetry to detect extreme low pressure events and the relationship between sea level pressure and sea level anomalies during extra-tropical depressions have been investigated. Specific altimeter treatments have been developed for tropical cyclones and applied to obtain a relevant along-track sea surface height (SSH) signal: the case of tropical cyclone Isabel is presented here. The S- and C-band measurements are used because they are less impacted by rain than the Ku-band, and new sea state bias (SSB) and wet troposphere corrections are proposed. More accurate strong altimeter wind speeds are computed thanks to the Young algorithm. Ocean signals not related to atmospheric pressure can be removed with accuracy, even within a Near Real Time context, by removing the maps of sea level anomaly (SLA) provided by SSALTO/Duacs. In the case of Extra-Tropical Depressions, the classical altimeter processing can be used. Ocean signal not related to atmospheric pressure is along-track filtered. The sea level pressure (SLP)-SLA relationship is investigated for the North Atlantic, North Pacific and Indian oceans; three regression models are proposed allowing restoring an altimeter SLP with a mean error of 5 hPa if compared to ECMWF or buoys SLP. The analysis of barotropic simulation outputs points out the regional variability of the SLP/Model Sea Level relationship and the wind effects. PMID:22573955
NASA Astrophysics Data System (ADS)
Lavender, Sally L.; Hoeke, Ron K.; Abbs, Deborah J.
2018-03-01
Tropical cyclones (TCs) result in widespread damage associated with strong winds, heavy rainfall and storm surge. TC Yasi was one of the most powerful TCs to impact the Queensland coast since records began. Prior to Yasi, the SSTs in the Coral Sea were higher than average by 1-2 °C, primarily due to the 2010/2011 La Niña event. In this study, a conceptually simple idealised sensitivity analysis is performed using a high-resolution regional model to gain insight into the influence of SST on the track, size, intensity and associated rainfall of TC Yasi. A set of nine simulations with uniform SST anomalies of between -4 and 4 °C applied to the observed SSTs are analysed. The resulting surface winds and pressure are used to force a barotropic storm surge model to examine the influence of SST on the associated storm surge of TC Yasi. An increase in SST results in an increase in intensity, precipitation and integrated kinetic energy of the storm; however, there is little influence on track prior to landfall. In addition to an increase in precipitation, there is a change in the spatial distribution of precipitation as the SST increases. Decreases in SSTs result in an increase in the radius of maximum winds due to an increase in the asymmetry of the storm, although the radius of gale-force winds decreases. These changes in the TC characteristics also lead to changes in the associated storm surge. Generally, cooler (warmer) SSTs lead to reduced (enhanced) maximum storm surges. However, the increase in surge reaches a maximum with an increase in SST of 2 °C. Any further increase in SST does not affect the maximum surge but the total area and duration of the simulated surge increases with increasing upper ocean temperatures. A large decrease in maximum storm surge height occurs when a negative SST anomaly is applied, suggesting if TC Yasi had occurred during non-La Niña conditions the associated storm surge may have been greatly diminished, with a decrease in storm surge height of over 3 m when the SST is reduced by 2 °C. In summary, increases in SST lead to an increase in the potential destructiveness of TCs with regard to intensity, precipitation and storm surge, although this relationship is not linear.
Monitoring of ocean surface algal blooms in coastal and oceanic waters around India.
Tholkapiyan, Muniyandi; Shanmugam, Palanisamy; Suresh, T
2014-07-01
The National Aeronautics and Space Administration's (NASA) sensor MODIS-Aqua provides an important tool for reliable observations of the changing ocean surface algal bloom paradigms in coastal and oceanic waters around India. A time series of the MODIS-Aqua-derived OSABI (ocean surface algal bloom index) and its seasonal composite images report new information and comprehensive pictures of these blooms and their evolution stages in a wide variety of events occurred at different times of the years from 2003 to 2011, providing the first large area survey of such phenomena around India. For most of the years, the results show a strong seasonal pattern of surface algal blooms elucidated by certain physical and meteorological conditions. The extent of these blooms reaches a maximum in winter (November-February) and a minimum in summer (June-September), especially in the northern Arabian Sea. Their spatial distribution and retention period are also significantly increased in the recent years. The increased spatial distribution and intensity of these blooms in the northern Arabian Sea in winter are likely caused by enhanced cooling, increased convective mixing, favorable winds, and atmospheric deposition of the mineral aerosols (from surrounding deserts) of the post-southwest monsoon period. The southward Oman coastal current and southwestward winds become apparently responsible for their extension up to the central Arabian Sea. Strong upwelling along this coast further triggers their initiation and growth. Though there is a warming condition associated with increased sea surface height anomalies along the coasts of India and Sri Lanka in winter, surface algal bloom patches are still persistent along these coasts due to northeast monsoonal winds, enhanced precipitation, and subsequent nutrient enrichment in these areas. The occurrence of the surface algal blooms in the northern Bay of Bengal coincides with a region of the well-known Ganges-Brahmaputra Estuarine Frontal (GBEF) system, which increases supply of nutrients in addition to the land-derived inputs triggering surface algal blooms in this region. Low density (initiation stage) of such blooms observed in clear oceanic waters southeast and northeast of Sri Lanka may be caused by the vertical mixing processes (strong monsoonal winds) and the occurrence of Indian Ocean Dipole events. Findings based on the analyses of time series satellite data indicate that the new information on surface algal blooms will have important bearing on regional fisheries, ecosystem and environmental studies, and implications of climate change scenarios.
NASA Technical Reports Server (NTRS)
Marshall, B. A.; Marroquin, J.
1984-01-01
Detailed orbiter aerodynamic and aeroacoustic pressure data were obtained in a three-part experimental investigation (OA-310A, B and C). The tests were conducted in three NASA facilities: OA-310A in the Ames 11x11-foot Transonic Wind Tunnel; OA-310B in the Lewis 8x6-foot Supersonic Wind Tunnel; and OA-310C in the Lewis 10x10-foot Supersonic Wind Tunnel. Test data were obtained to support analysis of the Space Transportation System (STS)-6 advanced flexible reusable surface insulation (AFRSI) anomaly using the 0.035-scale space shuttle vehicle pressure-loads Model 84-0. Data were obtained in the areas of the orbiter where AFRSI is to be applied to OV-099 and OV-103. Emphasis was placed on acquiring detailed aeroacoustic data and time-averaged pressure distributions on five affected areas: (1) canopy; (2) side of fuselage; (3) upper surface of wing; (4) OMS pods; and (5) vertical tail. Data were obtained at nominal ascent and entry atmospheric flight trajectory conditions between M=0.6 through M-3.5. Sample plotted data are given. aba M.G.
NASA Astrophysics Data System (ADS)
Levin, Naomi E.; Zipser, Edward J.; Cerling, Thure E.
2009-12-01
Oxygen and deuterium isotopic values of meteoric waters from Ethiopia are unusually high when compared to waters from other high-elevation settings in Africa and worldwide. These high values are well documented; however, the climatic processes responsible for the isotopic anomalies in Ethiopian waters have not been thoroughly investigated. We use isotopic data from waters and remote data products to demonstrate how different moisture sources affect the distribution of stable isotopes in waters from eastern Africa. Oxygen and deuterium stable isotopic data from 349 surface and near-surface groundwaters indicate isotopic distinctions between waters in Ethiopia and Kenya and confirm the anomalous nature of Ethiopian waters. Remote data products from the Tropical Rainfall Measuring Mission (TRMM) and National Centers for Environmental Prediction (NCEP) reanalysis project show strong westerly and southwesterly components to low-level winds during precipitation events in western and central Ethiopia. This is in contrast to the easterly and southeasterly winds that bring rainfall to Kenya and southeastern Ethiopia. Large regions of high equivalent potential temperatures (θe) at low levels over the Sudd and the Congo Basin demonstrate the potential for these areas as sources of moisture and convective instability. The combination of wind direction data from Ethiopia and θe distribution in Africa indicates that transpired moisture from the Sudd and the Congo Basin is likely responsible for the high isotopic values of rainfall in Ethiopia.
NASA Astrophysics Data System (ADS)
Jo, Y.; Yan, X.; Zheng, Q.; Klemas, V. V.; Liu, W.
2002-05-01
We analyzed the interactions of Mediterranean eddies (meddies) in the North Atlantic with large - and meso - scale dynamic processes. The study focuses on the baroclinic instability due to the surface wind forcing, topographical Rossby wave (TRW) and the meddies' signals in multi-sensor data. The Hilbert - Huang's Energy - Frequency - Time spectrum was employed to estimate the dominant frequency. The major power peak of the surface wind forcing and sea surface height anomaly occurs every 33 months and relates to horizontal translation of the southwestward meddies. This frequency is quite close to M\\x81ler and Siedler's (1992) zonal variability with periods of 3 - 4 years. The subsequent power peaks in the vertical displacement of the meddies are at 5 day and 10 day intervals as derived from AMUSE and SEMAPHORE experiments (1993 - 1995). These 5 and 10 day periods may be caused by the intrusion of dense Mediterranean water. The contributions of the rotation speed, thermal expansion, and vertical fluctuation in the meddies' signals were estimated using the data taken by the AMUSE and the SEMAPHORE experiments. Consequently, mean monthly climatological meddies' signals from the multi-sensor analysis and float measurements show that the meddies mean kinetic energy is related to topographic scales.
Observations of Lunar Swirls by the Diviner Lunar Radiometer Experiment
NASA Technical Reports Server (NTRS)
Glotch, T. D.; Greenhagen, B. T.; Lucey, P. G.; Bandfield, J. L.; Hayne, Paul O.; Allen, Carlton C.; Elphic, Richard C.; Paige, D. A.
2012-01-01
The presence of anomalous, high albedo markings on the lunar surface has been known since the Apollo era. These features, collectively known as lunar swirls, occur on both the mare and highlands. Some swirls are associated with the antipodes of major impact basins, while all are associated with magnetic field anomalies of varying strength. Three mechanisms have been proposed for the formation of the swirls: (1) solar wind standoff due to the presence of magnetic fields, (2) micrometeoroid or comet swarms impacting and disturbing the lunar surface, revealing unweathered regolith, and (3) transport and deposition of fine-grained feldspathic material. Diviner s unique capabilities to determine silicate composition and degree of space weathering of the lunar surface, in addition to its capabilities to determine thermophysical properties from night-time temperature measurements, make it an ideal instrument to examine the swirls and help differentiate among the three proposed formation mechanisms.
Anatomy of North Pacific Decadal Variability.
NASA Astrophysics Data System (ADS)
Schneider, Niklas; Miller, Arthur J.; Pierce, David W.
2002-03-01
A systematic analysis of North Pacific decadal variability in a full-physics coupled ocean-atmosphere model is executed. The model is an updated and improved version of the coupled model studied by Latif and Barnett. Evidence is sought for determining the details of the mechanism responsible for the enhanced variance of some variables at 20-30-yr timescales. The possible mechanisms include a midlatitude gyre ocean-atmosphere feedback loop, stochastic forcing, remote forcing, or sampling error.Decadal variability in the model is expressed most prominently in anomalies of upper-ocean streamfunction, sea surface temperature (SST), and latent surface heat flux in the Kuroshio-Oyashio extension (KOE) region off Japan. The decadal signal off Japan is initiated by changes in strength and position of the Aleutian low. The atmospheric perturbations excite SST anomalies in the central and eastern North Pacific (with opposing signs and canonical structure). The atmospheric perturbations also change the Ekman pumping over the North Pacific, which excites equivalent barotropic Rossby waves that carry thermocline depth perturbations toward the west. This gyre adjustment results in a shift in the border between subtropical and subpolar gyres after about five years. This process consequently excites SST anomalies (bearing the same sign as the central North Pacific) in the KOE region. The SST anomalies are generated by subsurface temperature anomalies that are brought to the surface during winter by deep mixing and are damped by air-sea winter heat exchange (primarily latent heat flux). This forcing of the atmosphere by the ocean in the KOE region is associated with changes of winter precipitation over the northwestern Pacific Ocean. The polarity of SST and Ekman pumping is such that warm central and cool eastern Pacific anomalies are associated with a deep thermocline, a poleward shift of the border between subtropical and subpolar gyres, and warm SST anomalies and an increase of rain in the KOE region.The preponderance of variance at decadal timescales in the KOE results from the integration of stochastic Ekman pumping along Rossby wave trajectories. The Ekman pumping is primarily due to atmospheric variability that expresses itself worldwide including in the tropical Pacific. A positive feedback between the coupled model KOE SST (driven by the ocean streamfunction) and North Pacific Ekman pumping is consistent with the enhanced variance of the coupled model at 20-30-yr periods. However, the time series are too short to unambiguously distinguish this positive feedback hypothesis from sampling variability. No evidence is found for a midlatitude gyre ocean-atmosphere delayed negative feedback loop.Comparisons with available observations confirm the seasonality of the forcing, the up to 5-yr time lag between like-signed central North Pacific and KOE SST anomalies, and the associated damping of SST in the KOE region by the latent heat flux. The coupled model results also suggest that observed SST anomalies in the KOE region may be predictable from the history of the wind-stress curl over the North Pacific.
A paleo-perspective on ocean heat content: Lessons from the Holocene and Common Era
NASA Astrophysics Data System (ADS)
Rosenthal, Yair; Kalansky, Julie; Morley, Audrey; Linsley, Braddock
2017-01-01
The ocean constitutes the largest heat reservoir in the Earth's energy budget and thus exerts a major influence on its climate. Instrumental observations show an increase in ocean heat content (OHC) associated with the increase in greenhouse emissions. Here we review proxy records of intermediate water temperatures from sediment cores and corals in the equatorial Pacific and northeastern Atlantic Oceans, spanning 10,000 years beyond the instrumental record. These records suggests that intermediate waters were 1.5-2 °C warmer during the Holocene Thermal Maximum than in the last century. Intermediate water masses cooled by 0.9 °C from the Medieval Climate Anomaly to the Little Ice Age. These changes are significantly larger than the temperature anomalies documented in the instrumental record. The implied large perturbations in OHC and Earth's energy budget are at odds with very small radiative forcing anomalies throughout the Holocene and Common Era. We suggest that even very small radiative perturbations can change the latitudinal temperature gradient and strongly affect prevailing atmospheric wind systems and hence air-sea heat exchange. These dynamic processes provide an efficient mechanism to amplify small changes in insolation into relatively large changes in OHC. Over long time periods the ocean's interior acts like a capacitor and builds up large (positive and negative) heat anomalies that can mitigate or amplify small radiative perturbations as seen in the Holocene trend and Common Era anomalies, respectively. Evidently the ocean's interior is more sensitive to small external forcings than the global surface ocean because of the high sensitivity of heat exchange in the high-latitudes to climate variations.
The stratospheric QBO signal in the NCEP reanalysis, 1958-2001
NASA Astrophysics Data System (ADS)
Ribera, Pedro; Gallego, David; Peña-Ortiz, Cristina; Gimeno, Luis; Garcia-Herrera, Ricardo; Hernandez, Emiliano; Calvo, Natalia
2003-07-01
The spatiotemporal evolution of the zonal wind in the stratosphere is analyzed based on the use of the NCEP reanalysis (1958-2001). MultiTaper Method-Singular Value Decomposition (MTM-SVD), a frequency-domain analysis method, is applied to isolate significant spatially-coherent variability with narrowband oscillatory character. A quasibiennial oscillation is detected as the most intense coherent signal in the stratosphere, the signal being less intense in the lower levels. There is a clear downward propagation of the signal with time at low latitudes, not evident at mid and high latitudes. There are differences in the behavior of the signal over both hemispheres, being much weaker over the SH. In the NH an anomaly in the zonal wind field, in phase with the equatorial signal, is detected at approximately 60°N. Two different areas at subtropical latitudes are detected to be characterized by wind anomalies opposed to that of the equator.
Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator
Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Rob A.; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit
2017-01-01
Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies. PMID:28233791
Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator.
Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D; Massom, Rob A; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A; Charrassin, Jean-Benoit
2017-02-24
Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies.
Characterization of zeolites using xenon-129 nuclear magnetic resonance spectroscopy
NASA Astrophysics Data System (ADS)
Jo, Young-Heon
This study focused on the following three aspects of thermal and thermohaline dynamics in the oceans using long-time series (January 1993 to December 1999) of multi-sensor data. They are (1) heat storage anomaly in the upper layer of the Pacific and the Atlantic using altimeter data; (2) heat and moisture transfer in the Tropical Pacific derived from Bowen ratio (Bo), sensible heat flux (SHF), and latent heat flux (LHF); (3) salt fluxes from the Mediterranean Sea into the North Atlantic through the Mediterranean Eddies (Meddies). The heat storage anomaly derived from XBT data (H' XBT) and altimeter data (H' T/P) was highly correlated, except in a few regions. The non-steric height signals in the altimeter measurements were analyzed. For the Pacific, the wiggle features across 20°N North Pacific caused by long baroclinic waves were found in the areas of low correlation between H'XBT and H' T/P, and were validated with a theoretical dispersion relation. For the Tropical Atlantic, three regions were investigated, i.e., near the Amazon River mouth; the North Equatorial Counter Current; the Guinea Dome. The equilibrium Bowen Ratio (Bo) can be estimated empirically from the sea surface temperature only when the air is saturated with water vapor at the sea surface. In order to estimate the discrepancy between the empirical Bo and the bulk formulated Bo and to correct for the wind-effect and the humidity-effect, the Tropical Atmosphere Ocean data were used. After computing SHF and Bo, the LHF were estimated. The SHF was estimated using wind divergence, which is caused by a convection of airflow. The root mean square of the SHF and LHF were estimated as 3.5Wm-2 and 39.3Wm-2 , respectively. The trajectories and evolution of the Meddies were studied using satellite multi-sensor data analyses. Two experiments, AMUSE and SEMAPHORE were used to directly validate my method. In order to analyze the Meddies' movements, the effect of baroclinic instability resulting from the surface air pressure variations and wind forcing on the Meddies was considered. Finally, the horizontal and vertical viscosity dissipation of the Meddies, using angular velocity measured by floats, was computed and compared with a theoretical model.
Sensitivity of the Tropical Pacific Ocean to Precipitation Induced Freshwater Flux
NASA Technical Reports Server (NTRS)
Yang, Song; Lau, K.-M.; Schopf, Paul S.
1999-01-01
We have performed a series of experiments using an ocean model to study the sensitivity of tropical Pacific Ocean to variations in precipitation induced freshwater fluxes. Variations in these fluxes arise from natural causes on all time scales. In addition, estimates of these fluxes are uncertain because of differences among measurement techniques. The model used is a quasi-isopycnal model, covering the Pacific from 40 S to 40 N. The surface forcing is constructed from observed wind stress, evaporation, precipitation, and surface temperature (SST) fields. The heat flux is produced with an iterative technique so as to maintain the model close to the observed climatology, but with only a weak damping to that climatology. Climatological estimates of evaporation are combined with various estimates of precipitation to determine the net surface freshwater flux. Results indicate that increased freshwater input decreases salinity as expected, but increases temperatures in the upper ocean. Using the freshwater flux estimated from the Microwave Sounding Unit leads to a warming of up to 0.6 C in the western Pacific over a case with zero net freshwater flux. SST is sensitive to the discrepancies among different precipitation observations, with root-mean-square differences in SST on the order of 0.2-0.3 C. The change in SST is more pronounced in the eastern Pacific, with differences of over 1 C found among the various precipitation products. Interannual variation in precipitation during El Nino events leads to increased warming. During the winter of 1982-83, freshwater flux accounts for about 0.4 C (approximately 10-15% of the maximum warming) of the surface warming in the central-eastern Pacific. Thus, the error of SST caused by the discrepancies in precipitation products is more than half of the SST anomaly produced by the interannual variability of observed precipitation. Further experiments, in which freshwater flux anomalies are imposed in the western, central, and eastern Pacific, show that the influence of net freshwater flux is also spatially dependent. The imposition of freshwater flux in the far western Pacific leads to a trapping of salinity anomaly to the surface layers near the equator. An identical flux imposed in the central Pacific produces deeper and off-equatorial salinity anomalies. The contrast between these two simulations is consistent with other simulations of the western Pacific barrier layer information.
The Quasi-biennial Oscillation and Annual Variations in Tropical Ozone from SHADOZ and HALOE
NASA Technical Reports Server (NTRS)
Witte, J. C.; Schoeberl, M. R.; Douglass, A. R.; Thompson, A. M.
2008-01-01
We examine the tropical ozone mixing ratio perturbation fields generated from a monthly ozone climatology using 1998 to 2006 ozonesonde data from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network and the 13-year satellite record from 1993 to 2005 obtained from the Halogen Occultation Experiment (HALOE). The long time series and high vertical resolution of the ozone and temperature profiles from the SHADOZ sondes coupled with good tropical coverage north and south of the equator gives a detailed picture of the ozone structure in the lowermost stratosphere down through the tropopause where the picture obtained from HALOE measurements is blurred by coarse vertical resolution. Ozone perturbations respond to annual variations in the Brewer-Dobson Circulation (BDC) in the region just above the cold-point tropopause to around 20 km. Annual cycles in ozone and temperature are well correlated. Above 20 km, ozone and temperature perturbations are dominated by the Quasi-biennial Oscillation (QBO). Both satellite and sonde records show good agreement between positive and negative ozone mixing ratio anomalies and alternating QBO westerly and easterly wind shears from the Singapore rawinsondes with a mean periodicity of 26 months for SHADOZ and 25 months for HALOE. There is a temporal offset of one to three months with the QBO wind shear ahead of the ozone anomaly field. The meridional length scales for the annual cycle and the QBO, obtained using the temperature anomalies and wind shears in the thermal wind equation, compare well with theoretical calculations.
System for closure of a physical anomaly
Bearinger, Jane P; Maitland, Duncan J; Schumann, Daniel L; Wilson, Thomas S
2014-11-11
Systems for closure of a physical anomaly. Closure is accomplished by a closure body with an exterior surface. The exterior surface contacts the opening of the anomaly and closes the anomaly. The closure body has a primary shape for closing the anomaly and a secondary shape for being positioned in the physical anomaly. The closure body preferably comprises a shape memory polymer.
2007-06-13
KENNEDY SPACE CENTER, FLA. -- United Space Alliance employees prepared three test articles that will be used in wind tunnel testing by NASA to collect data for analysis of the detached Flexible Insulation Blanket, or FIB, on Atlantis. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles were flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Photo credit: NASA/Kim Shiflett
The influence of Indian summer monsoon on the climatic regime of Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Rizou, D.; Flocas, H. A.; Bartzokas, A.; Helmis, C. G.
2012-04-01
In a previous study, composite analysis demonstrated that there are significant differences in the atmospheric circulation over the greater Mediterranean region at the upper and lower levels between strong and weak monsoon years. More specifically, in the lower atmosphere the geopotential height anomaly patterns for the extreme Indian summer monsoon (ISM) years indicated the intensification (weakening) of the Azores anticyclone and the Persian trough, which extends from the Asian monsoon towards the Aegean Sea, during strong (weak) ISM years. This further implies that the ISM has an impact on the strong northerly winds blowing over the Aegean Sea, namely "Etesians", which result from the combined action of the two aforementioned major systems. The accompanied continual cool advection in the area was identified in the negative anomalies of the strong 1000 hPa temperature composite over the region. At the same time, in the 500 hPa ω anomaly field it was found that a pronounced subsidence (upward motion) dominates over Eastern Mediterranean during years of strong (weak) ISM, counteracting the advective cooling in the area. The objective of this study is to further investigate the ISM impact on the temperature and wind regime of the Eastern Mediterranean region, with the aid of multivariate statistics. For this purpose, the standardized Dynamic Indian Monsoon Index by Wang and Fan (1999) was used for a period of 44 years (1958-2001) along with ERA40 Reanalysis data, including monthly means of surface air temperature and wind at 850hPa with a horizontal resolution of 0.25° latitude x 0.25° longitude. Initially, the correlation maps of the seasonal anomalies of the two variables upon ISM index are computed and subsequently Empirical Orthogonal Function Analysis (EOF) is carried out on individual fields. Under this framework, correlation coefficients between the derived EOF amplitudes and ISM index are calculated and in order to validate the results from the first method, the EOF modes that exhibit high correlation coefficients are compared to the aforementioned correlation patterns. Our results verify that there is correlation between Indian monsoon and the etesian pattern over the Aegean Sea. Acknowledgments: This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.
Effects of Atlantic warm pool variability over climate of South America tropical transition zone
NASA Astrophysics Data System (ADS)
Ricaurte Villota, Constanza; Romero-Rodríguez, Deisy; Andrés Ordoñez-Zuñiga, Silvio; Murcia-Riaño, Magnolia; Coca-Domínguez, Oswaldo
2016-04-01
Colombia is located in the northwestern corner of South America in a climatically complex region due to the influence processes modulators of climate both the Pacific and Atlantic region, becoming in a transition zone between phenomena of northern and southern hemisphere. Variations in the climatic conditions of this region, especially rainfall, have been attributed to the influence of the El Nino Southern Oscillation (ENSO), but little is known about the interaction within Atlantic Ocean and specifically Caribbean Sea with the environmental conditions of this region. In this work We studied the influence of the Atlantic Warm Pool (AWP) on the Colombian Caribbean (CC) climate using data of Sea Surface Temperature (SST) between 1900 - 2014 from ERSST V4, compared with in situ data SIMAC (National System for Coral Reef Monitoring in Colombia - INVEMAR), rainfall between 1953-2013 of meteorological stations located at main airports in the Colombian Caribbean zone, administered by IDEAM, and winds data between 2003 - 2014 from WindSat sensor. The parameters analyzed showed spatial differences throughout the study area. SST anomalies, representing the variability of the AWP, showed to be associated with Multidecadal Atlantic Oscillation (AMO) and with the index of sea surface temperature of the North-tropical Atlantic (NTA), the variations was on 3 to 5 years on the ENSO scale and of approximately 11 years possibly related to solar cycles. Rainfall anomalies in the central and northern CC respond to changes in SST, while in the south zone these are not fully engage and show a high relationship with the ENSO. Finally, the winds also respond to changes in SST and showed a signal approximately 90 days possibly related to the Madden-Julian Oscillation, whose intensity depends on the CC region being analyzed. The results confirm that region is a transition zone in which operate several forcing, the variability of climate conditions is difficult to attribute only one, as ENSO, since the role of the AWP in the climate of this region and especially in the central part proves to be decisive, probably due to changes in moisture and heat flows transferred to the atmosphere.
Main processes of the Atlantic cold tongue interannual variability
NASA Astrophysics Data System (ADS)
Planton, Yann; Voldoire, Aurore; Giordani, Hervé; Caniaux, Guy
2018-03-01
The interannual variability of the Atlantic cold tongue (ACT) is studied by means of a mixed-layer heat budget analysis. A method to classify extreme cold and warm ACT events is proposed and applied to ten various analysis and reanalysis products. This classification allows 5 cold and 5 warm ACT events to be selected over the period 1982-2007. Cold (warm) ACT events are defined by the presence of negative (positive) sea surface temperature (SST) anomalies at the center of the equatorial Atlantic in late boreal spring, preceded by negative (positive) zonal wind stress anomalies in the western equatorial Atlantic. An ocean general circulation model capable of reconstructing the interannual variability of the ACT correctly is used to demonstrate that cold ACT events develop rapidly from May to June mainly due to intense cooling by vertical mixing and horizontal advection. The simulated cooling at the center of the basin is the result of the combined effects of non-local and local processes. The non-local process is an upwelling associated with an eastward-propagating Kelvin wave, which makes the mixed-layer more shallow and preconditions the upper layers to be cooled by an intense heat loss at the base of the mixed-layer, which is amplified by a stronger local injection of energy from the atmosphere. The early cooling by vertical mixing in March is also shown to be a good predictor of June cooling. In July, horizontal advection starts to warm the mixed-layer abnormally and damps SST anomalies. The advection anomalies, which result from changes in the horizontal temperature gradient, are associated in some cases with the propagation of Rossby waves along the equator. During warm ACT events, processes are reversed, generating positive SST anomalies: a downwelling Kelvin wave triggers stratification anomalies and mixed-layer depth anomalies, amplified by a weaker injection of energy from the atmosphere in May-June. In July, warm ACT events are abnormally cooled due to negative horizontal advection anomalies resulting from processes similar to those that occur during cold ACT events. This additional cooling process extends the period of cooling of the ACT, reducing SST anomalies.
NASA Astrophysics Data System (ADS)
Freeman, Mervyn; Lam, Mai Mai; Chisham, Gareth
2017-04-01
We use National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis data to show that Antarctic surface air temperature anomalies result from differences in the daily-mean duskward component,By, of the interplanetary magnetic field (IMF). We find the anomalies have strong geographical and seasonal variations. Regional anomalies are evident poleward of 60˚ S and are of diminishing representative peak amplitude from autumn (3.2˚ C) to winter (2.4˚ C) to spring (1.6˚ C) to summer (0.9˚ C). We demonstrate that anomalies of statistically-significant amplitude are due to geostrophic wind anomalies, resulting from the same By changes, moving air across large meridional gradients in zonal mean air temperature between 60 and 80˚ S. Additionally, we find that the mean tropospheric temperature anomaly for geographical latitudes ≤ -70˚ peaks at about 0.7 K and is statistically significant at the 1 - 5% level between air pressures of 1000 and 500 hPa (i.e., ˜0.1 to 5.6 km altitude above sea level) and for time lags with respect to the IMF of up to 7 days. The signature propagates vertically between air pressure p ≥ 850 hPa (≤ 1.5 km) and p = 500 hPa (˜5.6 km). The characteristics of prompt response and vertical propagation within the troposphere have previously been seen in the correlation between the IMF and high-latitude air pressure anomalies, known as the Mansurov effect, at higher statistical significances (1%). We conclude that we have identified the temperature signature of the Mansurov effect in the Antarctic troposphere. Since these tropospheric anomalies have been associated with By-driven anomalies in the electric potential of the ionosphere, we further conclude that they are caused by IMF-induced changes to the global atmospheric electric circuit (GEC). Our results support the view that variations in the ionospheric potential act on the troposphere via the action of resulting variations in the downwards current of the GEC on tropospheric clouds.
Estimation of subsurface thermal structure using sea surface height and sea surface temperature
NASA Technical Reports Server (NTRS)
Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)
2012-01-01
A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.
NASA Astrophysics Data System (ADS)
Popov, A.; Rubchenia, A.
