Sample records for surface wind stress

  1. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  2. Why do modelled and observed surface wind stress climatologies differ in the trade wind regions?

    NASA Astrophysics Data System (ADS)

    Simpson, I.; Bacmeister, J. T.; Sandu, I.; Rodwell, M. J.

    2017-12-01

    Global climate models (GCMs) exhibit stronger easterly zonal surface wind stress and near surface winds in the Northern Hemisphere (NH) trade winds than observationally constrained reanalyses or other observational products. A comparison, between models and reanalyses, of the processes that contribute to the zonal mean, vertically integrated balance of momentum, reveals that this wind stress discrepancy cannot be explained by either the resolved dynamics or parameterized tendencies that are common to each. Rather, a substantial residual exists in the momentum balance of the reanalyses, pointing toward a role for the analysis increments. Indeed, they are found to systematically weaken the NH near surface easterlies in winter, thereby reducing the surface wind stress. Similar effects are found in the Southern Hemisphere and further analysis of the spatial structure and seasonality of these increments, demonstrates that they act to weaken the near surface flow over much of the low latitude oceans in both summer and winter. This suggests an erroneous /missing process in GCMs that constitutes a missing drag on the low level zonal flow over oceans. Either this indicates a mis-representation of the drag between the surface and the atmosphere, or a missing internal atmospheric process that amounts to an additional drag on the low level zonal flow. If the former is true, then observation based surface stress products, which rely on similar drag formulations to GCMs, may be underestimating the strength of the easterly surface wind stress.

  3. Comparison of surface wind stress measurements - Airborne radar scatterometer versus sonic anemometer

    NASA Technical Reports Server (NTRS)

    Brucks, J. T.; Leming, T. D.; Jones, W. L.

    1980-01-01

    Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.

  4. Martian aeolian features and deposits - Comparisons with general circulation model results

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Skypeck, A.; Pollack, J. B.

    1993-02-01

    The relationships between near-surface winds and the distribution of wind-related features are investigated by means of a general circulation model of Mars' atmosphere. Predictions of wind surface stress as a function of season and dust optical depth are used to investigate the distribution and orientation of wind streaks, yardangs, and rock abundance on the surface. The global distribution of rocks on the surface correlates well with predicted wind stress, particularly during the dust storm season. The rocky areas are sites of strong winds, suggesting that fine material is swept away by the wind, leaving rocks and coarser material behind.

  5. Impacts of the Mesoscale Ocean-Atmosphere Coupling on the Peru-Chile Ocean Dynamics: The Current-Induced Wind Stress Modulation

    NASA Astrophysics Data System (ADS)

    Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.

    2018-02-01

    The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.

  6. Surface Buoyancy Fluxes and the Strength of the Subpolar Gyre

    NASA Astrophysics Data System (ADS)

    Hogg, A. M.; Gayen, B.

    2017-12-01

    Midlatitude ocean gyres have long been considered to be driven by the mechanical wind stress on the ocean's surface (strictly speaking, the potential vorticity input from wind stress curl). However, surface buoyancy forcing (i.e. heating/cooling or freshening/salinification) also modifies the potential vorticity at the surface. Here, we present a simple argument to demonstrate that ocean gyres may (in principle) be driven by surface buoyancy forcing. This argument is derived in two ways: A Direct Numerical Simulation, driven purely by buoyancy forcing, which generates strong nonlinear gyers in the absence of wind stress; and A series of idealised eddy-resolving numerical ocean model simulations, in which wind stress and buoyancy flux are varied independently and together, are used to understand the relative importance of these two types of forcing. In these simulations, basin-scale gyres and western boundary currents with realistic magnitudes, remain even in the absence of mechanical forcing by surface wind stress. These results support the notion that surface buoyancy forcing can reorganise the potential vorticity in the ocean in such a way as to drive basin-scale gyres. The role of buoyancy is stronger in the subpolar gyre than in the subtropical gyre. We infer that surface buoyancy fluxes are likely to play a contributing role in governing the strength, variability and predictability of the North Atlantic subpolar gyre.

  7. Risk Quantification for Sustaining Coastal Military Installation Asset and Mission Capabilities (RC-1701)

    DTIC Science & Technology

    2014-06-06

    al. 2012, and references therein). The world’s oceans have an en01m ous capacity to store this heat , but the result is ocean wruming and all the...TC96 wind model computes surface stress and average wind speed and direction in the PBL of a tropical cyclone. The model inputs are meteorological...is the effective earth elasticity factor; τs,winds and τs,waves are surface stresses due to winds and waves, respectively; τb is bottom stress ; M

  8. Investigation of the turbulent wind field below 500 feet altitude at the Eastern Test Range, Florida

    NASA Technical Reports Server (NTRS)

    Blackadar, A. K.; Panofsky, H. A.; Fiedler, F.

    1974-01-01

    A detailed analysis of wind profiles and turbulence at the 150 m Cape Kennedy Meteorological Tower is presented. Various methods are explored for the estimation of wind profiles, wind variances, high-frequency spectra, and coherences between various levels, given roughness length and either low-level wind and temperature data, or geostrophic wind and insolation. The relationship between planetary Richardson number, insolation, and geostrophic wind is explored empirically. Techniques were devised which resulted in surface stresses reasonably well correlated with the surface stresses obtained from low-level data. Finally, practical methods are suggested for the estimation of wind profiles and wind statistics.

  9. A variable vertical resolution weather model with an explicitly resolved planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.

    1981-01-01

    A version of the fourth order weather model incorporating surface wind stress data from SEASAT A scatterometer observations is presented. The Monin-Obukhov similarity theory is used to relate winds at the top of the surface layer to surface wind stress. A reasonable approximation of surface fluxes of heat, moisture, and momentum are obtainable using this method. A Richardson number adjustment scheme based on the ideas of Chang is used to allow for turbulence effects.

  10. Simulating and understanding the gap outflow and oceanic response over the Gulf of Tehuantepec during GOTEX

    NASA Astrophysics Data System (ADS)

    Hong, Xiaodong; Peng, Melinda; Wang, Shouping; Wang, Qing

    2018-06-01

    Tehuantepecer is a strong mountain gap wind traveling through Chivela Pass into eastern Pacific coast in southern Mexico, most commonly between October and February and brings huge impacts on local and surrounding meteorology and oceanography. Gulf of Tehuantepec EXperiment (GOTEX) was conducted in February 2004 to enhance the understanding of the strong offshore gap wind, ocean cooling, vertical circulations and interactions among them. The gap wind event during GOTEX was simulated using the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®). The simulations are compared and validated with the observations retrieved from several satellites (GOES 10-12, MODIS/Aqua/Terra, TMI, and QuikSCAT) and Airborne EXpendable BathyThermograph (AXBT). The study shows that the gap wind outflow has a fanlike pattern expending from the coast and with a strong diurnal variability. The surface wind stress and cooling along the axis of the gap wind outflow caused intense upwelling and vertical mixing in the upper ocean; both contributed to the cooling of the ocean mixed layer under the gap wind. The cooling pattern of sea surface temperature (SST) also reflects temperature advection by the nearby ocean eddies to have a crescent shape. Two sensitivity experiments were conducted to understand the relative roles of the wind stress and heat flux on the ocean cooling. The control has more cooling right under the gap flow region than either the wind-stress-only or the heat-flux-only experiment. Overall, the wind stress has a slightly larger effect in bringing down the ocean temperature near the surface and plays a more important role in local ocean circulations beneath the mixed layer. The impact of surface heat flux on the ocean is more limited to the top 30 m within the mixed layer and is symmetric to the gap flow region by cooling the ocean under the gap flow region and reducing the warming on both sides. The effect of surface wind stress is to induce more cooling in the mixed layer under the gap wind through upwelling associated with Ekman divergence at the surface. Its effect deeper down is antisymmetric related to the nearby thermocline dome by inducing more upwelling to the east side of the gap flow region and more downwelling on the west side. Diagnostics from the mixed layer heat budget for the control and sensitivity experiments confirm that the surface heat flux has more influence on the broader area and the wind stress has more influence in a deeper region.

  11. Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling.

    PubMed

    Renault, Lionel; McWilliams, James C; Masson, Sebastien

    2017-12-18

    Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.

  12. Signatures of Air-Wave Interactions Over a Large Lake

    NASA Astrophysics Data System (ADS)

    Li, Qi; Bou-Zeid, Elie; Vercauteren, Nikki; Parlange, Marc

    2018-06-01

    The air-water exchange of momentum and scalars (temperature and water vapour) is investigated using the Lake-Atmosphere Turbulent EXchange (LATEX) dataset. The wind waves and swell are found to affect the coupling between the water surface and the air differently. The surface-stress vector aligns with the wind velocity in the presence of wind waves, but a wide range of stress-wind misalignment angles is observed during swell. The momentum transport efficiency decreases when significant stress-wind misalignment is present, suggesting a strong influence of surface wave properties on surface drag. Based on this improved understanding of the role of wave-wind misalignment, a new relative wind speed for surface-layer similarity formulations is proposed and tested using the data. The new expression yields a value of the von Kármán constant (κ ) of 0.38, compared to 0.36 when using the absolute wind speed, as well as reduced data fitting errors. Finally, the ratios of aerodynamic to scalar roughness lengths are computed and various existing models in the literature are tested using least-square fitting to the observed ratios. The tests are able to discriminate between the performance of various models; however, they also indicate that more investigations are required to understand the physics of scalar exchanges over waves.

  13. Wind effect on diurnal thermally driven flow in vegetated nearshore of a lake

    NASA Astrophysics Data System (ADS)

    Lin, Y. T.

    2014-12-01

    In this study, a highly idealized model is developed to discuss the interplay of diurnal heating/cooling induced buoyancy and wind stress on thermally driven flow over a vegetated slope. Since the model is linear, the horizontal velocity components can be broken into buoyancy-driven and surface wind-driven parts. Due to the presence of rooted emergent vegetation, the circulation strength even under the surface wind condition is still significantly reduced, and the transient (adjustment) stage for the initial conditions is shorter than that without vegetation. The flow in shallows is dominated by a viscosity/buoyancy balance as the case without wind, while the effect of wind stress is limited to the upper layer in deep water. In the lower layer of deep regions, vegetative drag is prevailing except the near bottom regions, where viscosity dominates. Under the unidirectional wind condition, a critical dimensionless shear stress to stop the induced flow can be found and is a function of horizontal location . For the periodic wind condition, if the two forcing mechanisms work in concert, the circulation magnitude can be increased. For the case where buoyancy and wind shear stress act against each other, the circulation strength is reduced and its structure becomes more complex. However, the flow magnitudes near the bottom for and are comparable because surface wind almost has no influence.

  14. Wave-Induced Momentum Flux over Wind-driven Surface Waves

    NASA Astrophysics Data System (ADS)

    Yousefi, Kianoosh; Veron, Fabrice; Buckley, Marc; Husain, Nyla; Hara, Tetsu

    2017-11-01

    In recent years, the exchange of momentum between the atmosphere and the ocean has been the subject of several investigations. Although the role of surface waves on the air-sea momentum flux is now well established, detailed quantitative measurements of wave-induced momentum fluxes are lacking. In the current study, using a combined Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) system, we obtained laboratory measurements of the airflow velocity above surface waves for wind speeds ranging from 0.86 to 16.63 m s-1. The mean, turbulent, and wave-coherent velocity fields are then extracted from instantaneous measurements. Wave-induced stress can, therefore, be estimated. In strongly forced cases in high wind speeds, the wave-induced stress near the surface is a significant fraction of the total stress. At lower wind speeds and larger wave ages, the wave-induced stress is positive very close to the surface, below the critical height and decreases to a negative value further above the critical height. This indicates a shift in the direction of the wave-coherent momentum flux across the critical layer. NSF OCE1458977, NSF OCE1634051.

  15. Wind Forcing of the Pacific Ocean Using Scatterometer Wind Data

    NASA Technical Reports Server (NTRS)

    Kelly, Kathryn A.

    1999-01-01

    The long-term objective of this research was an understanding of the wind-forced ocean circulation, particularly for the Pacific Ocean. To determine the ocean's response to the winds, we first needed to generate accurate maps of wind stress. For the ocean's response to wind stress we examined the sea surface height (SSH) both from altimeters and from numerical models for the Pacific Ocean.

  16. On wind-wave-current interactions during the Shoaling Waves Experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Fei W.; Drennan, William M.; Haus, Brian K.; Graber, Hans C.

    2009-01-01

    This paper presents a case study of wind-wave-current interaction during the Shoaling Waves Experiment (SHOWEX). Surface current fields off Duck, North Carolina, were measured by a high-frequency Ocean Surface Current Radar (OSCR). Wind, wind stress, and directional wave data were obtained from several Air Sea Interaction Spar (ASIS) buoys moored in the OSCR scanning domain. At several times during the experiment, significant coastal currents entered the experimental area. High horizontal shears at the current edge resulted in the waves at the peak of wind-sea spectra (but not those in the higher-frequency equilibrium range) being shifted away from the mean wind direction. This led to a significant turning of the wind stress vector away from the mean wind direction. The interactions presented here have important applications in radar remote sensing and are discussed in the context of recent radar imaging models of the ocean surface.

  17. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data

    NASA Astrophysics Data System (ADS)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk

    1994-05-01

    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS) (at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  18. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data

    NASA Technical Reports Server (NTRS)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk

    1994-01-01

    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS)(at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  19. FIRE_AX_PSU_MALBAL

    Atmospheric Science Data Center

    2015-11-24

    ... Parameters:  Clouds Irradiance Latent Heat Flux Liquid Water Content Precipitation Rate Sea Surface ... Solar Transmittance Specific Humidity Surface Stress System Optical Depth Temperature Wind Direction Wind Speed ...

  20. Strongly-sheared wind-forced currents in the nearshore regions of the central Southern California Bight

    USGS Publications Warehouse

    Noble, Marlene A.; Rosenberger, Kurt; Robertson, George L.

    2015-01-01

    Contrary to many previous reports, winds do drive currents along the shelf in the central portion of the Southern California Bight (SCB). Winds off Huntington Beach CA are the dominant forcing for currents over the nearshore region of the shelf (water depths less than 20 m). Winds control about 50–70% of the energy in nearshore alongshelf surface currents. The wind-driven current amplitudes are also anomalously high. For a relatively weak 1 dyne/cm2 wind stress, the alongshelf surface current amplitudes in this region can reach 80 cm/s or more. Mid-depth current amplitudes for the same wind stress are around 30–40 cm/s. These wind-driven surface current amplitudes are much larger than previously measured over other nearshore shelf regions, perhaps because this program is one of the few that measured currents within a meter of the surface. The near-bed cross-shelf currents over the nearshore region of the Huntington Beach shelf have an Ekman response to winds in that they upwell (downwell) for down (up) coast winds. This response disappears further offshore. Hence, there is upwelling in the SCB, but it does not occur across the entire shelf. Subthermocline water in the nearshore region that may contain nutrients and plankton move onshore when winds are southeastward, but subthermocline water over the shelf break is not transported to the beach. The currents over the outer shelf are not predominately controlled by winds, consistent with previous reports. Instead, they are mainly driven by cross-shelf pressure gradients that are independent of local wind stress.

  1. Bayesian Hierarchical Model Characterization of Model Error in Ocean Data Assimilation and Forecasts

    DTIC Science & Technology

    2013-09-30

    wind ensemble with the increments in the surface momentum flux control vector in a four-dimensional variational (4dvar) assimilation system. The...stability  effects?   surface  stress   Surface   Momentum  Flux  Ensembles  from  Summaries  of  BHM  Winds  (Mediterranean...surface wind speed given ensemble winds from a Bayesian Hierarchical Model to provide surface momentum flux ensembles. 3 Figure 2: Domain of

  2. The role of external forcing and Pacific trade winds in recent changes of the global climate system

    NASA Astrophysics Data System (ADS)

    Friedman, Andrew; Gastineau, Guillaume; Khodri, Myriam

    2017-04-01

    The Pacific trade winds experienced an unprecedented strengthening since the mid 1990s. Several studies have proposed that the increased Pacific trade winds were associated with the reduced rate of global mean surface temperature warming in the first decade of the 21st century, as well as far-reaching atmospheric teleconnections. We designed a set of ensemble partial coupling experiments using the IPSL-CM5A-LR coupled model that allow us to cleanly distinguish the influence of Pacific trade wind variability from that of external forcing over the past few decades. In this study, we quantify the respective impacts of these processes on surface temperature, ocean heat content, and atmospheric teleconnections. We designed two ensembles of coupled simulations using partial coupling with the IPSL-CM5A-LR model to separate the Pacific internal variability and that of external radiative forcing. We prescribe surface wind stress in the tropical Pacific (20°S to 20°N) from 1979-2014 in two ensembles of 30 members each: (1) Prescribed climatological model wind stress, which allows us to estimate the influence of external radiative forcing in the absence of variability within the Pacific Ocean. (2) Wind stress anomalies from ERA-Interim reanalysis added to the model wind stress climatology, which accounts for the effects of both external radiative forcing and the wind stress variability. We find that the observed wind stress anomalies account for the pattern of eastern tropical Pacific cooling when compared to the climatology experiment, so that it resembles the observed trends from 1992-2011. The tropical Pacific shows dominant heat uptake in the western Pacific above the 20°C isotherm, which contributed to slow the warming of tropical SST during the 2000s. The trade wind increase is associated with a strengthening of the Pacific Walker circulation, and zonal shifts in tropical rainfall. Despite tropical SST biases which affect the response of tropical rainfall and the location of deep convection, the wind stress anomaly forcing effectively simulates the wave train pattern emanating from the tropical Pacific, and associated extratropical teleconnections such as a weakening of the Aleutian Low and drought in North America.

  3. Viscous and Turbulent Stress Measurements over Wind-driven Surface Waves

    NASA Astrophysics Data System (ADS)

    Yousefi, K.; Veron, F.; Buckley, M. P.; Hara, T.; Husain, N.

    2017-12-01

    In recent years, the exchange of momentum and scalars between the atmosphere and the ocean has been the subject of several investigations. Although the role of surface waves on the air-sea momentum flux is now well established, detailed quantitative measurements of the turbulence in the airflow over surface waves remain scarce. The current incomplete physical understanding of the airflow dynamics impedes further progress in developing physically based parameterizations for improved weather and sea state predictions, particularly in high winds and extreme conditions. Using combined Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) in the laboratory, we have acquired detailed quantitative measurements of the airflow over wind-driven waves and down to within the viscous sub-layer. Various wind-wave conditions are examined with mean wind speeds ranging from 0.86 to 16.63 m s-1. The mean, turbulent, and wave-induced velocity fields are then extracted from instantaneous two-dimensional velocity measurements. Individual airflow separation events precipitate abrupt and dramatic along-wave variations in the surface viscous stress. In the bulk flow above the waves, these separation events are a source of intense vorticity. Phase averages of the viscous stress present a pattern of along-wave asymmetry near the surface; it is highest on the upwind of wave crest with its peak value about the crest and its minimum occurs at the middle of the leeward side of waves. The contribution of the viscous stress to the total momentum flux is not negligible particularly for low to moderate wind speeds and this contribution decreases with increasing wind speed. Away from the surface, the distribution of turbulent Reynolds stress forms a negative-positive pattern along the wave crest with a separation-induced maximum above the downwind side of the wave. Our measurements will be discussed in the context of available previous results.

  4. Wind-Stress Simulations and Equatorial Dynamics in an AGCM. Part 1; Basic Results from a 1979-1999 Forced SST Experiment

    NASA Technical Reports Server (NTRS)

    Bacmeister, Julio T.; Suarez, Max J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This is the first of a two part study examining the connection of the equatorial momentum budget in an AGCM (Atmospheric General Circulation Model), with simulated equatorial surface wind stresses over the Pacific. The AGCM used in this study forms part of a newly developed coupled forecasting system used at NASA's Seasonal- to-Interannual Prediction Project. Here we describe the model and present results from a 20-year (1979-1999) AMIP-type experiment forced with observed SSTs (Sea Surface Temperatures). Model results are compared them with available observational data sets. The climatological pattern of extra-tropical planetary waves as well as their ENSO-related variability is found to agree quite well with re-analysis estimates. The model's surface wind stress is examined in detail, and reveals a reasonable overall simulation of seasonal interannual variability, as well as seasonal mean distributions. However, an excessive annual oscillation in wind stress over the equatorial central Pacific is found. We examine the model's divergent circulation over the tropical Pacific and compare it with estimates based on re-analysis data. These comparisons are generally good, but reveal excessive upper-level convergence in the central Pacific. In Part II of this study a direct examination of individual terms in the AGCM's momentum budget is presented. We relate the results of this analysis to the model's simulation of surface wind stress.

  5. Wind and Wind Stress Measurements in HiRes

    DTIC Science & Technology

    2008-09-30

    to design the experimental system to be conducted on R /P FLIP. Data from a past experiment are also being analyzed with respect to processes...For the HiRes experiment on R /P FLIP, the air temperature profile will be measured along with wind stress, surface heat flux, sea surface...the best as it registered the lower ambient temperature. In preparation for the HiRes experiment onboard R /P FLIP a mast prototype was built in

  6. Measurement of surface shear stress vector beneath high-speed jet flow using liquid crystal coating

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Peng; Zhao, Ji-Song; Jiao, Yun; Cheng, Ke-Ming

    2018-05-01

    The shear-sensitive liquid crystal coating (SSLCC) technique is investigated in the high-speed jet flow of a micro-wind-tunnel. An approach to measure surface shear stress vector distribution using the SSLCC technique is established, where six synchronous cameras are used to record the coating color at different circumferential view angles. Spatial wall shear stress vector distributions on the test surface are obtained at different velocities. The results are encouraging and demonstrate the great potential of the SSLCC technique in high-speed wind-tunnel measurement.

  7. Modelling storm development and the impact when introducing waves, sea spray and heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2015-04-01

    In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal Netherlands Meteorological Institute.

  8. Determination of surface stress by Seasat-SASS - A case study with JASIN data

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Large, W. G.

    1981-01-01

    The values of sea surface stress determined with the dissipation method and those determined with a surface-layer model from observations on F.S. Meteor during the Joint Air-Sea Interaction (JASIN) Experiment are compared with the backscatter coefficients measured by the scatterometer SASS on the satellite Seasat. This study demonstrates that SASS can be used to determine surface stress directly as well as wind speed. The quality of the surface observations used in the calibration of the retrieval algorithms, however, is important. This sample of measurements disagrees with the predictions by the existing wind retrieval algorithm under non-neutral conditions and the discrepancies depend on atmospheric stability.

  9. Sensitivity of ocean oxygenation to variations in tropical zonal wind stress magnitude

    NASA Astrophysics Data System (ADS)

    Ridder, Nina N.; England, Matthew H.

    2014-09-01

    Ocean oxygenation has been observed to have changed over the past few decades and is projected to change further under global climate change due to an interplay of several mechanisms. In this study we isolate the effect of modified tropical surface wind stress conditions on the evolution of ocean oxygenation in a numerical climate model. We find that ocean oxygenation varies inversely with low-latitude surface wind stress. Approximately one third of this response is driven by sea surface temperature anomalies; the remaining two thirds result from changes in ocean circulation and marine biology. Global mean O2 concentration changes reach maximum values of +4 μM and -3.6 μM in the two most extreme perturbation cases of -30% and +30% wind change, respectively. Localized changes lie between +92 μM under 30% reduced winds and -56 μM for 30% increased winds. Overall, we find that the extent of the global low-oxygen volume varies with the same sign as the wind perturbation; namely, weaker winds reduce the low-oxygen volume on the global scale and vice versa for increased trade winds. We identify two regions, one in the Pacific Ocean off Chile and the other in the Indian Ocean off Somalia, that are of particular importance for the evolution of oxygen minimum zones in the global ocean.

  10. Field Observations of Coastal Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Graber, H. C.

    2016-12-01

    In the nearshore zone wind, waves, and currents generated from different forcing mechanisms converge in shallow water. This can profoundly affect the physical nature of the ocean surface, which can significantly modulate the exchange of momentum, heat, and mass across the air-sea interface. For decades, the focus of air-sea interaction research has been on the open ocean while the shallow water regime has been relatively under-explored. This bears implications for efforts to understand and model various coastal processes, such as mixing, surface transport, and air-sea gas flux. The results from a recent study conducted at the New River Inlet in North Carolina showed that directly measured air-sea flux parameters, such as the atmospheric drag coefficient, are strong functions of space as well as the ambient conditions (i.e. wind speed and direction). The drag is typically used to parameterize the wind stress magnitude. It is generally assumed that the wind direction is the direction of the atmospheric forcing (i.e. wind stress), however significant wind stress steering off of the azimuthal wind direction was observed and was found to be related to the horizontal surface current shear. The authors have just returned from a field campaign carried out within Monterey Bay in California. Surface observations made from two research vessels were complimented by an array of beach and inland flux stations, high-resolution wind forecasts, and satellite image acquisitions. This is a rich data set and several case studies will be analyzed to highlight the importance of various processes for understanding the air-sea fluxes. Preliminary findings show that interactions between the local wind-sea and the shoaling, incident swell can have a profound effect on the wind stress magnitude. The Monterey Bay coastline contains a variety of topographical features and the importance of land-air-sea interactions will also be investigated.

  11. An evaluation of ERTS data for oceanographic uses through Great Lakes studies

    NASA Technical Reports Server (NTRS)

    Strong, A. E. (Principal Investigator); Stumpf, H. G.

    1974-01-01

    The author has identified the following significant results. Prevailing wind direction on Lake Michigan is southwesterly, although during winter northwesterly stresses are common. Along the western shore the current favors a northward direction. ERTS-1 observations indicate that the southward-flowing current along the Michigan shoreline of the thumb is only reversed by southerly resultant wind stress. Along the Canadian shoreline, a northward current was observed north of Kettle Point. ERTS-1 data also reveal that a preferred southward-flowing current is found along the Detroit shoreline of Lake St. Clair. Eastward flow of surface water from the shallow western basin of Lake Erie into the middle basin is most obvious during northwesterly and northerly wind stresses. The reverse wind direction especially east and southeasterly, appear to hold the effluents from the Detroit and Maumee Rivers in the western basin. Across-lake winds from the north and south induce eddy-like circulation in surface waters of Lake Ontario. Counterclockwise alongshore flow persists in the western basin under most wind conditions.

  12. Relative contributions of external forcing factors to circulation and hydrographic properties in a micro-tidal bay

    NASA Astrophysics Data System (ADS)

    Yoon, Seokjin; Kasai, Akihide

    2017-11-01

    The dominant external forcing factors influencing estuarine circulation differ among coastal environments. A three-dimensional regional circulation model was developed to estimate external influence indices and relative contributions of external forcing factors such as external oceanic forcing, surface heat flux, wind stress, and river discharge to circulation and hydrographic properties in Tango Bay, Japan. Model results show that in Tango Bay, where the Tsushima Warm Current passes offshore of the bay, under conditions of strong seasonal winds and river discharge, the water temperature and salinity are strongly influenced by surface heat flux and river discharge in the surface layer, respectively, while in the middle and bottom layers both are mainly controlled by open boundary conditions. The estuarine circulation is comparably influenced by all external forcing factors, the strong current, surface heat flux, wind stress, and river discharge. However, the influence degree of each forcing factor varies with temporal variations in external forcing factors as: the influence of open boundary conditions is higher in spring and early summer when the stronger current passes offshore of the bay, that of surface heat flux reflects the absolute value of surface heat flux, that of wind stress is higher in late fall and winter due to strong seasonal winds, and that of river discharge is higher in early spring due to snow-melting and summer and early fall due to flood events.

  13. Probabilistic Design of a Wind Tunnel Model to Match the Response of a Full-Scale Aircraft

    NASA Technical Reports Server (NTRS)

    Mason, Brian H.; Stroud, W. Jefferson; Krishnamurthy, T.; Spain, Charles V.; Naser, Ahmad S.

    2005-01-01

    approach is presented for carrying out the reliability-based design of a plate-like wing that is part of a wind tunnel model. The goal is to design the wind tunnel model to match the stiffness characteristics of the wing box of a flight vehicle while satisfying strength-based risk/reliability requirements that prevents damage to the wind tunnel model and fixtures. The flight vehicle is a modified F/A-18 aircraft. The design problem is solved using reliability-based optimization techniques. The objective function to be minimized is the difference between the displacements of the wind tunnel model and the corresponding displacements of the flight vehicle. The design variables control the thickness distribution of the wind tunnel model. Displacements of the wind tunnel model change with the thickness distribution, while displacements of the flight vehicle are a set of fixed data. The only constraint imposed is that the probability of failure is less than a specified value. Failure is assumed to occur if the stress caused by aerodynamic pressure loading is greater than the specified strength allowable. Two uncertain quantities are considered: the allowable stress and the thickness distribution of the wind tunnel model. Reliability is calculated using Monte Carlo simulation with response surfaces that provide approximate values of stresses. The response surface equations are, in turn, computed from finite element analyses of the wind tunnel model at specified design points. Because the response surface approximations were fit over a small region centered about the current design, the response surfaces were refit periodically as the design variables changed. Coarse-grained parallelism was used to simultaneously perform multiple finite element analyses. Studies carried out in this paper demonstrate that this scheme of using moving response surfaces and coarse-grained computational parallelism reduce the execution time of the Monte Carlo simulation enough to make the design problem tractable. The results of the reliability-based designs performed in this paper show that large decreases in the probability of stress-based failure can be realized with only small sacrifices in the ability of the wind tunnel model to represent the displacements of the full-scale vehicle.

  14. Enhancement of wind stress evaluation method under storm conditions

    NASA Astrophysics Data System (ADS)

    Chen, Yingjian; Yu, Xiping

    2016-12-01

    Wind stress is an important driving force for many meteorological and oceanographical processes. However, most of the existing methods for evaluation of the wind stress, including various bulk formulas in terms of the wind speed at a given height and formulas relating the roughness height of the sea surface with wind conditions, predict an ever-increasing tendency of the wind stress coefficient as the wind speed increases, which is inconsistent with the field observations under storm conditions. The wave boundary layer model, which is based on the momentum and energy conservation, has the advantage to take into account the physical details of the air-sea interaction process, but is still invalid under storm conditions without a modification. By including the energy dissipation due to the presence of sea spray, which is speculated to be an important aspect of the air-sea interaction under storm conditions, the wave boundary layer model is improved in this study. The improved model is employed to estimate the wind stress caused by an idealized tropical cyclone motion. The computational results show that the wind stress coefficient reaches its maximal value at a wind speed of about 40 m/s and decreases as the wind speed further increases. This is in fairly good agreement with the field data.

  15. Land-atmosphere-ocean interactions in the southeastern Atlantic: interannual variability

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoming; Vizy, Edward K.; Cook, Kerry H.

    2018-02-01

    Land-atmosphere-ocean interactions in the southeastern South Atlantic and their connections to interannual variability are examined using a regional climate model coupled with an intermediate-level ocean model. In austral summer, zonal displacements of the South Atlantic subtropical high (SASH) can induce variations of mixed-layer currents in the Benguela upwelling region through surface wind stress curl anomalies near the Namibian coast, and an eastward shifted SASH is related to the first Pacific-South American mode. When the SASH is meridionally displaced, mixed layer vertically-integrated Ekman transport anomalies are mainly a response to the change of alongshore surface wind stress. The latitudinal shift of the SASH tends to dampen the anomalous alongshore wind by modulating the land-sea thermal contrast, while opposed by oceanic diffusion. Although the position of the SASH is closely linked to the phase of El Niño-Southern Oscillation (ENSO) and the southern annular mode (SAM) in austral summer, an overall relationship between Benguela upwelling strength and ENSO or SAM is absent. During austral winter, variations of the mixed layer Ekman transport in the Benguela upwelling region are connected to the strength of the SASH through its impact on both coastal wind stress curl and alongshore surface wind stress. Compared with austral summer, low-level cloud cover change plays a more important role. Although wintertime sea surface temperature fluctuations in the equatorial Atlantic are strong and may act to influence variability over the northern Benguela area, the surface heat budget analysis suggests that local air-sea interactions dominate.

  16. Watershed Scale Shear Stress From Tethersonde Wind Profile Measurements Under Near Neutral and Unstable Atmospheric Stability

    NASA Astrophysics Data System (ADS)

    Parlange, M. B.; Katul, G. G.

    1995-04-01

    Mean wind speed profiles were measured in the atmospheric surface layer, using a tethersonde system, above the Ojai Valley Watershed in southern California. The valley is mainly planted with mature avocado and orange trees. The surface shear stress and latent and sensible heat fluxes were measured above the trees which are up to 9 m in height. Near-neutral wind speed profile measurements allowed the determination of the watershed surface roughness (z0 = 1.4 m) and the momentum displacement height (d0 = 7.0 m). The wind speed measurements obtained under unstable atmospheric stability were analyzed using Monin-Obukhov similarity theory. New stability correction functions proposed based on theory and experiments of Kader-Yaglom as well as the now classic Businger-Dyer type functions were tested. The watershed shear stress values calculated using the surface layer wind speed profiles with the new Monin-Obukhov stability functions were found to be improved in comparison with the values obtained with the Businger-Dyer functions under strongly unstable stability conditions. The Monin-Obukhov model with the Businger-Dyer stability correction function underpredicted the momentum flux by 25% under strongly unstable stability conditions, while the new Kader-Yaglom formulation compared well on average (R2 = 0.77) with the surface eddy correlation measurements for all atmospheric stability conditions. The unstable 100-m drag coefficient was found to be u*2/V1002 = 0.0182.

  17. Southern Ocean carbon-wind stress feedback

    NASA Astrophysics Data System (ADS)

    Bronselaer, Ben; Zanna, Laure; Munday, David R.; Lowe, Jason

    2018-02-01

    The Southern Ocean is the largest sink of anthropogenic carbon in the present-day climate. Here, Southern Ocean pCO2 and its dependence on wind forcing are investigated using an equilibrium mixed layer carbon budget. This budget is used to derive an expression for Southern Ocean pCO2 sensitivity to wind stress. Southern Ocean pCO2 is found to vary as the square root of area-mean wind stress, arising from the dominance of vertical mixing over other processes such as lateral Ekman transport. The expression for pCO2 is validated using idealised coarse-resolution ocean numerical experiments. Additionally, we show that increased (decreased) stratification through surface warming reduces (increases) the sensitivity of the Southern Ocean pCO2 to wind stress. The scaling is then used to estimate the wind-stress induced changes of atmospheric pCO_2 in CMIP5 models using only a handful of parameters. The scaling is further used to model the anthropogenic carbon sink, showing a long-term reversal of the Southern Ocean sink for large wind stress strength.

  18. The role of streamline curvature in sand dune dynamics: evidence from field and wind tunnel measurements

    NASA Astrophysics Data System (ADS)

    Wiggs, Giles F. S.; Livingstone, Ian; Warren, Andrew

    1996-09-01

    Field measurements on an unvegetated, 10 m high barchan dune in Oman are compared with measurements over a 1:200 scale fixed model in a wind tunnel. Both the field and wind tunnel data demonstrate similar patterns of wind and shear velocity over the dune, confirming significant flow deceleration upwind of and at the toe of the dune, acceleration of flow up the windward slope, and deceleration between the crest and brink. This pattern, including the widely reported upwind reduction in shear velocity, reflects observations of previous studies. Such a reduction in shear velocity upwind of the dune should result in a reduction in sand transport and subsequent sand deposition. This is not observed in the field. Wind tunnel modelling using a near-surface pulse-wire probe suggests that the field method of shear velocity derivation is inadequate. The wind tunnel results exhibit no reduction in shear velocity upwind of or at the toe of the dune. Evidence provided by Reynolds stress profiles and turbulence intensities measured in the wind tunnel suggest that this maintenance of upwind shear stress may be a result of concave (unstable) streamline curvature. These additional surface stresses are not recorded by the techniques used in the field measurements. Using the occurrence of streamline curvature as a starting point, a new 2-D model of dune dynamics is deduced. This model relies on the establishment of an equilibrium between windward slope morphology, surface stresses induced by streamline curvature, and streamwise acceleration. Adopting the criteria that concave streamline curvature and streamwise acceleration both increase surface shear stress, whereas convex streamline curvature and deceleration have the opposite effect, the relationships between form and process are investigated in each of three morphologically distinct zones: the upwind interdune and concave toe region of the dune, the convex portion of the windward slope, and the crest-brink region. The applicability of the model is supported by measurements of the rate of sand transport and the change of the dune surface in the field.

  19. Numerical simulation of the world ocean circulation

    NASA Technical Reports Server (NTRS)

    Takano, K.; Mintz, Y.; Han, Y. J.

    1973-01-01

    A multi-level model, based on the primitive equations, is developed for simulating the temperature and velocity fields produced in the world ocean by differential heating and surface wind stress. The model ocean has constant depth, free slip at the lower boundary, and neglects momentum advection; so that there is no energy exchange between the barotropic and baroclinic components of the motion, although the former influences the latter through temperature advection. The ocean model was designed to be coupled to the UCLA atmospheric general circulation model, for the study of the dynamics of climate and climate changes. But here, the model is tested by prescribing the observed seasonally varying surface wind stress and the incident solar radiation, the surface air temperature and humidity, cloudiness and the surface wind speed, which, together with the predicted ocean surface temperature, determine the surface flux of radiant energy, sensible heat and latent heat.

  20. Initialization shock in decadal hindcasts due to errors in wind stress over the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Pohlmann, Holger; Kröger, Jürgen; Greatbatch, Richard J.; Müller, Wolfgang A.

    2017-10-01

    Low prediction skill in the tropical Pacific is a common problem in decadal prediction systems, especially for lead years 2-5 which, in many systems, is lower than in uninitialized experiments. On the other hand, the tropical Pacific is of almost worldwide climate relevance through its teleconnections with other tropical and extratropical regions and also of importance for global mean temperature. Understanding the causes of the reduced prediction skill is thus of major interest for decadal climate predictions. We look into the problem of reduced prediction skill by analyzing the Max Planck Institute Earth System Model (MPI-ESM) decadal hindcasts for the fifth phase of the Climate Model Intercomparison Project and performing a sensitivity experiment in which hindcasts are initialized from a model run forced only by surface wind stress. In both systems, sea surface temperature variability in the tropical Pacific is successfully initialized, but most skill is lost at lead years 2-5. Utilizing the sensitivity experiment enables us to pin down the reason for the reduced prediction skill in MPI-ESM to errors in wind stress used for the initialization. A spurious trend in the wind stress forcing displaces the equatorial thermocline in MPI-ESM unrealistically. When the climate model is then switched into its forecast mode, the recovery process triggers artificial El Niño and La Niña events at the surface. Our results demonstrate the importance of realistic wind stress products for the initialization of decadal predictions.

  1. Similarity scaling of turbulence in small temperate lake: implication for gas flux: implication for gas flux

    NASA Astrophysics Data System (ADS)

    Tedford, E. W.; MacIntyre, S.; Miller, S. D.; Czikowsky, M. J.

    2013-12-01

    The actively mixing layer, or surface layer, is the region of the upper mixed layer of lakes, oceans and the atmosphere directly influenced by wind, heating and cooling. Turbulence within the surface mixing layer has a direct impact on important ecological processes. The Monin-Obukhov length scale (LMO) is a critical length scale used in predicting and understanding turbulence in the actively mixed layer. On the water side of the air-water interface, LMO is defined as: LMO=-u*^3/(0.4 JB0) where u*, the shear velocity, is defined as (τ/rho)^0.5 where τ is the shear stress and rho is the density of water and JBO is the buoyancy flux at the surface. Above the depth equal to the absolute value of the Monin-Obukhov length scale (zMO), wind shear is assumed to dominate the production of turbulent kinetic energy (TKE). Below zMO, the turbulence is assumed to be suppressed when JB0 is stabilizing (warming surface waters) and enhanced when the buoyancy flux is destabilizing (cooling surface waters). Our observed dissipations were well represented using the canonical similarity scaling equations. The Monin-Obukhov length scale was generally effective in separating the surface-mixing layer into two regions: an upper region, dominated by wind shear; and a lower region, dominated by buoyancy flux. During both heating and cooling and above a depth equal to |LMO|, turbulence was dominated by wind shear and dissipation followed law of the wall scaling although was slightly augmented by buoyancy flux during both heating and cooling. Below a depth equal to |LMO| during cooling, dissipation was nearly uniform with depth. Although distinguishing between an upper region of the actively mixing layer dominated by wind stress and a lower portion dominated by buoyancy flux is typically accurate the most accurate estimates of dissipation include the effects of both wind stress and buoyancy flux throughout the actively mixed layer. We demonstrate and discuss the impact of neglecting the non-dominant forcing (buoyancy flux above zMO and wind stress below zMO) above and below zMO.

  2. Representation of Vegetation and Other Nonerodible Elements in Aeolian Shear Stress Partitioning Models for Predicting Transport Threshold

    NASA Technical Reports Server (NTRS)

    King, James; Nickling, William G.; Gillies, John A.

    2005-01-01

    The presence of nonerodible elements is well understood to be a reducing factor for soil erosion by wind, but the limits of its protection of the surface and erosion threshold prediction are complicated by the varying geometry, spatial organization, and density of the elements. The predictive capabilities of the most recent models for estimating wind driven particle fluxes are reduced because of the poor representation of the effectiveness of vegetation to reduce wind erosion. Two approaches have been taken to account for roughness effects on sediment transport thresholds. Marticorena and Bergametti (1995) in their dust emission model parameterize the effect of roughness on threshold with the assumption that there is a relationship between roughness density and the aerodynamic roughness length of a surface. Raupach et al. (1993) offer a different approach based on physical modeling of wake development behind individual roughness elements and the partition of the surface stress and the total stress over a roughened surface. A comparison between the models shows the partitioning approach to be a good framework to explain the effect of roughness on entrainment of sediment by wind. Both models provided very good agreement for wind tunnel experiments using solid objects on a nonerodible surface. However, the Marticorena and Bergametti (1995) approach displays a scaling dependency when the difference between the roughness length of the surface and the overall roughness length is too great, while the Raupach et al. (1993) model's predictions perform better owing to the incorporation of the roughness geometry and the alterations to the flow they can cause.

  3. Understanding the El Niño-like Oceanic Response in the Tropical Pacific to Global Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiyong; Lu, Jian; Liu, Fukai

    The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although themore » weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80% of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air-sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.« less

  4. Ocean Winds and Turbulent Air-Sea Fluxes Inferred From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.

    2010-01-01

    Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes.

  5. Simulating Conditional Deterministic Predictability within Ocean Frontogenesis

    DTIC Science & Technology

    2014-03-26

    Prediction System (COAMPS; Hodur, 1997) across the inner domain. The surface wind stress is determined from the atmo- spheric model wind velocity...layers on the light side of the front. Increasing the strength of the down-front wind increases the frontogenesis. Mahadevan and Tandon (2006) showed...Filaments of shallow MLD, large frontogenesis and large surface divergence ( upwelling ) are found in the OSEs, but at different locations and strengths . The

  6. Predicting the Turbulent Air-Sea Surface Fluxes, Including Spray Effects, from Weak to Strong Winds

    DTIC Science & Technology

    2012-09-30

    almost complete decoupling of the wind field from the sea surface . As a result of the weak surface stress, the flow becomes almost free from the...shore flow . In turn, wave growth and the associated surface roughness (z0) are limited. Consequently, the stability increases further in a...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Predicting the Turbulent Air-Sea Surface Fluxes

  7. Measurement of deformations of models in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Charpin, F.; Armand, C.; Selvaggini, R.

    Techniques used at the ONERA Modane Center to monitor geometric variations in scale-models in wind tunnel trials are described. The methods include: photography of reflections from mirrors embedded in the model surface; laser-based torsiometry with polarized mirrors embedded in the model surface; predictions of the deformations using numerical codes for the model surface mechanical characteristics and the measured surface stresses; and, use of an optical detector to monitor the position of luminous fiber optic sources emitting from the model surfaces. The data enhance the confidence that the wind tunnel aerodynamic data will correspond with the in-flight performance of full scale flight surfaces.

  8. Wind Stress Variability Observed Over Coastal Waters

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Laxague, N.; Williams, N. J.; Graber, H. C.

    2016-02-01

    The wind stress on the ocean surface generates waves, drives currents, and enhances gas exchange; and a significant amount of work has been done to characterize the air-sea momentum flux in terms of bulk oceanographic and atmospheric parameters. However, the majority of this work to develop operational algorithms has been focused on the deep ocean and the suitability of these methods in the coastal regime has not been evaluated. The findings from a two-part field campaign will be presented which highlight the divergence of nearshore wind stress observations from conventional, deep water results. The first set of data comes from a coastal region near a relatively small, natural tidal inlet. A high degree of spatial variability was observed in both the wind stress magnitude and direction, suggestive of coastal processes (e.g., depth-limited wave affects and horizontal current shear) modulating the momentum flux from the atmosphere to the ocean surface. These shallow-water processes are typically not accounted for in conventional parameterizations. Across the experimental domain and for a given wind speed, the stress magnitude was found to be nearly 2.5 times that predicted by conventional methods; also, a high propensity for stress steering off the mean azimuthal wind direction (up to ±70 degrees) was observed and linked to horizontal current gradients produced by the tidal inlet. The preliminary findings from a second data set taken in the vicinity of the macrotidal Columbia River Mouth will also be presented. Compared to the first data set, a similar degree of variability is observed here, but the processes responsible for this are present at a much larger scale. Specifically, the Columbia River Mouth observations were made in the presence of significant swell wave energy and during periods of very high estuarine discharge. The relative angle between the wind and swell direction is expected to be significant with regards to the observed momentum flux. Also, these processes facilitate strong wave-current interaction, which may also affect the surface topography and thus play a role in air-sea exchanges. The Columbia River Mouth system showcases a complex coastal environment and future avenues for investigating these dynamics will be discussed.

  9. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    NASA Astrophysics Data System (ADS)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  10. Interpretation of surface-water circulation, Aransas Pass, Texas, using Landsat imagery

    NASA Technical Reports Server (NTRS)

    Finley, R. J.; Baumgardner, R. W., Jr.

    1980-01-01

    The development of plumes of turbid surface water in the vicinity of Aransas Pass, Texas has been analyzed using Landsat imagery. The shape and extent of plumes present in the Gulf of Mexico is dependent on the wind regime and astronomical tide prior to and at the time of satellite overpass. The best developed plumes are evident when brisk northerly winds resuspend bay-bottom muds and flow through Aransas Pass is increased by wind stress. Seaward diversion of nearshore waters by the inlet jetties was also observed. A knowledge of surface-water circulation through Aransas Pass under various wind conditions is potentially valuable for monitoring suspended and surface pollutants

  11. Bag-breakup control of surface drag in hurricanes

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Zilitinkevich, Sergej; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil

    2016-04-01

    Air-sea interaction at extreme winds is of special interest now in connection with the problem of the sea surface drag reduction at the wind speed exceeding 30-35 m/s. This phenomenon predicted by Emanuel (1995) and confirmed by a number of field (e.g., Powell, et al, 2003) and laboratory (Donelan et al, 2004) experiments still waits its physical explanation. Several papers attributed the drag reduction to spume droplets - spray turning off the crests of breaking waves (e.g., Kudryavtsev, Makin, 2011, Bao, et al, 2011). The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Herewith, it is unknown what is air-sea interface and how water is fragmented to spray at hurricane wind. Using high-speed video, we observed mechanisms of production of spume droplets at strong winds by high-speed video filming, investigated statistics and compared their efficiency. Experiments showed, that the generation of the spume droplets near the wave crest is caused by the following events: bursting of submerged bubbles, generation and breakup of "projections" and "bag breakup". Statistical analysis of results of these experiments showed that the main mechanism of spray-generation is attributed to "bag-breakup mechanism", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film. Using high-speed video, we show that at hurricane winds the main mechanism of spray production is attributed to "bag-breakup", namely, inflating and consequent breaking of short-lived, sail-like pieces of the water-surface film - "bags". On the base of general principles of statistical physics (model of a canonical ensemble) we developed statistics of the "bag-breakup" events: their number and statistical distribution of geometrical parameters depending on wind speed. Basing on the developed statistics, we estimated the surface stress caused by bags as the average sum of stresses caused by individual bags depending on their eometrical parameters. The resulting stress is subjected to counteracting impacts of the increasing wind speed: the increasing number of bags, and their decreasing sizes and life times and the balance yields a peaking dependence of the bag resistance on the wind speed: the share of bag-stress peaks at U10  35 m/s and then reduces. Peaking of surface stress associated with the "bag-breakup" explains seemingly paradoxical non-monotonous wind-dependence of surface drag coefficient peaking at winds about 35 m/s. This work was supported by the Russian Foundation of Basic Research (14-05-91767, 13-05-12093, 16-05-00839, 14-05-91767, 16-55-52025, 15-35-20953) and experiment and equipment was supported by Russian Science Foundation (Agreements 14-17-00667 and 15-17-20009 respectively), Yu.Troitskaya, A.Kandaurov and D.Sergeev were partially supported by FP7 Collaborative Project No. 612610.

  12. Erodibility of and dust emissions from bare soil surfaces in the North American Southwest

    USDA-ARS?s Scientific Manuscript database

    Native plant communities throughout the Southwestern United States are subject to increased abiotic stress due to climate change. As native grass cover is replaced by shrubs, more bare soil surface is susceptible to erosion by wind. The dust record for the last 20 years indicates that wind erosion...

  13. Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayments

    USGS Publications Warehouse

    Signell, Richard P.; Beardsley, Robert C.; Graber, H. C.; Capotondi, A.

    1990-01-01

    The effect of wind waves on the steady wind-driven circulation in a narrow, shallow bay is investigated with a two-dimensional (y, z) circulation model and the Grant and Madsen [1979] bottom-boundary layer model, which includes wave-current interaction. A constant wind stress is applied in the along-channel x direction to a channel with a constant cross-sectional profile h(y). The wind-induced flushing of shallow bays is shown to be sensitive to both the shape of the cross section and the effects of surface waves. The flushing increases with increasing , where h′ is the standard deviation of cross-channel depth and  is the mean depth. This is consistent with the findings of Hearn et al. [1987]. The flushing decreases, however, with the inclusion of surface wave effects which act to increase the bottom drag felt by the currents. Increasing effective bottom friction reduces the strength of the circulation, while the along-bay surface slope, bottom stress and the structure of current profiles remain nearly unchanged. An implication of the circulation dependence on wave-current interaction is that low-frequency oscillatory winds may drive a mean circulation when the wave field changes with wind direction.x

  14. The Santa Barbara Channel - Santa Maria Basin Study: Wind Measurements and Modeling Resolving Coastal Mesoscale Meteorology

    NASA Astrophysics Data System (ADS)

    Dorman, C. E.; Koracin, D.

    2002-12-01

    The importance of winds in driving the coastal ocean has long been recognized. Pre-World War II literature links wind stress and wind stress curl to coastal ocean responses. Nevertheless, direct measurements plausibly representative of a coastal area are few. Multiple observations on the scale of the simplest mesoscale atmospheric structure, such as the cross-coast variation along a linear coast, are even less frequent. The only wind measurements that we are aware of in a complicated coastal area backed by higher topography are in the MMS sponsored, Santa Barbara Channel/Santa Marina basin study. Taking place from 1994 to present, this study had an unheard of dense surface automated meteorological station array of up to 5 meteorological buoys, 4 oil platforms, 2 island stations, and 11 coastal stations within 1 km of the beach. Most of the land stations are maintained by other projects. Only a large, a well funded project with backed by an agency with the long-view could dedicate the resources and effort into filling the mesoscale "holes" and maintaining long-term, remotely located stations. The result of the MMS funded project is a sufficiently dense surface station array to resolve the along-coast and cross-coast atmospheric mesoscale wind structure. Great temporal and spatial variation is found in the wind, wind stress and the wind stress curl, during the extended summer season. The MM5 atmospheric mesoscale model with appropriate boundary layer physics and high-resolution horizontal and vertical grid structure successfully simulates the measured wind field from large scale down to the lower end of the mesoscale. Atmospheric models without appropriate resolution and boundary layer physics fail to capture significant mesoscale wind features. Satellite microwave wind measurements generally capture the offshore synoptic scale temporal and spatial scale in twice-a-day snap shots but fail in the crucial, innermost coastal waters and the diurnal scale.

  15. Wind effects on water and salt loss in playa lakes

    NASA Astrophysics Data System (ADS)

    Torgersen, T.

    1984-10-01

    The theory behind wind stress induced setup of water surface slope on a playa lake is reviewed. Due to the low gradient of the bottom in most playa lakes (1-20 cm km -1), the advance and retreat of lake waters due to wind stress can expose or cover many square kilometers. It is even possible for the surface slope to exceed the bottom slope and thereby create a "roving" lake. Such water movements can transport lake water over undersaturated "shore" sediments and water can therefore infiltrate and be lost without an increase in lake salinity. This case is demonstrated with data from Lake George, New South Wales, Australia. Such wind effects need to be examined for their relation to the diagenesis of sediments, the composition of the bitterns, and the salt budget of playa lakes.

  16. Free and Forced Rossby Waves in the Western South China Sea Inferred from Jason-1 Satellite Altimetry Data

    PubMed Central

    Wu, Xiangyu; Xie, Qiang; He, Zhigang; Wang, Dongxiao

    2008-01-01

    Data from a subsurface mooring deployed in the western South China Sea shows clear intra-seasonal oscillations (ISO) at the period of 40∼70 days. Analysis of remotely-sensed sea surface height (SSH) anomalies in the same area indicates that these ISO signals propagate both eastward and westward. Time-longitude diagrams of ISO signals in SSH anomalies and wind-stress curl indicate that the eastward propagating SSH anomalies is forced by wind-stress curl. This is also confirmed by lag correlation between SSH anomalies and the wind-stress-curl index (wind stress curl averaged over 109.5°E -115°E and 12°N -13.5°N). Lag correlation of SSH anomaly suggests that the westward propagating signals are free Rossby waves. PMID:27879897

  17. Cold Front Driven Flows Through Multiple Inlets of Lake Pontchartrain Estuary

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Li, Chunyan

    2017-11-01

    With in situ observations using acoustic Doppler current profilers (ADCPs) and numerical experiments using the Finite Volume Coastal Ocean Model (FVCOM), this study investigates atmospheric cold front induced exchange of water between Lake Pontchartrain Estuary and coastal ocean through multiple inlets. Results show that the subtidal hydrodynamic response is highly correlated with meteorological parameters. Northerly and westerly winds tend to push water out of Lake Pontchartrain, while south and east winds tend to produce currents flowing into it. For most cases, the subtidal water level is inversely correlated with the east wind, with the correlation coefficient being ˜0.8. The most important finding of this work is that, contrary to intuition, the cold front induced remote wind effect has the greatest contribution to the overall water level variation, while the local wind stress determines the surface slope inside the estuary. It is found that wind driven flow is roughly quasi steady state: the surface slope in the north-south direction is determined by the north-south wind stress, explaining ˜83% of the variability but less so in the east-west direction (˜43%). In other words, the north-south local wind stress determines the water level gradient in that direction in the estuary while the overall water level change is pretty much controlled by the open boundary which is the "remote wind effect," a regional response that can be illustrated only by a numerical model for a much larger area encompassing the estuary.