2009-04-01
Numerous of model simulations of ice extent in Arctic Ocean predict almost full disappearance of sea ice in Arctic regions by 2050. However, the nature, as against models, does not suffer the unidirectional processes. By means of various feedback responses system aspires to come in an equilibrium condition. In Arctic regions one of the most powerful generators of a negative feedback is the fresh-water stream to Greenland Sea and Northern Atlantic. Increasing or decreasing of a fresh-water volume from the Arctic basin to Greenland Sea and Northern Atlantic results in significant changes in climatic system. At the Oceanology department of Arctic and Antarctic Research Institute (AARI) (St-Petersburg, Russia) in 2007, on the basis of the incorporated Russian-American database of the oceanographic data, reconstruction of long-term time series of average salinity of ocean surface was executed. The received time series describes the period from 1950 to 1993. For allocation of the processes determining formation of changes of average salinity of surface waters in Arctic basin the correlation analysis of interrelation of the received time series and several physical parameters which could affect formation of changes of salinity was executed. We found counter-intuitive result: formation of long-term changes of average salinity of surface waters of Arctic basin in the winter period does not depend on changes of a Siberian rivers runoff. Factors of correlation do not exceed -0,31. At the same time, clear inverse relationship of salinity of surface waters from volumes of the ice formed in flaw lead polynyas of the Siberian shelf seas is revealed. In this case factors of correlation change from -0,56 to -0,7. The maximum factor of correlation is -0,7. It characterizes interrelation of total volume of the ice formed in flaw lead polynyas of all seas of the Siberian shelf and average salinity of surface waters of Arctic basin. Thus, at increase of volumes of the ice formed in flaw lead polynyas there is a reduction of average salinity of surface waters of Arctic basin. In the winter period obvious influence of waters of a river runoff on a hydrological situation of this or that sea is limited to a zone of distribution of fast ice and a narrow zone of flaw lead polynyas between fast ice and drift ice. That fresh water from the Arctic seas is transferred in the Arctic basin. There should be a certain effective mechanism to carry it. Presence of clear interrelation of salinity of surface waters and volumes of ice formed in polynyas, allows us to offer the following circuit of formation of average salinity of surface waters in the Arctic basin. The ice formed in polynya, is constantly taken out for limits of an area of flaw lead polynyas. This ice accumulates the fresh water acting with a river runoff. New ice hummocking and accumulate snow - the next source of fresh water. In the summer period ice is melting and forms surface fresh layer. In the cold period of year, presence of thick ice not allows accumulating all fresh water, and the zone of fresh water is forming. These fresh water areas could exist for months. In the reports [1] was offered a hypothesis describing formation of distant connections in climatic system. In the hypothesis offered by us about a role of polynyas in formation of distant feedback in climatic system the most important and, unfortunately, the least certain parameter is «reaching time» of climatic signal from a place of origin (in flaw lead polynya area) up to the Greenland sea and Northern Atlantic. For an estimation of reaching time» we tried to trace drift of this anomaly from polynyas to Greenland Sea. For the initial moment of anomaly genesis month of the maximal development of polynya (when ice production of it was maximal) was chosen. Core of freshwater anomaly was determined for several polynyas. Using results of our simulations, data from database with areas of polynyas, wind stress data and current speed data from several sources, we got vector diagrams of drift of anomalies. Within the limits of the seas were taken into account a vector of constant currents. The vector of displacement within the limits of each of the seas represented the sum of constant current and average for one month of a vector of isobaric drift. In the Arctic basin we used only a vector of isobaric drift. Vectors of isobaric drift are constructed by I. Karelin (AARI, St-Petersburg, Russia) on the basis of average for one month of fields of ground pressure. As shown in numerous researches, monthly averaging most adequately allow us to display a field of wind drift of ice. For construction of vector diagrams on sphere we used «MapInfo Professional 7.5». For conviction of a reality of our hypothetical assumptions of carry of anomalies of salinity we have executed comparison of a spatial-temporal arrangement of areas vector diagrams we got with an arrangement of real anomalies of the salinity revealed as a result of instrumental observations. Such results of comparison have surpassed all expectations. We got confirmation of position of fresh water areas from instrumental observations executed in 2005-2007 by several cruises of AARI institute. Thus good concurrence of time and the location of areas of abnormal fleshing, received by theoretical and instrumentally observed conditions is marked. The map of a field of anomalies of the salinity, constructed for 2007 is most indicative. On this map a number of isolated fresh water areas in surface waters clearly allocated. To each of these areas of observed freshening there corresponds predicted passage of core of predicted anomaly. We could conclude that there is concurrence of predicted fresh water anomalies and observed fresh water areas. It allows us to say hypothesis is working. Flaw lead polynyas really forming significant anomalies of salinity which being distributed in Arctic basin. These anomalies keep the properties within several years. Hydrodynamic aspects of distribution of anomalies are not clear yet. But the fact of formation and distribution of anomalies of salinity of surface waters in Arctic basin could be taken for granted. In a case when the climatic signal from the several seas simultaneously reach Greenland Sea climatically significant anomaly of fresh water of ice could appear. It capable to result in sharp change of a climatic situation. Probably, the similar situation was in 1963-1964 years when «Great Salinity Anomaly» was observed in North Atlantic. Changes of atmospheric circulation was so significant, that in Arctic regions has rather sharply increased ice cover areas and the temperature of air has gone down. In our opinion similar conditions could arise in the present period when after several years of extreme development of flaw lead polynyas extreme freshwater anomaly which reaching of Greenland Sea is possible to expect 2008-2009 should be generated. In 2008 several freshwater anomalies generated in various flaw lead polynyas in 2003-2004 years already has left to Greenland sea and in April, July and November has reached Northern Atlantic. Synoptic situations which, in our opinion, can be connected to the given phenomenon, and also reaction of the Arctic seas to the given atmospheric processes are shown. The analysis of a map of drift of anomalies allows us to conclude, that in 2009 it is necessary to expect an exit of the strong salinity anomaly generated from several large polynyas. To the given event there will correspond reduction of repeatability and reduction of areas of polynyas in the seas of the Siberian shelf, easing of carrying out concerning warm air masses to the Central Arctic regions and increase here ground atmospheric pressure in the cold period of year. In the summer period will take place strengthening of ice cover and, hence - downturn of temperature of air in Arctic regions. We could assume we are at the break point of temperature change and next year there will be cooling in Arctic. [1] Popov A., Rubchenia A. Flaw polynyas as a source of long-distance connections in climate system // Geophysical Research Abstracts, Vol. 10, EGU2008-A-02009, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-02009 EGU General Assembly 2008
Global Precipitation during the 1997-98 El Nino and Initiation of the 1998-99 La Nina
NASA Technical Reports Server (NTRS)
Curtis, Scott; Adler, Robert; Huffman, George; Nelkin, Eric; Bolvin, David
1999-01-01
The 1997-99 ENSO (El nino Southern Oscillation) cycle was very powerful, but also well observed. The best satellite rainfall estimates combined with gauge observations allow for a global analysis of precipitation anomalies accompanying the 1997-98 El Nino and initiation of the 1998-99 La Nina. For the period April 1997 to March 1998 the central to eastern Pacific, southeastern and western U.S., Argentina, eastern Africa, South China, eastern Russia, and North Atlantic were all more than two standard deviations wetter than normal. During the same year the Maritime Continent, eastern Indian Ocean, subtropical North Pacific, northeastern South America, and much of the mid- latitude southern oceans were more than two standard deviations drier than normal. An analysis of the evolution of the El Nino and accompanying precipitation anomalies revealed that a dry Maritime Continent led the formation of the El Nino SST (Sea Surface Temperature), while in the central Pacific, precipitation anomalies lagged the El Nino SST by a season. A rapid transition from El Nino to La Nina occurred in May 1998, but as early as October-November 1997 precipitation indices captured precursor changes in Pacific rainfall anomalies. Differences were found between observed and modeled [NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis] precipitation anomalies for 1997 and 98. In particular, the model had a bias towards positive precipitation anomalies and the magnitudes of the anomalies in the equatorial Pacific were small compared to the observations. Also, the evolution of the precipitation field, including the drying of the Maritime Continent and eastward progression of rainfall in the equatorial Pacific, was less pronounced for the model compared to the observations. One degree daily estimates of rainfall show clearly the MaddenJulian Oscillation and related westerly wind burst events over the Maritime Continent, which are key indicators for the onset of El Nino.
NASA Astrophysics Data System (ADS)
Cai, Jiaxi; Xu, Jianjun; Guan, Zhaoyong; Powell, Alfred M.
2016-10-01
Based on previous study by Xu and Chan (J Clim 14:418-433, 2001), two types of El Niño distinguished by the onset time, a Spring (SP) type and a Summer (SU) type, have been investigated from 1871 through 2011. As can be classified by the spatial patterns of sea surface temperature anomaly into the Warm Pool (WP) and Cold Tongue (CT) El Niño, the temporal features of the CT are dominated by the SP events whereas the SU events mostly display the spatial pattern of WP or Mixed events. The approximate 140-year data analysis shows that the frequency of SP events tends to increase in the most recent 30 years (1980-2009) while the SU events show very strong activity in the beginning of the twentieth century (1900-1929), which are closely associated with the decadal changes in oceanic and atmospheric background conditions. The air-sea processes indicate that the pattern of sea surface temperature (SST) gradient between tropical and extratropical Pacific Ocean on decadal time scales is related to the sea level pressure distribution, which tends to produce wind anomalies. The wind anomalies in turn affect the SST anomalies on inter-annual time scales over the equatorial areas and finally result in the early onset of El Niño in SP time or late onset of El Nino in SU time. A spring onset El Niño favors a Kelvin wave that propagates across the basin and a summer onset favors a Kelvin wave that does not traverse the basin or the related effects are not strong enough. The early or late onset of El Niño significantly impacts the precipitation distribution correlated with the monsoon systems including the Asian-Australian monsoon and North-South American monsoon. The El Niño-monsoon relationship is modulated by decadal changes in atmospheric and oceanic background conditions. The precipitation in the monsoonal area circling the Pacific Ocean exhibits characteristic quasi-biennial variations that are closely associated with the onset time of El Niño events, especially with the early onset of El Niño. For the Spring (SP) type, drought is observed over the central China, Australia, southwestern North America and northern South America in boreal summer, but the opposite pattern appears in the subsequent summer of the following year.
NASA Astrophysics Data System (ADS)
Wang, Ziqian; Duan, Anmin; Yang, Song
2018-05-01
Based on the conventional weather research and forecasting (WRF) model and the air-sea coupled mode WRF-OMLM, we investigate the potential regulation on the climatic effect of Tibetan Plateau (TP) heating by the air-sea coupling over the tropical Indian Ocean and western Pacific. Results indicate that the TP heating significantly enhances the southwesterly monsoon circulation over the northern Indian Ocean and the South Asia subcontinent. The intensified southwesterly wind cools the sea surface mainly through the wind-evaporation-SST (sea surface temperature) feedback. Cold SST anomaly then weakens monsoon convective activity, especially that over the Bay of Bengal, and less water vapor is thus transported into the TP along its southern slope from the tropical oceans. As a result, summer precipitation decreases over the TP, which further weakens the TP local heat source. Finally, the changed TP heating continues to influence the summer monsoon precipitation and atmospheric circulation. To a certain extent, the air-sea coupling over the adjacent oceans may weaken the effect of TP heating on the mean climate in summer. It is also implied that considerations of air-sea interaction are necessary in future simulation studies of the TP heating effect.
NASA Astrophysics Data System (ADS)
Yi, Xing; Hünicke, Birgit; Tim, Nele; Zorita, Eduardo
2018-01-01
Studies based on sediment records, sea-surface temperature and wind suggest that upwelling along the western coast of Arabian Sea is strongly affected by the Indian summer Monsoon. We examine this relationship directly in an eddy-resolving global ocean simulation STORM driven by atmospheric reanalysis over the last 61 years. With its very high spatial resolution (10 km), STORM allows us to identify characteristics of the upwelling system. We analyse the co-variability between upwelling and meteorological and oceanic variables from 1950 to 2010. The analysis reveals high interannual correlations between coastal upwelling and along-shore wind-stress (r = 0.73) as well as with sea-surface temperature (r = -0.83). However, the correlation between the upwelling and the Monsoon is small. We find an atmospheric circulation pattern different from the one that drives the Monsoon as the main modulator of the upwelling variability. In spite of this, the patterns of temperature anomalies that are either linked to Arabian Sea upwelling or to the Monsoon are spatially quite similar, although the physical mechanisms of these links are different. In addition, no long-term trend is detected in our modelled upwelling in the Arabian Sea.
NASA Astrophysics Data System (ADS)
Niiler, Pearn P.; Maximenko, Nikolai A.; McWilliams, James C.
2003-11-01
The 1992-2002 time-mean absolute sea level distribution of the global ocean is computed for the first time from observations of near-surface velocity. For this computation, we use the near-surface horizontal momentum balance. The velocity observed by drifters is used to compute the Coriolis force and the force due to acceleration of water parcels. The anomaly of horizontal pressure gradient is derived from satellite altimetry and corrects the temporal bias in drifter data distribution. NCEP reanalysis winds are used to compute the force due to Ekman currents. The mean sea level gradient force, which closes the momentum balance, is integrated for mean sea level. We find that our computation agrees, within uncertainties, with the sea level computed from the geostrophic, hydrostatic momentum balance using historical mean density, except in the Antarctic Circumpolar Current. A consistent horizontally and vertically dynamically balanced, near-surface, global pressure field has now been derived from observations.
NASA Technical Reports Server (NTRS)
Hackert, E. C.; Busalacchi, A. J.; Carton, J.; Murtugudde, R.; Arkin, P.; Evans, M. N.
2017-01-01
Indian Ocean (IO) dynamics impact ENSO predictability by influencing wind and precipitation anomalies in the Pacific. To test if the upstream influence of the IO improves ENSO validation statistics, a combination of forced ocean, atmosphere, and coupled models are utilized. In one experiment, the full tropical Indo-Pacific region atmosphere is forced by observed interannual SST anomalies. In the other, the IO is forced by climatological SST. Differences between these two forced atmospheric model experiments spotlight a much richer wind response pattern in the Pacific than previous studies that used idealized forcing and simple linear atmospheric models. Weak westerlies are found near the equator similar to earlier literature. However, at initialization strong easterlies between 30 deg. S to 10 deg. S and 0 deg. N to 25 deg. N and equatorial convergence of the meridional winds across the entire Pacific are unique findings from this paper. The large-scale equatorial divergence west of the dateline and northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the dateline in the Pacific are generated from interannual IO SST coupling. In addition, off-equatorial downwelling curl impacts large-scale oceanic waves (i.e., Rossby waves reflect as western boundary Kelvin waves). After 3 months, these downwelling equatorial Kelvin waves propagate across the Pacific and strengthen the NINO3 SST. Eventually Bjerknes feedbacks take hold in the eastern Pacific which allows this warm anomaly to grow. Coupled forecasts for NINO3 SST anomalies for 1993-2014 demonstrate that including interannual IO forcing significantly improves predictions for 3-9 month lead times.
NASA Astrophysics Data System (ADS)
Hackert, E. C.; Busalacchi, A. J.; Carton, J.; Murtugudde, R.; Arkin, P.; Evans, M. N.
2017-04-01
Indian Ocean (IO) dynamics impact ENSO predictability by influencing wind and precipitation anomalies in the Pacific. To test if the upstream influence of the IO improves ENSO validation statistics, a combination of forced ocean, atmosphere, and coupled models are utilized. In one experiment, the full tropical Indo-Pacific region atmosphere is forced by observed interannual SST anomalies. In the other, the IO is forced by climatological SST. Differences between these two forced atmospheric model experiments spotlight a much richer wind response pattern in the Pacific than previous studies that used idealized forcing and simple linear atmospheric models. Weak westerlies are found near the equator similar to earlier literature. However, at initialization strong easterlies between 30°S-10°S and 0°N-25°N and equatorial convergence of the meridional winds across the entire Pacific are unique findings from this paper. The large-scale equatorial divergence west of the dateline and northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the dateline in the Pacific are generated from interannual IO SST coupling. In addition, off-equatorial downwelling curl impacts large-scale oceanic waves (i.e., Rossby waves reflect as western boundary Kelvin waves). After 3 months, these downwelling equatorial Kelvin waves propagate across the Pacific and strengthen the NINO3 SST. Eventually Bjerknes feedbacks take hold in the eastern Pacific which allows this warm anomaly to grow. Coupled forecasts for NINO3 SST anomalies for 1993-2014 demonstrate that including interannual IO forcing significantly improves predictions for 3-9 month lead times.
NASA Astrophysics Data System (ADS)
Kilic, Cevahir; Raible, Christoph C.
2015-04-01
It is well known that the sea surface temperature (SST) has an influence on the development and intensification of tropical cyclones (TCs). This influence has become even more important during the past decades, as TCs show an intensification, which goes along with an increase in SSTs. The influence of sea surface temperature (SST) anomalies on the hurricane characteristics are investigated in a set of sensitivity experiments employing the Weather Research and Forecasting (WRF) model. The idealised experiments are performed for the case of Hurricane Katrina in 2005. (Kilic and Raible, 2013) The first set of sensitivity experiments with basin-wide changes of the SST magnitude shows that the intensity goes along with changes in the SST, i.e., an increase in SST leads to an intensification of Katrina. Additionally, the trajectory is shifted to the west (east), with increasing (decreasing) SSTs. The main reason is a strengthening of the background flow. To gain further insights in the dynamics, the potential vorticity (PV) and its tendency (PVT) are analysed. A positive PVT is located to the moving direction relative to the TC centre. Splitting the PVT in the horizontal advection, vertical advection, and diabatic heating terms, we find that mainly the horizontal advection term contributes to this PVT maximum, due to a steering by strong environmental flow. The impact of the diabatic heating is of minor importance and, hence, the TC motion is dominated by horizontal advection. The amount of the horizontal advection as well as the amount of the diabatic heating rise with increasing SST due to the enhanced Carnot cycle. The second set of experiments investigates the influence of Loop Current eddies idealised by localised SST anomalies. The intensity of Hurricane Katrina is enhanced with increasing SSTs close to the core of a TC. Negative nearby SST anomalies reduce the intensity. The trajectory only changes if positive SST anomalies are located west or north of the hurricane centre. In this case the hurricane is attracted by the SST anomaly which causes an additional moisture source and increased vertical winds. This study confirm the linear relation between SST and TC intensity. However, in case of localised SST anomalies, the relative location to the TC core determes the gradient of the linear relation. The gradient decreases with increasing distance between SST anomaly and initialisation point. The anomalies located west and north of the initialisation point have a stronger impact than the ones located south and east, as they lie in the moving direction of the TC. Further, in terms of magnitude and pattern, the horizontal advection term of PVT does not strongly differ from the reference simulation. However, the pattern of diabatic heating term differs: A maximum of diabatic heating is still located in moving direction, but additionally the diabatic heating is found in the spiral rain bands. Thus, the vortex is drifted to the SST anomaly due to the asymmetry in the TC circulation induced by the diabatic heating term of the PVT. References Kilic, C., and C. C. Raible, Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF, METEOROLOGISCHE ZEITSCHRIFT, 22(6), 685-698, 2013.
The Role of Global Hydrologic Processes in Interannual and Long-Term Climate Variability
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.
1997-01-01
The earth's climate and its variability is linked inextricably with the presence of water on our planet. El Nino / Southern Oscillation-- the major mode of interannual variability-- is characterized by strong perturbations in oceanic evaporation, tropical rainfall, and radiation. On longer time scales, the major feedback mechanism in CO2-induced global warming is actually that due to increased water vapor holding capacity of the atmosphere. The global hydrologic cycle effects on climate are manifested through influence of cloud and water vapor on energy fluxes at the top of atmosphere and at the surface. Surface moisture anomalies retain the "memory" of past precipitation anomalies and subsequently alter the partitioning of latent and sensible heat fluxes at the surface. At the top of atmosphere, water vapor and cloud perturbations alter the net amount of radiation that the earth's climate system receives. These pervasive linkages between water, radiation, and surface processes present major complexities for observing and modeling climate variations. Major uncertainties in the observations include vertical structure of clouds and water vapor, surface energy balance, and transport of water and heat by wind fields. Modeling climate variability and change on a physical basis requires accurate by simplified submodels of radiation, cloud formation, radiative exchange, surface biophysics, and oceanic energy flux. In the past, we m safely say that being "data poor' has limited our depth of understanding and impeded model validation and improvement. Beginning with pre-EOS data sets, many of these barriers are being removed. EOS platforms with the suite of measurements dedicated to specific science questions are part of our most cost effective path to improved understanding and predictive capability. This talk will highlight some of the major questions confronting global hydrology and the prospects for significant progress afforded by EOS-era measurements.
Impact of Tropospheric Ozone on Summer Climate in China
NASA Astrophysics Data System (ADS)
Li, Shu; Wang, Tijian; Zanis, Prodromos; Melas, Dimitris; Zhuang, Bingliang
2018-04-01
The spatial distribution, radiative forcing, and climatic effects of tropospheric ozone in China during summer were investigated by using the regional climate model RegCM4. The results revealed that the tropospheric ozone column concentration was high in East China, Central China, North China, and the Sichuan basin during summer. The increase in tropospheric ozone levels since the industrialization era produced clear-sky shortwave and clear-sky longwave radiative forcing of 0.18 and 0.71 W m-2, respectively, which increased the average surface air temperature by 0.06 K and the average precipitation by 0.22 mm day-1 over eastern China during summer. In addition, tropospheric ozone increased the land-sea thermal contrast, leading to an enhancement of East Asian summer monsoon circulation over southern China and a weakening over northern China. The notable increase in surface air temperature in northwestern China, East China, and North China could be attributed to the absorption of longwave radiation by ozone, negative cloud amount anomaly, and corresponding positive shortwave radiation anomaly. There was a substantial increase in precipitation in the middle and lower reaches of the Yangtze River. It was related to the enhanced upward motion and the increased water vapor brought by strengthened southerly winds in the lower troposphere.
NASA Astrophysics Data System (ADS)
Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg
2009-12-01
Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.
Assessment of prediction skill in equatorial Pacific Ocean in high resolution model of CFS
NASA Astrophysics Data System (ADS)
Arora, Anika; Rao, Suryachandra A.; Pillai, Prasanth; Dhakate, Ashish; Salunke, Kiran; Srivastava, Ankur
2018-01-01
The effect of increasing atmospheric resolution on prediction skill of El Niño southern oscillation phenomenon in climate forecast system model is explored in this paper. Improvement in prediction skill for sea surface temperature (SST) and winds at all leads compared to low resolution model in the tropical Indo-Pacific basin is observed. High resolution model is able to capture extreme events reasonably well. As a result, the signal to noise ratio is improved in the high resolution model. However, spring predictability barrier (SPB) for summer months in Nino 3 and Nino 3.4 region is stronger in high resolution model, in spite of improvement in overall prediction skill and dynamics everywhere else. Anomaly correlation coefficient of SST in high resolution model with observations in Nino 3.4 region targeting boreal summer months when predicted at lead times of 3-8 months in advance decreased compared its lower resolution counterpart. It is noted that higher variance of winds predicted in spring season over central equatorial Pacific compared to observed variance of winds results in stronger than normal response on subsurface ocean, hence increases SPB for boreal summer months in high resolution model.
Static stability and thermal wind in an atmosphere of variable composition Applications to Mars
NASA Technical Reports Server (NTRS)
Hess, S. L.
1979-01-01
Radiometric measurements of the temperature of the south polar cap of Mars in winter have yielded values significantly below the expected 148 K. One proposed explanation for this result is a substantial reduction in the CO2 content of the atmosphere and a lowering of the mean molecule weight near the surface. The meteorological consequences of this explanation are explored by deriving a criterion for vertical static stability and a thermal wind law for an atmosphere of variable composition. The atmosphere proves to be statically unstable unless the anomaly in the CO2 mixing ratio extends to heights of tens of kilometers. The effect of varying molecular weight exceeds the effect of temperature gradient, producing shears with height of reversed sign. The shears are baroclinically unstable, and this instability would eradicate the latitudinal gradient of molecular weight. This inconsistency can be resolved by invoking a reasonable elevation of the central polar cap and by imposing an adequate zonal wind. It is concluded that if the explanation requiring a change in atmospheric composition is correct, it must be accompanied by other special circumstances to make it meteorologically consistent.
No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic.
Foukal, Nicholas P; Lozier, M Susan
2016-04-22
Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS.
No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic
Foukal, Nicholas P.; Lozier, M. Susan
2016-01-01
Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS. PMID:27103496
Diagnosing MJO Destabilization and Propagation with the Moisture and MSE Budgets
NASA Astrophysics Data System (ADS)
Maloney, Eric; Wolding, Brandon
2015-04-01
Novel diagnostics obtained as an extension of empirical orthogonal function analysis are used as a composting basis to gain insight into MJO dynamics through examination of reanalysis moisture and moist static energy budgets. The net effect of vertical moisture advection and cloud processes was found to be a modest positive feedback to column moisture anomalies during both enhanced and suppressed phases of the MJO. This positive feedback is regionally strengthened by anomalous surface fluxes of latent heat. The modulation of horizontal synoptic scale eddy mixing acts as a negative feedback to column moisture anomalies, while anomalous winds acting against the mean state moisture gradient aid in eastward propagation. These processes act in a systematic fashion across the Indian Ocean and oceanic regions of the Maritime Continent. The ability to approximately close the MSE budget serves an important role in constraining the moisture budget, whose residual is several times larger than the total and horizontal advective moisture tendencies. Comparison with TRMM precipitation anomalies suggests that the moisture budget residual results from an underestimation by ERAi of variations in both total precipitation and vertical moisture advection associated with the MJO. The results of this study support the concept of the MJO as a moisture-mode. This analysis is extended to examine the impact of boundary layer convergence driven by MJO SST anomalies on the vertically-integrated moisture budget. Results from a coupled version of the SP-CAM suggest that SST-driven moisture convergence anomalies are of a sufficient amplitude to be important for MJO propagation and destabilization, and may help explain why coupled models produce better simulations of the MJO than uncoupled models.
NASA Astrophysics Data System (ADS)
Huang, Bohua; Hu, Zeng-Zhen; Kinter, James L.; Wu, Zhaohua; Kumar, Arun
2012-01-01
The stratospheric quasi-biennial oscillation (QBO) and its association with the interannual variability in the stratosphere and troposphere, as well as in tropical sea surface temperature anomalies (SSTA), are examined in the context of a QBO life cycle. The analysis is based on the ERA40 and NCEP/NCAR reanalyses, radiosonde observations at Singapore, and other observation-based datasets. Both reanalyses reproduce the QBO life cycle and its associated variability in the stratosphere reasonably well, except that some long-term changes are detected only in the NCEP/NCAR reanalysis. In order to separate QBO from variability on other time scales and to eliminate the long-term changes, a scale separation technique [Ensemble Empirical Mode Decomposition (EEMD)] is applied to the raw data. The QBO component of zonal wind anomalies at 30 hPa, extracted using the EEMD method, is defined as a QBO index. Using this index, the QBO life cycle composites of stratosphere and troposphere variables, as well as SSTA, are constructed and examined. The composite features in the stratosphere are generally consistent with previous investigations. The correlations between the QBO and tropical Pacific SSTA depend on the phase in a QBO life cycle. On average, cold (warm) SSTA peaks about half a year after the maximum westerlies (easterlies) at 30 hPa. The connection of the QBO with the troposphere seems to be associated with the differences of temperature anomalies between the stratosphere and troposphere. While the anomalies in the stratosphere propagate downward systematically, some anomalies in the troposphere develop and expand vertically. Therefore, it is possible that the temperature difference between the troposphere and stratosphere may alter the atmospheric stability and tropical deep convection, which modulates the Walker circulation and SSTA in the equatorial Pacific Ocean.
NASA Astrophysics Data System (ADS)
Yuan, Dongliang; Hu, Xiaoyue; Xu, Peng; Zhao, Xia; Masumoto, Yukio; Han, Weiqing
2018-01-01
The dynamics of the teleconnection between the Indian Ocean Dipole (IOD) in the tropical Indian Ocean and El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%-15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.
Impacts of Tropical North Atlantic SST on Western North Pacific Landfalling Tropical Cyclones
NASA Astrophysics Data System (ADS)
Zhang, W.; Gao, S.; Chen, Z.
2017-12-01
This study examines the impacts of tropical North Atlantic (TNA) sea surface temperature (SST) anomaly (SSTA) on tropical cyclones (TCs) making landfall over East Asia. We find that TNA SSTA has significant negative correlations with the frequency of TCs making landfall over China, Vietnam, Korea and Japan, and the entire East Asia. TNA SST influences the frequency of TC landfalls over these regions by regulating TC genesis location and frequency and steering flow associated with modulated environmental conditions. During cold TNA SST years, larger low-level relative vorticity and weaker vertical wind shear lead to more TC formations in the northern SCS and to the east of Philippines, and larger low-level relative vorticity, higher mid-level relative humidity, and weaker vertical wind shear result in more TC formations over the eastern part of WNP. Anomalous northeasterly steering flow favors more TCs to move westward or west-northwestward and make landfall over Vietnam, South China and Taiwan Island and thus in the entire China, and more TCs take regular northeastward recurving tracks and make landfall over Korea and Japan because of insignificant steering flow anomalies in the vicinity. The modulation of large-scale environments by TNA SSTA may be through two possible pathways proposed in previous studies, i.e., Indian Ocean relaying effect and subtropical eastern Pacific relaying effect. Our results suggest that TNA SSTA is a potential predictor for the frequency of TCs making landfall over China, Vietnam, Korea and Japan, and the entire East Asia.
Analysis of the 2015-16 El Niño Event Using NASA's GEOS Data Assimilation System
NASA Astrophysics Data System (ADS)
Pawson, S.; Lim, Y. K.; Kovach, R. M.; Vernieres, G.
2016-12-01
The strong El Niño event that occurred in 2015/2016 is analyzed using atmospheric and oceanic analyses produced using the Goddard Earth Observing System (GEOS) systems. A theme of the work is to compare and contrast this event with two other strong El Niños, in 1982/1983 and 1997/1998, that are included in the satellite-data era of the MERRA and MERRA-2 reanalyses produced using the GEOS system. Distribution of the maximum anomalies of tropical sea-surface temperature (SST), precipitation, Walker circulation, and cloud fraction indicate that 2015/2016 is a Central Pacific (CP) El Niño. The event had an early onset compared to the 1997/1998 El Niño, with extremely strong warming and precipitation over the Central Pacific, and was the strongest in terms of central Pacific SST anomalies. The large region of warm temperature anomalies over most of the Pacific and Indian Ocean in the 2015-2016 event were due to the accumulative impacts of the El Niño event along with a positive phase of the Pacific Decadal Oscillation and a decadal warming trend over the western Pacific, Maritime Continent, and Indian Ocean. The relatively weak development of the 2015/2016 El Niño event over the Eastern Pacific was likely due to weaker westerly wind bursts and Madden-Julian Oscillation during spring, which in 1997/1998 served to drive the warm anomalies further East towards South America, making that event the strongest Eastern Pacific El Niño (in the recent data record). This is reflected in the 2015/2016 event having a shallower thermocline over the Eastern Pacific, with a weaker zonal gradient of sub-surface water temperatures along the equatorial Pacific. The major extra-tropical teleconnections associated with the El Niño in 2015/2016 are at least comparable to those in the 1982/1983 and 1997/1998 El Niño events. Specifically, the Pacific North American (PNA) teleconnection in 2015/2016 is the strongest of these three El Niño events, leading to larger extra-tropical anomalies of geopotential height, temperature, and precipitation over North America.
Driving the Heliospheric Jellyfish
NASA Astrophysics Data System (ADS)
Leamon, R. J.; Mcintosh, S. W.
2016-12-01
Recent observational work has demonstrated that the enigmatic sunspotcycle and global magnetic environment of the Sun which source theeruptive events and modulate the solar wind, respectively, can beexplained in terms of the intra- and extra-hemispheric interaction ofmagnetic activity bands that belong to the 22-year magnetic polaritycycle. Those activity bands appear to be anchored deep in the Sun'sconvective interior and governed by the rotation of our star's radiativezone. We have also observed that those magnetic bands exhibit strongquasi-annual variability in the rotating convecting system which resultsin a significant local modulation of solar surface magnetism, forcingthe production of large eruptive events in each hemisphere that mouldsthe global-scale solar magnetic field and the solar-wind-inflatedheliosphere. Together with significant changes in the Sun's ultraviolet(UV), extreme ultraviolet (EUV), and X-Ray irradiance, these eruptivefluctuations ensnare all the Heliosphere (all of Heliophysics) like thetentacles of a jellyfish, and can be inferred in variations of suchwide-ranging phenomena as the South Atlantic Anomaly, the thermosphere,the radiation belts, and the can address ``Has Voyager left theHeliosphere?''
Effects of Cross-axis Wind Jet Events on the Northern Red Sea Circulation
NASA Astrophysics Data System (ADS)
Menezes, V. V.; Bower, A. S.; Farrar, J. T.
2016-12-01
Despite its small size, the Red Sea has a complex circulation. There are boundary currents in both sides of the basin, a meridional overturning circulation, water mass formation in the northern part and an intense eddy activity. This complex pattern is driven by strong air-sea interactions. The Red Sea has one of the largest evaporation rates of the global oceans (2m/yr), an intricate and seasonally varying wind pattern. The winds blowing over the Northern Rea Sea (NRS, north of 20N) are predominantly southeastward along the main axis all year round; in the southern, they reverse seasonally due to the monsoonal regime. Although the winds are mostly along-axis in the NRS, several works have shown that sometimes during the boreal winter, the winds blow in a cross-axis direction. The westward winds from Saudi Arabia bring relatively cold dry air and dust from the desert, enhancing heat loss and evaporation off the Red Sea. These wind-jet events may contribute to increased eddy activity and are a trigger for water mass formation. Despite that, our knowledge about the cross-axis winds and their effect on NRS circulation is still incipient. In the present work we analyze 10-years of Quikscat scatterometer winds and altimetric sea surface height anomalies, together with 2-yrs of mooring data, to characterize the westward wind jet events and their impacts on the circulation. We show that the cross-axis winds are, indeed, an important component of the wind regime, explaining 11% of wind variability of the NRS (well-described by a 2nd EOF mode). The westward events occur predominantly in the winter, preferentially in January (about 15 events in 10-years) and have a mean duration of 4-5 days, with a maximum of 12 days (north of 22N). There are around 6 events per year, but in 2002-2003 and 2007-2008, twice more events were detected. The westward wind events are found to strongly modify the wind stress curl, causing a distinct positive/negative curl pattern along the main axis. This pattern enhances the eddy activity and impacts the NRS circulation.
NASA Astrophysics Data System (ADS)
Seman, Charles J.
1994-06-01
Nonlinear nonhydrostatic conditional symmetric instability (CSI) is studied as an initial value problem using a two-dimensional (y, z)nonlinear, nonhydrostatic numerical mesoscale/cloud model. The initial atmosphere for the rotating, baroclinic (BCF) simulation contains large convective available potential energy (CAPE). Analytical theory, various model output diagnostics, and a companion nonrotating barotropic (BTNF) simulation are used to interpret the results from the BCF simulation. A single warm moist thermal initiates convection for the two 8-h simulations.The BCF simulation exhibited a very intricate life cycle. Following the initial convection, a series of discrete convective cells developed within a growing mesoscale circulation. Between hours 4 and 8, the circulation grew upscale into a structure resembling that of a squall-line mesoscale convective system (MCS). The mesoscale updrafts were nearly vertical and the circulation was strongest on the baroclinically cool side of the initial convection, as predicted by a two-dimensional Lagrangian parcel model of CSI with CAPE. The cool-side mesoscale circulation grew nearly exponentially over the last 5 h as it slowly propagated toward the warm air. Significant vertical transport of zonal momentum occurred in the (multicellular) convection that developed, resulting in local subgeostrophic zonal wind anomalies aloft. Over time, geostrophic adjustment acted to balance these anomalies. The system became warm core, with mesohigh pressure aloft and mesolow pressure at the surface. A positive zonal wind anomaly also formed downstream from the mesohigh.Analysis of the BCF simulation showed that convective momentum transport played a key role in the evolution of the simulated MCS, in that it fostered the development of the nonlinear CSI on mesoscale time scales. The vertical momentum transport in the initial deep convection generated a subgeostrophic zonal momentum anomaly aloft; the resulting imbalance in pressure gradient and Coriolis forces accelerated the meridional outflow toward the baroclinically cool side, transporting zonal momentum horizontally. The vertical (horizontal) momentum transport occurred on a convective (inertial) time scale. Taken together, the sloping convective updraft/cool side outflow represents the release of the CSI in the convectively unstable atmosphere. Further diagnostics showed that mass transports in the horizontal outflow branch ventilated the upper levels of the system, with enhanced mesoscale lifting in the core and on the leading edge of the MCS, which assisted in convective redevelopments on mesoscale time scales. Geostrophic adjustment acted to balance the convectively generated zonal momentum anomalies, thereby limiting the strength of the meridional outflow predicted by CSI theory. Circulation tendency diagnostics showed that the mesoscale circulation developed in response to thermal wind imbalances generated by the deep convection.Comparison of the BCF and BTNF simulations showed that baroclinicity enhanced mesoscale circulation growth. The BTNF circulation was more transient on mesoscale time and space scales. Overall, the BCF system produced more rainfall than the BTNF.Based on the present and past work in CSI theory, a new definition for the term `slantwise convection' is proposed.
NASA Astrophysics Data System (ADS)
Li, J.-L. F.; Suhas, E.; Richardson, Mark; Lee, Wei-Liang; Wang, Yi-Hui; Yu, Jia-Yuh; Lee, Tong; Fetzer, Eric; Stephens, Graeme; Shen, Min-Hua
2018-02-01
Most of the global climate models (GCMs) in the Coupled Model Intercomparison Project, phase 5 do not include precipitating ice (aka falling snow) in their radiation calculations. We examine the importance of the radiative effects of precipitating ice on simulated surface wind stress and sea surface temperatures (SSTs) in terms of seasonal variation and in the evolution of central Pacific El Niño (CP-El Niño) events. Using controlled simulations with the CESM1 model, we show that the exclusion of precipitating ice radiative effects generates a persistent excessive upper-level radiative cooling and an increasingly unstable atmosphere over convective regions such as the western Pacific and tropical convergence zones. The invigorated convection leads to persistent anomalous low-level outflows which weaken the easterly trade winds, reducing upper-ocean mixing and leading to a positive SST bias in the model mean state. In CP-El Niño events, this means that outflow from the modeled convection in the central Pacific reduces winds to the east, allowing unrealistic eastward propagation of warm SST anomalies following the peak in CP-El Niño activity. Including the radiative effects of precipitating ice reduces these model biases and improves the simulated life cycle of the CP-El Niño. Improved simulations of present-day tropical seasonal variations and CP-El Niño events would increase the confidence in simulating their future behavior.
NASA Astrophysics Data System (ADS)
Lorenz, Ralph D.; Zarnecki, John C.; Towner, Martin C.; Leese, Mark R.; Ball, Andrew J.; Hathi, Brijen; Hagermann, Axel; Ghafoor, Nadeem A. L.
2007-11-01
The Huygens probe underwent vigorous short-period motions during its parachute descent through the atmosphere of Saturn's moon Titan in January 2005, at least some of which were excited by the Titan environment. Several sensors in the Huygens Surface Science Package (SSP) detect these motions, indicating the transition to the smaller stabilizer parachute, the changing probe spin rate, aerodynamic buffeting, and pendulum motions. Notably, in an altitude range of about 20-30 km where methane drops will freeze, the frequency content and statistical kurtosis of the tilt data indicate excitation by turbulent air motions like those observed in freezing clouds on Earth, supporting the suggestion of Tokano et al. [Tokano, T., McKay, C.P., Neubauer, F.M., Atreya, S.K., Ferri, F., Fulchignoni, M., Niemann, H.B. (2006a). Methane drizzle on Titan. Nature 442, 432-435] that the probe passed through such a cloud layer. Motions are weak below 20 km, suggesting a quiescent lower atmosphere with turbulent fluctuations of nominally <0.15 m/s (to within a factor of ˜2) but more violent motions in the upper troposphere may have been excited by turbulent winds with amplitudes of 1-2 m/s. Descent in part of the stratosphere (150-120 km) was smooth despite strong ambient wind (˜100 m/s), but known anomalies in the probe spin prevent investigation of turbulence in the known wind-shear layer from 60 to 100 km.
Seasonal and Interannual Variation of Currents and Water Properties off the Mid-East Coast of Korea
NASA Astrophysics Data System (ADS)
Park, J. H.; Chang, K. I.; Nam, S.
2016-02-01
Since 1999, physical parameters such as current, temperature, and salinity off the mid-east coast of Korea have been continuously observed from the long-term buoy station called `East-Sea Real-time Ocean monitoring Buoy (ESROB)'. Applying harmonic analysis to 6-year-long (2007-2012) depth-averaged current data from the ESROB, a mean seasonal cycle of alongshore currents, characterized by poleward current in average and equatorward current in summer, is extracted which accounts for 5.8% of the variance of 40 hours low-pass filtered currents. In spite of the small variance explained, a robust seasonality of summertime equatorward reversal typifies the low-passed alongshore currents along with low-density water. To reveal the dynamics underlying the seasonal variation, each term of linearized, depth-averaged momentum equations is estimated using the data from ESROB, adjacent tide gauge stations, and serial hydrographic stations. The result indicates that the reversal of alongshore pressure gradient is a major driver of the equatorward reversals in summer. The reanalysis wind product (MERRA) and satellite altimeter-derived sea surface height (AVISO) data show correlated features between positive (negative) wind stress curl and sea surface depression (uplift). Quantitative estimates reveal that the wind-stress curl accounts for 42% of alongshore sea level variation. Summertime low-density water originating from the northern coastal region is a footprint of the buoyancy-driven equatorward current. An interannual variation (anomalies from the mean seasonal cycle) of alongshore currents and its possible driving mechanisms will be discussed.
The stratospheric QBO signal in the NCEP reanalysis, 1948-2001
NASA Astrophysics Data System (ADS)
Ribera, P.; Gallego, D.; Pena-Ortiz, C.; Gimeno, L.; Garcia, R.; Hernandez, E.; Calvo, N.
2003-04-01
The spatiotemporal evolution of the zonal wind in the stratosphere is analyzed based on the use of the NCEP reanalysis dataset (1948-2001). MTM-SVD, a frequency-domain analysis method, is applied to isolate significant spatially-coherent variability with narrowband, oscillatory character. A quasibiennial oscillation is detected as the most intense coherent signal in the whole mid and high stratosphere, being the signal less intense in the lower levels, closer to the troposphere. There is a clear downward propagation of the signal with time over low latitudes, from 10 to 100 hPa, that is not evident over mid and high latitudes. A different behavior of the signal is detected over the Northern and the Southern Hemisphere. In the NH an anomaly in the zonal wind field, in phase with the equatorial signal, is detected to run around the whole hemisphere at 60º, and two regions in subtropical latitudes show wind anomalies with their sing opposed to that of the equator. In the SH no signal is detected in extratropical areas.
NASA Astrophysics Data System (ADS)
Schwartz, V.; Barron, J. A.; Addison, J. A.; Bukry, D.
2016-12-01
The 1100-km-long Gulf of California (GOC) is separated from the cool waters of the eastern North Pacific by Baja California, and experiences both a temperate and sub-tropical climatology. In the eastern GOC, extensive diatom blooms are generated by strong northwest winds that upwell nutrient-rich waters during the winter. Slackening of these upwelling-favorable winds during the late spring allows for northward flow of tropical waters up the axis of the Gulf, prompting the flow of tropical moisture into northwestern Mexico and Arizona. Similar to the eastern bias during winter upwelling, northward flowing surface currents transporting tropical waters into the GOC during summer are also strongest on the eastern side of the Gulf. This study utilizes strew slide and biogenic silica (opal) analyses of diatoms and silicoflagellates to examine changes in primary productivity, over the past 2000 years from three marine sediment cores from Guaymas Basin in the central GOC. The cores include the eastern BAM80 E-17 (27.920° N, 111.610°W, 620 m water depth); the western MD02-2517c2 at 27.485° N, 112.074°W, water depth 887 m); and the southwestern DR373-VC-214 (26.879°N, 111.339°W, 1860 m water depth). This detailed productivity transect will test the hypothesis that the surface water productivity of the eastern and western portions of the Guaymas Basin responded differently to late Holocene climatic forcings. These records document distinct changes in the east-to-west productivity gradient during the Medieval Climate Anomaly (MCA) ( 850-1250 CE) and the Little Ice Age (LIA) ( 1300-1850 CE). Diatom and silicoflagellate assemblages suggest that the MCA was characterized by a reduced east- west productivity gradient and generally warm surface water conditions. The LIA appeared to be more similar to that of modern GOC surface water conditions, with a stronger east- west productivity gradient. The data also show that a warmer interval similar to that of the MCA occurred between 1450 and 1550 CE. Ongoing collaborative alkenone SST studies on MD02-2517 by Erin McClymont (Durham University) should help to further resolve the character of the MCA and LIA in the GOC.
Remote forcing at the Last Glacial Maximum in the Tropical Pacific Ocean
NASA Astrophysics Data System (ADS)
Andreasen, Dyke H.; Ravelo, A. Christina; Broccoli, Anthony J.
2001-01-01
We present results of a Last Glacial Maximum (LGM) wind stress sensitivity experiment using a high-resolution ocean general circulation model of the tropical Pacific Ocean. LGM wind stress, used to drive the ocean model, was generated using an atmospheric general circulation model simulation forced by LGM boundary conditions as part of the Paleoclimate Modeling Intercomparison Project (PMIP) [Broccoli, 2000]. LGM wind stress anomalies were large in the western half of the basin, yet there was a significant hydrographic response in the eastern half. This ocean model experiment hind casts changes that are in close agreement with paleoceanographic data from the entire region, even without the explicit modeling of the air-sea interactions. Data and model both predict that the annual average thermocline tilt across the basin was enhanced. Data and model are consistent with a stronger equatorial undercurrent which shoaled to the west of where it does today, and stronger advection of water from the Peru Current into the east equatorial Pacific and across the equator. Paleoproductivity and sea surface temperature (SST) data are interpreted in light of the modeling results, indicating that paleoproductivity changes were related to wind-forced dynamical changes resulting from LGM boundary conditions, while SST changes were related to independent, possibly radiative, forcing. Overall, our results imply that much of the dynamic response of the tropical Pacific during the LGM can be explained by wind field changes resulting from global LGM boundary conditions.
Nonrotating Convective Self-Aggregation in a Limited Area AGCM
NASA Astrophysics Data System (ADS)
Arnold, Nathan P.; Putman, William M.
2018-04-01
We present nonrotating simulations with the Goddard Earth Observing System (GEOS) atmospheric general circulation model (AGCM) in a square limited area domain over uniform sea surface temperature. As in previous studies, convection spontaneously aggregates into humid clusters, driven by a combination of radiative and moisture-convective feedbacks. The aggregation is qualitatively independent of resolution, with horizontal grid spacing from 3 to 110 km, with both explicit and parameterized deep convection. A budget for the spatial variance of column moist static energy suggests that longwave radiative and surface flux feedbacks help establish aggregation, while the shortwave feedback contributes to its maintenance. Mechanism-denial experiments confirm that aggregation does not occur without interactive longwave radiation. Ice cloud radiative effects help support the humid convecting regions but are not essential for aggregation, while liquid clouds have a negligible effect. Removing the dependence of parameterized convection on tropospheric humidity reduces the intensity of aggregation but does not prevent the formation of dry regions. In domain sizes less than (5,000 km)2, the aggregation forms a single cluster, while larger domains develop multiple clusters. Larger domains initialized with a single large cluster are unable to maintain them, suggesting an upper size limit. Surface wind speed increases with domain size, implying that maintenance of the boundary layer winds may limit cluster size. As cluster size increases, large boundary layer temperature anomalies develop to maintain the surface pressure gradient, leading to an increase in the depth of parameterized convective heating and an increase in gross moist stability.
Spacebased Observations of the Oceanic Responses to Monsoons in South China Sea and Arabian Sea
NASA Technical Reports Server (NTRS)
Xie, Xiao-Su; Liu, W. Timothy
2000-01-01
A large percentage of the world's population and their agrarian economy must endure the vagaries of the monsoons over the tropical oceans between Africa and the Philippines. We know very little about the oceanic responses to changes of the monsoon in the South China Sea (SCS), which is under the influence of the East Asian Monsoon System, and the Arabian Sea (AS), which is dominated by the Indian Monsoon System; oceanic observations are sparse in both regions. Data from spaceborne microwave scatterometers and radiometers have been used to estimate the two major atmospheric forcing, momentum flux and latent heat flux (LHF), which change with the monsoon winds. Spaceborne sensors also observed the surface signatures of the oceanic response: SST and sea level changes (SLC. Sufficient durations of these data have recently become available to allow the meaningful studies of the annual cycles and interannual anomalies. In SCS, the winter monsoon is strong and steady but the summer monsoon is weak and has large intraseasonal fluctuations. In AS, the summer monsoon is much stronger than the winter monsoon. Significant correlations between LHF and SST tendency, and between curl of wind stress and SLC are found in both oceans. In the north SCS, winds are strong and dry, LHF is high, and ocean cooling is also large in fall; LHF is low and the ocean warms up in spring. In AS, LHF and SST tendency have a semi annual period; LHF is high in summer when the wind is strong and in winter when the wind is dry. Along the coast of Oman, the strong summer southwest monsoon causes intense upwelling, low SST and LHF in summer; such wind-driven SST changes is not as obvious along the Vietnam coast because of the weaker summer monsoon. The negative correlation between curl of wind stress and SLC found in the central basins of both SCS and AS agrees with a simple Ekman pumping scenario. Cyclonic winds drive surface divergence and upwelling in the ocean; the rise of the thermocline causes lower sea levels. Anticyclonic winds cause higher SLC. The exceptions (positive correlations) are found in the coastal regions in the north and the south of SCS, off the west coast of India between 5N and 10N, and along the coast of Somalia.
NASA Technical Reports Server (NTRS)
Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.
2014-01-01
The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.
NASA Astrophysics Data System (ADS)
Fathrio, Ibnu; Manda, Atsuyoshi; Iizuka, Satoshi; Kodama, Yasu-Masa; Ishida, Sachinobu
2018-05-01
This study presents ocean heat budget analysis on seas surface temperature (SST) anomalies during strong-weak Asian summer monsoon (southwest monsoon). As discussed by previous studies, there was close relationship between variations of Asian summer monsoon and SST anomaly in western Indian Ocean. In this study we utilized ocean heat budget analysis to elucidate the dominant mechanism that is responsible for generating SST anomaly during weak-strong boreal summer monsoon. Our results showed ocean advection plays more important role to initate SST anomaly than the atmospheric prcess (surface heat flux). Scatterplot analysis showed that vertical advection initiated SST anomaly in western Arabian Sea and southwestern Indian Ocean, while zonal advection initiated SST anomaly in western equatorial Indian Ocean.
ENSO related SST anomalies and relation with surface heat fluxes over south Pacific and Atlantic
NASA Astrophysics Data System (ADS)
Chatterjee, S.; Nuncio, M.; Satheesan, K.
2017-07-01
The role of surface heat fluxes in Southern Pacific and Atlantic Ocean SST anomalies associated with El Nino Southern Oscillation (ENSO) is studied using observation and ocean reanalysis products. A prominent dipole structure in SST anomaly is found with a positive (negative) anomaly center over south Pacific (65S-45S, 120W-70W) and negative (positive) one over south Atlantic (50S-30S, 30W-0E) during austral summer (DJF) of El Nino (LaNina). During late austral spring-early summer (OND) of El Nino (LaNina), anomalous northerly (southerly) meridional moisture transport and a positive (negative) sea level pressure anomaly induces a suppressed (enhanced) latent heat flux from the ocean surface over south Pacific. This in turn results in a shallower than normal mixed layer depth which further helps in development of the SST anomaly. Mixed layer thins further due to anomalous shortwave radiation during summer and a well developed SST anomaly evolves. The south Atlantic pole exhibits exactly opposite characteristics at the same time. The contribution from the surface heat fluxes to mixed layer temperature change is found to be dominant over the advective processes over both the basins. Net surface heat fluxes anomaly is also found to be maximum during late austral spring-early summer period, with latent heat flux having a major contribution to it. The anomalous latent heat fluxes between atmosphere and ocean surface play important role in the growth of observed summertime SST anomaly. Sea-surface height also shows similar out-of-phase signatures over the two basins and are well correlated with the ENSO related SST anomalies. It is also observed that the magnitude of ENSO related anomalies over the southern ocean are weaker in LaNina years than in El Nino years, suggesting an intensified tropics-high latitude tele-connection during warm phases of ENSO.
NASA Astrophysics Data System (ADS)
Pinales, J. C.; Graber, H. C.; Hargrove, J. T.; Caruso, M. J.
2016-02-01
Previous studies have demonstrated the ability to detect and classify marine hydrocarbon films with spaceborne synthetic aperture radar (SAR) imagery. The dampening effects of hydrocarbon discharges on small surface capillary-gravity waves renders the ocean surface "radar dark" compared with the standard wind-borne ocean surfaces. Given the scope and impact of events like the Deepwater Horizon oil spill, the need for improved, automated and expedient monitoring of hydrocarbon-related marine anomalies has become a pressing and complex issue for governments and the extraction industry. The research presented here describes the development, training, and utilization of an algorithm that detects marine oil spills in an automated, semi-supervised manner, utilizing X-, C-, or L-band SAR data as the primary input. Ancillary datasets include related radar-borne variables (incidence angle, etc.), environmental data (wind speed, etc.) and textural descriptors. Shapefiles produced by an experienced human-analyst served as targets (validation) during the training portion of the investigation. Training and testing datasets were chosen for development and assessment of algorithm effectiveness as well as optimal conditions for oil detection in SAR data. The algorithm detects oil spills by following a 3-step methodology: object detection, feature extraction, and classification. Previous oil spill detection and classification methodologies such as machine learning algorithms, artificial neural networks (ANN), and multivariate classification methods like partial least squares-discriminant analysis (PLS-DA) are evaluated and compared. Statistical, transform, and model-based image texture techniques, commonly used for object mapping directly or as inputs for more complex methodologies, are explored to determine optimal textures for an oil spill detection system. The influence of the ancillary variables is explored, with a particular focus on the role of strong vs. weak wind forcing.
NASA Astrophysics Data System (ADS)
Barrett, B.; Davies, A. R.; Steppe, C. N.; Hackbarth, C.
2017-12-01
In the first part of this study, time-lagged composites of upper-ocean currents from February to May of 1993-2016 were binned by active phase of the leading atmospheric mode of intraseasonal variability, the Madden-Julian Oscillation (MJO). Seven days after the convectively active phase of the MJO enters the tropical Indian Ocean, anomalously strong south-southeastward upper-ocean currents are observed along the majority of U.S. west coast. Seven days after the convectively active phase enters the tropical western Pacific Ocean, upper-ocean current anomalies reverse along the U.S. west coast, with weaker southward flow. A physical pathway to the ocean was found for both of these: (a) tropical MJO convection modulates upper-tropospheric heights and circulation over the Pacific Ocean; (b) those anomalous atmospheric heights adjust the strength and position of the Aleutian Low and Hawaiian High; (c) surface winds change in response to the adjusted atmospheric pressure patterns; and (d) those surface winds project onto upper-ocean currents. In the second part of this study, we investigated if the MJO modulated intraseasonal variability of surface wind forcing and upper-ocean currents projected onto phytoplankton abundance along the U.S. west coast. Following a similar methodology, time-lagged, level 3 chlorophyll-a satellite products (a proxy for photosynthetic primary production) were binned by active MJO phase and analyzed for statistical significance using the Student's t test. Results suggest that intraseasonal variability of biological production along the U.S. west coast may be linked to the MJO, particularly since the time scale of the life cycle of phytoplankton is similar to the time scale of the MJO.
Ocean-Atmosphere Interaction Over Agulhas Extension Meanders
NASA Technical Reports Server (NTRS)
Liu, W. Timothy; Xie, Xiaosu; Niiler, Pearn P.
2007-01-01
Many years of high-resolution measurements by a number of space-based sensors and from Lagrangian drifters became available recently and are used to examine the persistent atmospheric imprints of the semi-permanent meanders of the Agulhas Extension Current (AEC), where strong surface current and temperature gradients are found. The sea surface temperature (SST) measured by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and the chlorophyll concentration measured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) support the identification of the meanders and related ocean circulation by the drifters. The collocation of high and low magnitudes of equivalent neutral wind (ENW) measured by Quick Scatterometer (QuikSCAT), which is uniquely related to surface stress by definition, illustrates not only the stability dependence of turbulent mixing but also the unique stress measuring capability of the scatterometer. The observed rotation of ENW in opposition to the rotation of the surface current clearly demonstrates that the scatterometer measures stress rather than winds. The clear differences between the distributions of wind and stress and the possible inadequacy of turbulent parameterization affirm the need of surface stress vector measurements, which were not available before the scatterometers. The opposite sign of the stress vorticity to current vorticity implies that the atmosphere spins down the current rotation through momentum transport. Coincident high SST and ENW over the southern extension of the meander enhance evaporation and latent heat flux, which cools the ocean. The atmosphere is found to provide negative feedback to ocean current and temperature gradients. Distribution of ENW convergence implies ascending motion on the downwind side of local SST maxima and descending air on the upwind side and acceleration of surface wind stress over warm water (deceleration over cool water); the convection may escalate the contrast of ENW over warm and cool water set up by the dependence of turbulent mixing on stability; this relation exerts a positive feedback to the ENW-SST relation. The temperature sounding measured by the Atmospheric Infrared Sounder(AIRS) is consistent with the spatial coherence between the cloud-top temperature provided by the International Satellite Cloud Climatology Project (ISCCP) and SST. Thus ocean mesoscale SST anomalies associated with the persistent meanders may have a long-term effect well above the midlatitude atmospheric boundary layer, an observation not addressed in the past.
Mean wind speed persistence over China
NASA Astrophysics Data System (ADS)
Jiang, Lei
2018-07-01
The wind speed persistence is an important factor in the assessment of wind energy potential. In this paper, we explore the persistence of Mean Wind Speed (MWS) with many years of record using Detrended Fluctuation Analysis (DFA) over China. The results illustrate that there exist irregular high-frequency fluctuations for daily MWS anomaly records. Long-term persistence of MWS is found for all meteorological observed sites. We also make some numerical tests in order to verify the significance of long-term persistence by shuffling the data records many times. These facts prove that the MWS anomaly records have long-term persistence over all the stations in China. The mean value 0.64 in DFA-exponents for all stations over China is also obviously higher than the value 0.53 according to interval threshold of 95% confidence level after shuffling the MWS records many times. In addition, the values of scaling exponent vary from station to station over China. Long-term persistence of MWS in spatial distributions seems to be downward trends from east to west China. Many factors may affect long-term persistence of MWS such as southwest monsoon, Tibetan Plateau landform and atmosphere-ocean-land interaction and so on. Possible physical mechanism need further analysis in the future.
NASA Astrophysics Data System (ADS)
Li, Rui; Jing, Zhao; Chen, Zhaohui; Wu, Lixin
2017-04-01
In this study, responses of the Kuroshio Extension (KE) path state to near-term (2006-2035) global warming are investigated using a Kuroshio-resolving atmosphere-ocean coupled model. Under the representative concentration pathway 4.5 (RCP4.5) forcing, the KE system is intensified and its path state tends to move northward and becomes more stable. It is suggested that the local anticyclonic wind stress anomalies in the KE region favor the spin-up of the southern recirculation gyre, and the remote effect induced by the anticyclonic wind stress anomalies over the central and eastern midlatitude North Pacific also contributes to the stabilization of the KE system substantially. The dominant role of wind stress forcing on KE variability under near-term global warming is further confirmed by adopting a linear 1.5 layer reduced-gravity model forced by wind stress curl field from the present climate model. It is also found that the main contributing longitudinal band for KE index (KEI) moves westward in response to the warmed climate. This results from the northwestward expansion of the large-scale sea level pressure (SLP) field.
Remote Structural Health Monitoring and Advanced Prognostics of Wind Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas Brown; Bernard Laskowski
The prospect of substantial investment in wind energy generation represents a significant capital investment strategy. In order to maximize the life-cycle of wind turbines, associated rotors, gears, and structural towers, a capability to detect and predict (prognostics) the onset of mechanical faults at a sufficiently early stage for maintenance actions to be planned would significantly reduce both maintenance and operational costs. Advancement towards this effort has been made through the development of anomaly detection, fault detection and fault diagnosis routines to identify selected fault modes of a wind turbine based on available sensor data preceding an unscheduled emergency shutdown. Themore » anomaly detection approach employs spectral techniques to find an approximation of the data using a combination of attributes that capture the bulk of variability in the data. Fault detection and diagnosis (FDD) is performed using a neural network-based classifier trained from baseline and fault data recorded during known failure conditions. The approach has been evaluated for known baseline conditions and three selected failure modes: pitch rate failure, low oil pressure failure and a gearbox gear-tooth failure. Experimental results demonstrate the approach can distinguish between these failure modes and normal baseline behavior within a specified statistical accuracy.« less
NASA Astrophysics Data System (ADS)
Burger, M. H.; Killen, R. M.; M, N.; Sarantos, M.; Crider, D. H.; Vervak, R. J.
2009-04-01
Mercury has a tenuous exosphere created by the combined effects of solar radiation and micrometeoroid bombardment on the surface and the interaction of the solar wind with Mercury's magnetic field and surface. Observations of this exosphere provide essential data necessary for understanding the composition and evolution of Mercury's surface, as well as the interaction between Mercury's magnetosphere with the solar wind. The sodium component of the exosphere has been well observed from the ground (see review by Killen et al., 2007). These observations have revealed a highly variable and inhomogeneous exosphere with emission often peaking in the polar regions. Radiation acceleration drives exospheric escape producing a sodium tail pointing away from the sun which has been detected up to 1400 Mercury radii from the planet (Potter et al. 2002; Baumgardner et al. 2008). Calcium has also been observed in Mercury's exosphere showing a distribution distinct from sodium, although also variable (Killen et al. 2005). During the first two encounters with Mercury by MESSENGER, observations of the exosphere were made by the UltraViolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). Sodium and calcium emission were detected during both flybys, and magnesium was detected for the first time in Mercury's exosphere during the second flyby. The spatial distributions of these species showed significant, unexpected differences which suggest differences in the mechanisms responsible for releasing them from the surface. We present a Monte-Carlo model of sodium, magnesium, and calcium in Mercury's exosphere. The important source mechanisms for ejecting these species from the surface are sputtering by solar wind ions, photon-stimulated desorption, and micrometeoroid impact vaporization. Thermal desorption on the dayside does not supply enough energy to significantly populate the exosphere, although it does play a role in redistributing volatiles over the surface. In addition, atomic calcium can be produced from the dissociation of Ca-bearing molecules, such as CaO, which can be formed in impact vapors. The primary loss processes are the escape of neutrals ejected with sufficient energy and photoionization. The former process is supplemented by radiation pressure which accelerates neutrals anti-sunward such that escaping neutrals form a tail pointing away from the sun. Because Mercury's heliocentric distance and radial velocity vary during its orbit, both loss processes are functions of Mercury's true anomaly. We also consider the spatial distribution of the surface source. Impact vaporization is roughly isotropic over the surface, although there may be a leading/trailing asymmetry in the impact rate due to Mercury's orbital motion. Sputtering is confined to regions where the solar wind can impact the surface, which is shielded somewhat by the internal magnetic field. The surface regions vulnerable depend on the solar wind conditions. References: Baumgardner et al., GRL, 35, L03201, 2008. Killen, R.M. et al., Space Sci. Rev. 132, 433-509, 2007. Killen, R.M. et al., Icarus, 173, 300-311, 2005. Potter et al., Meteoritics & Planetary Sci., 37, 1165, 2002.
NASA Astrophysics Data System (ADS)
Pillai, Prasanth A.; Sahai, A. K.
2016-08-01
Boreal summer intraseasonal oscillation (BSISO) has complex spatial structure due to the co-existence of equatorial eastward and off-equatorial northward propagation in the equatorial Indian Ocean. As a result, equatorial Indian Ocean convection has simultaneous northward and eastward (NE), northward only (N-only) and eastward only (E-only) propagations. It is well established that the convection propagates in the direction of increasing moist static energy (MSE). The moisture and MSE budget analysis reveals that the horizontal advection of anomalous MSE contributes to positive MSE tendency, which is in agreement with the horizontal advection of column integrated moisture anomaly. Northward movement of warm SST and the anomalous moisture advected by zonal wind are the major initiative for the northward propagation of convection from the equatorial Indian Ocean in both NE and N-only category. At the same time warm SST anomaly in the equatorial west Pacific along with moisture advection caused by anomalous meridional wind is important for the equatorial eastward branch of NE propagation. As these anomalies in the west Pacific moves northward, equatorial Indian Ocean convection establishes over the equatorial west Pacific. The absence of these processes confines the BSISO in northward direction for N-only category. In the case of E-only movement, warm SST anomaly and moisture advection by zonal component of wind causes the eastward propagation of convection. Boundary layer moisture convergence always remains east of convection center in E-only propagation, while it coincides with convection centre in other two categories. Thus the present study concludes that the difference in underlying SST and atmospheric circulation in tropical Indo-west Pacific oceanic regions encourage the differential propagation of BSISO convection through moisture dynamics.
Utility of Satellite Magnetic Observations for Estimating Near-Surface Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Kim, Hyung Rae; vonFrese, Ralph R. B.; Taylor, Patrick T.; Kim, Jeong Woo; Park, Chan Hong
2003-01-01
Regional to continental scale magnetic anomaly maps are becoming increasingly available from airborne, shipborne, and terrestrial surveys. Satellite data are commonly considered to fill the coverage gaps in regional compilations of these near-surface surveys. For the near-surface Antarctic magnetic anomaly map being produced by the Antarctic Digital Magnetic Anomaly Project (ADMAP), we show that near-surface magnetic anomaly estimation is greatly enhanced by the joint inversion of the near-surface data with the satellite observations relative to the conventional technique such as minimum curvature. Orsted observations are especially advantageous relative to the Magsat data that have order-of-magnitude greater measurement errors, albeit at much lower orbital altitudes. CHAMP is observing the geomagnetic field with the same measurement accuracy as the Orsted mission, but at the lower orbital altitudes covered by Magsat. Hence, additional significant improvement in predicting near-surface magnetic anomalies can result as these CHAMP data are available. Our analysis also suggests that considerable new insights on the magnetic properties of the lithosphere may be revealed by a further order-of-magnitude improvement in the accuracy of the magnetometer measurements at minimum orbital altitude.