  18. Data catalog for JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC)

    NASA Technical Reports Server (NTRS)

    Digby, Susan

    1995-01-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory contains satellite data sets and ancillary in-situ data for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Geophysical parameters available from the archive include sea-surface height, surface-wind vector, surface-wind speed, surface-wind stress vector, sea-surface temperature, atmospheric liquid water, integrated water vapor, phytoplankton pigment concentration, heat flux, and in-situ data. PO.DAAC is an element of the Earth Observing System Data and Information System and is the United States distribution site for TOPEX/POSEIDON data and metadata.

  19. Coupled assimilation for an intermediated coupled ENSO prediction model

    NASA Astrophysics Data System (ADS)

    Zheng, Fei; Zhu, Jiang

    2010-10-01

    The value of coupled assimilation is discussed using an intermediate coupled model in which the wind stress is the only atmospheric state which is slavery to model sea surface temperature (SST). In the coupled assimilation analysis, based on the coupled wind-ocean state covariance calculated from the coupled state ensemble, the ocean state is adjusted by assimilating wind data using the ensemble Kalman filter. As revealed by a series of assimilation experiments using simulated observations, the coupled assimilation of wind observations yields better results than the assimilation of SST observations. Specifically, the coupled assimilation of wind observations can help to improve the accuracy of the surface and subsurface currents because the correlation between the wind and ocean currents is stronger than that between SST and ocean currents in the equatorial Pacific. Thus, the coupled assimilation of wind data can decrease the initial condition errors in the surface/subsurface currents that can significantly contribute to SST forecast errors. The value of the coupled assimilation of wind observations is further demonstrated by comparing the prediction skills of three 12-year (1997-2008) hindcast experiments initialized by the ocean-only assimilation scheme that assimilates SST observations, the coupled assimilation scheme that assimilates wind observations, and a nudging scheme that nudges the observed wind stress data, respectively. The prediction skills of two assimilation schemes are significantly better than those of the nudging scheme. The prediction skills of assimilating wind observations are better than assimilating SST observations. Assimilating wind observations for the 2007/2008 La Niña event triggers better predictions, while assimilating SST observations fails to provide an early warning for that event.

  20. Highlights of the SEASAT-SASS program - A review

    NASA Technical Reports Server (NTRS)

    Pierson, W. J., Jr.

    1983-01-01

    Some important concepts of the SEASAT-SASS program are described and some of the decisions made during the program as to methods for relating wind to backscatter are discussed. The radar scatterometer design is analyzed along with the model function, which is an empirical relationship between the backscatter value and the wind speed, wind direction, and incidence angle of the radar beam with the sea surface. The results of Monte Carlo studies of mesoscale turbulence and of studies of wind stress on the sea surface involving SASS are reviewed.

  1. Wind variability and sheltering effects on measurements and modeling of air-water exchange for a small lake

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.; Resseger, Emily; Porté-Agel, Fernando; Stefan, Heinz

    2014-05-01

    Lakes with a surface area of less than 10 km2 account for over 50% of the global cumulative lake surface water area, and make up more than 99% of the total number of global lakes, ponds, and wetlands. Within the boreal regions as well as some temperate and tropical areas, a significant proportion of land cover is characterized by lakes or wetlands, which can have a dramatic effect on land-atmosphere fluxes as well as the local and regional energy budget. Many of these small water bodies are surrounded by complex terrain and forest, which cause the wind blowing over a small lake or wetland to be highly variable. Wind mixing of the lake surface layer affects thermal stratification, surface temperature and air-water gas transfer, e.g. O2, CO2, and CH4. As the wind blows from the land to the lake, wake turbulence behind trees and other shoreline obstacles leads to a recirculation zone and enhanced turbulence. This wake flow results in the delay of the development of wind shear stress on the lake surface, and the fetch required for surface shear stress to fully develop may be ~O(1 km). Interpretation of wind measurements made on the lake is hampered by the unknown effect of wake turbulence. We present field measurements designed to quantify wind variability over a sheltered lake. The wind data and water column temperature profiles are used to evaluate a new method to quantify wind sheltering of lakes that takes into account lake size, shape and the surrounding landscape features. The model is validated against field data for 36 Minnesota lakes. Effects of non-uniform sheltering and lake shape are also demonstrated. The effects of wind sheltering must be included in lake models to determine the effect of wind-derived energy inputs on lake stratification, surface gas transfer, lake water quality, and fish habitat. These effects are also important for correctly modeling momentum, heat, moisture and trace gas flux to the atmosphere.

  2. Investigation of the physical scaling of sea spray spume droplet production

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Banner, M. L.; Peirson, W. L.; Asher, W.; Morison, R. P.

    2009-10-01

    In this paper we report on a laboratory study, the Spray Production and Dynamics Experiment (SPANDEX), conducted at the University of New South Wales Water Research Laboratory in Australia. The goals of SPANDEX were to illuminate physical aspects of spume droplet production and dispersion; verify theoretical simplifications used to estimate the source function from ambient droplet concentration measurements; and examine the relationship between the implied source strength and forcing parameters such as wind speed, surface turbulent stress, and wave properties. Observations of droplet profiles give reasonable confirmation of the basic power law profile relationship that is commonly used to relate droplet concentrations to the surface source strength. This essentially confirms that, even in a wind tunnel, there is a near balance between droplet production and removal by gravitational settling. The observations also indicate considerable droplet mass may be present for sizes larger than 1.5 mm diameter. Phase Doppler Anemometry observations revealed significant mean horizontal and vertical slip velocities that were larger closer to the surface. The magnitude seems too large to be an acceleration time scale effect. Scaling of the droplet production surface source strength proved to be difficult. The wind speed forcing varied only 23% and the stress increased a factor of 2.2. Yet, the source strength increased by about a factor of 7. We related this to an estimate of surface wave energy flux through calculations of the standard deviation of small-scale water surface disturbance, a wave-stress parameterization, and numerical wave model simulations. This energy index only increased by a factor of 2.3 with the wind forcing. Nonetheless, a graph of spray mass surface flux versus surface disturbance energy is quasi-linear with a substantial threshold.

  3. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress.

    PubMed

    Martin, Raleigh L; Kok, Jasper F

    2017-06-01

    Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the flux of particles in aeolian saltation-the wind-driven transport of sand in hopping trajectories-scales with wind speed, largely because models do not agree on how particle speeds and trajectories change with wind shear velocity. We present comprehensive measurements, from three new field sites and three published studies, showing that characteristic saltation layer heights remain approximately constant with shear velocity, in agreement with recent wind tunnel studies. These results support the assumption of constant particle speeds in recent models predicting linear scaling of saltation flux with shear stress. In contrast, our results refute widely used older models that assume that particle speed increases with shear velocity, thereby predicting nonlinear 3/2 stress-flux scaling. This conclusion is further supported by direct field measurements of saltation flux versus shear stress. Our results thus argue for adoption of linear saltation flux laws and constant saltation trajectories for modeling saltation-driven aeolian processes on Earth, Mars, and other planetary surfaces.

  4. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress

    PubMed Central

    Martin, Raleigh L.; Kok, Jasper F.

    2017-01-01

    Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the flux of particles in aeolian saltation—the wind-driven transport of sand in hopping trajectories—scales with wind speed, largely because models do not agree on how particle speeds and trajectories change with wind shear velocity. We present comprehensive measurements, from three new field sites and three published studies, showing that characteristic saltation layer heights remain approximately constant with shear velocity, in agreement with recent wind tunnel studies. These results support the assumption of constant particle speeds in recent models predicting linear scaling of saltation flux with shear stress. In contrast, our results refute widely used older models that assume that particle speed increases with shear velocity, thereby predicting nonlinear 3/2 stress-flux scaling. This conclusion is further supported by direct field measurements of saltation flux versus shear stress. Our results thus argue for adoption of linear saltation flux laws and constant saltation trajectories for modeling saltation-driven aeolian processes on Earth, Mars, and other planetary surfaces. PMID:28630907

  5. Turbulent convection in geostrophic circulation with wind and buoyancy forcing

    NASA Astrophysics Data System (ADS)

    Sohail, Taimoor; Gayen, Bishakhdatta; Hogg, Andy

    2017-11-01

    We conduct a direct numerical simulation of geostrophic circulation forced by surface wind and buoyancy to model a circumpolar ocean. The imposed buoyancy forcing (represented by Rayleigh number) drives a zonal current and supports small-scale convection in the buoyancy destabilizing region. In addition, we observe eddy activity which transports heat southward, supporting a large amount of heat uptake. Increasing wind stress enhances the meridional buoyancy gradient, triggering more eddy activity inside the boundary layer. Therefore, heat uptake increases with higher wind stress. The majority of dissipation is confined within the surface boundary layer, while mixing is dominant inside the convective plume and the buoyancy destabilizing region of the domain. The relative strength of the mixing and dissipation in the system can be expressed by mixing efficiency. This study finds that mixing is much greater than viscous dissipation, resulting in higher values of mixing efficiency than previously used. Supported by Australian Research Council Grant DP140103706.

  6. Influence of orographically steered winds on Mutsu Bay surface currents

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Satoshi; Kawamura, Hiroshi

    2005-09-01

    Effects of spatially dependent sea surface wind field on currents in Mutsu Bay, which is located at the northern end of Japanese Honshu Island, are investigated using winds derived from synthetic aperture radar (SAR) images and a numerical model. A characteristic wind pattern over the bay was evidenced from analysis of 118 SAR images and coincided with in situ observations. Wind is topographically steered with easterly winds entering the bay through the terrestrial gap and stronger wind blowing over the central water toward its mouth. Nearshore winds are weaker due to terrestrial blockages. Using the Princeton Ocean Model, we investigated currents forced by the observed spatially dependent wind field. The predicted current pattern agrees well with available observations. For a uniform wind field of equal magnitude and average direction, the circulation pattern departs from observations demonstrating that vorticity input due to spatially dependent wind stress is essential in generation of the wind-driven current in Mutsu Bay.

  7. Surface effects on the magnetic properties of nearly zero-magnetostriction amorphous ribbons subjected to nonuniform stresses

    NASA Astrophysics Data System (ADS)

    Buttino, G.; Cecchetti, A.; Poppi, M.; Zini, G.

    1992-11-01

    A remarkable initial permeability associated with a decrease of the disaccomodation has been obtained in nearly zero-magnetostrictive Metglas by applying weak elastic bending stresses. The stresses are produced by winding the ribbons to form toroids of different radii. The above effects depend on the way of winding the ribbon i.e whether the shiny surface of the ribbon is at the inside or the outside of the core. The discussion emphasizes a different role of the two surface layers of the ribbon on the behaviour of the samples. The results are explained on the basis of the hypothesis advanced by Hernando et al. who assume the λ s ≃ 0 condition in the above materials as due to the coexistence of different magnetostrictive phases on a macroscopic scale.

  8. Influence of the surface drag coefficient (young waves) on the current structure of the Berre lagoon

    NASA Astrophysics Data System (ADS)

    Alekseenko, Elena; Roux, Bernard; Kharif, Christian; Sukhinov, Alexander; Kotarba, Richard; Fougere, Dominique; Chen, Paul Gang

    2013-04-01

    Due to the shallowness, currents and hydrodynamics of Berre lagoon (South of France) are closely conditioned by the bottom topography, and wind affects the entire water column, as for many other Mediterranean lagoons (Perez-Ruzafa, 2011). Wind stress, which is caused by moving atmospheric disturbance, is known to have a major influence in lagoon water circulation. According to the numerical simulation for the main directions of the wind: N-NW, S-SE and W (wind speed of 80 km/h) it is observed that the current is maximal alongshore in the wind direction; the bottom nearshore current being larger in shallower area. This fact is coherent with fundamental principle of wind-driven flows in closed or partially closed basins which states that in shallow water the dominant force balance is between surface wind stress and bottom friction, yielding a current in the direction of the wind (Mathieu et al, 2002, Hunter and Hearn, 1987; Hearn and Hunter,1990). A uniform wind stress applied at the surface of a basin of variable depth sets up a circulation pattern characterized by relatively strong barotropic coastal currents in the direction of the wind, with return flow occurring over the deeper regions (Csanady, 1967; Csanady, 1971). One of the key parameters characterizing the wind stress formulation is a surface drag coefficient (Cds). Thus, an effect of a surface drag coefficient, in the range 0.0016 - 0.0032, will be analyzed in this work. The value of surface drag coefficient Cds = 0.0016 used in our previous studies (Alekseenko et al., 2012), would correspond to mature waves (open sea). But, in the case of semi-closed lagoonal ecosystem, it would be more appropriate to consider "young waves" mechanism. A dependency of this coefficient in terms of the wind speed is given by Young (1999) in both cases of mature waves and young waves. For "young waves" generated at a wind speed of 80 km/h, Cds = 0.0032. So, the influence of Cds on the vertical profile of the velocity in the water column is analyzed in the range 0.0016 - 0.0032. For the three main wind directions considered in this work, for a wind speed of 80 km/h, the complex current structure of the Berre lagoon is analysed. In the nearshore zones, strong alongshore downwind currents are generated, reaching values of the order of 1m/s (up to 1.5 m/s) at the free surface, and 0.5 - 0.6 m/s at the bottom. References Alekseenko E., B. Roux, A. Sukhinov, R. Kotarba, D. Fougere. Coastal hydrodynamics in a windy lagoon; submitted to Computers and Fluids, oct. 2012 Csanady G. T.: Large-scale motion in the Great Lakes, Journal of Geophysical Research, 72(16), 4151-4161, 1967. Csanady G. T. : Baroclinic boundary currents and long edge-waves in basins with sloping shores. J. Physical Oceanography 1(2):92-104, 1971. Hunter, J.R. and Hearn, C.J.: Lateral and vertical variations in the wind-driven circulations in long, shallow lakes, Journal of Geophysical Research, 92 (C12), 1987. Hearn, C.J. and Hunter, J.R.: A note on the equivalence of some two- and three-dimensional models of wind-driven barotropic flow in shallow seas, Applied Mathematical Modelling, 14, 553-556, 1990. Mathieu P.P., Deleersnijder E., Cushman-Roisin B., Beckers J.M. and Bolding K.: The role of topography in small well-mixed bays, with application to the lagoon of Mururoa. Continental Shelf research, 22(9), 1379-1395, 2002. A. Pérez-Ruzafa, C. Marcos, I.M. Pérez-Ruzafa (2011). Mediterranean coastal lagoons in an ecosystem and aquatic resources management context//Physics and Chemistry of the Earth, Parts A/B/C, Volume 36, Issues 5-6, 2011, Pages 160-166 Young I.R., Wind generated ocean waves. Ocean Engineering Series Editors. Elsevier, 1999, ISBN: 0-08-043317-0.

  9. Numerical simulation of hydrodynamic processes beneath a wind-driven water surface

    NASA Astrophysics Data System (ADS)

    Tsai, Wu-ting

    Turbulent flow driven by a constant wind stress acting at the water surface was simulated numerically to gain a better understanding of the hydrodynamic processes governing the transfer of slightly soluble gases across the atmosphere-water interfaces. Simulation results show that two distinct flow features, attributed to subsurface surface renewal eddies, appear at the water surface. The first characteristic feature is surface streaming, which consists of high-speed streaks aligned with the wind stress. Floating Lagrangian particles, which are distributed uniformly at the water surface, merge to the predominantly high-speed streaks and form elongated streets immediately after they are released. The second characteristic surface signatures are localized low-speed spots which emerge randomly at the water surface. A high-speed streak bifurcates and forms a dividing flow when it encounters a low-speed surface spot. These coherent surface flow structures are qualitatively identical to those observed in the experiment of Melville et al. [1998]. The persistence of these surface features also suggests that there must exist organized subsurface vortical structures that undergo autonomous generation cycles maintained by self-sustaining mechanisms. These coherent vortical flows serve as the renewal eddies that pump the submerged fluids toward the water surface and bring down the upper fluids, and therefore enhance the scalar exchange between the atmosphere and the water body.

  10. The vertical structure of the circulation and dynamics in Hudson Shelf Valley

    USGS Publications Warehouse

    Lentz, Steven J.; Butman, Bradford; Harris, Courtney K.

    2014-01-01

    Hudson Shelf Valley is a 20–30 m deep, 5–10 km wide v-shaped submarine valley that extends across the Middle Atlantic Bight continental shelf. The valley provides a conduit for cross-shelf exchange via along-valley currents of 0.5 m s−1 or more. Current profile, pressure, and density observations collected during the winter of 1999–2000 are used to examine the vertical structure and dynamics of the flow. Near-bottom along-valley currents having times scales of a few days are driven by cross-shelf pressure gradients setup by wind stresses, with eastward (westward) winds driving onshore (offshore) flow within the valley. The along-valley momentum balance in the bottom boundary layer is predominantly between the pressure gradient and bottom stress because the valley bathymetry limits current veering. Above the bottom boundary layer, the flow veers toward an along-shelf (cross-valley) orientation and a geostrophic balance with some contribution from the wind stress (surface Ekman layer). The vertical structure and strength of the along-valley current depends on the magnitude and direction of the wind stress. During offshore flows driven by westward winds, the near-bottom stratification within the valley increases resulting in a thinner bottom boundary layer and weaker offshore currents. Conversely, during onshore flows driven by eastward winds the near-bottom stratification decreases resulting in a thicker bottom boundary layer and stronger onshore currents. Consequently, for wind stress magnitudes exceeding 0.1 N m−2, onshore along-valley transport associated with eastward wind stress exceeds the offshore transport associated with westward wind stress of the same magnitude.

  11. Ocean-Atmosphere Interaction Over Agulhas Extension Meanders

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Xie, Xiaosu; Niiler, Pearn P.

    2007-01-01

    Many years of high-resolution measurements by a number of space-based sensors and from Lagrangian drifters became available recently and are used to examine the persistent atmospheric imprints of the semi-permanent meanders of the Agulhas Extension Current (AEC), where strong surface current and temperature gradients are found. The sea surface temperature (SST) measured by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and the chlorophyll concentration measured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) support the identification of the meanders and related ocean circulation by the drifters. The collocation of high and low magnitudes of equivalent neutral wind (ENW) measured by Quick Scatterometer (QuikSCAT), which is uniquely related to surface stress by definition, illustrates not only the stability dependence of turbulent mixing but also the unique stress measuring capability of the scatterometer. The observed rotation of ENW in opposition to the rotation of the surface current clearly demonstrates that the scatterometer measures stress rather than winds. The clear differences between the distributions of wind and stress and the possible inadequacy of turbulent parameterization affirm the need of surface stress vector measurements, which were not available before the scatterometers. The opposite sign of the stress vorticity to current vorticity implies that the atmosphere spins down the current rotation through momentum transport. Coincident high SST and ENW over the southern extension of the meander enhance evaporation and latent heat flux, which cools the ocean. The atmosphere is found to provide negative feedback to ocean current and temperature gradients. Distribution of ENW convergence implies ascending motion on the downwind side of local SST maxima and descending air on the upwind side and acceleration of surface wind stress over warm water (deceleration over cool water); the convection may escalate the contrast of ENW over warm and cool water set up by the dependence of turbulent mixing on stability; this relation exerts a positive feedback to the ENW-SST relation. The temperature sounding measured by the Atmospheric Infrared Sounder(AIRS) is consistent with the spatial coherence between the cloud-top temperature provided by the International Satellite Cloud Climatology Project (ISCCP) and SST. Thus ocean mesoscale SST anomalies associated with the persistent meanders may have a long-term effect well above the midlatitude atmospheric boundary layer, an observation not addressed in the past.

  12. Optimization of magnet end-winding geometry

    NASA Astrophysics Data System (ADS)

    Reusch, Michael F.; Weissenburger, Donald W.; Nearing, James C.

    1994-03-01

    A simple, almost entirely analytic, method for the optimization of stress-reduced magnet-end winding paths for ribbon-like superconducting cable is presented. This technique is based on characterization of these paths as developable surfaces, i.e., surfaces whose intrinsic geometry is flat. The method is applicable to winding mandrels of arbitrary geometry. Computational searches for optimal winding paths are easily implemented via the technique. Its application to the end configuration of cylindrical Superconducting Super Collider (SSC)-type magnets is discussed. The method may be useful for other engineering problems involving the placement of thin sheets of material.

  13. Comparison of the ocean surface vector winds over the Nordic Seas and their application for ocean modeling

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, Dmitry; Bourassa, Mark

    2017-04-01

    Ocean processes in the Nordic Seas and northern North Atlantic are strongly controlled by air-sea heat and momentum fluxes. The predominantly cyclonic, large-scale atmospheric circulation brings the deep ocean layer up to the surface preconditioning the convective sites in the Nordic Seas for deep convection. In winter, intensive cooling and possibly salt flux from newly formed sea ice erodes the near-surface stratification and the mixed layer merges with the deeper domed layer, exposing the very weakly stratified deep water mass to direct interaction with the atmosphere. Surface wind is one of the atmospheric parameters required for estimating momentum and turbulent heat fluxes to the sea ice and ocean surface. In the ocean models forced by atmospheric analysis, errors in surface wind fields result in errors in air-sea heat and momentum fluxes, water mass formation, ocean circulation, as well as volume and heat transport in the straits. The goal of the study is to assess discrepancies across the wind vector fields from reanalysis data sets and scatterometer-derived gridded products over the Nordic Seas and northern North Atlantic and to demonstrate possible implications of these differences for ocean modeling. The analyzed data sets include the reanalysis data from the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR) and satellite wind products Cross-Calibrated Multi-Platform (CCMP) wind product version 1.1 and recently released version 2.0, and Remote Sensing Systems QuikSCAT data. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The sensitivity experiments demonstrate differences in the net surface heat fluxes during storm events. Next, it is hypothesized that discrepancies in the wind vorticity fields should manifest different behaviors of the isopycnals in the Nordic Seas. Time evolution of isopycnal depths in the sensitivity experiments forced by different wind fields is discussed. Results of these sensitivity experiments demonstrate a relationship between the isopycnal surfaces and the wind stress curl. The numerical experiments are also analyzed to investigate the relationship between the East Greenland Current and the wind stress curl over the Nordic Seas. The transport of the current at this location has substantial contribution from wind-driven large-scale circulation. This wind-driven part of the East Greenland Current is a western-intensified return flow of a wind-driven cyclonic gyre in the central Nordic Seas. The numerical experiments with different wind fields reveal notable sensitivity of the East Greenland Current to differences in the wind forcing.

  14. Estimation of wind stress using dual-frequency TOPEX data

    NASA Astrophysics Data System (ADS)

    Elfouhaily, Tanos; Vandemark, Douglas; Gourrion, Jéro‸me; Chapron, Bertrand

    1998-10-01

    The TOPEX/POSEIDON satellite carries the first dual-frequency radar altimeter. Monofrequency (Ku-band) algorithms are presently used to retrieve surface wind speed from the altimeter's radar cross-section measurement (σ0Ku). These algorithms work reasonably well, but it is also known that altimeter wind estimates can be contaminated by residual effects, such as sea state, embedded in the σ0Ku measurement. Investigating the potential benefit of using two frequencies for wind retrieval, it is shown that a simple evaluation of TOPEX data yields previously unavailable information, particularly for high and low wind speeds. As the wind speed increases, the dual-frequency data provides a measurement more directly linked to the short-scale surface roughness, which in turn is associated with the local surface wind stress. Using a global TOPEX σ0° data set and TOPEX's significant wave height (Hs) estimate as a surrogate for the sea state's degree of development, it is also shown that differences between the two TOPEX σ0 measurements strongly evidence nonlocal sea state signature. A composite scattering theory is used to show how the dual-frequency data can provide an improved friction velocity model, especially for winds above 7 m/s. A wind speed conversion is included using a sea state dependent drag coefficient fed with TOPEX Hs data. Two colocated TOPEX-buoy data sets (from the National Data Buoy Center (NDBC) and the Structure des Echanges Mer-Atmosphre, Proprietes des Heterogeneites Oceaniques: Recherche Expérimentale (SEMAPHORE) campaign) are employed to test the new wind speed algorithm. A measurable improvement in wind speed estimation is obtained when compared to the monofrequency Witter and Chelton [1991] model.

  15. The Potential of Wetlands in Reducing Storm Surge

    DTIC Science & Technology

    2010-01-01

    threatened by erosion and damage due to storm waves, wind, and surge. The risk of damage and loss of life is exacerbated by many factors, including coastal...obtained when attempting to correlate hurricane translation speed, surge hydrograph at the coast, and surge elevations inland. However, a trend was...greater surface roughness. In addition to reducing wind speeds, the models eliminate the wind stress in forested wetlands which inhibit wind from

  16. Global warming and climate forcing by recent albedo changes on Mars

    USGS Publications Warehouse

    Fenton, L.K.; Geissler, P.E.; Haberle, R.M.

    2007-01-01

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by ???0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies. ??2007 Nature Publishing Group.

  17. Global warming and climate forcing by recent albedo changes on Mars.

    PubMed

    Fenton, Lori K; Geissler, Paul E; Haberle, Robert M

    2007-04-05

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by approximately 0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies.

  18. Surface heating and patchiness in the coastal ocean off central California during a wind relaxation event

    NASA Technical Reports Server (NTRS)

    Ramp, Steven R.; Garwood, Roland W.; Snow, Richard L.; Davis, Curtiss O.

    1991-01-01

    The difference between the temperature of the ocean at 4-cm and 2-m depth was continuously monitored during a cruise to the coastal transition zone off Point Arena, California, during June 1987. The two temperatures were coincident most of the time but diverged during one nearshore leg of the cruise where large temperature differences of up to 4.7 C were observed between the 4-cm and 2-m sensors, in areas which were separated by regions where the two temperatures were coincident as usual. The spatial scale of this 'patchy' thermal structure was about 5-10 km. A mixed layer model (Garwood, 1977) was used to simulate the near surface stratification when forced by the observed wind stress, surface heating, and optical clarity of the water. The model produced a thin strongly stratified surface layer at stations where exceptionally high turbidity was observed but did not produce such features otherwise. This simple model could not explain the horizontal patchiness in the thermal structure, which was likely due to patchiness in the near-surface chlorophyll distributions or to submesoscale variability of the surface wind stress.

  19. Wind-induced upwelling in the Kerguelen Plateau region

    NASA Astrophysics Data System (ADS)

    Gille, S. T.; Carranza, M. M.; Cambra, R.

    2014-11-01

    In contrast to most of the Southern Ocean, the Kerguelen Plateau supports an unusually strong spring chlorophyll (Chl a) bloom, likely because the euphotic zone in the region is supplied with higher iron concentrations. This study uses satellite wind, sea surface temperature (SST), and ocean color data to explore the impact of wind-driven processes on upwelling of cold (presumably iron-rich) water to the euphotic zone. Results show that, in the Kerguelen region, cold SSTs correlate with high wind speeds, implying that wind-mixing leads to enhanced vertical mixing. Cold SSTs also correlate with negative wind-stress curl, implying that Ekman pumping can further enhance upwelling. In the moderate to high eddy kinetic energy (EKE) regions surrounding Kerguelen, we find evidence of coupling between winds and SST gradients associated with mesoscale eddies, which can locally modulate the wind-stress curl. This coupling introduces persistent wind-stress curl patterns and Ekman pumping around these long-lived eddies, which may modulate the evolution of Chl a in the downstream plume far offshore. Close to the plateau, this eddy coupling breaks down. Kerguelen has a significant wind shadow on its downwind side, which changes position depending on the prevailing wind and which generates a wind-stress curl dipole that shifts location depending on wind direction. This leads to locally enhanced Ekman pumping for a few hundred kilometers downstream from the Kerguelen Plateau; Chl a values tend to be more elevated in places where wind-stress curl induces Ekman upwelling than in locations of downwelling, although the estimated upwelling rates are too small for this relationship to derive from direct effects on upward iron supply, and thus other processes, which remain to be determined, must also be involved in the establishment of these correlations. During the October and November (2011) KErguelen Ocean and Plateau compared Study (KEOPS-2) field program, wind conditions were fairly typical for the region, with enhanced Ekman upwelling expected to the north of the Kerguelen Islands.

  20. Triton's streaks as windblown dust

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Chyba, Christopher

    1990-01-01

    Explanations for the surface streaks observed by Voyager 2 on Triton's southern hemisphere are discussed. It is shown that, despite Triton's tenuous atmosphere, low-cohesion dust trains with diameters of about 5 micron or less may be carried into suspension by aeolian surface shear stress, given expected geostrophic wind speeds of about 10 m/s. For geyser-like erupting dust plumes, it is shown that dust-settling time scales and expected wind velocities can produce streaks with length scales in good agreement with those of the streaks. Thus, both geyserlike eruptions or direct lifting by surface winds appear to be viable mechanisms for the origin of the streaks.

  1. Thermal advection and stratification effects on surface winds and the low level meridional mass transport

    NASA Technical Reports Server (NTRS)

    Levy, Gad; Tiu, Felice S.

    1990-01-01

    Statistical tests are performed on the Seasat scatterometer observations to examine if and to what degree thermal advection and stratification effects manifest themselves in these remotely sensed measurements of mean wind and wind stress over the ocean. On the basis of a two layer baroclinic boundary layer model which is presented, it is shown that the thermal advection and stratification of the entire boundary layer as well as the geostrophic forcing influence the modeled near surface wind and wind stress profiles. Evidence of diurnal variation in the stratification under barotropic conditions is found in the data, with the daytime marine boundary layer being more convective than its nighttime counterpart. The temporal and spacial sampling pattern of the satellite makes it impossible to recover the full diurnal cycle, however. The observed effects of the thermal advection are shown to be statistically significant during the day (and presumed more convective) hours, causing a systematic increase in the poleward transport of mass and heat. The statistical results are in a qualitative agreement with the model simulations and cannot be reproduced in randomized control tests.

  2. Wind-induced interannual variability of sea level slope, along-shelf flow, and surface salinity on the Northwest Atlantic shelf

    NASA Astrophysics Data System (ADS)

    Li, Yun; Ji, Rubao; Fratantoni, Paula S.; Chen, Changsheng; Hare, Jonathan A.; Davis, Cabell S.; Beardsley, Robert C.

    2014-04-01

    In this study, we examine the importance of regional wind forcing in modulating advective processes and hydrographic properties along the Northwest Atlantic shelf, with a focus on the Nova Scotian Shelf (NSS)-Gulf of Maine (GoM) region. Long-term observational data of alongshore wind stress, sea level slope, and along-shelf flow are analyzed to quantify the relationship between wind forcing and hydrodynamic responses on interannual time scales. Additionally, a simplified momentum balance model is used to examine the underlying mechanisms. Our results show significant correlation among the observed interannual variability of sea level slope, along-shelf flow, and alongshore wind stress in the NSS-GoM region. A mechanism is suggested to elucidate the role of wind in modulating the sea level slope and along-shelf flow: stronger southwesterly (northeastward) winds tend to weaken the prevailing southwestward flow over the shelf, building sea level in the upstream Newfoundland Shelf region, whereas weaker southwesterly winds allow stronger southwestward flow to develop, raising sea level in the GoM region. The wind-induced flow variability can influence the transport of low-salinity water from the Gulf of St. Lawrence to the GoM, explaining interannual variations in surface salinity distributions within the region. Hence, our results offer a viable mechanism, besides the freshening of remote upstream sources, to explain interannual patterns of freshening in the GoM.

  3. On the cyclonic eddy generation in Panay Strait, Philippines

    NASA Astrophysics Data System (ADS)

    Flament, P. J.; Repollo, C. L. A.; Flores-vidal, X.; Villanoy, C.

    2016-12-01

    High Frequency Doppler Radar (HFDR), shallow pressure gauges and Acoustic Doppler Current Profiler (ADCP) time-series observations during the Philippine Straits Dynamics Experiment (PhilEx) were analyzed to describe the mesoscale currents in Panay Strait, Philippines. Low frequency surface currents inferred from three HFDR (July 2008 { July 2009), revealed a clear seasonal signal in concurrent with the reversal of the Asian monsoon. The mesoscale cyclonic eddy west of Panay Island is generated during the winter northeast (NE) monsoon. This causes changes in the strength, depth and width of the intra-seasonal Panay coastal jet as its eastern limb. Winds from QuikSCAT satellite and from a nearby airport indicate that these flow structures correlate with the strength and direction of the prevailing local wind. An intensive survey of the cyclonic eddy in February 8-9, 2009, obtaining a 24-hour successive cross-shore Conductivity-Temperature- Depth (CTD) sections in conjunction with shipboard ADCP measurements showed a well- developed cyclonic eddy characterized by near-surface velocities reaching 50 cm/s. This observation coincides with the intensification of the wind in between Mindoro and Panay islands generating a positive wind stress curl in the lee of Panay, which in turn induces divergent surface currents. Water column response from the mean transects showed a pronounced signal of upwelling, indicated by the doming of isotherms and isopycnals. A pressure gradient then was sets up, resulting in the spin-up of a cyclonic eddy in geostrophic balance. Evaluation of the surface vorticity balance equation suggests that the wind stress curl via Ekman pumping mechanism provides the necessary input in the formation and evolution of the cyclonic eddy. In particular, the cumulative effect of the wind stress curl plays a key role on the generation of the eddy. The Beta-effect on the other hand may led to propagation of the eddy westward.

  4. Observations of currents and density structure across a buoyant plume front

    USGS Publications Warehouse

    Gelfenbaum, G.; Stumpf, R.P.

    1993-01-01

    Observations of the Mobile Bay, Alabama, plume during a flood event in April 1991 reveal significant differences in the current field on either side of a front associated with the buoyant plume. During a strong southeasterly wind, turbid, low salinity water from Mobile Bay was pushed through an opening in the west side of the ebb-tidal delta and moved parallel to the coast. A stable front developed between the low salinity water of the buoyant plume (11‰) and the high salinity coastal water (>23‰) that was being forced landward by the prevailing winds. Despite the shallow water depth of 6 m, measurements of currents, temperature, and salinity show large shears and density gradients in both the vertical and the horizontal directions. At a station outside of the buoyant plume, currents at 0.5 m and 1.5 m below the surface were in the same direction as the wind. Inside the plume, however, currents at 0.5 m below the surface were parallel to the coast, 45°, off the direction of the wind and the magnitude was 45% larger than the magnitude of the surface currents outside the plume. Beneath the level of the plume, the currents were identical to the wind-driven currents in the ambient water south of the front. Our observations suggest that the wind-driven surface currents of the ambient water converged with the buoyant plume at the front and were subducted beneath the plume. The motion of the ambient coastal surface water was in the direction of the local wind stress, however, the motion of the plume had no northerly component of motion. The plume also did not show any flow toward the front, suggesting a balance between the northerly component of wind stress and the southerly component of buoyant spreading. In addition, the motion of the plume did not appear to affect the motion of the underlying ambient water, suggesting a lack of mixing between the two waters.

  5. An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skyllingstad, E.D.; Denbo, D.W.

    Numerical experiments were performed using a three-dimensional large-eddy simulation model of the ocean surface mixed layer that includes the Craik-Leibovich vortex force to parameterize the interaction of surface waves with mean currents. Results from the experiments show that the vortex force generates Langmuir circulations that can dominate vertical mixing. The simulated vertical velocity fields show linear, small-scale, coherent structures near the surface that extend downwind across the model domain. In the interior of the mixed layer, scales of motion increase to eddy sizes that are roughly equivalent to the mixed-layer depth. Cases with the vortex force have stronger circulations nearmore » the surface in contrast to cases with only heat flux and wind stress, particularly when the heat flux is positive. Calculations of the velocity variance and turbulence dissipation rates for cases with and without the vortex force, surface cooling, and wind stress indicate that wave-current interactions are a dominant mixing process in the upper mixed layer. Heat flux calculations show that the entrainment rate at the mixed-layer base can be up to two times greater when the vortex force is included. In a case with reduced wind stress, turbulence dissipation rates remained high near the surface because of the vortex force interaction with preexisting inertial currents. In deep mixed layers ({approximately}250 m) the simulations show that Langmuir circulations can vertically transport water 145 m during conditions of surface heating. Observations of turbulence dissipation rates and the vertical temperature structure support the model results. 42 refs., 20 figs., 21 tabs.« less

  6. Feedback process responsible for intermodel diversity of ENSO variability

    NASA Astrophysics Data System (ADS)

    An, Soon-Il; Heo, Eun Sook; Kim, Seon Tae

    2017-05-01

    The origin of the intermodel diversity of the El Niño-Southern Oscillation (ENSO) variability is investigated by applying a singular value decomposition (SVD) analysis between the intermodel tropical Pacific sea surface temperature anomalies (SSTA) variance and the intermodel ENSO stability index (BJ index). The first SVD mode features an ENSO-like pattern for the intermodel SSTA variance (74% of total variance) and the dominant thermocline feedback (TH) for the BJ index (51%). Intermodel TH is mainly modified by the intermodel sensitivity of the zonal thermocline gradient response to zonal winds over the equatorial Pacific (βh), and the intermodel βh is correlated higher with the intermodel off-equatorial wind stress curl anomalies than the equatorial zonal wind stress anomalies. Finally, the intermodel off-equatorial wind stress curl is associated with the meridional shape and intensity of ENSO-related wind patterns, which may cause a model-to-model difference in ENSO variability by influencing the off-equatorial oceanic Rossby wave response.

  7. The Alignment of the Mean Wind and Stress Vectors in the Unstable Surface Layer

    NASA Astrophysics Data System (ADS)

    Bernardes, M.; Dias, N. L.

    2010-01-01

    A significant non-alignment between the mean horizontal wind vector and the stress vector was observed for turbulence measurements both above the water surface of a large lake, and over a land surface (soybean crop). Possible causes for this discrepancy such as flow distortion, averaging times and the procedure used for extracting the turbulent fluctuations (low-pass filtering and filter widths etc.), were dismissed after a detailed analysis. Minimum averaging times always less than 30 min were established by calculating ogives, and error bounds for the turbulent stresses were derived with three different approaches, based on integral time scales (first-crossing and lag-window estimates) and on a bootstrap technique. It was found that the mean absolute value of the angle between the mean wind and stress vectors is highly related to atmospheric stability, with the non-alignment increasing distinctively with increasing instability. Given a coordinate rotation that aligns the mean wind with the x direction, this behaviour can be explained by the growth of the relative error of the u- w component with instability. As a result, under more unstable conditions the u- w and the v- w components become of the same order of magnitude, and the local stress vector gives the impression of being non-aligned with the mean wind vector. The relative error of the v- w component is large enough to make it undistinguishable from zero throughout the range of stabilities. Therefore, the standard assumptions of Monin-Obukhov similarity theory hold: it is fair to assume that the v- w stress component is actually zero, and that the non-alignment is a purely statistical effect. An analysis of the dimensionless budgets of the u- w and the v- w components confirms this interpretation, with both shear and buoyant production of u- w decreasing with increasing instability. In the v- w budget, shear production is zero by definition, while buoyancy displays very low-intensity fluctuations around zero. As local free convection is approached, the turbulence becomes effectively axisymetrical, and a practical limit seems to exist beyond which it is not possible to measure the u- w component accurately.

  8. Temperature Calculations in the Coastal Modeling System

    DTIC Science & Technology

    2017-04-01

    tide) and river discharge at model boundaries, wave radiation stress, and wind forcing over a model computational domain. Physical processes calculated...calculated in the CMS using the following meteorological parameters: solar radiation, cloud cover, air temperature, wind speed, and surface water temperature...during a clear (i.e., cloudless) sky (Wm-2); CLDC is the cloud cover fraction (0-1.0); SWR is the surface reflection coefficient; and SHDf is the

  9. Interhemispheric SST gradient trends in the Indian Ocean prior to and during the recent global warming hiatus

    NASA Astrophysics Data System (ADS)

    Dong, L.; McPhaden, M. J.

    2016-12-01

    Sea surface temperatures (SSTs) have been rising for decades in the Indian Ocean in response to greenhouse gas forcing. However, in this study we show that during the recent hiatus in global warming, a striking interhemispheric gradient in Indian Ocean SST trends developed around 2000, with relatively weak or little warming to the north of 10°S and accelerated warming to the south of 10oS. We present evidence from a wide variety of data sources that this interhemispheric gradient in SST trends is forced primarily by an increase of Indonesian Throughflow (ITF) transport from the Pacific into the Indian Ocean induced by stronger Pacific trade winds. This increased transport led to a depression of the thermocline that facilitated SST warming presumably through a reduction in the vertical turbulent transport of heat in the southern Indian Ocean. Surface wind changes in the Indian Ocean linked to the enhanced Walker circulation also may have contributed to thermocline depth variations and associated SST changes, with downwelling favorable wind stress curls between 10oS and 20oS and upwelling favorable wind stress curls between the equator and 10oS. In addition, the anomalous southwesterly wind stresses off the coast of Somalia favored intensified coastal upwelling and off-shore advection of upwelled water, which would have led to reduced warming of the northern Indian Ocean. Though highly uncertain, lateral heat advection associated with the ITF and surface heat fluxes may also have played a role in forming the interhemispheric SST gradient change.

  10. Influence of glacial ice sheets on the Atlantic meridional overturning circulation through surface wind change

    NASA Astrophysics Data System (ADS)

    Sherriff-Tadano, Sam; Abe-Ouchi, Ayako; Yoshimori, Masakazu; Oka, Akira; Chan, Wing-Le

    2018-04-01

    Coupled modeling studies have recently shown that the existence of the glacial ice sheets intensifies the Atlantic meridional overturning circulation (AMOC). However, most models show a strong AMOC in their simulations of the Last Glacial Maximum (LGM), which is biased compared to reconstructions that indicate both a weaker and stronger AMOC during the LGM. Therefore, a detailed investigation of the mechanism behind this intensification of the AMOC is important for a better understanding of the glacial climate and the LGM AMOC. Here, various numerical simulations are conducted to focus on the effect of wind changes due to glacial ice sheets on the AMOC and the crucial region where the wind modifies the AMOC. First, from atmospheric general circulation model experiments, the effect of glacial ice sheets on the surface wind is evaluated. Second, from ocean general circulation model experiments, the influence of the wind stress change on the AMOC is evaluated by applying wind stress anomalies regionally or at different magnitudes as a boundary condition. These experiments demonstrate that glacial ice sheets intensify the AMOC through an increase in the wind stress at the North Atlantic mid-latitudes, which is induced by the North American ice sheet. This intensification of the AMOC is caused by the increased oceanic horizontal and vertical transport of salt, while the change in sea ice transport has an opposite, though minor, effect. Experiments further show that the Eurasian ice sheet intensifies the AMOC by directly affecting the deep-water formation in the Norwegian Sea.

  11. A thickness-weighted average perspective of force balance in an idealized circumpolar current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringler, Todd Darwin; Saenz, Juan Antonio; Wolfram, Jr., Phillip Justin

    The exact, three-dimensional thickness-weighted averaged (TWA) Boussinesq equations are used to diagnose eddy-mean flow interaction in an idealized circumpolar current (ICC). The force exerted by mesoscale eddies on the TWA velocity is expressed as the divergence of the Eliassen-Palm flux tensor. Consistent with previous findings, the analysis indicates that the dynamically relevant definition of the ocean surface layer is comprised of the set of buoyancy coordinates that ever reside at the ocean surface at a given horizontal position. The surface layer is found to be a physically distinct object with a diabatic- and force-balance that is largely isolated from themore » underlying adiabatic region in the interior. Within the ICC surface layer, the TWA meridional velocity is southward/northward in the top/bottom half, and has a value near zero at the bottom. In the top half of the surface layer, the zonal forces due to wind stress and meridional advection of potential vorticity act to accelerate the TWA zonal velocity; equilibrium is obtained by eddies decelerating the zonal flow via a downward flux of eastward momentum that increases with depth. In the bottom half of the surface layer, the accelerating force of the wind stress is balanced by the eddy force and meridional advection of potential vorticity. The bottom of the surface layer coincides with the location where the zonal eddy force, meridional advection of potential vorticity and zonal wind stress force are all zero. The net meridional transport, S f, within the surface layer is a small residual of its southward and northward TWA meridional flows. Furthermore, the mean meridional gradient of surface-layer buoyancy is advected by S f to balance the surface buoyancy fluxs.« less

  12. A thickness-weighted average perspective of force balance in an idealized circumpolar current

    DOE PAGES

    Ringler, Todd Darwin; Saenz, Juan Antonio; Wolfram, Jr., Phillip Justin; ...

    2016-11-22

    The exact, three-dimensional thickness-weighted averaged (TWA) Boussinesq equations are used to diagnose eddy-mean flow interaction in an idealized circumpolar current (ICC). The force exerted by mesoscale eddies on the TWA velocity is expressed as the divergence of the Eliassen-Palm flux tensor. Consistent with previous findings, the analysis indicates that the dynamically relevant definition of the ocean surface layer is comprised of the set of buoyancy coordinates that ever reside at the ocean surface at a given horizontal position. The surface layer is found to be a physically distinct object with a diabatic- and force-balance that is largely isolated from themore » underlying adiabatic region in the interior. Within the ICC surface layer, the TWA meridional velocity is southward/northward in the top/bottom half, and has a value near zero at the bottom. In the top half of the surface layer, the zonal forces due to wind stress and meridional advection of potential vorticity act to accelerate the TWA zonal velocity; equilibrium is obtained by eddies decelerating the zonal flow via a downward flux of eastward momentum that increases with depth. In the bottom half of the surface layer, the accelerating force of the wind stress is balanced by the eddy force and meridional advection of potential vorticity. The bottom of the surface layer coincides with the location where the zonal eddy force, meridional advection of potential vorticity and zonal wind stress force are all zero. The net meridional transport, S f, within the surface layer is a small residual of its southward and northward TWA meridional flows. Furthermore, the mean meridional gradient of surface-layer buoyancy is advected by S f to balance the surface buoyancy fluxs.« less

  13. Tropical Ocean Global Atmosphere (TOGA) Meteorological and Oceanographic Data Sets for 1985 and 1986

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Ashby, H.; Finch, C.; Smith, E.; Robles, J.

    1990-01-01

    The Tropical Ocean Global Atmosphere (TOGA) Program is a component of the World Meteorological Organization (WMO)/International Council of Scientific Unions (ICSU) World Climate Research Program (WCRP). One of the objectives of TOGA, which began in 1985, is to determine the limits of predictability of monthly mean sea surface temperature variations in tropical regions. The TOGA program created a raison d'etre for an explosive growth of the tropical ocean observing system and a substantial improvement in numerical simulations from atmospheric and oceanic general circulation models. Institutions located throughout the world are involved in the TOGA-distributed active data archive system. The diverse TOGA data sets for 1985 and 1986, including results from general circulation models, are included on a CD-ROM. Variables on the CD-ROM are barometric pressure, surface air temperature, dewpoint temperature Cartesian components of surface wind, surface sensible and latent heat fluxes,Cartesian components of surface wind stress and of an index of surface wind stress, sea level, sea surface temperature, and depth profiles of temperature and current in the upper ocean. Some data sets are global in extent, some are regional and cover portions of an ocean basin. Data on the CD-ROM can be extracted with an Apple Macintosh or an IBM PC.

  14. Development and evaluation of an empirical diurnal sea surface temperature model

    NASA Astrophysics Data System (ADS)

    Weihs, R. R.; Bourassa, M. A.

    2013-12-01

    An innovative method is developed to determine the diurnal heating amplitude of sea surface temperatures (SSTs) using observations of high-quality satellite SST measurements and NWP atmospheric meteorological data. The diurnal cycle results from heating that develops at the surface of the ocean from low mechanical or shear produced turbulence and large solar radiation absorption. During these typically calm weather conditions, the absorption of solar radiation causes heating of the upper few meters of the ocean, which become buoyantly stable; this heating causes a temperature differential between the surface and the mixed [or bulk] layer on the order of a few degrees. It has been shown that capturing the diurnal cycle is important for a variety of applications, including surface heat flux estimates, which have been shown to be underestimated when neglecting diurnal warming, and satellite and buoy calibrations, which can be complicated because of the heating differential. An empirical algorithm using a pre-dawn sea surface temperature, peak solar radiation, and accumulated wind stress is used to estimate the cycle. The empirical algorithm is derived from a multistep process in which SSTs from MTG's SEVIRI SST experimental hourly data set are combined with hourly wind stress fields derived from a bulk flux algorithm. Inputs for the flux model are taken from NASA's MERRA reanalysis product. NWP inputs are necessary because the inputs need to incorporate diurnal and air-sea interactive processes, which are vital to the ocean surface dynamics, with a high enough temporal resolution. The MERRA winds are adjusted with CCMP winds to obtain more realistic spatial and variance characteristics and the other atmospheric inputs (air temperature, specific humidity) are further corrected on the basis of in situ comparisons. The SSTs are fitted to a Gaussian curve (using one or two peaks), forming a set of coefficients used to fit the data. The coefficient data are combined with accumulated wind stress and peak solar radiation to create an empirical relationship that approximates physical processes such as turbulence and heating memory (capacity) of the ocean. Weaknesses and strengths of the model, including potential spatial biases, will be discussed.

  15. Aeolian Shear Stress Ratio Measurements within Mesquite-Dominated Landscapes of the Chihuahuan Desert, New Mexico, USA

    NASA Technical Reports Server (NTRS)

    King, James; Nickling, W. G.; Gilliles, J. A.

    2006-01-01

    A field study was conducted to ascertain the amount of protection that mesquite-dominated communities provide to the surface from wind erosion. The dynamics of the locally accelerated evolution of a mesquite/coppice dune landscape and the undetermined spatial dependence of potential erosion by wind from a shear stress partition model were investigated. Sediment transport and dust emission processes are governed by the amount of protection that can be provided by roughness elements. Although shear stress partition models exist that can describe this, their accuracy has only been tested against a limited dataset because instrumentation has previously been unable to provide the necessary measurements. This study combines the use of meteorological towers and surface shear stress measurements with Irwin sensors to measure the partition of shear stress in situ. The surface shear stress within preferentially aligned vegetation (within coppice dune development) exhibited highly skewed distributions, while a more homogenous surface stress was recorded at a site with less developed coppice dunes. Above the vegetation, the logarithmic velocity profile deduced roughness length (based on 10-min averages) exhibited a distinct correlation with compass direction for the site with vegetation preferentially aligned, while the site with more homogenously distributed vegetation showed very little variation in the roughness length. This distribution in roughness length within an area, defines a distribution of a resolved shear stress partitioning model based on these measurements, ultimately providing potential closure to a previously uncorrelated model parameter.

  16. Aeolian shear stress ratio measurements within mesquite-dominated landscapes of the Chihuahuan Desert, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    King, James; Nickling, W. G.; Gillies, J. A.

    2006-12-01

    A field study was conducted to ascertain the amount of protection that mesquite-dominated communities provide to the surface from wind erosion. The dynamics of the locally accelerated evolution of a mesquite/coppice dune landscape and the undetermined spatial dependence of potential erosion by wind from a shear stress partition model were investigated. Sediment transport and dust emission processes are governed by the amount of protection that can be provided by roughness elements. Although shear stress partition models exist that can describe this, their accuracy has only been tested against a limited dataset because instrumentation has previously been unable to provide the necessary measurements. This study combines the use of meteorological towers and surface shear stress measurements with Irwin sensors to measure the partition of shear stress in situ. The surface shear stress within preferentially aligned vegetation (within coppice dune development) exhibited highly skewed distributions, while a more homogenous surface stress was recorded at a site with less developed coppice dunes. Above the vegetation, the logarithmic velocity profile deduced roughness length (based on 10-min averages) exhibited a distinct correlation with compass direction for the site with vegetation preferentially aligned, while the site with more homogenously distributed vegetation showed very little variation in the roughness length. This distribution in roughness length within an area, defines a distribution of a resolved shear stress partitioning model based on these measurements, ultimately providing potential closure to a previously uncorrelated model parameter.

  17. Comparing wind directions inferred from Martian dust devil tracks analysis with those predicted by the Mars Climate Database

    NASA Astrophysics Data System (ADS)

    Statella, T.; Pina, P.; Silva, E. A.; Nervis Frigeri, Ary Vinicius; Neto, Frederico Gallon

    2016-10-01

    We have calculated the prevailing dust devil tracks direction as a means of verifying the Mars Climate Database (MCD) predicted wind directions accuracy. For that purpose we have applied an automatic method based on morphological openings for inferring the prevailing tracks direction in a dataset comprising 200 Mars Orbiter Camera (MOC) Narrow Angle (NA) and High Resolution Imaging Science Experiment (HiRISE) images of the Martian surface, depicting regions in the Aeolis, Eridania, Noachis, Argyre and Hellas quadrangles. The prevailing local wind directions were calculated from the MCD predicted speeds for the WE and SN wind components. The results showed that the MCD may not be able to predict accurately the locally dominant wind direction near the surface. In adittion, we confirm that the surface wind stress alone cannot produce dust lifting in the studied sites, since it never exceeds the threshold value of 0.0225 Nm-2 in the MCD.

  18. Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux.

    PubMed

    Ayoub, F; Avouac, J-P; Newman, C E; Richardson, M I; Lucas, A; Leprince, S; Bridges, N T

    2014-09-30

    Coupling between surface winds and saltation is a fundamental factor governing geological activity and climate on Mars. Saltation of sand is crucial for both erosion of the surface and dust lifting into the atmosphere. Wind tunnel experiments along with measurements from surface meteorology stations and modelling of wind speeds suggest that winds should only rarely move sand on Mars. However, evidence for currently active dune migration has recently accumulated. Crucially, the frequency of sand-moving events and the implied threshold wind stresses for saltation have remained unknown. Here we present detailed measurements of Nili Patera dune field based on High Resolution Imaging Science Experiment images, demonstrating that sand motion occurs daily throughout much of the year and that the resulting sand flux is strongly seasonal. Analysis of the seasonal sand flux variation suggests an effective threshold for sand motion for application to large-scale model wind fields (1-100 km scale) of τ(s)=0.01±0.0015 N m(-2).

  19. Modelling the impact of wind stress and river discharge on Danshuei River plume

    USGS Publications Warehouse

    Liu, W.-C.; Chen, W.-B.; Cheng, R.T.; Hsu, M.-H.