NASA Astrophysics Data System (ADS)
Martynova, Yuliya
2015-04-01
There are different studies of the influence of autumn snow cover anomalies on atmospheric dynamics in the following winter (e.g. Allen R.J. and Zender C.S., 2011; Martynova Yu.V. and Krupchatnikov V.N., 2010). The mechanism of this effect is complex and largely affects stratospheric processes (Cohen J. et al., 2007). The snow cover rapidly increases exceeding normal values. Emerged diabatic cooling results in pressure increase over and temperature decrease under the normal value. Thus, in troposphere upward energy flux increases, and then it is absorbed in stratosphere. Strong convergence of wave activity flux causes geopotential heights increase, polar vortex slowdown and stratospheric temperature increase. Emerged geopotential and wind anomalies extend from stratosphere to troposphere up to surface. As a result, strong negative AO mode appears near the surface as surface air temperature increase. Siberia plays important role in this mechanism. Firstly, the most extensive snow cover is formed there. Secondly, according to NOAA satellite observations this cover is generally formed in October (Gong G. Et al., 2003). As a result, Siberia is very interesting for investigations of the autumn snow cover anomalies influence on the atmospheric dynamics in the following winter. This study is devoted to detection and estimation of described mechanism in INMCM4.0 and INMCM5.0 data. INMCM5.0 model represents further development of INMCM4.0 model (Volodin E.M. et al., 2010; Volodin E.M., 2014). They are different both from physical (various physical processes) and numerical (spatial resolution) points of view, thus giving different results representing various physical processes. An analysis of some parameters of atmospheric dynamics shows that top of atmosphere and vertical resolution set in INMCM models play important role in reproduction of influence of the Siberian autumn snow cover anomalies on the Northern Hemisphere atmospheric dynamics in the following winter. Acknowledgements Author acknowledges Dr. Volodin E.M. for providing INMCM data and valued advices. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grant 13-05-12034, 13-05-00480, 14-05-00502 and grant of the President of the Russian Federation. References Allen R.J. and Zender C.S. Forcing of the Arctic Oscillation by Eurasian snow cover. // J. Climate. 2011. Volume 24. P. 6528-6539. Cohen J., Barlow M., Kushner P.J., Saito K. Stratosphere-troposphere coupling and links with Eurasian land-surface variability. // J. Climate. 2007. Volume 20. P. 5335-5343. Gong G., Entekhabi D., Cohen J. Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. // J. Climate, 2003. -- V. 16. -- P. 3917-3931. Martynova Yu.V. and Krupchatnikov V.N. A study of the sensitivity of the surface temperature in Eurasia in winter to snow-cover anomalies: The role of the stratosphere // Izvestiya, Atmospheric and Oceanic Physics. 2010. V 46, Issue 6, pp 757-769. Volodin E.M., Dianskii N.A., Gusev A.V. Simulating Present-Day Climate with the INMCM4.0 Coupled Model of the Atmospheric and Oceanic General Circulations // Izvestiya, Atmospheric and Oceanic Physics. 2010. V 46, No. 4, pp 414-431. Volodin E.M. Possible reasons for low climate-model sensitivity to increased carbon dioxide concentrations // Izvestiya, Atmospheric and Oceanic Physics. 2014. V 50, Issue 4 , pp 350-355.
Rare Central Pacific El Niño Events Caused by Interdecadal Tropical Pacific Variability
NASA Astrophysics Data System (ADS)
Zhong, Wenxiu; Zheng, Xiaotong; Cai, Wenju
2017-04-01
The frequency of Central Pacific (CP) El Niño events displays strong decadal-variability but the associated dynamics is still not clear. The Inter-decadal Pacific Oscillation (IPO) and the Tropical Pacific Decadal Variability (TPDV) are two dominant modes of the Pacific low-frequency variability that can modify high-frequency behaviors. Using a 500-year control integration of Geophysical Fluid Dynamics Laboratory Earth System Model simulation, we find that the mean state, determined by the two independent modes of tropical Pacific decadal variability, strongly affects CP El Niño frequency and the associated developing processes. A positive TPDV features a shallow thermocline and cool sea surface temperature anomalies (SSTAs) across the central-to-western tropical Pacific, and a negative IPO features cool SSTAs and strong trade winds along the equatorial Pacific. The combination of a positive TPDV and a negative IPO generates a decadal mean state, in which the climatological zonal temperature gradient is reduced, equatorward and westward current anomalies are harder to be generated over the central-to-western tropical Pacific, resulting in the lack of CP El Niño.
Impact of Dust Radiative Forcing upon Climate. Chapter 13
NASA Technical Reports Server (NTRS)
Miller, Ronald L.; Knippertz, Peter; Perez Garcia-Pando, Carlos; Perlwitz, Jan P.; Tegan, Ina
2014-01-01
Dust aerosols perturb the atmospheric radiative flux at both solar and thermal wavelengths, altering the energy and water cycles. The climate adjusts by redistributing energy and moisture, so that local temperature perturbations, for example, depend upon the forcing over the entire extent of the perturbed circulation. Within regions frequently mixed by deep convection, including the deep tropics, dust particles perturb the surface air temperature primarily through radiative forcing at the top of the atmosphere (TOA). Many models predict that dust reduces global precipitation. This reduction is typically attributed to the decrease of surface evaporation in response to dimming of the surface. A counterexample is presented, where greater shortwave absorption by dust increases evaporation and precipitation despite greater dimming of the surface. This is attributed to the dependence of surface evaporation upon TOA forcing through its influence upon surface temperature and humidity. Perturbations by dust to the surface wind speed and vegetation (through precipitation anomalies) feed back upon the dust aerosol concentration. The current uncertainty of radiative forcing attributed to dust and the resulting range of climate perturbations calculated by models remain a useful test of our understanding of the mechanisms relating dust radiative forcing to the climate response.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Liu, Chen; Chen, Haishan
2018-02-01
The northernmost margin of East Asian summer monsoon (EASM) could well reflect wet/dry climate variability in the EASM marginal zone (northern China). The study shows that EASM occurs in northern China from Meiyu period to midsummer, and it is also the advancing period of the northern margin of EASM (NMEASM) before the 43rd pentad. NMEASM activity exhibits multi-scale variability, at cycles of 2-3-yr, 4-6-yr and 9-12-yr, which respond not only to EASM intensity but also to westerly circulation anomaly, exhibiting the mid-latitude Eurasian waves and the high-latitude Eurasian teleconnection (EU) patterns. The positive anomalies of Silk Road pattern and EU pattern in recent two decades contribute to the enhanced west-ridge and east-trough anomaly around 120°E over northern China, leading to divergence of moisture flux and north wind anomaly, which is helpful for southward western pacific subtropical high (WPSH) and southward NMEASM. Negative Eurasian pattern along subtropical Jet leads to anticyclone anomaly over south of the Yangtze River, deep trough and north wind anomaly along the west coast of the subtropical Pacific, contributing to southward WPSH and NMEASM at the cycle of 4-6-yr. Remote forcing sources of these anomalous Eurasian waves include North Europe, north of Caspian Sea, Central Asia, Tibetan Plateau and the west of Lake Baikal; the south of Lake Baikal is a local forcing region. The Tibetan Plateau heating and snow cover could modulate Eurasian wave pattern at multi-scale, which could be used as prediction reference of multi-scale NMEASM.
PDO modulation of the ENSO impact on the summer South Asian high
NASA Astrophysics Data System (ADS)
Xue, Xu; Chen, Wen; Chen, Shangfeng; Feng, Juan
2018-02-01
This study investigates modulation effects of the Pacific decadal oscillation (PDO) on the impact of boreal winter El Niño-Southern Oscillation (ENSO) on the South Asian high (SAH) variability in the following summer. In the El Niño together with positive PDO (EL/+PDO) or the La Niña together with negative PDO (LA/-PDO) years, boreal winter ENSO can influence the following summer SAH activity significantly. The SAH tends to be obviously strengthened (weakened) and located further south (north) during EL/+PDO (LA/-PDO). However, in the El Niño together with negative PDO (EL/-PDO) or the La Niña together with positive PDO (LA/+PDO) years, the influence of ENSO on the SAH tends to be weak. The strength and location of SAH are close to those in the climatology of 1950-2011 during the EL/-PDO or the LA/+PDO. Further analysis indicates that the PDO could exert pronounced influence on the ENSO-SAH connection via modulating the anomalous Walker circulation and charge effect over the tropical Indian Ocean (TIO). During the EL/+PDO or LA/-PDO, the anomalous Walker circulation associated with El Niño or La Niña is stronger and lasts for a longer time than those during the EL/-PDO or LA/+PDO. This leads to stronger descending (ascending) motion over the Maritime Continent and easterly (westerly) wind anomalies over the eastern Indian Ocean in the EL/+PDO (LA/-PDO), which further exert larger effects on the surface heat fluxes and subsurface ocean dynamical heating process over the Indian Ocean. As such, the induced warm (cold) sea surface temperature anomalies over the Indian Ocean are more significant and larger in the EL/+PDO (LA/-PDO). These larger sea surface temperature anomalies over the TIO could exert a more significant influence on the tropospheric temperature via moisture adjustment, which subsequently results in stronger SAH variability in the EL/+PDO or the LA/-PDO.
NASA Astrophysics Data System (ADS)
Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.
2014-12-01
The Southern Ocean displays a zonal dipole (wavenumber one) pattern in sea surface temperature (SST), with a cool zonal anomaly in the Atlantic and Indian sectors and a warm zonal anomaly in the Pacific sector, associated with the large northward excursion of the Malvinas and southeastward flow of the Antarctic Circumpolar Current (ACC). To the north of the cool Indian sector is the warm, narrow Agulhas Return Current (ARC). Air-sea heat flux is largely the inverse of this SST pattern, with ocean heat gain in the Atlantic/Indian, cooling in the southeastward-flowing ARC, and cooling in the Pacific, based on adjusted fluxes from the Southern Ocean State Estimate (SOSE), a ⅙° eddy permitting model constrained to all available in situ data. This heat flux pattern is dominated by turbulent heat loss from the ocean (latent and sensible), proportional to perturbations in the difference between SST and surface air temperature, which are maintained by ocean advection. Locally in the Indian sector, intense heat loss along the ARC is contrasted by ocean heat gain of 0.11 PW south of the ARC. The IPCC AR5 50 year depth-averaged 0-700 m temperature trend shows surprising similarities in its spatial pattern, with upper ocean warming in the ARC contrasted by cooling to the south. Using diagnosed heat budget terms from the most recent (June 2014) 6-year run of the SOSE we find that surface cooling in the ARC is balanced by heating from south-eastward advection by the current whereas heat gain in the ACC is balanced by cooling due to northward Ekman transport driven by strong westerly winds. These results suggest that spatial patterns in multi-decadal upper ocean temperature trends depend on regional variations in upper ocean dynamics.
Impact of tropical cyclones on the intensity and phase propagation of fall Wyrtki jets
NASA Astrophysics Data System (ADS)
Sreenivas, P.; Chowdary, J. S.; Gnanaseelan, C.
2012-11-01
Observations and model simulations are used to study the impact of tropical cyclones (TC) on the fall Wyrtki jets (WJ). These strong narrow equatorial currents peak during November and play a vital role in the energy and mass transport in the tropical Indian Ocean (TIO). Maximum number of TCs is observed over TIO during November with longer than normal life span (8-15 days). These TCs enhance equatorial westerly winds (surface) and amplify monthly mean WJs (both at surface and subsurface) by 0.4 ms-1 (anomalies exceed 0.7 ms-1 during TC), which is about half of the climatological amplitude. Intensified WJs increase the heat content of eastern TIO and modulate air-sea interaction. It is also shown that movement of TCs is mainly responsible for the westward phase propagation of WJs, a previously unexplored mechanism. These features are evident in ECCO2 simulations as well.
Modulation of the SSTA decadal variation on ENSO events and relationships of SSTA With LOD,SOI, etc
NASA Astrophysics Data System (ADS)
Liao, D. C.; Zhou, Y. H.; Liao, X. H.
2007-01-01
Interannual and decadal components of the length of day (LOD), Southern Oscillation Index (SOI) and Sea Surface Temperature anomaly (SSTA) in Nino regions are extracted by band-pass filtering, and used for research of the modulation of the SSTA on the ENSO events. Results show that besides the interannual components, the decadal components in SSTA have strong impacts on monitoring and representing of the ENSO events. When the ENSO events are strong, the modulation of the decadal components of the SSTA tends to prolong the life-time of the events and enlarge the extreme anomalies of the SST, while the ENSO events, which are so weak that they can not be detected by the interannual components of the SSTA, can also be detected with the help of the modulation of the SSTA decadal components. The study further draws attention to the relationships of the SSTA interannual and decadal components with those of LOD, SOI, both of the sea level pressure anomalies (SLPA) and the trade wind anomalies (TWA) in tropic Pacific, and also with those of the axial components of the atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). Results of the squared coherence and coherent phases among them reveal close connections with the SSTA and almost all of the parameters mentioned above on the interannual time scales, while on the decadal time scale significant connections are among the SSTA and SOI, SLPA, TWA, ?3w and ?3w+v as well, and slight weaker connections between the SSTA and LOD, ?3pib and ?3bp
Covariability of Central America/Mexico winter precipitation and tropical sea surface temperatures
NASA Astrophysics Data System (ADS)
Pan, Yutong; Zeng, Ning; Mariotti, Annarita; Wang, Hui; Kumar, Arun; Sánchez, René Lobato; Jha, Bhaskar
2018-06-01
In this study, the relationships between Central America/Mexico (CAM) winter precipitation and tropical Pacific/Atlantic sea surface temperatures (SSTs) are examined based on 68-year (1948-2015) observations and 59-year (1957-2015) atmospheric model simulations forced by observed SSTs. The covariability of the winter precipitation and SSTs is quantified using the singular value decomposition (SVD) method with observational data. The first SVD mode relates out-of-phase precipitation anomalies in northern Mexico and Central America to the tropical Pacific El Niño/La Niña SST variation. The second mode links a decreasing trend in the precipitation over Central America to the warming of SSTs in the tropical Atlantic, as well as in the tropical western Pacific and the tropical Indian Ocean. The first mode represents 67% of the covariance between the two fields, indicating a strong association between CAM winter precipitation and El Niño/La Niña, whereas the second mode represents 20% of the covariance. The two modes account for 32% of CAM winter precipitation variance, of which, 17% is related to the El Niño/La Niña SST and 15% is related to the SST warming trend. The atmospheric circulation patterns, including 500-hPa height and low-level winds obtained by linear regressions against the SVD SST time series, are dynamically consistent with the precipitation anomaly patterns. The model simulations driven by the observed SSTs suggest that these precipitation anomalies are likely a response to tropical SST forcing. It is also shown that there is significant potential predictability of CAM winter precipitation given tropical SST information.
Objective quantification of perturbations produced with a piecewise PV inversion technique
NASA Astrophysics Data System (ADS)
Fita, L.; Romero, R.; Ramis, C.
2007-11-01
PV inversion techniques have been widely used in numerical studies of severe weather cases. These techniques can be applied as a way to study the sensitivity of the responsible meteorological system to changes in the initial conditions of the simulations. Dynamical effects of a collection of atmospheric features involved in the evolution of the system can be isolated. However, aspects, such as the definition of the atmospheric features or the amount of change in the initial conditions, are largely case-dependent and/or subjectively defined. An objective way to calculate the modification of the initial fields is proposed to alleviate this problem. The perturbations are quantified as the mean absolute variations of the total energy between the original and modified fields, and an unique energy variation value is fixed for all the perturbations derived from different PV anomalies. Thus, PV features of different dimensions and characteristics introduce the same net modification of the initial conditions from an energetic point of view. The devised quantification method is applied to study the high impact weather case of 9-11 November 2001 in the Western Mediterranean basin, when a deep and strong cyclone was formed. On the Balearic Islands 4 people died, and sustained winds of 30 ms-1 and precipitation higher than 200 mm/24 h were recorded. Moreover, 700 people died in Algiers during the first phase of the event. The sensitivities to perturbations in the initial conditions of a deep upper level trough, the anticyclonic system related to the North Atlantic high and the surface thermal anomaly related to the baroclinicity of the environment are determined. Results reveal a high influence of the upper level trough and the surface thermal anomaly and a minor role of the North Atlantic high during the genesis of the cyclone.
Role of the Tropical Pacific in recent Antarctic Sea-Ice Trends
NASA Astrophysics Data System (ADS)
Codron, F.; Bardet, D.; Allouache, C.; Gastineau, G.; Friedman, A. R.; Douville, H.; Voldoire, A.
2017-12-01
The recent (up to 2016) trends in Antarctic sea-ice cover - a global increase masking a dipole between the Ross and Bellingshausen-Weddel seas - are still not well understood, and not reproduced by CMIP5 coupled climate models. We here explore the potential role of atmospheric circulation changes around the Amundsen Sea, themselves possibly forced by tropical SSTs, an explanation that has been recently advanced. As a first check on this hypothesis, we compare the atmospheric circulation trends simulated by atmospheric GCMs coupled with an ocean or with imposed SSTs (AMIP experiment from CMIP5); the latter being in theory able to reproduce changes caused by natural SST variability. While coupled models simulate in aggregate trends that project on the SAM structure, strongest in summer, the AMIP simulations add in the winter season a pronounced Amundsen Sea Low signature (and a PNA signature in the northern hemisphere) both consistent with a Niña-like trend in the tropical Pacific. We then use a specific coupled GCM setup, in which surface wind anomalies over the tropical Pacific are strongly nudged towards the observed ones, including their interannual variability, but the model is free to evolve elsewhere. The two GCMs used then simulate a deepening trend in the Amundsen-Sea Low in winter, and are able to reproduce a dipole in sea-ice cover. Further analysis shows that the sea-ice dipole is partially forced by surface heat flux anomalies in early winter - the extent varying with the region and GCM used. The turbulent heat fluxes then act to damp the anomalies in late winter, which may however be maintained by ice-albedo feedbacks.
Phenological Responses to ENSO in the Global Oceans
NASA Astrophysics Data System (ADS)
Racault, M.-F.; Sathyendranath, S.; Menon, N.; Platt, T.
2017-01-01
Phenology relates to the study of timing of periodic events in the life cycle of plants or animals as influenced by environmental conditions and climatic forcing. Phenological metrics provide information essential to quantify variations in the life cycle of these organisms. The metrics also allow us to estimate the speed at which living organisms respond to environmental changes. At the surface of the oceans, microscopic plant cells, so-called phytoplankton, grow and sometimes form blooms, with concentrations reaching up to 100 million cells per litre and extending over many square kilometres. These blooms can have a huge collective impact on ocean colour, because they contain chlorophyll and other auxiliary pigments, making them visible from space. Phytoplankton populations have a high turnover rate and can respond within hours to days to environmental perturbations. This makes them ideal indicators to study the first-level biological response to environmental changes. In the Earth's climate system, the El Niño-Southern Oscillation (ENSO) dominates large-scale inter-annual variations in environmental conditions. It serves as a natural experiment to study and understand how phytoplankton in the ocean (and hence the organisms at higher trophic levels) respond to climate variability. Here, the ENSO influence on phytoplankton is estimated through variations in chlorophyll concentration, primary production and timings of initiation, peak, termination and duration of the growing period. The phenological variabilities are used to characterise phytoplankton responses to changes in some physical variables: sea surface temperature, sea surface height and wind. It is reported that in oceanic regions experiencing high annual variations in the solar cycle, such as in high latitudes, the influence of ENSO may be readily measured using annual mean anomalies of physical variables. In contrast, in oceanic regions where ENSO modulates a climate system characterised by a seasonal reversal of the wind forcing, such as the monsoon system in the Indian Ocean, phenology-based mean anomalies of physical variables help refine evaluation of the mechanisms driving the biological responses and provide a more comprehensive understanding of the integrated processes.
Surface layer and bloom dynamics observed with the Prince William Sound Autonomous Profiler
NASA Astrophysics Data System (ADS)
Campbell, R. W.
2016-02-01
As part of a recent long term monitoring effort, deployments of a WETLabs Autonomous Moored Profiler (AMP) began Prince William Sound (PWS) in 2013. The PWS AMP consists of a positively buoyant instrument frame, with a winch and associated electronics that profiles the frame from a park depth (usually 55 m) to the surface by releasing and retrieving a thin UHMWPE tether; it generally conducts a daily cast and measures temperature, salinity, chlorophyll-a fluorescence, turbidity, and oxygen and nitrate concentrations. Upward and downward looking ADCPs are mounted on a float below the profiler, and an in situ plankton imager is in development and will be installed in 2016. Autonomous profilers are a relatively new technology, and early deployments experienced a number of failures from which valuable lessons may be learned. Nevertheless, an unprecedented time series of the seasonal biogeochemical procession in the surface waters coastal Gulf of Alaska was collected in 2014 and 2015. The northern Gulf of Alaska has experienced a widespread warm anomaly since early 2014, and surface layer temperature anomalies in PWS were strongly positive during winter 2014. The spring bloom observed by the profiler began 2-3 weeks earlier than average, with surface nitrate depleted by late April. Although surface temperatures were still above average in 2015, bloom timing was much later, with a short vigorous bloom in late April and a subsurface bloom in late May that coincided with significant nitrate drawdown. As well as the vernal blooms, wind-driven upwelling events lead to several small productivity pulses that were evident in changes in nitrate and oxygen concentrations, and chlorophyll-a fluorescence. As well as providing a mechanistic understanding of surface layer biogeochemistry, high frequency observations such as these put historical observations in context, and provide new insights into the scales of variability in the annual cycles of the surface ocean in the North Pacific.
MEMS Cantilever Sensor for THz Photoacoustic Chemical Sensing and Spectroscopy
2013-12-26
meaning the detector didn’t have to be cryogenically cooled. Piezoresistive cantilever style sensor designs have been fabricated for wind and...made a two cantilever pizeoresistive wind speed sensor that utilized a Wheatstone bridge configuration. The designed cantilevers, etched out of...Murakami et al. in Japan fabricated diaphragm and cantilever PZT microphone sensors for anomaly detection in machines such as turbines or engines
Experimental Investigation into the Radar Anomalies on the Surface of Venus
NASA Technical Reports Server (NTRS)
Kohler, E.; Gavin, P.; Chevrier, V.; Johnson, Natasha M.
2012-01-01
Radar mapping of thc surface of Venus shows areas of high reflectivity (low emissivity) in the Venusian highlands at altitudes between 2.5-4.75 kilometers. The origin of the radar anomalies found in the Venusian highlands remains unclear. Most explanations of the potential causes for these radar anomalies come from theoretical work. Previous studies suggest increased surface roughness or materials with higher dielectric constants as well as surface atmospheric interactions. Several possible candidates of high-dielectric materials are tellurium) ferroelectric materials, and lead or bismuth sulfides. While previous studies have been influential in determining possible sources for the Venus anomalies, only a very few hypotheses have been verified via experimentation. This work intends to experimentally constrain the source of the radar anomalies on Venus. This study proposes to investigate four possible materials that could potentially cause the high reflectivities on the surface of Venus and tests their behavior under simulated Venusian conditions.
Collapse of the 2017 Winter Beaufort High: A Response to Thinning Sea Ice?
NASA Astrophysics Data System (ADS)
Moore, G. W. K.; Schweiger, A.; Zhang, J.; Steele, M.
2018-03-01
The winter Arctic atmosphere is under the influence of two very different circulation systems: extratropical cyclones travel along the primary North Atlantic storm track from Iceland toward the eastern Arctic, while the western Arctic is characterized by a quasi-stationary region of high pressure known as the Beaufort High. The winter (January through March) of 2017 featured an anomalous reversal of the normally anticyclonic surface winds and sea ice motion in the western Arctic. This reversal can be traced to a collapse of the Beaufort High as the result of the intrusion of low-pressure systems from the North Atlantic, along the East Siberian Coast, into the Arctic Basin. Thin sea ice as the result of an extremely warm autumn (October through December) of 2016 contributed to the formation of an anomalous thermal low over the Barents Sea that, along with a northward shift of the tropospheric polar vortex, permitted this intrusion. The collapse of the Beaufort High during the winter of 2017 was associated with simultaneous 2-sigma sea level pressure, surface wind, and sea ice circulation anomalies in the western Arctic. As the Arctic sea ice continues to thin, such reversals may become more common and impact ocean circulation, sea ice, and biology.
Extreme Temperature Regimes during the Cool Season and their Associated Large-Scale Circulations
NASA Astrophysics Data System (ADS)
Xie, Z.
2015-12-01
In the cool season (November-March), extreme temperature events (ETEs) always hit the continental United States (US) and provide significant societal impacts. According to the anomalous amplitudes of the surface air temperature (SAT), there are two typical types of ETEs, e.g. cold waves (CWs) and warm waves (WWs). This study used cluster analysis to categorize both CWs and WWs into four distinct regimes respectively and investigated their associated large-scale circulations on intra-seasonal time scale. Most of the CW regimes have large areal impact over the continental US. However, the distribution of cold SAT anomalies varies apparently in four regimes. In the sea level, the four CW regimes are characterized by anomalous high pressure over North America (near and to west of cold anomaly) with different extension and orientation. As a result, anomalous northerlies along east flank of anomalous high pressure convey cold air into the continental US. To the middle troposphere, the leading two groups feature large-scale and zonally-elongated circulation anomaly pattern, while the other two regimes exhibit synoptic wavetrain pattern with meridionally elongated features. As for the WW regimes, there are some patterns symmetry and anti-symmetry with respect to CW regimes. The WW regimes are characterized by anomalous low pressure and southerlies wind over North America. The first and fourth groups are affected by remote forcing emanating from North Pacific, while the others appear mainly locally forced.
Importance of air-sea interaction on wind waves, storm surge and hurricane simulations
NASA Astrophysics Data System (ADS)
Chen, Yingjian; Yu, Xiping
2017-04-01
It was reported from field observations that wind stress coefficient levels off and even decreases when the wind speed exceeds 30-40 m/s. We propose a wave boundary layer model (WBLM) based on the momentum and energy conservation equations. Taking into account the physical details of the air-sea interaction process as well as the energy dissipation due to the presence of sea spray, this model successfully predicts the decreasing tendency of wind stress coefficient. Then WBLM is embedded in the current-wave coupled model FVCOM-SWAVE to simulate surface waves and storm surge under the forcing of hurricane Katrina. Numerical results based on WBLM agree well with the observed data of NDBC buoys and tide gauges. Sensitivity analysis of different wind stress evaluation methods also shows that large anomalies of significant wave height and surge elevation are captured along the passage of hurricane core. The differences of the local wave height are up to 13 m, which is in accordance with the general knowledge that the ocean dynamic processes under storm conditions are very sensitive to the amount of momentum exchange at the air-sea interface. In the final part of the research, the reduced wind stress coefficient is tested in the numerical forecast of hurricane Katrina. A parabolic formula fitted to WBLM is employed in the atmosphere-ocean coupled model COAWST. Considering the joint effects of ocean cooling and reduced wind drag, the intensity metrics - the minimum sea level pressure and the maximum 10 m wind speed - are in good inconsistency with the best track result. Those methods, which predict the wind stress coefficient that increase or saturate in extreme wind condition, underestimate the hurricane intensity. As a whole, we unify the evaluation methods of wind stress in different numerical models and yield reasonable results. Although it is too early to conclude that WBLM is totally applicable or the drag coefficient does decrease for high wind speed, our current research is considered to be a significant step for the application of air-sea interaction on the ocean and atmosphere modelling.
Infrasonic ray tracing applied to mesoscale atmospheric structures: refraction by hurricanes.
Bedard, Alfred J; Jones, R Michael
2013-11-01
A ray-tracing program is used to estimate the refraction of infrasound by the temperature structure of the atmosphere and by hurricanes represented by a Rankine-combined vortex wind plus a temperature perturbation. Refraction by the hurricane winds is significant, giving rise to regions of focusing, defocusing, and virtual sources. The refraction of infrasound by the temperature anomaly associated with a hurricane is small, probably no larger than that from uncertainties in the wind field. The results are pertinent to interpreting ocean wave generated infrasound in the vicinities of tropical cyclones.
Radiative forcing and climate response due to the presence of black carbon in cloud droplets
NASA Astrophysics Data System (ADS)
Wang, Zhili; Zhang, Hua; Li, Jiangnan; Jing, Xianwen; Lu, Peng
2013-05-01
Optical properties of clouds containing black carbon (BC) particles in their water droplets are calculated by using the Maxwell Garnett mixing rule and Mie theory. The obtained cloud optical properties were then applied to an interactive system by coupling an aerosol model with a General Circulation Model. This system is used to investigate the radiative forcing and the equilibrium climate response due to BC in cloud droplets. The simulated global annual mean radiative forcing at the top of the atmosphere due to the BC in cloud droplets is found to be 0.086 W m-2. Positive radiative forcing can be seen in Africa, South America, East and South Asia, and West Europe, with a maximum value of 1.5 W m-2 being observed in these regions. The enhanced cloud absorption is shown to increase the global annual mean values of solar heating rate, water vapor, and temperature, but to decrease the global annual mean cloud fraction. Finally, the global annual mean surface temperature is shown to increase by +0.08 K. The local maximum changes are found to be as low as -1.5 K and as high as +0.6 K. We show there has been a significant difference in surface temperature change in the Southern and Northern Hemisphere (+0.19 K and -0.04 K, respectively). Our results show that this interhemispheric asymmetry in surface temperature change could cause a corresponding change in atmospheric dynamics and precipitation. It is also found that the northern trade winds are enhanced in the Intertropical Convergence Zone (ITCZ). This results in northerly surface wind anomalies which cross the equator to converge with the enhanced southern trade winds in the tropics of Southern Hemisphere. This is shown to lead to an increase (a decrease) of vertical ascending motion and precipitation on the south (north) side of the equator, which could induce a southward shift in the tropical rainfall maximum related to the ITCZ.
Radiative forcing and climate response due to the presence of black carbon in cloud droplets
NASA Astrophysics Data System (ADS)
Wang, Z.; Zhang, H.; Li, J.; Jing, X.; Lu, P.
2013-05-01
Optical properties of clouds containing black carbon (BC) particles in their water droplets are calculated by using the Maxwell Garnett mixing rule and Mie theory. The obtained cloud optical properties were then applied to an interactive system by coupling an aerosol model with a General Circulation Model. This system is used to investigate the radiative forcing and the equilibrium climate response due to BC in cloud droplets. The simulated global annual mean radiative forcing at the top of the atmosphere due to the BC in cloud droplets is found to be 0.086 W m-2. Positive radiative forcing can be seen in Africa, South America, East and South Asia and West Europe, with a maximum value of 1.5 W m-2 being observed in these regions. The enhanced cloud absorption is shown to increase the global annual mean values of solar heating rate, water vapor and temperature, but to decrease the global annual mean cloud fraction. Finally, the global annual mean surface temperature is shown to increase by +0.08 K. The local maximum changes are found to be as low as -1.5 K and as high as +0.6 K. We show there has been a significant difference in surface temperature change in the Southern and Northern Hemisphere (+0.19 K and -0.04 K, respectively). Our results show that this interhemispheric asymmetry in surface temperature change could cause a corresponding change in atmospheric dynamics and precipitation. It is also found that the northern trade winds are enhanced in the Intertropical Convergence Zone (ITCZ). This results in northerly surface wind anomalies which cross the equator to converge with the enhanced southern trade winds in the tropics of Southern Hemisphere. This is shown to lead to an increase (a decrease) of vertical ascending motion and precipitation on the south (north) side of the equator, which could induce a southward shift in the tropical rainfall maximum related to the ITCZ.
Early Spring in Europe: A Result of More Dominant North-Atlantic Southwesterlies?
NASA Technical Reports Server (NTRS)
Otterman, J.; Atlas, R.; Chase, T. N.; Chou, S.-H.; Jusem, J. C.; Pielke, R. A., Sr.; Rogers, J.; Russell, G. L.; Schubert, S. D.; Sud, Y. C.;
2000-01-01
Abstract A 1999 study reports an advancement of spring in Europe by 0.2 days per year in the 30 years since 1960. Our analysis indicates that this trend results directly from a change in the late-winter surface winds over the eastern North Atlantic: the southwesterly direction became more dominant, and the speed of these southwesterlies increased slightly. Splitting the 52-year NCEP reanalysis dataset into the First Half, FH (1948-1973)), and the Second Half, SH (1974-1999), we analyze the wind direction for the February mean at three sites at 45N: site A at 30W, site B at 20W, and site C at 10W. The incidence (number of years) of the southwesterlies in SH Vs. (FH) at these sites respectively increased in SH as follows: 24(18), 19(12), 14(l 1); whereas the incidence of northeasterlies decreased: 0(2), 1(2), and 1(6). When the February mean wind is southwesterly, the monthly mean sensible heat flux from the ocean at these sites takes zero or slightly negative values, that is, the surface air is warmer than the ocean. Analyzing the scenario in the warm late winter 1990, we observe that the sensible heat flux from the ocean surface in February 1990 shows a "tongue" of negative values extending southwest from southern England to 7N. This indicates that the source of the maritime air advected into Europe lies to the south of the "tongue." Streamline analysis suggests that the Southwestern or southcentral North Atlantic is the source. For February 1990, we find strong, ascending motions over Europe at 700 mb, up to -0.4 Pa/s as monthly averages. Associated with the unstable low-levels of the troposphere are positive rain and cloud anomalies. Thus, positive in situ feedback over land in late winter (when shortwave absorption is not significant) apparently further enhances the surface temperature through an increase in the greenhouse effect due to increased water vapor and cloudiness.