    2008-01-01

    A three-dimensional, time-dependent, baroclinic, hydrodynamic and salinity model, UnTRIM, was performed and applied to the Danshuei River estuarine system and adjacent coastal sea in northern Taiwan. The model forcing functions consist of tidal elevations along the open boundaries and freshwater inflows from the main stream and major tributaries in the Danshuei River estuarine system. The bottom friction coefficient was adjusted to achieve model calibration and verification in model simulations of barotropic and baroclinic flows. The turbulent diffusivities were ascertained through comparison of simulated salinity time series with observations. The model simulation results are in qualitative agreement with the available field data. The validated model was then used to investigate the influence of wind stress and freshwater discharge on Dasnhuei River plume. As the absence of wind stress, the anticyclonic circulation is prevailed along the north to west coast. The model results reveal when winds are downwelling-favorable, the surface low-salinity waters are flushed out and move to southwest coast. Conversely, large amounts of low-salinity water flushed out the Danshuei River mouth during upwelling-favorable winds, as the buoyancy-driven circulation is reversed. Wind stress and freshwater discharge are shown to control the plume structure. ?? 2007 Elsevier Inc. All rights reserved.

  20. Local inertial oscillations in the surface ocean generated by time-varying winds

    NASA Astrophysics Data System (ADS)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  1. Detection and interpretation of ocean roughness variations across the Gulf Stream inferred from radar cross section observations

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Thompson, T. W.

    1977-01-01

    Radar cross section data shows that the Gulf Stream has a higher cross section per unit area (interpreted here as a greater roughness) than the water on the continental shelf. A steep gradient in cross section was often seen at the expected location of the western boundary. There were also longer-scale (10-20 km) gradual fluctuations within the stream of significant magnitude. These roughness variations are correlated with the surface shear stress that the local wind imposes on the sea. Using the available surface-truth information concerning the wind speed and direction, an assumed Gulf Stream velocity profile, and high-resolution ocean-surface temperature data obtained by the VHRR onboard a NOAA-NESS polar-orbiting satellite, the present study demonstrates that the computed surface stress variation bears a striking resemblance to the measured radar cross-section variations.

  2. Multi-response optimization of T300/epoxy prepreg tape-wound cylinder by grey relational analysis coupled with the response surface method

    NASA Astrophysics Data System (ADS)

    Kang, Chao; Shi, Yaoyao; He, Xiaodong; Yu, Tao; Deng, Bo; Zhang, Hongji; Sun, Pengcheng; Zhang, Wenbin

    2017-09-01

    This study investigates the multi-objective optimization of quality characteristics for a T300/epoxy prepreg tape-wound cylinder. The method integrates the Taguchi method, grey relational analysis (GRA) and response surface methodology, and is adopted to improve tensile strength and reduce residual stress. In the winding process, the main process parameters involving winding tension, pressure, temperature and speed are selected to evaluate the parametric influences on tensile strength and residual stress. Experiments are conducted using the Box-Behnken design. Based on principal component analysis, the grey relational grades are properly established to convert multi-responses into an individual objective problem. Then the response surface method is used to build a second-order model of grey relational grade and predict the optimum parameters. The predictive accuracy of the developed model is proved by two test experiments with a low prediction error of less than 7%. The following process parameters, namely winding tension 124.29 N, pressure 2000 N, temperature 40 °C and speed 10.65 rpm, have the highest grey relational grade and give better quality characteristics in terms of tensile strength and residual stress. The confirmation experiment shows that better results are obtained with GRA improved by the proposed method than with ordinary GRA. The proposed method is proved to be feasible and can be applied to optimize the multi-objective problem in the filament winding process.

  3. Oceanographic and meteorological research based on the data products of SEASAT

    NASA Technical Reports Server (NTRS)

    Pierson, W. J. (Principal Investigator)

    1983-01-01

    De-aliased SEASAT SASS vector winds obtained during the GOASEX (Gulf of Alaska SEASAT Experiment) program were processed to obtain superobservations centered on a one degree by one degree grid. The results provide values for the combined effects of mesoscale variability and communication noise on the individual SASS winds. Each grid point of the synoptic field provides the mean synoptic east-west and north-south wind components plus estimates of the standard deviations of these means. These superobservations winds are then processed further to obtain synoptic scale vector winds stress fiels, the horizontal divergence of the wind, the curl of the wind stress and the vertical velocity at 200 m above the sea surface, each with appropriate standard deviations for each grid point value. The resulting fields appear to be consistant over large distances and to agree with, for example, geostationary cloud images obtained concurrently. Their quality is far superior to that of analyses based on conventional data.

  4. Synoptic scale wind field properties from the SEASAT SASS

    NASA Technical Reports Server (NTRS)

    Pierson, W. J., Jr.; Sylvester, W. B.; Salfi, R. E.

    1984-01-01

    Dealiased SEASAT SEASAT A Scatterometer System SASS vector winds obtained during the Gulf Of Alaska SEASAT Experiment GOASEX program are processed to obtain superobservations centered on a one degree by one degree grid. The grid. The results provide values for the combined effects of mesoscale variability and communication noise on the individual SASS winds. These superobservations winds are then processed further to obtain estimates of synoptic scale vector winds stress fields, the horizontal divergence of the wind, the curl of the wind stress and the vertical velocity at 200 m above the sea surface, each with appropriate standard deviations of the estimates for each grid point value. They also explain the concentration of water vapor, liquid water and precipitation found by means of the SMMR Scanning Multichannel Microwave Radiometer at fronts and occlusions in terms of strong warm, moist air advection in the warm air sector accompanied by convergence in the friction layer. Their quality is far superior to that of analyses based on conventional data, which are shown to yield many inconsistencies.

  5. Importance of air-sea interaction on wind waves, storm surge and hurricane simulations

    NASA Astrophysics Data System (ADS)

    Chen, Yingjian; Yu, Xiping

    2017-04-01

    It was reported from field observations that wind stress coefficient levels off and even decreases when the wind speed exceeds 30-40 m/s. We propose a wave boundary layer model (WBLM) based on the momentum and energy conservation equations. Taking into account the physical details of the air-sea interaction process as well as the energy dissipation due to the presence of sea spray, this model successfully predicts the decreasing tendency of wind stress coefficient. Then WBLM is embedded in the current-wave coupled model FVCOM-SWAVE to simulate surface waves and storm surge under the forcing of hurricane Katrina. Numerical results based on WBLM agree well with the observed data of NDBC buoys and tide gauges. Sensitivity analysis of different wind stress evaluation methods also shows that large anomalies of significant wave height and surge elevation are captured along the passage of hurricane core. The differences of the local wave height are up to 13 m, which is in accordance with the general knowledge that the ocean dynamic processes under storm conditions are very sensitive to the amount of momentum exchange at the air-sea interface. In the final part of the research, the reduced wind stress coefficient is tested in the numerical forecast of hurricane Katrina. A parabolic formula fitted to WBLM is employed in the atmosphere-ocean coupled model COAWST. Considering the joint effects of ocean cooling and reduced wind drag, the intensity metrics - the minimum sea level pressure and the maximum 10 m wind speed - are in good inconsistency with the best track result. Those methods, which predict the wind stress coefficient that increase or saturate in extreme wind condition, underestimate the hurricane intensity. As a whole, we unify the evaluation methods of wind stress in different numerical models and yield reasonable results. Although it is too early to conclude that WBLM is totally applicable or the drag coefficient does decrease for high wind speed, our current research is considered to be a significant step for the application of air-sea interaction on the ocean and atmosphere modelling.

  6. On the role of high frequency waves in ocean altimetry

    NASA Astrophysics Data System (ADS)

    Vandemark, Douglas C.

    This work mines a coastal and open ocean air-sea interaction field experiment data set where the goals are to refine satellite retrieval of wind, wind stress, and sea level using a microwave radar altimeter. The data were collected from a low-flying aircraft using a sensor suite designed to measure the surface waves, radar backscatter, the atmospheric flow, and turbulent fluxes within the marine boundary layer. This uncommon ensemble provides the means to address several specific altimeter-related topics. First, we examine and document the impact that non wind-driven gravity wave variability, e.g. swell, has upon the commonly-invoked direct relationship between altimeter backscatter and near surface wind speed. The demonstrated impact is larger in magnitude and more direct than previously suggested. The study also isolates the wind-dependence of short-scale slope variance and suggests its magnitude is somewhat lower than shown elsewhere while a second-order dependence on long waves is also evident. A second study assesses the hypothesis that wind-aligned swell interacts with the atmospheric boundary flow leading to a depressed level of turbulence. Cases of reduced drag coefficient at moderate wind speeds were in evidence within the data set, and buoy observations indicate that swell was present and a likely control during these events. Coincidentally, short-scale wave roughness was also depressed suggesting decreased wind stress. Attempts to confirm the theory failed, however, due to numerous limitations in the quantity and quality of the data in hand. A lesson learned is that decoupling atmospheric stability and wave impacts in field campaigns requires both a very large amount of data as well as vertical resolution of fluxes within the first 10--20 m of the surface.

  7. Bora event variability and the role of air-sea feedback

    USGS Publications Warehouse

    Pullen, J.; Doyle, J.D.; Haack, T.; Dorman, C.; Signell, R.P.; Lee, C.M.

    2007-01-01

    A two-way interacting high resolution numerical simulation of the Adriatic Sea using the Navy Coastal Ocean Model (NCOM) and Coupled Ocean/ Atmosphere Mesoscale Prediction System (COAMPS??) was conducted to improve forecast momentum and heat flux fields, and to evaluate surface flux field differences for two consecutive bora events during February 2003. (COAMPS?? is a registered trademark of the Naval Research Laboratory.) The strength, mean positions and extensions of the bora jets, and the atmospheric conditions driving them varied considerably between the two events. Bora 1 had 62% stronger heat flux and 51% larger momentum flux than bora 2. The latter displayed much greater diurnal variability characterized by inertial oscillations and the early morning strengthening of a west Adriatic barrier jet, beneath which a stronger west Adriatic ocean current developed. Elsewhere, surface ocean current differences between the two events were directly related to differences in wind stress curl generated by the position and strength of the individual bora jets. The mean heat flux bias was reduced by 72%, and heat flux RMSE reduced by 30% on average at four instrumented over-water sites in the two-way coupled simulation relative to the uncoupled control. Largest reductions in wind stress were found in the bora jets, while the biggest reductions in heat flux were found along the north and west coasts of the Adriatic. In bora 2, SST gradients impacted the wind stress curl along the north and west coasts, and in bora 1 wind stress curl was sensitive to the Istrian front position and strength. The two-way coupled simulation produced diminished surface current speeds of ???12% over the northern Adriatic during both bora compared with a one-way coupled simulation. Copyright 2007 by the American Geophysical Union.

  8. Subtidal currents over the central California slope: Evidence for offshore veering of the undercurrent and for direct, wind-driven slope currents

    USGS Publications Warehouse

    Noble, M.A.; Ramp, S.R.

    2000-01-01

    In February 1991, an array of six current-meter moorings was deployed for one year across the central California outer shelf and slope. The main line of the array extended 30 km offshore of the shelf break, out to water depths of 1400 m. A more sparsely-instrumented line, displaced 30 km to the northwest, extended 14 km offshore. Though shorter, the northern line spanned similar water depths because the gradient of the topography steepened in the northern region. A poleward flow pattern, typical of the California undercurrent, was seen across both lines in the array over most of the year. The poleward flow was surface intensified. In general, the portion of the undercurrent that crossed the southern line had larger amplitudes and penetrated more deeply into the water column than the portion that crossed the northern line. Transport over the year ranged from 0 to 2.5 Sverdrups (Sv) poleward across the southern line; 0 to 1 Sv poleward across the northern line. We suggest the difference in transport was caused by topographic constraints, which tended to force the poleward flow offshore of the northern measurement sites. The slope of the topography steepened too abruptly to allow the poleward flow to follow isobaths when currents were strong. When current velocities lessened, a more coherent flow pattern was seen across both lines in the array. In general, the poleward flow patterns in the undercurrent were not affected by local winds or by the local alongshore pressure gradient. Nor was a strong seasonal pattern evident. Rather unexpectedly, a small but statistically significant fraction of the current variance over the mid- and outer slope was driven by the surface wind stress. An alongshelf wind stress caused currents to flow along the slope, parallel to the wind field, down to depths of 400 m below the surface and out to distances of 2 Rossby radii past the shelf break. The transfer functions were weak, 3-4 cm/s per dyn cm-2, but comparable to wind-driven current amplitudes of 4-6 cm/s per unit wind stress over the middle shelf. Equatorward, alongshelf winds also caused water from 200-300 m over the slope to upwell onto the shelf as the surface water moved offshore.

  9. Connecting meteorology to surface transport in aeolian landscapes: Peering into the boundary layer with Doppler lidar

    NASA Astrophysics Data System (ADS)

    Gunn, A.; Jerolmack, D. J.; Edmonds, D. A.; Ewing, R. C.; Wanker, M.; David, S. R.

    2017-12-01

    Aolian sand dunes grow to 100s or 1000s of meters in wavelength by sand saltation, which also produces dust plumes that feed cloud formation and may spread around the world. The relations among sediment transport, landscape dynamics and wind are typically observed at the limiting ends of the relevant range: highly resolved and localized ground observations of turbulence and relevant fluxes; or regional and synoptic-scale meteorology and satellite imagery. Between the geostrophic winds aloft and shearing stress on the Earth's surface is the boundary layer, whose stability and structure determines how momentum is transferred and ultimately entrains sediment. Although the literature on atmospheric boundary layer flows is mature, this understanding is rarely applied to aeolian landscape dynamics. Moreover, there are few vertically and time-resolved datasets of atmospheric boundary layer flows in desert sand seas, where buoyancy effects are most pronounced. Here we employ a ground-based upward-looking doppler lidar to examine atmospheric boundary layer flow at the upwind margin of the White Sands (New Mexico) dune field, providing continuous 3D wind velocity data from the surface to 300-m aloft over 70 days of the characteristically windy spring season. Data show highly resolved daily cyles of convective instabilty due to daytime heating and stable stratification due to nightime cooling which act to enhance or depress, respectively, the surface wind stresses for a given free-stream velocity. Our data implicate convective instability in driving strong saltation and dust emission, because enhanced mixing flattens the vertical velocity profile (raising surface wind speed) while upward advection helps to deliver dust to the high atmosphere. We also find evidence for Ekman spiralling, with a magnitude that depends on atmospheric stability. This spiralling gives rise to a deflection in the direction between geostrophic and surface winds, that is significant for the orientation of dunes.

  10. The CMEMS L3 scatterometer wind product

    NASA Astrophysics Data System (ADS)

    de Kloe, Jos; Stoffelen, Ad; Verhoef, Anton

    2017-04-01

    Within the Copernicus Marine Environment Monitoring Service KNMI produces several ocean surface Level 3 wind products. These are daily updated global maps on a regular grid of the available scatterometer wind observations and derived properties, and produced from our EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) operational near-real time (NRT) Level 2 swath-based wind products by linear interpolation. Currently available products are the ASCAT on Metop A/B stress equivalent wind vectors, accompanied by ECMWF NWP reference stress equivalent winds from the operational ECMWF NWP model. For each ASCAT scatterometer we provide products on 2 different resolutions, 0.25 and 0.125 degrees. In addition we provide wind stress vectors, and derivative fields (curl and divergence) for stress equivalent wind and wind stress, both for the observations and for the NWP reference winds. New NRT scatterometer products will be made available when additional scatterometer instruments become available, and NRT access to the data can be arranged. We hope OSCAT on the Indian ScatSat-1 satellite will be the the next NRT product to be added. In addition multi-year reprocessing datasets have been made available for ASCAT on Metop-A (1-Jan-2007 up to 31-Mar-2014) and Seawinds on QuikScat (19-Jul-1999 up to 21-Nov-2009). For ASCAT 0.25 and 0.125 degree resolution products are provided, and for QuikScat 0.50 and 0.25 degree resolution products are provided, These products are based on reprocessing the L2 scatterometer products with the latest processing software version, and include reference winds from the ECMWF ERA-Interim model. Additional reprocessing datasets will be added when reprocessed L2 datasets become available. This will hopefully include the ERS-1 and ERS-2 scatterometer datasets (1992-2001), which will extend the available date range back to 1992. These products are available for download through the CMEMS portal website: http://marine.copernicus.eu/

  11. Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer

    NASA Astrophysics Data System (ADS)

    Schnieders, Jana; Garbe, Christoph

    2014-05-01

    The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale processes on interfacial transport and relate it to gas transfer. References [1] T. G. Bell, W. De Bruyn, S. D. Miller, B. Ward, K. Christensen, and E. S. Saltzman. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed. Atmos. Chem. Phys. , 13:11073-11087, 2013. [2] J Schnieders, C. S. Garbe, W.L. Peirson, and C. J. Zappa. Analyzing the footprints of near surface aqueous turbulence - an image processing based approach. Journal of Geophysical Research-Oceans, 2013.

  12. Needle traits of an evergreen, coniferous shrub growing at wind-exposed and protected sites in a mountain region: does Pinus pumila produce needles with greater mass per area under wind-stress conditions?

    PubMed

    Nagano, S; Nakano, T; Hikosaka, K; Maruta, E

    2009-11-01

    Snow depth is one of the most important determinants of vegetation, especially in mountainous regions. In such regions, snow depth tends to be low at wind-exposed sites such as ridges, where stand height and productivity are limited by stressful environmental conditions during winter. Siberian dwarf pine (Pinus pumila Regel) is a dominant species in mountainous regions of Japan. We hypothesized that P. pumila produces needles with greater mass per area at wind-exposed sites than at wind-protected sites because it invests more nitrogen (N) in cell walls at the expense of N investment in the photosynthetic apparatus, resulting in increased photosynthetic N use efficiency (PNUE). Contrary to our hypothesis, plants at wind-exposed site invested less resources in needles, as exhibited by lower biomass, N, Rubisco and cell wall mass per unit area, and had higher photosynthetic capacity, higher PNUE and shorter needle life-span than plants at a wind-protected site. N partitioning was not significantly different between sites. These results suggest that P. pumila at wind-exposed sites produces needles at low cost with high productivity to compensate for a short leaf life-span, which may be imposed by wind stress when needles appear above the snow surface in winter.

  13. Impact of surface coupling grids on tropical cyclone extremes in high-resolution atmospheric simulations

    DOE PAGES

    Zarzycki, Colin M.; Reed, Kevin A.; Bacmeister, Julio T.; ...

    2016-02-25

    This article discusses the sensitivity of tropical cyclone climatology to surface coupling strategy in high-resolution configurations of the Community Earth System Model. Using two supported model setups, we demonstrate that the choice of grid on which the lowest model level wind stress and surface fluxes are computed may lead to differences in cyclone strength in multi-decadal climate simulations, particularly for the most intense cyclones. Using a deterministic framework, we show that when these surface quantities are calculated on an ocean grid that is coarser than the atmosphere, the computed frictional stress is misaligned with wind vectors in individual atmospheric gridmore » cells. This reduces the effective surface drag, and results in more intense cyclones when compared to a model configuration where the ocean and atmosphere are of equivalent resolution. Our results demonstrate that the choice of computation grid for atmosphere–ocean interactions is non-negligible when considering climate extremes at high horizontal resolution, especially when model components are on highly disparate grids.« less

  14. A field study of flow turbulence and sediment transport dynamics on a beach surface in the lee of a coastal foredune under offshore winds

    NASA Astrophysics Data System (ADS)

    Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.; Lee, Z. S.

    2010-12-01

    The past decade has seen a growing body of research on the relation between turbulence in the wind and the resultant transport of sediment over active sand surfaces. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated recent field studies over dunes and beach surfaces, to move beyond monitoring of mean wind speed and bulk transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a field study conducted in the recirculation flow and re-attachment zone on a beach behind a foredune at Magilligan Strand, Northern Ireland. The offshore winds over the foredune at this site are associated with flow separation and reversal located over the beach surface in the lee of the dune row, often strong enough to induce sand transport toward the toe of the foredune (‘against’ the overall offshore flow). The re-attachment and recirculation zone are associated with strongly turbulent fluid flow and complex streamlines that do not follow the underlying topography. High frequency (25 Hz) wind and sand transport data were collected at a grid of point locations distributed over the beach surface between 35 m to 55 m distance from the 10 m high dune crest, using ultrasonic anemometers at 0.5 m height and co-located load cell traps and Safires at the bed surface. The wind data are used to investigate the role of Reynolds shear stresses and quadrant analysis techniques for identifying burst-sweep events in relation to sand transport events. This includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to complex flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results illustrate how transport may exist under threshold mean velocities because of the role played by coherent flow structures, and the findings corroborate previous findings that shear velocity obtained using traditional wind profile approaches does not correlate with transport as additional stresses are generated due to turbulent structures.

  15. Assessing the Importance of the Evaporation-Wind Feedback Mechanism in the Modulation of Simulated Madden-Julian Oscillations

    NASA Technical Reports Server (NTRS)

    Colon, Edward; Lindesay, James; Suarez, Max J.

    1998-01-01

    An examination of simulated Madden-Julian Oscillation (MJO) response to active and suppressed air-sea interactions is made using an aquaplanet model employing a realistic representation of the hydrologic cyle. In general, the evaporation-wind feedback (EWF) results from a coupling between tropical zonal surface wind stresses and evaporation anomalies. Recent observational and theoretical studies have questioned the significance of EWF in sustaining the predominantly wavenumber 1 eastward propagating mode commonly attributed to the interaction between large scale convergence and cumulus-scale convection (conditional instability of the second kind, CISK). To ascertain the nature of the EWF dependence on lower boundary conditions and thus quantify its effect on MJO development, a series of numerical experiments were conducted employing various zonally symmetric sea surface temperature (SST) distributions with active and suppressed EWF mechanisms. Results suggest that a correlation exists between tropical SSTs and the efficacy of the EWF in vertically redistributing heat acquired through surface wind stresses. It has been determined that the removal of the EWF is not a crucial factor in the dampening of the simulated MJO at high equatorial SSTs. The additional energy fed into the developing convective mode by the EWF selectively amplifies higher order wave modes in all numerical experiments thus boosting overall variances in oscillatory responses.

  16. Relationship between wind, waves and radar backscatter

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Ataktuerk, Serhad S.

    1991-01-01

    The aim of the research was to investigate the relationship between wind, waves, and radar backscatter from water surface. To this end, three field experiments with periods of 2 to 4 weeks were carried out during summer months in 1988, 1989 and 1990. For these periods, the University of Washington group provided (1) environmental parameters such as wind speed, wind stress, and atmospheric stratification through measurements of surface fluxes (of momentum, sensible heat and latent heat) and of air and water temperatures; and (2) wave height spectra including both the dominant waves and the short gravity-capillary waves. Surface flux measurements were performed by using our well tested instruments: a K-Gill twin propeller-vane anemometer and a fast response thermocouple psychrometer. Wave heights were measured by a resistance wire wave gauge. The University of Kansas group was responsible for the operation of the microwave radars.

  17. Synoptic-to-planetary scale wind variability enhances phytoplankton biomass at ocean fronts

    NASA Astrophysics Data System (ADS)

    Whitt, D. B.; Taylor, J. R.; Lévy, M.

    2017-06-01

    In nutrient-limited conditions, phytoplankton growth at fronts is enhanced by winds, which drive upward nutrient fluxes via enhanced turbulent mixing and upwelling. Hence, depth-integrated phytoplankton biomass can be 10 times greater at isolated fronts. Using theory and two-dimensional simulations with a coupled physical-biogeochemical ocean model, this paper builds conceptual understanding of the physical processes driving upward nutrient fluxes at fronts forced by unsteady winds with timescales of 4-16 days. The largest vertical nutrient fluxes occur when the surface mixing layer penetrates the nutricline, which fuels phytoplankton in the mixed layer. At a front, mixed layer deepening depends on the magnitude and direction of the wind stress, cross-front variations in buoyancy and velocity at the surface, and potential vorticity at the base of the mixed layer, which itself depends on past wind events. Consequently, mixing layers are deeper and more intermittent in time at fronts than outside fronts. Moreover, mixing can decouple in time from the wind stress, even without other sources of physical variability. Wind-driven upwelling also enhances depth-integrated phytoplankton biomass at fronts; when the mixed layer remains shallower than the nutricline, this results in enhanced subsurface phytoplankton. Oscillatory along-front winds induce both oscillatory and mean upwelling. The mean effect of oscillatory vertical motion is to transiently increase subsurface phytoplankton over days to weeks, whereas slower mean upwelling sustains this increase over weeks to months. Taken together, these results emphasize that wind-driven phytoplankton growth is both spatially and temporally intermittent and depends on a diverse combination of physical processes.

  18. Surface shear stress dependence of gas transfer velocity parameterizations using DNS

    NASA Astrophysics Data System (ADS)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-10-01

    Air-water gas-exchange is studied in direct numerical simulations (DNS) of free-surface flows driven by natural convection and weak winds. The wind is modeled as a constant surface-shear-stress and the gas-transfer is modeled via a passive scalar. The simulations are characterized via a Richardson number Ri=Bν/u*4 where B, ν, and u* are the buoyancy flux, kinematic viscosity, and friction velocity respectively. The simulations comprise 0Ric or kg=AShearu*Sc-n, Ri

  19. Dynamics of skimming flow in the wake of a vegetation patch

    NASA Astrophysics Data System (ADS)

    Mayaud, Jerome R.; Wiggs, Giles F. S.; Bailey, Richard M.

    2016-09-01

    Dryland vegetation is often spatially patchy, and so affects wind flow in complex ways. Theoretical models and wind tunnel testing have shown that skimming flow develops above vegetation patches at high plant densities, resulting in little or no wind erosion in these zones. Understanding the dynamics of skimming flow is therefore important for predicting sediment transport and bedform development in dryland areas. However, no field-based data are available describing turbulent airflow dynamics in the wake of vegetation patches. In this study, turbulent wind flow was examined using high-frequency (10 Hz) sonic anemometry at four measurement heights (0.30 m, 0.55 m, 1.10 m and 1.65 m) along a transect in the lee of an extensive patch of shrubs (z = 1.10 m height) in Namibia. Spatial variations in mean wind velocity, horizontal Reynolds stresses and coherent turbulent structures were analysed. We found that wind velocity in the wake of the patch effectively recovered over ∼12 patch heights (h) downwind, which is 2-5 h longer than previously reported recovery lengths for individual vegetation elements and two-dimensional wind fences. This longer recovery can be attributed to a lack of flow moving around the obstacle in the patch case. The step-change in roughness between the patch canopy and the bare surface in its wake resulted in an initial peak in resultant horizontal shear stress (τr) followed by significant decrease downwind. In contrast to τr , horizontal normal Reynolds stress (u‧2 ‾) progressively increased along the patch wake. A separation of the upper shear layer at the leeside edge of the patch was observed, and a convergence of τr curves implies the formation of a constant stress layer by ∼20 h downwind. The use of τr at multiple heights is found to be a useful tool for identifying flow equilibration in complex aerodynamic regimes. Quadrant analysis revealed elevated frequencies of Q2 (ejection) and Q4 (sweep) events in the immediate lee of the patch, which contributed to the observed high levels of shear stress. The increasing downwind contribution of Q1 (outward interaction) events, which coincides with greater u‧2 ‾ and wind velocity, suggests that sediment transport potential increases with greater distance from the patch edge. Determining realistic, field-derived constraints on turbulent airflow dynamics in the wakes of vegetation patches is crucial for accurately parameterising sediment transport potential in larger-scale dryland landscape models. This will help to improve our understanding of how semi-vegetated desert surfaces might react to future environmental and anthropogenic stresses.

  20. Biological response to coastal upwelling and dust deposition in the area off Northwest Africa

    NASA Astrophysics Data System (ADS)

    Ohde, T.; Siegel, H.

    2010-05-01

    Nutrient supply in the area off Northwest Africa is mainly regulated by two processes, coastal upwelling and deposition of Saharan dust. In the present study, both processes were analyzed and evaluated by different methods, including cross-correlation, multiple correlation, and event statistics, using remotely sensed proxies of the period from 2000 to 2008 to investigate their influence on the marine environment. The remotely sensed chlorophyll- a concentration was used as a proxy for the phytoplankton biomass stimulated by nutrient supply into the euphotic zone from deeper water layers and from the atmosphere. Satellite-derived alongshore wind stress and sea-surface temperature were applied as proxies for the strength and reflection of coastal upwelling processes. The westward wind and the dust component of the aerosol optical depth describe the transport direction of atmospheric dust and the atmospheric dust column load. Alongshore wind stress and induced upwelling processes were most significantly responsible for the surface chlorophyll- a variability, accounting for about 24% of the total variance, mainly in the winter and spring due to the strong north-easterly trade winds. The remotely sensed proxies allowed determination of time lags between biological response and its forcing processes. A delay of up to 16 days in the surface chlorophyll- a concentration due to the alongshore wind stress was determined in the northern winter and spring. Although input of atmospheric iron by dust storms can stimulate new phytoplankton production in the study area, only 5% of the surface chlorophyll- a variability could be ascribed to the dust component in the aerosol optical depth. All strong desert storms were identified by an event statistics in the time period from 2000 to 2008. The 57 strong storms were studied in relation to their biological response. Six events were clearly detected in which an increase of chlorophyll- a was caused by Saharan dust input and not by coastal upwelling processes. Time lags of <8 days, 8 days, and 16 days were determined. An increase in surface chlorophyll- a concentration of up to 2.4 mg m -3 after dust storms in which the dust component of the aerosol optical depth was up to 0.9 was observed.

  1. Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing

    NASA Astrophysics Data System (ADS)

    Morrison, A.; Hogg, A.; Ward, M.

    2011-12-01

    The southern limb of the ocean's meridional overturning circulation plays a key role in the Earth's response to climate change. The rise in atmospheric CO2 during glacial-interglacial transitions has been attributed to outgassing of enhanced upwelling water masses in the Southern Ocean. However a dynamical understanding of the physical mechanisms driving the change in overturning is lacking. Previous modelling studies of the Southern Ocean have focused on the effect of wind stress forcing on the overturning, while largely neglecting the response of the upper overturning cell to changes in surface buoyancy forcing. Using a series of eddy-permitting, idealised simulations of the Southern Ocean, we show that surface buoyancy forcing in the mid-latitudes is likely to play a significant role in setting the strength of the overturning circulation. Air-sea fluxes of heat and precipitation over the Antarctic Circumpolar Current region act to convert dense upwelled water masses into lighter waters at the surface. Additional fluxes of heat or freshwater thereby facilitate the meridional overturning up to a theoretical limit derived from Ekman transport. The sensitivity of the overturning to surface buoyancy forcing is strongly dependent on the relative locations of the wind stress profile, buoyancy forcing and upwelling region. The idealised model results provide support for the hypothesis that changes in upwelling during deglaciations may have been driven by changes in heat and freshwater fluxes, instead of, or in addition to, changes in wind stress. Morrison, A. K., A. M. Hogg, and M. L. Ward (2011), Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing, Geophys. Res. Lett., 38, L14602, doi:10.1029/2011GL048031.

  2. Unsteady viscous effects in the flow over an oscillating surface. [mathematical model

    NASA Technical Reports Server (NTRS)

    Lerner, J. I.

    1972-01-01

    A theoretical model for the interaction of a turbulent boundary layer with an oscillating wavy surface over which a fluid is flowing is developed, with an application to wind-driven water waves and to panel flutter in low supersonic flow. A systematic methodology is developed to obtain the surface pressure distribution by considering separately the effects on the perturbed flow of a mean shear velocity profile, viscous stresses, the turbulent Reynolds stresses, compressibility, and three-dimensionality. The inviscid theory is applied to the wind-water wave problem by specializing to traveling-wave disturbances, and the pressure magnitude and phase shift as a function of the wave phase speed are computed for a logarithmic mean velocity profile and compared with inviscid theory and experiment. The results agree with experimental evidence for the stabilization of the panel motion due to the influence of the unsteady boundary layer.

  3. Dynamical Analysis of the Boundary Layer and Surface Wind Responses to Mesoscale SST Perturbations

    DTIC Science & Technology

    2010-02-01

    latitude (e.g., Gille and Romero 2003; Lumpkin and Pazos 2007). We thus expect that inclusion of ocean current effects in the surface stress computations...Niiler, 2007: Ocean–atmosphere interaction over Agulhas Extension meanders. J. Climate, 20, 5784–5797. Lumpkin, R., and M. Pazos , 2007: Measuring surface

  4. Water mass linkages between the Middle and South Atlantic bights

    NASA Astrophysics Data System (ADS)

    Pietrafesa, L. J.; Morrison, J. M.; McCann, M. P.; Churchill, J.; Böhm, E.; Houghton, R. W.

    Time and frequency domain analyses are used to relate coastal meteorological data with 7 years of daily surface temperature and salinity collected at three coastal light stations; offshore of the mouth of Chesapeake Bay, Virginia, on Diamond Shoals, at Cape Hatteras, North Carolina and on Frying Pan Shoals, off Cape Fear, North Carolina. Salinity fluctuations at Diamond Shoals are highly correlated with alongshore wind stress, implying wind driven advection of the front between Virginia Coastal Water (VCW) and Carolina Coastal Water (CCW) across Diamond Shoals. The data collected at Diamond Shoals indicate that more than half the time there is significant encroachment of Mid Atlantic Bight water into the South Atlantic Bight around Cape Hatteras, contrary to the notion that VCW is entirely entrained into the Gulf Stream. In fact, VCW can appear as far south as Frying Pan Shoals, thereby extending across the entire North Carolina Capes inner to mid shelf. Temperature and salinity time series also indicate that water masses overlying Diamond Shoals respond quickly to cross-shelf winds. Cross-shelf wind stress is significantly correlated with surface water temperature at Diamond Shoals, for periods between 2 and 12 days. Changes in temperature can be brought about by wind-driven cross-shelf circulation and by wind-induced upwelling. Seasurface temperature satellite (AVHRR) imagery taken during the SEEP II confirm these concepts.

  5. Spacebased Estimation of Moisture Transport in Marine Atmosphere Using Support Vector Regression

    NASA Technical Reports Server (NTRS)

    Xie, Xiaosu; Liu, W. Timothy; Tang, Benyang

    2007-01-01

    An improved algorithm is developed based on support vector regression (SVR) to estimate horizonal water vapor transport integrated through the depth of the atmosphere ((Theta)) over the global ocean from observations of surface wind-stress vector by QuikSCAT, cloud drift wind vector derived from the Multi-angle Imaging SpectroRadiometer (MISR) and geostationary satellites, and precipitable water from the Special Sensor Microwave/Imager (SSM/I). The statistical relation is established between the input parameters (the surface wind stress, the 850 mb wind, the precipitable water, time and location) and the target data ((Theta) calculated from rawinsondes and reanalysis of numerical weather prediction model). The results are validated with independent daily rawinsonde observations, monthly mean reanalysis data, and through regional water balance. This study clearly demonstrates the improvement of (Theta) derived from satellite data using SVR over previous data sets based on linear regression and neural network. The SVR methodology reduces both mean bias and standard deviation comparedwith rawinsonde observations. It agrees better with observations from synoptic to seasonal time scales, and compare more favorably with the reanalysis data on seasonal variations. Only the SVR result can achieve the water balance over South America. The rationale of the advantage by SVR method and the impact of adding the upper level wind will also be discussed.

  6. Direct measurements of wind-water momentum coupling in a marsh with emergent vegetation and implications for gas transfer estimates

    NASA Astrophysics Data System (ADS)

    Tse, I.; Poindexter, C.; Variano, E. A.

    2013-12-01

    Among the numerous ecological benefits of restoring wetlands is carbon sequestration. As emergent vegetation thrive, atmospheric CO2 is removed and converted into biomass that gradually become additional soil. Forecasts and management for these systems rely on accurate knowledge of gas exchange between the atmosphere and the wetland surface waters. Our previous work showed that the rate of gas transfer across the air-water interface is affected by the amount of water column mixing caused by winds penetrating through the plant canopy. Here, we present the first direct measurements of wind-water momentum coupling made within a tule marsh. This work in Twitchell Island in the California Delta shows how momentum is imparted into the water from wind stress and that this wind stress interacts with the surface waters in an interesting way. By correlating three-component velocity signals from a sonic anemometer placed within the plant canopy with data from a novel Volumetric Particle Imager (VoPI) placed in the water, we measure the flux of kinetic energy through the plant canopy and the time-scale of the response. We also use this unique dataset to estimate the air-water drag coefficient using an adjoint method.

  7. In-Roll Stress Analysis Considering Air-Entrainment at the Roll-Inlet with the Effect of Grooves on Nip Roll Surface

    NASA Astrophysics Data System (ADS)

    Sasaki, Masashi; Tanimoto, Koshi; Kohno, Kazukiyo; Takahashi, Sadamu; Kometani, Hideo; Hashimoto, Hiromu

    High-speed winding of paper web sometimes leads the winding system into unstable states, interlayer slippage of wound roll, paper breakage and so on, due to the excessive air-entrainment at the roll-inlet of nip contact region. These phenomena are more frequently observed on coated paper or plastic film comparing with newspaper, because the former allows little permeation of air and their surface roughness is small. Therefore, it is of vital importance to clarify the in-roll stress of wound roll considering the effect of air-entrainment. Generally, it is known that the amount of air-entrainment is affected by grooving shape of nip roll surface. In this paper, we focused on the grooving shape and investigated the relationship with the air-entrainment into two rolls being pressed each other and the grooving shape in order to achieve stable winding at high speed. We conducted experiments using small sized test machine. Entrained air-film thickness was evaluated applying the solution of the elasto-hydrodynamic lubrication for foil bearing with the consideration of nip profile at the grooved area. Air film thickness was measured to ensure the applicability of the above theory. Consequently, we found that the air film thickness can be estimated considering the effect of grooves on the nip roll surface, and that the validity of the above estimations was ensured from experimental investigations. Furthermore, it became to be able to propose the optimal shape of grooves on nip roll surface to maintain the stable winding at high speed and at large-diameter in reel.

  8. Scientific opportunities using satellite surface wind stress measurements over the ocean

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Scientific opportunities that would be possible with the ability to collect wind data from space are highlighted. Minimum requirements for the space platform and ground data reduction system are assessed. The operational uses that may develop in government and commercial applications of these data are reviewed. The opportunity to predict the large-scale ocean anomaly called El Nino is highlighted.

  9. Ross Ice Shelf, Antarctic Ice and Clouds

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  10. Ocean Surface Vector Wind: Research Challenges and Operational Opportunities

    NASA Technical Reports Server (NTRS)

    Halpern, David

    2012-01-01

    The atmosphere and ocean are joined together over seventy percent of Earth, with ocean surface vector wind (OSVW) stress one of the linkages. Satellite OSVW measurements provide estimates of wind divergence at the bottom of the atmosphere and wind stress curl at the top of the ocean; both variables are critical for weather and climate applications. As is common with satellite measurements, a multitude of OSVW data products exist for each currently operating satellite instrument. In 2012 the Joint Technical Commission on Oceanography and Marine Meteorology (JCOMM) launched an initiative to coordinate production of OSVW data products to maximize the impact and benefit of existing and future OSVW measurements in atmospheric and oceanic applications. This paper describes meteorological and oceanographic requirements for OSVW data products; provides an inventory of unique data products to illustrate that the challenge is not the production of individual data products, but the generation of harmonized datasets for analysis and synthesis of the ensemble of data products; and outlines a vision for JCOMM, in partnership with other international groups, to assemble an international network to share ideas, data, tools, strategies, and deliverables to improve utilization of satellite OSVW data products for research and operational applications.

  11. Dust lifting in GEM-Mars using a roughness length map

    NASA Astrophysics Data System (ADS)

    Daerden, F.; Neary, L.; Whiteway, J. A.; Hébrard, E.

    2013-09-01

    Lifting of size distributed dust due to surface wind stress and dust devils has been implemented in the GEM-Mars 3D-GCM. It turned out that a detailed surface roughness length map was necessary to bring the simulated dust opacities in accordance with observations.

  12. Sand Transport under Highly Turbulent Airflow on a Beach Surface

    NASA Astrophysics Data System (ADS)

    Baas, A. C. W.; Jackson, D. W. T.; Cooper, J. A. G.; Lynch, K.; Delgado-Fernandez, I.; Beyers, J. H. M.

    2012-04-01

    The past decade has seen a growing body of research on the relation between turbulence in the wind and the resultant transport of sediment over active sand surfaces. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated recent field studies over dunes and beach surfaces, to move beyond monitoring of mean wind speed and bulk transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a field study conducted in the recirculation flow and re-attachment zone on a beach behind a foredune at Magilligan Strand, Northern Ireland. The offshore winds over the foredune at this site are associated with flow separation and reversal located over the beach surface in the lee of the dune row, often strong enough to induce sand transport toward the toe of the foredune ('against' the overall offshore flow). The re-attachment and recirculation zone are associated with strongly turbulent fluid flow and complex streamlines that do not follow the underlying topography. High frequency (25 Hz) wind and sand transport data were collected at a grid of point locations distributed over the beach surface between 35 m to 55 m distance from the 10 m high dune crest, using ultrasonic anemometers at 0.5 m height and co-located load cell traps and Safires at the bed surface. The wind data are used to investigate the role of Reynolds shear stresses and quadrant analysis techniques for identifying burst-sweep events in relation to sand transport events. This includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to complex flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u', v', w'). Results illustrate how transport may exist under threshold mean velocities because of the role played by coherent flow structures, and the findings corroborate previous findings that shear velocity obtained using traditional wind profile approaches does not correlate with transport as additional stresses are generated due to turbulent structures.

  13. The observation of ocean surface phenomena using imagery from the SEASAT synthetic aperture radar: An assessment

    NASA Astrophysics Data System (ADS)

    Vesecky, John F.; Stewart, Robert H.

    1982-04-01

    Over the period July 4 to October 10, 1978, the SEASAT synthetic aperture radar (SAR) gathered 23 cm wavelength radar images of some 108 km2 of the earth's surface, mainly of ocean areas, at 25-40 m resolution. Our assessment is in terms of oceanographic and ocean monitoring objectives and is directed toward discovering the proper role of SAR imagery in these areas of interest. In general, SAR appears to have two major and somewhat overlapping roles: first, quantitative measurement of ocean phenomena, like long gravity waves and wind fields, as well as measurement of ships; second, exploratory observations of large-scale ocean phenomena, such as the Gulf Stream and its eddies, internal waves, and ocean fronts. These roles are greatly enhanced by the ability of 23 cm SAR to operate day or night and through clouds. To begin we review some basics of synthetic aperture radar and its implementation on the SEASAT spacecraft. SEASAT SAR imagery of the ocean is fundamentally a map of the radar scattering characteristics of ˜30 cm wavelength ocean waves, distorted in some cases by ocean surface motion. We discuss how wind stress, surface currents, long gravity waves, and surface films modulate the scattering properties of these resonant waves with particular emphasis on the mechanisms that could produce images of long gravity waves. Doppler effects by ocean motion are also briefly described. Measurements of long (wavelength ≳100 m) gravity waves, using SEASAT SAR imagery, are compared with surface measurements during several experiments. Combining these results we find that dominant wavelength and direction are measured by SEASAT SAR within ±12% and ±15°, respectively. However, we note that ocean waves are not always visible in SAR images and discuss detection criteria in terms of wave height, length, and direction. SAR estimates of omnidirectional wave height spectra made by assuming that SAR image intensity is proportional to surface height fluctuations are more similar to corresponding surface measurements of wave height spectra than to wave slope spectra. Because SEASAT SAR images show the radar cross section σ° of ˜30 cm waves (neglecting doppler effects), and because these waves are raised by wind stress on the ocean surface, wind measurements are possible. Comparison between wind speeds estimated from SEASAT SAR imagery and from the SEASAT satellite scatterometer (SASS) agreed to within ±0.7 m s- over a 350-km comparison track and for wind speeds from 2 to 15 m s-. The great potential of SAR wind measurements lies in studying the spatial structure of the wind field over a range of spatial scales of from ≲1 km to ≳100 km. At present, the spatial and temporal structure of ocean wind fields is largely unknown. Because SAR responds to short waves whose energy density is a function of wind stress at the surface rather than wind speed at some distance above the surface, variations in image intensity may also reflect changes in air-sea temperature difference (thus complicating wind measurements by SAR). Because SAR images show the effects of surface current shear, air-sea temperature difference, and surface films through their modulation of the ˜30 cm waves, SEASAT images can be used to locate and study the Gulf Stream and related warm water rings, tidal flows at inlets, internal waves, and slicks resulting from surface films. In many of these applications, SAR provides a remote sensing capability that is complementary to infrared imagery because the two techniques sense largely different properties, namely, surface roughness and temperature. Both stationary ships and moving ships with their attendant wakes are often seen in SAR images. Ship images can be used to estimate ship size, heading, and speed. However, ships known to be in areas imaged by SAR are not always detectable. Clearly, a variety of factors, such as image resolution, ship size, sea state, and winds could affect ship detection. Overall, the role of SAR imagery in oceanography is definitely evolving at this time, but its ultimate role is unclear. We have assessed the ability of SEASAT SAR to measure a variety of ocean phenomena and have commented briefly on applications. In the end, oceanographers and others will have to judge from these capabilities the proper place for SAR in oceanography and remote sensing of the ocean.

  14. Relating the microwave radar cross section to the sea surface stress - Physics and algorithms

    NASA Technical Reports Server (NTRS)

    Weissman, David E.; Plant, William J.; Brown, Robert A.; Davidson, Kenneth L.; Shaw, William J.

    1991-01-01

    The FASINEX (Frontal Air-Sea Interaction Experiment) provided a unique data set with coincident airborne measurements of the ocean surface radar cross section (at Ku-band) and surface windstress. It is being analyzed to create new algorithms and to better understand the air-sea variables that can have a strong influence on the RCS (radar cross section). Several studies of portions of data from the FASINEX indicate that the RCS is more dependent on the surface stress than on the wind speed. Radar data have been acquired by the JPL and NRL groups. The data span 12 different flight days. Stress measurements can be inferred from ship-board instruments and from aircraft closely following the scatterometers.

  15. High-frequency and meso-scale winter sea-ice variability in the Southern Ocean in a high-resolution global ocean model

    NASA Astrophysics Data System (ADS)

    Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger

    2018-03-01

    This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.

  16. Oceanographic and atmospheric conditions on the continental shelf north of the Monterey Bay during August 2006

    NASA Astrophysics Data System (ADS)

    Ramp, Steven R.; Lermusiaux, Pierre F. J.; Shulman, Igor; Chao, Yi; Wolf, Rebecca E.; Bahr, Frederick L.

    2011-09-01

    A comprehensive data set from the ocean and atmosphere was obtained just north of the Monterey Bay as part of the Monterey Bay 2006 (MB06) field experiment. The wind stress, heat fluxes, and sea surface temperature were sampled by the Naval Postgraduate School's TWIN OTTER research aircraft. In situ data were collected using ships, moorings, gliders and AUVs. Four data-assimilating numerical models were additionally run, including the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS ®) model for the atmosphere and the Harvard Ocean Prediction System (HOPS), the Regional Ocean Modeling System (ROMS), and the Navy Coastal Ocean Model (NCOM) for the ocean. The scientific focus of the Adaptive Sampling and Prediction Experiment (ASAP) was on the upwelling/relaxation cycle and the resulting three-dimensional coastal circulation near a coastal promontory, in this case Point Año Nuevo, CA. The emphasis of this study is on the circulation over the continental shelf as estimated from the wind forcing, two ADCP moorings, and model outputs. The wind stress during August 2006 consisted of 3-10 day upwelling favorable events separated by brief 1-3 day relaxations. During the first two weeks there was some correlation between local winds and currents and the three models' capability to reproduce the events. During the last two weeks, largely equatorward surface wind stress forced the sea surface and barotropic poleward flow occurred over the shelf, reducing model skill at predicting the circulation. The poleward flow was apparently remotely forced by mesoscale eddies and alongshore pressure gradients, which were not well simulated by the models. The small, high-resolution model domains were highly reliant on correct open boundary conditions to drive these larger-scale poleward flows. Multiply-nested models were no more effective than well-initialized local models in this respect.

  17. A large-eddy simulation based power estimation capability for wind farms over complex terrain

    NASA Astrophysics Data System (ADS)

    Senocak, I.; Sandusky, M.; Deleon, R.

    2017-12-01

    There has been an increasing interest in predicting wind fields over complex terrain at the micro-scale for resource assessment, turbine siting, and power forecasting. These capabilities are made possible by advancements in computational speed from a new generation of computing hardware, numerical methods and physics modelling. The micro-scale wind prediction model presented in this work is based on the large-eddy simulation paradigm with surface-stress parameterization. The complex terrain is represented using an immersed-boundary method that takes into account the parameterization of the surface stresses. Governing equations of incompressible fluid flow are solved using a projection method with second-order accurate schemes in space and time. We use actuator disk models with rotation to simulate the influence of turbines on the wind field. Data regarding power production from individual turbines are mostly restricted because of proprietary nature of the wind energy business. Most studies report percentage drop of power relative to power from the first row. There have been different approaches to predict power production. Some studies simply report available wind power in the upstream, some studies estimate power production using power curves available from turbine manufacturers, and some studies estimate power as torque multiplied by rotational speed. In the present work, we propose a black-box approach that considers a control volume around a turbine and estimate the power extracted from the turbine based on the conservation of energy principle. We applied our wind power prediction capability to wind farms over flat terrain such as the wind farm over Mower County, Minnesota and the Horns Rev offshore wind farm in Denmark. The results from these simulations are in good agreement with published data. We also estimate power production from a hypothetical wind farm in complex terrain region and identify potential zones suitable for wind power production.

  18. Investigation of Wall Shear Stress Behavior for Rough Surfaces with Blowing

    NASA Astrophysics Data System (ADS)

    Helvey, Jacob; Borchetta, Colby; Miller, Mark; Martin, Alexandre; Bailey, Sean

    2014-11-01

    We present an experimental study conducted in a turbulent channel flow wind tunnel to determine the modifications made to the turbulent flow over rough surfaces with flow injection through the surfaces. Hot-wire profile results from a quasi-two-dimensional, sinusoidally-rough surface indicate that the effects of roughness are enhanced by momentum injection through the surface. In particular, the wall shear stress was found to show behavior consistent with increased roughness height when surface blowing was increased. This observed behavior contradicts previously reported results for regular three-dimensional roughness which show a decrease in wall shear stress with additional blowing. It is unclear whether this discrepancy is due to differences in the roughness geometry under consideration or the use of the Clauser fit to estimate wall shear stress. Additional PIV experiments are being conducted for a three-dimensional fibrous surface to obtain Reynolds shear stress profiles. These results provide an additional method for estimation of wall-shear stress and thus allow verification of the use of the Clauser chart approach for flows with momentum injection through the surface. This research is supported by NASA Kentucky EPSCoR Award NNX10AV39A, and NASA RA Award NNX13AN04A.

  19. a Numerical Study of Basic Coastal Upwelling Processes.

    NASA Astrophysics Data System (ADS)

    Li, Zhihong

    Available from UMI in association with The British Library. Two-dimensional (2-D) and three-dimensional (3 -D) numerical models with a second order turbulence closure are developed for the study of coastal upwelling processes. A logarithmic coordinate system is introduced to obtain increased resolution in the regions near the surface and bottom where high velocity shear occurs and in the upwelling zone where its width is confined to the coast. In the experiments performed in the 2-D model an ocean initially at rest is driven by a spatially uniform alongshore wind-stress. There is a development of an offshore flow in the surface layer and an onshore flow below the surface layer. In the wind-stress direction there is a development of a coastal surface jet. The neglect of the alongshore pressure gradient leads to the intensification of the jet, and the concentration of the onshore flow in an over-developed Ekman layer yielding an unrealistic deepening of a bottom mixed layer. When bathymetric variations are introduced, some modifications in the dynamics of upwelling are observed. On the shelf region there is another upwelling zone and isotherms are interested with the bottom topography. When an alongshore pressure gradient is added externally into the model, the strength of the coastal jet decreases and a coastal undercurrent exists at greater depth. In addition the return onshore flow is largely independent of depth and the deepening of the bottom mixed layer disappears. In the experiments performed in the 3-D model a wind-stress with limited domain is used. Coastally trapped waves are generated and propagate along the coastline leading to a development of an alongshore pressure gradient, which has a significant effect on upwelling. The evolution of the alongshore flow, vertical velocity and the temperature is determined by both remote and local wind due to the propagation of waves. As the integration proceeds, the flow pattern becomes remarkably 3-dimensional. Finally the influence of bathymetric variations on upwelling processes is examined.

  20. Rough-to-smooth transition of an equilibrium neutral constant stress layer. [atmospheric flow over rough terrain

    NASA Technical Reports Server (NTRS)

    Logan, E., Jr.; Fichtl, G. H.

    1975-01-01

    A model is proposed for low-level atmospheric flows over terrains of changing roughness length, such as those found at the windward end of landing strips adjoining rough terrain. The proposed model is used to develop a prediction technique for calculating transition wind and shear-stress profiles in the region following surface roughness discontinuity. The model for the transition region comprises two layers: a logarithmic layer and a buffer layer. The flow is assumed to be steady, two-dimensional, and incompressible, with neutral hydrostatic stability. A diagram is presented for a typical wind profile in the transition region, obtained from the logarithmic and velocity defect profiles using shear stress calculated by relevant equations.

  1. Validation Test Report for the Navy Coastal Ocean Model Four-Dimensional Variational Assimilation (NCOM 4DVAR) System Version 1.0

    DTIC Science & Technology

    2015-09-14

    three hours) and surface atmospheric forcing, such as wind  stress ,  atmospheric  pressure,  and  surface  heat   flux  is  provided  by  the  0.5⁰ NOGAPS...iTS A uthor/ COW S. Smti h ~~ R £ {;/-; ;;~-.::tt.-4’_ ~ Prevulusly <~flPl"<lH·d a’ 1 ~- 1::3 1 -0f,RI S..""C~O.l Head Dan c1n lr~~ ~v..:_~.t ~ )All...Global  Environmental  Model  (NAVGEM).  In most cases, atmospheric model wind  stresses ,  radiation  fluxes, and atmospheric pressure,  temperature

  2. The characteristics and dynamics of wave-driven flow across a platform coral reef in the Red Sea

    NASA Astrophysics Data System (ADS)

    Lentz, S. J.; Churchill, J. H.; Davis, K. A.; Farrar, J. T.; Pineda, J.; Starczak, V.

    2016-02-01

    Current dynamics across a platform reef in the Red Sea near Jeddah, Saudi Arabia, are examined using 18 months of current profile, pressure, surface wave, and wind observations. The platform reef is 700 m long, 200 m across with spatial and temporal variations in water depth over the reef ranging from 0.6 to 1.6 m. Surface waves breaking at the seaward edge of the reef cause a 2-10 cm setup of sea level that drives cross-reef currents of 5-20 cm s-1. Bottom stress is a significant component of the wave setup balance in the surf zone. Over the reef flat, where waves are not breaking, the cross-reef pressure gradient associated with wave setup is balanced by bottom stress. The quadratic drag coefficient for the depth-average flow decreases with increasing water depth from Cda = 0.17 in 0.4 m of water to Cda = 0.03 in 1.2 m of water. The observed dependence of the drag coefficient on water depth is consistent with open-channel flow theory and a hydrodynamic roughness of zo = 0.06 m. A simple one-dimensional model driven by incident surface waves and wind stress accurately reproduces the observed depth-averaged cross-reef currents and a portion of the weaker along-reef currents over the focus reef and two other Red Sea platform reefs. The model indicates the cross-reef current is wave forced and the along-reef current is partially wind forced.

  3. From monsoon to marine productivity in the Arabian Sea: insights from glacial and interglacial climates

    NASA Astrophysics Data System (ADS)

    Le Mézo, Priscilla; Beaufort, Luc; Bopp, Laurent; Braconnot, Pascale; Kageyama, Masa

    2017-07-01

    The current-climate Indian monsoon is known to boost biological productivity in the Arabian Sea. This paradigm has been extensively used to reconstruct past monsoon variability from palaeo-proxies indicative of changes in surface productivity. Here, we test this paradigm by simulating changes in marine primary productivity for eight contrasted climates from the last glacial-interglacial cycle. We show that there is no straightforward correlation between boreal summer productivity of the Arabian Sea and summer monsoon strength across the different simulated climates. Locally, productivity is fuelled by nutrient supply driven by Ekman dynamics. Upward transport of nutrients is modulated by a combination of alongshore wind stress intensity, which drives coastal upwelling, and by a positive wind stress curl to the west of the jet axis resulting in upward Ekman pumping. To the east of the jet axis there is however a strong downward Ekman pumping due to a negative wind stress curl. Consequently, changes in coastal alongshore stress and/or curl depend on both the jet intensity and position. The jet position is constrained by the Indian summer monsoon pattern, which in turn is influenced by the astronomical parameters and the ice sheet cover. The astronomical parameters are indeed shown to impact wind stress intensity in the Arabian Sea through large-scale changes in the meridional gradient of upper-tropospheric temperature. However, both the astronomical parameters and the ice sheets affect the pattern of wind stress curl through the position of the sea level depression barycentre over the monsoon region (20-150° W, 30° S-60° N). The combined changes in monsoon intensity and pattern lead to some higher glacial productivity during the summer season, in agreement with some palaeo-productivity reconstructions.

  4. Parameterized and resolved Southern Ocean eddy compensation

    NASA Astrophysics Data System (ADS)

    Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman

    2018-04-01

    The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.

  5. Validation of Atmospheric Forcing Data for PIPS 3

    DTIC Science & Technology

    2001-09-30

    members shortly. RESULTS Surface Temperature: Figure 1 shows a comparison of surface air temperatures from the NOGAPS model , the IABP and the NCEP...with some 8,000 daily velocity observations from the IABP buoys shows that the sea-ice model performs better when driven with NOGAPS surface stresses...forcing variables, surface radiative fluxes, surface winds, and precipitation estimates to be used in the development and operation of the PIPS 3.0 model

  6. Western boundary upwelling dynamics off Oman

    NASA Astrophysics Data System (ADS)

    Vic, Clément; Capet, Xavier; Roullet, Guillaume; Carton, Xavier

    2017-05-01

    Despite its climatic and ecosystemic significance, the coastal upwelling that takes place off Oman is not well understood. A primitive-equation, regional model forced by climatological wind stress is used to investigate its dynamics and to compare it with the better-known Eastern Boundary Upwellings (EBUs). The solution compares favorably with existing observations, simulating well the seasonal cycles of thermal structure, surface circulation (mean and turbulent), and sea-surface temperature (SST). There is a 1.5-month lag between the maximum of the upwelling-favorable wind-stress-curl forcing and the oceanic response (minima in sea-surface height and SST), which we attribute to onshore-propagating Rossby waves. A southwestward-flowing undercurrent (opposite to the direction of the near-surface flow) is also simulated with a core depth of 1000 m, much deeper than found in EBUs (150-200 m). An EKE budget reveals that, in contrast to EBUs, the upwelling jet is more prone to barotropic than baroclinic instability and the contribution of locally-generated instabilities to EKE is higher by an order of magnitude. Advection and redistribution of EKE by standing mesoscale features also play a significant role in EKE budget.

  7. The future of coastal upwelling in the Humboldt current from model projections

    NASA Astrophysics Data System (ADS)

    Oyarzún, Damián; Brierley, Chris M.

    2018-03-01

    The Humboldt coastal upwelling system in the eastern South Pacific ocean is one of the most productive marine ecosystems in the world. A weakening of the upwelling activity could lead to severe ecological impacts. As coastal upwelling in eastern boundary systems is mainly driven by wind stress, most studies so far have analysed wind patterns change through the 20th and 21st Centuries in order to understand and project the phenomenon under specific forcing scenarios. Mixed results have been reported, and analyses from General Circulation Models have suggested even contradictory trends of wind stress for the Humboldt system. In this study, we analyse the ocean upwelling directly in 13 models contributing to phase 5 of the Coupled Model Intercomparison Project (CMIP5) in both the historical simulations and an extreme climate change scenario (RCP8.5). The upwelling is represented by the upward ocean mass flux, a newly-included variable that represents the vertical water transport. Additionally, wind stress, ocean stratification, Ekman layer depth and thermocline depth were also analysed to explore their interactions with coastal upwelling throughout the period studied. The seasonal cycle of coastal upwelling differs between the Northern and Southern Humboldt areas. At lower latitudes, the upwelling season spans most of the autumn, winter and spring. However, in the Southern Humboldt area the upwelling season takes place in spring and the summertime with downwelling activity in winter. This persists throughout the Historical and RCP8.5 simulations. For both the Northern and Southern Humboldt areas an increasing wind stress is projected. However, different trends of upwelling intensity are observed away from the sea surface. Whereas wind stress will continue controlling the decadal variability of coastal upwelling on the whole ocean column analysed (surface to 300 m depth), an increasing disconnect with upwelling intensity is projected below 100 m depth throughout the 21st Century. This relates to an intensification of ocean stratification under global warming as shown by the sea water temperature profiles. Additionally, a divergence between the Ekman layer and thermocline depths is also evidenced. Given the interaction of upwelled nutrients and microscopic organisms essential for fish growth, a potential decline of coastal upwelling at depth could lead to unknown ecological and socio-economical effects.

  8. Wind Effects on Flow Patterns and Net Fluxes in Density-Driven High-Latitude Channel Flow

    NASA Astrophysics Data System (ADS)

    Huntley, Helga S.; Ryan, Patricia

    2018-01-01

    A semianalytic two-dimensional model is used to analyze the interplay between the different forces acting on density-driven flow in high-latitude channels. In particular, the balance between wind stress, viscous forces, baroclinicity, and sea surface slope adjustments under specified flux conditions is examined. Weak winds are found not to change flow patterns appreciably, with minimal (<7%) adjustments to horizontal velocity maxima. In low-viscosity regimes, strong winds change the flow significantly, especially at the surface, by either strengthening the dual-jet pattern, established without wind, by a factor of 2-3 or initiating return flow at the surface. A nonzero flux does not result in the addition of a uniform velocity throughout the channel cross section, but modifies both along-channel and cross-channel velocities to become more symmetric, dominated by a down-channel jet centered in the domain and counter-clockwise lateral flow. We also consider formulations of the model that allow adjustments of the net flux in response to the wind. Flow patterns change, beyond uniform intensification or weakening, only for strong winds and high Ekman number. Comparisons of the model results to observational data collected in Nares Strait in the Canadian Archipelago in the summer of 2007 show rough agreement, but the model misses the upstream surface jet on the east side of the strait and propagates bathymetric effects too strongly in the vertical for this moderately high eddy viscosity. Nonetheless, the broad strokes of the observed high-latitude flow are reproduced.

  9. Early Student Support for a Process Study of Oceanic Responses to Typhoons

    DTIC Science & Technology

    2015-06-21

    responses to tropical cyclone forcing are surface waves, wind-driven currents, shear and turbulence, and inertial currents. Quantifying the effect ...Cd is estimated assuming a balance between the time rate change of the depth-integrated horizontal momentum, Coriolis force, and the wind stress. This...negligible pressure gradient effect . Most of the observed horizontal kinetic energy is within the upper 100 m. The available potential energy and

  10. Optical skin friction measurement technique in hypersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Yao, Dapeng; Wen, Shuai; Pan, Junjie

    2016-10-01

    Shear-sensitive liquid-crystal coatings (SSLCCs) have an optical characteristic that they are sensitive to the applied shear stress. Based on this, a novel technique is developed to measure the applied shear stress of the model surface regarding both its magnitude and direction in hypersonic flow. The system of optical skin friction measurement are built in China Academy of Aerospace Aerodynamics (CAAA). A series of experiments of hypersonic vehicle is performed in wind tunnel of CAAA. Global skin friction distribution of the model which shows complicated flow structures is discussed, and a brief mechanism analysis and an evaluation on optical measurement technique have been made.

  11. A 7.5-Year Dataset of SSM/I-Derived Surface Turbulent Fluxes Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Wind stress is the major forcing for driving the oceanic circulation, while Evaporation is a key component of hydrological cycle and surface heat budget. We have produced a 7.5-year (July 1987-December 1994) dataset of daily, individual monthly-mean and climatological (1988-94) monthly-mean surface turbulent fluxes over the global oceans from measurements of the Special Sensor Microwave/Imager (SSM/I) on board the US Defense Meteorological Satellite Program F8, F10, and F11 satellites. It has a spatial resolution of 2.0x2.5 latitude-longitude. Daily turbulent fluxes are derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) IS found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The surface wind speed and specific humidity (latent heat flux) derived from the F10 SSM/I are found to be -encrally smaller (larger) than those retrieved from the F11 SSM/I. The F11 SSM/I appears to have slightly better retrieval accuracy for surface wind speed and humidity as compared to the F10 SSM/I. This difference may be due to the orbital drift of the F10 satellite. The daily wind stresses and latent heat fluxes retrieved from F10 and F11 SSM/Is show useful accuracy as verified against the research quality in si -neasurerrients (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE Intensive observing period (November 1992-February 1993). The 1988-94 seasonal-mean turbulent fluxes and input variables derived from FS and F11 SSM/Is show reasonable patterns related to seasonal variations of atmospheric general circulation. This dataset of SSM/I-derived turbulent fluxes is useful for climate studies, forcing of ocean models, and validation of coupled ocean-atmosphere global models and can be accessed through the NASA/GSFC Distributed Active Archive Center.

  12. Development and application of gravity-capillary wave fourier analysis for the study of air-sea interaction physics

    NASA Astrophysics Data System (ADS)

    MacKenzie Laxague, Nathan Jean

    Short ocean waves play a crucial role in the physical coupling between the ocean and the atmosphere. This is particularly true for gravity-capillary waves, waves of a scale (O(0.01-0.1) m) such that they are similarly restored to equilibrium by gravitational and interfacial tension (capillary) effects. These waves are inextricably linked to the turbulent boundary layer processes which characterize near-interfacial flows, acting as mediators of the momentum, gas, and heat fluxes which bear greatly on surface material transport, tropical storms, and climatic processes. The observation of these waves and the fluid mechanical phenomena which govern their behavior has long posed challenges to the would-be observer. This is due in no small part to the delicacy of centimeter-scale waves and the sensitivity of their properties to disruption via tactile measurement. With the ever-growing interest in satellite remote sensing, direct observations of short wave characteristics are needed along coastal margins. These zones are characterized by a diversity of physical processes which can affect the short-scale sea surface topography that is directly sensed via radar backscatter. In a related vein, these observations are needed to more fully understand the specific hydrodynamic relationship between young, wind-generated gravity-capillary waves and longer gravity waves. Furthermore, understanding of the full oceanic current profile is hampered by a lack of observations in the near-surface domain (z = O(0.01-0.1) m), where flows can differ greatly from those at depth. Here I present the development of analytical techniques for describing gravity-capillary ocean surface waves in order to better understand their role in the mechanical coupling between the atmosphere and ocean. This is divided amongst a number of research topics, each connecting short ocean surface waves to a physical forcing process via the transfer of momentum. One involves the examination of the sensitivity of short ocean surface waves to atmospheric forcing. Another is the exploration of long wave-short wave interactions and their effects on air-sea interaction vis-a-vis hydrodynamic modulation. The third and final topic is the characterization of the gravity-capillary regime of the wavenumber-frequency spectrum for the purpose of retrieving near-surface, wind-driven current. All of these fit as part of the desire to more fully describe the mechanism by which momentum is transferred across the air-sea interface and to discuss the consequences of this flux in the very near-surface layer of the ocean. Gravity-capillary waves are found to have an outsize share of ocean surface roughness, with short wave spectral peaks showing a connection to turbulent atmospheric stress. Short wave modulation is found to occur strongest at high wavenumbers at the lowest wind speeds, with peak modulation occurring immediately downwind of the long wave crest. Furthermore, short scale roughness enhancement is found to occur upwind of the long wave crest for increasing wind forcing magnitude. Observations of the near-surface current profile show that flows retrieved via this method agree well with the results of camera-tracked dye. Application of this method to data collected in the mouth of the Columbia River (MCR) indicates the presence of a near-surface current component that departs considerably from the tidal flow and orients into the wind stress direction. These observations demonstrate that wind speed-based parameterizations may not be sufficient to estimate wind drift and hold implications for the way in which surface material (e.g., debris or spilled oil) transport is estimated when atmospheric stress is of relatively high magnitude or is steered off the mean wind direction.

  13. Wind Stress Forcing of the North Sea "Pole Tide"

    NASA Technical Reports Server (NTRS)

    OConnor, William P.; Chao, Benjamin Fong; Zheng, Dawei; Au, Andrew Y.

    1998-01-01

    We conducted numerical simulations of the wind-forcing of the sea level variations in the North Sea using a barotropic ocean model with realistic geography, bathymetry, and boundary conditions, to examine the forcing of the 14-month "pole tide" which is known to be strong along the Denmark- Netherlands coast. The simulation input is the monthly-mean surface wind stress field from the National Centers for Environmental Prediction (NCEP) reanalysis for the 40-year period 1958-1997. The output sea level response was then compared with 10 coastal tide gauge records from the Permanent Service for Mean Sea Level (PSMSL). Besides the strong seasonal variations, several prominent quasi-periodicities exist at around 7 years, 3 years, 14 months, 9 months, and 6.5 months. Correlation and spectral analyses show remarkable agreement between the model output and the observations, particularly in the 14-month, or Chandler period band. The latter indicates that the enhanced pole tide found in the North Sea along the Denmark-Netherlands coast is actually the coastal setup response to wind stress forcing with a periodicity of 14 months. We find no need to invoke a geophysical explanation involving resonance-enhancement of pole tide in the North Sea to explain the observations.

  14. Seasonal circulation over the Catalan inner-shelf (northwest Mediterranean Sea)

    USGS Publications Warehouse

    Grifoll, Manel; Aretxabaleta, Alfredo L.; Pelegrí, Josep L.; Espino, Manuel; Warner, John C.; Sánchez-Arcilla, Agustín

    2013-01-01

    This study characterizes the seasonal cycle of the Catalan inner-shelf circulation using observations and complementary numerical results. The relation between seasonal circulation and forcing mechanisms is explored through the depth-averaged momentum balance, for the period between May 2010 and April 2011, when velocity observations were partially available. The monthly-mean along-shelf flow is mainly controlled by the along-shelf pressure gradient and by surface and bottom stresses. During summer, fall, and winter, the along-shelf momentum balance is dominated by the barotropic pressure gradient and local winds. During spring, both wind stress and pressure gradient act in the same direction and are compensated by bottom stress. In the cross-shelf direction the dominant forces are in geostrophic balance, consistent with dynamic altimetry data.

  15. Seasonal circulation over the Catalan inner-shelf (northwest Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Grifoll, Manel; Aretxabaleta, Alfredo L.; Pelegrí, Josep L.; Espino, Manuel; Warner, John C.; Sánchez-Arcilla, Agustín.

    2013-10-01

    This study characterizes the seasonal cycle of the Catalan inner-shelf circulation using observations and complementary numerical results. The relation between seasonal circulation and forcing mechanisms is explored through the depth-averaged momentum balance, for the period between May 2010 and April 2011, when velocity observations were partially available. The monthly-mean along-shelf flow is mainly controlled by the along-shelf pressure gradient and by surface and bottom stresses. During summer, fall, and winter, the along-shelf momentum balance is dominated by the barotropic pressure gradient and local winds. During spring, both wind stress and pressure gradient act in the same direction and are compensated by bottom stress. In the cross-shelf direction the dominant forces are in geostrophic balance, consistent with dynamic altimetry data.

  16. Revisiting the Processes That Determine Wintertime Intraseasonal SST Variability in the Thermocline Ridge of the Tropical South Indian Ocean

    NASA Astrophysics Data System (ADS)

    Han, W.; Li, Y.; Shinoda, T.; Wang, C.; Ravichandran, M.; Wang, J. W.

    2014-12-01

    Intraseasonal sea surface temperature (SST) variability over the Seychelles-Chagos thermocline ridge (SCTR) induced by boreal wintertime Madden-Julian oscillations (MJOs) is investigated by performing a series of OGCM experiments with improved model configuration and the recently available high quality satellite forcing fields. The impact of the ocean interannual variation of the thermocline depth -represented by the depth of 20C isotherm (D20) - in the SCTR is also assessed. The OGCM main run solution agrees well with the observations. The results show that for the 2001-2011 period, surface shortwave radiation (SWR), turbulent heat fluxes associated with wind speed, and wind stress-driven ocean dynamical processes are all important in causing the MJO-related intraseasonal SST variability in the SCTR region. Overall, forcing by SWR contributes ~31%, and forcing by winds (via both surface turbulent heat flux and ocean dynamics) contributes ~62%. The contribution of turbulent heat flux associated with wind speed is ~39% and that of wind-stress driven ocean dynamics is ~23%. The contribution of ocean dynamics, however, is considerably larger during strong ("prime") MJO events under "strong" thermocline condition. The overall effect of interannual variability of D20 on intraseasonal SST during 2001-2011 is significant in the eastern part of the SCTR (70E-85E), where the intraseasonal SST amplitudes are strengthened by about 20%. In general, a shallower/deeper SCTR favors larger/smaller SST responses to the MJO forcing. In the eastern SCTR, both the heat flux forcing and entrainment are greatly amplified under the strong SCTR condition, but only slightly suppressed under the weak SCTR condition, leading to an overall strengthening effect on intraseasonal SST variability.

  17. Diagnostics of boundary layer transition by shear stress sensitive liquid crystals

    NASA Astrophysics Data System (ADS)

    Shapoval, E. S.

    2016-10-01

    Previous research indicates that the problem of boundary layer transition visualization on metal models in wind tunnels (WT) which is a fundamental question in experimental aerodynamics is not solved yet. In TsAGI together with Khristianovich Institute of Theoretical and Applied Mechanics (ITAM) a method of shear stress sensitive liquid crystals (LC) which allows flow visualization was proposed. This method allows testing several flow conditions in one wind tunnel run and does not need covering the investigated model with any special heat-insulating coating which spoils the model geometry. This coating is easily applied on the model surface by spray or even by brush. Its' thickness is about 40 micrometers and it does not spoil the surface quality. At first the coating obtains some definite color. Under shear stress the LC coating changes color and this change is proportional to shear stress. The whole process can be visually observed and during the tests it is recorded by camera. The findings of the research showed that it is possible to visualize boundary layer transition, flow separation, shock waves and the flow image on the whole. It is possible to predict that the proposed method of shear stress sensitive liquid crystals is a promise for future research.

  18. Wind driven saltation: a hitherto overlooked challenge for life on Mars

    NASA Astrophysics Data System (ADS)

    Bak, Ebbe; Goul, Michael; Rasmussen, Martin; Moeller, Ralf; Nørnberg, Per; Knak Jensen, Svend; Finster, Kai

    2017-04-01

    The Martian surface is a hostile environment characterized by low water availability, low atmospheric pressure and high UV and ionizing radiation. Furthermore, wind-driven saltation leads to abrasion of silicates with a production of reactive surface sites and, through triboelectric charging, a release of electrical discharges with a concomitant production of reactive oxygen species. While the effects of low water availability, low pressure and radiation have been extensively studied in relation to the habitability of the Martian surface and the preservation of organic biosignatures, the effects of wind-driven saltation have hitherto been ignored. In this study, we have investigated the effect of exposing bacteria to wind-abraded silicates and directly to wind-driven saltation on Mars in controlled laboratory simulation experiments. Wind-driven saltation was simulated by tumbling mineral samples in a Mars-like atmosphere in sealed quartz ampoules. The effects on bacterial survival and structure were evaluated by colony forming unit counts in combination with scanning electron microscopy, quantitative polymerase chain reaction and life/dead-staining with flow cytometry. The viability of vegetative cells of P. putida, B. subtilis and D. radiodurans in aqueous suspensions was reduced by more than 99% by exposure to abraded basalt, while the viability of B. subtilis endospores was unaffected. B. subtilis mutants lacking different spore components were likewise highly resistant to the exposure to abraded basalt, which indicates that the resistance of spores is not associated with any specific spore component. We found a significant but reduced effect of abraded quartz and we suggest that the stress effect of abraded silicates is induced by a production of reactive oxygen species and hydroxyl radicals produced by Fenton-like reactions in the presence of transition metals. Direct exposure to simulated saltation had a dramatic effect on both D. radiodurans cells and B. subtilis spore with a more than 99.9% decrease in survival after 17 days. The high susceptibility of the usually multi-resistant D. radiodurans cells and B. sublitis spores to the effects of wind-driven saltation indicates that wind abraded silicates as well as direct exposure to saltation represent a considerable stress for microorganisms at the Martian surface, which may have limited the chance of indigenous life, could limit the risk of forward contamination and may have degraded potential organic biosignatures.

  19. Current and turbulence measurements at the FINO1 offshore wind energy site: analysis using 5-beam ADCPs

    NASA Astrophysics Data System (ADS)

    Bakhoday-Paskyabi, Mostafa; Fer, Ilker; Reuder, Joachim

    2018-01-01

    We report concurrent measurements of ocean currents and turbulence at two sites in the North Sea, one site at upwind of the FINO1 platform and the other 200-m downwind of the Alpha Ventus wind farm. At each site, mean currents, Reynolds stresses, turbulence intensity and production of turbulent kinetic energy are obtained from two bottom-mounted 5-beam Nortek Signature1000s, high-frequency Doppler current profiler, at a water depth of approximately 30 m. Measurements from the two sites are compared to statistically identify the effects of wind farm and waves on ocean current variability and the turbulent structure in the water column. Profiles of Reynolds stresses are found to be sensible to both environmental forcing and the wind farm wake-induced distortions in both boundary layers near the surface and the seabed. Production of turbulent kinetic energy and turbulence intensity exhibit approximately similar, but less pronounced, patterns in the presence of farm wake effects.

  20. Modelling Wind Effects on Subtidal Salinity in Apalachicola Bay, Florida

    NASA Astrophysics Data System (ADS)

    Huang, W.; Jones, W. K.; Wu, T. S.

    2002-07-01

    Salinity is an important factor for oyster and estuarine productivity in Apalachicola Bay. Observations of salinity at oyster reefs have indicated a high correlation between subtidal salinity variations and the surface winds along the bay axis in an approximately east-west direction. In this paper, we applied a calibrated hydrodynamic model to examine the surface wind effects on the volume fluxes in the tidal inlets and the subtidal salinity variations in the bay. Model simulations show that, due to the large size of inlets located at the east and west ends of this long estuary, surface winds have significant effects on the volume fluxes in the estuary inlets for the water exchanges between the estuary and ocean. In general, eastward winds cause the inflow from the inlets at the western end and the outflow from inlets at the eastern end of the bay. Winds at 15 mph speed in the east-west direction can induce a 2000 m3 s-1 inflow of saline seawater into the bay from the inlets, a rate which is about 2·6 times that of the annual average freshwater inflow from the river. Due to the varied wind-induced volume fluxes in the inlets and the circulation in the bay, the time series of subtidal salinity at oyster reefs considerably increases during strong east-west wind conditions in comparison to salinity during windless conditions. In order to have a better understanding of the characteristics of the wind-induced subtidal circulation and salinity variations, the researchers also connected model simulations under constant east-west wind conditions. Results show that the volume fluxes are linearly proportional to the east-west wind stresses. Spatial distributions of daily average salinity and currents clearly show the significant effects of winds on the bay.

  1. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    NASA Technical Reports Server (NTRS)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat flux contributions.

  2. Numerical modeling of the autumnal thermal bar

    NASA Astrophysics Data System (ADS)

    Tsydenov, Bair O.

    2018-03-01

    The autumnal riverine thermal bar of Kamloops Lake has been simulated using atmospheric data from December 1, 2015, to January 4, 2016. The nonhydrostatic 2.5D mathematical model developed takes into account the diurnal variability of the heat fluxes and wind on the lake surface. The average values for shortwave and longwave radiation and latent and sensible heat fluxes were 19.7 W/m2, - 95.9 W/m2, - 11.8 W/m2, and - 32.0 W/m2 respectively. Analysis of the wind regime data showed prevailing easterly winds and maximum speed of 11 m/s on the 8th and 19th days. Numerical experiments with different boundary conditions at the lake surface were conducted to evaluate effects of variable heat flux and wind stress. The results of modeling demonstrated that the variable heat flux affects the process of thermal bar evolution, especially during the lengthy night cooling. However, the wind had the greatest impact on the behavior of the autumnal thermal bar: The easterly winds contributed to an earlier appearance of the thermal bar, but the strong winds generating the intensive circulations (the velocity of the upper lake flow increased to 6 cm/s) may destroy the thermal bar front.

  3. Seven-Year SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe

    2000-01-01

    A 7.5-year (July 1987-December 1994) dataset of daily surface specific humidity and turbulent fluxes (momentum, latent heat, and sensible heat) over global oceans has been retrieved from the Special Sensor Microwave/Imager (SSM/I) data and other data. It has a spatial resolution of 2.0 deg.x 2.5 deg. latitude-longitude. The retrieved surface specific humidity is generally accurate over global oceans as validated against the collocated radiosonde observations. The retrieved daily wind stresses and latent heat fluxes show useful accuracy as verified by those measured by the RV Moana Wave and IMET buoy in the western equatorial Pacific. The derived turbulent fluxes and input variables are also found to agree generally with the global distributions of annual-and seasonal-means of those based on 4-year (1990-93) comprehensive ocean-atmosphere data set (COADS) with adjustment in wind speeds and other climatological studies. The COADS has collected the most complete surface marine observations, mainly from merchant ships. However, ship measurements generally have poor accuracy, and variable spatial coverages. Significant differences between the retrieved and COADS-based are found in some areas of the tropical and southern extratropical oceans, reflecting the paucity of ship observations outside the northern extratropical oceans. Averaged over the global oceans, the retrieved wind stress is smaller but the latent heat flux is larger than those based on COADS. The former is suggested to be mainly due to overestimation of the adjusted ship-estimated wind speeds (depending on sea states), while the latter is suggested to be mainly due to overestimation of ship-measured dew point temperatures. The study suggests that the SSM/I-derived turbulent fluxes can be used for climate studies and coupled model validations.

  4. Nimbus 7 SMMR Derived Seasonal Variations in the Water Vapor, Liquid Water and Surface Winds over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Short, D. A.

    1984-01-01

    Monthly mean distributions of water vapor and liquid water contained in a vertical column of the atmosphere and the surface wind speed were derived from Nimbus Scanning Multichannel Microwave Radiometer (SMMR) observations over the global oceans for the period November 1978 to November 1979. The remote sensing techniques used to estimate these parameters from SMMR are presented to reveal the limitations, accuracies, and applicability of the satellite-derived information for climate studies. On a time scale of the order of a month, the distribution of atmospheric water vapor over the oceans is controlled by the sea surface temperature and the large scale atmospheric circulation. The monthly mean distribution of liquid water content in the atmosphere over the oceans closely reflects the precipitation patterns associated with the convectively and baroclinically active regions. Together with the remotely sensed surface wind speed that is causing the sea surface stress, the data collected reveal the manner in which the ocean-atmosphere system is operating. Prominent differences in the water vapor patterns from one year to the next, or from month to month, are associated with anomalies in the wind and geopotential height fields. In association with such circulation anomalies the precipitation patterns deduced from the meteorological network over adjacent continents also reveal anomalous distributions.

  5. Analysis of monthly variability of thermocline in the South China Sea

    NASA Astrophysics Data System (ADS)

    Peng, Hanbang; Pan, Aijun; Zheng, Quan'an; Hu, Jianyu

    2018-03-01

    This study analyzes monthly variability of thermocline and its mechanism in the South China Sea (SCS). The study is based on 51-year (1960-2010) monthly seawater temperature and surface wind stress data from Simple Ocean Data Assimilation (SODA), together with heat flux, precipitation and evaporation data from the National Centers for Environmental Prediction (NCEP), the National Oceanic and Atmospheric Administration (NOAA) and the Woods Hole Oceanographic Institution, respectively. The results reveal that the upper boundary depth ( Z up), lower boundary depth ( Z low), thickness (Δ Z) and intensity ( T z ) of thermocline in the SCS show remarkable monthly variability. Being averaged for the deep basin of SCS, Z up deepens gradually from May to the following January and then shoals from February to May, while Z low varies little throughout the whole year. Further diagnostics indicates that the monthly variability of Z up is mainly caused by the buoyancy flux and wind stress curl. Using a linear method, the impacts of the buoyancy flux and wind stress curl on Z up can be quantitatively distinguished. The results suggest that Z up tends to deepen about 4.6 m when the buoyancy flux increases by 1×10 -5 kg/(m•s 3), while it shoals about 2.5 m when the wind stress curl strengthens by 1×10 -7 N/m³.

  6. Dependence of the microwave radar cross section on ocean surface variables: Comparison of measurements and theory using data from the Frontal Air-Sea Interaction Experiment

    NASA Astrophysics Data System (ADS)

    Weissman, David E.

    1990-03-01

    The purpose of this investigation was to study the ability of theoretical radar cross section (RCS) models to predict the absolute magnitude of the ocean radar cross section under a wide variety of sea and atmospheric conditions. The dependence of the RCS on wind stress (as opposed to wind speed) was also studied. An extensive amount of experimental data was acquired during the Frontal Air-Sea Interaction Experiment (FASINEX). This consisted of RCS data from the NASA-Jet Propulsion Laboratory Ku band scatterometer mounted on a C130 aircraft (10 separate flights), as well as a wide variety of atmospheric measurements (including stress) and sea conditions. Measurements across an ocean front demonstrated that the vertical polarization (V-pol) and horizontal polarization (H-pol) radar cross section were more strongly dependent on wind stress than on wind magnitude. Current theoretical models for the RCS, based on stress, were tested with this data. In situations where the Bragg scattering theory does not agree with the measured radar cross section (magnitude and angle dependence), revisions are hypothesized and evaluated. For example, the V-pol theory worked well in most cases studied, while the H-pol theory was usually too low by about a factor of 2 at incidence angles of 50° and 60°.

  7. Effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Ozbay, Ahmet; Hu, Hui

    2014-12-01

    An experimental investigation was conducted to examine the effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model. The experimental study was performed in a large-scale wind tunnel with a scaled three-blade Horizontal Axial Wind Turbine model placed in two different types of Atmospheric Boundary Layer (ABL) winds with distinct mean and turbulence characteristics. In addition to measuring dynamic wind loads acting on the model turbine by using a force-moment sensor, a high-resolution Particle Image Velocimetry system was used to achieve detailed flow field measurements to characterize the turbulent wake flows behind the model turbine. The measurement results reveal clearly that the discrepancies in the incoming surface winds would affect the wake characteristics and dynamic wind loads acting on the model turbine dramatically. The dynamic wind loads acting on the model turbine were found to fluctuate much more significantly, thereby, much larger fatigue loads, for the case with the wind turbine model sited in the incoming ABL wind with higher turbulence intensity levels. The turbulent kinetic energy and Reynolds stress levels in the wake behind the model turbine were also found to be significantly higher for the high turbulence inflow case, in comparison to those of the low turbulence inflow case. The flow characteristics in the turbine wake were found to be dominated by the formation, shedding, and breakdown of various unsteady wake vortices. In comparison with the case with relatively low turbulence intensities in the incoming ABL wind, much more turbulent and randomly shedding, faster dissipation, and earlier breakdown of the wake vortices were observed for the high turbulence inflow case, which would promote the vertical transport of kinetic energy by entraining more high-speed airflow from above to re-charge the wake flow and result in a much faster recovery of the velocity deficits in the turbine wake.

  8. Final Report for Project: Impacts of stratification and non-equilibrium winds and waves on hub-height winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Edward G.

    This project used a combination of turbulence-resolving large-eddy simulations, single-column modeling (where turbulence is parameterized), and currently available observations to improve, assess, and develop a parameterization of the impact of non-equilibrium wave states and stratification on the buoy-observed winds to establish reliable wind data at the turbine hub-height level. Analysis of turbulence-resolving simulations and observations illuminates the non-linear coupling between the atmosphere and the undulating sea surface. This analysis guides modification of existing boundary layer parameterizations to include wave influences for upward extrapolation of surface-based observations through the turbine layer. Our surface roughness modifications account for the interaction between stratificationmore » and the effects of swell’s amplitude and wavelength as well as swell’s relative motion with respect to the mean wind direction. The single-column version of the open source Weather and Research Forecasting (WRF) model (Skamarock et al., 2008) serves as our platform to test our proposed planetary boundary layer parameterization modifications that account for wave effects on marine atmospheric boundary layer flows. WRF has been widely adopted for wind resource analysis and forecasting. The single column version is particularly suitable to development, analysis, and testing of new boundary layer parameterizations. We utilize WRF’s single-column version to verify and validate our proposed modifications to the Mellor-Yamada-Nakanishi-Niino (MYNN) boundary layer parameterization (Nakanishi and Niino, 2004). We explore the implications of our modifications for two-way coupling between WRF and wave models (e.g.,Wavewatch III). The newly implemented parameterization accounting for marine atmospheric boundary layer-wave coupling is then tested in three-dimensional WRF simulations at grid sizes near 1 km. These simulations identify the behavior of simulated winds at the wind plant scale. Overall project conclusions include; In the presence of fast-moving swell (significant wave height Hs = 6.4 m, and phase speed cp = 18 ms -1), the atmospheric boundary layer grows more rapidly when waves propagate opposite to the winds compared to when winds and waves are aligned. Pressure drag increases by nearly a factor of 2 relative to the turbulent stress for the extreme case where waves propagate at 180° compared to the pressure gradient forcing. Net wind speed reduces by nearly 15% at hub-height for the 180°-case compared to the 0°-case, and turbulence intensities increase by nearly a factor of 2. These impacts diminish with decreasing wave age; Stratification increases hub height wind speeds and increases the vertical shear of the mean wind across the rotor plane. Fortuitously, this stability-induced enhanced shear does not influence turbulence intensity at hub height, but does increase (decrease) turbulence intensity below (above) hub height. Increased stability also increases the wave-induced pressure stress by ~ 10%; Off the East Coast of the United States during Coupled Boundary Layers Air-Sea Transfer - Low Wind (CBLAST-Low), cases with short fetch include thin stable boundary layers with depths of only a few tens of meters. In the coastal zone, the relationship between the mean wind and the surface fiction velocity (u*(V )) is significantly related to wind direction for weak winds but is not systematically related to the air sea difference of virtual potential temperature, δθv; since waves generally propagate from the south at the Air-Sea Interaction Tower (ASIT) tower, these results suggest that under weak wind conditions waves likely influence surface stress more than stratification does; and Winds and waves are frequently misaligned in the coastal zone. Stability conditions persist for long duration. Over a four year period, the Forschungsplattformen in Nord- und Ostsee Nr. 1 (FINO1) tower (a site with long fetch) primarily experienced weakly-unstable conditions, while stability at the ASIT tower (with a larger influence of offshore winds) experiences a mix of both unstable and stable conditions, where the summer months are predominantly stable. Wind-wave misalignment likely explains the large scatter in observed non-dimensional surface roughness under swell-dominated conditions. Andreas et al.’s (2012) relationship between u* and the 10-m wind speed under predicts the increased u* produced by wave-induced pressure drag produced by misaligned winds and waves. Incorporating wave-state (speed and direction) influences in parameterizations improves predictive skill. In a broad sense, these results suggest that one needs information on winds, temperature, and wave state to upscale buoy measurements to hub-height and across the rotor plane. Our parameterization of wave-state influences on surface drag has been submitted for inclusion in the next publicly available release. In combination, our project elucidates the impacts of two important physical processes (non-equilibrium wind/waves and stratification) on the atmosphere within which offshore turbines operate. This knowledge should help guide and inform manufacturers making critical decisions surrounding design criteria of future turbines to be deployed in the coastal zone. Reductions in annually averaged hub height wind speed error using our new wave-state-aware surface layer parameterization are relatively modest. However since wind turbine power production depends on the wind speed cubed, the error in estimated power production is close to 5%; which is significant and can substantially impact wind resource assessment and decision making with regards to the viability of particular location for a wind plant location. For a single 30-hour forecast, significant reductions in wind speed prediction errors can yield substantially improved wind power forecast skill, thereby mitigating costs and/or increasing revenue through improved; forecasting for maintenance operations and planning; day-ahead forecasting for power trading and resource allocation; and short-term forecasting for dispatch and grid balancing.« less

  9. Upwelling Response to Hurricane Isaac in Geostrophic Oceanic Vortices

    NASA Astrophysics Data System (ADS)

    Jaimes, B.; Shay, L. K.; Brewster, J. K.; Schuster, R.

    2013-05-01

    As a tropical cyclone (TC) moves over the ocean, the cyclonic curl of the wind stress produces a region of upwelling waters under the TC center that is compensated by downwelling waters at regions outside the center. Direct measurements conducted during hurricane Rita and recent numerical studies indicate that this is not necessarily the case when TCs move over geostrophic oceanic features, where its background relative vorticity impacts wind-driven horizontal current divergence and the upwelling velocity. Modulation of the upwelling response in these energetic oceanic regimes impacts vertical mixing across the oceanic mixed layer base, air-sea fluxes into the atmosphere, and ultimately storm intensity. As part of NOAA Intensity Forecasting Experiment, an experiment was conducted during the passage of TC Isaac over the energetic geostrophic eddy field in the Gulf of Mexico in August 2012. Expendable bathythermographs, current profilers, and conductivity-temperature-depth probes were deployed in Isaac from NOAA WP-3D aircraft during four in-storm flights to measure oceanic variability and its impact on TC-driven upwelling and surface fluxes of heat and momentum. During intensification to hurricane, the cyclonic curl of the wind stress of Isaac extended over a region of more than 300 km in diameter (4 to 5 times the radius of maximum winds). Isaac's center moved over a cold cyclonic feature, while its right and left sides moved over warm anticyclones. Contrasting upwelling and downwelling regimes developed inside the region of cyclonic curl of the wind stress. Both positive (upwelling) and negative (downwelling) vertical displacements of 40 and 60 m, respectively, were measured inside the region of cyclonic curl of the wind stress, which are between 3 to 4 times larger than predicted vertical displacements for a quiescent ocean based on scaling arguments. Oceanic mixed layer (OML) currents of 0.2 to 0.7 m s-1 were measured, which are about 50% smaller than the expected velocity response under quiescent oceanic conditions. Although OML currents were measured inside the core of cyclonic curl of the wind stress, their orientation is not consistent with horizontally divergent flows typically found in upwelling regimes under TC centers. Theoretical predictions that consider background relative vorticity effects on the upwelling response mimic the contrasting upwelling/downwelling regimes inside the region of cyclonic curl of the wind stress. These results point to an important modulation of the OML current and upwelling response by background oceanic flows, where the upwelling velocity is a function of the curl of wind-intensified pre-storm geostrophic currents, rather than just a function of the curl of the wind stress. Thus, properly initializing temperature and salinity fields in numerical models is needed to accurately represent these oceanic processes in coupled forecast models.

  10. Coastal upwelling by wind-driven forcing in Jervis Bay, New South Wales: A numerical study for 2011

    NASA Astrophysics Data System (ADS)

    Sun, Youn-Jong; Jalón-Rojas, Isabel; Wang, Xiao Hua; Jiang, Donghui

    2018-06-01

    The Princeton Ocean Model (POM) was used to investigate an upwelling event in Jervis Bay, New South Wales (SE Australia), with varying wind directions and strengths. The POM was adopted with a downscaling approach for the regional ocean model one-way nested to a global ocean model. The upwelling event was detected from the observed wind data and satellite sea surface temperature images. The validated model reproduced the upwelling event showing the input of bottom cold water driven by wind to the bay, its subsequent deflection to the south, and its outcropping to the surface along the west and south coasts. Nevertheless, the behavior of the bottom water that intruded into the bay varied with different wind directions and strengths. Upwelling-favorable wind directions for flushing efficiency within the bay were ranked in the following order: N (0°; northerly) > NNE (30°; northeasterly) > NW (315°; northwesterly) > NE (45°; northeasterly) > ENE (60°; northeasterly). Increasing wind strengths also enhance cold water penetration and water exchange. It was determined that wind-driven downwelling within the bay, which occurred with NNE, NE and ENE winds, played a key role in blocking the intrusion of the cold water upwelled through the bay entrance. A northerly wind stress higher than 0.3 N m-2 was required for the cold water to reach the northern innermost bay.

  11. Further influence of the eastern boundary on the seasonal variability of the Atlantic Meridional Overturning Circulation at 26N

    NASA Astrophysics Data System (ADS)

    Baehr, Johanna; Schmidt, Christian

    2016-04-01

    The seasonal cycle of the Atlantic Meridional Overturning Circulation (AMOC) at 26.5 N has been shown to arise predominantly from sub-surface density variations at the Eastern boundary. Here, we suggest that these sub-surface density variations have their origin in the seasonal variability of the Canary Current system, in particular the Poleward Undercurrent (PUC). We use a high-resolution ocean model (STORM) for which we show that the seasonal variability resembles observations for both sub-surface density variability and meridional transports. In particular, the STORM model simulation density variations at the eastern boundary show seasonal variations reaching down to well over 1000m, a pattern that most model simulations systematically underestimate. We find that positive wind stress curl anomalies in late summer and already within one degree off the eastern boundary result -through water column stretching- in strong transport anomlies in PUC in fall, coherent down to 1000m depth. Simultaneously with a westward propagation of these transport anomalies, we find in winter a weak PUC between 200 m and 500m, and southward transports between 600m and 1300m. This variability is in agreement with the observationally-based suggestion of a seasonal reversal of the meridional transports at intermediate depths. Our findings extend earlier studies which suggested that the seasonal variability at of the meridional transports across 26N is created by changes in the basin-wide thermocline through wind-driven upwelling at the eastern boundary analyzing wind stress curl anomalies 2 degrees off the eastern boundary. Our results suggest that the investigation of AMOC variability and particular its seasonal cycle modulations require the analysis of boundary wind stress curl and the upper ocean transports within 1 degree off the eastern boundary. These findings also implicate that without high-resolution coverage of the eastern boundary, coarser model simulation might not fully represent the AMOC's seasonal variability.

  12. A wind comparison study using an ocean general circulation model for the 1997-1998 El Niño

    NASA Astrophysics Data System (ADS)

    Hackert, Eric C.; Busalacchi, Antonio J.; Murtugudde, Ragu

    2001-02-01

    Predictions of the 1997-1998 El Niño exhibited a wide range of forecast skill that were dependent, in part, on the wind-driven initial conditions for the ocean. In this study the results of a reduced gravity, primitive equation, sigma coordinate ocean general circulation model are compared and contrasted when forced by several different wind products for the 1997-1998 El Niño/La Niña. The different wind products include atmospheric model winds, satellite wind products, and a subjective analysis of ship and in situ winds. The model results are verified against fields of observed sea level anomalies from TOPEX/Poseidon data, sea surface temperature analyses, and subsurface temperature from the Tropical Atmosphere-Ocean buoy array. Depending on which validation data type one chooses, different wind products provide the best forcing fields for simulating the observed signal. In general, the model results forced by satellite winds provide the best simulations of the spatial and temporal signal of the observed sea level. This is due to the accuracy of the meridional gradient of the zonal wind stress component that these products provide. Differences in wind forcing also affect subsurface dynamics and thermodynamics. For example, the wind products with the weakest magnitude best reproduce the sea surface temperature (SST) signal in the eastern Pacific. For these products the mixed layer is shallower, and the thermocline is closer to the surface. For such simulations the subsurface thermocline variability influences the variation in SST more than in reality. The products with the greatest wind magnitude have a strong cold bias of >1.5°C in the eastern Pacific because of increased mixing. The satellite winds along with the analysis winds correctly reproduce the depth of the thermocline and the general subsurface temperature structure.

  13. A volcanic wind-stress origin of the Atlantic Multidecadal Oscillation

    NASA Astrophysics Data System (ADS)

    Birkel, S. D.; Mayewski, P. A.; Maasch, K. A.; Auger, J.; Lyon, B.

    2016-12-01

    The Atlantic Multidecadal Oscillation (AMO) is a mode of sea-surface temperature (SST) variability in the North Atlantic that has significant impact on global climate. Most previous studies ascribe the origin of the AMO to oceanic mechanisms, and suggest only a limited role for the atmosphere. Here, we suggest that the AMO is manifested from basin-wide changes in surface wind stress that arise in response to episodic volcanic activity. Our interpretation is based on historical SST, reanalysis, and stratospheric aerosol optical thickness data, wherein it is evident that cool (warm) intervals of the AMO coincide with emergence of strong (weak) winds and high (low) volcanic activity. We find that SST excursions ultimately develop from atmospheric forcing as volcanic events project onto the North Atlantic Oscillation (NAO). A volcanic signature is particularly evident beneath the westerlies in the subpolar region south of Greenland, where several large SST excursions occur coincident with identifiable major eruptions. High latitude surface waters cool when NAO+ circulation, which includes a deepened Icelandic Low, draws cold flow out of the Labrador Sea and into the subpolar region. Important feedbacks that cause SST anomalies to spread across the basin include cloud cover, wind-driven upwelling, and entrainment of Saharan dust into the tropical easterlies. Finally, we speculate that cooling in the North Atlantic observed since 2011 could be linked to renewed volcanic activity over Iceland, namely from the eruptions of Grímsvötn (2011) and Bárðarbunga (2014). An important question remains how North Atlantic SST variability will evolve as atmospheric circulation becomes increasingly modified by human activity.

  14. Temporal and spatial patterns in wind stress and wind stress curl over the central Southern California Bight

    USGS Publications Warehouse

    Noble, Marlene A.; Rosenberger, Kurt J.; Rosenfeld, Leslie K.; Robertson, George L.

    2012-01-01

    In 2001, the U.S. Geological Survey, together with several other federal and municipal agencies, began a series of field programs to determine along and cross-shelf transport patterns over the continental shelves in the central Southern California Bight. As a part of these programs, moorings that monitor winds were deployed off the Palos Verdes peninsula and within San Pedro Bay for six 3–4 month summer and winter periods between 2001 and 2008. In addition, nearly continuous records of winds for this 7-year period were obtained from a terrestrial site at the coast and from a basin site offshore of the long-term coastal site. The mean annual winds are downcoast at all sites. The alongshelf components of wind stress, which are the largest part of the low-frequency wind stress fields, are well correlated between basin, shelf and coastal sites. On average, the amplitude of alongshelf fluctuations in wind stress are 3–4 times larger over the offshore basin, compared to the coastal site, irrespective of whether the fluctuations represent the total, or just the correlated portion of the wind stress field. The curl in the large-scale wind stress tends to be positive, especially in the winter season when the mean wind stress is downcoast and larger at the offshore basin site than at the beach. However, since the fluctuation in wind stress amplitudes are usually larger than the mean, periods of weak negative curl do occur, especially in the summer season when the largest normalized differences in the amplitude of wind stress fluctuations are found in the nearshore region of the coastal ocean. Even though the low-frequency wind stress field is well-correlated over the continental shelf and offshore basins, out to distances of 35 km or more from the coast, winds even 10 km inshore of the beach do not represent the coastal wind field, at least in the summer months. The seasonal changes in the spatial structures in wind stress amplitudes suggest that an assessment of the amplitude of the responses of coastal ocean processes to wind forcing is complex and that the responses may have significant seasonal structures.

  15. Variations of Sea Surface Temperature, Wind Stress, and Rainfall over the Tropical Atlantic and South America.

    NASA Astrophysics Data System (ADS)

    Nobre, Paulo; Srukla, J.

    1996-10-01

    Empirical orthogonal functions (E0Fs) and composite analyses are used to investigate the development of sea surface temperature (SST) anomaly patterns over the tropical Atlantic. The evolution of large-scale rainfall anomaly patterns over the equatorial Atlantic and South America are also investigated. 71e EOF analyses revealed that a pattern of anomalous SST and wind stress asymmetric relative to the equator is the dominant mode of interannual and longer variability over the tropical Atlantic. The most important findings of this study are as follows.Atmospheric circulation anomalies precede the development of basinwide anomalous SST patterns over the tropical Atlantic. Anomalous SST originate off the African coast simultaneously with atmospheric circulation anomalies and expand westward afterward. The time lag between wind stress relaxation (strengthening) and maximum SST warming (cooling) is about two months.Anomalous atmospheric circulation patterns over northern tropical Atlantic are phase locked to the seasonal cycle. Composite fields of SLP and wind stress over northern tropical Atlantic can be distinguished from random only within a few months preceding the March-May (MAM) season. Observational evidence is presented to show that the El Niño-Southern Oscillation phenomenon in the Pacific influences atmospheric circulation and SST anomalies over northern tropical Atlantic through atmospheric teleconnection patterns into higher latitudes of the Northern Hemisphere.The well-known droughts over northeastern Brazil (Nordeste) are a local manifestation of a much larger-scale rainfall anomaly pattern encompassing the whole equatorial Atlantic and Amazon region. Negative rainfall anomalies to the south of the equator during MAM, which is the rainy season for the Nordeste region, are related to an early withdrawal of the intertropical convergence zone toward the warm SST anomalies over the northern tropical Atlantic. Also, it is shown that precipitation anomalies over southern and northern parts of the Nordeste are out of phase: drought years over the northern Nordeste are commonly preceded by wetter years over the southern Nordeste, and vice versa.

  16. Analysis of the long-term surface wind variability over complex terrain using a high spatial resolution WRF simulation

    NASA Astrophysics Data System (ADS)

    Jiménez, Pedro A.; González-Rouco, J. Fidel; Montávez, Juan P.; García-Bustamante, E.; Navarro, J.; Dudhia, J.

    2013-04-01

    This work uses a WRF numerical simulation from 1960 to 2005 performed at a high horizontal resolution (2 km) to analyze the surface wind variability over a complex terrain region located in northern Iberia. A shorter slice of this simulation has been used in a previous study to demonstrate the ability of the WRF model in reproducing the observed wind variability during the period 1992-2005. Learning from that validation exercise, the extended simulation is herein used to inspect the wind behavior where and when observations are not available and to determine the main synoptic mechanisms responsible for the surface wind variability. A principal component analysis was applied to the daily mean wind. Two principal modes of variation accumulate a large percentage of the wind variability (83.7%). The first mode reflects the channeling of the flow between the large mountain systems in northern Iberia modulated by the smaller topographic features of the region. The second mode further contributes to stress the differentiated wind behavior over the mountains and valleys. Both modes show significant contributions at the higher frequencies during the whole analyzed period, with different contributions at lower frequencies during the different decades. A strong relationship was found between these two modes and the zonal and meridional large scale pressure gradients over the area. This relationship is described in the context of the influence of standard circulation modes relevant in the European region like the North Atlantic Oscillation, the East Atlantic pattern, East Atlantic/Western Russia pattern, and the Scandinavian pattern.

  17. An Isogeometric Design-through-analysis Methodology based on Adaptive Hierarchical Refinement of NURBS, Immersed Boundary Methods, and T-spline CAD Surfaces

    DTIC Science & Technology

    2012-01-22

    Computational Mechanics, 2008; 43:3–37. [15] Bazilevs Y, Hsu MC, Kiendl J, Wuechner R, Bletzinger KU. 3D Simulation of Wind Turbine Rotors at Full Scale. Part II...0 and Ψy = 0 on the left, right and bottom boundaries (“no slip ” requirement), Ψx = 0 and Ψx = 1 on the top boundary (the driven surface). At all...superposition of tensile membrane and bending stress, the maximum von Mises stress occurs at the sharp reentrant bend, where the loaded boundary ring bends

  18. Dynamics of wind setdown at Suez and the Eastern Nile Delta.

    PubMed

    Drews, Carl; Han, Weiqing

    2010-08-30

    Wind setdown is the drop in water level caused by wind stress acting on the surface of a body of water for an extended period of time. As the wind blows, water recedes from the upwind shore and exposes terrain that was formerly underwater. Previous researchers have suggested wind setdown as a possible hydrodynamic explanation for Moses crossing the Red Sea, as described in Exodus 14. This study analyzes the hydrodynamic mechanism proposed by earlier studies, focusing on the time needed to reach a steady-state solution. In addition, the authors investigate a site in the eastern Nile delta, where the ancient Pelusiac branch of the Nile once flowed into a coastal lagoon then known as the Lake of Tanis. We conduct a satellite and modeling survey to analyze this location, using geological evidence of the ancient bathymetry and a historical description of a strong wind event in 1882. A suite of model experiments are performed to demonstrate a new hydrodynamic mechanism that can cause an angular body of water to divide under wind stress, and to test the behavior of our study location and reconstructed topography. Under a uniform 28 m/s easterly wind forcing in the reconstructed model basin, the ocean model produces an area of exposed mud flats where the river mouth opens into the lake. This land bridge is 3-4 km long and 5 km wide, and it remains open for 4 hours. Model results indicate that navigation in shallow-water harbors can be significantly curtailed by wind setdown when strong winds blow offshore.

  19. Dynamics of Wind Setdown at Suez and the Eastern Nile Delta

    PubMed Central

    Drews, Carl; Han, Weiqing

    2010-01-01

    Background Wind setdown is the drop in water level caused by wind stress acting on the surface of a body of water for an extended period of time. As the wind blows, water recedes from the upwind shore and exposes terrain that was formerly underwater. Previous researchers have suggested wind setdown as a possible hydrodynamic explanation for Moses crossing the Red Sea, as described in Exodus 14. Methodology/Principal Findings This study analyzes the hydrodynamic mechanism proposed by earlier studies, focusing on the time needed to reach a steady-state solution. In addition, the authors investigate a site in the eastern Nile delta, where the ancient Pelusiac branch of the Nile once flowed into a coastal lagoon then known as the Lake of Tanis. We conduct a satellite and modeling survey to analyze this location, using geological evidence of the ancient bathymetry and a historical description of a strong wind event in 1882. A suite of model experiments are performed to demonstrate a new hydrodynamic mechanism that can cause an angular body of water to divide under wind stress, and to test the behavior of our study location and reconstructed topography. Conclusions/Significance Under a uniform 28 m/s easterly wind forcing in the reconstructed model basin, the ocean model produces an area of exposed mud flats where the river mouth opens into the lake. This land bridge is 3–4 km long and 5 km wide, and it remains open for 4 hours. Model results indicate that navigation in shallow-water harbors can be significantly curtailed by wind setdown when strong winds blow offshore. PMID:20827299

  20. Dynamic ocean topography from CryoSat-2: examining recent changes in ice-ocean stress and advancing a theory for Beaufort Gyre stabilization

    NASA Astrophysics Data System (ADS)

    Dewey, S.; Morison, J.; Kwok, R.; Dickinson, S.; Morison, D.; Andersen, R.