NASA Technical Reports Server (NTRS)
Perigaud, Claire; Delecluse, Pascale
1993-01-01
Sea level variations of the Indian Ocean north of 20 deg S are analyzed from Geosat satellite altimeter data over April 1985-September 1989. These variations are compared and interpreted with numerical simulations derived from a reduced gravity model forced by FSU observed winds over the same period. After decomposition into complex empirical orthogonal functions, the low-frequency anomalies are described by the first two modes for observations as well as for simulations. The sums of the two modes contain 34% and 40% of the observed and simulated variances, respectively. Averaged over the basin, the observed and simulated sea level changes are correlated by 0.92 over 1985-1988. The strongest change happens during the El Ninio 1986-1987: between winter 1986 and summer 1987 the basin-averaged sea level rises by approx. 1 cm. These low-frequency variations can partly be explained by changes in the Sverdrup circulation. The southern tropical Indian Ocean between 1O deg and 20 deg S is the domain where those changes are strongest: the averaged sea level rises by approx. 4.5 cm between winter 1986 and winter 1987. There, the signal propagates southwestward across the basin at a speed similar to free Rossby waves. Sensitivity of observed anomalies is examined over 1987-1988, with different orbit ephemeris, tropospheric corrections, and error reduction processes. The uncertainty of the basin-averaged sea level estimates is mostly due to the way the orbit error is reduced and reaches approx. 1 cm. Nonetheless, spatial correlation is good between the various observations and better than between observations and simulations. Sensitivity of simulated anomalies to the wind uncertainty, examined with Former Soviet Union (FSU) and European Center for Medium-Range Weather Forecasting (ECMWF) forcings over 1985-1988, shows that the variance of the simulations driven by ECMWF is 52% smaller, as FSU winds are stronger than ECMWF. Results show that the wind strength also affects the dynamic response of the ocean: anomalies propagate westward across the basin more than twice as fast with FSU than with ECMWF. It is found that the discrepancy is larger between ECMWF and FSU simulations than between observations and FSU simulations.
Black sea surface temperature anomaly on 5th August 1998 and the ozone layer thickness
NASA Astrophysics Data System (ADS)
Manev, A.; Palazov, K.; Raykov, St.; Ivanov, V.
2003-04-01
BLACK SEA SURFACE TEMPERATURE ANOMALY ON 5th AUGUST 1998 AND THE OZONE LAYER THICKNESS A. Manev , K. Palazov , St. Raykov, V. Ivanov Solar Terrestrial Influences Laboratory, Bulgarian Academy of Sciences amanev@abv.bg This paper focuses on the peculiarities of the Black Sea surface temperature anomaly on 05.08.1998. Researching the daily temperature changes in a number of control fields in the course of 8-10 years, we have found hidden correlations and anomalous deviations in the sea surface temperatures on a global scale. Research proves the statistical reliability of the temperature anomaly on the entire Black Sea surface registered on 04.-05.08.1998. In the course of six days around these dates the temperatures are up to 2°C higher than the maximum temperatures in this period in the other seven years. A more detailed analysis of the dynamics of the anomaly required the investigation of five Black Sea surface characteristic zones of 75x75 km. The analysis covers the period 20 days - 10 days before and 10 days after the anomaly. Investigations aimed at interpreting the reasons for the anomalous heating of the surface waters. We have tried to analyze the correlation between sea surface temperature and the global ozone above the Black Sea by using simultaneously data from the two satellite systems NOAA and TOMS. Methods of processing and comparing the data from the two satellite systems are described. The correlation coefficients values for the five characteristic zones are very high and close, which proves that the character of the correlation ozone - sea surface temperature is the same for the entire Black Sea surface. Despite the high correlation coefficient, we have proved that causality between the two phenomena at the time of the anomaly does not exit.
Retrieving current and wind vectors from ATI SAR data: airborne evidence and inversion strategy
NASA Astrophysics Data System (ADS)
Martin, Adrien; Gommenginger, Christine; Chapron, Bertrand; Marquez, José; Doody, Sam
2017-04-01
Conventional and along-track interferometric (ATI) Synthetic Aperture Radar (SAR) sense the motion of the ocean surface by measuring the Doppler shift of reflected signals. Together with the water displacement associated with ocean currents, the SAR measurements are also affected by a Wind-wave induced Artefact Surface Velocity (WASV) caused by the velocity of Bragg scatterers and the orbital velocity of ocean surface gravity waves. The WASV has been modelled theoretically in past studies but has been estimated empirically only once using Envisat ASAR. Here we propose, firstly, to evaluate this WASV from airborne ATI SAR data, secondly, to validate the airborne retrieved surface current after correction of the WASV against HF radar measurements and thirdly to examine the best inversion strategy for a an Ocean Surface Current (OSC) satellite mission to retrieve accurately both the ocean surface current vector (OSCV) and the wind vector in the frame of an OSC satellite mission. The airborne ATI SAR data were acquired in the tidally dominated Irish Sea using a Wavemill-type dual-beam SAR interferometer. A comprehensive collection of airborne Wavemill data acquired in a star pattern over a well-instrumented site made it possible to estimate the magnitude and dependence on azimuth and incidence angle of the WASV. The airborne results compare favourably with those reported for Envisat ASAR, empirical model, which has been used to correct for it. Validation of the current retrieval capabilities of the proof-of-concept has been conducted against HF radar giving a precisions typically better than 0.1 m/s for surface current speed and 7° for direction. Comparisons with POLCOMS (1.8 km) indicate that the model reproduces well the overall temporal evolution but does not capture the high spatial variability of ocean surface currents at the maximum ebb flow. Airborne retrieved currents highlight a short-scale spatial variability up to 100m related to bathymetry channels, which are not observed (HF radar, 4km resolution) or simulated (POLCOMS, 1.8km). The inversion strategy points to the need for accurate measurement of both the backscatter amplitude and the Doppler information (either as a Doppler centroid frequency anomaly for SAR DCA, or as an interferometric phase for ATI) as well as the need for dual polarization capability (VV+HH) for non-ambiguous inversion. Preliminary inversion results show that the retrieval accuracy for OSC velocity better than 10 cm/s can be achieved but that the OSC accuracy is strongly sensitive to the wind direction relative to the antennas orientation. This concept is a unique opportunity to improve our understanding of the air-sea interaction, the ocean submesoscale dynamic and its impact on the oceanic vertical transport. This concept is particularly well fitted for these ocean surface current and wind vectors observations in coastal and polar regions.
Environmental studies of the Arabian Sea using remote sensing and GIS
NASA Astrophysics Data System (ADS)
Saxena, Ashlesha; Menezes, Andrew
2006-12-01
The Arabian Sea, situated in the western part of the northern Indian Ocean is a tropical basin. It is bounded on the east by the Indian peninsula, on the north by Baluchistan and Sindh provinces of Pakistan and on the west by the landmass of Arabia and Africa. The environmental factors that influence this tropical basin are the seasonally changing winds from the northeast during winter (November-February) and southwest during summer (June to September). Accordingly, the waters of the basin will experience seasonal variations. The study aims at understanding the seasonal and inter-annual variation of the Arabian Sea using satellite-derived data. The spatial domain selected for the present study is 40 degrees E and 78 degrees E longitude and equator to 30 degrees N. The remote sensing data with respect to sea surface temperature (SST), sea surface wind, sea surface height (SSH), and chlorophyll pigment concentration during January 2002 to December 2005 were used to understand the spatio-temporal variability of the Arabian Sea. The monthly mean SST data was obtained from Modis aqua, winds from Quikscat and chlorophyll pigment concentration from SeaWiFS. The SSH anomaly data was obtained from the merged product - Topex/Poseidon ERS 1/2 satellite which is 7-day snapshot. The spatial resolution of these data is 0.3 degrees latitude x 0.3 degrees longitude. Geographical information system (GIS) was used for processing and analysing the above parameters to determine the variability and detection of oceanic processes that are responsible for such variability.The study showed a very strong inverse correlation between SST and chlorophyll concentrations. Arabian Sea undergoes cooling during summer due to upwelling and advection, and in winter due to surface cooling under reduced solar heating. Upwelling along the coasts of Somalia, Arabia, and the west coast of India brings cold and nutrient rich sub-surface waters to the surface, which supports the observed high chlorophyll concentrations. During winter the convective mixing in the northern Arabian Sea supports high chlorophyll pigment concentrations. Due to strong solar heating, SST was warmest in spring (April), which supported least chlorophyll concentration.llite
Synoptic volumetric variations and flushing of the Tampa Bay estuary
NASA Astrophysics Data System (ADS)
Wilson, M.; Meyers, S. D.; Luther, M. E.
2014-03-01
Two types of analyses are used to investigate the synoptic wind-driven flushing of Tampa Bay in response to the El Niño-Southern Oscillation (ENSO) cycle from 1950 to 2007. Hourly sea level elevations from the St. Petersburg tide gauge, and wind speed and direction from three different sites around Tampa Bay are used for the study. The zonal (u) and meridional (v) wind components are rotated clockwise by 40° to obtain axial and co-axial components according to the layout of the bay. First, we use the subtidal observed water level as a proxy for mean tidal height to estimate the rate of volumetric bay outflow. Second, we use wavelet analysis to bandpass sea level and wind data in the time-frequency domain to isolate the synoptic sea level and surface wind variance. For both analyses the long-term monthly climatology is removed and we focus on the volumetric and wavelet variance anomalies. The overall correlation between the Oceanic Niño Index and volumetric analysis is small due to the seasonal dependence of the ENSO response. The mean monthly climatology between the synoptic wavelet variance of elevation and axial winds are in close agreement. During the winter, El Niño (La Niña) increases (decreases) the synoptic variability, but decreases (increases) it during the summer. The difference in winter El Niño/La Niña wavelet variances is about 20 % of the climatological value, meaning that ENSO can swing the synoptic flushing of the bay by 0.22 bay volumes per month. These changes in circulation associated with synoptic variability have the potential to impact mixing and transport within the bay.
SELMA: a mission to study lunar environment and surface interaction
NASA Astrophysics Data System (ADS)
Barabash, Stas; Futaana, Yoshifumi
2017-04-01
SELMA (Surface, Environment, and Lunar Magnetic Anomalies) proposed for the ESA M5 mission opportunity is a mission to study how the Moon environment and surface interact. SELMA addresses four overarching science questions: (1) What is the origin of water on the Moon? (2) How do the "volatile cycles" on the Moon work? (3) How do the lunar mini-magnetospheres work? (4) What is the influence of dust on the lunar environment and surface? SELMA uses a unique combination of remote sensing via UV, IR, and energetic neutral atoms and local measurements of plasma, fields, waves, exospheric gasses, and dust. It will also conduct an impact experiment to investigate volatile content in the soil of the permanently shadowed area of the Shakleton crater. SELMA carries an impact probe to sound the Reiner-Gamma mini-magnetosphere and its interaction with the lunar regolith from the SELMA orbit down to the surface. The SELMA science objectives include: - Establish the role of the solar wind and exosphere in the formation of the water bearing materials; - Determine the water content in the regolith of the permanently shadowed region and its isotope composition; - Establish variability, sources and sinks of the lunar exosphere and its relations to impact events; - Investigate a mini-magnetosphere interaction with the solar wind; - Investigate the long-term effects of mini-magnetospheres on the local surface; - Investigate how the impact events affect the lunar dust environments; - Investigate how the plasma effects result in lofting the lunar dust; SELMA is a flexible and short (15 months) mission including the following elements SELMA orbiter, SELMA Impact Probe for Magnetic Anomalies (SIP-MA), passive Impactor, and Relaying CubeSat (RCS). SELMA is placed on quasi-frozen polar orbit 30 km x 200 km with the pericenter over the South Pole. Approximately 9 months after the launch SELMA releases SIP-MA to sound the Reiner-Gamma magnetic anomaly with very high time resolution <0.5 s to investigate small-scale structure of the respective mini-magnetosphere. At the end of the mission the passive impactor impacts the permanently shadowed region of the Shakleton crater >10 sec before SELMA and SELMA orbiter flies through the resulted plume to perform high resolution mass spectroscopy of the released volatiles. The data are downlinked to ground and RCS. RCS stays on orbit for 2 more hours to downlink the complete data set. SELMA orbiter payload include: Remote sensing instruments - Infrared and visible spectrometer with spectral range 400 - 3600 nm; - Wide angle and transient phenomena camera to detect meteoroid impact (>100 g) - Moon UV imaging spectrometer with spectral range 115 - 315 nm - ENA telescope with an angular resolution < 10 ̊ In-situ instruments - Lunar ion spectrometer M/ΔM > 80 - Lunar scattered proton and negative ion experiment: - Lunar electron spectrometer - Moon magnetometer - Plasma wave instrument - Lunar dust detector: M>10-15 kg - Lunar exospheric mass spectrometer: M/ΔM > 1000 SIP-MA payload includes: - Waves and electric field instrument - Impact probe ions and electrons spectrometer - Impact probe magnetometer - Context camera Passive 10 kg copper spherical impactor
Dynamic Topography and Sea Level Anomalies of the Southern Ocean: Variability and Teleconnections
NASA Astrophysics Data System (ADS)
Armitage, Thomas W. K.; Kwok, Ron; Thompson, Andrew F.; Cunningham, Glenn
2018-01-01
This study combines sea surface height (SSH) estimates of the ice-covered Southern Ocean with conventional open-ocean SSH estimates from CryoSat-2 to produce monthly composites of dynamic ocean topography (DOT) and sea level anomaly (SLA) on a 50 km grid spanning 2011-2016. This data set reveals the full Southern Ocean SSH seasonal cycle for the first time; there is an antiphase relationship between sea level on the Antarctic continental shelf and the deeper basins, with coastal SSH highest in autumn and lowest in spring. As a result of this pattern of seasonal SSH variability, the barotropic component of the Antarctic Slope Current (ASC) has speeds that are regionally up to twice as fast in the autumn. Month-to-month circulation variability of the Ross and Weddell Gyres is strongly influenced by the local wind field, and is correlated with the local wind curl (Ross: -0.58; Weddell: -0.67). SSH variability is linked to both the Southern Oscillation and the Southern Annular Mode, dominant modes of southern hemisphere climate variability. In particular, during the strong 2015-2016 El Niño, a sustained negative coastal SLA of up to -6 cm, implying a weakening of the ASC, was observed in the Pacific sector of the Southern Ocean. The ability to examine sea level variability in the seasonally ice-covered regions of the Southern Ocean—climatically important regions with an acute sparsity of data—makes this new merged sea level record of particular interest to the Southern Ocean oceanography and glaciology communities.
Interannual Weakening of the Tropical Pacific Walker Circulation Due to Strong Tropical Volcanism
NASA Astrophysics Data System (ADS)
Miao, Jiapeng; Wang, Tao; Wang, Huijun; Sun, Jianqi
2018-06-01
In order to examine the response of the tropical Pacific Walker circulation (PWC) to strong tropical volcanic eruptions (SVEs), we analyzed a three-member long-term simulation performed with HadCM3, and carried out four additional CAM4 experiments. We found that the PWC shows a significant interannual weakening after SVEs. The cooling effect from SVEs is able to cool the entire tropics. However, cooling over the Maritime Continent is stronger than that over the central-eastern tropical Pacific. Thus, non-uniform zonal temperature anomalies can be seen following SVEs. As a result, the sea level pressure gradient between the tropical Pacific and the Maritime Continent is reduced, which weakens trade winds over the tropical Pacific. Therefore, the PWC is weakened during this period. At the same time, due to the cooling subtropical and midlatitude Pacific, the Intertropical Convergence Zone (ITCZ) and South Pacific convergence zone (SPCZ) are weakened and shift to the equator. These changes also contribute to the weakened PWC. Meanwhile, through the positive Bjerknes feedback, weakened trade winds cause El Niño-like SST anomalies over the tropical Pacific, which in turn further influence the PWC. Therefore, the PWC significantly weakens after SVEs. The CAM4 experiments further confirm the influences from surface cooling over the Maritime Continent and subtropical/midlatitude Pacific on the PWC. Moreover, they indicate that the stronger cooling over the Maritime Continent plays a dominant role in weakening the PWC after SVEs. In the observations, a weakened PWC and a related El Niño-like SST pattern can be found following SVEs.
The Low-Level Flow Along the Gulf of California During the North American Monsoon.
NASA Astrophysics Data System (ADS)
Bordoni, S.; Stevens, B.
2007-05-01
Six-years (1999-2004) of QuikSCAT near-surface ocean winds are used to study the flow over the northeast Pacific and the Gulf of California (GoC) during the North American Monsoon season. The wind data show that the onset of the summer season is accompanied by a reversal of the flow along the GoC, with the establishment of a mean southerly wind throughout the gulf. This reversal occurs in late spring and precedes the onset of the monsoonal rains. In the heart of the monsoon season, the time-mean flow is found to be composed of periods of enhanced southerly winds associated with gulf surges. The role that gulf surges play in modulating the GoC mean southerly flow is further explored by performing an EOF analysis of the summertime daily wind anomalies. A gulf surge mode emerges from this analysis as the leading EOF, with the corresponding principal component time series interpretable as an objective index for gulf surge occurrence. This index is used as a reference time series for regression analysis, to explore the relationship between gulf surges and precipitation over the core and marginal regions of the monsoon, as well as the manifestation of these transient events in the large-scale circulation. It is found that, although seemingly mesoscale features confined over the GoC, gulf surges are intimately linked to patterns of large-scale variability of the eastern Pacific ITCZ and greatly contribute to the definition of the northward extent of the monsoonal rains.
NASA Astrophysics Data System (ADS)
Marciniak, Jakub; Schlichtholz, Pawel; Maslowski, Wieslaw
2016-04-01
Arctic climate system is influenced by oceanic heat transport with the Atlantic water (AW) streaming towards the Arctic Ocean in two branches, through the deep Fram Strait and the shallow Barents Sea. In Fram Strait, the AW submerges below the Polar surface water and then flows cyclonically along the margin of the Arctic Ocean as a subsurface water mass in the Arctic Slope Current. In contrast to the Fram Strait branch, which is the major source of heat for the Arctic Ocean, most of the heat influx to the Barents Sea through the Barents Sea opening (BSO) is passed to the atmosphere. Only cold remnants of AW outflow to the Arctic Ocean through the northeastern gate of the Barents Sea. Some AW entering the Barents Sea recirculates westward, contributing to an outflow from the Barents Sea through the BSO along the shelf slope south of Bear Island, in the Bear Island Slope Current. Even though the two-branched AW flow toward the Arctic Ocean has been known for more than a century, little is known about co-variability of heat fluxes in the two branches, its mechanisms and climatic implications. Recent studies indicate that the Bear Island Slope Current may play a role in this co-variability. Here, co-variability of the flow through the BSO and Fram Strait is investigated using a pan-Arctic coupled ice-ocean hindcast model run for the period 1979-2004 and forced with daily atmospheric data from the ECMWF. Significant wintertime co-variability between the volume transport in the Bear Island and Arctic slope currents and its link to wind forcing over the Barents Sea is confirmed. It is found that the volume transports in these currents are, however, not correlated in the annual mean and that the wintertime co-variability of these currents has no immediate effect on either the net heat flux through the BSO or the net heat flux divergence in the Barents Sea. It is shown that the main climatic effect of wind forcing over the northern Barents Sea shelf is to induce temperature anomalies in the Murman/West Novaya Zemlya current system on the eastern side of the Barents Sea. These anomalies affect sea ice in the eastern Barents Sea 1-3 months later, but are not completely lost on the interactions with the sea ice and local atmosphere. Statistically significant subsurface temperature anomalies driven by anomalous winds over the Barents Sea join, on their exit to the Arctic Ocean through St. Anna Trough, the Arctic Slope Current, in which they persist for several years.
NASA Astrophysics Data System (ADS)
Rodgers, K. B.; Mikaloff-Fletcher, S. E.; Bianchi, D.; Beaulieu, C.; Galbraith, E. D.; Gnanadesikan, A.; Hogg, A. G.; Iudicone, D.; Lintner, B. R.; Naegler, T.; Reimer, P. J.; Sarmiento, J. L.; Slater, R. D.
2011-10-01
Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004) indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the period between AD 950 and 1830. The Northern and Southern Hemispheric Δ14C records display similar variability, but from the data alone is it not clear whether these variations are driven by the production of 14C in the stratosphere (Stuiver and Quay, 1980) or by perturbations to exchanges between carbon reservoirs (Siegenthaler et al., 1980). As the sea-air flux of 14CO2 has a clear maximum in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the interhemispheric gradient. In this study, model simulations are used to show that Southern Ocean winds are likely a main driver of the observed variability in the interhemispheric gradient over AD 950-1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980-2004). This interpretation also implies that there may have been a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds at the Medieval Climate Anomaly to Little Ice Age transition remain unknown. Our process-focused suite of perturbation experiments with models raises the possibility that the current generation of coupled climate and earth system models may underestimate the natural background multi-decadal- to centennial-timescale variations in the winds over the Southern Ocean.
NASA Astrophysics Data System (ADS)
Li, Wang; Yue, Jianping; Yang, Yang; Li, Zhen; Guo, Jinyun; Pan, Yi; Zhang, Kefei
2017-08-01
East Asia and North America are the regions most heavily affected by powerful cyclones. In this paper we investigate the morphological characteristics of ionospheric disturbances induced by cyclones in different continents. The global ionosphere map supplied by the Center for Orbit Determination in Europe (CODE), International Reference Ionosphere Model (IRI) 2012, and Wallops Island ionosonde station data are used to analyse the ionospheric variations during powerful typhoons/hurricanes in East Asia and North America, respectively. After eliminating the ionospheric anomalies due to the solar-terrestrial environment, the total electron content (TEC) time series over the point with maximum wind speed is detected by the sliding interquartile range method. The results indicate that significant ionospheric disturbances are observed during powerful tropical cyclones in East Asia and North America, respectively, and that all the ionospheric anomalies are positive. In addition, the extent and magnitude of travelling ionospheric disturbances are associated with the category of tropical cyclone, and the extent of TEC anomalies in longitude is more pronounced than that in latitude. Furthermore, the maximum ionospheric anomaly does not coincide with the eye of the storm, but appears in the region adjacent to the centre. This implies that ionospheric disturbances at the edges of cyclones are larger than those in the eye of the winds. The phenomenon may be associated with the gravity waves which are generated by strong convective cells that occur in the spiral arms of tropical cyclones. This comprehensive analysis suggests that the presence of powerful typhoons/hurricanes may be a possible source mechanism for ionospheric anomalies.
A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia
NASA Astrophysics Data System (ADS)
Park, Tae-Won; Ho, Chang-Hoi; Deng, Yi
2014-08-01
Through an agglomerative hierarchical clustering method, cold surges over East Asia are classified into two distinct types based on the spatial pattern of the geopotential height anomalies at 300 hPa. One is the wave-train type that is associated with developing large-scale waves across the Eurasian continent. The other is the blocking type whose occurrence accompanies subarctic blocking. During the wave-train cold surge, growing baroclinic waves induce a southeastward expansion of the Siberian High and strong northerly winds over East Asia. Blocking cold surge, on the other hand, is associated with a southward expansion of the Siberian High and northeasterly winds inherent to a height dipole consisting of the subarctic blocking and the East Asian coastal trough. The blocking cold surge tends to be more intense and last longer compared to the wave-train type. The wave-train cold surge is associated with the formation of a negative upper tropospheric height anomaly southeast of Greenland approximately 12 days before the surge occurrence. Further analysis of isentropic potential vorticity reveals that this height anomaly could originate from the lower stratosphere over the North Atlantic. Cold surge of the blocking type occurs with an amplifying positive geopotential and a negative potential vorticity anomaly over the Arctic and the northern Eurasia in stratosphere. These anomalies resemble the stratospheric signature of a negative phase of the Arctic Oscillation. This stratospheric feature is further demonstrated by the observation that the blocking type cold surge occurs more often when the Arctic Oscillation is in its negative phase.
Quasi-Geostrophic Diagnosis of Mixed-Layer Dynamics Embedded in a Mesoscale Turbulent Field
NASA Astrophysics Data System (ADS)
Chavanne, C. P.; Klein, P.
2016-02-01
A new quasi-geostrophic model has been developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasi-geostrophic framework considered before since it takes into account the stratification within the surface mixed-layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant-stratification layers : a finite-thickness surface layer (or the mixed-layer) and an infinitely-deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal-wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive-equation numerical simulation. Correlation between simulated and diagnosed vertical velocities are significantly improved in the mixed-layer for the new model compared to the classical surface quasi-geostrophic model, reaching 0.9 near the surface.
NASA Astrophysics Data System (ADS)
Doering, K.; Steinschneider, S.
2017-12-01
The variability of renewable energy supply and drivers of demand across space and time largely determines the energy balance within power systems with a high penetration of renewable technologies. This study examines the joint spatiotemporal variability of summertime climate linked to renewable energy production (precipitation, wind speeds, insolation) and energy demand (temperature) across the contiguous United States (CONUS) between 1948 and 2015. Canonical correlation analysis is used to identify the major modes of joint variability between summer wind speeds and precipitation and related patterns of insolation and temperature. Canonical variates are then related to circulation anomalies to identify common drivers of the joint modes of climate variability. Results show that the first two modes of joint variability between summer wind speeds and precipitation exhibit pan-US dipole patterns with centers of action located in the eastern and central CONUS. Temperature and insolation also exhibit related US-wide dipoles. The relationship between canonical variates and lower-tropospheric geopotential height indicates that these modes are related to variability in the North Atlantic subtropical high (NASH). This insight can inform optimal strategies for siting renewables in an interconnected electric grid, and has implications for the impacts of climate variability and change on renewable energy systems.
Foreshock and magnetosheath transients, origin and connection to the magnetopause.
NASA Astrophysics Data System (ADS)
Blanco-Cano, X.
2014-12-01
The solar wind interaction with earths's magnetosphere begins well ahead of the magnetopause when the solar wind encounters the foreshock, bow shock and magnetosheath. In these regions a variety of waves and magnetic structures exist and modify the solar wind. The foreshock is permeated by a variety of ultra low frequency (ULF) waves and magnetic transient structures such as shocklets, SLAMs, and cavitons. These structures are very compressive and are generated by the solar wind interaction with backstreaming particles plus non linear processes. Other structures such as hot flow anomalies (HFA), and spontaneous hot flow anomalies (SHFA) can also exist in the foreshock. HFAs are generated by discontinuities that arrive to the bow shock. Recent studies show that SHFA have the same profiles as HFA, but form by the interaction of foreshock cavitons with the bowshock. Foreshock bubbles can form when energetic ions upstream of the quasi-parallel bow shock interact with rotational discontinuities in the solar wind. All these structures can merge with the bow shock and be convected into the magnetosheath. The magnetosheath is both a place for rich plasma physical processes and a filter between solar wind and the magnetospheric plasma and magnetic field environments. It is permeated by the superposition of upstream convected structures plus locally generated waves (ion cyclotron and mirror mode). Recent studies have shown that jets and magnetosheath filamentary structures (MFS) can be observed downstream from the bow shock. Jets are associated to shock rippling efects and MFS to acceleration of particles at and near the shock. Due to the presence of the foreshock, bow shock and magnetosheath transients, the solar wind arriving to the magnetopause is very different to the pristine solar wind. In this talk we will address the main characteristics of these transients, discuss their origin, and how they can modify the solar wind, the bow shock, the magnetosheath and the magnetopause.
Field Line Mapping of the Polar Cap Neutral Density Anomaly
NASA Astrophysics Data System (ADS)
Sutton, E. K.; Lin, C. S.; Huang, C. Y.; Cooke, D. L.
2016-12-01
Polar cap neutral density anomaly (PCNDA) events of localized density enhancement with a half size around 700-1000 km had been frequently detected by CHAMP satellite at around 400 km during major magnetic storms with Dst < -100 nT. Density enhancement is probably produced via Joule heating of the thermosphere when a significant amount of energy is deposited in the polar cap. We have identified 12 PCNDA events measured by CHAMP during two major magnetic storms including one initiated by a large solar wind pressure pulse. Their density anomaly locations are found to scatter randomly within the polar circle of 80o magnetic latitude in the geomagnetic coordinate. However after transformed to the Geocentric Solar Wind (GSW) coordinates, their locations become aligned in the direction of solar wind velocity. To better understand the polar cap energy deposition we trace magnetic field lines to the magnetosphere up to 30 earth radii from the ionosphere at 400 km using the data-based Tsyganenko T95 and TS05 magnetic field models. Field line tracing is performed in the GSW coordinate along the CHAMP orbit as well as for the whole polar cap. Each traced magnetic field line is classified into one of the three categories, (1) magnetosphere closed field line (MC) crossing the equatorial plane within 30 earth radii, (2) open field line connected to the magnetopause (MP), or (3) open field line connected to the magnetotail lobe (MT). For nine PCNDA events among the 10 events that we are able to conduct tracing, field lines originated from the density anomaly regions are classified as MT. Only one outlier event in association with a very large IMF BZ is classified as MP. Furthermore the separation angle between the density anomaly peak and the MP-MT field line separation point at 400 km on the X- and Z-axes meridian plane varies from -4o to 16o. Based on these results we speculate that convective electric fields and field aligned currents in the ionosphere might be enhanced near the MP-MT separation point during magnetic storms, resulting in intense localized Joule heating of the thermosphere.
Shallow gas in Cenozoic sediments of the Southern North Sea
NASA Astrophysics Data System (ADS)
Trampe, Anna F.; Lutz, Rüdiger; Franke, Dieter; Thöle, Hauke; Arfai, Jashar
2013-04-01
Shallow petroleum systems in the southern North Sea are known for several decades but they were not actively explored for a long time. In recent years these unconventional shallow petroleum systems are studied in greater detail and one shallow gas field (A-12) is in production in the Netherlands. Additionally, oil was encountered in Miocene sandstones in the southern Danish North Sea (Lille John well) just north of the Danish-German border. Seismic amplitude anomalies are an indication for hydrocarbons in sediments. Therefore we have mapped the occurrence of seismic amplitude anomalies in the German North Sea based on more than 25.000 km of 2D seismic data and around 4.000 km2 of 3D seismic data. Amplitude anomalies are ubiquitous phenomena in the study area. These anomalies are not only caused by hydrocarbons but also by changing lithologies e.g. peat or fluid migration. Therefore several classes of seismic anomalies, e.g. bright spots, chimneys, blanking areas and velocity pull-down were mapped. Examples for these classes were studied with AVO (amplitude variation with offset) analyses to verify the existence or non-existence of gas in the sediments. Shallow gas can be produced and transported through the dense pipeline grid of the southern and central North Sea or it could be burned offshore close to wind parks in small power plants and the electric energy then transported through the existing power connections of the wind parks. Thus enabling a continuous energy supply during calm wind periods. This study is carried out within the framework of the project "Geoscientific Potential of the German North Sea (GPDN)" in which the Cenozoic sedimentary system was mapped in great detail. A detailed model of delta evolution (Baltic river system) was developed which serves as a structural framework. The studied interval is time equivalent to the Utsira formation which is used offshore Norway for sequestration of CO2. These different possibilities of using or exploiting the underground emphasize the need for detailed knowledge on the underground for sound decisions on the future use of this area.