    2017-12-01

    Model and sparse observational evidence has shown the ocean current speed in the Beaufort Gyre to have increased and recently stabilized. However, full-basin altimetric observations of dynamic ocean topography (DOT) and ocean surface currents have yet to be applied to the dynamics of gyre stabilization. DOT fields from retracked CryoSat-2 retrievals in Arctic Ocean leads have enabled us to calculate 2-month average ocean geostrophic currents. These currents are crucial to accurately computing ice-ocean stress, especially because they have accelerated so that their speed rivals that of the overlying sea ice. Given these observations, we can shift our view of the Beaufort Gyre as a system in which the wind drives the ice and the ice drives a passive ocean to a system with the following feedback: After initial input of energy by wind, ice velocity decreases due to water drag and internal ice stress and the ocean drives the ice, reversing Ekman pumping and decelerating the gyre. This reversal changes the system from a persistently convergent regime to one in which freshwater is released from the gyre and doming of the gyre decreases, without any change in long-term average wind stress curl. Through these processes, the ice-ocean stress provides a key feedback in Beaufort Gyre stabilization.

  1. Flow prediction over a transport multi-element high-lift system and comparison with flight measurements

    NASA Technical Reports Server (NTRS)

    Vijgen, P. M. H. W.; Hardin, J. D.; Yip, L. P.

    1992-01-01

    Accurate prediction of surface-pressure distributions, merging boundary-layers, and separated-flow regions over multi-element high-lift airfoils is required to design advanced high-lift systems for efficient subsonic transport aircraft. The availability of detailed measurements of pressure distributions and both averaged and time-dependent boundary-layer flow parameters at flight Reynolds numbers is critical to evaluate computational methods and to model the turbulence structure for closure of the flow equations. Several detailed wind-tunnel measurements at subscale Reynolds numbers were conducted to obtain detailed flow information including the Reynolds-stress component. As part of a subsonic-transport high-lift research program, flight experiments are conducted using the NASA-Langley B737-100 research aircraft to obtain detailed flow characteristics for support of computational and wind-tunnel efforts. Planned flight measurements include pressure distributions at several spanwise locations, boundary-layer transition and separation locations, surface skin friction, as well as boundary-layer profiles and Reynolds stresses in adverse pressure-gradient flow.

  2. Response of the Benguela upwelling systems to spatial variations in the wind stress

    NASA Astrophysics Data System (ADS)

    Fennel, Wolfgang; Junker, Tim; Schmidt, Martin; Mohrholz, Volker

    2012-08-01

    In this paper we combine field observations, numerical modeling and an idealized analytical theory to study some features of the Benguela upwelling system. The current system can be established through a combination of observations and realistic simulations with an advanced numerical model. The poleward undercurrent below the equator-ward coastal jet is often found as a countercurrent that reaches the sea surface seaward of the coastal jet. The coastal band of cold upwelled water appears to broaden from south to north and at the northern edge of the wind band an offshore flow is often detected, which deflects the coastal Angola current to the west. These features can be explained and understood with an idealized analytical model forced by a spatially variable wind. A crucial role is played by the wind stress curl, which shapes the oceanic response through Ekman-pumping. The interplay of the curl driven effects and the coastal Ekman upwelling together with the coastal jet, Kelvin waves, and the undercurrent is the key to understand the formation of the three-dimensional circulation patterns in the Benguela system. While the numerical model is based on the full set of primitive equations, realistic topography and forcing, the analytic model uses a linear, flat-bottomed f-plane ocean, where the coast is a straight wall and the forcing is represented by an alongshore band of dome-shaped wind stress. Although the analytical model is highly idealized it is very useful to grasp the basic mechanisms leading to the response patterns.

  3. Remote forcing at the Last Glacial Maximum in the Tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Andreasen, Dyke H.; Ravelo, A. Christina; Broccoli, Anthony J.

    2001-01-01

    We present results of a Last Glacial Maximum (LGM) wind stress sensitivity experiment using a high-resolution ocean general circulation model of the tropical Pacific Ocean. LGM wind stress, used to drive the ocean model, was generated using an atmospheric general circulation model simulation forced by LGM boundary conditions as part of the Paleoclimate Modeling Intercomparison Project (PMIP) [Broccoli, 2000]. LGM wind stress anomalies were large in the western half of the basin, yet there was a significant hydrographic response in the eastern half. This ocean model experiment hind casts changes that are in close agreement with paleoceanographic data from the entire region, even without the explicit modeling of the air-sea interactions. Data and model both predict that the annual average thermocline tilt across the basin was enhanced. Data and model are consistent with a stronger equatorial undercurrent which shoaled to the west of where it does today, and stronger advection of water from the Peru Current into the east equatorial Pacific and across the equator. Paleoproductivity and sea surface temperature (SST) data are interpreted in light of the modeling results, indicating that paleoproductivity changes were related to wind-forced dynamical changes resulting from LGM boundary conditions, while SST changes were related to independent, possibly radiative, forcing. Overall, our results imply that much of the dynamic response of the tropical Pacific during the LGM can be explained by wind field changes resulting from global LGM boundary conditions.

  4. Surface boundary layer turbulence in the Southern ocean

    NASA Astrophysics Data System (ADS)

    Merrifield, Sophia; St. Laurent, Louis; Owens, Breck; Naveira Garabato, Alberto

    2015-04-01

    Due to the remote location and harsh conditions, few direct measurements of turbulence have been collected in the Southern Ocean. This region experiences some of the strongest wind forcing of the global ocean, leading to large inertial energy input. While mixed layers are known to have a strong seasonality and reach 500m depth, the depth structure of near-surface turbulent dissipation and diffusivity have not been examined using direct measurements. We present data collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field program. In a range of wind conditions, the wave affected surface layer (WASL), where surface wave physics are actively forcing turbulence, is contained to the upper 15-20m. The lag-correlation between wind stress and turbulence shows a strong relationship up to 6 hours (˜1/2 inertial period), with the winds leading the oceanic turbulent response, in the depth range between 20-50m. We find the following characterize the data: i) Profiles that have a well-defined hydrographic mixed layer show that dissipation decays in the mixed layer inversely with depth, ii) WASLs are typically 15 meters deep and 30% of mixed layer depth, iii) Subject to strong winds, the value of dissipation as a function of depth is significantly lower than predicted by theory. Many dynamical processes are known to be missing from upper-ocean parameterizations of mixing in global models. These include surface-wave driven processes such as Langmuir turbulence, submesocale frontal processes, and nonlocal representations of mixing. Using velocity, hydrographic, and turbulence measurements, the existence of coherent structures in the boundary layer are investigated.

  5. The inland boundary layer at low latitudes

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1985-08-01

    Observations from the Koorin boundary-layer experiment in Australia (latitude 16 °S) were analysed in a study of the nocturnal jet development. For geostrophic winds in the range 10 20 m s-1, ageostrophic wind magnitudes of 5 10m s-1 were common above the surface layer near sunset, with cross-isobar flow angles of about 40 °. The jet that then developed by midnight was probably the result of these large ageostrophic winds, strong surface cooling and favourable baroclinity and sloping terrain. The analysis is supported by numerical model calculations with special emphasis on the role of long-wave radiative cooling on turbulent decay. Decay is rapid in the presence of radiation, although there is little influence on stress divergence levels. Evidence of sea-breeze influences on the jet evolution, and on features of deeply penetrating sea breezes in general, will be presented and discussed in part 2 of this study (submitted to Boundary-Layer Meteorol.).

  6. Canopy-wake dynamics: the failure of the constant flux layer

    NASA Astrophysics Data System (ADS)

    Stefan, H. G.; Markfort, C. D.; Porte-Agel, F.

    2013-12-01

    The atmospheric boundary layer adjustment at the abrupt transition from a canopy (forest) to a flat surface (land or water) was investigated in a wind tunnel experiment. Detailed measurements examining the effect of canopy turbulence on flow separation, reduced surface shear stress and wake recovery are compared to data for the classical case of a solid backward-facing step. Results provide new insights into the data interpretation for flux estimation by eddy-covariance and flux gradient methods and for the assessment of surface boundary conditions in turbulence models of the atmospheric boundary layer in complex landscapes and over water bodies affected by canopy wakes. The wind tunnel results indicate that the wake of a forest canopy strongly affects surface momentum flux within a distance of 35 - 100 times the step or canopy height, and mean turbulence quantities require distances of at least 100 times the canopy height to adjust to the new surface. The near-surface mixing length in the wake exhibits characteristic length scales of canopy flows at the canopy edge, of the flow separation in the near wake and adjusts to surface layer scaling in the far wake. Components of the momentum budget are examined individually to determine the impact of the wake. The results demonstrate why a constant flux layer does not form until far downwind in the wake. An empirical model for surface shear stress distribution from a forest to a clearing or lake is proposed.

  7. Coastal ocean circulation during Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Miles, Travis; Seroka, Greg; Glenn, Scott

    2017-09-01

    Hurricane Sandy (2012) was the second costliest tropical cyclone to impact the United States and resulted in numerous lives lost due to its high winds and catastrophic storm surges. Despite its impacts little research has been performed on the circulation on the continental shelf as Sandy made landfall. In this study, integrated ocean observing assets and regional ocean modeling were used to investigate the coastal ocean response to Sandy's large wind field. Sandy's unique cross-shelf storm track, large size, and slow speed resulted in along-shelf wind stress over the coastal ocean for nearly 48 h before the eye made landfall in southern New Jersey. Over the first inertial period (˜18 h), this along-shelf wind stress drove onshore flow in the surface of the stratified continental shelf and initiated a two-layer downwelling circulation. During the remaining storm forcing period a bottom Ekman layer developed and the bottom Cold Pool was rapidly advected offshore ˜70 km. This offshore advection removed the bottom Cold Pool from the majority of the shallow continental shelf and limited ahead-of-eye-center sea surface temperature (SST) cooling, which has been observed in previous storms on the MAB such as Hurricane Irene (2011). This cross-shelf advective process has not been observed previously on continental shelves during tropical cyclones and highlights the need for combined ocean observing systems and regional modeling in order to further understand the range of coastal ocean responses to tropical cyclones.

  8. Field measurements of mean and turbulent airflow over a barchan sand dune

    NASA Astrophysics Data System (ADS)

    Weaver, Corinne M.; Wiggs, Giles F. S.

    2011-05-01

    Advances in our knowledge of the aeolian processes governing sand dune dynamics have been restricted by a reliance on measures of time-averaged airflow, such as shear velocity ( u*). It has become clear that such measures are incapable of explaining the complete dynamics of sediment transport across dune surfaces. Past evidence from wind tunnel and modelling studies has suggested that in some regions on a dune's surface the sediment transport might be better explained through investigations of the turbulent nature of the airflow. However, to date there have been no field studies providing data on the turbulent characteristics of the airflow around dunes with which to support or refute such hypotheses. The field investigation presented here provides mean and turbulent airflow measurements across the centre-line of a barchan sand dune in Namibia. Data were collected using arrays of sonic anemometers and were compared with sand flux data measured using wedge-shaped traps. Results support previously published data derived from wind tunnels and numerical models. The decline in mean wind velocity at the upwind toe of the dune is shown to coincide with a rise in turbulence, whilst mean velocity acceleration on the upper slope corresponds with a general decline in measured turbulence. Analysis of the components of Reynold shear stress ( -u'¯w'¯) and normal stresses ( u¯ and w2 ¯) supports the notion that the development of flow turbulence along the dune centre-line is likely to be associated with the interplay between streamline curvature and mean flow deceleration/acceleration. It is suggested that, due to the nature of its calculation, turbulence intensity is a measure of less practical use than direct assessments of the individual components of Reynolds stress, particularly the instantaneous horizontal streamwise component ( u2 ¯) and shear stress ( -uw¯). Whilst, increases in Reynolds shear stress and the horizontal streamwise component of stress in the toe region of the dune may effectively explain the maintenance of sand flux in a region of declining mean velocity, they have much less explanatory power for sand flux on the upper windward slope and in the crestal region of the dune. Here, it is suggested that mean flow acceleration is likely to provide the most significant driving force on sand flux, possibly augmented by a rise in the horizontal streamwise component of Reynolds stress ( u2 ¯) in the crest/brink region. Therefore, although wind turbulence is considered to be of fundamental importance in explaining the sediment transport dynamics across the dune's surface it is recognised that the interaction between mean flow deceleration/acceleration, streamline curvature and individual components of Reynolds stress is complex and the identification of a single element of flow that offers a panacea for accounting for sand flux and dune dynamics is difficult to find.

  9. Multi-linear regression of sea level in the south west Pacific as a first step towards local sea level projections

    NASA Astrophysics Data System (ADS)

    Kumar, Vandhna; Meyssignac, Benoit; Melet, Angélique; Ganachaud, Alexandre

    2017-04-01

    Rising sea levels are a critical concern in small island nations. The problem is especially serious in the western south Pacific, where the total sea level rise over the last 60 years is up to 3 times the global average. In this study, we attempt to reconstruct sea levels at selected sites in the region (Suva, Lautoka, Noumea - Fiji and New Caledonia) as a mutiple-linear regression of atmospheric and oceanic variables. We focus on interannual-to-decadal scale variability, and lower (including the global mean sea level rise) over the 1979-2014 period. Sea levels are taken from tide gauge records and the ORAS4 reanalysis dataset, and are expressed as a sum of steric and mass changes as a preliminary step. The key development in our methodology is using leading wind stress curl as a proxy for the thermosteric component. This is based on the knowledge that wind stress curl anomalies can modulate the thermocline depth and resultant sea levels via Rossby wave propagation. The analysis is primarily based on correlation between local sea level and selected predictors, the dominant one being wind stress curl. In the first step, proxy boxes for wind stress curl are determined via regions of highest correlation. The proportion of sea level explained via linear regression is then removed, leaving a residual. This residual is then correlated with other locally acting potential predictors: halosteric sea level, the zonal and meridional wind stress components, and sea surface temperature. The statistically significant predictors are used in a multi-linear regression function to simulate the observed sea level. The method is able to reproduce between 40 to 80% of the variance in observed sea level. Based on the skill of the model, it has high potential in sea level projection and downscaling studies.

  10. Subtidal circulation in a deep-silled fjord: Douglas Channel, British Columbia

    NASA Astrophysics Data System (ADS)

    Wan, Di; Hannah, Charles G.; Foreman, Michael G. G.; Dosso, Stan

    2017-05-01

    Douglas Channel, a deep fjord on the west coast of British Columbia, Canada, is the main waterway in the fjord system that connects the town of Kitimat to Queen Charlotte Sound and Hecate Strait. A 200 m depth sill divides Douglas Channel into an outer and an inner basin. This study examines the low-frequency (from seasonal to meteorological bands) circulation in Douglas Channel from data collected at three moorings deployed during 2013-2015. The deep flows are dominated by a yearly renewal that takes place from May/June to early September. A dense bottom layer with a thickness of 100 m that cascades through the system at the speed of 0.1-0.2 m s-1, which is consistent with gravity currents. Estuarine flow dominates the circulation above the sill depth, and the observed landward net volume flux suggests that it is necessary to include the entire complex channel network to fully understand the estuarine circulation in the system. The influence of the wind forcing on the subtidal circulation is not only at the surface, but also at middepth. The along-channel wind dominates the surface current velocity fluctuations and the sea level response to the wind produces a velocity signal at 100-120 m in the counter-wind direction. Overall, the circulation in the seasonal and the meteorological bands is a mix of estuarine flow, direct wind-driven flow, and the barotropic and baroclinic responses to changes to the surface pressure gradient caused by the wind stress.

  11. Structure and dynamics of the Benguela low-level coastal jet

    NASA Astrophysics Data System (ADS)

    Patricola, Christina M.; Chang, Ping

    2017-10-01

    Generations of coupled atmosphere-ocean general circulation models have been plagued by persistent warm sea surface temperature (SST) biases in the southeastern tropical Atlantic. The SST biases are most severe in the eastern boundary coastal upwelling region and are sensitive to surface wind stress and wind stress curl associated with the Benguela low-level coastal jet (BLLCJ), a southerly jet parallel to the Angola-Namibia coast. However, little has been documented about this atmospheric source of oceanic bias. Here we investigate the characteristics and dynamics of the BLLCJ using observations, reanalyses, and atmospheric model simulations. Satellite wind products and high-resolution reanalyses and models represent the BLLCJ with two near-shore maxima, one near the Angola-Benguela front (ABF) at 17.5°S, and the other near 25-27.5°S, whereas coarse resolution reanalyses and models represent the BLLCJ poorly with a single, broad, more offshore maximum. Model experiments indicate that convex coastal geometry near the ABF supports the preferred location of the BLLCJ northern maximum by supporting conditions for a hydraulic expansion fan. Intraseasonal variability of the BLLCJ is associated with large-scale variability in intensity and location of the South Atlantic subtropical high through modulation of the low-level zonal pressure gradient.

  12. Atmospheric Wind Relaxations and the Oceanic Response in the California Current Large Marine Ecosystem

    NASA Astrophysics Data System (ADS)

    Fewings, M. R.; Dorman, C. E.; Washburn, L.; Liu, W.

    2010-12-01

    On the West Coast of North America in summer, episodic relaxation of the upwelling-favorable winds causes warm water to propagate northward from southern to central California, against the prevailing currents [Harms and Winant 1998, Winant et al. 2003, Melton et al. 2009]. Similar wind relaxations are an important characteristic of coastal upwelling ecosystems worldwide. Although these wind relaxations have an important influence on coastal ocean dynamics, no description exists of the regional atmospheric patterns that lead to wind relaxations in southern California, or of the regional ocean response. We use QuikSCAT wind stress, North American Regional Reanalysis atmospheric pressure products, water temperature and velocity from coastal ocean moorings, surface ocean currents from high-frequency radars, and MODIS satellite sea-surface temperature and ocean color images to analyze wind relaxation events and the ocean response. We identify the events based on an empirical index calculated from NDBC buoy winds [Melton et al. 2009]. We describe the regional evolution of the atmosphere from the Gulf of Alaska to Baja California over the few days leading up to wind relaxations, and the coastal ocean temperature, color, and current response off southern and central California. We analyze ~100 wind relaxation events in June-September during the QuikSCAT mission, 1999-2009. Our results indicate south-central California wind relaxations in summer are tied to mid-level atmospheric low-pressure systems that form in the Gulf of Alaska and propagate southeastward over 3-5 days. As the low-pressure systems reach southern California, the atmospheric pressure gradient along the coast weakens, causing the surface wind stress to relax to near zero. The weak wind signal appears first at San Diego and propagates northward. QuikSCAT data indicate the relaxed winds extend over the entire Southern California Bight and up to 200 km offshore of central California. Atmospheric dynamics in the Gulf of Alaska influence ocean conditions in central and southern California via these wind relaxations. The ocean response within a few km of the coast involves poleward-flowing currents that transport warm water out of the lees of capes and headlands and counter to the direction of the California Current [Send et al. 1987, Harms and Winant 1998, Winant et al. 2003, Melton et al. 2009]. A similar response occurs in the Benguela and Canary Current coastal upwelling systems. The ocean response involves both barotropic and baroclinic dynamics and is consistent with existing geophysical models of buoyant, coastally-trapped plumes [Washburn et al., in prep]. Our ongoing work includes i) studying the regional ocean response to determine its spatial extent, time evolution, and ocean-atmosphere coupling dynamics; ii) developing an atmospheric index to predict wind relaxations in southern California based on pressure in the Gulf of Alaska; iii) examining the strength and frequency of wind relaxations over the past 30 years for connections to El Niño and the Pacific Decadal Oscillation; and iv) predicting future variations in wind relaxations and the response of the California Current Large Marine Ecosystem.

  13. Material transport in a convective surface mixed layer under weak wind forcing

    NASA Astrophysics Data System (ADS)

    Mensa, Jean A.; Özgökmen, Tamay M.; Poje, Andrew C.; Imberger, Jörg

    2015-12-01

    Flows in the upper ocean mixed layer are responsible for the transport and dispersion of biogeochemical tracers, phytoplankton and buoyant pollutants, such as hydrocarbons from an oil spill. Material dispersion in mixed layer flows subject to diurnal buoyancy forcing and weak winds (| u10 | = 5m s-1) are investigated using a non-hydrostatic model. Both purely buoyancy-forced and combined wind- and buoyancy-forced flows are sampled using passive tracers, as well as 2D and 3D particles to explore characteristics of horizontal and vertical dispersion. It is found that the surface tracer patterns are determined by the convergence zones created by convection cells within a time scale of just a few hours. For pure convection, the results displayed the classic signature of Rayleigh-Benard cells. When combined with a wind stress, the convective cells become anisotropic in that the along-wind length scale gets much larger than the cross-wind scale. Horizontal relative dispersion computed by sampling the flow fields using both 2D and 3D passive particles is found to be consistent with the Richardson regime. Relative dispersion is an order of magnitude higher and 2D surface releases transition to Richardson regime faster in the wind-forced case. We also show that the buoyancy-forced case results in significantly lower amplitudes of scale-dependent horizontal relative diffusivity, kD(ℓ), than those reported by Okubo (1970), while the wind- and buoyancy-forced case shows a good agreement with Okubo's diffusivity amplitude, and the scaling is consistent with Richardson's 4/3rd law, kD ∼ ℓ4/3. These modeling results provide a framework for measuring material dispersion by mixed layer flows in future observational programs.

  14. New developments in satellite oceanography and current measurements

    NASA Technical Reports Server (NTRS)

    Huang, N. E.

    1979-01-01

    Principal satellite remote sensing techniques and instruments are described and attention is given to the application of such techniques to ocean current measurement. The use of radiometers, satellite tracking drifters, and altimeters for current measurement is examined. Consideration is also given to other applications of satellite remote sensing in physical oceanography, including measurements of surface wind stress, sea state, tides, ice, sea surface temperature, salinity, ocean color, and oceanic leveling.

  15. A Multiyear Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Evaporation is a key component of the hydrological cycle and the surface heat budget, while the wind stress is the major forcing for driving the oceanic circulation. The global air-sea fluxes of momentum, latent and sensible heat, radiation, and freshwater (precipitation-evaporation) are the forcing for driving oceanic circulation and, hence, are essential for understanding the general circulation of global oceans. The global air-sea fluxes are required for driving ocean models and validating coupled ocean-atmosphere global models. We have produced a 7.5-year (July 1987-December 1994) dataset of daily surface turbulent fluxes over the global oceans from the Special Sensor microwave/Imager (SSM/I) data. Daily turbulent fluxes were derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) validated well with that of the collocated radiosonde observations over the global oceans. Furthermore, the retrieved daily wind stresses and latent heat fluxes were found to agree well with that of the in situ measurements (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE intensive observing period (November 1992-February 1993). The global distributions of 1988-94 seasonal-mean turbulent fluxes will be presented. In addition, the global distributions of 1990-93 annual-means turbulent fluxes and input variables will be compared with those of UWM/COADS covering the same period. The latter is based on the COADS (comprehensive ocean-atmosphere data set) and is recognized to be one of the best climatological analyses of fluxes derived from ship observations.

  16. Optimal Environmental Conditions and Anomalous Ecosystem Responses: Constraining Bottom-up Controls of Phytoplankton Biomass in the California Current System

    PubMed Central

    Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.

    2016-01-01

    In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998–1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change. PMID:27278260

  17. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport

    NASA Astrophysics Data System (ADS)

    Bauer, B. O.; Davidson-Arnott, R. G. D.; Hesp, P. A.; Namikas, S. L.; Ollerhead, J.; Walker, I. J.

    2009-04-01

    Temporal and spatial changes in wind speed, wind direction, and moisture content are ubiquitous across sandy coastal beaches. Often these factors interact in unknown ways to create complexity that confounds our ability to model sediment transport at any point across the beach as well as our capacity to predict sediment delivery into the adjacent foredunes. This study was designed to measure wind flow and sediment transport over a beach and foredune at Greenwich Dunes, Prince Edward Island National Park, with the express purpose of addressing these complex interactions. Detailed measurements are reported for one stormy day, October 11, 2004, during which meteorological conditions were highly variable. Wind speed ranged from 4 ms - 1 to over 20 ms - 1 , wind direction was highly oblique varying between 60° and 85° from shore perpendicular, and moisture content of the sand surface ranged from a minimum of about 3% (by mass) to complete saturation depending on precipitation, tidal excursion, and storm surge that progressively inundated the beach. The data indicate that short-term variations (i.e., minutes to hours) in sediment transport across this beach arise predominantly because of short-term changes in wind speed, as is expected, but also because of variations in wind direction, precipitation intensity, and tide level. Even slight increases in wind speed are capable of driving more intense saltation events, but this relationship is mediated by other factors on this characteristically narrow beach. As the angle of wind approach becomes more oblique, the fetch distance increases and allows greater opportunity for the saltation system to evolve toward an equilibrium transport state before reaching the foredunes. Whether the theoretically-predicted maximum rate of transport is ever achieved depends on the character of the sand surface (e.g., grain size, slope, roughness, vegetation, moisture content) and on various attributes of the wind field (e.g., average wind speed, unsteadiness, approach angle, flow compression, boundary layer development). Moisture content is widely acknowledged as an important factor in controlling release of sediment from the beach surface. All other things being equal, the rate of sediment transport over a wet surface is lesser than over a dry surface. On this beach, the moisture effect has two important influences: (a) in a temporal sense, the rate of sediment transport typically decreases in association with rainfall and increases when surface drying takes place; and (b) in a spatio-temporal sense, shoreline excursions associated with nearshore processes (such as wave run-up, storm surge, and tidal excursions) have the effect of constraining the fetch geometry of the beach—i.e., narrowing the width of the beach. Because saturated sand surfaces, such as found in the swash zone, will only reluctantly yield sediments to aeolian entrainment, the available beach surface across which aeolian transport can occur becomes narrower as the sea progressively inundates the beach. Under these constrained conditions, the transport system begins to shut down unless wind angle becomes highly oblique (thereby increasing fetch distance). In this study, maximum sediment transport was usually measured on the mid-beach rather than the upper beach (i.e., closer to the foredunes). This unusual finding is likely because of internal boundary layer development across the beach, which yields a decrease in near-surface wind speed (and hence, transport capacity) in the landward direction. Although widely recognized in the fluid mechanics literature, this decrease in near-surface shear stress as a by-product of a developing boundary layer in the downwind direction has not been adequately investigated in the context of coastal aeolian geomorphology.

  18. Reynolds number invariance of the structure inclination angle in wall turbulence.

    PubMed

    Marusic, Ivan; Heuer, Weston D C

    2007-09-14

    Cross correlations of the fluctuating wall-shear stress and the streamwise velocity in the logarithmic region of turbulent boundary layers are reported over 3 orders of magnitude change in Reynolds number. These results are obtained using hot-film and hot-wire anemometry in a wind tunnel facility, and sonic anemometers and a purpose-built wall-shear stress sensor in the near-neutral atmospheric surface layer on the salt flats of Utah's western desert. The direct measurement of fluctuating wall-shear stress in the atmospheric surface layer has not been available before. Structure inclination angles are inferred from the cross correlation results and are found to be invariant over the large range of Reynolds number. The findings justify the prior use of low Reynolds number experiments for obtaining structure angles for near-wall models in the large-eddy simulation of atmospheric surface layer flows.

  19. Statistical characterization of wind-wave induced sediment resuspension events in shallow tidal basins

    NASA Astrophysics Data System (ADS)

    D'Alpaos, A.; Carniello, L.; Rinaldo, A.

    2013-12-01

    Wind-wave induced erosion processes play a critical role on the morphodynamic evolution of shallow tidal landscapes. Both in the horizontal and in the vertical planes, patterns of wind-induced bottom shear stresses contribute to control the morphological and biological features of the tidal landscape, through the erosion of tidal-flat surfaces and of salt-marsh margins, the disruption of the polymeric microphytobenthic biofilm, and the increase in suspended sediment concentration which affects the stability of intertidal ecosystems. Towards the goal of developing a synthetic theoretical framework to represent wind wave-induced resuspension events and account for their erosional effects on the long-term biomorphodynamic evolution of tidal systems, we have employed a complete, coupled finite element model accounting for the role of wind waves and tidal currents on the hydrodynamic circulation in shallow basins. Our analysis of the characteristics of combined current and wave-induced exceedances in bottom shear stress over a given threshold for erosion, suggest that wind wave-induced resuspension events can be modeled as a marked Poisson process. Moreover, the analysis of wind-wave induced resuspension events for different historical configurations of the Venice Lagoon shows that the interarrival times of erosion events have decreased through the last two centuries, whereas the intensities of erosion events have increased. This allows us to characterize the threatening erosion and degradation processes that the Venice Lagoon has been experiencing since the beginning of the last century.

  20. Atmospheric stability and diurnal patterns of aeolian saltation on the Llano Estacado

    USDA-ARS?s Scientific Manuscript database

    Aeolian transport is driven by aerodynamic surface stress imposed by turbulent winds in the Earth’s atmospheric boundary layer (ABL). ABL regime is influenced by stratification, which can either enhance or suppress production of turbulence by shear associated with the vertical gradient of streamwise...

  1. Variation in bed level shear stress on surfaces sheltered by nonerodible roughness elements

    NASA Astrophysics Data System (ADS)

    Sutton, Stephen L. F.; McKenna-Neuman, Cheryl

    2008-09-01

    Direct bed level observations of surface shear stress, pressure gradient variability, turbulence intensity, and fluid flow patterns were carried out in the vicinity of cylindrical roughness elements mounted in a boundary layer wind tunnel. Paired corkscrew vortices shed from each of the elements result in elevated shear stress and increased potential for the initiation of particle transport within the far wake. While the size and shape of these trailing vortices change with the element spacing, they persist even for large roughness densities. Wake interference coincides with the impingement of the upwind horseshoe vortices upon one another at a point when their diameter approaches half the distance between the roughness elements. While the erosive capability of the horseshoe vortex has been suggested for a variety of settings, the present study shows that the fluid stress immediately beneath this coherent structure is actually small in comparison to that caused by compression of the incident flow as it is deflected around the element and attached vortex. Observations such as these are required for further refinement of models of stress partitioning on rough surfaces.

  2. Circulation and thermohaline structure of the Aral Sea in the last three years

    NASA Astrophysics Data System (ADS)

    Izhitskiy, A. S.; Zavialov, P. O.

    2012-04-01

    The results of the 3 latest expeditions (2009 - 2011) of the Shirshov Institute to the Aral Sea are reported. We analyze the interannual variability of the basin circulation together with the thermohaline structure in order to identify the underlying mechanisms. The study is based on the results of the field surveys of August, 2009, September, 2010, and November, 2011. The vertical profiles of temperature and salinity were obtained using a CTD profiler at 6 stations across the deepest part of the western basin in 2009 and 2010, and 3 stations in 2011. Additionally, during each of the surveys, mooring stations equipped with current meters and pressure gauges were deployed for 3-5 days in the deepest portion of the western basin. A portable automatic meteorological station, continuously recording the wind stress and the principal meteorological parameters, was installed near the mooring sites. The vertical stratification exhibited a 3-layered pattern, with local salinity maxima in the upper mixed layer and near the bottom, while the intermediate layer was characterized by a core of minimum salinity and temperature. Such a pattern persisted throughout the 3 years of observations. Analysis of the current measurements data along with the meteorological data records demonstrated that the mean basin-scale surface circulation of the Large Aral Sea is likely to have remained anticyclonic, whilst the near-bottom circulation appears to be cyclonic. The current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity and surface level series versus the wind stress allowed to quantify the response of the system to the wind forcing as well as to formulate a conceptual scheme of the lake's response to wind forcing at synoptic temporal scales.

  3. Surprises from the field: Novel aspects of aeolian saltation observed under natural turbulence

    NASA Astrophysics Data System (ADS)

    Martin, R. L.; Kok, J. F.; Chamecki, M.

    2015-12-01

    The mass flux of aeolian (wind-blown) sediment transport - critical for understanding earth and planetary geomorphology, dust generation, and soil stability - is difficult to predict. Recent work suggests that competing models for saltation (the characteristic hopping of aeolian sediment) fail because they do not adequately account for wind turbulence. To address this issue, we performed field deployments measuring high-frequency co-variations of aeolian saltation and near-surface winds at multiple sites under a range of conditions. Our observations yield several novel findings not currently captured by saltation models: (1) Saltation flux displays no significant lag relative to horizontal wind velocity; (2) Characteristic height of the saltation layer remains constant with changes in shear velocity; and (3) During saltation, the vertical profile of mean horizontal wind velocity is steeper than expected from the Reynolds stress. We examine how the interactions between saltation and turbulence in field settings could explain some of these surprising observations.

  4. Increasing of eddy activity in the northeastern Pacific during 1993-2011

    NASA Astrophysics Data System (ADS)

    Ding, M.; Lin, P.; Liu, H.; Chai, F.

    2017-12-01

    We study the long-term behaviors of eddy activity in the northeastern Pacific (NEP) and the dynamic mechanism behind them based on the 3rd version of the mesoscale eddy trajectories dataset released by Chelton et al. (2013) combined with other observation and reanalysis datasets. Both the eddy kinetic energy (EKE) and eddy occurrence number (EON) present prominent increasing trends, with inter-annual and decadal variabilities northeast of the Hawaii-Emperor seamounts. The increasing trend of the EON is mainly due to prolongation of the eddy lifetime associated with the eddy intensification, particularly for anticyclonic eddies (AEs). Weakened surface winds tend to prolong the eddy lifetimes, as the eddy attenuation time scale is inversely proportional to the wind speed. The enhanced anticyclonic wind stress curl (WSC) anomalies inject more energy into the AE over the study region and provide a more suitable environment for AEs growth. The decadal climate modes, such as the Pacific decadal oscillation (PDO) and the North Pacific gyre oscillation (NPGO), may also modulate eddy activities in the NEP by exerting fluctuations in the surface wind system.

  5. Uncovering a New Current: The Southwest MAdagascar Coastal Current

    NASA Astrophysics Data System (ADS)

    Ramanantsoa, Juliano D.; Penven, P.; Krug, M.; Gula, J.; Rouault, M.

    2018-02-01

    Cruise data sets, satellite remote sensing observations, and model data analyses are combined to highlight the existence of a coastal surface poleward flow in the southwest of Madagascar: the Southwest MAdagascar Coastal Current (SMACC). The SMACC is a relatively shallow (<300 m) and narrow (<100 km wide) warm and salty coastal surface current, which flows along the south western coast of Madagascar toward the south, opposite to the dominant winds. The warm water surface signature of the SMACC extends from 22°S (upstream) to 26.4°S (downstream). The SMACC exhibits a seasonal variability: more intense in summer and reduced in winter. The average volume transport of its core is about 1.3 Sv with a mean summer maximum of 2.1 Sv. It is forced by a strong cyclonic wind stress curl associated with the bending of the trade winds along the southern tip of Madagascar. The SMACC directly influences the coastal upwelling regions south of Madagascar. Its existence is likely to influence local fisheries and larval transport patterns, as well as the connectivity with the Agulhas Current, affecting the returning branch of the global overturning circulation.

  6. ENSO Transition Asymmetry: Internal and External Causes and Intermodel Diversity

    NASA Astrophysics Data System (ADS)

    An, Soon-Il; Kim, Ji-Won

    2018-05-01

    El Niño is frequently followed by La Niña, but the opposite case rarely happens. Here we explore a mechanism for such an asymmetrical transition and its future changes. Internally, the asymmetrical response of upper ocean waves against surface wind stress anomaly exerts a primary cause of El Niño-Southern Oscillation (ENSO) transition asymmetry. Externally, the asymmetrical capacitor effects of both Indian and Atlantic Oceans play some roles in driving the ENSO transition asymmetry via the interbasin interactions. The historical runs of Coupled Model Intercomparison Project Phase 5 show that the intermodel transition asymmetry is significantly correlated with the intermodel asymmetry in ocean wave response to surface wind forcing but not with that in the interbasin interactions. In addition, the El Niño-to-La Niña transition tendency was weaker in moderate global warming scenario runs (Representative Concentration Pathway 4.5) while slightly enhanced in strong warming scenario runs (Representative Concentration Pathway 8.5). Similar changes also appeared in the asymmetrical response of ocean waves against the surface wind forcing.

  7. The de-correlation of westerly winds and westerly-wind stress over the Southern Ocean during the Last Glacial Maximum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Lu, Jian; Leung, Lai-Yung R.

    2015-02-22

    This paper investigates the changes of the Southern Westerly Winds (SWW) and Southern Ocean (SO) upwelling between the Last Glacial Maximum (LGM) and preindustrial (PI) in the PMIP3/CMIP5 simulations, highlighting the role of the Antarctic sea ice in modulating the wind stress effect on the ocean. Particularly, a discrepancy may occur between the changes in SWW and westerly wind stress, caused primarily by an equatorward expansion of winter Antarctic sea ice that undermines the wind stress in driving the liquid ocean. Such discrepancy may reflect the LGM condition in reality, in view of that the model simulates this condition hasmore » most credible simulation of modern SWW and Antarctic sea ice. The effect of wind stress on the SO upwelling is further explored via the wind-induced Ekman pumping, which is reduced under the LGM condition in all models, in part by the sea-ice “capping” effect present in the models.« less

  8. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Newsom, Rob K.; Turner, David D.

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. Themore » normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.« less

  9. A Multilayer Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaud, Franco (Technical Monitor)

    2001-01-01

    A dataset including daily- and monthly-mean turbulent fluxes (momentum, latent heat, and sensible heat) and some relevant parameters over global oceans, derived from the Special Sensor Microwave/Imager (SSM/I) data, for the period July 1987-December 1994 and the 1988-94 annual and monthly-mean climatologies of the same variables is created. It has a spatial resolution of 2.0deg x 2.5deg latitude-longitude. The retrieved surface air humidity is found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The retrieved wind stress and latent heat flux show useful accuracy as verified against research quality measurements of ship and buoy in the western equatorial Pacific. The 1988-94 seasonal-mean wind stress and latent heat flux show reasonable patterns related to seasonal variations of the atmospheric general circulation. The patterns of 1990-93 annual-mean turbulent fluxes and input variables are generally in good agreement with one of the best global analyzed flux datasets that based on COADS (comprehensive ocean-atmosphere data set) with corrections on wind speeds and covered the same period. The retrieved wind speed is generally within +/-1 m/s of the COADS-based, but is stronger by approx. 1-2 m/s in the northern extratropical oceans. The discrepancy is suggested to be mainly due to higher COADS-modified wind speeds resulting from underestimation of anemometer heights. Compared to the COADS-based, the retrieved latent heat flux and sea-air humidity difference are generally larger with significant differences in the trade wind zones and the ocean south of 40degS (up to approx. 40-60 W/sq m and approx. 1-1.5 g/kg). The discrepancy is believed to be mainly caused by higher COADS-based surface air humidity arising from the overestimation of dew point temperatures and from the extrapolation of observed high humidity southward into data-void regions south of 40degS. The retrieved sensible heat flux is generally within +/-5 W/sq m of UWM/COADS, except for some areas in the extratropical oceans, where the differences in wind speed have large impact on the difference in sensible heat flux. The dataset of SSM/I-derived turbulent fluxes is useful for climate studies, forcing of ocean models, and validation of coupled ocean-atmosphere global models.

  10. Warm and Saline Events Embedded in the Meridional Circulation of the Northern North Atlantic

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2011-01-01

    Ocean state estimates from 1958 to 2005 from the Simple Ocean Assimilation System (SODA) system are analyzed to understand circulation between subtropical and subpolar Atlantic and their connection with atmospheric forcing. This analysis shows three periods (1960s, around 1980, and 2000s) with enhanced warm, saline waters reaching high latitudes, alternating with freshwater events originating at high latitudes. It complements surface drifter and altimetry data showing the subtropical -subpolar exchange leading to a significant temperature and salinity increase in the northeast Atlantic after 2001. The warm water limb of the Atlantic meridional overturning cell represented by SODA expanded in density/salinity space during these warm events. Tracer simulations using SODA velocities also show decadal variation of the Gulf Stream waters reaching the subpolar gyre and Nordic seas. The negative phase of the North Atlantic Oscillation index, usually invoked in such variability, fails to predict the warming and salinization in the early 2000s, with salinities not seen since the 1960s. Wind stress curl variability provided a linkage to this subtropical/subpolar gyre exchange as illustrated using an idealized two ]layer circulation model. The ocean response to the modulation of the climatological wind stress curl pattern was found to be such that the northward penetration of subtropical tracers is enhanced when amplitude of the wind stress curl is weaker than normal. In this case both the subtropical and subpolar gyres weaken and the subpolar density surfaces relax; hence, the polar front moves westward, opening an enhanced northward access of the subtropical waters in the eastern boundary current.

  11. Stress analysis of composite wind turbine blade by finite element method

    NASA Astrophysics Data System (ADS)

    Yeh, Meng-Kao; Wang, Chen-Hsu

    2017-10-01

    In this study, the finite element analysis software ANSYS was used to analyze the composite wind turbine blade. The wind turbine blade model used is adopted from the 5 MW model of US National Renewable Energy Laboratory (NREL). The wind turbine blade is a sandwich structure, comprising outermost carbon fiber cloth/epoxy composites, the inner glass fiber/vinylester layers, and PVC foam core, together with stiffeners. The wind pressure is converted into the load on the blade structure. The stress distribution and deformation of wind turbine blade were obtained by considering different pitch angles and at different angular positions. The Tsai-Hill criterion was used to determine the failure of wind turbine blade. The results show that at the 0° pitch angle, the wind turbine blade is subjected to the largest combined load and therefore the stress is the largest; with the increasing pitch angle, the load gradually decreases and the stress is also smaller. The stress and displacement are the greatest when the wind blade is located at 120° angular position from its highest vertex.

  12. Triggering and modulation of geyser eruptions in Yellowstone National Park by earthquakes, earth tides, and weather

    USGS Publications Warehouse

    Hurwitz, Shaul; Sohn, Robert A.; Luttrell, Karen; Manga, Michael

    2014-01-01

    We analyze intervals between eruptions (IBEs) data acquired between 2001 and 2011 at Daisy and Old Faithful geysers in Yellowstone National Park. We focus our statistical analysis on the response of these geysers to stress perturbations from within the solid earth (earthquakes and earth tides) and from weather (air pressure and temperature, precipitation, and wind). We conclude that (1) the IBEs of these geysers are insensitive to periodic stresses induced by solid earth tides and barometric pressure variations; (2) Daisy (pool geyser) IBEs lengthen by evaporation and heat loss in response to large wind storms and cold air; and (3) Old Faithful (cone geyser) IBEs are not modulated by air temperature and pressure variations, wind, and precipitation, suggesting that the subsurface water column is decoupled from the atmosphere. Dynamic stress changes of 0.1−0.2 MPa resulting from the 2002 M-7.9 Denali, Alaska, earthquake surface waves caused a statistically significant shortening of Daisy geyser's IBEs. Stresses induced by other large global earthquakes during the study period were at least an order of magnitude smaller. In contrast, dynamic stresses of >0.5 MPa from three large regional earthquakes in 1959, 1975, and 1983 caused lengthening of Old Faithful's IBEs. We infer that most subannual geyser IBE variability is dominated by internal processes and interaction with other geysers. The results of this study provide quantitative bounds on the sensitivity of hydrothermal systems to external stress perturbations and have implications for studying the triggering and modulation of volcanic eruptions by external forces.

  13. Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation

    PubMed Central

    Bechtold, Peter; Beljaars, Anton; Bozzo, Alessio; Pithan, Felix; Shepherd, Theodore G.; Zadra, Ayrton

    2016-01-01

    Abstract A recent intercomparison exercise proposed by the Working Group for Numerical Experimentation (WGNE) revealed that the parameterized, or unresolved, surface stress in weather forecast models is highly model‐dependent, especially over orography. Models of comparable resolution differ over land by as much as 20% in zonal mean total subgrid surface stress (τtot). The way τtot is partitioned between the different parameterizations is also model‐dependent. In this study, we simulated in a particular model an increase in τtot comparable with the spread found in the WGNE intercomparison. This increase was simulated in two ways, namely by increasing independently the contributions to τtot of the turbulent orographic form drag scheme (TOFD) and of the orographic low‐level blocking scheme (BLOCK). Increasing the parameterized orographic drag leads to significant changes in surface pressure, zonal wind and temperature in the Northern Hemisphere during winter both in 10 day weather forecasts and in seasonal integrations. However, the magnitude of these changes in circulation strongly depends on which scheme is modified. In 10 day forecasts, stronger changes are found when the TOFD stress is increased, while on seasonal time scales the effects are of comparable magnitude, although different in detail. At these time scales, the BLOCK scheme affects the lower stratosphere winds through changes in the resolved planetary waves which are associated with surface impacts, while the TOFD effects are mostly limited to the lower troposphere. The partitioning of τtot between the two schemes appears to play an important role at all time scales. PMID:27668040

  14. Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation

    NASA Astrophysics Data System (ADS)

    Sandu, Irina; Bechtold, Peter; Beljaars, Anton; Bozzo, Alessio; Pithan, Felix; Shepherd, Theodore G.; Zadra, Ayrton

    2016-03-01

    A recent intercomparison exercise proposed by the Working Group for Numerical Experimentation (WGNE) revealed that the parameterized, or unresolved, surface stress in weather forecast models is highly model-dependent, especially over orography. Models of comparable resolution differ over land by as much as 20% in zonal mean total subgrid surface stress (τtot). The way τtot is partitioned between the different parameterizations is also model-dependent. In this study, we simulated in a particular model an increase in τtot comparable with the spread found in the WGNE intercomparison. This increase was simulated in two ways, namely by increasing independently the contributions to τtot of the turbulent orographic form drag scheme (TOFD) and of the orographic low-level blocking scheme (BLOCK). Increasing the parameterized orographic drag leads to significant changes in surface pressure, zonal wind and temperature in the Northern Hemisphere during winter both in 10 day weather forecasts and in seasonal integrations. However, the magnitude of these changes in circulation strongly depends on which scheme is modified. In 10 day forecasts, stronger changes are found when the TOFD stress is increased, while on seasonal time scales the effects are of comparable magnitude, although different in detail. At these time scales, the BLOCK scheme affects the lower stratosphere winds through changes in the resolved planetary waves which are associated with surface impacts, while the TOFD effects are mostly limited to the lower troposphere. The partitioning of τtot between the two schemes appears to play an important role at all time scales.

  15. Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-05-01

    Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  16. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-11-01

    Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  17. Characterizing observed circulation patterns within a bay using HF radar and numerical model simulations

    NASA Astrophysics Data System (ADS)

    O'Donncha, Fearghal; Hartnett, Michael; Nash, Stephen; Ren, Lei; Ragnoli, Emanuele

    2015-02-01

    In this study, High Frequency Radar (HFR), observations in conjunction with numerical model simulations investigate surface flow dynamics in a tidally-active, wind-driven bay; Galway Bay situated on the West coast of Ireland. Comparisons against ADCP sensor data permit an independent assessment of HFR and model performance, respectively. Results show root-mean-square (rms) differences in the range 10 - 12cm/s while model rms equalled 12 - 14cm/s. Subsequent analysis focus on a detailed comparison of HFR and model output. Harmonic analysis decompose both sets of surface currents based on distinct flow process, enabling a correlation analysis between the resultant output and dominant forcing parameters. Comparisons of barotropic model simulations and HFR tidal signal demonstrate consistently high agreement, particularly of the dominant M2 tidal signal. Analysis of residual flows demonstrate considerably poorer agreement, with the model failing to replicate complex flows. A number of hypotheses explaining this discrepancy are discussed, namely: discrepancies between regional-scale, coastal-ocean models and globally-influenced bay-scale dynamics; model uncertainties arising from highly-variable wind-driven flows across alarge body of water forced by point measurements of wind vectors; and the high dependence of model simulations on empirical wind-stress coefficients. The research demonstrates that an advanced, widely-used hydro-environmental model does not accurately reproduce aspects of surface flow processes, particularly with regards wind forcing. Considering the significance of surface boundary conditions in both coastal and open ocean dynamics, the viability of using a systematic analysis of results to improve model predictions is discussed.

  18. Vector wind, horizontal divergence, wind stress and wind stress curl from SEASAT-SASS at one degree resolution

    NASA Technical Reports Server (NTRS)

    Pierson, W. J., Jr.; Sylvester, W. B.; Salfi, R. E.

    1984-01-01

    Conventional data obtained in 1983 are contrasted with SEASAT-A scatterometer and scanning multichannel microwave radiometer (SMMR) data to show how observations at a single station can be extended to an area of about 150,000 square km by means of remotely sensed data obtained in nine minutes. Superobservations at a one degree resolution for the vector winds were estimated along with their standard deviations. From these superobservations, the horizontal divergence, vector wind stress, and the curl of the wind stress can be found. Weather forecasting theory is discussed and meteorological charts of the North Pacific Ocean are presented. Synoptic meteorology as a technique is examined.

  19. A Numerical Study on the Influence of the Mid-Atlantic Ridge on Nonlinear Barotropic and First-Mode Baroclinic Rossby Waves Generated by Seasonal Winds.

    DTIC Science & Technology

    1986-12-01

    ridge. Sponge layers protect all boundaries except the eastern one from wave reflexion. The model is forced by a purely fluctuating wind stress curl...which propagate westward. This is a new feature of the time- dependent wind driven ocean circulation. Barnier uses a wind stress curl field patterned...forced by a purely fluctuating wind stress curl derived from the most significant EOF’s of the FGGE winds. A flat bottom and a ridge experiment are

  20. Comparison of shelf currents off central California prior to and during the 1997-1998 El Nino

    USGS Publications Warehouse

    Ryan, H.F.; Noble, M.A.

    2005-01-01

    Moored current, temperature, salinity, and pressure data were collected at three sites that transect the narrow continental shelf offshore of Davenport, CA, starting in August 1996 and continuing to the spring of 1998. This data set allowed a comparison of oceanographic conditions prior to (8/96-3/97) and during (8/97-3/98) the last major El Nin??o. During this El Nin??o, mean temperatures over the 8-month time period were about 3??C warmer than during the prior year at all of the sites. Correlations between near-surface and near-bottom temperatures, and between near-surface temperature and wind stress decreased during the El Nin??o compared to conditions the year before. The mean alongshore currents were more strongly poleward during El Nin??o at sites over the mid-shelf and near the shelf break. There was a general tendency for the energy in alongshore currents to move toward lower frequencies during the El Nin??o, particularly at the sites farther offshore. The processes that forced the shelf flows changed in relative importance throughout the study. The local alongshore wind stress was less important in driving shelf currents during the El Nin??o when much of the wind-induced upwelling was confined to less than 5 km of the coast. The observed strong poleward shelf currents on the mid- to outer-shelf were not clearly tied to local forcing, but were remotely driven, most likely by slope currents. The response of the Davenport shelf to an El Nin??o event may differ from other areas since the shelf is narrow, the wind forcing is weaker than areas to the north and south, and the shelf may be at times isolated by fronts that form at strong upwelling centers. In the winter, strong storm-related winds are important in driving currents at periods not only in the synoptic wind band, but also for periods on the order of 20 d and longer.

  1. A note on the effect of wind waves on vertical mixing in Franks Tract, Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Thompson, Janet K.; Jones, Nicole L.; Stephen G. Monismith,

    2008-01-01

    A one-dimensional numerical model that simulates the effects of whitecapping waves was used to investigate the importance of whitecapping waves to vertical mixing at a 3-meter-deep site in Franks Tract in the Sacramento-San Joaquin Delta over an 11-day period. Locally-generated waves of mean period approximately 2 s were generated under strong wind conditions; significant wave heights ranged from 0 to 0.3 m. A surface turbulent kinetic energy flux was used to model whitecapping waves during periods when wind speeds > 5 m s-1 (62% of observations). The surface was modeled as a wind stress log-layer for the remaining 38% of the observations. The model results demonstrated that under moderate wind conditions (5–8 m s-1 at 10 m above water level), and hence moderate wave heights, whitecapping waves provided the dominant source of turbulent kinetic energy to only the top 10% of the water column. Under stronger wind (> 8 m s-1), and hence larger wave conditions, whitecapping waves provided the dominant source of turbulent kinetic energy over a larger portion of the water column; however, this region extended to the bottom half of the water column for only 7% of the observation period. The model results indicated that phytoplankton concentrations close to the bed were unlikely to be affected by the whitecapping of waves, and that the formation of concentration boundary layers due to benthic grazing was unlikely to be disrupted by whitecapping waves. Furthermore, vertical mixing of suspended sediment was unlikely to be affected by whitecapping waves under the conditions experienced during the 11-day experiment. Instead, the bed stress provided by tidal currents was the dominant source of turbulent kinetic energy over the bottom half of the water column for the majority of the 11-day period.

  2. Seasonal patterns of wind stress and wind stress curl over the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    de Velasco, Guillermo Gutiérrez; Winant, Clinton D.

    1996-08-01

    Meteorological observations from an array of stations deployed along the periphery of the Gulf of Mexico, between 1990 and 1993, are used to describe the seasonal fluctuations in patterns of atmospheric variables from a contemporary set of measurements. Seasonal maps of wind stress based on these measurements resemble wind stress maps based on ship observations, as published by Elliott [1979], rather than maps based on analyses of numerical weather forecasts, as published by Rhodes et al. [1989], particularly near the western boundary of the gulf. Seasonal maps of wind stress curl are characterized by positive curls over the western and southwestern gulf. The central result of this study is to document the important role of the mountain chain which extends along the southwestern section of the gulf in channeling the wind toward the Isthmus of Tehuantepec.

  3. A Wafer-Bonded, Floating Element Shear-Stress Sensor Using a Geometric Moire Optical Transduction Technique

    NASA Technical Reports Server (NTRS)

    Horowitz, Stephen; Chen, Tai-An; Chandrasekaran, Venkataraman; Tedjojuwono, Ken; Cattafesta, Louis; Nishida, Toshikazu; Sheplak, Mark

    2004-01-01

    This paper presents a geometric Moir optical-based floating-element shear stress sensor for wind tunnel turbulence measurements. The sensor was fabricated using an aligned wafer-bond/thin-back process producing optical gratings on the backside of a floating element and on the top surface of the support wafer. Measured results indicate a static sensitivity of 0.26 microns/Pa, a resonant frequency of 1.7 kHz, and a noise floor of 6.2 mPa/(square root)Hz.

  4. Statistics of surface divergence and their relation to air-water gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Asher, William E.; Liang, Hanzhuang; Zappa, Christopher J.; Loewen, Mark R.; Mukto, Moniz A.; Litchendorf, Trina M.; Jessup, Andrew T.

    2012-05-01

    Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence.

  5. Atmospheric boundary layer modification in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Bennett, Theodore J., Jr.; Hunkins, Kenneth

    1986-01-01

    A case study of the Andreas et al. (1984) data on atmospheric boundary layer modification in the marginal ice zone is made. The model is a two-dimensional, multilevel, linear model with turbulence, lateral and vertical advection, and radiation. Good agreement between observed and modeled temperature cross sections is obtained. In contrast to the hypothesis of Andreas et al., the air flow is found to be stable to secondary circulations. Adiabatic lifting and, at long fetches, cloud top longwave cooling, not an air-to-surface heat flux, dominate the cooling of the boundary layer. The accumulation with fetch over the ice of changes in the surface wind field is shown to have a large effect on estimates of the surface wind stress. It is speculated that the Andreas et al. estimates of the drag coefficient over the compact sea ice are too high.

  6. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Curcic, M.; Chen, S. S.

    2016-02-01

    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  7. Sensitivity of Coupled Tropical Pacific Model Biases to Convective Parameterization in CESM1

    NASA Astrophysics Data System (ADS)

    Woelfle, M. D.; Yu, S.; Bretherton, C. S.; Pritchard, M. S.

    2018-01-01

    Six month coupled hindcasts show the central equatorial Pacific cold tongue bias development in a GCM to be sensitive to the atmospheric convective parameterization employed. Simulations using the standard configuration of the Community Earth System Model version 1 (CESM1) develop a cold bias in equatorial Pacific sea surface temperatures (SSTs) within the first two months of integration due to anomalous ocean advection driven by overly strong easterly surface wind stress along the equator. Disabling the deep convection parameterization enhances the zonal pressure gradient leading to stronger zonal wind stress and a stronger equatorial SST bias, highlighting the role of pressure gradients in determining the strength of the cold bias. Superparameterized hindcasts show reduced SST bias in the cold tongue region due to a reduction in surface easterlies despite simulating an excessively strong low-level jet at 1-1.5 km elevation. This reflects inadequate vertical mixing of zonal momentum from the absence of convective momentum transport in the superparameterized model. Standard CESM1simulations modified to omit shallow convective momentum transport reproduce the superparameterized low-level wind bias and associated equatorial SST pattern. Further superparameterized simulations using a three-dimensional cloud resolving model capable of producing realistic momentum transport simulate a cold tongue similar to the default CESM1. These findings imply convective momentum fluxes may be an underappreciated mechanism for controlling the strength of the equatorial cold tongue. Despite the sensitivity of equatorial SST to these changes in convective parameterization, the east Pacific double-Intertropical Convergence Zone rainfall bias persists in all simulations presented in this study.

  8. Conjunction of 2D and 3D modified flow solvers for simulating spatio-temporal wind induced hydrodynamics in the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Zounemat-Kermani, Mohammad; Sabbagh-Yazdi, Saeed-Reza

    2010-06-01

    The main objective of this study is the simulation of flow dynamics in the deep parts of the Caspian Sea, in which the southern and middle deep regions are surrounded by considerable areas of shallow zones. To simulate spatio-temporal wind induced hydrodynamics in deep waters, a conjunctive numerical model consisting of a 2D depth average model and a 3D pseudo compressible model is proposed. The 2D model is applied to determine time dependent free surface oscillations as well as the surface velocity patterns and is conjunct to the 3D flow solver for computing three-dimensional velocity and pressure fields which coverage to steady state for the top boundary condition. The modified 2D and 3D sets of equations are conjunct considering interface shear stresses. Both sets of 2D and 3D equations are solved on unstructured triangular and tetrahedral meshes using the Galerkin Finite Volume Method. The conjunctive model is utilized to investigate the deep currents affected by wind, Coriolis forces and the river inflow conditions of the Caspian Sea. In this study, the simulation of flow field due to major winds as well as transient winds in the Caspian Sea during a period of 6 hours in the winter season has been conducted and the numerical results for water surface level are then compared to the 2D numerical results.

  9. Eddy energy and shelf interactions in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ohlmann, J. Carter; Niiler, P. Peter; Fox, Chad A.; Leben, Robert R.

    2001-02-01

    Sea surface height anomaly data from satellite are continuously available for the entire Gulf of Mexico. Surface current velocities derived from these remotely sensed data are compared with surface velocities from drifting buoys. The comparison shows that satellite altimetry does an excellent job resolving gulf eddies over the shelf rise (depths between ˜200 and 2000 m) if the proper length scale is used. Correlations between altimeter- and drifter-derived velocities are statistically significant (r>0.5) when the surface slope is computed over 125 km, indicating that remotely sensed sea surface height anomaly data can be used to aid the understanding of circulation over the shelf rise. Velocity variance over the shelf rise from the altimetry data shows regions of pronounced eddy energy south of the Mississippi outflow, south of the Texas-Louisiana shelf, and in the northwest and northeast corners of the gulf. These are the same locations where surface drifters are most likely to cross the shelf rise, suggesting gulf eddies promote cross-shore flows. This is clearly exemplified with both warm and cold eddies. Finally, the contribution of gulf eddies and wind stress to changes in the mean circulation are compared. Results indicate that the eddy-generated vorticity flux to the mean flow is greater than the contribution from the surface wind stress curl, especially in the region of the Loop current and along the shelf rise base in the western gulf. Future modeling efforts must not neglect the role of eddies in driving gulf circulation over the shelf rise.

  10. Onshore Wind Stress and Buoyancy Flux Observed on a Dissipative Mediterranean Beach

    DTIC Science & Technology

    2015-12-01

    a climatologically Mediterranean coastline to explore the wind stress and buoyancy flux. An eddy covariance system was deployed in the intertidal... climatologically Mediterranean coastline to explore the wind stress and buoyancy flux. An eddy covariance system was deployed in the intertidal zone

  11. Wind tunnel simulation of a wind turbine wake in neutral, stable and unstable wind flow

    NASA Astrophysics Data System (ADS)

    Hancock, P. E.; Zhang, S.; Pascheke, F.; Hayden, P.

    2014-12-01

    Measurements of mean velocity, Reynolds stresses, temperature and heat flux have been made in the wake of a model wind turbine in the EnFlo meteorology wind tunnel, for three atmospheric boundary layer states: the base-line neutral case, stable and unstable. The full-to-model scale is approximately 300:1. Primary instrumentation is two-component LDA combine with cold-wire thermometry to measure heat flux. In terms of surface conditions, the stratified cases are weak, but there is a strong 'imposed' condition in the stable case. The measurements were made between 0.5D and 10D, where D is the turbine disk diameter. In the stable case the velocity deficit decreases more slowly; more quickly in the unstable case. Heights at which quantities are maximum or minimum are greater in the unstable case and smaller in the stable case. In the stable case the wake height is suppressed but the width is increased, while in the unstable case the height is increased and the width (at hub height) reaches a maximum and then decreases. The turbulence in the wake behaves in a complex way. Further work needs to be done, to cover stronger levels of surface condition, requiring more extensive measurements to properly capture the wake development.

  12. Relative influences of the metocean forcings on the drifting ice pack and estimation of internal ice stress gradients in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Turnbull, I. D.; Torbati, R. Z.; Taylor, R. S.

    2017-07-01

    Understanding the relative influences of the metocean forcings on the drift of sea ice floes is a crucial component to the overall characterization of an ice environment and to developing an understanding of the factors controlling the ice dynamics. In addition, estimating the magnitude of the internal stress gradients on drifting sea ice floes generated by surrounding ice cover is important for modeling operations, informing the design of offshore structures and vessels in ice environments, and for the proper calibration of Discrete Element Models (DEM) of fields of drifting ice floes. In the spring of 2015 and 2016, four sea ice floes offshore Makkovik, Labrador were tagged with satellite-linked ice tracking buoys along with one satellite-linked weather station on each floe to transmit wind speed and direction. Twenty satellite-linked Lagrangian surface ocean current tracking buoys were also deployed in the open water adjacent to the targeted ice floes. In this paper, the dynamics of the four ice floes are explored in terms of the relative proportions which were forced by the wind, current, sea surface topography, Coriolis, and internal stress gradients. The internal ice stress gradients are calculated as residuals between the observed accelerations of the floes as measured by the tracking buoys and the sums of the other metocean forcings. Results show that internal ice stress gradients accounted for up to 50% of the observed forcing on the floes, and may have reached up to around 0.19 kPa.

  13. Spacebased Observations of the Oceanic Responses to Monsoons in South China Sea and Arabian Sea

    NASA Technical Reports Server (NTRS)

    Xie, Xiao-Su; Liu, W. Timothy

    2000-01-01

    A large percentage of the world's population and their agrarian economy must endure the vagaries of the monsoons over the tropical oceans between Africa and the Philippines. We know very little about the oceanic responses to changes of the monsoon in the South China Sea (SCS), which is under the influence of the East Asian Monsoon System, and the Arabian Sea (AS), which is dominated by the Indian Monsoon System; oceanic observations are sparse in both regions. Data from spaceborne microwave scatterometers and radiometers have been used to estimate the two major atmospheric forcing, momentum flux and latent heat flux (LHF), which change with the monsoon winds. Spaceborne sensors also observed the surface signatures of the oceanic response: SST and sea level changes (SLC. Sufficient durations of these data have recently become available to allow the meaningful studies of the annual cycles and interannual anomalies. In SCS, the winter monsoon is strong and steady but the summer monsoon is weak and has large intraseasonal fluctuations. In AS, the summer monsoon is much stronger than the winter monsoon. Significant correlations between LHF and SST tendency, and between curl of wind stress and SLC are found in both oceans. In the north SCS, winds are strong and dry, LHF is high, and ocean cooling is also large in fall; LHF is low and the ocean warms up in spring. In AS, LHF and SST tendency have a semi annual period; LHF is high in summer when the wind is strong and in winter when the wind is dry. Along the coast of Oman, the strong summer southwest monsoon causes intense upwelling, low SST and LHF in summer; such wind-driven SST changes is not as obvious along the Vietnam coast because of the weaker summer monsoon. The negative correlation between curl of wind stress and SLC found in the central basins of both SCS and AS agrees with a simple Ekman pumping scenario. Cyclonic winds drive surface divergence and upwelling in the ocean; the rise of the thermocline causes lower sea levels. Anticyclonic winds cause higher SLC. The exceptions (positive correlations) are found in the coastal regions in the north and the south of SCS, off the west coast of India between 5N and 10N, and along the coast of Somalia.

  14. Critical role of wind-wave induced erosion on the morphodynamic evolution of shallow tidal basins

    NASA Astrophysics Data System (ADS)

    D'Alpaos, Andrea; Carniello, Luca; Rinaldo, Andrea

    2014-05-01

    Wind-wave induced erosion processes are among the chief processes which govern the morphodynamic evolution of shallow tidal basins, both in the vertical and in the horizontal plane. Wind-wave induced bottom shear stresses can promote the disruption of the polymeric microphytobenthic biofilm and lead to the erosion of tidal-flat surfaces and to the increase in suspended sediment concentration which affects the stability of intertidal ecosystems. Moreover, the impact of wind-waves on salt-marsh margins can lead to the lateral erosion of marsh boundaries thus promoting the disappearance of salt-marsh ecosystems. Towards the goal of developing a synthetic theoretical framework to represent wind wave-induced resuspension events and account for their erosional effects on the long-term biomorphodynamic evolution of tidal systems, we have employed a complete, coupled finite element model accounting for the role of wind waves and tidal currents on the hydrodynamic circulation in shallow basins. Our analyses of the characteristics of combined current and wave-induced exceedances in bottom shear stress over a given threshold for erosion, suggest that wind wave-induced resuspension events can be modeled as a marked Poisson process. The interarrival time of wave-induced erosion events is, in fact, an exponentially distributed random variable, as well as the duration and intensity of overthreshold events. Moreover, the analysis of wind-wave induced resuspension events for different historical configurations of the Venice Lagoon from the 19th to the 21st century, shows that the interarrival times of erosion events have dramatically decreased through the last two centuries, whereas the intensities of erosion events have experienced a surprisingly high increase. This allows us to characterize the threatening erosion and degradation processes that the Venice Lagoon has been experiencing since the beginning of the last century.

  15. Reconstruction of Local Sea Levels at South West Pacific Islands—A Multiple Linear Regression Approach (1988-2014)

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Melet, A.; Meyssignac, B.; Ganachaud, A.; Kessler, W. S.; Singh, A.; Aucan, J.

    2018-02-01

    Rising sea levels are a critical concern in small island nations. The problem is especially serious in the western south Pacific, where the total sea level rise over the last 60 years has been up to 3 times the global average. In this study, we aim at reconstructing sea levels at selected sites in the region (Suva, Lautoka—Fiji, and Nouméa—New Caledonia) as a multilinear regression (MLR) of atmospheric and oceanic variables. We focus on sea level variability at interannual-to-interdecadal time scales, and trend over the 1988-2014 period. Local sea levels are first expressed as a sum of steric and mass changes. Then a dynamical approach is used based on wind stress curl as a proxy for the thermosteric component, as wind stress curl anomalies can modulate the thermocline depth and resultant sea levels via Rossby wave propagation. Statistically significant predictors among wind stress curl, halosteric sea level, zonal/meridional wind stress components, and sea surface temperature are used to construct a MLR model simulating local sea levels. Although we are focusing on the local scale, the global mean sea level needs to be adjusted for. Our reconstructions provide insights on key drivers of sea level variability at the selected sites, showing that while local dynamics and the global signal modulate sea level to a given extent, most of the variance is driven by regional factors. On average, the MLR model is able to reproduce 82% of the variance in island sea level, and could be used to derive local sea level projections via downscaling of climate models.

  16. Investigation of low-speed turbulent separated flow around airfoils

    NASA Technical Reports Server (NTRS)

    Wadcock, Alan J.

    1987-01-01

    Described is a low-speed wind tunnel experiment to measure the flowfield around a two-dimensional airfoil operating close to maximum lift. Boundary layer separation occurs on the upper surface at x/c=0.85. A three-component laser velocimeter, coupled with a computer-controlled data acquisition system, was used to obtain three orthogonal mean velocity components and three components of the Reynolds stress tensor in both the boundary layer and wake of the airfoil. Pressure distributions on the airfoil, skin friction distribution on the upper surface of the airfoil, and integral properties of the airfoil boudary layer are also documented. In addition to these near-field flow properties, static pressure distributions, both upstream and downstream from the airfoil and on the walls of the wind tunnel, are also presented.

  17. Fatigue resistant carbon coatings for rolling/sliding contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Harpal; Ramirez, Giovanni; Eryilmaz, Osman

    2016-06-01

    The growing demands for renewable energy production have recently resulted in a significant increase in wind plant installation. Field data from these plants show that wind turbines suffer from costly repair, maintenance and high failure rates. Often times the reliability issues are linked with tribological components used in wind turbine drivetrains. The primary failure modes in bearings and gears are associated with micropitting, wear, brinelling, scuffing, smearing and macropitting all of which occur at or near the surface. Accordingly, a variety of surface engineering approaches are currently being considered to alter the near surface properties of such bearings and gearsmore » to prevent these tribological failures. In the present work, we have evaluated the tribological performance of compliant highly hydrogenated diamond like carbon coating developed at Argonne National Laboratory, under mixed rolling/sliding contact conditions for wind turbine drivetrain components. The coating was deposited on AISI 52100 steel specimens using a magnetron sputter deposition system. The experiments were performed on a PCS Micro-Pitting-Rig (MPR) with four material pairs at 1.79 GPa contact stress, 40% slide to roll ratio and in polyalphaolefin (PAO4) basestock oil (to ensure extreme boundary conditions). The post-test analysis was performed using optical microscopy, surface profilometry, and Raman spectroscopy. The results obtained show a potential for these coatings in sliding/rolling contact applications as no failures were observed with coated specimens even after 100 million cycles compared to uncoated pair in which they failed after 32 million cycles, under the given test conditions.« less

  18. Influence of surface rectangular defect winding layer on burst pressure of CNG-II composite cylinder

    NASA Astrophysics Data System (ADS)

    You, H. X.; Peng, L.; Zhao, C.; Ma, K.; Zhang, S.

    2018-01-01

    To study the influence of composite materials’ surface defect on the burst pressure of CNG-II composite cylinder, the surface defect was simplified as a rectangular slot of certain size on the basis of actually investigating the shape of cylinder’s surface defect. A CNG-II composite cylinder with a rectangular slot defect (2mm in depth) was used for burst test, and the numerical simulation software ANSYS was used to calculate its burst pressure. Through comparison between the burst pressure in the test and the numerical analysis result, the correctness of the numerical analysis method was verified. On this basis, the numerical analysis method was conducted for composite cylinders with surface defect in other depth. The result showed that surface defect in the form of rectangular slot had no significant effect on the liner stress of composite cylinder. Instead, it had a great influence on the stress of fiber-wrapped layer. The burst pressure of the composite cylinder decreased as the defect depth increasing. The hoop stress at the bottom of the defect in the shape of rectangular slot exceeded the maximum of the composite materials’ tensile strength, which could result in the burst pressure of composite cylinders decreasing.

  19. Ockham's Razorblade Shaving Wind-Induced Circulation

    NASA Astrophysics Data System (ADS)

    Bergmann, Juan Carlos

    2010-05-01

    Terrestrial physical oceanography is fortunate because of the existence of the continents that divide the low-latitude oceans into basins. At first glance, the previous statement appears to be not obvious because an ocean-planet should be much simpler to describe. Simple-case explanation is the central aspect of Ockham's Razorblade: If a theory fails to describe the most-simple case properly, the theory is, at least, ‘not good'. Also Descartes' methodical rules take the most-simple case as starting point. The analysis of wind-induced circulation on an ocean-planet will support the initial statement. Earth's south hemisphere is dominated by the oceans. The continents' influence on the zonal-average zonal-wind climate is relatively small. Therefore, South Hemisphere's zonal wind pattern is a relatively good proxy for that of an ocean planet. Application of this wind-stress pattern to an ocean planet yields reasonable meridional mass-flow results from the polar-regions down to the high-pressure belts: Down-welling and up-welling of water-mass are approximately balanced. However, the entire tropical circulation can in principle not be closed because there is only down-welling - even if the extreme down-welling in the equatorial belt (± 8°, with a singularity at the equator) is disregarded. The only input to the calculations is the observed terrestrial south-hemisphere zonal wind-stress pattern. Meridional stress is irrelevant because it produces a closed zonal Ekman-transport around the ocean planet (sic!). Vertical mass-transport is calculated from the divergence of the wind-induced meridional Ekman-mass-transport, which in its turn is a necessary consequence of angular-momentum conservation. No assumptions are made on how the return-flows at depth are forced because the wind-force equations cannot contribute hereto. This circumstance expresses a fundamental difference to atmospheric circulation, where mechanical forcing is caused by the pressure-fields that result from differential heating/cooling and therefore ‘automatically' comprise the entire circulation system. Wind-caused oceanic flow is exclusively generated by frictional wind-forces at the surface, and other processes in the ocean are not causally connected hereto. In absence of continents it is quite difficult to ‘find' the corresponding forcing for the meridional return-flows - and it can definitely not be wind-force-caused - very strange! The fact that the wind-induced circulation can only be closed by the action of other processes, which are not causally connected to wind-forces, demonstrates that something must be fundamentally wrong. The singularity at the equator and the extreme down-welling in the equatorial belt indicate an additional severe problem that can only be avoided if zonal wind-stress is completely excluded. Escape to additional assumptions is similar to the introduction of the epicycles in order to explain the planets' retrograde motion in maintaining geocentric cosmology. Should the previous analysis be ignored in favour of maintaining the ‘established' ideas of wind-induced circulation or should there be an effort to formulate new ideas that provide closed and balanced circulation without employing other processes than wind-forces?

  20. Mesoscale Air-Sea Interactions along the Gulf Stream: An Eddy-Resolving and Convection-Permitting Coupled Regional Climate Model Study

    NASA Astrophysics Data System (ADS)

    Hsieh, J. S.; Chang, P.; Saravanan, R.

    2017-12-01

    Frontal and mesoscale air-sea interactions along the Gulf Stream (GS) during boreal winter are investigated using an eddy-resolving and convection-permitting coupled regional climate model with atmospheric grid resolutions varying from meso-β (27-km) to -r (9-km and 3-km nest) scales in WRF and a 9-km ocean model (ROMS) that explicitly resolves the ocean mesoscale eddies across the North Atlantic basin. The mesoscale wavenumber energy spectra for the simulated surface wind stress and SST demonstrate good agreement with the observed spectra calculated from the observational QuikSCAT and AMSR-E datasets, suggesting that the model well captures the energy cascade of the mesoscale eddies in both the atmosphere and the ocean. Intercomparison among different resolution simulations indicates that after three months of integration the simulated GS path tends to overshoot beyond the separation point in the 27-km WRF coupled experiments than the observed climatological path of the GS, whereas the 3-km nested and 9-km WRF coupled simulations realistically simulate GS separation. The GS overshoot in 27-km WRF coupled simulations is accompanied with a significant SST warming bias to the north of the GS extension. Such biases are associated with the deficiency of wind stress-SST coupling strengths simulated by the coupled model with a coarser resolution in WRF. It is found that the model at 27-km grid spacing can approximately simulate 72% (62%) of the observed mean coupling strength between surface wind stress curl (divergence) and crosswind (downwind) SST gradient while by increasing the WRF resolutions to 9 km or 3 km the coupled model can much better capture the observed coupling strengths.

  1. Impact of Ocean Surface Waves on Air-Sea Momentum Flux

    NASA Astrophysics Data System (ADS)

    Tamura, H.; Drennan, W. M.; Collins, C. O., III; Graber, H. C.

    2016-02-01

    In this study, we investigated the structure of turbulent air flow over ocean waves. Observations of wind and waves were retrieved by air-sea interaction spar (ASIS) buoys during the shoaling waves experiment (SHOWEX) in Duck, NC in 1999. It is shown that the turbulent velocity spectra and co-spectra for pure wind sea conditions follow the universal forms estimated by Miyake et al [1970]. In the presence of strong swells, the wave boundary layer was extended and the universal spectral scaling of u'w' broke down [Drennan et al, 1999]. On the other hand, the use of the peak wave frequency (fp) to reproduce the "universal spectra" succeeded at explaining the spectral structure of turbulent flow field. The u'w' co-spectra become negative near the fp, which suggests the upward momentum transport (i.e., negative wind stress) induced by ocean waves. Finally, we propose three turbulent flow structures for different wind-wave regimes.

  2. A new parameterization of an empirical model for wind/ocean scatterometry

    NASA Technical Reports Server (NTRS)

    Woiceshyn, P. M.; Wurtele, M. G.; Boggs, D. H.; Mcgoldrick, L. F.; Peteherych, S.

    1984-01-01

    The power law form of the SEASAT A Scatterometer System (SASS) empirical backscatter-to-wind model function does not uniformly meet the instrument performance over the range 4 to 24 /ms. Analysis indicates that the horizontal polarization (H-Pol) and vertical polarization (V-Pol) components of the benchmark SASS1 model function yield self-consistent results only for a small mid-range of speeds at larger incidence angles, and for a somewhat larger range of speeds at smaller incidence angles. Comparison of SASS1 to in situ data over the Gulf of Alaska region further underscores the shortcomings of the power law form. Finally, a physically based empirical SASS model is proposed which corrects some of the deficiencies of power law models like SASS1. The new model allows the mutual determination of sea surface wind stress and wind speed in a consistent manner from SASS backscatter measurements.

  3. A modulating effect of Tropical Instability Wave (TIW)-induced surface wind feedback in a hybrid coupled model of the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Zhang, Rong-Hua

    2016-10-01

    Tropical Instability Waves (TIWs) and the El Niño-Southern Oscillation (ENSO) are two air-sea coupling phenomena that are prominent in the tropical Pacific, occurring at vastly different space-time scales. It has been challenging to adequately represent both of these processes within a large-scale coupled climate model, which has led to a poor understanding of the interactions between TIW-induced feedback and ENSO. In this study, a novel modeling system was developed that allows representation of TIW-scale air-sea coupling and its interaction with ENSO. Satellite data were first used to derive an empirical model for TIW-induced sea surface wind stress perturbations (τTIW). The model was then embedded in a basin-wide hybrid-coupled model (HCM) of the tropical Pacific. Because τTIW were internally determined from TIW-scale sea surface temperatures (SSTTIW) simulated in the ocean model, the wind-SST coupling at TIW scales was interactively represented within the large-scale coupled model. Because the τTIW-SSTTIW coupling part of the model can be turned on or off in the HCM simulations, the related TIW wind feedback effects can be isolated and examined in a straightforward way. Then, the TIW-scale wind feedback effects on the large-scale mean ocean state and interannual variability in the tropical Pacific were investigated based on this embedded system. The interactively represented TIW-scale wind forcing exerted an asymmetric influence on SSTs in the HCM, characterized by a mean-state cooling and by a positive feedback on interannual variability, acting to enhance ENSO amplitude. Roughly speaking, the feedback tends to increase interannual SST variability by approximately 9%. Additionally, there is a tendency for TIW wind to have an effect on the phase transition during ENSO evolution, with slightly shortened interannual oscillation periods. Additional sensitivity experiments were performed to elucidate the details of TIW wind effects on SST evolution during ENSO cycles.

  4. Aerodynamic surface stress intermittency and conditionally averaged turbulence statistics

    NASA Astrophysics Data System (ADS)

    Anderson, William; Lanigan, David

    2015-11-01

    Aeolian erosion is induced by aerodynamic stress imposed by atmospheric winds. Erosion models prescribe that sediment flux, Q, scales with aerodynamic stress raised to exponent, n, where n > 1 . Since stress (in fully rough, inertia-dominated flows) scales with incoming velocity squared, u2, it follows that q ~u2n (where u is some relevant component of the flow). Thus, even small (turbulent) deviations of u from its time-mean may be important for aeolian activity. This rationale is augmented given that surface layer turbulence exhibits maximum Reynolds stresses in the fluid immediately above the landscape. To illustrate the importance of stress intermittency, we have used conditional averaging predicated on stress during large-eddy simulation of atmospheric boundary layer flow over an arid, bare landscape. Conditional averaging provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Preliminary evidence indicates that surface stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. We characterize geometric attributes of such structures and explore streamwise and vertical vorticity distribution within the conditionally averaged flow field. This work was supported by the National Sci. Foundation, Phys. and Dynamic Meteorology Program (PM: Drs. N. Anderson, C. Lu, and E. Bensman) under Grant # 1500224. Computational resources were provided by the Texas Adv. Comp. Center at the Univ. of Texas.

  5. Aerodynamic Surface Stress Intermittency and Conditionally Averaged Turbulence Statistics

    NASA Astrophysics Data System (ADS)

    Anderson, W.

    2015-12-01

    Aeolian erosion of dry, flat, semi-arid landscapes is induced (and sustained) by kinetic energy fluxes in the aloft atmospheric surface layer. During saltation -- the mechanism responsible for surface fluxes of dust and sediment -- briefly suspended sediment grains undergo a ballistic trajectory before impacting and `splashing' smaller-diameter (dust) particles vertically. Conceptual models typically indicate that sediment flux, q (via saltation or drift), scales with imposed aerodynamic (basal) stress raised to some exponent, n, where n > 1. Since basal stress (in fully rough, inertia-dominated flows) scales with the incoming velocity squared, u^2, it follows that q ~ u^2n (where u is some relevant component of the above flow field, u(x,t)). Thus, even small (turbulent) deviations of u from its time-averaged value may play an enormously important role in aeolian activity on flat, dry landscapes. The importance of this argument is further augmented given that turbulence in the atmospheric surface layer exhibits maximum Reynolds stresses in the fluid immediately above the landscape. In order to illustrate the importance of surface stress intermittency, we have used conditional averaging predicated on aerodynamic surface stress during large-eddy simulation of atmospheric boundary layer flow over a flat landscape with momentum roughness length appropriate for the Llano Estacado in west Texas (a flat agricultural region that is notorious for dust transport). By using data from a field campaign to measure diurnal variability of aeolian activity and prevailing winds on the Llano Estacado, we have retrieved the threshold friction velocity (which can be used to compute threshold surface stress under the geostrophic balance with the Monin-Obukhov similarity theory). This averaging procedure provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Preliminary evidence indicates that surface stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. We will characterize geometric attributes of such structures and explore streamwise and vertical vorticity distribution within the conditionally averaged flow field.

  6. Global Evolution of an Accretion Disk with a Net Vertical Field: Coronal Accretion, Flux Transport, and Disk Winds

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaohuan; Stone, James M.

    2018-04-01

    We report results from global ideal MHD simulations that study thin accretion disks (with thermal scale height H/R = 0.1 and 0.05) threaded by net vertical magnetic fields. Our computations span three orders of magnitude in radius, extend all the way to the pole, and are evolved for more than 1000 innermost orbits. We find that (1) inward accretion occurs mostly in the upper magnetically dominated regions of the disk at z ∼ R, similar to predictions from some previous analytical work and the “coronal accretion” flows found in GRMHD simulations. (2) A quasi-static global field geometry is established in which flux transport by inflows at the surface is balanced by turbulent diffusion. The resulting field is strongly pinched inwards at the surface. A steady-state advection–diffusion model, with a turbulent magnetic Prandtl number of order unity, reproduces this geometry well. (3) Weak unsteady disk winds are launched beyond the disk corona with the Alfvén radius R A /R 0 ∼ 3. Although the surface inflow is filamentary and the wind is episodic, we show that the time-averaged properties are well-described by steady-wind theory. Even with strong fields, β 0 = 103 at the midplane initially, only 5% of the angular momentum transport is driven by the wind, and the wind mass flux from the inner decade of the radius is only ∼0.4% of the mass accretion rate. (4) Within the disk, most of the accretion is driven by the Rϕ stress from the MRI and global magnetic fields. Our simulations have many applications to astrophysical accretion systems.

  7. Maintaining the Background Dust Opacity During Northern Hemisphere Summer Mars Using Wind Stress Based Dust Lifting

    NASA Astrophysics Data System (ADS)

    Jha, V.; Kahre, M. A.

    2017-12-01

    The Mars atmosphere has low levels of dust during Northern Hemisphere (NH) spring and summer (the non-dusty season) and increased levels during NH autumn and winter (the dusty season). In the absence of regional or global storms, dust devils and local storms maintain a background minimum dust loading during the non-dusty season. While observational surveys and Global Climate Model (GCM) studies suggest that dust devils are likely to be major contributors to the background haze during NH spring and summer, a complete understanding of the relative contribution of dust devils and local dust storms has not yet been achieved. We present preliminary results from an investigation that focuses on the effects of radiatively active water ice clouds on dust lifting processes during these seasons. Water ice clouds are known to affect atmospheric temperatures directly by absorption and emission of thermal infrared radiation and indirectly through dynamical feedbacks. Our goal is to understand how clouds affect the contribution by local (wind stress) dust storms to the background dust haze during NH spring and summer. The primary tool for this work is the NASA Ames Mars GCM, which contains physical parameterizations for a fully interactive dust cycle. Three simulations that included wind stress dust lifting were executed for a period of 5 Martian years: a case that included no cloud formation, a case that included radiatively inert cloud formation and a case that included radiatively active cloud (RAC) formation. Results show that when radiatively active clouds are included, the clouds in the aphelion cloud belt radiatively heat the atmosphere aloft in the tropics (Figure 1). This heating produces a stronger overturning circulation, which in turn produces an enhanced low-level flow in the Hadley cell return branch. The stronger low-level flow drives higher surface stresses and increased dust lifting in those locations. We examine how realistic these simulated results are by comparing the spatial pattern of predicted wind stress lifting with a catalog of observed local storms. Better agreement is achieved in the radiatively active cloud case. These results suggest that wind stress lifting may contribute more to maintaining the background dust haze during NH spring and summer than what previous studies have shown.

  8. Structure of protoplanetary discs with magnetically driven winds

    NASA Astrophysics Data System (ADS)

    Khajenabi, Fazeleh; Shadmehri, Mohsen; Pessah, Martin E.; Martin, Rebecca G.

    2018-04-01

    We present a new set of analytical solutions to model the steady-state structure of a protoplanetary disc with a magnetically driven wind. Our model implements a parametrization of the stresses involved and the wind launching mechanism in terms of the plasma parameter at the disc midplane, as suggested by the results of recent, local magnetohydrodynamical simulations. When wind mass-loss is accounted for, we find that its rate significantly reduces the disc surface density, particularly in the inner disc region. We also find that models that include wind mass-loss lead to thinner dust layers. As an astrophysical application of our models, we address the case of HL Tau, whose disc exhibits a high accretion rate and efficient dust settling at its midplane. These two observational features are not easy to reconcile with conventional accretion disc theory, where the level of turbulence needed to explain the high accretion rate would prevent a thin dust layer. Our disc model that incorporates both mass-loss and angular momentum removal by a wind is able to account for HL Tau observational constraints concerning its high accretion rate and dust layer thinness.

  9. Shelf Circulation Induced by an Orographic Wind Jet

    NASA Astrophysics Data System (ADS)

    Ràfols, Laura; Grifoll, Manel; Jordà, Gabriel; Espino, Manuel; Sairouní, Abdel; Bravo, Manel

    2017-10-01

    The dynamical response to cross-shelf wind-jet episodes is investigated. The study area is located at the northern margin of the Ebro Shelf, in the Northwestern (NW) Mediterranean Sea, where episodes of strong northwesterly wind occur. In this case, the wind is channeled through the Ebro Valley and intensifies upon reaching the sea, resulting in a wind jet. The wind-jet response in terms of water circulation and vertical density structure is investigated using a numerical model. The numerical outputs agree with water current observations from a high-frequency radar. Additionally, temperature, sea level, and wind measurements are also used for the skill assessment of the model. For the wind-jet episodes, the numerical results show a well-defined two-layer circulation in the cross-shelf direction, with the surface currents in the direction of the wind. This pattern is consistent with sea level set-down due to the wind effect. The comparison of the vertical structure response for different episodes revealed that the increase of stratification leads to an onshore displacement of the transition from inner shelf to mid-shelf. In general, the cross-shelf momentum balance during a wind-jet episode exhibits a balance between the frictional terms and the pressure gradient in shallow waters, shifting to a balance between the Coriolis force and the wind stress terms in deeper waters.

  10. Structure of the airflow above surface waves

    NASA Astrophysics Data System (ADS)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*<3.7) and counted using measured vorticity and surface viscous stress criteria. Detached high spanwise vorticity layers cause intense wave-coherent turbulence downwind of wave crests, as shown by wave-phase averaging of turbulent momentum fluxes. Mean wave-coherent airflow motions and fluxes also show strong phase-locked patterns, including a sheltering effect, upwind of wave crests over old mechanically generated swells (Cp/u*=31.7), and downwind of crests over young wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer theory.

  11. Role of sea surface wind stress forcing on transport between Tropical Pacific and Indian Ocean

    NASA Astrophysics Data System (ADS)

    Zhao, Q.

    Using an Indian-Pacific Ocean Circulation Model (IPOM) a simulation study on the Transports of between Tropical Pacific and Indian Ocean such as Indonesian Through flow (ITF) has been done. IPOM covered the area 25°E-70°W, 35°S-60°N. There are 31 levels in the vertical with 22 levels upper 400m in it. The horizontal resolution is 1/3° lat x 1.5° lon between 10°S and 10°N. The coastline and ocean topography of IPOM is prepared from Scripps topography data on 1x1°grid. Forcing IPOM with monthly observational wind stress in 1990-1999 the interannual variation of sea temperature has been reproduced well, not only on El Nino in the Pacific but also on Indian Ocean Dipole (IOD). Therefore, the oceanic circulations in the tropical ocean are reasonable. The analyses of the oceanic circulations from the simulations suggest that the transport southward through Makassar Strait is the primary route of thermocline water masses from the North Pacific to the Indonesian sea. The transport westward through Bali-Western Australian Transect (BWAT, at 117.5E) can be thought as the final output of ITF through the archipelago to Indian Ocean. The transport westward through BWAT is in 8-12S above 150m, its core centered near surface 10S, which looks like a jet. The westward velocity is more than 50 cm/s. The transport shows significant seasonal and interannual variations. The maximum is in Jul-Oct, minimum in Jan-Mar. These results are consistent with some observation basically. The correlation analyses indict that the variations of transport westward is related with the southeasterly anomaly in the east tropical Indian ocean. The transport variation lags wind anomaly about 3 months. The correlation coefficient is more than 0.6. The transport is strong during IOD, for example in 1994 and 1997. The variations are also related with the northwesterly anomaly in the center equatorial Pacific and the easterly in the eastern equatorial Pacific. The transport is strong in most ENSO events. The above results suggest the sea surface wind stress from satellite is widely useful.

  12. Forcing mechanisms and hydrodynamics in Loch Linnhe, a dynamically wide Scottish estuary

    NASA Astrophysics Data System (ADS)

    Rabe, Berit; Hindson, Jennifer

    2017-09-01

    Hydrodynamic conditions in Loch Linnhe, a dynamifcally wide estuary on the west coast of Scotland, are primarily influenced by wind forcing, freshwater input, and tides. Winds in the region are orographically steered along the axis of the estuary due to surrounding mountains. A large rainfall catchment area results in a large freshwater inflow into Loch Linnhe which in turn produces low salinity waters at the head of the estuary. This, combined with a connection to the open sea with coastal salinities, leads to salinity gradients in the horizontal and vertical. Even though a range of observational programmes have focussed on Loch Linnhe, the literature still lacks an evaluation of its physical dynamics. Here we present a first description of the hydrodynamics in Loch Linnhe based on observations. Wind stress predominantly influences the surface layer, especially at low frequencies and with a stronger influence than tides during neap tides. The buoyancy-driven flow due to the large river runoff influences the circulation independent of wind stress. Seasonal (spring, autumn) and interannual (2011, 2012) variability of water masses occur especially in the surface layer. Tides are dominated by the semi-diurnal constituent M2 with tidal ellipses aligned in the along-estuary direction and a stronger influence during spring tides compared to wind. An evaluation of dimensionless numbers reveal laterally and vertically sheared exchange flows. Compared to other Scottish estuaries Loch Linnhe is wide enough to be influenced by the Earth's rotation and demonstrates an enhanced freshwater outflow along its north-western coast as the freshwater is diverted to the right in the direction of the flow. These observed patterns are important for the sustainable environmental management of this socio-economically valuable region, e.g. through their relevance to aquaculture pathogen transmission patterns. A thorough understanding of the dynamics of the system is essential for a successful evidence-based marine planning framework.

  13. The response of an ocean general circulation model to surface wind stress produced by an atmospheric general circulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, B.; Schneider, E.K.

    1995-10-01

    Two surface wind stress datasets for 1979-91, one based on observations and the other from an investigation of the COLA atmospheric general circulation model (AGCM) with prescribed SST, are used to drive the GFDL ocean general circulation model. These two runs are referred to as the control and COLA experiments, respectively. Simulated SST and upper-ocean heat contents (HC) in the tropical Pacific Ocean are compared with observations and between experiments. Both simulation reproduced the observed mean SST and HC fields as well as their annual cycles realistically. Major errors common to both runs are colder than observed SST in themore » eastern equatorial ocean and HC in the western Pacific south of the equator, with errors generally larger in the COLA experiment. New errors arising from the AGCM wind forcing include higher SST near the South American coast throughout the year and weaker HC gradients along the equator in boreal spring. The former is associated with suppressed coastal upwelling by weak along shore AGCM winds, and the latter is caused by weaker equatorial easterlies in boreal spring. The low-frequency ENSO fluctuations are also realistic for both runs. Correlations between the observed and simulated SST anomalies from the COLA simulation are as high as those from the control run in the central equatorial Pacific. A major problem in the COLA simulation is the appearance of unrealistic tropical cold anomalies during the boreal spring of mature El Nino years. These anomalies propagate along the equator from the western Pacific to the eastern coast in about three months, and temporarily eliminate the warm SST and HC anomalies in the eastern Pacific. This erroneous oceanic response in the COLA simulation is caused by a reversal of the westerly wind anomalies on the equator, associated with an unrealistic southward shift of the ITCZ in boreal spring during El Nino events. 66 refs., 16 figs.« less

  14. Field and numerical study of wind and surface waves at short fetches

    NASA Astrophysics Data System (ADS)

    Baydakov, Georgy; Kuznetsova, Alexandra; Sergeev, Daniil; Papko, Vladislav; Kandaurov, Alexander; Vdovin, Maxim; Troitskaya, Yuliya

    2016-04-01

    Measurements were carried out in 2012-2015 from May to October in the waters of Gorky Reservoir belonging to the Volga Cascade. The methods of the experiment focus on the study of airflow in the close proximity to the water surface. The sensors were positioned at the oceanographic Froude buoy including five two-component ultrasonic sensors WindSonic by Gill Instruments at different levels (0.1, 0.85, 1.3, 2.27, 5.26 meters above the mean water surface level), one water and three air temperature sensors, and three-channel wire wave gauge. One of wind sensors (0.1 m) was located on the float tracking the waveform for measuring the wind speed in the close proximity to the water surface. Basic parameters of the atmospheric boundary layer (the friction velocity u∗, the wind speed U10 and the drag coefficient CD) were calculated from the measured profiles of wind speed. Parameters were obtained in the range of wind speeds of 1-12 m/s. For wind speeds stronger than 4 m/s CD values were lower than those obtained before (see eg. [1,2]) and those predicted by the bulk parameterization. However, for weak winds (less than 3 m/s) CD values considerably higher than expected ones. The new parameterization of surface drag coefficient was proposed on the basis of the obtained data. The suggested parameterization of drag coefficient CD(U10) was implemented within wind input source terms in WAVEWATCH III [3]. The results of the numerical experiments were compared with the results obtained in the field experiments on the Gorky Reservoir. The use of the new drag coefficient improves the agreement in significant wave heights HS [4]. At the same time, the predicted mean wave periods are overestimated using both built-in source terms and adjusted source terms. We associate it with the necessity of the adjusting of the DIA nonlinearity model in WAVEWATCH III to the conditions of the middle-sized reservoir. Test experiments on the adjusting were carried out. The work was supported by the Russian Foundation for Basic Research (Grants No. 15-35-20953, 14-05-00367, 15-45-02580) and project ASIST of FP7. The field experiment is supported by Russian Science Foundation (Agreement No. 15-17-20009), numerical simulations are partially supported by Russian Science Foundation (Agreement No. 14-17-00667). References 1. A.V. Babanin, V.K. Makin Effects of wind trend and gustiness on the sea drag: Lake George study // Journal of Geophysical Research, 2008, 113, C02015, doi:10.1029/2007JC004233 2. S.S. Atakturk, K.B. Katsaros Wind Stress and Surface Waves Observed on Lake Washington // Journal of Physical Oceanography, 1999, 29, pp. 633-650 3. Kuznetsova A.M., Baydakov G.A., Papko V.V., Kandaurov A.A., Vdovin M.I., Sergeev D.A., Troitskaya Yu.I. Adjusting of wind input source term in WAVEWATCH III model for the middle-sized water body on the basis of the field experiment // Hindawi Publishing Corporation, Advances in Meteorology, 2016, Vol. 1, article ID 574602 4. G.A. Baydakov, A.M. Kuznetsova, D.A. Sergeev, V.V. Papko, A.A. Kandaurov, M.I. Vdovin, and Yu.I. Troitskaya Field study and numerical modeling of wind and surface waves at the middle-sized water body // Geophysical Research Abstracts, Vol.17, EGU2015-9427, Vienne, Austria, 2015.

  15. Eyelashes divert airflow to protect the eye

    PubMed Central

    Amador, Guillermo J.; Mao, Wenbin; DeMercurio, Peter; Montero, Carmen; Clewis, Joel; Alexeev, Alexander; Hu, David L.

    2015-01-01

    Eyelashes are ubiquitous, although their function has long remained a mystery. In this study, we elucidate the aerodynamic benefits of eyelashes. Through anatomical measurements, we find that 22 species of mammals possess eyelashes of a length one-third the eye width. Wind tunnel experiments confirm that this optimal eyelash length reduces both deposition of airborne particles and evaporation of the tear film by a factor of two. Using scaling theory, we find this optimum arises because of the incoming flow's interactions with both the eye and eyelashes. Short eyelashes create a stagnation zone above the ocular surface that thickens the boundary layer, causing shear stress to decrease with increasing eyelash length. Long eyelashes channel flow towards the ocular surface, causing shear stress to increase with increasing eyelash length. These competing effects result in a minimum shear stress for intermediate eyelash lengths. This design may be employed in creating eyelash-inspired protection for optical sensors. PMID:25716186

  16. Structural optimization procedure of a composite wind turbine blade for reducing both material cost and blade weight

    NASA Astrophysics Data System (ADS)

    Hu, Weifei; Park, Dohyun; Choi, DongHoon

    2013-12-01

    A composite blade structure for a 2 MW horizontal axis wind turbine is optimally designed. Design requirements are simultaneously minimizing material cost and blade weight while satisfying the constraints on stress ratio, tip deflection, fatigue life and laminate layup requirements. The stress ratio and tip deflection under extreme gust loads and the fatigue life under a stochastic normal wind load are evaluated. A blade element wind load model is proposed to explain the wind pressure difference due to blade height change during rotor rotation. For fatigue life evaluation, the stress result of an implicit nonlinear dynamic analysis under a time-varying fluctuating wind is converted to the histograms of mean and amplitude of maximum stress ratio using the rainflow counting algorithm Miner's rule is employed to predict the fatigue life. After integrating and automating the whole analysis procedure an evolutionary algorithm is used to solve the discrete optimization problem.

  17. Numerical Simulation of a Complete Low-Speed Wind Tunnel Circuit

    NASA Technical Reports Server (NTRS)

    Nayani, Sudheer N.; Sellers, William L., III; Tinetti, Ana F.; Brynildsen, Scott E.; Walker, Eric L.

    2016-01-01

    A numerical simulation of the complete circuit of the NASA Langley 14 x 22-ft low-speed wind tunnel is described. Inside the circuit, all turning vanes are modeled as well as the five flow control vanes downstream of the 1st corner. The fan drive system is modeled using an actuator disk for the fan blades coupled with the fan nacelle. All the surfaces are modeled as viscous walls except the turning vanes, which were modeled as inviscid surfaces. NASA Langley's TetrUSS unstructured grid software was used for grid generation and flow simulation. Two turbulence models were employed in the present study, namely, the one-equation Spalart-Allmaras model and the shear stress transport (SST) model of Menter. The paper shows the flow characteristics in the circuit and compares the results with experimental data where available.

  18. Wind resource assessment in heterogeneous terrain

    NASA Astrophysics Data System (ADS)

    Vanderwel, C.; Placidi, M.; Ganapathisubramani, B.

    2017-03-01

    High-resolution particle image velocimetry data obtained in rough-wall boundary layer experiments are re-analysed to examine the influence of surface roughness heterogeneities on wind resource. Two different types of heterogeneities are examined: (i) surfaces with repeating roughness units of the order of the boundary layer thickness (Placidi & Ganapathisubramani. 2015 J. Fluid Mech. 782, 541-566. (doi:10.1017/jfm.2015.552)) and (ii) surfaces with streamwise-aligned elevated strips that mimic adjacent hills and valleys (Vanderwel & Ganapathisubramani. 2015 J. Fluid Mech. 774, 1-12. (doi:10.1017/jfm.2015.228)). For the first case, the data show that the power extraction potential is highly dependent on the surface morphology with a variation of up to 20% in the available wind resource across the different surfaces examined. A strong correlation is shown to exist between the frontal and plan solidities of the rough surfaces and the equivalent wind speed, and hence the wind resource potential. These differences are also found in profiles of and (where U is the streamwise velocity), which act as proxies for thrust and power output. For the second case, the secondary flows that cause low- and high-momentum pathways when the spacing between adjacent hills is beyond a critical value result in significant variations in wind resource availability. Contour maps of and show a large difference in thrust and power potential (over 50%) between hills and valleys (at a fixed vertical height). These variations do not seem to be present when adjacent hills are close to each other (i.e. when the spacing is much less than the boundary layer thickness). The variance in thrust and power also appears to be significant in the presence of secondary flows. Finally, there are substantial differences in the dispersive and turbulent stresses across the terrain, which could lead to variable fatigue life depending on the placement of the turbines within such heterogeneous terrain. Overall, these results indicate the importance of accounting for heterogeneous terrain when siting individual turbines and wind farms. This article is part of the themed issue 'Wind energy in complex terrains'.

  19. Subtidal hydrodynamics in a tropical lagoon: A dimensionless numbers approach

    NASA Astrophysics Data System (ADS)

    Tenorio-Fernandez, L.; Valle-Levinson, A.; Gomez-Valdes, J.

    2018-01-01

    Observations in a tropical lagoon of the Yucatan peninsula motivated a non-dimensional number analysis to examine the relative influence of tidal stress, density gradients and wind stress on subtidal hydrodynamics. A two-month observation period in Chelem Lagoon covered the transition from the dry to the wet season. Chelem Lagoon is influenced by groundwater inputs and exhibits a main sub-basin (central sub-basin), a west sub-basin and an east sub-basin. Subtidal hydrodynamics were associated with horizontal density gradients that were modified seasonally by evaporation, precipitation, and groundwater discharge. A tidal Froude number (Fr0), a Wedderburn number (W), and a Stress ratio (S0) were used to diagnose the relative importance of dominant subtidal driving forces. The Froude number (Fr0) compares tidal forcing and baroclinic forcing through the ratio of tidal stress to longitudinal baroclinic pressure gradient. The Wedderburn number (W) relates wind stress to baroclinicity. The stress ratio (S0) sizes tidal stress and wind stress. S0 is a new diagnostic tool for systems influenced by tides and winds, and represents the main contribution of this research. Results show that spring-tide subtidal flows in the tropical lagoon had log(Fr0) ≫ 0 and log(S0) > 0 , i.e., driven mainly by tidal stresses (advective accelerations). Neap tides showed log(Fr0) ≪ 0 and log(S0) < 0) , i.e., flows driven by baroclinicity, especially at the lagoon heads of the east and west sub-basins. However, when the wind stress intensified over the lagoon, the relative importance of baroclinicity decreased and the wind stress controlled the dynamics (log(W) ≫ 0). Each sub-basin exhibited a different subtidal response, according to the dimensionless numbers. The response depended on the fortnightly tidal cycle, the location and magnitude of groundwater input, and the direction and magnitude of the wind stress.

  20. Laboratory modelling of resonant wave-current interaction in the vicinity wind farm masts

    NASA Astrophysics Data System (ADS)

    Gunnoo, Hans; Abcha, Nizar; Garcia-Hermosa, Maria-Isabel; Ezersky, Alexander

    2015-04-01

    In the nearest future, by 2020, about 4% of electricity in Europe will be supplied by sea stations operating from renewable sources: ocean thermal energy, wave and tidal energy, wind farms. By now the wind stations located in the coastal zone, provide the most part of electricity in different European countries. Meanwhile, effects of wind farms on the environment are not sufficiently studied. We report results of laboratory simulations aimed at investigation of hydrodynamic fields arising in the vicinity of wind farm masts under the action of currents and surface waves. The main attention is paid to modeling the resonance effects when the amplitude of velocity pulsations in the vicinity of the masts under the joint action of currents and harmonic waves demonstrate significant growth. This resonance can lead to an increase in Reynolds stress on the bottom, intensification of sediment transport and sound generation. The experiments are performed in the 17 meters hydrodynamical channel of laboratory Morphodynamique Continentale et Côtière UMR CNRS 6143. Mast are modeled by vertical cylinder placed in a steady flow. Behind the cylinder turbulent Karman vortex street occurs. Results are obtained in interval of Reynolds numbers Re=103 - 104(Re=Ud/v, where U is the velocity of the flow, d is diameter of the cylinder, ν is cinematic viscosity). Harmonic surface waves of small amplitude propagating upstream are excited by computer controlled wave maker. In the absence of surface waves, turbulent Karman street with averaged frequency f is observed. It is revealed experimentally that harmonic surface waves with a frequencies closed to 2f can synchronize vortex shedding and increase the amplitude of velocity fluctuations in the wake of the cylinder. Map of regimes is found on the parameter plane amplitude of the surface wave - wave frequency. In order to distinguish the synchronization regimes, we defined phase of oscillations using the Hilbert transform technique. We investigate effect of hydrodynamic turbulence on synchronization of hydrodynamic wake by surface waves. To change the level of turbulence we used honeycombs. Measuring the velocity upstream the cylinder, we found that under our experimental conditions honeycombs can reduce the level of hydrodynamic turbulence in two times. It is found that intensity of turbulence determines the amplitude threshold of synchronization in the wake behind cylinder. The physical mechanisms of synchronization, its impact to the Reynolds stress and the possibility of such a resonance in the vicinity of masts located in the coastal zone are discussed. This work was supported by the OFELIA (Offshore Foundations Environmental Impact Assessments) project in the frame of the European cross-border cooperation programme INTERREG IV A France (Channel) - England, co-funded by the ERDF.

  1. Comments on the Synergism Between the Analytic Planetary Boundary-Layer Model and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Brown, R. A.

    2005-08-01

    This paper is adapted from a presentation at the session of the European Geophysical Society meeting in 2002 honouring Joost Businger. It documents the interaction of the non-linear planetary boundary-layer (PBL) model (UW-PBL) and satellite remote sensing of marine surface winds from verification and calibration studies for the sensor model function to the current state of verification of the model by satellite data. It is also a personal history where Joost Businger had seminal input to this research at several critical junctures. The first scatterometer in space was on SeaSat in 1978, while currently in orbit there are the QuikSCAT and ERS-2 scatterometers and the WindSat radiometer. The volume and detail of data from the scatterometers during the past decade are unprecedented, though the value of these data depends on a careful interpretation of the PBL dynamics. The model functions (algorithms) that relate surface wind to sensor signal have evolved from straight empirical correlation with simple surface-layer 10-m winds to satellite sensor model functions for surface pressure fields. A surface stress model function is also available. The validation data for the satellite model functions depended crucially on the PBL solution. The non-linear solution for the flow of fluid in the boundary layer of a rotating coordinate system was completed in 1969. The implications for traditional ways of measuring and modelling the PBL were huge and continue to this day. Unfortunately, this solution replaced an elegant one by Ekman with a stability/finite perturbation equilibrium solution. Consequently, there has been great reluctance to accept this solution. The verification of model predictions has been obtained from the satellite data.