NASA Technical Reports Server (NTRS)
Curtis, Scott; Adler, Robert
2000-01-01
The ENSO phenomenon is characterized by fluctuations in the climate system of the tropical Pacific. Quantifying changes in the precipitation component of this system is important in understanding the distribution of heating in the atmosphere which drives the large-scale circulation and affects the weather patterns in the mid-latitudes. Monitoring precipitation anomalies in the Pacific is also an important component for tracking the evolution of ENSO. The most timely and complete observations of the earth come from satellite instruments. In this study, the state of the art satellite-gauge merged monthly precipitation data set from the Global Precipitation Climatology Project (GPCP) is used to depict tropical rainfall patterns during ENSO events over the past two decades and quantify these patterns using indices. This analysis will be complemented by daily precipitation data which can resolve the Madden-Julian Oscillation and westerly wind burst events. The 1997-98 El Nino and 1998-2000 La Nina were the best observed ENSO cycle in the historic record. Prior to the El Nino (in terms of anomalous warming of the east Pacific) dry anomalies over the Maritime Continent were observed in February 1997 as a westerly wind burst advected convection to the east. The largest SST anomalies occurred around November-December 1997, which were followed by the largest precipitation anomalies in the beginning of 1998. The largest precipitation departures from normal were not colocated with the SST anomalies, but were further west, In the spring of 1998 negative precipitation anomalies to the north of the equator intensified, signaling the mature phase of the El Nino. A rapid increase in the precipitation-based La Nina index from December-January 1998 to March-April 1998 signaled the coming La Nina. The 1982-1983 El Nino was comparable in strength (according to several indices) and the precipitation patterns evolved in a similar fashion. For the 1998-2000 La Nina, the coldest anomalies, were confined to the central equatorial Pacific, while the driest anomalies were found in the west Pacific,
NASA Astrophysics Data System (ADS)
Maradudin, A. A.; Simonsen, I.
2016-05-01
By the use of the Rayleigh method we have calculated the angular dependence of the reflectivity and the efficiencies of several other diffracted orders when the periodically corrugated surface of an isotropic elastic medium is illuminated by a volume acoustic wave of shear horizontal polarization. These dependencies display the signatures of Rayleigh and Wood anomalies, usually associated with the diffraction of light from a metallic grating. The Rayleigh anomalies occur at angles of incidence at which a diffracted order appears or disappears; the Wood anomalies here are caused by the excitation of the shear horizontal surface acoustic waves supported by the periodically corrugated surface of an isotropic elastic medium. The dispersion curves of these waves in both the nonradiative and radiative regions of the frequency-wavenumber plane are calculated, and used in predicting the angles of incidence at which the Wood anomalies are expected to occur.
NASA Astrophysics Data System (ADS)
Kawaguchi, Yusuke; Takeda, Hiroki
2017-04-01
This study focuses on the mixing processes in the vicinity of surface mixed layer (SML) of the Arctic Ocean. Turbulence activity and vertical heat transfer are quantitatively characterized in the Northwind Abyssal Plain, based on the RV Mirai Arctic cruise, during the transition from late summer to early winter 2014. During the cruise, noticeable storm events were observed, which came over the ship's location and contributed to the deepening of the SML. According to the ship-based microstructure observation, within the SML, the strong wind events produced enhanced dissipation rates of turbulent kinetic energy in the order of magnitude of ɛ = 10-6-10-4W kg-1. On thermal variance dissipation rate, χ increases toward the base of SML, reaching O(10-7) K2 s-1, resulting in vertical heat flux of O(10) W m-2. During the occasional energetic mixing events, the near-surface warm water was transferred downward and penetrated through the SML base, creating a cross-pycnocline high-temperature anomaly (CPHTA) at approximately 20-30 m depth. Near CPHTA, the vertical heat flux was anomalously magnified to O(10-100) W m-2. Following the fixed-point observation, in the regions of marginal and thick ice zones, the SML heat content was monitored using an autonomous drifting buoy, UpTempO. During most of the ice-covered period, the ocean-to-ice turbulent heat flux was dominant, rather than the diapycnal heat transfer across the SML bottom interface.
Johnson, Carole D.; Dawson, C.B.; Belaval, Marcel; Lane, John W.
2002-01-01
A surface-geophysical investigation to characterize the hydrogeology and contaminant distribution of the former landfill area at the University of Connecticut in Storrs, Connecticut, was conducted in 2000 to supplement the preliminary hydrogeologic assessment of the contamination of soil, surface water, and ground water at the site. A geophysical-toolbox approach was used to characterize the hydrogeology and contaminant distribution of the former landfill. Two-dimensional direct-current resistivity, inductive terrain-conductivity, and seismic-refraction surface-geophysical data were collected and interpreted in an iterative manner with exploratory drilling, borehole geophysics, and hydraulic testing. In this investigation, a geophysical-toolbox approach was used to 1) further define previously identified conductive anomalies and leachate plumes; 2) identify additional leachate plumes, possible fracture zones, and (or) conductive lithologic layers in the bedrock; and 3) delineate bedrock-surface topography in the drainage valleys north and south of the landfill. Resistivity and terrain-conductivity surveys were used to further delineate previously identified geophysical anomalies to the north and southwest of the landfill. A conductive anomaly identified in the terrain-conductivity survey to the north of the landfill in 2000 had a similar location and magnitude as an anomaly identified in terrain-conductivity surveys conducted in 1998 and 1999. Collectively, these surveys indicated that the magnitude of the conductive anomaly decreased with depth and with distance from the landfill. These anomalies indicated landfill leachate in the overburden and shallow bedrock. Results of previous surface-geophysical investigations southwest of the landfill indicated a shallow conductive anomaly in the overburden that extended into the fractured-bedrock aquifer. This conductive anomaly had a sheet-like geometry that had a north-south strike, dipped to the west, and terminated abruptly about 450 feet southwest of the landfill. The sheet-like conductive anomaly was interpreted as a fractured, conductive lithologic feature filled with conductive fluids. To further delineate this anomaly, two two-dimensional resistivity profiles were collected west of the sheet-like conductive anomaly to assess the possibility that the sheet-like conductive anomaly continued to the west in its down-dip direction. Each of the north-south oriented resistivity profiles showed bullet-shaped rather than linear-shaped anomalies, with a relatively smaller magnitude of conductivity than the sheet-like conductive anomaly to the east. If these bullet-like features are spatially connected, they may represent a linear, or pipe-like, conductive anomaly in the bedrock with a trend of N290?E and a plunge of 12?. Additional surveys were conducted to assess the apparent southern termination of the sheet-like conductive feature. Terrain-conductivity surveys indicated the sheet-like feature was not continuous to the south. A two-dimensional resistivity line and a coincident terrain-conductivity profile indicated the presence of a steep, eastward dipping, low magnitude, electrically conductive anomaly on the eastern end of the profile. Although the sheet-like conductive anomaly apparently did not continue to the south, the survey conducted in 2000 identified an isolated, weak conductive anomaly south of the previously identified anomaly. Inductive terrain-conductivity surveys performed north of the sheet-like conductive anomaly and west of the landfill indicated the anomaly did not extend to the north into the area of the former chemical-waste disposal pits. No conductive plumes or conductive features were observed in the subsurface bedrock west of the landfill. A conductive anomaly was identified in the southern section of the new terrain-conductivity grid. The magnitude and distribution of the apparent conductivity of this anomaly was identified as a nearly vertica
Characteristics of Eurasian snowmelt and its impacts on the land surface and surface climate
NASA Astrophysics Data System (ADS)
Ye, Kunhui; Lau, Ngar-Cheung
2018-03-01
The local hydrological and climatic impacts of Eurasian snowmelt are studied using advanced land surface and atmospheric data. It is found that intense melting of snow is located at mid-high latitudes in April and May. Snowmelt plays an important role in determining the seasonal cycles of surface runoff and soil moisture (SM). Specifically, melting is accompanied by sharp responses in surface runoff and surface SM while the impacts are delayed for deeper-layer of soil. This is particularly significant in the western sector of Eurasia. On interannual timescales, the responses of various surface parameters to snowmelt in the same month are rather significant. However, the persistence of surface SM anomalies is weak due to the strong soil evaporation anomalies and surplus of surface energy for evaporation. Strong impacts on the sensible heat flux, planetary boundary layer height and precipitation in the next month following the melting of snow are identified in west Russia and Siberia. Downward propagation of surface SM anomalies is observed and a positive evaporation-convection feedback is identified in west Russia. However, the subsequent impacts on the local convective precipitation in late spring-summer and its contribution to the total precipitation are seemingly weak. The atmospheric water vapor convergence has strong control over the total precipitation anomalies. Overall, snowmelt-produced SM anomalies are not found to significantly impact the late spring-summer local climate anomalies in Northern Eurasia. Therefore, the delayed remote-responses of atmospheric circulation and climate to the melting of Eurasian snow may be only possible near the melting period.
Indian Ocean zonal mode activity in 20th century observations and simulations
NASA Astrophysics Data System (ADS)
Sendelbeck, Anja; Mölg, Thomas
2016-04-01
The Indian Ocean zonal mode (IOZM) is a coupled ocean-atmosphere system with anomalous cooling in the east, warming in the west and easterly wind anomalies, resulting in a complete reversal of the climatological zonal sea surface temperature (SST) gradient. The IOZM has a strong influence on East African climate by causing anomalously strong October - December (OND) precipitation. Using observational data and historical CMIP5 (Coupled Model Intercomparison Project phase 5) model output, the September - November (SON) dipole mode index (DMI), OND East African precipitation and SON zonal wind index (ZWI) are calculated. We pay particular attention to detrending SSTs for calculating the DMI, which seems to have been neglected in some published research. The ZWI is defined as the area-averaged zonal wind component at 850 hPa over the central Indian Ocean. Regression analysis is used to evaluate the models' capability to represent the IOZM and its impact on east African climate between 1948 and 2005. Simple correlations are calculated between SST, zonal wind and precipitation to show their interdependence. High correlation in models implies a good representation of the influence of IOZM on East African climate variability and our goal is to detect the models with the highest correlation coefficients. In future research, these model data might be used to investigate the impact of IOZM on the East African climate variability in the late 20's century with regard to anthropogenic causes and internal variability.
Variability of the western Pacific warm pool structure associated with El Niño
NASA Astrophysics Data System (ADS)
Hu, Shijian; Hu, Dunxin; Guan, Cong; Xing, Nan; Li, Jianping; Feng, Junqiao
2017-10-01
Sea surface temperature (SST) structure inside the western Pacific warm pool (WPWP) is usually overlooked because of its distinct homogeneity, but in fact it possesses a clear meridional high-low-high pattern. Here we show that the SST low in the WPWP is significantly intensified in July-October of El Niño years (especially extreme El Niño years) and splits the 28.5 °C-isotherm-defined WPWP (WPWP split for simplification). Composite analysis and heat budget analysis indicate that the enhanced upwelling due to positive wind stress curl anomaly and western propagating upwelling Rossby waves account for the WPWP split. Zonal advection at the eastern edge of split region plays a secondary role in the formation of the WPWP split. Composite analysis and results from a Matsuno-Gill model with an asymmetric cooling forcing imply that the WPWP split seems to give rise to significant anomalous westerly winds and intensify the following El Niño event. Lead-lag correlation shows that the WPWP split slightly leads the Niño 3.4 index.
Venus and Mars Obstacles in the Solar Wind
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Mitchell, D. L.; Acuna, M. H.; Russell, C. T.; Brecht, S. H.; Lyon, J. G.
2000-10-01
Comparisons of the magnetosheaths of Venus and Mars contrast the relative simplicity of the Venus solar wind interaction and the ``Jekyll and Hyde" nature of the Mars interaction. Magnetometer observations from Mars Global Surveyor during the elliptical science phasing orbits and Pioneer Venus Orbiter in its normally elliptical orbit are compared, with various models used to compensate for the different near-polar periapsis of MGS and near-equator periapsis of PVO. Gasdynamic or MHD fluid models of flow around a conducting sphere provide a remarkably good desciption of the Venus case, and the Mars case when the strong Martian crustal magnetic anomalies are in the flow wake. In the case of Venus, large magnetosheath field fluctuations can be reliably tied to occurrence of a subsolar quasiparallel bow shock resulting from a small interplanetary field cone angle (angle between flow and field) upstream. At Mars one must also contend with such large fluctuations from the bow shock, but also from unstable solar wind proton distributions due to finite ion gyroradius effects, and from the complicated obstacle presented to the solar wind when the crustal magnetic anomalies are on the ram face or terminator. We attempt to distinguish between these factors at Mars, which are important for interpretation of the upcoming NOZOMI and Mars Express mission measurements. The results also provide more insights into a uniquely complex type of solar system solar wind interaction involving crustal fields akin to the Moon's, combined with a Venus-like ionospheric obstacle.
NASA Astrophysics Data System (ADS)
Fang, J.
2017-12-01
The structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean- atmosphere system are examined in this study, using the NCEP/NCAR atmospheric reanalysis, HadISST SST and Simple Ocean Data Assimilation data for 1960-2010. The midlatitude decadal anomalies associated with the Pacific Decadal Oscillation are identified, being characterized by an equivalent barotropic atmospheric low (high) pressure over a cold (warm) oceanic surface. Such a unique configuration of decadal anomalies can be maintained by an unstable ocean-atmosphere interaction mechanism in the midlatitudes, which is hypothesized as follows. Associated with a warm PDO phase, an initial midlatitude surface westerly anomaly accompanied with intensified Aleutian low tends to force a negative SST anomaly by increasing upward surface heat fluxes and driving southward Ekman current anomaly. The SST cooling tends to increase the meridional SST gradient, thus enhancing the subtropical oceanic front. As an adjustment of the atmospheric boundary layer to the enhanced oceanic front, the low-level atmospheric meridional temperature gradient and thus the low-level atmospheric baroclinicity tend to be strengthened, inducing more active transient eddy activities that increase transient eddy vorticity forcing. The vorticity forcing that dominates the total atmospheric forcing tends to produce an equivalent barotropic atmospheric low pressure north of the initial westerly anomaly, intensifying the initial anomalies of the midlatitude surface westerly and Aleutian low. Therefore, it is suggested that the midlatitude ocean-atmosphere interaction can provide a positive feedback mechanism for the development of initial anomaly, in which the oceanic front and the atmospheric transient eddy are the indispensable ingredients. Such a positive ocean-atmosphere feedback mechanism is fundamentally responsible for the observed decadal anomalies in the midlatitude North Pacific ocean-atmosphere system.
A tidal explanation for the sunrise/sunset anomaly in HALOE low-latitude nitric oxide observations
NASA Astrophysics Data System (ADS)
Marsh, Daniel R.; Russell, James M., III
2000-10-01
The difference in sunrise and sunset low-latitude nitric oxide (NO) mixing ratios in the mesosphere and lower thermosphere (MLT) is shown to be consistent with a perturbation induced by the migrating diurnal tide. The vertical wind of the tide can induce factor of 2 changes over 12 hours at the equator. The vertical, latitudinal and temporal structure of NO perturbations closely matches the structure of vertical winds from a tidal model. In addition, previous observations of the seasonal and interannual variation in the tidal wind appear to correlate with NO variations.
Large-scale atmospheric conditions associated with heavy rainfall episodes in Southeast Brazil
NASA Astrophysics Data System (ADS)
Lima, Kellen Carla; Satyamurty, Prakki; Fernández, Júlio Pablo Reyes
2010-07-01
Heavy rainfall events in austral summer are responsible for almost all the natural disasters in Southeast Brazil. They are mostly associated with two types of atmospheric perturbations: Cold Front (53%) and the South Atlantic Convergence Zone (47%). The important question of what synoptic characteristics distinguish a heavy rainfall event (HRE) from a normal rainfall event (NRE) is addressed in this study. Here, the evolutions of such characteristics are identified through the anomalies with respect to climatology of the composite fields of atmospheric variables. The anomalies associated with HRE are significantly more intense than those associated with NRE in all fundamental atmospheric variables such as outgoing long-wave radiation, sea-level pressure, 500-hPa geopotential, lower and upper tropospheric winds. The moisture flux convergence over Southeast Brazil in the HRE composites is 60% larger than in the NRE composites. The energetics calculations for the HRE that occurred in the beginning of February 1988 strongly suggest that the barotropic instability played an important role in the intensification of the perturbation. These results, especially the intensities of the wind, pressure anomalies, and the moisture convergence are useful for the meteorologists of the Southeast Brazil for forecasting heavy precipitation.
NASA Technical Reports Server (NTRS)
Lare, A. R.; Nicholson, S. E.
1994-01-01
The climate of West Africa, in particular the Sahel, is characterized by multiyear persistence of anomalously wet or dry conditions. Its Southern Hemisphere counterpart, the Kalahari, lacks the persistence that is evident in the Sahel even though both regions are subject to similar large-scale forcing. It has been suggested that land surface-atmosphere feedback contributes to this persistence and to the severity of drought. In this study, surface energy and water balance are quantified for nine stations along a latitudinal transect that extends from the Sahara to the Guinea coast. In the wetter regions of West Africa, the difference between wet and dry years is primarily reflected in the magnitude of runoff. For the Sahel and drier locations, evapotranspiration and soil moisture are more sensitive to rainfall anomalies. The increase in evapotranspiration, and hence latent heating, over the Sahel in wet years alters the thermal structure and gradients of the overlying atmosphere and thus the strength of the African easterly jet (AEJ) at 700 mb. The difference between dry and wet Augusts corresponds to a decrease in magnitude of the AEJ at 15 deg N on the order of 2.6 m/s, which is consistent with previous studies of observed winds. Spatial patterns were also developed for surface water balance parameters for both West Africa and southern Africa. Over southern Africa, the patterns are not as spatially homogeneous as those over West Africa and are lower in magnitude, thus supporting the suggestion that the persistence of rainfall anomalies in the Sahel might be due, at least in part, to land-atmosphere feedback, and that the absence of such persistence in the Kalahari is a consequence of less significant changes in surface water and energy balance.
Geoid Anomalies and the Near-Surface Dipole Distribution of Mass
NASA Technical Reports Server (NTRS)
Turcotte, D. L.; Ockendon, J. R.
1978-01-01
Although geoid or surface gravity anomalies cannot be uniquely related to an interior distribution of mass, they can be related to a surface mass distribution. However, over horizontal distances greater than about 100 km, the condition of isostatic equilibrium above the asthenosphere is a good approximation and the total mass per unit column is zero. Thus the surface distribution of mass is also zero. For this case we show that the surface gravitational potential anomaly can be uniquely related to a surface dipole distribution of mass. Variations in the thickness of the crust and lithosphere can be expected to produce undulations in the geoid.
NASA Astrophysics Data System (ADS)
Galanti, Eli; Kaspi, Yohai
2016-10-01
In light of the first orbits of Juno at Jupiter, we discuss the Juno gravity experiment and possible initial results. Relating the flow on Jupiter and Saturn to perturbations in their density field is key to the analysis of the gravity measurements expected from both the Juno (Jupiter) and Cassini (Saturn) spacecraft during 2016-17. Both missions will provide latitude-dependent gravity fields, which in principle could be inverted to calculate the vertical structure of the observed cloud-level zonal flow on these planets. Current observations for the flow on these planets exists only at the cloud-level (0.1-1 bar). The observed cloud-level wind might be confined to the upper layers, or be a manifestation of deep cylindrical flows. Moreover, it is possible that in the case where the observed wind is superficial, there exists deep interior flow that is completely decoupled from the observed atmospheric flow.In this talk, we present a new adjoint based inverse model for inversion of the gravity measurements into flow fields. The model is constructed to be as general as possible, allowing for both cloud-level wind extending inward, and a decoupled deep flow that is constructed to produce cylindrical structures with variable width and magnitude, or can even be set to be completely general. The deep flow is also set to decay when approaching the upper levels so it has no manifestation there. The two sources of flow are then combined to a total flow field that is related to the density anomalies and gravity moments via a dynamical model. Given the measured gravitational moments from Jupiter and Saturn, the dynamical model, together with the adjoint inverse model are used for optimizing the control parameters and by this unfolding the deep and surface flows. Several scenarios are examined, including cases in which the surface wind and the deep flow have comparable effects on the gravity field, cases in which the deep flow is dominating over the surface wind, and an extreme case where the deep flow can have an unconstrained pattern. The method enables also the calculation of the uncertainties associated with each solution. We discuss the physical limitations to the method in view of the measurement uncertainties.
Latest Data on Thermohaline Structure and Circulation of the Dying Aral Sea
NASA Astrophysics Data System (ADS)
Izhitsky, Alexander; Zavialov, Peter
2010-05-01
The results of the latest expedition of the Shirshov Institute to the Aral Sea are reported. The survey encompassed 15 field days in August, 2009. An interdisciplinary oceanographic study in the western basin of the sea was conducted during the expedition. Vertical profiles of temperature, salinity and fluorescence were obtained using a CTD profiler at 8 stations across the western basin. Two mooring stations equipped with current meters, one at the surface and one in the bottom layer at each station, as well as pressure gauges at the bottom, were deployed for 5 days in the deepest portion of the western basin. One of the stations was installed at the western slope of the basin, while the other one was positioned at the eastern slope. A portable automatic meteorological station, continuously recording the variability of wind and principal meteorological parameters, was installed near the mooring sites. The vertical structure of the themohaline fields exhibited a 3-layered pattern, with local salinity maxima in the upper mixed layer and at the bottom. The intermediate layer was characterized by a core of minimum salinity and temperature, also accompanied by maximum fluorescence. Such a pattern indicates that the signature of the denser, saltier water originating from the eastern basin is still evident, even though the eastern basin itself dried up almost completely during the summer of 2009. The surface salinity was around 136 ppt, which constituted a notable increase for about 20 ppt since the summer of 2008. Over the same period, sea level decreased by 164 cm since the summer of 2008. Analysis of the current measurements data along with the meteorological data records demonstrated that the mean basin-scale surface circulation of the Large Aral Sea is likely to have remained anticyclonic, whilst the near-bottom circulation appears to be cyclonic. The current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity series versus the wind stress allowed to quantify the response of the system to the wind forcing.
Contour maps of lunar remanent magnetic fields
NASA Technical Reports Server (NTRS)
Hood, L. L.; Russell, C. T.; Coleman, P. J., Jr.
1981-01-01
The 2605 usable orbits of Apollo 15 and 16 subsatellite magnetometer data have been reexamined for intervals suitable for analysis of crustal magnetic anomalies. To minimize plasma-related disturbances, segments from 274 of these orbits were selected from times when the moon was either in a lobe of the geomagnetic tail or in the solar wind with the subsatellites in the lunar wake. External field contributions which remained in the selected intervals were minimized by (1) quadratic detrending of individual orbit segments with lengths much greater than anomaly wavelengths and (2) two-dimensional filtering with minimum passed wavelengths less than or equal to anomaly wavelengths. Improvements in coverage, accuracy, and resolution of previously published anomaly maps produced from these data are obtained. In addition to improved maps of the Reiner Gamma and Van de Graaff-Aitken anomalies studied previously, a third region of relatively high-amplitude anomalies centered near the crater Gerasimovich on the southeastern far side has been mapped. Both the Van de Graaff-Aitken region and the Gerasimovich region are marked by the general occurrence of extensive groups of Reiner Gamma-type swirls.
Arctic Contribution to Upper-Ocean Variability in the North Atlantic.
NASA Astrophysics Data System (ADS)
Walsh, John E.; Chapman, William L.
1990-12-01
Because much of the deep water of the world's oceans forms in the high-latitude North Atlantic, the potential climatic leverage of salinity and temperature anomalies in this region is large. Substantial variations of sea ice have accompanied North Atlantic salinity and temperature anomalies, especially the extreme and long-lived `Great Salinity Anomaly' of the late 1960s and early 1970s. Atmospheric pressure data are used hem to show that the local forcing of high-latitude North Atlantic Ocean fluctuations is augmented by antecedent atmospheric circulation anomalies over the central Arctic. These circulation anomalies are consistent with enhanced wind-forcing of thicker, older ice into the Transpolar Drift Stream and an enhanced export of sea ice (fresh water) from the Arctic into the Greenland Sea prior to major episodes of ice severity in the Greenland and Iceland seas. An index of the pressure difference between southern Greenland and the Arctic-Asian coast reached its highest value of the twentieth century during the middle-to-late 1960s, the approximate time of the earliest observation documentation of the Great Salinity Anomaly.
NASA Astrophysics Data System (ADS)
Shukla, Ravi P.; Kinter, James L.; Shin, Chul-Su
2018-03-01
This study evaluates the effect of El Niño and the Southern Oscillation (ENSO) and Madden Julian Oscillation (MJO) events on 14-day mean significant wave height (SWH) at 3 weeks lead time (Wk34) over the Western Pacific and Indian Oceans using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2). The WAVEWATCH-3 (WW3) model is forced with daily 10m-winds predicted by a modified version of CFSv2 that is initialized with multiple ocean analyses in both January and May for 1979-2008. A significant anomaly correlation of predicted and observed SWH anomalies (SWHA) at Wk34 lead-time is found over portions of the domain, including the central western Pacific, South China Sea (SCS), Bay of Bengal (BOB) and southern Indian Ocean (IO) in January cases, and over BOB, equatorial western Pacific, the Maritime Continent and southern IO in May cases. The model successfully predicts almost all the important features of the observed composite SWHA during El Niño events in January, including negative SWHA in the central IO where westerly wind anomalies act on an easterly mean state, and positive SWHA over the southern Ocean (SO) where westerly wind anomalies act on a westerly mean state. The model successfully predicts the sign and magnitude of SWHA at Wk34 lead-time in May over the BOB and SCS in composites of combined phases-2-3 and phases-6-7 of MJO. The observed leading mode of SWHA in May and the third mode of SWHA in January are influenced by the combined effects of ENSO and MJO. Based on spatial and temporal correlations, the spatial patterns of SWHA in the model at Wk34 in both January and May are in good agreement with the observations over the equatorial western Pacific, equatorial and southern IO, and SO.
NASA Astrophysics Data System (ADS)
Omrani, Hiba; Drobinski, Philippe; Dubos, Thomas
2015-03-01
Regional climate modelling sometimes requires that the regional model be nudged towards the large-scale driving data to avoid the development of inconsistencies between them. These inconsistencies are known to produce large surface temperature and rainfall artefacts. Therefore, it is essential to maintain the synoptic circulation within the simulation domain consistent with the synoptic circulation at the domain boundaries. Nudging techniques, initially developed for data assimilation purposes, are increasingly used in regional climate modeling and offer a workaround to this issue. In this context, several questions on the "optimal" use of nudging are still open. In this study we focus on a specific question which is: What variable should we nudge? in order to maintain the consistencies between the regional model and the driving fields as much as possible. For that, a "Big Brother Experiment", where a reference atmospheric state is known, is conducted using the weather research and forecasting (WRF) model over the Euro-Mediterranean region. A set of 22 3-month simulations is performed with different sets of nudged variables and nudging options (no nudging, indiscriminate nudging, spectral nudging) for summer and winter. The results show that nudging clearly improves the model capacity to reproduce the reference fields. However the skill scores depend on the set of variables used to nudge the regional climate simulations. Nudging the tropospheric horizontal wind is by far the key variable to nudge to simulate correctly surface temperature and wind, and rainfall. To a lesser extent, nudging tropospheric temperature also contributes to significantly improve the simulations. Indeed, nudging tropospheric wind or temperature directly impacts the simulation of the tropospheric geopotential height and thus the synoptic scale atmospheric circulation. Nudging moisture improves the precipitation but the impact on the other fields (wind and temperature) is not significant. As an immediate consequence, nudging tropospheric wind, temperature and moisture in WRF gives by far the best results with respect to the Big-Brother simulation. However, we noticed that a residual bias of the geopotential height persists due to a negative surface pressure anomaly which suggests that surface pressure is the missing quantity to nudge. Nudging the geopotential has no discernible effect. Finally, it should be noted that the proposed strategy ensures a dynamical consistency between the driving field and the simulated small-scale field but it does not ensure the best "observed" fine scale field because of the possible impact of incorrect driving large-scale field.
Cross, Benjamin D; Kohfeld, Karen E; Bailey, Joseph; Cooper, Andrew B
2015-01-01
In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979-2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC's North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast.
Cross, Benjamin D.; Kohfeld, Karen E.; Bailey, Joseph; Cooper, Andrew B.
2015-01-01
In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979–2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC’s North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast. PMID:26271035
Trade wind inversion variability, dynamics and future change in Hawai'i
NASA Astrophysics Data System (ADS)
Cao, Guangxia
Using 1979-2003 radiosonde data at Hilo and Lihu'e, Hawai'i, the trade-wind inversion (TWI) is found to occur approximately 82% of the time at each station, with average base heights of 2225 +/- 14.3 m (781.9 +/- 1.4 hPa) for Hilo and 2076 +/- 12.5 m (798.8 +/- 1.2 hPa) for Lihu'e. A Weather Research and Forecast (WRF) meso-scale meteorological simulation suggests that island topography and heating contribute to the lifting of the TWI base at Hilo. Inversion base height has a September maximum and a secondary maximum in April. Frequency of inversion occurrence is significantly higher during winters and lower during summers of El Nino years. During the period of 1979-2003, the inversion frequency of occurrence is on upward trend at Hilo for spring (MAM), summer (JJA), and fall (SON) seasons and at Lihu'e for all seasons and for annual values. Composite analysis shows that patterns of geopotential height (GPH), air temperature, u- and v-wind, omega wind, relative and specific humidity, upward longwave radiation flux, net longwave radiation flux, precipitable water, convective precipitation rate, and total cloud cover significantly respond to the TWI base height. For example, the GPH pattern contains a distinctive Pacific North America Teleconnection (PNA) signature, and the magnitudes of PNA centers over 45°N, 165°W for the difference between none and inversion is over 40 m at 200 hPa and 25 m at 850 hPa. The monthly composites show that months with lower (higher) inversion base height and higher (lower) inversion occurrence frequency are linked with the following characteristics: lower (higher) GPH anomalies centered at 30°N, 160°W, lower (higher) temperature anomalies within 300--700 hPa, stronger (weaker) easterly at low levels and northerly anomaly over Hawai'i, and small upward (downward) vertical wind or rising (sinking) motion north of Hawai'i. Using the above characteristics to study the Community Climate System Model (CCSM) composites leads to the prediction that the TWI under increased CO2 forcing atmosphere will be lower in base height and more frequently.
Asymmetric Magnetosphere Deformation Driven by Hot Flow Anomaly(ies)
NASA Technical Reports Server (NTRS)
Safrankova, J.; Goncharov, O.; Nemecek, Z.; Prech, L.; Sibeck, D. G.
2012-01-01
We present a case study of a large deformation of the magnetopause on November 26, 2008. The investigation is based on observations of five THEMIS spacecraft located at the dawn flank in the magnetosphere and magnetosheath, on Cluster measurements at the dusk magnetosheath, and is supported by ACE solar wind monitoring. The main revelation of our study is that the interaction of the IMF discontinuity with the bow shock creates either one very elongated hot flow anomaly (HFA) or a pair of them that is (are) simultaneously observed at both flanks. Whereas the dusk HFA is weak and does not cause observable deformation of the magnetopause, the pressure variations connected with the dawn HFA lead to a magnetopause displacement by approx. = 5 R(sub E) outward from its nominal position. This is followed by a rapid inward motion of the magnetopause approx. = 4 R(sub E) inward with respect to the model location. The surface deformation is so large that the outermost THEMIS spacecraft was in the magnetosphere, whereas the spacecraft located 9 R(sub E) inbound entered into the magnetosheath at the same time. The whole event lasted about 5 minutes.
Data-driven modeling of surface temperature anomaly and solar activity trends
Friedel, Michael J.
2012-01-01
A novel two-step modeling scheme is used to reconstruct and analyze surface temperature and solar activity data at global, hemispheric, and regional scales. First, the self-organizing map (SOM) technique is used to extend annual modern climate data from the century to millennial scale. The SOM component planes are used to identify and quantify strength of nonlinear relations among modern surface temperature anomalies (<150 years), tropical and extratropical teleconnections, and Palmer Drought Severity Indices (0–2000 years). Cross-validation of global sea and land surface temperature anomalies verifies that the SOM is an unbiased estimator with less uncertainty than the magnitude of anomalies. Second, the quantile modeling of SOM reconstructions reveal trends and periods in surface temperature anomaly and solar activity whose timing agrees with published studies. Temporal features in surface temperature anomalies, such as the Medieval Warm Period, Little Ice Age, and Modern Warming Period, appear at all spatial scales but whose magnitudes increase when moving from ocean to land, from global to regional scales, and from southern to northern regions. Some caveats that apply when interpreting these data are the high-frequency filtering of climate signals based on quantile model selection and increased uncertainty when paleoclimatic data are limited. Even so, all models find the rate and magnitude of Modern Warming Period anomalies to be greater than those during the Medieval Warm Period. Lastly, quantile trends among reconstructed equatorial Pacific temperature profiles support the recent assertion of two primary El Niño Southern Oscillation types. These results demonstrate the efficacy of this alternative modeling approach for reconstructing and interpreting scale-dependent climate variables.
Comparing the Atmospheres of Mercury and the Earth's Moon
NASA Technical Reports Server (NTRS)
Morgan, Thomas H.; Killen, Rosemary M.; Hurley, Dana M.