  2. Inclusion of surface gravity wave effects in vertical mixing parameterizations with application to Chesapeake Bay, USA

    NASA Astrophysics Data System (ADS)

    Fisher, A. W.; Sanford, L. P.; Scully, M. E.; Suttles, S. E.

    2016-02-01

    Enhancement of wind-driven mixing by Langmuir turbulence (LT) may have important implications for exchanges of mass and momentum in estuarine and coastal waters, but the transient nature of LT and observational constraints make quantifying its impact on vertical exchange difficult. Recent studies have shown that wind events can be of first order importance to circulation and mixing in estuaries, prompting this investigation into the ability of second-moment turbulence closure schemes to model wind-wave enhanced mixing in an estuarine environment. An instrumented turbulence tower was deployed in middle reaches of Chesapeake Bay in 2013 and collected observations of coherent structures consistent with LT that occurred under regions of breaking waves. Wave and turbulence measurements collected from a vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of TKE, dissipation, turbulent length scale, and the surface wave field. Direct measurements of air-sea momentum and sensible heat fluxes were collected by a co-located ultrasonic anemometer deployed 3m above the water surface. Analyses of the data indicate that the combined presence of breaking waves and LT significantly influences air-sea momentum transfer, enhancing vertical mixing and acting to align stress in the surface mixed layer in the direction of Lagrangian shear. Here these observations are compared to the predictions of commonly used second-moment turbulence closures schemes, modified to account for the influence of wave breaking and LT. LT parameterizations are evaluated under neutrally stratified conditions and buoyancy damping parameterizations are evaluated under stably stratified conditions. We compare predicted turbulent quantities to observations for a variety of wind, wave, and stratification conditions. The effects of fetch-limited wave growth, surface buoyancy flux, and tidal distortion on wave mixing parameterizations will also be discussed.

  3. An Asymptotic and Stochastic Theory for the Effects of Surface Gravity Waves on Currents and Infragravity Waves

    NASA Astrophysics Data System (ADS)

    McWilliams, J. C.; Lane, E.; Melville, K.; Restrepo, J.; Sullivan, P.

    2004-12-01

    Oceanic surface gravity waves are approximately irrotational, weakly nonlinear, and conservative, and they have a much shorter time scale than oceanic currents and longer waves (e.g., infragravity waves) --- except where the primary surface waves break. This provides a framework for an asymptotic theory, based on separation of time (and space) scales, of wave-averaged effects associated with the conservative primary wave dynamics combined with a stochastic representation of the momentum transfer and induced mixing associated with non-conservative wave breaking. Such a theory requires only modest information about the primary wave field from measurements or operational model forecasts and thus avoids the enormous burden of calculating the waves on their intrinsically small space and time scales. For the conservative effects, the result is a vortex force associated with the primary wave's Stokes drift; a wave-averaged Bernoulli head and sea-level set-up; and an incremental material advection by the Stokes drift. This can be compared to the "radiation stress" formalism of Longuet-Higgins, Stewart, and Hasselmann; it is shown to be a preferable representation since the radiation stress is trivial at its apparent leading order. For the non-conservative breaking effects, a population of stochastic impulses is added to the current and infragravity momentum equations with distribution functions taken from measurements. In offshore wind-wave equilibria, these impulses replace the conventional surface wind stress and cause significant differences in the surface boundary layer currents and entrainment rate, particularly when acting in combination with the conservative vortex force. In the surf zone, where breaking associated with shoaling removes nearly all of the primary wave momentum and energy, the stochastic forcing plays an analogous role as the widely used nearshore radiation stress parameterizations. This talk describes the theoretical framework and presents some preliminary solutions using it. McWilliams, J.C., J.M. Restrepo, & E.M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech. 511, 135-178. Sullivan, P.P., J.C. McWilliams, & W.K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. J. Fluid Mech. 507, 143-174.

  4. On the impact of multi-axial stress states on trailing edge bondlines in wind turbine rotor blades

    NASA Astrophysics Data System (ADS)

    Noever Castelos, Pablo; Balzani, Claudio

    2016-09-01

    For a reliable design of wind turbine systems all of their components have to be designed to withstand the loads appearing in the turbine's lifetime. When performed in an integral manner this is called systems engineering, and is exceptionally important for components that have an impact on the entire wind turbine system, such as the rotor blade. Bondlines are crucial subcomponents of rotor blades, but they are not much recognized in the wind energy research community. However, a bondline failure can lead to the loss of a rotor blade, and potentially of the entire turbine, and is extraordinarily relevant to be treated with strong emphasis when designing a wind turbine. Modern wind turbine rotor blades with lengths of 80 m and more offer a degree of flexibility that has never been seen in wind energy technology before. Large deflections result in high strains in the adhesive connections, especially at the trailing edge. The latest edition of the DNV GL guideline from end of 2015 demands a three-dimensional stress analysis of bondlines, whereas before an isolated shear stress proof was sufficient. In order to quantify the lack of safety from older certification guidelines this paper studies the influence of multi-axial stress states on the ultimate and fatigue load resistance of trailing edge adhesive bonds. For this purpose, detailed finite element simulations of the IWES IWT-7.5-164 reference wind turbine blades are performed. Different yield criteria are evaluated for the prediction of failure and lifetime. The results show that the multi-axial stress state is governed by span-wise normal stresses. Those are evidently not captured in isolated shear stress proofs, yielding non-conservative estimates of lifetime and ultimate load resistance. This finding highlights the importance to include a three-dimensional stress state in the failure analysis of adhesive bonds in modern wind turbine rotor blades, and the necessity to perform a three-dimensional characterization of adhesive materials.

  5. Seasonal and Interannual Variation of Currents and Water Properties off the Mid-East Coast of Korea

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Chang, K. I.; Nam, S.

    2016-02-01

    Since 1999, physical parameters such as current, temperature, and salinity off the mid-east coast of Korea have been continuously observed from the long-term buoy station called `East-Sea Real-time Ocean monitoring Buoy (ESROB)'. Applying harmonic analysis to 6-year-long (2007-2012) depth-averaged current data from the ESROB, a mean seasonal cycle of alongshore currents, characterized by poleward current in average and equatorward current in summer, is extracted which accounts for 5.8% of the variance of 40 hours low-pass filtered currents. In spite of the small variance explained, a robust seasonality of summertime equatorward reversal typifies the low-passed alongshore currents along with low-density water. To reveal the dynamics underlying the seasonal variation, each term of linearized, depth-averaged momentum equations is estimated using the data from ESROB, adjacent tide gauge stations, and serial hydrographic stations. The result indicates that the reversal of alongshore pressure gradient is a major driver of the equatorward reversals in summer. The reanalysis wind product (MERRA) and satellite altimeter-derived sea surface height (AVISO) data show correlated features between positive (negative) wind stress curl and sea surface depression (uplift). Quantitative estimates reveal that the wind-stress curl accounts for 42% of alongshore sea level variation. Summertime low-density water originating from the northern coastal region is a footprint of the buoyancy-driven equatorward current. An interannual variation (anomalies from the mean seasonal cycle) of alongshore currents and its possible driving mechanisms will be discussed.

  6. Models of Interacting Stellar Winds

    NASA Astrophysics Data System (ADS)

    Wilkin, Francis Patrick

    Stars drive supersonic winds which interact violently with their surroundings. Analytic and numerical models of hypersonic, interacting circumstellar flows are presented for several important astrophysical problems. A new solution method for steady-state, axisymmetric, wind collision problems is applied to radiative bow shocks from moving stars and to the collision of two spherical winds in a binary star system. The solutions obtained describe the shape of the geometrically thin, shocked shell of matter, as well as its mass surface density and the tangential velocity within it. Analytic solutions are also obtained for non-axisymmetric bow shocks, where the asymmetry arises due to either a transverse gradient in the ambient medium, or a misaligned, axisymmetric stellar wind. While the solutions are all easily scaled in terms of their relevant dimensional parameters, the important assumption of radiative shocks implies that the models are most applicable towards systems with dense environments and low preshock velocities. The bow shock model has previously been applied to cometary, ultracompact HII regions by Van Buren et al. (1990), who discussed extensively the applicability of the thin shell approximation. I next model the collision between a protostellar wind and supersonic infall from a rotating cloud, employing a quasi-steady, thin-shell formulation. The spherical wind is initially crushed to the protostellar surface by nearly spherical infall. The centrifugal distortion of infalling matter eventually permits a wind-supported, trapped bubble to slowly expand on an evolutionary (~ 105 yr) time. The shell becomes progressively more extended along the rotational axis, due to the asymmetry of the infall. When the quasi-steady assumption breaks down, the shell has become a needle-like, bipolar configuration that may represent a precursor to protostellar jets. I stress, however, the likelihood of instability for the shell, and the possibility of oscillatory behavior in a fully time-dependent model.

  7. Material transport in a wind and buoyancy forced mixed layer

    NASA Astrophysics Data System (ADS)

    Mensa, J. A.; Özgökmen, T.; Poje, A. C.; Imberger, J.

    2016-02-01

    Flows in the upper ocean mixed layer are responsible for the transport and dispersion of biogeochemical tracers, phytoplankton and buoyant pollutants, such as hydrocarbons from an oil spill. Material dispersion in mixed layer flows subject to diurnal buoyancy forcing and weak winds (|u10|=5ms-1) are investigated using a non-hydrostatic model. Both purely buoyancy-forced and combined wind- and buoyancy-forced flows are sampled using passive tracers, as well as 2D and 3D particles to explore characteristics of horizontal and vertical dispersion. It is found that the surface tracer patterns are determined by the convergence zones created by convection cells within a time scale of just a few hours. For pure convection, the results displayed the classic signature of Rayleigh-Benard cells. When combined with a wind stress, the convective cells become anisotropic in that the along-wind length scale gets much larger than the cross-wind scale. Horizontal relative dispersion computed by sampling the flow fields using both 2D and 3D passive particles is found to be consistent with the Richardson regime. Relative dispersion is an order of magnitude higher and 2D surface releases transition to Richardson regime faster in the wind-forced case. We also show that the buoyancy-forced case results in significantly lower amplitudes of scale-dependent horizontal relative diffusivity, kD(l), than those reported by Okubo (1970), while the wind- and buoyancy forced case shows a good agreement with Okubo's diffusivity amplitude, and scaling consistent with Richardson's 4/3rd law, kD(l) l4/3. The modelling results provide a framework for measuring material dispersion by mixed layer flow in future observational programs.

  8. A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989

    NASA Astrophysics Data System (ADS)

    Liu, Huiqing; Xie, Lian

    2009-06-01

    The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.

  9. All Along the Fractures

    NASA Image and Video Library

    2015-09-30

    This image from NASA Mars Reconnaissance Orbiter spacecraft provides information about erosion and movement of surface material, about wind and weather patterns, even about the soil grains and grain sizes. However, looking past the dunes, these images also reveal the nature of the substrate beneath. Within the spaces between the dunes, a resistant and highly fractured surface is revealed. The fractured ground is resistant to erosion by the wind, and suggests the material is bedrock that is now shattered by a history of bending stresses or temperature changes, such as cooling, for example. Alternately, the surface may be a sedimentary layer that was once wet and shrunk and fractured as it dried, like gigantic mud cracks. In either case, the relative small and indistinct fractures have trapped the dark dune sand marching overhead. Now the fractures have become quite distinct, allowing us to examine the orientation and spacing of the fractures to learn more about the processes that formed them. http://photojournal.jpl.nasa.gov/catalog/PIA19958

  10. Exploratory Calibration of Adjustable-Protrusion Surface-Obstacle (APSO) Skin Friction Vector Gage

    NASA Technical Reports Server (NTRS)

    Hakkinen, Raimo J.; Neubauer, Jeremy S.; Hamory, Philip J.; Bui, Trong T.; Noffz, Gregory K.; Young, Ron (Technical Monitor)

    2003-01-01

    The design of an adjustable-protrusion surface-obstacle (APSO) skin friction vector gage is presented. Results from exploratory calibrations conducted in laminar and turbulent boundary layers at the Washington University Low-Speed Wind Tunnel and for turbulent boundary layers at speeds up to Mach 2 on the ceiling of the NASA Glenn Research Center 8- X 6-ft Supersonic Wind Tunnel are also discussed. The adjustable-height gage was designed to yield both the magnitude and direction of the surface shear stress vector and to measure the local static pressure distribution. Results from the NASA test show good correlation for subsonic and low supersonic conditions covering several orders of magnitude in terms of the adopted similarity variables. Recommendations for future work in this area consist of identifying the physical parameters responsible for the disagreement between the university and NASA data sets, developing a compressibility correction specific to the APSO geometry, and examining the effect that static pressure distribution and skewed boundary layers have on the results from the APSO.

  11. Flexible Micropost Arrays for Shear Stress Measurement

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation of delicate micro-electromechanical devices impede the use of most direct shear sensors. Similarly, the cavity required for sensing element displacement is sensitive to particulate obstruction. This work was focused on developing a shear stress sensor for use in subsonic wind tunnel test facilities applicable to an array of test configurations. The non-displacement shear sensors described here have minimal packaging requirements resulting in minimal or no disturbance of boundary layer flow. Compared to previous concepts, device installation could be simple with reduced cost and down-time. The novelty lies in the creation of low profile (nanoscale to 100 µm) micropost arrays that stay within the viscous sub-layer of the airflow. Aerodynamic forces, which are related to the surface shear stress, cause post deflection and optical property changes. Ultimately, a reliable, accurate shear stress sensor that does not disrupt the airflow has the potential to provide high value data for flow physics researchers, aerodynamicists, and aircraft manufacturers leading to greater flight efficiency arising from more in-depth knowledge on how aircraft design impacts near surface properties.

  12. Sustained Observations of Air-Sea Fluxes and Air-Sea Interaction at the Stratus Ocean Reference Station

    NASA Astrophysics Data System (ADS)

    Weller, Robert

    2014-05-01

    Since October 2000, a well-instrumented surface mooring has been maintained some 1,500 km west of the coast of northern Chile, roughly in the location of the climatological maximum in marine stratus clouds. Statistically significant increases in wind stress and decreases in annual net air-sea heat flux and in latent heat flux have been observed. If the increased oceanic heat loss continues, the region will within the next decade change from one of net annual heat gain by the ocean to one of neat annual heat loss. Already, annual evaporation of about 1.5 m of sea water a year acts to make the warm, salty surface layer more dense. Of interest is examining whether or not increased oceanic heat loss has the potential to change the structure of the upper ocean and potentially remove the shallow warm, salty mixed layer that now buffers the atmosphere from the interior ocean. Insights into how that warm, shallow layer is formed and maintained come from looking at oceanic response to the atmosphere at diurnal tie scales. Restratification each spring and summer is found to depend upon the occurrence of events in which the trade winds decay, allowing diurnal warming in the near-surface ocean to occur, and when the winds return resulting in a net upward step in sea surface temperature. This process is proving hard to accurately model.

  13. Improvement of the free-surface tension model in shallow water basin by using in-situ bottom-friction measurements

    NASA Astrophysics Data System (ADS)

    Alekseenko, Elena; Kuznetsov, Konstantin; Roux, Bernard

    2016-04-01

    Wind stress on the free surface is the main driving force behind the circulation of the upper part of the ocean, which in hydrodynamic models are usually defined in terms of the coefficient of surface tension (Zhang et al., 2009, Davies et al., 2003). Moreover, wave motion impacts local currents and changes sea level, impacts the transport and the stratification of the entire water column. Influence of surface waves at the bottom currents is particularly pronounced in the shallow coastal systems. However, existing methods of parameterization of the surface tension have significant limits, especially in strong wind waves (Young et al., 2001, Jones et al., 2004) due to the difficulties of measuring the characteristics of surface waves in stormy conditions. Thus, the formula for calculating the coefficient of surface tension in our day is the actual problem in modeling fluid dynamics, particularly in the context of strong surface waves. In the hydrodynamic models usually a coefficient of surface tension is calculated once at the beginning of computation as a constant that depends on the averaged wind waves characteristic. Usually cases of strongly nonlinear wind waves are not taken into account, what significantly reduces the accuracy of the calculation of the flow structures and further calculation of the other processes in water basins, such as the spread of suspended matter and pollutants. Thus, wave motion influencing the pressure on the free surface and at the bottom must be considered in hydrodynamic models particularly in shallow coastal systems. A method of reconstruction of a free-surface drag coefficient based on the measured in-situ bottom pressure fluctuations is developed and applied in a three-dimensional hydrodynamic model MARS3D, developed by the French laboratory of IFREMER (IFREMER - French Research Institute for Marine Dynamics). MARS3D solves the Navier-Stokes equations for incompressible fluid in the Boussinesq approximation and with the hydrostatic assumption (Lazure and Dumas, 2008, Blumberg et al., 1986). Precisely, we introduce a formulation of the surface drag coefficient as a logarithmic function of the sea surface roughness (Zhang et al., 2009), which in turn can be predicted from the height and steepness of the waves (Taylor and Yelland, 2000), measured by the bottom pressure sensors. Using numerous field data, Taylor and Yelland (2000) showed that the surface drag coefficient values in lakes and sheltered waters are typically significantly higher than is observed in the open ocean. In particular, the effect of limited water depth is very significant in the case of the strong wind forcing. Wind waves propagating into shoaling water begin to be limited by bottom friction and become "younger". This kind of approach is used to predict a more relevant surface drag coefficient for the coastal areas of the Mediterranean Berre lagoon (France) for which experimental data of pressure measurements under storm conditions are available (Paquier, 2014). This is important to better understand the development problematics of the nearshore submerged aquatic vegetation (Alekseenko et al., 2013). *This work is supported by grant of Russian Foundation for Basic Research (RFBR) n°16-35-00526 and by the French Water Agency (Agence de l'Eau-RMC - convention n°2010-0042). References 1. E. Alekseenko E., Roux B., Sukhinov A., Kotarba R., Fougere D.: Near shoreline hydrodynamics in a Mediterranean lagoon. Nonlinear Processes in Geophysics, 20, 189-198, 2013. 2. Blumberg A.F. and Mellor G.L.: A description of a Tree-Dimensional Coastal Ocean Circulation Model, Geophysical Fluid Dynamics Program, Princeton Univ., Princeton, New Jersey, 1-16, 1986. 3. Davies A., Xing M., Jiuxing I.: Processes influencing wind-induced current profiles in near coastal stratified regions. Continental Shelf Research 23 (14-15): 1379-1400, 2003. 4. Jones, I.S.F. and Toba Y. (Eds.): Wind Stress over the Ocean. Cambridge Univ. Press, 307pp, 2001. 5. Lazure P. and Dumas F.: An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv. Wat. Res. 31: 233-250, 2008. 6. Paquier A-E.: - Interactions de la dynamique hydro-sédimentaire avec les herbiers de phanérogames, Étang de Berre ; PhD thesis Aix-Marseille University; 27 Nov. 2014. 7. Taylor P. and Yelland M.: The Dependence of Sea Surface Roughness on the Height and Steepness of the Waves, Physical Oceanography, 2000. 8. Young I.R., Banner M.L., Donelan M.A., Babanin A.V., Melville W.K., Veron F., and McCormic C.: An Integrated Study of the Wind Wave Source Term Balance in Finite Depth Water, J. Atmos. Oceanic Technol. 22: 814-831, 2004. 9. Zhang H, Sannasiraj S.A., and Chan E.S.: Wind Wave Effects on Hydrodynamic Modeling of Ocean Circulation in the South China Sea, The Open Civil Engineering Journal, 3, 48-61, 2009.

  14. Various Numerical Applications on Tropical Convective Systems Using a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Tao, W.-K.; Simpson, J.

    2003-01-01

    In recent years, increasing attention has been given to cloud resolving models (CRMs or cloud ensemble models-CEMs) for their ability to simulate the radiative-convective system, which plays a significant role in determining the regional heat and moisture budgets in the Tropics. The growing popularity of CRM usage can be credited to its inclusion of crucial and physically relatively realistic features such as explicit cloud-scale dynamics, sophisticated microphysical processes, and explicit cloud-radiation interaction. On the other hand, impacts of the environmental conditions (for example, the large-scale wind fields, heat and moisture advections as well as sea surface temperature) on the convective system can also be plausibly investigated using the CRMs with imposed explicit forcing. In this paper, by basically using a Goddard Cumulus Ensemble (GCE) model, three different studies on tropical convective systems are briefly presented. Each of these studies serves a different goal as well as uses a different approach. In the first study, which uses more of an idealized approach, the respective impacts of the large-scale horizontal wind shear and surface fluxes on the modeled tropical quasi-equilibrium states of temperature and water vapor are examined. In this 2-D study, the imposed large-scale horizontal wind shear is ideally either nudged (wind shear maintained strong) or mixed (wind shear weakened), while the minimum surface wind speed used for computing surface fluxes varies among various numerical experiments. For the second study, a handful of real tropical episodes (TRMM Kwajalein Experiment - KWAJEX, 1999; TRMM South China Sea Monsoon Experiment - SCSMEX, 1998) have been simulated such that several major atmospheric characteristics such as the rainfall amount and its associated stratiform contribution, the Qlheat and Q2/moisture budgets are investigated. In this study, the observed large-scale heat and moisture advections are continuously applied to the 2-D model. The modeled cloud generated from such an approach is termed continuously forced convection or continuous large-scale forced convection. A third study, which focuses on the respective impact of atmospheric components on upper Ocean heat and salt budgets, will be presented in the end. Unlike the two previous 2-D studies, this study employs the 3-D GCE-simulated diabatic source terms (using TOGA COARE observations) - radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the Ocean mixed-layer (OML) model.

  15. Suppression of ENSO in a coupled model without water vapor feedback

    NASA Astrophysics Data System (ADS)

    Hall, A.; Manabe, S.

    We examine 800-year time series of internally generated variability in both a coupled ocean-atmosphere model where water vapor anomalies are not allowed to interact with longwave radiation and one where they are. The ENSO-like phenomenon in the experiment without water vapor feedback is drastically suppressed both in amplitude and geographic extent relative to the experiment with water vapor feedback. Surprisingly, the reduced amplitude of ENSO-related sea surface temperature anomalies in the model without water vapor feedback cannot be attributed to greater longwave damping of sea surface temperature. (Differences between the two experiments in radiative feedback due to clouds counterbalance almost perfectly the differences in radiative feedback due to water vapor.) Rather, the interaction between water vapor anomalies and longwave radiation affects the ENSO-like phenomenon through its influence on the vertical structure of radiative heating: Because of the changes in water vapor associated with it, a given warm equatorial Pacific sea surface temperature anomaly is associated with a radiative heating profile that is much more gravitationally unstable when water vapor feedback is present. The warm sea surface temperature anomaly therefore results in more convection in the experiment with water vapor feedback. The increased convection, in turn, is related to a larger westerly wind-stress anomaly, which creates a larger decrease in upwelling of cold water, thereby enhancing the magnitude of the original warm sea surface temperature anomaly. In this manner, the interaction between water vapor anomalies and longwave radiation magnifies the air-sea interactions at the heart of the ENSO phenomenon; without this interaction, the coupling between sea surface temperature and wind stress is effectively reduced, resulting in smaller amplitude ENSO episodes with a more limited geographical extent.

  16. Laboratory modeling of air-sea interaction under severe wind conditions

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin

    2010-05-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested by Emanuel (1995) on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field (Powell, Vickery, Reinhold, 2003, French et al, 2007, Black, et al, 2007) and laboratory (Donelan et al, 2004) experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed by Kudryavtsev & Makin (2007) and Kukulka,Hara Belcher (2007), the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange (Andreas, 2004; Makin, 2005; Kudryavtsev, 2006). The main objective of this work is investigation of factors determining momentum exchange under high wind speeds basing on the laboratory experiment in a well controlled environment. The experiments were carried out in the Thermo-Stratified WInd-WAve Tank (TSWIWAT) of the Institute of Applied Physics. The parameters of the facility are as follows: airflow 0 - 25 m/s (equivalent 10-m neutral wind speed U10 up to 60 m/s), dimensions 10m x 0.4m x 0.7 m, temperature stratification of the water layer. Simultaneous measurements of the airflow velocity profiles and wind waves were carried out in the wide range of wind velocities. Airflow velocity profile was measured by WindSonic ultrasonic wind sensor. The water elevation was measured by the three-channel wave-gauge. Top and side views of the water surface were fixed by CCD-camera. Wind friction velocity and surface drag coefficients were retrieved from the measurements by the profile method. Obtained values are in good agreement with the data of measurements by Donelan et al (2004). The directional frequency-wave-number spectra of surface waves were retrieved by the wavelet directional method (Donelan et al, 1996). The obtained dependencies of parameters of the wind waves indicate existing of two regimes of the waves with the critical wind speed Ucr about 30 m/s. For U10Ucr the dependencies of peak wave period, peak wavelength, significant wave height on the wind speed tend to saturation, in the same time the peak wave slope has the maximum at approximately Ucr and then decreases with the tendency to saturation. The surface drag also tends to saturation for U10>Ucr similarly to (Donelan et al, 2004). Video filming indicates onset of wave breaking with white-capping and spray generation at wind speeds approximately equal to Ucr. We compared the obtained experimental dependencies with the predictions of the quasi-linear model of the turbulent boundary layer over the waved water surface (Reutov&Troitskaya, 1995). Comparing shows that theoretical predictions give low estimates for the measured drag coefficient and wave fields. Taking into account momentum flux associated with the spray generation yields theoretical estimations in good agreement with the experimental data. Basing on the experimental data a possible physical mechanism of the drag is suggested. Tearing of the wave crests at severe wind conditions leads to the effective smoothing (decreasing wave slopes) of the water surface, which in turn reduces the aerodynamic roughness of the water surface. Quantitative agreement of the experimental data and theoretical estimations od the surface drag occurs if spray and drop momentum flux is taken into account. This study was supported by Russian Foundation for basic research (project code 07-05-00565, 10-05-00339). References Andreas E. L. Spray stress revised, J. Phys. Oceanogr., 2004, v.34, p.1429--1440. Black P.G., et al, Bulletin of the American Meteorological Society, 2007, v. 88, №3, p.357-374. Donelan M.A., et al, J. Phys. Oceanogr., 26, 1901-1914, 1996 Donelan M.A., et al, Geophys. Res. Lett., 2004, v.31, L18306. Emanuel, K.A. , J. Atmos. Sci/, 1995, v.52, p.3969-3976. Fairall C.W., et al, J. Climate, 2003, v.16, № 4, p.571-591. French, J. R., et al, J. Atmos. Sci., 2007, v.64, p.1089-1102. Garratt J.R., Mon. Weather Rev., 1977, v.105, p.915-929. Kudryavtsev V. N., J. Geophys. Res., 2006, v.111, C07020. Kudryavtsev V., Makin V. , Boundary-Layer Meteorol., 2007, v.125, p. 289--303. Kukulka, T., T. Hara, and S. E. Belcher., J. Phys. Oceanogr., 37, 1811-1828, 2007 Makin V. K. ,Boundary Layer Meteorol., 2005, v. 115, №1, p.169-176. Powell, M.D., Vickery P.J., Reinhold T.A., Nature, 2003, v.422, p.279-283. Reutov V.P., Troitskaya Yu.I. ,. Izvestiya RAN, FAO, 31, 825-834, 1995

  17. Fluid dynamics of liquids on Titans surface

    NASA Astrophysics Data System (ADS)

    Ori, Gian Gabriele; Marinangeli, Lucia; Baliva, Antonio; Bressan, Mario; Strom, Robert G.

    1998-10-01

    On the surface of Titan liquids can be present in three types of environments : (i) oceans, (ii) seas and lakes, and (iii) fluvial channels. The liquid in these environments will be affected by several types of motion: progressive (tidal) waves, wind-generated waves and unidirectional currents. The physical parameters of the liquid on Titans surface can be reconstructed using the Peng-Robinson equation of state. The total energy of the waves, both tidal and wind, depends on the gravity and liquid density ; both values are lower on Titan than on Earth. Thus, the same total energy will produce larger waves on Titan. This is also valid also for the progressive waves, as it is confirmed by the physical relationship between horizontal velocity, wave amplitude, and depth of the liquid. Wind-driven waves also will tend to be larger, because the viscosity of the liquid (which is lower on Titan) controls the deformation of the liquid under shear stress. Wind-generated waves would be rather large, but the dimension of the liquid basin limits the size of the waves ; in small lakes or seas the wave power cannot reach large values. Unidirectional currents are also affected by the liquid properties. Both the relations from driving and resting forces and the Reynolds number suggests that the flows exhibit a large erosional capacity and that, theoretically, a true fluvial network could be formed. However, caution should be exercised, because the cohesion of the sedimentary interface can armour bottom and induce laterally extensive, unchanelled sheet flows with small erosional capacity.

  18. Identifying causes of Western Pacific ITCZ drift in ECMWF System 4 hindcasts

    NASA Astrophysics Data System (ADS)

    Shonk, Jonathan K. P.; Guilyardi, Eric; Toniazzo, Thomas; Woolnough, Steven J.; Stockdale, Tim

    2018-02-01

    The development of systematic biases in climate models used in operational seasonal forecasting adversely affects the quality of forecasts they produce. In this study, we examine the initial evolution of systematic biases in the ECMWF System 4 forecast model, and isolate aspects of the model simulations that lead to the development of these biases. We focus on the tendency of the simulated intertropical convergence zone in the western equatorial Pacific to drift northwards by between 0.5° and 3° of latitude depending on season. Comparing observations with both fully coupled atmosphere-ocean hindcasts and atmosphere-only hindcasts (driven by observed sea-surface temperatures), we show that the northward drift is caused by a cooling of the sea-surface temperature on the Equator. The cooling is associated with anomalous easterly wind stress and excessive evaporation during the first twenty days of hindcast, both of which occur whether air-sea interactions are permitted or not. The easterly wind bias develops immediately after initialisation throughout the lower troposphere; a westerly bias develops in the upper troposphere after about 10 days of hindcast. At this point, the baroclinic structure of the wind bias suggests coupling with errors in convective heating, although the initial wind bias is barotropic in structure and appears to have an alternative origin.

  19. Development of a satellite SAR image spectra and altimeter wave height data assimilation system for ERS-1

    NASA Technical Reports Server (NTRS)

    Hasselmann, Klaus; Hasselmann, Susanne; Bauer, Eva; Bruening, Claus; Lehner, Susanne; Graber, Hans; Lionello, Piero

    1988-01-01

    The applicability of ERS-1 wind and wave data for wave models was studied using the WAM third generation wave model and SEASAT altimeter, scatterometer and SAR data. A series of global wave hindcasts is made for the surface stress and surface wind fields by assimilation of scatterometer data for the full 96-day SEASAT and also for two wind field analyses for shorter periods by assimilation with the higher resolution ECMWF T63 model and by subjective analysis methods. It is found that wave models respond very sensitively to inconsistencies in wind field analyses and therefore provide a valuable data validation tool. Comparisons between SEASAT SAR image spectra and theoretical SAR spectra derived from the hindcast wave spectra by Monte Carlo simulations yield good overall agreement for 32 cases representing a wide variety of wave conditions. It is concluded that SAR wave imaging is sufficiently well understood to apply SAR image spectra with confidence for wave studies if supported by realistic wave models and theoretical computations of the strongly nonlinear mapping of the wave spectrum into the SAR image spectrum. A closed nonlinear integral expression for this spectral mapping relation is derived which avoids the inherent statistical errors of Monte Carlo computations and may prove to be more efficient numerically.

  20. Observations of the directional distribution of the wind energy input function over swell waves

    NASA Astrophysics Data System (ADS)

    Shabani, Behnam; Babanin, Alex V.; Baldock, Tom E.

    2016-02-01

    Field measurements of wind stress over shallow water swell traveling in different directions relative to the wind are presented. The directional distribution of the measured stresses is used to confirm the previously proposed but unverified directional distribution of the wind energy input function. The observed wind energy input function is found to follow a much narrower distribution (β∝cos⁡3.6θ) than the Plant (1982) cosine distribution. The observation of negative stress angles at large wind-wave angles, however, indicates that the onset of negative wind shearing occurs at about θ≈ 50°, and supports the use of the Snyder et al. (1981) directional distribution. Taking into account the reverse momentum transfer from swell to the wind, Snyder's proposed parameterization is found to perform exceptionally well in explaining the observed narrow directional distribution of the wind energy input function, and predicting the wind drag coefficients. The empirical coefficient (ɛ) in Snyder's parameterization is hypothesised to be a function of the wave shape parameter, with ɛ value increasing as the wave shape changes between sinusoidal, sawtooth, and sharp-crested shoaling waves.

  1. Experimental investigations of the time and flow-direction responses of shear-stress-sensitive liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Muratore, Joseph J., Jr.; Heineck, James T.

    1993-01-01

    Time and flow-direction responses of shearstress-sensitive liquid crystal coatings were explored experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing Schlieren system and recorded with a 1000 frame/sec color video camera. Liquid crystal responses to these changing-shear environments were then recorded with the same video system, documenting color-play response times equal to, or faster than, the time interval between sequential frames (i.e., 1 millisecond). For the flow-direction experiments, a planar test surface was exposed to equal-magnitude and known-direction surface shear stresses generated by both normal and tangential subsonic jet-impingement flows. Under shear, the sense of the angular displacement of the liquid crystal dispersed (reflected) spectrum was found to be a function of the instantaneous direction of the applied shear. This technique thus renders dynamic flow reversals or flow divergences visible over entire test surfaces at image recording rates up to 1 KHz. Extensions of the technique to visualize relatively small changes in surface shear stress direction appear feasible.

  2. Ocean-Atmosphere Interaction in Climate Changes

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1999-01-01

    The diagram, which attests the El Nino teleconnection observed by the NASA Scatterometer (NSCAT) in 1997, is an example of the results of our research in air-sea interaction - the core component of our three-part contribution to the Climate Variability Program. We have established an interplay among scientific research, which turns spacebased data into knowledge, a push in instrument technology, which improves observations of climate variability, and an information system, which produces and disseminates new data to support our scientific research. Timothy Liu led the proposal for advanced technology, in response to the NASA Post-2002 Request for Information. The sensor was identified as a possible mission for continuous ocean surface wind measurement at higher spatial resolution, and with the unique capability to measure ocean surface salinity. He is participating in the Instrument Incubator Program to improve the antenna technology, and is initiating a study to integrate the concept on Japanese missions. He and his collaborators have set up a system to produce and disseminate high level (gridded) ocean surface wind/stress data from NSCAT and European missions. The data system is being expanded to produce real-time gridded ocean surface winds from Quikscat, and precipitation and evaporation from the Tropical Rain Measuring Mission. It will form the basis for a spacebased data analysis system which will include momentum, heat and water fluxes. The study on 1997 El Nino teleconnection illustrates our interdisciplinary and multisensor approach to study climate variability. The diagram shows that the collapse of trade wind and the westerly wind anomalies in the central equatorial Pacific led to the equatorial ocean warming. The equatorial wind anomalies are connected to the anomalous cyclonic wind pattern in the northeast Pacific. The anomalous warming along the west coast of the United States is the result of the movement of the pre-existing warm sea surface temperature anomalies with the cyclonic wind anomalies toward the coast. The results led to a new study which identifies decadal ocean variations in the Northeast Pacific. Three studies of oceanic responses to wind forcing caused by the seasonal change of monsoons, the passage of a typhoon, and the 1997 El Nino, were successfully conducted. Besides wind forcing, we continue to examine new techniques for estimating thermal and hydrologic fluxes, through the inverse ocean mixed-layer model, through divergence of atmospheric water transport, and by direct retrieval from radiances observed by microwave radiometers. Greenhouse warming has been linked to water vapor measured by two spaceborne sensors in two studies. In the first study, strong baroclinicity and deep convection were found to transport water vapor to the upper atmosphere and increase greenhouse trapping over the storm tracks of the North Pacific and Atlantic. In another study, the annual cycle of greenhouse warming were related to sea surface temperature (SST) and integrated water vapor, and the latitudinal dependence of the magnitudes and phases of the annual cycles were compared.

  3. Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model

    Treesearch

    Patricia L. Andrews

    2012-01-01

    Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...

  4. Sea-State Dependence of Aerosol Concentration in the Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lenain, L.; Melville, W. K.

    2016-02-01

    While sea spray aerosols represent a large portion of the aerosols present in the marine environment, and despite evidence of the importance of surface wave and wave-breaking related processes in the coupling of the ocean with the atmosphere, sea spray source generation functions are traditionally parameterized by the wind speed at 10m. It is clear that unless the wind and wave field are fully developed, the source function will be a function of both wind and wave parameters. In this study, we report on an air-sea interaction experiment, the ONR phase-resolved High-Resolution Air-Sea Interaction experiments (HIRES), conducted off the coast of Northern California in June 2010. Detailed measurements of aerosol number concentration in the Marine Atmospheric Boundary Layer (MABL), at altitudes ranging from as low as 30m and up to 800m AMSL over a broad range of environmental conditions (significant wave height, Hs, of 2 to 4.5m and wind speed at 10m height, U10, of 10 to 18 m/s) collected from an instrumented research aircraft, are presented. Aerosol number densities and volume are computed over a range of particle diameters from 0.1 to 200 µm, while the surface conditions, i.e. significant wave height, moments of the breaker length distribution Λ(c), and wave breaking dissipation, were measured by a suite of electro-optical sensors that included the NASA Airborne Topographic Mapper (ATM). The sea-state dependence of the aerosol concentration in the MABL is evident, ultimately stressing the need to incorporate wave and wave kinematics in the spray source generation functions that are traditionally primarily parameterized by surface winds. A scaling of the measured aerosol volume distribution by wave and atmospheric state variables is proposed.

  5. A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies

    NASA Technical Reports Server (NTRS)

    Massman, William

    1987-01-01

    A semianalytical method for describing the mean wind profile and shear stress within plant canopies and for estimating the roughness length and the displacement height is presented. This method incorporates density and vertical structure of the canopy and includes simple parameterizations of the roughness sublayer and shelter factor. Some of the wind profiles examined are consistent with first-order closure techniques while others are consistent with second-order closure techniques. Some profiles show a shearless region near the base of the canopy; however, none displays a secondary maximum there. Comparing several different analytical expressions for the canopy wind profile against observations suggests that one particular type of profile (an Airy function which is associated with the triangular foliage surface area density distribution) is superior to the others. Because of the numerical simplicity of the methods outlined, it is suggested that they may be profitably used in large-scale models of plant-atmosphere exchanges.

  6. A Transient Landscape: Geospatial Analysis and Numerical Modeling of Coastal Geomorphology in the Outer Banks, North Carolina

    NASA Astrophysics Data System (ADS)

    Hardin, Eric Jon

    Coastal landscapes can be relentlessly dynamic---owing to wave energy, tidal cycles, extreme weather events, and perpetual coastal winds. In these settings, the ever-changing landscape can threaten assets and infrastructure, necessitating costly measures to mitigate associated risks and to repair or maintain the changing landscape. Mapping and monitoring of terrain change, identification of areas susceptible to dramatic change, and understanding the processes that drive landscape change are critical for the development of responsible coastal management strategies and policies. Over the past two decades, LiDAR mapping has been conducted along the U.S. east coast (including the Outer Banks, North Carolina) on a near annual basis---generating a rich time series of topographic data with unprecedented accuracy, resolution, and extent. This time series has captured the response of the landscape to episodic storms, daily forcing of wind and waves, and anthropogenic activities. This work presents raster-based geospatial techniques developed to gain new insights into coastal geomorphology from the time series of available LiDAR. Per-cell statistical techniques derive information that is typically not obtained through the techniques traditionally employed by coastal scientists and engineers. Application of these techniques to study sites along the Outer Banks, NC, revealed substantial spatial and temporal variations in terrain change. Additionally, they identify the foredunes as being the most geomorphologically dynamic coastal features. In addition to per-cell statistical analysis, an approach is presented for the extraction of the dune ridge and dune toe (two features that are essential to standard vulnerability assessment). The approach employs a novel application of least cost path analysis and a physics-based model of an elastic sheet. The spatially distributed nature of the approach achieves a high level of automation and repeatability that semi-automated methods and manual digitization lack. Furthermore, the approach can be fully implemented with standard Geographic Information System (GIS) functionality, resulting in efficiency and ease of implementation. With this approach, a raster-based implementation of the U.S. Geological Survey (USGS) storm impact scale (designed to assess storm vulnerability of barrier islands) was developed. Vulnerability of 4km of the Outer Banks to Hurricane Isabel (2003) was assessed. The demonstrated approach produced vulnerability mapping at the high resolution of the input Digital Elevation Model (DEM)---providing results at the scale needed for local management, in contrast to the USGS approach, which is designed for continental scale vulnerability assessment. However, geospatial techniques cannot fully explain the observed geomorphology. Therefore, we present the Smoothed Particle Hydrodynamics (SPH) implementation of the Sauermann model for wind-driven sand transport. The SPH implementation enables the full nonlinearity of the model to be applied to complex scenarios that are typical of coastal landscapes. Through application of the SPH model and Computational Fluid Dynamics (CFD) modeling of the windborne surface shear stress (which drives sand transport), we present the sediment flux at two study sites along the Outer Banks. Scenarios were tested that involved steady-state surface shear stress as well as scenarios with intermittent variations in the surface shear stress. Results showed that intermittency in the surface shear stress has the potential to greatly influence the resulting flux. However, the degree to which intermittency does alter the flux is highly dependent on wind characteristics and wind direction relative to the orientation of salient topographic features.

  7. Microplastics in a wind farm area: A case study at the Rudong Offshore Wind Farm, Yellow Sea, China.

    PubMed

    Wang, Teng; Zou, Xinqing; Li, Baojie; Yao, Yulong; Li, Jiasheng; Hui, Hejiu; Yu, Wenwen; Wang, Chenglong

    2018-03-01

    Despite the rapid construction of offshore wind farms, the available information regarding the risks of this type of development in terms of emerging pollutants, particularly microplastics, is scarce. In this study, we quantified the level of microplastic pollution at an offshore wind farm in the Yellow Sea, China, in 2016. The abundance of microplastics was 0.330 ± 0.278 items/m 3 in the surface water and 2.58 ± 1.14 items/g (dry) in the sediment. To the best of our knowledge, the level of microplastic pollution in our study area was slightly higher than that in coastal areas around the world. The microplastics detected in the surface waters and sediments were mainly fibrous (75.3% and 68.7%, respectively) and consisted of some granules and films. The microplastics in the samples might originate from garments or ropes via wastewater discharge. The abundance of plastic in the water and sediment samples collected from the wind farm area was lower than that in the samples collected from outside the wind farm area. The anthropogenic hydrodynamic effect was the main factor affecting the local distribution of microplastics. The presence of a wind farm could increase the bed shear stress during ebb tide, disturbing the bed sediment, facilitating its initiation and transport, and ultimately increasing the ease of washing away the microplastics adhered to the sediment. This study will serve as a reference for further studies of the distribution and migration of microplastics in coastal zones subjected to similar marine utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Turbulent Reynolds stress and quadrant event activity in wind flow over a coastal foredune

    NASA Astrophysics Data System (ADS)

    Chapman, Connie A.; Walker, Ian J.; Hesp, Patrick A.; Bauer, Bernard O.; Davidson-Arnott, Robin G. D.

    2012-05-01

    Recent research on quasi-instantaneous turbulent kinematic Reynolds stresses (RS, - u'w') and decomposed quadrant event activity (e.g., ejections and sweeps) over dunes in fluvial settings and in wind tunnels has shown that turbulent stresses at the toe of a dune often exceed time-averaged, streamwise shear stress (ρ u * 2) estimates. It is believed that semi-coherent turbulent structures are conveyed toward the bed along concave streamlines in this region and that impact of these structures cause fluctuations in local surface stresses that assist in grain entrainment. This has been hypothesized to explain how sand is supplied to the windward slope through a region of flow stagnation. Toward the crest, surface stress increases and becomes dominated by streamwise accelerations resulting from streamline compression and convexity that suppress vertical motions. High-frequency (32 Hz) measurements of turbulent wind flow from 3-D ultrasonic anemometers are analyzed for oblique onshore flow over a vegetated coastal foredune in Prince Edward Island, Canada. Reynolds stress and quadrant activity distributions varied with height (0.60 m and 1.66 m) and location over the dune. In general, quadrant 2 ejection (u' < 0, w' > 0) and quadrant 4 sweep activity (u' > 0, w' < 0) dominated momentum transfer and RS generation over quadrant 1 outward interaction (u' > 0, w' > 0) and quadrant 3 inward interaction (u' < 0, w' < 0) activity. On the lower stoss slope, significant ejection and sweep event activity was most frequent (85 to 92%, ejections plus sweeps), whereas, at the upper crest, significant ejection and sweep activity became less frequent while significant outward and inward interactions increased in frequency (25 to 36%). An 'exuberance effect' (i.e., changing shape of quadrant frequency distribution skewed toward ejection and sweep activity) is observed whereby streamline compression and convexity effects inhibit vertical fluctuations in flow and, thus, reduce the frequency of ejections and sweep activity toward the crest. In separated flow in the lee of the crest, quadrant distributions were more symmetrical as a result of more mixed, multi-directional flow. These trends in turbulent event distributions and Reynolds stress have implications for sediment transport dynamics across the dune and may help to explain sand transport potential and dune maintenance. For example, areas with a high frequency of ejection and sweep activity may have higher rates of sediment entrainment and transport, whereas areas with lower ejection and sweep activity and an increase in outward and inward interactions, which contribute negatively to Reynolds stress generation, may experience a greater potential for deposition. Further research on associations between quadrant event activity and coincident sand transport is required to confirm this hypothesis and the resultant significance of the flow exuberance effect in aeolian dune morphodynamics.

  9. A Modeling Study of Oceanic Response to Daily and Monthly Surface Forcing

    NASA Technical Reports Server (NTRS)

    Sui, Chung-Hsiung; Li, Xiao-Fan; Rienecker, Michele M.; Lau, William K.-M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The goal of this study is to investigate the effect of high-frequency surface forcing (wind stresses and heat fluxes) on upper-ocean response. We use the reduced-gravity quasi-isopycnal ocean model by Schopf and Loughe (1995) for this study. Two experiments are performed: one with daily and the other with monthly surface forcing. The two experiments are referred to as DD and MM, respectively. The daily surface wind stress is produced from the SSM/I wind data (Atlas et al. 1991) using the drag coefficient of Large and Pond (1982). The surface latent and sensible heat fluxes are estimated using the atmospheric mixed layer model by Seager et al. (1995) with the time-varying air temperature and specific humidity from the NCEP-NCAR reanalysis (Kalnay et al. 1996). The radiation is based on climatological shortwave radiation from the Earth Radiation Budget Experiment (ERBE) [Harrison et al. 1993] and the daily GEWEX SRB data. The ocean model domain is restricted to the Pacific Ocean with realistic land boundaries. At the southern boundary the model temperature and salinity are relaxed to the Levitus (1994) climatology. The time-mean SST distribution from MM is close to the observed SST climatology while the mean SST field from DD is about 1.5 C cooler. To identify the responsible processes, we examined the mean heat budgets and the heat balance during the first year (when the difference developed) in the two experiments. The analysis reveals that this is contributed by two factors. One is the difference in latent heat flux. The other is the difference in mixing processes. To further evaluate the responsible processes, we repeated the DD experiment by reducing the based vertical diffusion from 1e-4 to 0.5e-5. The resultant SST field becomes quite closer to the observed SST field. SST variability from the two experiments is generally similar, but the equatorial SST differences between the two experiments show interannual variations. We are investigating the possible mechanisms responsible for the different responses.

  10. Stomatal Conductance, Plant Hydraulics, and Multilayer Canopies: A New Paradigm for Earth System Models or Unnecessary Uncertainty

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.

    2016-12-01

    Soil moisture stress is a key regulator of canopy transpiration, the surface energy budget, and land-atmosphere coupling. Many land surface models used in Earth system models have an ad-hoc parameterization of soil moisture stress that decreases stomatal conductance with soil drying. Parameterization of soil moisture stress from more fundamental principles of plant hydrodynamics is a key research frontier for land surface models. While the biophysical and physiological foundations of such parameterizations are well-known, their best implementation in land surface models is less clear. Land surface models utilize a big-leaf canopy parameterization (or two big-leaves to represent the sunlit and shaded canopy) without vertical gradients in the canopy. However, there are strong biometeorological and physiological gradients in plant canopies. Are these gradients necessary to resolve? Here, I describe a vertically-resolved, multilayer canopy model that calculates leaf temperature and energy fluxes, photosynthesis, stomatal conductance, and leaf water potential at each level in the canopy. In this model, midday leaf water stress manifests in the upper canopy layers, which receive high amounts of solar radiation, have high leaf nitrogen and photosynthetic capacity, and have high stomatal conductance and transpiration rates (in the absence of leaf water stress). Lower levels in the canopy become water stressed in response to longer-term soil moisture drying. I examine the role of vertical gradients in the canopy microclimate (solar radiation, air temperature, vapor pressure, wind speed), structure (leaf area density), and physiology (leaf nitrogen, photosynthetic capacity, stomatal conductance) in determining above canopy fluxes and gradients of transpiration and leaf water potential within the canopy.

  11. Oceanic Feedback to the Madden-Julian Oscillation: Mixing's Critical Role

    NASA Astrophysics Data System (ADS)

    Moum, J. N.; Pujiana, K.; Lien, R. C.; Smyth, W.

    2016-02-01

    The Madden-Julian Oscillation (MJO) in the Indian Ocean is a large-scale, propagating atmospheric disturbance in the equatorial latitude band characterized by reduced outgoing longwave radiation due to deep atmospheric convection, and at the surface by intense westerly wind bursts and a change in sign of the net surface heat flux. The ocean response is the formation of a near-surface Yoshida-Wyrtki Jet, which accelerates almost in balance with the surface wind stress. High shear at the Jet's base drives intense turbulence, both of which continue long after the atmospheric disturbance has passed (Moum et al., 2014). The sequence of MJOs observed in the 2011-2012 DYNAMO experiment suggested the possibility that the greater mixing due to more intense MJO wind bursts might reduce SST recovery rates following MJO passage, thus reducing upper ocean heat content available to drive future atmospheric convection. We have tested this with a statistical analysis of less-complete historical observations of MJOs documenting 50 previous events. Our analysis shows that 1) SST increases more rapidly following weak MJOs than strong MJOs, and within a 60-day window, 2) weak MJOs follow strong MJOs (and do not follow weak MJOs), 3) strong MJOs follow weak MJOs (and do not follow strong MJOs). We hypothesize that these results are the consequence of Jet-forced variations in subsurface mixing on SST recovery rates, thereby providing direct feedback to subsequent MJOs. Moum, J.N., S.P. de Szoeke, W.D. Smyth, J.B. Edson, H.L. DeWitt, A.J. Moulin, E.J. Thompson, C.J. Zappa, S.A. Rutledge, R.H. Johnson and C.W. Fairall, 2014. Air-sea interactions from westerly wind bursts during the November 2011 MJO in the Indian Ocean. Bull.Am.Met.Soc., 95, 1185-1199.

  12. The Dependence of Heat and Gas Transfer Velocities on Wind-Generated and Mechanically Generated Aqueous-Phase Turbulence

    NASA Astrophysics Data System (ADS)

    Liang, H.; Mukto, M.; Loewen, M.; Zappa, C.; Litchendorf, T.; Asher, W.; Jessup, A.

    2006-12-01

    The air-sea flux, F, of a sparingly soluble nonreactive gas can be expressed as F = kG( CS-CW), where kG is the gas transfer velocity, CS is the concentration of gas that would be expected in the water if the system were in Henry`s Gas Law equilibrium, and CW is the actual concentration of the gas in the water. An analogous relationship for the net heat flux can also be written using the heat transfer velocity, kH, and the bulk-skin temperature difference in the aqueous phase. Hydrodynamical models of gas and heat exchange based on surface renewal theory predict that kG and kH will scale as the square root of the inverse of a timescale of the turbulence. Furthermore, if surface renewal provides an accurate conceptual model for both transfer processes, then both kG and kH should behave identically as turbulence conditions change. Here we report on recent laboratory experiments in which we measured turbulence, heat fluxes, kG, and kH in a 0.5 m by 0.5 m by 1 m deep tank in the presence of turbulence generated mechanically using a random synthetic jet array. The turbulence tank was embedded in a small wind tunnel so that kG and kH could be studied as a function of the mechanically generated turbulence but also turbulence generated by wind stress. Net heat transfer velocities were measured using Active Controlled Flux Technique and estimated from measurements of the latent and sensible heat fluxes combined with direct measurements of the bulk-skin temperature difference. Gas transfer velocities were determined by measuring the evasion rates of sulfur hexafluoride and helium. The length and velocity scales of the aqueous-phase turbulence were measured using a Digital Particle-Image Velocimetry system. These combined data sets are used to study how kG and kH depend on system turbulence, whether this dependence is consonant with that predicted using surface renewal, and whether there is a quantitative difference between mechanically generated turbulence and turbulence generated by the wind stress insofar as air-water exchange is concerned.

  13. Effect of atmospheric turbulence on wind turbine wakes: An LES study

    NASA Astrophysics Data System (ADS)

    Wu, Y. T.; Porté-Agel, F.

    2012-04-01

    A comprehensive numerical study of atmospheric turbulence effect on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified boundary layers developed over different flat surfaces (forest, farmland, grass, and snow) are performed to investigate the structure of turbine wakes in cases where the incident flows to the wind turbine have the same mean velocity at the hub height but different mean wind shears and turbulence intensity levels. The simulation results show that the different wind shears and turbulence intensity levels of the incoming flow lead to considerable influence on the spatial distribution of the mean velocity deficit, turbulence intensity, and turbulent shear stress in the wake region downstream of the turbine. In general, the recovery of the turbine-induced wake (velocity deficit) is faster and the turbulence intensity level is higher and has its maximum closer to the turbine for wakes of turbines over rougher terrain. In order to isolate the effect of turbulence intensity from that of wind shear, simulations have also been performed with synthetic inflow velocity fields that have the same mean wind shear but different turbulence intensity levels. We find that the effect of the inflow turbulence intensity on the wake recovery and turbulence levels is stronger than that of the mean shear.

  14. Accelerated crack growth, residual stress, and a cracked zinc coated pressure shell

    NASA Technical Reports Server (NTRS)

    Dittman, Daniel L.; Hampton, Roy W.; Nelson, Howard G.

    1987-01-01

    During a partial inspection of a 42 year old, operating, pressurized wind tunnel at NASA-Ames Research Center, a surface connected defect 114 in. long having an indicated depth of a 0.7 in. was detected. The pressure shell, constructed of a medium carbon steel, contains approximately 10 miles of welds and is cooled by flowing water over its zinc coated external surface. Metallurgical and fractographic analysis showed that the actual detect was 1.7 in. deep, and originated from an area of lack of weld penetration. Crack growth studies were performed on the shell material in the laboratory under various loading rates, hold times, and R-ratios with a simulated shell environment. The combination of zinc, water with electrolyte, and steel formed an electrolytic cell which resulted in an increase in cyclic crack growth rate by as much as 500 times over that observed in air. It was concluded that slow crack growth occurred in the pressure shell by a combination of stress corrosion cracking due to the welding residual stress and corrosion fatigue due to the cyclic operating stress.