2012-01-01
The exospheres of Mercury and the Earth's Moon are fundamentally similar, but the differences that do exist between them can help us to develop a better understanding of the processes at work on the two bodies that produce and remove volatiles. The major differences are derived from (1) the different compositions of the two surfaces, (2) the different particle and field em'ironments above the surface of each body (particularly the presence of intrinsic magnetic field of Mercury), and (3) the larger flux of interplanetary dust incident at the orbit of Mercury. The first difference, surface composition, is the most intractable problem, but the most challenging part of that problem, the composition of the Hermean regolith, may be at least partially addressed as the MESSENGER mission completes work over the next year. Much progress has been made with respect to exploring the second difference above--spacecraft such as Helios, Ulysses, WIND, and ACE have measured the solar wind and its composition both in Earth orbit and at distances encompassing the orbit of Mercury. While our knowledge of the solar wind is incomplete, again it is far more detailed than a simple 1/R(sup 2) law would predict. Another problem is that of the flux of charged particles to the surfaces. While Mercury's magnetosphere is the subject of current study with MESSENGER, the influx of charged particles on the Moon has gone beyond a cos (psi) picture, where psi is the solar zenith angle. We know that the influx of ions at the Moon is affected by magnetic anomalies, by craters, and by surface charging. The third external difference is the differing flux of interplanetary dust incident on the two surfaces. In this talk we will consider: (1) the species that one can compare now for these two exospheres (Na, K, and He); (2) the species that you might be able to compare with future measurements (Ca and Mg); arid (3) how intensive ground-based observations of the easiest lunar species to observe from the ground, Na and K, might help us address source processes at work on both surfaces. We will discuss current and planned modeling efforts for both the lunar and Hermean exospheres, and some current and planned observations, both ground-based and space-based.
Modelling extreme dry spells in the Mediterranean region in connection with atmospheric circulation
NASA Astrophysics Data System (ADS)
Tramblay, Yves; Hertig, Elke
2018-04-01
Long droughts periods can affect the Mediterranean region during the winter season, when most of annual precipitation occurs, and consequently have strong impacts on agriculture, groundwater levels and water resources. The goal of this study is to model annual maximum dry spells lengths (AMDSL) that occur during the extended winter season (October to April). The spatial patterns of extreme dry spells and their relationships with large-scale atmospheric circulation were first investigated. Then, AMDSL were modelled using Generalized Extreme Value (GEV) distributions incorporating climatic covariates, to evaluate the dependences of extreme dry spells to synoptic patterns using an analogue approach. The data from a network of 160 rain gauges having daily precipitation measurements between 1960 and 2009 are considered together with the ERA-20C reanalysis of the 20th century to provide atmospheric variables (geopotential heights, humidity, winds). A regional classification of both the occurrence and the duration of AMDSL helped to distinguish three spatially contiguous regions in which the regional distributions were found homogeneous. From composite analysis, significant positive anomalies in geopotential height (Z500) and negative anomalies in zonal wind (U850) and relative and specific humidity (S850, R850) were found to be associated with AMDSL in the three regions and provided the reference to build analogue days. Finally, non-stationary GEV models have been compared, in which the location and scale parameters are related to different atmospheric indices. Results indicates, at the whole Mediterranean scale, that positives anomalies of the North Atlantic Oscillation index and to a lesser extent the Mediterranean Oscillation index are linked to longer extreme dry spells in the majority of stations. For the three regions identified, the frequency of U850 negative anomalies over North Africa is significantly associated with the magnitude of AMDSL. AMDL are also associated with the frequency of S850 negative anomalies for the southeastern region, and with positive Z500 anomalies for the Western and North-eastern Mediterranean regions.
Large-Scale Influences on the Genesis of Tropical Cyclone Karl (2010)
NASA Astrophysics Data System (ADS)
Griffin, K.; Bosart, L. F.
2012-12-01
The events leading up to the genesis of Tropical Cyclone (TC) Karl (2010) provides a unique opportunity to examine the continuing problem of understanding tropical cyclogenesis. The PRE-Depression Investigation of Cloud-systems in the Tropics (PREDICT) field campaign allowed for detailed investigation of the tropical disturbance that served as the precursor to TC Karl as it progressed westward through the Caribbean Sea. The purpose of this presentation is to examine the evolution of the pre-Karl disturbance using both common synoptic-scale analyses as well as statistically-based equatorial wave analyses, focusing on where these analyses complement and enhance each other. One of the major factors in the initial spin-up of the pre-Karl tropical disturbance is a surge of southerly and westerly winds from northern South America on 8-10 September 2010. As the surge entered the Caribbean on 9 September, it aided in the formation of a nearly closed earth-relative cyclonic circulation near the southern Leeward Islands. This circulation weakened late on 10 September and remained weak through 13 September before increased organization led to TC genesis on 14 September. This southerly wind surge can be traced to a well-defined surge of anomalously cold air and enhanced southerly winds originating in the lee of the Argentinian Andes over a week prior. While the temperature anomalies wash out prior to reaching the equator, anomalous low-level winds progress into Colombia and Venezuela, where topography aids in turning the southerly winds eastward. An investigation of the pre-Karl environment utilizing wavenumber-frequency filtering techniques also suggests that the initial spin-up of pre-Karl can be associated with the active phase of a convectively coupled Kelvin wave (CCKW). The observed formation of the nearly closed cyclonic circulation on 10 September is well timed with the passage of anomalous westerly winds along and behind the convectively active phase of a CCKW. These westerly wind anomalies have been associated with an increase in the frequency of TC genesis, commonly attributed to the generation of low-level cyclonic vorticity and a reduction in climatological shear over the western Atlantic by other researchers. Further, the total wind field associated with a CCKW promotes deep convection via the enhancement of low-level convergence and upper-level outflow ahead of the wave. The passage of the CCKW during 8-10 September occurs in concert with the aforementioned cold surge-related enhanced low-level southerly winds that turn eastward as they cross the equator, further strengthening the westerly wind anomalies associated with the CCKW. This favorable juxtaposition of low-level southerly and westerly flows results in the amplification of convective activity associated with the CCKW around the time the CCKW interacts with the pre-Karl disturbance and likely serves to enhance the resulting low-level cyclonic circulation, eventually leading to the genesis of TC Karl.
Smith, D.B.; Theobald, P.K.; Shiquan, S.; Tianxiang, R.; Zhihui, H.
1993-01-01
In 1987, a cooperative project between the U.S. Geological Survey and the Institute of Geophysical and Geochemical Exploration was initiated to evaluate the origin of the Hatu gold anomaly. The anomaly is located in the Hatu mining district in the northwest corner of Xinjiang-Uygur Autonomous Region in northwest China. The climate is semiarid to arid and wind erosion predominates. A regional soil survey of the Hatu district, based on samples collected on a 200 by 500 m grid and composited prior to chemical analysis to a density of one sample per square km, delineated a series of south-southeast-trending Au anomalies. Anomalous Au values range from 5 ppb to more than 700 ppb. The Hatu anomaly, the most prominent of these anomalies, is more than 30 km long and about 5 km wide. The mining town of Hatu and the economic gold deposits of Qiqu 1 and Qiqu 2 are at the northern end of this anomaly. The axis of the Hatu anomaly cuts across mapped structure and stratigraphy in the district, but is parallel to the prevailing wind direction. This observation led to the hypothesis that the Hatu anomaly is the result of acolian dispersion of gold from the vicinity of Qiqu 1 and Qiqu 2. The alternative interpretation, that the anomalies reflected additional primary gold occurrences, was not consistent with existing information on the known occurrences and the geology. The investigation led to the identification of three types of gold in heavy-mineral concentrates derived from stream sediments that were collected along the axis of the Hatu anomaly: (1) free gold, (2) gold in pyrite, and (3) gold included in quartz. Gold in quartz was only observed within 2 km of Qiqu 1. The size of the gold particles and the number of gold particles in these samples did not decrease with distance from Qiqu 1 as would be expected from aeolian or fluvial dispersion from a point source. Instead, both the size and amount of gold increased significantly at a distance of 3.5 km from Qiqu 1 and this increase continued to approximately 5.5 km from Qiqu 1. The mean intermediate diameter of gold particles increased from 0.1 mm to approximately 0.25 mm and the gold particle content increased from approximately 0.3 particles per kg of sample to almost 8 particles per kg of sample. The morphology of the gold changed from a delicate filigree texture near Qiqu 1 to coarse, blocky particles in the southern part of the anomaly. The Hatu anomaly is caused primarily by alluvial dispersion of free gold from local point sources along the anomaly. Aeolian dispersion is restricted to very fine-grained (??2 ??m) gold included in sulfide minerals or quartz grains and is significant only within 1-2 km of the known deposits. ?? 1993.
Coherent changes of wintertime surface air temperatures over North Asia and North America.
Yu, Bin; Lin, Hai
2018-03-29
The surface temperature variance and its potential change with global warming are most prominent in winter over Northern Hemisphere mid-high latitudes. Consistent wintertime surface temperature variability has been observed over large areas in Eurasia and North America on a broad range of time scales. However, it remains a challenge to quantify where and how the coherent change of temperature anomalies occur over the two continents. Here we demonstrate the coherent change of wintertime surface temperature anomalies over North Asia and the central-eastern parts of North America for the period from 1951 to 2015. This is supported by the results from the empirical orthogonal function analysis of surface temperature and temperature trend anomalies over the Northern Hemisphere extratropical lands and the timeseries analysis of the regional averaged temperature anomalies over North Asia and the Great Plains and Great Lakes. The Asian-Bering-North American (ABNA) teleconnection provides a pathway to connect the regional temperature anomalies over the two continents. The ABNA is also responsible for the decadal variation of the temperature relationship between North Asia and North America.
NASA Technical Reports Server (NTRS)
Min, Wei; Schubert, Siegfried D.
1997-01-01
This study assesses the quality of estimates of climate variability in moisture flux and convergence from three assimilated data sets: two are reanalysis products generated at the Goddard Data Assimilation Office (DAO) and the National Centers for Environmental Prediction/National Centers for Atmospheric Research (NCEPJNCAR), and the third consists of the operational analyses generated at the European Center for Medium Range Forecasts (ECMWF). The regions under study (the United States Great Plains, the Indian monsoon region, and Argentina east of the Andes) are characterized by frequent low level jets (LLJs) and other interannual low level wind variations tied to the large-scale flow. While the emphasis is on the reanalysis products, the comparison with the operational product is provided to help assess the improvements gained from a fixed analysis system. All three analyses capture the main moisture flux anomalies associated with selected extreme climate (drought and flood) events during the period 1985-93. The correspondence is strongest over the Great Plains and weakest over the Indian monsoon region reflecting differences in the observational coverage. For the reanalysis products, the uncertainties in the lower tropospheric winds is by far the dominant source of the discrepancies in the moisture flux anomalies in the middle latitude regions. Only in the Indian Monsoon region, where interannual variability in the low level winds is comparatively small, does the moisture bias play a substantial role. In contrast, the comparisons with the operational product show differences in moisture which are comparable torhe differences in the wind in all three regions. Compared with the fluxes, the anomalous moisture convergences show substantially larger differences among the three products. The best agreement occurs over the Great Plains region where all three products show vertically-integrated moisture convergence during the floods and divergence during the drought with differences in magnitude of about 25%. The reanalysis products, in particular, show good agreement in depicting the different roles of the mean flow and transients during the flood and drought periods. Differences between the three products in the other two regions exceed 100% reflecting differences in the low level jets and the large scale circulation patterns. The operational product tends to have locally larger amplitude convergence fields which average out in area-mean budgets: this appears to be at least in part due to errors in the surface pressure fields and aliasing from the higher resolution of the original ECMWF fields. On average, the reanalysis products show higher coherence with each other than with the operational product in the estimates of interannual variability. This result is less clear in the Indian monsoon region where differences in the input observations appears to be an important factor. The agreement in the anomalous convergence patterns is, however, still rather poor even over relatively data dense regions such as the United States Great Plains. These differences are attributed to deficiencies in the assimilating GCM's representations of the planetary boundary layer and orography, and a global observing system incapable of resolving the highly confined low level winds associated with the climate anomalies.
Recent Global Warming As Depicted by AIRS, GISSTEMP, and MERRA-2
NASA Astrophysics Data System (ADS)
Susskind, J.; Iredell, L. F.; Lee, J. N.
2017-12-01
We observed anomalously warm global mean surface temperatures since 2015. The year 2016 represents the warmest annual mean surface skin and surface air temperatures in the AIRS observational period, September 2002 through August 2017. Additionally, AIRS monthly mean surface skin temperature, from January 2016 through September 2016, and November 2016, were the warmest observed for each month of the year. Continuing this trend, the AIRS global surface temperatures of 2017 February and April show the second greatest positive anomalies from average. This recent warming is particularly significant over the Arctic where the snow and sea ice melt is closely tied to the spring and summer surface temperatures. In this paper, we show the global distribution of surface temperature anomalies as observed by AIRS over the period September 2002 through August 2017 and compare them with those from the GISSTEMP and MERRA-2 surface temperatures. The spatial patterns of warm and cold anomalies for a given month show reasonably good agreement in all three data set. AIRS anomalies, which do not have the benefit of in-situ measurements, are in almost perfect agreement with those of MERRA-2, which does use in-situ surface measurements. GISSTEMP anomaly patterns for the most part look similar to those of AIRS and MERRA-2, but are more spread out spatially, and consequently are also weaker.
Polar-Tropical Coupling in the Winter Stratosphere
NASA Astrophysics Data System (ADS)
Scott, R.
2017-12-01
A distinct pattern of enhanced equatorial potential vorticitygradients during QBO westerly anomalies, enhanced subtropicalgradients during QBO easterlies, is used to motivate a new formulationof dynamical coupling between the tropics and winter polar vortexbased on remote transfer of finite amplitude wave activity defined interms of lateral potential vorticity displacements. While the weakpotential vorticity gradients in the surf zone imply laterallyevanescent Rossby waves, transfer of wave activity from the polarvortex edge to the subtropical barrier or to the QBO westerly phaseequatorial gradients arises from nonlocality of potential vorticityinversion and the large horizontal displacements of the vortex edge.Our approach goes beyond the traditional description of the effect ofQBO wind anomalies on linear wave propagation through the stratospherevia wave reflection at the zero wind line; linear wave theory isappealing but neglects the long horizontal and vertical wavelengthsinvolved and the inhomogeneous background potential vorticity. Aparticular issue of outstanding interest is whether and how therelatively shallow QBO anomalies can influence the deep verticallypropagating waves on the edge of the winter stratospheric polarvortex. Process studies with a mechanistic model with prescribed QBOand carefully controlled high-latitude wave forcing are analyzed,guided by a reexamination of meteorological reanalysis, to address howsuch a dynamical linkage may influence in particular the resonantexcitation of the winter vortex, and the occurrence ofvortex-splitting sudden warming events. We quantify the associatedtransfer of wave activity from vortex edge to the tropics, considerunder what conditions this becomes a significant source of easterlymomentum in the driving of the QBO itself, and how the structure ofthe Brewer-Dobson circulation varies in response to the location ofthe QBO westerly winds in any given winter.
Lunar and Planetary Science XXXV: Moon and Mercury
NASA Technical Reports Server (NTRS)
2004-01-01
The session" Moon and Mercury" included the following reports:Helium Production of Prompt Neutrinos on the Moon; Vapor Deposition and Solar Wind Implantation on Lunar Soil-Grain Surfaces as Comparable Processes; A New Lunar Geologic Mapping Program; Physical Backgrounds to Measure Instantaneous Spin Components of Terrestrial Planets from Earth with Arcsecond Accuracy; Preliminary Findings of a Study of the Lunar Global Megaregolith; Maps Characterizing the Lunar Regolith Maturity; Probable Model of Anomalies in the Polar Regions of Mercury; Parameters of the Maximum of Positive Polarization of the Moon; Database Structure Development for Space Surveying Results by Moon -Zond Program; CM2-type Micrometeoritic Lunar Winds During the Late Heavy Bombardment; A Comparison of Textural and Chemical Features of Spinel Within Lunar Mare Basalts; The Reiner Gamma Formation as Characterized by Earth-based Photometry at Large Phase Angles; The Significance of the Geometries of Linear Graben for the Widths of Shallow Dike Intrusions on the Moon; Lunar Prospector Data, Surface Roughness and IR Thermal Emission of the Moon; The Influence of a Magma Ocean on the Lunar Global Stress Field Due to Tidal Interaction Between the Earth and Moon; Variations of the Mercurian Photometric Relief; A Model of Positive Polarization of Regolith; Ground Truth and Lunar Global Thorium Map Calibration: Are We There Yet?;and Space Weathering of Apollo 16 Sample 62255: Lunar Rocks as Witness Plates for Deciphering Regolith Formation Processes.
NASA Technical Reports Server (NTRS)
Vasquez, Bernard J.; Farrugia, Charles J.; Markovskii, Sergei A.; Hollweg, Joseph V.; Richardson, Ian G.; Ogilvie, Keith W.; Lepping, Ronald P.; Lin, Robert P.; Larson, Davin; White, Nicholas E. (Technical Monitor)
2001-01-01
A solar ejection passed the Wind spacecraft between December 23 and 26, 1996. On closer examination, we find a sequence of ejecta material, as identified by abnormally low proton temperatures, separated by plasmas with typical solar wind temperatures at 1 AU. Large and abrupt changes in field and plasma properties occurred near the separation boundaries of these regions. At the one boundary we examine here, a series of directional discontinuities was observed. We argue that Alfvenic fluctuations in the immediate vicinity of these discontinuities distort minimum variance normals, introducing uncertainty into the identification of the discontinuities as either rotational or tangential. Carrying out a series of tests on plasma and field data including minimum variance, velocity and magnetic field correlations, and jump conditions, we conclude that the discontinuities are tangential. Furthermore, we find waves superposed on these tangential discontinuities (TDs). The presence of discontinuities allows the existence of both surface waves and ducted body waves. Both probably form in the solar atmosphere where many transverse nonuniformities exist and where theoretically they have been expected. We add to prior speculation that waves on discontinuities may in fact be a common occurrence. In the solar wind, these waves can attain large amplitudes and low frequencies. We argue that such waves can generate dynamical changes at TDs through advection or forced reconnection. The dynamics might so extensively alter the internal structure that the discontinuity would no longer be identified as tangential. Such processes could help explain why the occurrence frequency of TDs observed throughout the solar wind falls off with increasing heliocentric distance. The presence of waves may also alter the nature of the interactions of TDs with the Earth's bow shock in so-called hot flow anomalies.
Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model
Patricia L. Andrews
2012-01-01
Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...
Geopotential Field Anomaly Continuation with Multi-Altitude Observations
NASA Technical Reports Server (NTRS)
Kim, Jeong Woo; Kim, Hyung Rae; von Frese, Ralph; Taylor, Patrick; Rangelova, Elena
2012-01-01
Conventional gravity and magnetic anomaly continuation invokes the standard Poisson boundary condition of a zero anomaly at an infinite vertical distance from the observation surface. This simple continuation is limited, however, where multiple altitude slices of the anomaly field have been observed. Increasingly, areas are becoming available constrained by multiple boundary conditions from surface, airborne, and satellite surveys. This paper describes the implementation of continuation with multi-altitude boundary conditions in Cartesian and spherical coordinates and investigates the advantages and limitations of these applications. Continuations by EPS (Equivalent Point Source) inversion and the FT (Fourier Transform), as well as by SCHA (Spherical Cap Harmonic Analysis) are considered. These methods were selected because they are especially well suited for analyzing multi-altitude data over finite patches of the earth such as covered by the ADMAP database. In general, continuations constrained by multi-altitude data surfaces are invariably superior to those constrained by a single altitude data surface due to anomaly measurement errors and the non-uniqueness of continuation.
Geopotential Field Anomaly Continuation with Multi-Altitude Observations
NASA Technical Reports Server (NTRS)
Kim, Jeong Woo; Kim, Hyung Rae; vonFrese, Ralph; Taylor, Patrick; Rangelova, Elena
2011-01-01
Conventional gravity and magnetic anomaly continuation invokes the standard Poisson boundary condition of a zero anomaly at an infinite vertical distance from the observation surface. This simple continuation is limited, however, where multiple altitude slices of the anomaly field have been observed. Increasingly, areas are becoming available constrained by multiple boundary conditions from surface, airborne, and satellite surveys. This paper describes the implementation of continuation with multi-altitude boundary conditions in Cartesian and spherical coordinates and investigates the advantages and limitations of these applications. Continuations by EPS (Equivalent Point Source) inversion and the FT (Fourier Transform), as well as by SCHA (Spherical Cap Harmonic Analysis) are considered. These methods were selected because they are especially well suited for analyzing multi-altitude data over finite patches of the earth such as covered by the ADMAP database. In general, continuations constrained by multi-altitude data surfaces are invariably superior to those constrained by a single altitude data surface due to anomaly measurement errors and the non-uniqueness of continuation.
Quantum anomalies in nodal line semimetals
NASA Astrophysics Data System (ADS)
Burkov, A. A.
2018-04-01
Topological semimetals are a new class of condensed matter systems with nontrivial electronic structure topology. Their unusual observable properties may often be understood in terms of quantum anomalies. In particular, Weyl and Dirac semimetals, which have point band-touching nodes, are characterized by the chiral anomaly, which leads to the Fermi arc surface states, anomalous Hall effect, negative longitudinal magnetoresistance, and planar Hall effect. In this paper, we explore analogous phenomena in nodal line semimetals. We demonstrate that such semimetals realize a three-dimensional analog of the parity anomaly, which is a known property of two-dimensional Dirac semimetals arising, for example, on the surface of a three-dimensional topological insulator. We relate one of the characteristic properties of nodal line semimetals, namely, the drumhead surface states, to this anomaly, and derive the field theory, which encodes the corresponding anomalous response.
Paracas dust storms: Sources, trajectories and associated meteorological conditions
NASA Astrophysics Data System (ADS)
Briceño-Zuluaga, F.; Castagna, A.; Rutllant, J. A.; Flores-Aqueveque, V.; Caquineau, S.; Sifeddine, A.; Velazco, F.; Gutierrez, D.; Cardich, J.
2017-09-01
Dust storms that develop along the Pisco-Ica desert in Southern Peru, locally known as ;Paracas; winds have ecological, health and economic repercussions. Here we identify dust sources through MODIS (Moderate Resolution Imaging Spectroradiometer) imagery and analyze HYSPLIT (Hybrid Single Particles Lagrangian Integrated Trajectory) model trajectories and dispersion patterns, along with concomitant synoptic-scale meteorological conditions from National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis (NCEP/NCAR). Additionally, surface pressure data from the hourly METeorological Aerodrome Report (METAR) at Arica (18.5°S, 70.3°W) and Pisco (13.7°S, 76.2°W) were used to calculate Alongshore (sea-level) Pressure Gradient (APG) anomalies during Paracas dust storms, their duration and associated wind-speeds and wind directions. This study provides a review on the occurrence and strength of the Paracas dust storms as reported in the Pisco airfield for five-year period and their correspondence with MODIS true-color imagery in terms of dust-emission source areas. Our results show that most of the particle fluxes moving into the Ica-Pisco desert area during Paracas wind events originate over the coastal zone, where strong winds forced by steep APGs develop as the axis of a deep mid-troposphere trough sets in along north-central Chile. Direct relationships between Paracas wind intensity, number of active dust-emission sources and APGs are also documented, although the scarcity of simultaneous METAR/MODIS data for clearly observed MODIS dust plumes prevents any significant statistical inference. Synoptic-scale meteorological composites from NCEP/NCAR reanalysis data show that Paracas wind events (steep APGs) are mostly associated with the strengthening of anticyclonic conditions in northern Chile, that can be attributed to cold air advection associated with the incoming trough. Compared to the MODIS images, HYSPLIT outputs were able to spatially reproduce trajectories and dust dispersion plumes during the Paracas wind storms. HYSPLIT trajectories revealed that part of the wind-eroded lithological material can be transported downwind several kilometers along the Peruvian coast and also deposited over the nearby coastal ocean, giving support to the presence of an aeolian signal in continental shelf sediments, of great importance for paleoenvironmental studies.
Cross tropopause flux observed at sub-daily scales over the south Indian monsoon regions
NASA Astrophysics Data System (ADS)
Hemanth Kumar, A.; Venkat Ratnam, M.; Sunilkumar, S. V.; Parameswaran, K.; Krishna Murthy, B. V.
2018-03-01
The effect of deep convection on the thermal structure and dynamics of the tropical tropopause at sub daily scales is investigated using data from radiosondes launched over two sites in the Indian Monsoon region (Gadanki (13.5°N, 79.2°E) and Trivandrum (8.5°N, 76.9°E)) conducted between December 2010 and March 2014. The data from these soundings are classified into 5 convective categories based on the past, present and future cloudiness over the launching region after the radiosonde has reached tropopause altitude. They are denoted as category 1 (no convection), category 2 (convection may occur in any of the next 3 h), category 3 (convection occurred prior 3 h), category 4 (convection terminated within 3 h of launching) and category 5 (convection persistent throughout the considered period). The anomalies from the background in temperature, relative humidity and wind speed are grouped into the aforementioned five different convective categories for both the stations. Cooling and moisture anomalies are found during the active convection (category 5). The horizontal wind speed showed a strong anomaly indicating the presence of synoptic scale features. Vertical wind obtained simultaneously from the MST radar over Gadanki clearly showed strong updraft during the active convection. The ozone profiles from ozonesondes launched during the same period are also segregated according to the above convective categories. During the active convection, high and low ozone values are found in the upper troposphere and the lower troposphere, respectively. The cross tropopause ozone mass flux and vertical wind at the tropopause and convective outflow level estimated from the ozonesonde, and MST radar/ERA-Interim data showed positive values indicating the transport of ozone between troposphere and stratosphere during deep convection. Similarly, the total mass flux crossing the cold point tropopause over Gadanki showed upward flux during the active convection. The variability of the cross tropopause mass flux is found to be higher over Gadanki compared to Trivandrum.
NASA Astrophysics Data System (ADS)
Lehmann, E.
2016-12-01
On interannual time scales the atmosphere affects significantly fluctuations in the geodetic quantity of length-of-day (LOD). This effect is directly proportional to perturbations in the relative angular momentum of the atmosphere (AAM) computed from zonal winds. During El Niño events tropospheric westerlies increase due to elevated sea surface temperatures (SST) in the Pacific inducing peak anomalies in relative AAM and correspondingly, in LOD. However, El Niño events affect LOD variations differently strong and the causes of this varying effect are yet not clear. Here, we investigate the LOD-El Niño relationship in the 20th and 21st century (1982-2100) whether the quantity of LOD can be used as a geophysical tool to assess variability and change in a future climate. In our analysis we applied a windowed discrete Fourier transform on all de-seasonalized data to remove climatic signals outside of the El Niño frequency band. LOD (data: IERS) was related in space and time to relative AAM and SSTs (data: ERA-40 reanalysis, IPCC ECHAM05-OM1 20C, A1B). Results from mapped Pearson correlation coefficients and time frequency behavior analysis identified a teleconnection pattern that we term the EN≥65%-index. The EN≥65%-index prescribes a significant change in variation in length-of-day of +65% and more related to (1) SST anomalies of >2° in the Pacific Niño region (160°E-80°W, 5°S-5°N), (2) corresponding stratospheric warming anomalies of the quasi-biennial oscillation (QBO), and (3) strong westerly winds in the lower equatorial stratosphere. In our analysis we show that the coupled atmosphere-ocean conditions prescribed in the EN≥65%-index apply to the extreme El Niño events of 19982/83 and 1997/98, and to 75% of all El Niño events in the last third of the 21st century. At that period of time the EN≥65%-index describes a projected altered base state of the equatorial Pacific that shows almost continuous El Niño conditions under climate warming.
NASA Astrophysics Data System (ADS)
Mo, X. H.; Zhang, D. H.
2018-02-01
Using the location of equatorial ionization anomaly (EIA) crest derived from GPS observations in China and Brazilian sector, we investigated the longitudinal dependence of periodic meridional movement of EIA crest during sudden stratospheric warming events in 2003, 2006, and 2009. The solar activity was from high to low for the three events. Results show that the locations of EIA crests in both China and Brazilian sectors exhibit obvious and constant 14- to 15-day periodic oscillation being in-phase in two sectors, which coincide with the half of the lunar revolution period (29.53 days) and the lunar phase. The temporal extent of wave power at 14-15 days is consistent with the temporal extent of stratospheric zonal wind, indicating that 14- to 15-day periodic meridional movement of EIA crest is due to enhanced lunar tide modulated by zonal wind. In addition, it is also found that the amplitude of 14- to 15-day periodic oscillation of EIA crest in China sector is larger than that in Brazilian sector, which may be caused by the longitudinal variation of tides and neutral wind pattern.
NASA Astrophysics Data System (ADS)
Lehmann, E.; Hansen, F.; Ulbrich, U.; Nevir, P.; Leckebusch, G. C.
2009-04-01
While most studies on model-projected future climate warming discuss climatological quantities, this study investigates the response of the relative atmospheric angular momentum (AAM) to climate warming for the 21th century and discusses its possible effects on future length-of-day variations. Following the derivation of the dynamic relation between atmosphere and solid earth by Barnes et al. (Proc. Roy. Soc., 1985) this study relates the axial atmospheric excitation function X3 to changes in length-of-day that are proportional to variations in zonal winds. On interannual time scales changes in the relative AAM (ERA40 reanalyses) are well correlated with observed length-of-day (LOD, IERS EOP CO4) variability (r=0.75). The El Niño-Southern Oscillation (ENSO) is a prominent coupled ocean-atmosphere phenomenon to cause global climate variability on interannual time scales. Correspondingly, changes in observed LOD relate to ENSO due to observed strong wind anomalies. This study investigates the varying effect of AAM anomalies on observed LOD by relating AAM to variations to ENSO teleconnections (sea surface temperatures, SSTs) and the Pacific North America (PNA) oscillation for the 20th and 21st century. The differently strong effect of strong El Niño events (explained variance 71%-98%) on present time (1962-2000) observed LOD-AAM relation can be associated to variations in location and strength of jet streams in the upper troposphere. Correspondingly, the relation between AAM and SSTs in the NIÑO 3.4 region also varies between explained variances of 15% to 73%. Recent coupled ocean-atmosphere projections on future climate warming suggest changes in frequency and amplitude of ENSO events. Since changes in the relative AAM indicate shifts in large-scale atmospheric circulation patterns due to climate change, AAM - ENSO relations are assessed in coupled atmosphere-ocean (ECHAM5-OM1) climate warming projections (A1B) for the 21st century. A strong rise (+31%) in relative AAM is observed with major contributions in the upper troposphere where increased jet streams cause large AAM anomalies. Due to increasing westerly winds, an eastward shift can be observed during strong El Niño events for the Pacific and North America centers of the PNA while its southeast center is less pronounced and shifts to the West. As a result, the PNA region during strong 21th century El Niño events is closely located to the PNA region of mean atmospheric conditions of present time. Further analyses on the climate warming scenario (A1B) determined a total of 28 strong El Niño events suggesting a steady increase in ENSO events, magnitude and duration during the last decades of the 21st century. Rising Niño 3.4 SSTs exceed global increases by 15%. Correspondingly to present times, the AAM-SST relation also indicates a range of explained variances from 8% to 82%. Ongoing analyses on 21st century climate warming relate zonal wind anomalies in the upper troposphere to SST patterns of individual strong El Niños to estimate a possible effect of the relative AAM on length-of-day variations.
NASA Astrophysics Data System (ADS)
Hou, Xueyan; Dong, Qing; Xue, Cunjin; Wu, Shuchao
2016-06-01
Based on long-term satellite-derived ocean data sets and methods of empirical orthogonal function and singular value decomposition, we investigated the spatiotemporal variability of the chlorophyll-a concentration (CHL) on seasonal and interannual timescales in the western tropical Pacific associated with physical ocean variables of sea surface temperature (SST), sea level anomaly (SLA) and sea surface wind (SSW), and the El Niño Southern Oscillation (ENSO) index. The bio-physical synchronous variation on interannual timescale was also confirmed in terms of the scales of variability and oscillation periods in the time-frequency space using the methods of Fourier transform, Morlet wavelet transform, and wavelet coherence analysis. On a seasonal timescale, the first two modes of the monthly mean CHL fields described the consecutive spatiotemporal variation in CHL in the western tropical Pacific. CHL reached the maximum during late winter-early spring and minimum during summer-early autumn with the exception of the northeast of Papua New Guinea and the Solomon Islands. The CHL bloom in boreal winter-spring was closely associated with cold SST, high sea level along the North Equatorial Countercurrent meanders, and strong wind. On an interannual timescale, the variability of CHL exhibited a close correlation with SST, SLA, SSW, and ENSO. During El Niño, CHL increased in the oligotrophic western basin of the warm pool associated with cold SST, low SLA, and strong westerly winds but decreased in the mesotrophic eastern basin of the warm pool in association with warm SST, high SLA, and weak easterly trade winds. There may exist time-lag for the bio-physical covariation, i.e., CHL and SST varied simultaneously within 1 month, and CHL variations led SLA by approximately 0-3 months but lagged wind speed by about 1 month. In the time-frequency domain, the interannual variability in CHL and physical ocean variables had high common power, indicating that the variability scales and oscillation periods of CHL were significantly related to these of SST, SLA, and ENSO index. The significant anti-phase relationships were also shown between CHL and SST, CHL and SLA, and CHL and multivariate ENSO index through the wavelet coherence analysis.
Patterns of interannual climate variability in large marine ecosystems
NASA Astrophysics Data System (ADS)
Soares, Helena Cachanhuk; Gherardi, Douglas Francisco Marcolino; Pezzi, Luciano Ponzi; Kayano, Mary Toshie; Paes, Eduardo Tavares
2014-06-01
The purpose of this study is to investigate the vulnerability of the Brazilian and western African Large Marine Ecosystems (LMEs) to local and remote forcing, including the Pacific Decadal Oscillation (PDO) regime shift. The analyses are based on the total and partial correlation between climate indices (Niño3, tropical South Atlantic (TSA), tropical North Atlantic (TNA) and Antarctic oscillation (AAO) and oceanic and atmospheric variables (sea surface temperature (SST), wind stress, Ekman transport, sea level pressure and outgoing longwave radiation). Differences in the correlation fields between the cold and warm PDO indicate that this mode exerts a significant impact on the thermodynamic balance of the ocean-atmosphere system on the South Atlantic ocean, mainly in the South Brazil and Benguela LMEs. The PDO regime shift also resulted in an increase in the spatial variability of SST and wind stress anomalies, mainly along the western African LMEs. Another important finding is the strong AAO influence on the SST anomalies (SSTA) in the South Brazil LME. It is also striking that TSA modulates the relation between El Niño-Southern Oscillation (ENSO) and SSTA, by reducing the influence of ENSO on SSTA during the warm PDO period in the North and East Brazil LMEs and in the Guinea Current LME. The relation between AAO and SSTA on the tropical area is also influenced by the TSA. The results shown here give a clear indication that future ecosystem-based management actions aimed at the conservation of marine resources under climate change need to consider the high complexity of basin-scale interactions between local and remote climate forcings, including their effects on the ocean-atmosphere system of the South Atlantic ocean.
Eddy-Current Inspection of Ball Bearings
NASA Technical Reports Server (NTRS)
Bankston, B.
1985-01-01
Custom eddy-current probe locates surface anomalies. Low friction air cushion within cone allows ball to roll easily. Eddy current probe reliably detects surface and near-surface cracks, voids, and material anomalies in bearing balls or other spherical objects. Defects in ball surface detected by probe displayed on CRT and recorded on strip-chart recorder.
Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes
NASA Astrophysics Data System (ADS)
Zhang, Ting; Song, Jinbao
2018-04-01
The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.
Importance of convective parameterization in ENSO predictions
NASA Astrophysics Data System (ADS)
Zhu, Jieshun; Kumar, Arun; Wang, Wanqiu; Hu, Zeng-Zhen; Huang, Bohua; Balmaseda, Magdalena A.
2017-06-01
This letter explored the influence of atmospheric convection scheme on El Niño-Southern Oscillation (ENSO) predictions using a set of hindcast experiments. Specifically, a low-resolution version of the Climate Forecast System version 2 is used for 12 month hindcasts starting from each April during 1982-2011. The hindcast experiments are repeated with three atmospheric convection schemes. All three hindcasts apply the identical initialization with ocean initial conditions taken from the European Centre for Medium-Range Weather Forecasts and atmosphere/land initial states from the National Centers for Environmental Prediction. Assessments indicate a substantial sensitivity of the sea surface temperature prediction skill to the different convection schemes, particularly over the eastern tropical Pacific. For the Niño 3.4 index, the anomaly correlation skill can differ by 0.1-0.2 at lead times longer than 2 months. Long-term simulations are further conducted with the three convection schemes to understand the differences in prediction skill. By conducting heat budget analyses for the mixed-layer temperature anomalies, it is suggested that the convection scheme having the highest skill simulates stronger and more realistic coupled feedbacks related to ENSO. Particularly, the strength of the Ekman pumping feedback is better represented, which is traced to more realistic simulation of surface wind stress. Our results imply that improving the mean state simulations in coupled (ocean-atmosphere) general circulation model (e.g., ameliorating the Intertropical Convergence Zone simulation) might further improve our ENSO prediction capability.
NASA Astrophysics Data System (ADS)
Pei, Lin; Yan, Zhongwei; Sun, Zhaobin; Miao, Shiguang; Yao, Yao
2018-03-01
Over the past decades, Beijing, the capital city of China, has encountered increasingly frequent persistent haze events (PHE). While the increased pollutant emissions are considered as the most important reason, changes in regional atmospheric circulations associated with large-scale climate warming also play a role. In this study, we find a significant positive trend of PHE in Beijing for the winters from 1980 to 2016 based on updated daily observations. This trend is closely related to an increasing frequency of extreme anomalous southerly episodes in North China, a weakened East Asian trough in the mid-troposphere and a northward shift of the East Asian jet stream in the upper troposphere. These conditions together depict a weakened East Asian winter monsoon (EAWM) system, which is then found to be associated with an anomalous warm, high-pressure system in the middle-lower troposphere over the northwestern Pacific. A practical EAWM index is defined as the seasonal meridional wind anomaly at 850 hPa in winter over North China. Over the period 1900-2016, this EAWM index is positively correlated with the sea surface temperature anomalies over the northwestern Pacific, which indicates a wavy positive trend, with an enhanced positive phase since the mid-1980s. Our results suggest an observation-based mechanism linking the increase in PHE in Beijing with large-scale climatic warming through changes in the typical regional atmospheric circulation.
Coherent climate anomalies over the Indo-western Pacific in post-El Niño summer
NASA Astrophysics Data System (ADS)
Kosaka, Y.; Xie, S. P.; DU, Y.; Hu, K.; Chowdary, J. S.; Huang, G.
2016-12-01
El Niño typically peaks in boreal winter, and the associated equatorial Pacific sea surface temperature (SST) signal dissipates before subsequent summer. Its impact, however, outlasts until boreal summer in the Indo-western Pacific, featuring basin-wide Indian Ocean warming and tropical Northwestern Pacific cooling accompanied by the Pacific-Japan (PJ) teleconnection pattern with surface anomalous anticyclone (AAC) extending from the Philippine Sea to the northern Indian Ocean. Two formation mechanisms have been proposed for these climate anomalies in post-El Niño-Southern Oscillation (ENSO) summer. One hypothesis invokes the wind-evaporation-SST (WES) feedback in the tropical Northwestern Pacific, while the other points to inter-basin feedback between the Indian Ocean and tropical Northwestern Pacific. Based on a coupled model experiment, we propose an ocean-atmosphere coupled mode that synthesizes the two mechanisms. This Indo-western Pacific Ocean capacitor (IPOC) mode evolves seasonally from spring to summer under seasonal migration of background state. In spring, the WES feedback is operative in association with the tropical Northwestern Pacific cooling, while in summer the Indian Ocean warming and the inter-basin interaction maintains the AAC. While the IPOC mode is independent of ENSO in mechanism, ENSO can drive this mode in its decay phase. This excitation, however, has undergone substantial interdecadal modulations, depending on ENSO amplitude and persistence of Indian Ocean warming. The ENSO-IPOC correlation is high after the mid-1970s and at the beginning of the 20th century, but low in between.
NASA Astrophysics Data System (ADS)
Rascle, Nicolas; Molemaker, Jeroen; Marié, Louis; Nouguier, Frédéric; Chapron, Bertrand; Lund, Björn; Mouche, Alexis
2017-06-01
Fine-scale current gradients at the ocean surface can be observed by sea surface roughness. More specifically, directional surface roughness anomalies are related to the different horizontal current gradient components. This paper reports results from a dedicated experiment during the Lagrangian Submesoscale Experiment (LASER) drifter deployment. A very sharp front, 50 m wide, is detected simultaneously in drifter trajectories, sea surface temperature, and sea surface roughness. A new observational method is applied, using Sun glitter reflections during multiple airplane passes to reconstruct the multiangle roughness anomaly. This multiangle anomaly is consistent with wave-current interactions over a front, including both cross-front convergence and along-front shear with cyclonic vorticity. Qualitatively, results agree with drifters and X-band radar observations. Quantitatively, the sharpness of roughness anomaly suggests intense current gradients, 0.3 m s-1 over the 50 m wide front. This work opens new perspectives for monitoring intense oceanic fronts using drones or satellite constellations.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Lee, Jae N.; Iredell, Lena
2013-01-01
The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.
NASA Astrophysics Data System (ADS)
Dolant, C.; Montpetit, B.; Langlois, A.; Brucker, L.; Zolina, O.; Johnson, C. A.; Royer, A.; Smith, P.
2018-05-01
In summer 2016, more than 50 Arctic Barren Ground caribous were found dead on Prince Charles Island (Nunavut, Canada), a species recently classified as threatened. Neither predator nor sign of diseases was observed and reported. The main hypothesis is that caribous were not able to access food due to a very dense snow surface, created by a strong storm system in spring. Using satellite microwave data, a significant increase in brightness temperature polarization ratio at 19 and 37 GHz was observed in spring 2016 (60% higher than previous two winter seasons). Based on microwave radiative transfer simulations, such anomaly can be explained with a very dense snow surface. This is consistent with the succession of storms and strong winds highlighted in ERA-Interim over Prince Charles Island in spring 2016. Using several sources of data, this study shows that changes in snow conditions explain the caribou die-off due to restricted foraging.
Radiation and Plasma Environments for Lunar Missions
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Edwards, David L.; Altstatt, Richard L.; Diekmann, Anne M.; Blackwell, William C., Jr.; Harine, Katherine J.
2006-01-01
Space system design for lunar orbit and extended operations on the lunar surface requires analysis of potential system vulnerabilities to plasma and radiation environments to minimize anomalies and assure that environmental failures do not occur during the mission. Individual environments include the trapped particles in Earth s radiation belts, solar energetic particles and galactic cosmic rays, plasma environments encountered in transit to the moon and on the lunar surface (solar wind, terrestrial magnetosheath and magnetotail, and lunar photoelectrons), and solar ultraviolet and extreme ultraviolet photons. These are the plasma and radiation environments which contribute to a variety of effects on space systems including total ionizing dose and dose rate effects in electronics, degradation of materials in the space environment, and charging of spacecraft and lunar dust. This paper provides a survey of the relevant charged particle and photon environments of importance to lunar mission design ranging from the lowest (approx.few 10 s eV) photoelectron energies to the highest (approx.GeV) cosmic ray energies.
On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse
2016-01-01
Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon’s shadow cools part of the Earth’s surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550763
On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse.
Marlton, G J; Williams, P D; Nicoll, K A
2016-09-28
Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon's shadow cools part of the Earth's surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreck, S. J.; Schepers, J. G.
Continued inquiry into rotor and blade aerodynamics remains crucial for achieving accurate, reliable prediction of wind turbine power performance under yawed conditions. To exploit key advantages conferred by controlled inflow conditions, we used EU-JOULE DATA Project and UAE Phase VI experimental data to characterize rotor power production under yawed conditions. Anomalies in rotor power variation with yaw error were observed, and the underlying fluid dynamic interactions were isolated. Unlike currently recognized influences caused by angled inflow and skewed wake, which may be considered potential flow interactions, these anomalies were linked to pronounced viscous and unsteady effects.
Annular Mode Dynamics: Eddy Feedbacks and the Underlying Mechanisms
NASA Astrophysics Data System (ADS)
Hassanzadeh, P.; Ma, D.; Kuang, Z.
2017-12-01
Annular modes are the leading modes the extratropical circulation variability in both hemispheres on intraseasonal to interannual timescales. Temporal persistence and an equivalent-barotropic dipolar wind anomaly are the key spatio-temporal characteristics of the annular modes. The potential source(s) of this persistence, and in particular, whether there is a contribution from a positive eddy-jet feedback, are still unclear (e.g., Lorenz and Hartmann, 2001; Byrne et al., 2016). The mechanism of this feedback, and how it depends on processes such as surface friction, is also not well understood (e.g., Robinson, 2000; Gerber et al., 2007). In this study, we utilize the recently calculated Linear Response Function (LRF) of an idealized GCM (Hassanzadeh and Kuang, 2016). The LRF enables us to accurately calculate the response of eddy momentum/heat fluxes to the zonal-mean zonal wind and temperature anomalies of the annular mode. Using this information: 1) We confirm the existence of a positive eddy-jet feedback in the annular mode of the idealized GCM and accurately quantify the magnitude of this feedback; 2) We quantify the contribution of key processes (e.g., eddy momentum/heat fluxes and surface friction) to the annular mode dynamics in the idealized GCM. We show that as proposed by Robinson (2000), the baroclinic component of the annular mode and surface friction are essential for the positive eddy-jet feedback. Results show that this feedback increases the persistence of the annular mode by a factor of two. We also show that the barotropic component of the annular mode alone does not lead to persistence. In fact, the eddy-jet feedback for the barotropic component is negative because of the dominance of the barotropic governor effect. 3) Using the results of 1, we evaluate the underlying assumptions and accuracy of the statistical methods previously developed for quantifying the eddy-jet feedback (Lorenz and Hartmann, 2001; Simpson et al., 2013) and introduce a new statistical method that shows superior accuracy. We apply the new method to reanalysis data to quantify the eddy-jet feedback for the Southern Annular Mode. The key findings of 1-3 and their implications for our understanding of the annular mode dynamics will be discussed in this presentation.
Key roles of sea ice in inducing contrasting modes of glacial AMOC and climate
NASA Astrophysics Data System (ADS)
Sherriff-Tadano, S.; Abe-Ouchi, A.
2017-12-01
Gaining a better understanding of glacial Atlantic meridional overturning circulation (AMOC) is important to interpret the glacial climate changes such as the Heinrich event. Recent studies suggest that changes in sea ice over the North Atlantic largely affect the surface wind. Since changes in surface wind have a large impact on the AMOC, this implies a role of sea ice in modifying the AMOC though surface wind. However, the impact of sea ice on the surface winds and the impact of changes in the winds on the AMOC remain unclear. In this study, we first assess the impact of sea ice expansion on the winds. We then explore whether the changes in winds play a role in modifying the AMOC and climate. For this purpose, results from MIROC4m are analyzed (Kawamura et al. 2017). To clarify the impact of changes in sea ice on the surface wind, sensitivity experiments are conducted with an atmospheric general circulation model (AGCM). In the AGCM experiments, we modify the sea ice to extract the impact of sea ice on the winds. Partial decouple experiments are conducted with the coupled model MIROC4m, which we modify the surface winds to assess the impact of changes in the surface wind due to sea ice expansion on the AMOC. Results show that expansion of sea ice substantially weakens the surface wind over the northern North Atlantic. AGCM experiments show that a drastic decrease in surface temperature duo to a suppression of sensible heat flux plays a dominant role in weakening the surface winds through increasing the static stability of the air column near the surface. Partial decouple experiments with MIROC4m show that the weakening of the surface wind due to the expansion of sea ice plays an important role in maintaining the weak AMOC. Thus, these experiments show that the weakening of the surface winds due to sea ice expansion plays a role in stabilizing the AMOC.
Short-term variability of gamma radiation at the ARM Eastern North Atlantic facility (Azores).
Barbosa, S M; Miranda, P; Azevedo, E B
2017-06-01
This work addresses the short-term variability of gamma radiation measured continuously at the Eastern North Atlantic (ENA) facility located in the Graciosa island (Azores, 39N; 28W), a fixed site of the Atmospheric Radiation Measurement programme (ARM). The temporal variability of gamma radiation is characterized by occasional anomalies over a slowly-varying signal. Sharp peaks lasting typically 2-4 h are coincident with heavy precipitation and result from the scavenging effect of precipitation bringing radon progeny from the upper levels to the ground surface. However the connection between gamma variability and precipitation is not straightforward as a result of the complex interplay of factors such as the precipitation intensity, the PBL height, the cloud's base height and thickness, or the air mass origin and atmospheric concentration of sub-micron aerosols, which influence the scavenging processes and therefore the concentration of radon progeny. Convective precipitation associated with cumuliform clouds forming under conditions of warming of the ground relative to the air does not produce enhancements in gamma radiation, since the drop growing process is dominated by the fast accretion of liquid water, resulting in the reduction of the concentration of radionuclides by dilution. Events of convective precipitation further contribute to a reduction in gamma counts by inhibiting radon release from the soil surface and by attenuating gamma rays from all gamma-emitting elements on the ground. Anomalies occurring in the absence of precipitation are found to be associated with a diurnal cycle of maximum gamma counts before sunrise decreasing to a minimum in the evening, which are observed in conditions of thermal stability and very weak winds enabling the build-up of near surface radon progeny during the night. Copyright © 2017 Elsevier Ltd. All rights reserved.
Understanding multidecadal variability in ENSO amplitude
NASA Astrophysics Data System (ADS)
Russell, A.; Gnanadesikan, A.
2013-12-01
Sea surface temperatures (SSTs) in the tropical Pacific vary as a result of the coupling between the ocean and atmosphere driven largely by the El Niño - Southern Oscillation (ENSO). ENSO has a large impact on the local climate and hydrology of the tropical Pacific, as well as broad-reaching effects on global climate. ENSO amplitude is known to vary on long timescales, which makes it very difficult to quantify its response to climate change and constrain the physical processes that drive it. In order to assess the extent of unforced multidecadal changes in ENSO variability, a linear regression of local SST changes is applied to the GFDL CM2.1 model 4000-yr pre-industrial control run. The resulting regression coefficient strengths, which represent the sensitivity of SST changes to thermocline depth and zonal wind stress, vary by up to a factor of 2 on multi-decadal time scales. This long-term modulation in ocean-atmosphere coupling is highly correlated with ENSO variability, but do not explain the reasons for such variability. Variation in the relationship between SST changes and wind stress points to a role for changing stratification in the central equatorial Pacific in modulating ENSO amplitudes with stronger stratification reducing the response to winds. The main driving mechanism we have identified for higher ENSO variance are changes in the response of zonal winds to SST anomalies. The shifting convection and precipitation patterns associated with the changing state of the atmosphere also contribute to the variability of the regression coefficients. These mechanisms drive much of the variability in ENSO amplitude and hence ocean-atmosphere coupling in the tropical Pacific.
On the dynamic forcing of short-term climate fluctuations by feedback mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiter, E.R.
1979-09-01
The energies involved in the general circulation of the atmosphere, especially the zonal available potential energy, show considerable interannual variability, suggesting the presence of various internal feedback mechanisms in the ocean-atmosphere system. Sea-surface temperature (SST) variations appear to have some effect on the hydrological cycle. The possible existence of feedback mechanisms between ocean and atmosphere seem to be evident in some of the data from the North Pacific and North Atlantic. One of these proposed mechanisms involves the variation in the convergence between the North and South Pacific trade-wind systems and is strongly reflected in rainfall variability within the drymore » region of the equatorial Pacific. Similar variations appear in low-latitude SST anomalies. The convergence between the two trade-wind systems in the Atlantic region also undergoes marked interannual variations. This quasi-biennial oscillation (QBO) in trade-wind convergence over the Atlantic appears to be tied to the global QBO of equatorial stratospheric winds and to regional rainfall regimes in the dry region of northeastern Brazil. A variability pattern of SST's with a QBO has been detected off the coast of Senegal, in the Gulf of Guinea and even in the Gulf Stream as it leaves the North American continental shelf. Possible physical connections between some of these QBO's are pointed out by a hypothetical feedback model. It is also suggested that interaction of a QBO with the annual cycle may lead to beating frequencies resembling climatic trends of a duration of several years.« less
NASA Technical Reports Server (NTRS)
Phillips, R. J.
1986-01-01
Crustal anomaly detection with MAGSAT data is frustrated by the inherent resolving power of the data and by contamination from the external and core fields. The quality of the data might be tested by modeling specific tectonic features which produce anomalies that fall within the proposed resolution and crustal amplitude capabilities of the MAGSAT fields. To test this hypothesis, the north African hotspots associated with Ahaggar, Tibestia and Darfur have been modeled as magnetic induction anomalies due solely to shallower depth to the Curie isotherm surface beneath these features. The MAGSAT data were reduced by subtracting the external and core fields to isolate the scalar and vertical component crustal signals. The predicted model magnetic signal arising from the surface topography of the uplift and the Curie isotherm surface was calculated at MAGSAT altitudes by the Fourier transform technique modified to allow for variable magnetization. In summary it is suggested that the region beneath Ahaggar is associated with a strong thermal anomaly and the predicted anomaly best fits the associated MAGSAT anomaly if the African plate is moving in a northeasterly direction.
A surface spherical harmonic expansion of gravity anomalies on the ellipsoid
NASA Astrophysics Data System (ADS)
Claessens, S. J.; Hirt, C.
2015-10-01
A surface spherical harmonic expansion of gravity anomalies with respect to a geodetic reference ellipsoid can be used to model the global gravity field and reveal its spectral properties. In this paper, a direct and rigorous transformation between solid spherical harmonic coefficients of the Earth's disturbing potential and surface spherical harmonic coefficients of gravity anomalies in ellipsoidal approximation with respect to a reference ellipsoid is derived. This transformation cannot rigorously be achieved by the Hotine-Jekeli transformation between spherical and ellipsoidal harmonic coefficients. The method derived here is used to create a surface spherical harmonic model of gravity anomalies with respect to the GRS80 ellipsoid from the EGM2008 global gravity model. Internal validation of the model shows a global RMS precision of 1 nGal. This is significantly more precise than previous solutions based on spherical approximation or approximations to order or , which are shown to be insufficient for the generation of surface spherical harmonic coefficients with respect to a geodetic reference ellipsoid. Numerical results of two applications of the new method (the computation of ellipsoidal corrections to gravimetric geoid computation, and area means of gravity anomalies in ellipsoidal approximation) are provided.
Using an atmospheric boundary layer model to force global ocean models
NASA Astrophysics Data System (ADS)
Abel, Rafael; Böning, Claus
2014-05-01
Current practices in the atmospheric forcing of ocean model simulations can lead to unphysical behaviours. The problem lies in the bulk formulation of the turbulent air-sea fluxes in the conjunction with a prescribed, and unresponsive, atmospheric state (as given by reanalysis products). This can have impacts both on mesoscale processes as well as on the dynamics of the large-scale circulation. First, a possible local mismatch between the given atmospheric state and evolving sea surface temperature (SST) signatures can occur, especially for mesoscale features such as frontal areas, eddies, or near the sea ice edge. Any ocean front shift or evolution of mesoscale anomalies results in excessive, unrealistic surface fluxes due to the lack of atmospheric adaptation. Second, a subtle distortion in the sensitive balance of feedback processes being critical for the thermohaline circulation. Since the bulk formulations assume an infinite atmospheric heat capacity, resulting SST anomalies are strongly damped even on basin-scales (e.g. from trends in the Atlantic meridional overturning circulation). In consequence, an important negative feedback is eliminated, rendering the system excessively susceptible to small anomalies (or errors) in the freshwater fluxes. Previous studies (Seager et al., 1995, J. Clim.) have suggested a partial forcing issue remedy that aimed for a physically more realistic determination of air-sea fluxes by allowing some (thermodynamic) adaptation of the atmospheric boundary layer to SST changes. In this study a modernized formulation of this approach (Deremble et al., 2013, Mon. Weather Rev.; 'CheapAML') is implemented in a global ocean-ice model with moderate resolution (0.5°; ORCA05). In a set of experiments we explore the solution behaviour of this forcing approach (where only the winds are prescribed, while atmospheric temperature and humidity are computed), contrasting it with the solution obtained from the classical bulk formulation with a non-responsive atmosphere.
NASA Astrophysics Data System (ADS)
Liu, Q.; Fu, C.; Zhou, T.
2017-12-01
This study investigates the relationship between Western Pacific Subtropical High (WPSH) and summer heatwaves over Eastern China in interannual scale during the period of 1959-2016. Based on surface daily maximum temperature of 654 monitoring stations over China and meteorological variables in reanalysis data, we calculate the number of heatwave days (NHD) (one heatwave day was defined as one day with its daily maximum temperature greater than 35 degrees centigrade) as well as WPSH index and then examine their interannual relationship. Although the high-NHD-related 850hPa horizontal wind structure was shared by that of high WPSH and decaying El Niño summer, a decadal oscillation emerges for the correlation between interannual WPSH and NHD after removing their interdecadal variability by Ensemble Empirical Mode Decomposition (EEMD) method. The correlation coefficient can reach up to as high as 0.69 and as low as 0.17 and assembles the Pacific Decadal Oscillation (PDO) pretty well. Compositing analysis demonstrates that unstable WPSH-NHD relationship is mainly attributed to the spatial structure distinction of WPSH and surface warming in the El Niño decaying summer of different PDO phases. In the El Niño decaying summer of positive PDO phases, remarkable enhanced warming over majority of Southeastern China matches well with the noticeable westward extension of WPSH, which seems to be forced by the cyclonic circulation anomaly over Japan. The warmer Pacific-Indian Ocean Warm Pool intensifies the Matsuno-Gill pattern over Maritime Continent, stimulating this cyclonic circulation anomaly via the northward propagation of Rossby wave. In the El Niño decaying summer of negative PDO phases, the cooler East China Sea enhances WPSH in North China and South China Sea, and thereby leads to a local cyclonic circulation anomaly over Eastern China, which would cause a large scope of cooling and out-of-phase WPSH-NHD relationship.
NASA Astrophysics Data System (ADS)
Li, X.; Gille, S. T.; shang-Ping, X.; Xie, S. P.; Holland, D. M.; Holland, M. M.
2016-12-01
The climate change observed around Antarctica in recent decades is characterized by distinct zonally asymmetric patterns, with the strongest changes over West Antarctica. These changes are marked by strong land ice melting and sea ice redistribution around West Antarctica. This is associated with temperature and circulation anomalies in the ocean and atmosphere around the same area. In this study, we comprehensively examine the coherency between these changes using a combination of observations and numerical simulations. Results show that the atmospheric circulation changes distinctly drive the changes in ocean circulation and sea ice distribution. In addition, the atmospheric circulation induced sea ice changes play an important role in lifting the subsurface ocean temperature and salinity around the West Antarctica. During recent decades, the Amundsen Sea Low (ASL) has deepened, especially in austral autumn and winter. This deepened ASL has intensified the offshore wind near the coastal regions of the Ross Sea. Driven by these atmospheric changes, more sea ice has formed near West Antarctica in winter. In contrast, more sea ice melts during the summer. This strengthened sea ice seasonality has been observed and successfully reproduced in the model simulation. The wind-driven sea ice changes causes a surface freshening over the Ross and Amundsen Seas, with a subsurface salinity increase over the Ross Sea. The additional fresh/salt water fluxes thus further change the vertical distribution of salinity and strengthen the stratification in the Ross and Amundsen Seas. As a result of the above ice-ocean process, the mixed-layer depth around the Ross and Amundsen Seas shallows. By weakening the vertical heat transport near the surface layer, and inducing an upward movement of the circumpolar deep water (CDW), this process freshened and cooled the surface layer, while the salinity and temperature in the sub-surface ocean are increased, extending from 150 meters to >700 meters. Around the Amundsen Sea, warm water touches the continent, which could potentially contribute to the accelerated land ice melting over this area.
Observational study of surface wind along a sloping surface over mountainous terrain during winter
NASA Astrophysics Data System (ADS)
Lee, Young-Hee; Lee, Gyuwon; Joo, Sangwon; Ahn, Kwang-Deuk
2018-03-01
The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is observed along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward foot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.
NASA Astrophysics Data System (ADS)
Levine, P. A.; Xu, M.; Chen, Y.; Randerson, J. T.; Hoffman, F. M.
2017-12-01
Interannual variability of climatic conditions in the Amazon rainforest is associated with El Niño-Southern Oscillation (ENSO) and ocean-atmosphere interactions in the North Atlantic. Sea surface temperature (SST) anomalies in these remote ocean regions drive teleconnections with Amazonian surface air temperature (T), precipitation (P), and net ecosystem production (NEP). While SST-driven NEP anomalies have been primarily linked to T anomalies, it is unclear how much the T anomalies result directly from SST forcing of atmospheric circulation, and how much result indirectly from decreases in precipitation that, in turn, influence surface energy fluxes. Interannual variability of P associated with SST anomalies lead to variability in soil moisture (SM), which would indirectly affect T via partitioning of turbulent heat fluxes between the land surface and the atmosphere. To separate the direct and indirect influence of the SST signal on T and NEP, we performed a mechanism-denial experiment to decouple SST and SM anomalies. We used the Accelerated Climate Modeling for Energy (ACMEv0.3), with version 5 of the Community Atmosphere Model and version 4.5 of the Community Land Model. We forced the model with observed SSTs from 1982-2016. We found that SST and SM variability both contribute to T and NEP anomalies in the Amazon, with relative contributions depending on lag time and location within the Amazon basin. SST anomalies associated with ENSO drive most of the T variability at shorter lag times, while the ENSO-driven SM anomalies contribute more to T variability at longer lag times. SM variability and the resulting influence on T anomalies are much stronger in the eastern Amazon than in the west. Comparing modeled T with observations demonstrate that SST alone is sufficient for simulating the correct timing of T variability, but SM anomalies are necessary for simulating the correct magnitude of the T variability. Modeled NEP indicated that variability in carbon fluxes results from both SST and SM anomalies. As with T, SM anomalies affect NEP at a much longer lag time than SST anomalies. These results highlight the role of land-atmosphere coupling in driving climate variability within the Amazon, and suggest that land atmospheric coupling may amplify and delay carbon cycle responses to ocean-atmosphere teleconnections.
NASA Astrophysics Data System (ADS)
Kervalishvili, Guram; Lühr, Hermann
2014-05-01
We present climatology of the relationship of cusp-related density enhancement with the neutral zonal wind velocity, large-scale field-aligned current (FAC), small-scale FAC, and electron temperature using the superposed epoch analysis (SEA) method. The dependence of these variables on the interplanetary magnetic field (IMF) By component orientation and solar cycle are of particular interest. In addition, the obtained results of relative density enhancement (ρrel), zonal wind, electron temperature and FAC are subdivided into three local seasons of 130 days each: local winter (1 January ±65 days), combined equinoxes (1 April ±32 days and 1 October ±32 days), and local summer (1 July ±65 days). Our investigation is based on CHAMP satellite observations and NASA/GSFC's OMNI online data set for solar maximum (Mar/2002-2007) and minimum (Mar/2004-2009) conditions in the Northern Hemisphere. The SEA technique uses the time and location of the thermospheric mass density anomaly peaks as reference parameters. The relative amplitude of cusp-related density enhancement does on average not depend on the IMF By orientation, solar cycle phase, and local season. Also, it is apparent that the IMF By amplitude does not have a big influence on the relative amplitude of the density anomaly. Conversely, there exists a good correlation between ρrel and the negative amplitude of IMF Bz prevailing about half an hour earlier. In the cusp region, both large-scale FAC distribution and thermospheric zonal wind velocity exhibit a clear dependence on the IMF By orientation. In the case of positive (negative) IMF By there is a systematic imbalance between downward (upward) and upward (downward) FACs peaks equatorward and poleward of the reference point, respectively. The zonal wind velocity is directed towards west i.e. towards dawn in a geomagnetic latitude-magnetic local time (MLat-MLT) frame. This is true for all local seasons and solar conditions. The thermospheric density enhancements appear half way between Region 1 (R1) and Region 0 (R0) field-aligned currents, in closer proximity to the upward FAC region. In our case R0 currents are systematically weaker than R1 ones. Also, around the cusp region we find no sign of Region 2 field-aligned currents. We can conclude that there is a close spatial relationship between FACs and cusp-related density enhancements, but we cannot offer any simple functional relation between field-aligned current strength and density anomaly amplitude. There seem to be other quantities (e.g. precipitating electrons) controlling this relation. All the conclusions drawn above are true for the Northern Hemisphere. There may be differences in the Southern Hemisphere.