  15. Key roles of sea ice in inducing contrasting modes of glacial AMOC and climate

    NASA Astrophysics Data System (ADS)

    Sherriff-Tadano, S.; Abe-Ouchi, A.

    2017-12-01

    Gaining a better understanding of glacial Atlantic meridional overturning circulation (AMOC) is important to interpret the glacial climate changes such as the Heinrich event. Recent studies suggest that changes in sea ice over the North Atlantic largely affect the surface wind. Since changes in surface wind have a large impact on the AMOC, this implies a role of sea ice in modifying the AMOC though surface wind. However, the impact of sea ice on the surface winds and the impact of changes in the winds on the AMOC remain unclear. In this study, we first assess the impact of sea ice expansion on the winds. We then explore whether the changes in winds play a role in modifying the AMOC and climate. For this purpose, results from MIROC4m are analyzed (Kawamura et al. 2017). To clarify the impact of changes in sea ice on the surface wind, sensitivity experiments are conducted with an atmospheric general circulation model (AGCM). In the AGCM experiments, we modify the sea ice to extract the impact of sea ice on the winds. Partial decouple experiments are conducted with the coupled model MIROC4m, which we modify the surface winds to assess the impact of changes in the surface wind due to sea ice expansion on the AMOC. Results show that expansion of sea ice substantially weakens the surface wind over the northern North Atlantic. AGCM experiments show that a drastic decrease in surface temperature duo to a suppression of sensible heat flux plays a dominant role in weakening the surface winds through increasing the static stability of the air column near the surface. Partial decouple experiments with MIROC4m show that the weakening of the surface wind due to the expansion of sea ice plays an important role in maintaining the weak AMOC. Thus, these experiments show that the weakening of the surface winds due to sea ice expansion plays a role in stabilizing the AMOC.

  16. A balanced Kalman filter ocean data assimilation system with application to the South Australian Sea

    NASA Astrophysics Data System (ADS)

    Li, Yi; Toumi, Ralf

    2017-08-01

    In this paper, an Ensemble Kalman Filter (EnKF) based regional ocean data assimilation system has been developed and applied to the South Australian Sea. This system consists of the data assimilation algorithm provided by the NCAR Data Assimilation Research Testbed (DART) and the Regional Ocean Modelling System (ROMS). We describe the first implementation of the physical balance operator (temperature-salinity, hydrostatic and geostrophic balance) to DART, to reduce the spurious waves which may be introduced during the data assimilation process. The effect of the balance operator is validated in both an idealised shallow water model and the ROMS model real case study. In the shallow water model, the geostrophic balance operator eliminates spurious ageostrophic waves and produces a better sea surface height (SSH) and velocity analysis and forecast. Its impact increases as the sea surface height and wind stress increase. In the real case, satellite-observed sea surface temperature (SST) and SSH are assimilated in the South Australian Sea with 50 ensembles using the Ensemble Adjustment Kalman Filter (EAKF). Assimilating SSH and SST enhances the estimation of SSH and SST in the entire domain, respectively. Assimilation with the balance operator produces a more realistic simulation of surface currents and subsurface temperature profile. The best improvement is obtained when only SSH is assimilated with the balance operator. A case study with a storm suggests that the benefit of the balance operator is of particular importance under high wind stress conditions. Implementing the balance operator could be a general benefit to ocean data assimilation systems.

  17. Atmospheric and oceanic forcing of Weddell Sea ice motion

    NASA Astrophysics Data System (ADS)

    Kottmeier, C.; Sellmann, Lutz

    1996-09-01

    The data from sea ice buoys, which were deployed during the Winter Weddell Sea Project 1986, the Winter Weddell Gyre Studies 1989 and 1992, the Ice Station Weddell in 1992, the Antarctic Zone Flux Experiment in 1994, and several ship cruises in Austral summers, are uniformly reanalyzed by the same objective methods. Geostrophic winds are derived after matching of the buoy pressure data with the surface pressure fields of the European Centre for Medium Range Weather Forecasts. The ratio between ice drift and geostrophic wind speeds is reduced when winds and currents oppose each other, when the atmospheric surface layer is stably stratified, and when the ice is under pressure near coasts. Over the continental shelves, the spatial inhomogeneity of tidal and inertial motion effectively controls the variability of divergence for periods below 36 hours. Far from coasts, speed ratios, which presumably reflect internal stress variations in the ice cover, are independent of drift divergence on the spatial scale of 100 km. To study basin-scale ice dynamics, all ice drift data are related to the geostrophic winds based on the complex linear model [Thorndike and Colony, 1982] for daily averaged data. The composite patterns of mean ice motion, geostrophic winds, and geostrophic surface currents document cyclonic basin-wide circulations. Geostrophic ocean currents are generally small in the Weddell Sea. Significant features are the coastal current near the southeastern coasts and the bands of larger velocities of ≈6 cm s-1 following the northward and eastward orientation of the continental shelf breaks in the western and northwestern Weddell Sea. In the southwestern Weddell Sea the mean ice drift speed is reduced to less than 0.5% of the geostrophic wind speed and increases rather continuously to 1.5% in the northern, central, and eastern Weddell Sea. The linear model accounts for less than 50% of the total variance of drift speeds in the southwestern Weddell Sea and up to 80% in the northern and eastern Weddell Sea.

  18. Rough-to-smooth transition of an equilibrium neutral constant stress layer

    NASA Technical Reports Server (NTRS)

    Logan, E., Jr.; Fichtl, G. H.

    1975-01-01

    Purpose of research on rough-to-smooth transition of an equilibrium neutral constant stress layer is to develop a model for low-level atmospheric flow over terrains of abruptly changing roughness, such as those occurring near the windward end of a landing strip, and to use the model to derive functions which define the extent of the region affected by the roughness change and allow adequate prediction of wind and shear stress profiles at all points within the region. A model consisting of two bounding logarithmic layers and an intermediate velocity defect layer is assumed, and dimensionless velocity and stress distribution functions which meet all boundary and matching conditions are hypothesized. The functions are used in an asymptotic form of the equation of motion to derive a relation which governs the growth of the internal boundary layer. The growth relation is used to predict variation of surface shear stress.

  19. Detection and Attribution of Regional Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and oceanmore » circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.« less

  20. Observed flow compensation associated with the MOC at 26.5 degrees N in the Atlantic.

    PubMed

    Kanzow, Torsten; Cunningham, Stuart A; Rayner, Darren; Hirschi, Joël J-M; Johns, William E; Baringer, Molly O; Bryden, Harry L; Beal, Lisa M; Meinen, Christopher S; Marotzke, Jochem

    2007-08-17

    The Atlantic meridional overturning circulation (MOC), which provides one-quarter of the global meridional heat transport, is composed of a number of separate flow components. How changes in the strength of each of those components may affect that of the others has been unclear because of a lack of adequate data. We continuously observed the MOC at 26.5 degrees N for 1 year using end-point measurements of density, bottom pressure, and ocean currents; cable measurements across the Straits of Florida; and wind stress. The different transport components largely compensate for each other, thus confirming the validity of our monitoring approach. The MOC varied over the period of observation by +/-5.7 x 10(6) cubic meters per second, with density-inferred and wind-driven transports contributing equally to it. We find evidence for depth-independent compensation for the wind-driven surface flow.

  1. Atmospheric turbulence review of space shuttle launches

    NASA Technical Reports Server (NTRS)

    Susko, Michael

    1991-01-01

    Research and analysis on the identification of turbulent regions from the surface to 16 km during Space Shuttle launches are discussed. It was demonstrated that the results from the FPS-16 radar/jimsphere balloon system in measuring winds can indeed indicate the presence or conditions ripe for turbulence in the troposphere and lower stratosphere. It was further demonstrated that atmospheric data obtained during the shuttle launches by the rawinsonde in conjunction with the jimsphere provides the necessary meteorological data to compute aerodynamic parameters to identify turbulence, such as Reynolds number drag coefficient, turbulent stresses, total energy, stability parameter, vertical gradient of kinetic energy, Richardson number, and the turbulence probability index. Enhanced temperature lapse rates and inversion rates, strong vector wind shears, and large changes in wind direction identify the occurrence of turbulence at the troposphere. When any two of the above conditions occur simultaneously, a significant probability of turbulence can occur.

  2. Investigation of a Novel Turbulence Model and Using Leading-Edge Slots for Improving the Aerodynamic Performance of Airfoils and Wind Turbines

    NASA Astrophysics Data System (ADS)

    Beyhaghi, Saman

    Because of the problems associated with increase of greenhouse gases, as well as the limited supplies of fossil fuels, the transition to alternate, clean, renewable sources of energy is inevitable. Renewable sources of energy can be used to decrease our need for fossil fuels, thus reducing impact to humans, other species and their habitats. The wind is one of the cleanest forms of energy, and it can be an excellent candidate for producing electrical energy in a more sustainable manner. Vertical- and Horizontal-Axis Wind Turbines (VAWT and HAWT) are two common devices used for harvesting electrical energy from the wind. Due to the development of a thin boundary layer over the ground surface, the modern commercial wind turbines have to be relatively large to be cost-effective. Because of the high manufacturing and transportation costs of the wind turbine components, it is necessary to evaluate the design and predict the performance of the turbine prior to shipping it to the site, where it is to be installed. Computational Fluid Dynamics (CFD) has proven to be a simple, cheap and yet relatively accurate tool for prediction of wind turbine performance, where the suitability of different designs can be evaluated at a low cost. High accuracy simulation methods such as Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) are developed and utilized in the past decades. Despite their superior importance in large fluid domains, they fail to make very accurate predictions near the solid surfaces. Therefore, in the present effort, the possibility of improving near-wall predictions of CFD simulations in the near-wall region by using a modified turbulence model is also thoroughly investigated. Algebraic Stress Model (ASM) is employed in conjunction with Detached Eddy Simulation (DES) to improve Reynolds stresses components, and consequently predictions of the near-wall velocities and surface pressure distributions. The proposed model shows a slightly better performance as compared to the baseline DES. In the second part of this study, the focus is on improving the aerodynamic performance of airfoils and wind turbines in terms of lift and drag coefficients and power generation. One special type of add-on feature for wind turbines and airfoils, i.e., leading-edge slots are investigated through numerical simulation and laboratory experiments. Although similar slots are designed and employed for aircrafts, a special slot with a reversed flow direction is drilled in the leading edge of a sample wind turbine airfoil to study its influence on the aerodynamic performance. The objective is to vary the five main geometrical parameters of slot and characterize the performance improvement of the new design under different operating conditions. A number of Design of Experiment and optimization studies are conducted to determine the most suitable slot configuration to maximize the lift or lift-over-drag ratio. Results indicate that proper sizing and placement of slot can improve the lift coefficient, while it has negligible negative impact on the drag. Some recommendations for future investigation on slot are proposed at the end. The performance of a horizontal axis wind turbine blade equipped with leading-edge slot is also studied, and it is concluded that slotted blades can generate about 10% more power than solid blades, for the two operating conditions investigated. The good agreement between the CFD predictions and experimental data confirms the validity of the model and results.

  3. Coherency Between Volume Transport in the Antarctic Circumpolar Current and Southern Hemisphere Winds

    NASA Astrophysics Data System (ADS)

    Makowski, Jessica; Chambers, Don; Bonin, Jennifer

    2013-04-01

    Previous studies have suggested that ocean bottom pressure (OBP) can be used to measure the transport variability of the Antarctic Circumpolar Current (ACC). The OBP observations from the Gravity Recovery and Climate Experiment (GRACE) will be used to calculate transport along the 150°E longitude choke point, between Antarctica and Australia. We will examine whether zonally averaged wind stress, wind stress curl, or local zonal winds are more coherent with zonal mass transport variability. Preliminary studies suggest that seasonal variation in transport across 150°E is more correlated with winds along and north of the northern front of the ACC: the Sub Tropical front (STF). It also appears that interannual variations in transport along 150°E are related to wind variations south of the STF and centered south of the Sub Antarctic Front (SAF). We have observed a strong anti-correlation across the SAF, in the Indian Ocean, which suggests wind stress curl may also be responsible for transport variations. Preliminary results will be presented.

  4. Effects of Wind and Freshwater on the Atlantic Meridional Overturning Circulation: Role of Sea Ice and Vertical Diffusion

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Yang, Haijun; Dai, Haijin; Wang, Yuxing; Li, Qing

    2015-04-01

    Effects of wind and fresh water on the Atlantic meridional overturning circulation (AMOC) are investigated in a fully coupled climate model (CESM1.0). The AMOC can change significantly when perturbing either the wind stress or fresh water flux in the northern North Atlantic. This work pays special attention on the wind stress effect. Our model results show that the wind forcing is a crucial element in maintaining the AMOC. When the wind-stress is reduced, the vertical convection and diffusion are weakened immediately, triggering a salt deficit in the northern North Atlantic that prevents the deep water formation there. The salinity advection from the south, however, plays a contrary role to salt the upper ocean. As the AMOC weakens, the sea ice expends southward and melts, freshening the upper ocean that weakens the AMOC further. There is a positive feedback between the sea ice melting and AMOC strength, which eventually determines the AMOC strength in the reduced wind world.

  5. Observational study of surface wind along a sloping surface over mountainous terrain during winter

    NASA Astrophysics Data System (ADS)

    Lee, Young-Hee; Lee, Gyuwon; Joo, Sangwon; Ahn, Kwang-Deuk

    2018-03-01

    The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is observed along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward foot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.

  6. Residual Stress Assessment in Thin Angle Ply Tubes

    NASA Astrophysics Data System (ADS)

    Kaddour, A. S.; Al-Hassani, S. T. S.; Hinton, M. J.

    2003-05-01

    This preliminary study aims to investigate the residual stresses developed in hot cured thin-walled angle-ply filament wound tubes made of E-glass/epoxy, Kevlar/epoxy and carbon/epoxy materials. The residual stresses were estimated from change in geometry of these tubes when axially slitted at ambient temperature. Three basic deformation modes; namely opening up, closing-in and twisting, were observed and these depended on the winding angle, material and wall thickness. The residual stresses were also determined from hoop and axial strain gauges mounted on both the inner and outer surfaces at various locations around the tube. The stresses were compared with theoretical prediction based upon a linear thermo-elastic analysis. Both the predicted and measured values were found to increase with increasing hoop stiffness but there was a large discrepancy between the predicted and measured data, reaching a factor of 5 for the thinnest case. When compared with predicted failure stresses, the experimentally determined stresses were some 15% of the computed compressive strength.

  7. Subtidal circulation patterns in a shallow, highly stratified estuary: Mobile Bay, Alabama

    USGS Publications Warehouse

    Noble, M.A.; Schroeder, W.W.; Wiseman, W.J.; Ryan, H.F.; Gelfenbaum, G.

    1996-01-01

    Mobile Bay is a wide (25-50 km), shallow (3 m), highly stratified estuary on the Gulf coast of the United States. In May 1991 a series of instruments that measure near-surface and near-bed current, temperature, salinity, and middepth pressure were deployed for a year-long study of the bay. A full set of measurements were obtained at one site in the lower bay; all but current measurements were obtained at a midbay site. These observations show that the subtidal currents in the lower bay are highly sheared, despite the shallow depth of the estuary. The sheared flow patterns are partly caused by differential forcing from wind stress and river discharge. Two wind-driven flow patterns actually exist in lower Mobile Bay. A barotropic response develops when the difference between near-surface and near-bottom salinity is less than 5 parts per thousand. For stronger salinity gradients the wind-driven currents are larger and the response resembles a baroclinic flow pattern. Currents driven by river flows are sheared and also have a nonlinear response pattern. Only near-surface currents are driven seaward by discharges below 3000 m3/s. At higher discharge rates, surface current variability uncouples from the river flow and the increased discharge rates drive near-bed current seaward. This change in the river-forced flow pattern may be associated with a hydraulic jump in the mouth of the estuary. Copyright 1996 by the American Geophysical Union.

  8. Determination of wind from NIMBUS 6 satellite sounding data

    NASA Technical Reports Server (NTRS)

    Carle, W. E.; Scoggins, J. R.

    1981-01-01

    Objective methods of computing upper level and surface wind fields from NIMBUS 6 satellite sounding data are developed. These methods are evaluated by comparing satellite derived and rawinsonde wind fields on gridded constant pressure charts in four geographical regions. Satellite-derived and hourly observed surface wind fields are compared. Results indicate that the best satellite-derived wind on constant pressure charts is a geostrophic wind derived from highly smoothed fields of geopotential height. Satellite-derived winds computed in this manner and rawinsonde winds show similar circulation patterns except in areas of small height gradients. Magnitudes of the standard deviation of the differences between satellite derived and rawinsonde wind speeds range from approximately 3 to 12 m/sec on constant pressure charts and peak at the jet stream level. Fields of satellite-derived surface wind computed with the logarithmic wind law agree well with fields of observed surface wind in most regions. Magnitudes of the standard deviation of the differences in surface wind speed range from approximately 2 to 4 m/sec, and satellite derived surface winds are able to depict flow across a cold front and around a low pressure center.

  9. Experimental study of the impact of large-scale wind farms on land-atmosphere exchanges

    NASA Astrophysics Data System (ADS)

    Zhang, wei; Markfort, Corey; Porté-Agel, Fernando

    2013-04-01

    Wind energy is one of the fastest growing sources of renewable energy world-wide, and it is expected that many more large-scale wind farms will be built and cover a significant portion of land and ocean surfaces. By extracting kinetic energy from the atmospheric boundary layer and converting it to electricity, wind farms may affect the transport of momentum, heat, moisture and trace gases (e.g. CO2) between the atmosphere and the land surface locally and globally. Understanding wind farm-atmosphere interactions and subsequent environmental impacts are complicated by the effects of turbine array configuration, wind farm size, land-surface characteristics and atmospheric thermal stability. In particular, surface scalar flux is influenced by wind farms and needs to be appropriately parameterized in meso-scale and/or high-resolution numerical models. Wind-tunnel experiments of model wind farms with perfectly aligned and staggered configurations, having the same turbine distribution density, were conducted in a neutral turbulent boundary layer with a surface heat source. Turbulent flow and fluxes over and through the wind farm were measured using a custom x-wire/cold-wire anemometer; and surface scalar flux was measured with an array of surface-mounted heat flux sensors within the quasi-developed flow regime. Although the overall surface heat flux change produced by the wind farms was found to be small, with a net reduction of 4% for the staggered wind farm and nearly zero for the aligned wind farm, the highly heterogeneous spatial distribution of the surface heat flux, dependent on wind farm layout, is significant. The difference between the minimum and maximum surface heat fluxes could be up to 12% and 7% in aligned and staggered wind farms, respectively. This finding is important for planning intensive agriculture practices and optimizing agricultural land use with regard to wind energy project development. The well-controlled wind-tunnel experiments presented here also provide a first comprehensive dataset on turbulent flow and scalar transport in wind farms, which can be further used to develop and validate new parameterizations for surface scalar fluxes in numerical models.

  10. Coping with Rosacea: Tripwires

    MedlinePlus

    ... Weather Sun exposure, hot weather, humidity, cold and wind have all been known to aggravate rosacea for ... against the naturally drying effects of cold and wind. top Tripwires - Stress Stress ranks high on the ...

  11. Intraseasonal Variability of the Equatorial Indian Ocean Observed from Sea Surface Height, Wind, and Temperature Data

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng

    2007-01-01

    The forcing of the equatorial Indian Ocean by the highly periodic monsoon wind cycle creates many interesting intraseasonal variabilities. The frequency spectrum of the wind stress observations from the European Remote Sensing Satellite scatterometers reveals peaks at the seasonal cycle and its higher harmonics at 180, 120, 90, and 75 days. The observations of sea surface height (SSH) from the Jason and Ocean Topography Experiment (TOPEX)/Poseidon radar altimeters are analyzed to study the ocean's response. The focus of the study is on the intraseasonal periods shorter than the annual period. The semiannual SSH variability is characterized by a basin mode involving Rossby waves and Kelvin waves traveling back and forth in the equatorial Indian Ocean between 10(deg)S and 10(deg)N. However, the interference of these waves with each other masks the appearance of individual Kelvin and Rossby waves, leading to a nodal point (amphidrome) of phase propagation on the equator at the center of the basin. The characteristics of the mode correspond to a resonance of the basin according to theoretical models. The theory also calls for similar modes at 90 and 60 days.

  12. Spatially-resolved mean flow and turbulence help explain observed erosion and deposition patterns of snow over Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Trujillo, E.; Giometto, M. G.; Leonard, K. C.; Maksym, T. L.; Meneveau, C. V.; Parlange, M. B.; Lehning, M.

    2014-12-01

    Sea ice-atmosphere interactions are major drivers of patterns of sea ice drift and deformations in the Polar regions, and affect snow erosion and deposition at the surface. Here, we combine analyses of sea ice surface topography at very high-resolutions (1-10 cm), and Large Eddy Simulations (LES) to study surface drag and snow erosion and deposition patterns from process scales to floe scales (1 cm - 100 m). The snow/ice elevations were obtained using a Terrestrial Laser Scanner during the SIPEX II (Sea Ice Physics and Ecosystem eXperiment II) research voyage to East Antarctica (September-November 2012). LES are performed on a regular domain adopting a mixed pseudo-spectral/finite difference spatial discretization. A scale-dependent dynamic subgrid-scale model based on Lagrangian time averaging is adopted to determine the eddy-viscosity in the bulk of the flow. Effects of larger-scale features of the surface on wind flows (those features that can be resolved in the LES) are accounted for through an immersed boundary method. Conversely, drag forces caused by subgrid-scale features of the surface should be accounted for through a parameterization. However, the effective aerodynamic roughness parameter z0 for snow/ice is not known. Hence, a novel dynamic approach is utilized, in which z0 is determined using the constraint that the total momentum flux (drag) must be independent on grid-filter scale. We focus on three ice floe surfaces. The first of these surfaces (October 6, 2012) is used to test the performance of the model, validate the algorithm, and study the spatial distributed fields of resolved and modeled stress components. The following two surfaces, scanned at the same location before and after a snow storm event (October 20/23, 2012), are used to propose an application to study how spatially resolved mean flow and turbulence relates to observed patterns of snow erosion and deposition. We show how erosion and deposition patterns are correlated with the computed stresses, with modeled stresses having higher explanatory power. Deposition is mainly occurring in wake regions of specific ridges that strongly affect wind flow patterns. These larger ridges also lock in place elongated streaks of relatively high speeds with axes along the stream-wise direction, and which are largely responsible for the observed erosion.

  13. The Impact of High-Resolution Sea Surface Temperatures on the Simulated Nocturnal Florida Marine Boundary Layer

    NASA Technical Reports Server (NTRS)

    LaCasse, Katherine M.; Splitt, Michael E.; Lazarus, Steven M.; Lapenta, William M.

    2008-01-01

    High- and low-resolution sea surface temperature (SST) analysis products are used to initialize the Weather Research and Forecasting (WRF) Model for May 2004 for short-term forecasts over Florida and surrounding waters. Initial and boundary conditions for the simulations were provided by a combination of observations, large-scale model output, and analysis products. The impact of using a 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) SST composite on subsequent evolution of the marine atmospheric boundary layer (MABL) is assessed through simulation comparisons and limited validation. Model results are presented for individual simulations, as well as for aggregates of easterly- and westerly-dominated low-level flows. The simulation comparisons show that the use of MODIS SST composites results in enhanced convergence zones. earlier and more intense horizontal convective rolls. and an increase in precipitation as well as a change in precipitation location. Validation of 10-m winds with buoys shows a slight improvement in wind speed. The most significant results of this study are that 1) vertical wind stress divergence and pressure gradient accelerations across the Florida Current region vary in importance as a function of flow direction and stability and 2) the warmer Florida Current in the MODIS product transports heat vertically and downwind of this heat source, modifying the thermal structure and the MABL wind field primarily through pressure gradient adjustments.

  14. Cross-shore variation of wind-driven flows on the inner shelf in Long Bay, South Carolina, United States

    NASA Astrophysics Data System (ADS)

    Gutierrez, Benjamin T.; Voulgaris, George; Work, Paul A.

    2006-03-01

    The cross-shore structure of subtidal flows on the inner shelf (7 to 12 m water depth) of Long Bay, South Carolina, a concave-shaped bay, is examined through the analysis of nearly 80 days of near-bed (1.7-2.2 m above bottom) current observations acquired during the spring and fall of 2001. In the spring and under northeastward winds (upwelling favorable) a two-layered flow was observed at depths greater than 10 m, while closer to the shore the currents were aligned with the wind. The two-layered flow is attributed to the presence of stratification, which has been observed under similar conditions in the South Atlantic Bight. When the wind stress was southwestward (downwelling favorable) and exceeded 0.1 N/m2, vertical mixing occurred, the two-layered flow pattern disappeared, and currents were directed alongshore with the wind at all sites and throughout the water column. In the fall, near-bed flows close to the shore (water depth <7 m) were often reduced compared to or opposed those measured farther offshore under southwestward winds. A simplified analysis of the depth-averaged, alongshore momentum balance illustrates that the alongshore pressure gradient approached or exceeded the magnitude of the alongshore wind stress at the same time that the nearshore alongshore current opposed the wind stress and alongshore currents farther offshore. In addition, the analysis suggests that the wind stress is reduced closer to shore so that the alongshore pressure gradient is large enough to drive the flow against the wind.

  15. Causes of the large warm bias in the Angola-Benguela Frontal Zone in the Norwegian Earth System Model

    NASA Astrophysics Data System (ADS)

    Koseki, Shunya; Keenlyside, Noel; Demissie, Teferi; Toniazzo, Thomas; Counillon, Francois; Bethke, Ingo; Ilicak, Mehmet; Shen, Mao-Lin

    2018-06-01

    We have investigated the causes of the sea surface temperature (SST) bias in the Angola-Benguela Frontal Zone (ABFZ) of the southeastern Atlantic Ocean simulated by the Norwegian Earth System Model (NorESM). Similar to other coupled-models, NorESM has a warm SST bias in the ABFZ of up to 8 °C in the annual mean. Our analysis of NorESM reveals that a cyclonic surface wind bias over the ABFZ drives a locally excessively strong southward (0.05 m/s (relative to observation)) Angola Current displacing the ABFZ southward. A series of uncoupled stand-alone atmosphere and ocean model simulations are performed to investigate the cause of the coupled model bias. The stand-alone atmosphere model driven with observed SST exhibits a similar cyclonic surface circulation bias; while the stand-alone ocean model forced with the reanalysis data produces a warm SST in the ABFZ with a magnitude approximately half of that in the coupled NorESM simulation. An additional uncoupled sensitivity experiment shows that the atmospheric model's local negative surface wind curl generates anomalously strong Angola Current at the ocean surface. Consequently, this contributes to the warm SST bias in the ABFZ by 2 °C (compared to the reanalysis forced simulation). There is no evidence that local air-sea feedbacks among wind stress curl, SST, and sea level pressure (SLP) affect the ABFZ SST bias. Turbulent surface heat flux differences between coupled and uncoupled experiments explain the remaining 2 °C warm SST bias in NorESM. Ocean circulation, upwelling and turbulent heat flux errors all modulate the intensity and the seasonality of the ABFZ errors.

  16. Seasonal variability of chlorophyll-a and oceanographic conditions in Sabah waters in relation to Asian monsoon--a remote sensing study.

    PubMed

    Abdul-Hadi, Alaa; Mansor, Shattri; Pradhan, Biswajeet; Tan, C K

    2013-05-01

    A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements.

  17. Biogeophysical consequences of a tropical deforestation scenario: A GCM simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sud, Y.C.; Lau, W.K.M.; Walker, G.K.

    1996-12-01

    Two 3-year (1979-1982) integrations were carried out with a version of the GLA GCM that contains the Simple Biosphere Model (SiB) for simulating land-atmosphere interactions. The control case used the usual SiB vegetation cover (comprising 12 vegetation types), while its twin, the deforestation case, imposed a scenario in which all tropical rainforests were entirely replaced by grassland. Except for this difference, all other initial and prescribed boundary conditions were kept identical in both integrations. An intercomparison of the integrations shows that tropical: deforestation decreases evapotranspiration and increases land surface outgoing longwave radiation and sensible heat flux, thereby warming and dryingmore » the planetary boundary layer. This happens despite the reduced absorption of solar radiation due to higher surface albedo of the deforested land. Produces significant and robust local as well as global climate changes. The local effect includes significant changes (mostly reductions) in precipitation and diabatic heating, while the large-scale effect is to weaken the Hadley circulation but invigorate the southern Ferrel cell, drawing larger air mass from the indirect polar cells. Decreases the surface stress (drag force) owing to reduced surface roughness of deforested land, which in turn intensifies winds in the planetary boundary layer, thereby affecting the dynamic structure of moisture convergence. The simulated surface winds are about 70% stronger and are accompanied by significant changes in the power spectrum of the annual cycle of surface and PBL winds and precipitation. Our results broadly confirm several findings of recent tropical deforestation simulation experiments. In addition, some global-scale climatic influences of deforestation not identified in earlier studies are delineated. 57 refs., 10 figs., 3 tabs.« less

  18. Reconstructing Tropical Pacific Sea Level Variability for the Period 1961-2002 Using a Linear Multimode Model

    NASA Astrophysics Data System (ADS)

    Greatbatch, Richard J.; Zhu, Xiaoting; Claus, Martin

    2018-03-01

    Monthly mean sea level anomalies in the tropical Pacific for the period 1961-2002 are reconstructed using a linear, multimode model driven by monthly mean wind stress anomalies from the NCEP/NCAR and ERA-40 reanalysis products. Overall, the sea level anomalies reconstructed by both wind stress products agree well with the available tide gauge data, although with poor performance at Kanton Island in the western-central equatorial Pacific and reduced amplitude at Christmas Island. The reduced performance is related to model error in locating the pivot point in sea level variability associated with the so-called "tilt" mode. We present evidence that the pivot point was further west during the period 1993-2014 than during the period 1961-2002 and attribute this to a persistent upward trend in the zonal wind stress variance along the equator west of 160° W throughout the period 1961-2014. Experiments driven by the zonal component of the wind stress alone reproduce much of the trend in sea level found in the experiments driven by both components of the wind stress. The experiments show an upward trend in sea level in the eastern tropical Pacific over the period 1961-2002, but with a much stronger upward trend when using the NCEP/NCAR product. We argue that the latter is related to an overly strong eastward trend in zonal wind stress in the eastern-central Pacific that is believed to be a spurious feature of the NCEP/NCAR product.

  19. WIND TURBINES CAUSE CHRONIC STRESS IN BADGERS (MELES MELES) IN GREAT BRITAIN.

    PubMed

    Agnew, Roseanna C N; Smith, Valerie J; Fowkes, Robert C

    2016-07-01

    A paucity of data exists with which to assess the effects of wind turbines noise on terrestrial wildlife, despite growing concern about the impact of infrasound from wind farms on human health and well-being. In 2013, we assessed whether the presence of turbines in Great Britain impacted the stress levels of badgers ( Meles meles ) in nearby setts. Hair cortisol levels were used to determine if the badgers were physiologically stressed. Hair of badgers living <1 km from a wind farm had a 264% higher cortisol level than badgers >10 km from a wind farm. This demonstrates that affected badgers suffer from enhanced hypothalamo-pituitary-adrenal activity and are physiologically stressed. No differences were found between the cortisol levels of badgers living near wind farms operational since 2009 and 2012, indicating that the animals do not become habituated to turbine disturbance. Cortisol levels in the affected badgers did not vary in relation to the distance from turbines within 1 km, wind farm annual power output, or number of turbines. We suggest that the higher cortisol levels in affected badgers is caused by the turbines' sound and that these high levels may affect badgers' immune systems, which could result in increased risk of infection and disease in the badger population.

  20. Viscous Forces in Velocity Boundary Layers around Planetary Ionospheres.

    PubMed

    Pérez-De-Tejada

    1999-11-01

    A discussion is presented to examine the role of viscous forces in the transport of solar wind momentum to the ionospheric plasma of weakly magnetized planets (Venus and Mars). Observational data are used to make a comparison of the Reynolds and Maxwell stresses that are operative in the interaction of the solar wind with local plasma (planetary ionospheres). Measurements show the presence of a velocity boundary layer formed around the flanks of the ionosphere where the shocked solar wind has reached super-Alfvénic speeds. It is found that the Reynolds stresses in the solar wind at that region can be larger than the Maxwell stresses and thus are necessary in the local acceleration of the ionospheric plasma. From an order-of-magnitude calculation of the Reynolds stresses, it is possible to derive values of the kinematic viscosity and the Reynolds number that are suitable to the gyrotropic motion of the solar wind particles across the boundary layer. The value of the kinematic viscosity is comparable to those inferred from studies of the transport of solar wind momentum to the earth's magnetosphere and thus suggest a common property of the solar wind around planetary obstacles. Similar conditions could also be applicable to velocity boundary layers formed in other plasma interaction problems in astrophysics.

  1. Wind-dependent beluga whale dive behavior in Barrow Canyon, Alaska

    NASA Astrophysics Data System (ADS)

    Stafford, K. M.; Citta, J. J.; Okkonen, S. R.; Suydam, R. S.

    2016-12-01

    Beluga whales (Delphinapterus leucas) are the most abundant cetacean in the Arctic. The Barrow Canyon region, Alaska, is a hotspot for Pacific Arctic belugas, likely because the oceanographic environment provides reliable foraging opportunities. Fronts are known to promote the concentration of planktonic prey; when Barrow-area winds are weak or from the west, a front associated with the Alaskan Coastal Current (ACC) intensifies. This front is weakened or disrupted when strong easterly winds slow or displace the ACC. To determine if winds influence the diving depth of belugas, we used generalized linear mixed models (GLMM) to examine how the dive behavior of animals instrumented with satellite-linked time-depth recorders varied with wind conditions. When projected along-canyon winds are from the WSW and the front associated with the ACC is enhanced, belugas tend to target shallower depths (10-100 m) associated with the front. In contrast, when strong winds from the ENE displaced the ACC, belugas tended to spend more time at depths >200 m where the Arctic halocline grades into relatively warmer Atlantic Water (AW). The probability of diving to >200 m, the number of dives >200 m, and the amount of time spent below 200 m were all significantly related to along-canyon wind stress (p<0.01). From these results and known relationships between wind stress, currents and frontal structure in Barrow Canyon and the characteristic vertical distribution of Arctic cod, we infer that the probability of belugas targeting different depth regimes is based upon how wind stress affects the relative foraging opportunities between these depth regimes. Belugas are known to target AW throughout the Beaufort Sea; however, this is the first work to show that the probability of targeting the AW layer is related to wind stress.

  2. Thermal stress analysis for a wood composite blade. [wind turbines

    NASA Technical Reports Server (NTRS)

    Fu, K. C.; Harb, A.

    1984-01-01

    Heat conduction throughout the blade and the distribution of thermal stresses caused by the temperature distribution were determined for a laminated wood wind turbine blade in both the horizontal and vertical positions. Results show that blade cracking is not due to thermal stresses induced by insulation. A method and practical example of thermal stress analysis for an engineering body of orthotropic materials is presented.

  3. Turbulent flow and scalar transport in a large wind farm

    NASA Astrophysics Data System (ADS)

    Porte-Agel, F.; Markfort, C. D.; Zhang, W.

    2012-12-01

    Wind energy is one of the fastest growing sources of renewable energy world-wide, and it is expected that many more large-scale wind farms will be built and cover a significant portion of land and ocean surfaces. By extracting kinetic energy from the atmospheric boundary layer and converting it to electricity, wind farms may affect the transport of momentum, heat, moisture and trace gases (e.g. CO_2) between the atmosphere and the land surface locally and globally. Understanding wind farm-atmosphere interaction is complicated by the effects of turbine array configuration, wind farm size, land-surface characteristics, and atmospheric thermal stability. A wind farm of finite length may be modeled as an added roughness or as a canopy in large-scale weather and climate models. However, it is not clear which analogy is physically more appropriate. Also, surface scalar flux is affected by wind farms and needs to be properly parameterized in meso-scale and/or high-resolution numerical models. Experiments involving model wind farms, with perfectly aligned and staggered configurations, having the same turbine distribution density, were conducted in a thermally-controlled boundary-layer wind tunnel. A neutrally stratified turbulent boundary layer was developed with a surface heat source. Measurements of the turbulent flow and fluxes over and through the wind farm were made using a custom x-wire/cold-wire anemometer; and surface scalar flux was measured with an array of surface-mounted heat flux sensors far within the quasi-developed region of the wind-farm. The turbulence statistics exhibit similar properties to those of canopy-type flows, but retain some characteristics of surface-layer flows in a limited region above the wind farms as well. The flow equilibrates faster and the overall momentum absorption is higher for the staggered compared to the aligned farm, which is consistent with canopy scaling and leads to a larger effective roughness. Although the overall surface heat flux change produced by the wind farms is found to be small, with a net reduction of 4% for the staggered wind farm and nearly zero change for the aligned wind farm, the highly heterogeneous spatial distribution of the surface heat flux, dependent on wind farm layout, is significant. This comprehensive first wind-tunnel dataset on turbulent flow and scalar transport in wind farms will be further used to develop and validate new parameterizations of surface fluxes in numerical models.

  4. Simulation of Wind-Driven Circulation in the Salton Sea: Implications for Indigenous Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Chris B.; Orlob, Gerald T.; Huston, David W.

    The Salton Sea Authority is seeking methods for reducing water levels and controlling salinity within ranges that will protect beneficial uses of the Sea, its adjacent lands, and its indigenous ecosystems. Proposed solutions include various physical changes in the bathymetry and configuration of the Sea. Because circulation in the Sea is driven primarily by wind stresses imposed on the water surface, and circulation changes are likely to affect the Sea?s quality and ecology, a methodology for quantifying the effects of specific alternatives is required. For this purpose a mathematical model for simulation of the hydrodynamic behavior of the Sea hasmore » been developed, calibrated to data gathered by a field investigation conducted in 1997, and applied to alternative schemes that will isolate sections of the southern basin. The Salton Sea Hydrodynamic/Water Quality Model is constructed using the finite element method to represent the bathymetry of the Sea in a three-dimensional grid. Given certain boundary conditions, for example wind stresses imposed on the surface, the model solves the three-dimensional equations of motion and continuity, the advection-dispersion equation, and an equation of state dependent upon temperature and salinity, to obtain temporal and spatial descriptions of velocities and temperatures over a specified period of time. The model successfully replicated principal features of the Sea's behavior, especially the persistence of a counterclockwise gyre in the southern basin and seasonal stratification. Once calibrated, the model was applied to evaluate the possible effects of changing water surface elevations in the Sea and altering its configuration to isolate sections for evaporative concentration of salts. These effects, evident in changes in velocity, were quantified with regard to their possible impacts on the aquatic habitat and the health of the Salton Sea ecology. A comparative evaluation of alternatives is presented.« less

  5. Latitudinal discontinuity in thermal conditions along the nearshore of central-northern Chile.

    PubMed

    Tapia, Fabian J; Largier, John L; Castillo, Manuel; Wieters, Evie A; Navarrete, Sergio A

    2014-01-01

    Over the past decade, evidence of abrupt latitudinal changes in the dynamics, structure and genetic variability of intertidal and subtidal benthic communities along central-northern Chile has been found consistently at 30-32°S. Changes in the advective and thermal environment in nearshore waters have been inferred from ecological patterns, since analyses of in situ physical data have thus far been missing. Here we analyze a unique set of shoreline temperature data, gathered over 4-10 years at 15 sites between 28-35°S, and combine it with satellite-derived winds and sea surface temperatures to investigate the latitudinal transition in nearshore oceanographic conditions suggested by recent ecological studies. Our results show a marked transition in thermal conditions at 30-31°S, superimposed on a broad latitudinal trend, and small-scale structures associated with cape-and-bay topography. The seasonal cycle dominated temperature variability throughout the region, but its relative importance decreased abruptly south of 30-31°S, as variability at synoptic and intra-seasonal scales became more important. The response of shoreline temperatures to meridional wind stress also changed abruptly at the transition, leading to a sharp drop in the occurrence of low-temperature waters at northern sites, and a concurrent decrease in corticated algal biomass. Together, these results suggest a limitation of nitrate availability in nearshore waters north of the transition. The localized alongshore change results from the interaction of latitudinal trends (e.g., wind stress, surface warming, inertial period) with a major headland-bay system (Punta Lengua de Vaca at 30.25°S), which juxtaposes a southern stretch of coast characterized by upwelling with a northern stretch of coast characterized by warm surface waters and stratification. This transition likely generates a number of latitude-dependent controls on ecological processes in the nearshore that can explain species-specific effects, and add strength to the suggestion of an oceanography-driven, major spatial transition in coastal communities at 30-31°S.

  6. The wind-forced response on a buoyant coastal current: Observations of the western Gulf of Maine plume

    USGS Publications Warehouse

    Fong, D.A.; Geyer, W.R.; Signell, R.P.

    1997-01-01

    The Freshwater plume in the western Gulf of Maine is being studied as part of an interdisciplinary investigation of the physical transport of a toxic alga. A field program was conducted in the springs of 1993 and 1994 to map the spatial and temporal patterns of salinity, currents and algal toxicity. The observations suggest that the plume's cross-shore structure varies markedly as a function of fluctuations in alongshore wind forcing. Consistent with Ekman drift dynamics, upwelling favorable winds spread the plume offshore, at times widening it to over 50 km in offshore extent, while downwelling favorable winds narrow the plume width to as little as 10 km. Using a simple slab model, we find qualitative agreement between the observed variations of plume width and those predicted by Ekman theory for short time scales of integration. Near surface current meters show significant correlations between cross-shore currents and alongshore wind stress, consistent with Ekman theory. Estimates of the terms in the alongshore momentum equation calculated from moored current meter arrays also indicate a dominant Ekman balance within the plume. A significant correlation between alongshore currents and winds suggests that interfacial drag may be important, although inclusion of a Raleigh drag term does not significantly improve the alongshore momentum balance.

  7. Crater Mound Formation by Wind Erosion on Mars

    NASA Astrophysics Data System (ADS)

    Steele, L. J.; Kite, E. S.; Michaels, T. I.

    2018-01-01

    Most of Mars' ancient sedimentary rocks by volume are in wind-eroded sedimentary mounds within impact craters and canyons, but the connections between mound form and wind erosion are unclear. We perform mesoscale simulations of different crater and mound morphologies to understand the formation of sedimentary mounds. As crater depth increases, slope winds produce increased erosion near the base of the crater wall, forming mounds. Peak erosion rates occur when the crater depth is ˜2 km. Mound evolution depends on the size of the host crater. In smaller craters mounds preferentially erode at the top, becoming more squat, while in larger craters mounds become steeper sided. This agrees with observations where smaller craters tend to have proportionally shorter mounds and larger craters have mounds encircled by moats. If a large-scale sedimentary layer blankets a crater, then as the layer recedes across the crater it will erode more toward the edges of the crater, resulting in a crescent-shaped moat. When a 160 km diameter mound-hosting crater is subject to a prevailing wind, the surface wind stress is stronger on the leeward side than on the windward side. This results in the center of the mound appearing to "march upwind" over time and forming a "bat-wing" shape, as is observed for Mount Sharp in Gale crater.

  8. Computational studies of horizontal axis wind turbines in high wind speed condition using advanced turbulence models

    NASA Astrophysics Data System (ADS)

    Benjanirat, Sarun

    Next generation horizontal-axis wind turbines (HAWTs) will operate at very high wind speeds. Existing engineering approaches for modeling the flow phenomena are based on blade element theory, and cannot adequately account for 3-D separated, unsteady flow effects. Therefore, researchers around the world are beginning to model these flows using first principles-based computational fluid dynamics (CFD) approaches. In this study, an existing first principles-based Navier-Stokes approach is being enhanced to model HAWTs at high wind speeds. The enhancements include improved grid topology, implicit time-marching algorithms, and advanced turbulence models. The advanced turbulence models include the Spalart-Allmaras one-equation model, k-epsilon, k-o and Shear Stress Transport (k-o-SST) models. These models are also integrated with detached eddy simulation (DES) models. Results are presented for a range of wind speeds, for a configuration termed National Renewable Energy Laboratory Phase VI rotor, tested at NASA Ames Research Center. Grid sensitivity studies are also presented. Additionally, effects of existing transition models on the predictions are assessed. Data presented include power/torque production, radial distribution of normal and tangential pressure forces, root bending moments, and surface pressure fields. Good agreement was obtained between the predictions and experiments for most of the conditions, particularly with the Spalart-Allmaras-DES model.

  9. Estimation of the surface stress near the eye wall of hurricanes using WSR-88D radar data

    NASA Astrophysics Data System (ADS)

    Businger, S.; Morrison, I.; Marks, F.; Dodge, P.; Businger, J. A.

    2003-04-01

    Analysis of Doppler velocity data from the WSR-88D radar during hurricane landfall reveals evidence of organized secondary circulations in the vicinity of the hurricane eye wall at low elevations. A Fourier analysis of the Velocity-Azimuthal Display (VAD) provides estimates of divergence (0th harmonic), wind speed and direction (1st harmonic), and deformation (2nd harmonic). A residual velocity field is obtained by subtracting the mean VAD velocity from the radial Doppler velocity for elevation angles between 0.5 and 5.5 degrees. The wavelength, length, depth, magnitude, and motion of velocity anomalies are then compiled from the residual velocity displays. The resulting statistics suggest the presence of organized secondary circulations or boundary layer (BL) rolls in the marine boundary layer of the hurricanes. To date, three storms have been examined: Fran (1996), Bonnie (1998), and Georges (1998) using WSR-88D data from Wilmington, N.C.; Morehead City, N.C.; and Key West, FL, respectively. The analysis focuses on the period between the time the first BL roll is identified and hurricane landfall. The number of BL rolls tracked in Bonnie, Fran, and Georges was 44, 56, and 24, respectively. BL rolls were less frequent in Georges, and the magnitude of the velocity anomalies was less than those in Fran and Bonnie. The average low-level (800 m--50 m) shear in Georges was substantially less than in the other storms, likely contributing to the fewer number of rolls identified and a lower intensity of the rolls. The wavelength of the observed BL rolls is about twice the horizontal distance between adjacent positive and negative velocity anomalies. Georges had the largest average wavelength (˜1400 m), followed by Fran (˜1320 m) and Bonnie (˜1200 m). The gradient between adjacent positive and negative anomalies corresponds to a horizontal wind shear of ˜14 m s-1 over 660 m, and a vertical shear component of vorticity of 2.0×10-2 s-1. Momentum fluxes associated with the secondary circulations are estimated with reference to mixing length theory. Estimates of the surface stress are obtained from the radar derived wind profiles using a modified momentum budget approach. The impact of secondary circulations on the magnitude of the surface stress in the hurricane eye wall will be discussed and contrasted with other approaches for estimating the stress.

  10. Wind-tunnel experiments of scalar transport in aligned and staggered wind farms

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Markfort, C. D.; Porté-Agel, F.

    2012-04-01

    Wind energy is the fastest growing renewable energy worldwide, and it is expected that many more large-scale wind farms will be built and will cover a significant portion of land and ocean surfaces. By extracting kinetic energy from the atmospheric boundary layer, wind farms may affect the exchange/transport of momentum, heat and moisture between the atmosphere and land surface. To ensure the long-term sustainability of wind energy, it is important to understand the influence of large-scale wind farms on land-atmosphere interaction. Knowledge of this impact will also be useful to improve parameterizations of wind farms in numerical prediction tools, such as large-scale weather models and large-eddy simulation. Here, we present wind-tunnel measurements of the surface scalar (heat) flux from model wind farms, consisting of more than 10 rows of wind turbines, in a turbulent boundary layer with a surface heat source. Spatially distributed surface heat flux was obtained in idealized aligned and staggered wind farm layouts, having the same turbine distribution density. Measurements, using surface-mounted heat flux sensors, were taken at the 11th out of 12 rows of wind turbines, where the mean flow achieves a quasi-equilibrium state. In the aligned farm, there exist two distinct regions of increased and decreased surface heat flux on either side of turbine columns. The regions are correlated with coherent wake rotation in the turbine-array. On the upwelling side there is decreased flux, while on the downwelling side cool air moves towards the surface causing increased flux. For the staggered farm, the surface heat flux exhibits a relatively uniform distribution and an overall reduction with respect to the boundary layer flow, except in the vicinity of the turbine tower. This observation is also supported by near-surface temperature and turbulent heat flux measured using a customized x-wire/cold-wire. The overall surface heat flux, relative to that of the boundary layer flow without wind turbines, is reduced by approximately 4% in the staggered wind farm and remains nearly the same in the aligned wind farm.

  11. Three Dimensional Dynamics of Freshwater Lenses in the Oceans Near Surface Layer

    DTIC Science & Technology

    2016-09-14

    a third new front appeared…” However, this striking effect was observed only when the following con- ditions for the Froude number (Fr) and the... Coriolis forces and, strictly speaking, is valid only for the equatorial region. CONCLUSIONS Convective rains within the ITCZ pro- duce localized...freshwater plumes under the influence of both ambient stratification and wind stress and how they interact to affect plume dynam- ics. The Coriolis

  12. The US Navy Coupled Ocean-Wave Prediction System

    DTIC Science & Technology

    2014-09-01

    Stokes drift to be the dominant wave effect and that it increased surface drift speeds by 35% and veered the current in the direction of the wind...ocean model has been modified to incorporate the effect of the Stokes drift current, wave radiation stresses due to horizontal gradients of the momentum...for fourth-order differences for horizontal baroclinic pressure gradients and for interpolation of Coriolis terms. There is an option to use the

  13. Ocean haline skin layer and turbulent surface convections

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zhang, X.

    2012-04-01

    The ocean haline skin layer is of great interest to oceanographic applications, while its attribute is still subject to considerable uncertainty due to observational difficulties. By introducing Batchelor micro-scale, a turbulent surface convection model is developed to determine the depths of various ocean skin layers with same model parameters. These parameters are derived from matching cool skin layer observations. Global distributions of salinity difference across ocean haline layers are then simulated, using surface forcing data mainly from OAFlux project and ISCCP. It is found that, even though both thickness of the haline layer and salinity increment across are greater than the early global simulations, the microwave remote sensing error caused by the haline microlayer effect is still smaller than that from other geophysical error sources. It is shown that forced convections due to sea surface wind stress are dominant over free convections driven by surface cooling in most regions of oceans. The free convection instability is largely controlled by cool skin effect for the thermal microlayer is much thicker and becomes unstable much earlier than the haline microlayer. The similarity of the global distributions of temperature difference and salinity difference across cool and haline skin layers is investigated by comparing their forcing fields of heat fluxes. The turbulent convection model is also found applicable to formulating gas transfer velocity at low wind.

  14. Reduction and coding of synthetic aperture radar data with Fourier transforms

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1995-01-01

    Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.

  15. Will surface winds weaken in response to global warming?

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  16. A Physical Based Formula for Calculating the Critical Stress of Snow Movement

    NASA Astrophysics Data System (ADS)

    He, S.; Ohara, N.

    2016-12-01

    In snow redistribution modeling, one of the most important parameters is the critical stress of snow movement, which is difficult to estimate from field data because it is influenced by various factors. In this study, a new formula for calculating critical stress of snow movement was derived based on the ice particle sintering process modeling and the moment balance of a snow particle. Through this formula, the influences of snow particle size, air temperature, and deposited time on the critical stress were explicitly taken into consideration. It was found that some of the model parameters were sensitive to the critical stress estimation through the sensitivity analysis using Sobol's method. The two sensitive parameters of the sintering process modeling were determined by a calibration-validation procedure using the observed snow flux data via FlowCapt. Based on the snow flux and metrological data observed at the ISAW stations (http://www.iav.ch), it was shown that the results of this formula were able to describe very well the evolution of the minimum friction wind speed required for the snow motion. This new formula suggested that when the snow just reaches the surface, the smaller snowflake can move easier than the larger particles. However, smaller snow particles require more force to move as the sintering between the snowflakes progresses. This implied that compact snow with small snow particles may be harder to erode by wind although smaller particles may have a higher chance to be suspended once they take off.

  17. Widespread land surface wind decline in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Vautard, R.; Cattiaux, J.; Yiou, P.; Thépaut, J.-N.; Ciais, P.

    2010-09-01

    The decline of surface wind observed in many regions of the world is a potential source of concern for wind power electricity generation. It is also suggested as the main cause of decreasing pan evaporation. In China, a persistent and significant decrease of monsoon winds was observed in all seasons. Surface wind declines were also evidenced in several regions of the world (U.S., Australia, several European countries). Except over China, no clear explanation was given for the wind decrease in the regions studied. Whether surface winds decrease is due to changes in the global atmospheric circulation or its variability, in surface processes or to observational trends has therefore not been elucidated. The identification of the drivers of such a decline requires a global investigation of available surface and upper-air wind data, which has not been conducted so far. Here we use global datasets of in-situ wind measurements that contain surface weather stations wind data (hourly or three-hourly data acquisition time step) and rawinsonde vertical wind data profiles (monthly time step) prepared by the NCAR. A set of 822 worldwide surface stations with continuous wind records was selected after a careful elimination of stations with obvious breaks and large gaps. This dataset mostly covers the Northern mid latitudes over the period 1979-2008. Using this data set, we found that annual mean wind speeds have declined at 73% of the surface stations over the past 30 years. In the Northern Hemisphere, positive wind trends are found only in a few places. In Europe, Central Asia, Eastern Asia and in North America the annual mean surface wind speed has decreased on average at a rate of -2.9, -5.9, -4.2, and -1.8 %/decade respectively, i.e. a decrease of about 10% in 30 years and up to about 20% in Central Asia. These results are robust to changes in the station selection method and parameters. By contrast, upper-air winds observed from rawinsondes, geostrophic winds deduced from pressure gradients, and modeled winds from weather re-analyses do not exhibit any comparable stilling trends than at surface stations. For instance, large-scale circulation changes captured in the most recent European Centre for Medium Range Weather Forecast re-analysis (ERA-interim) can only explain only up to 30% of the Eurasian wind stilling. In addition, a significant amount of the slow-down could originate from a generalized increase in surface roughness, due for instance to forest growth and expansion, and urbanization. This hypothesis is supported by theoretical calculations combined with meso-scale model simulations. For future wind power energy resource, the part of wind decline due to land cover changes is easier to cope with than that due to global atmospheric circulation slow down.

  18. Disruption of a cyclonic eddy circulation by wind stress in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Halverson, Mark J.; Carter Ohlmann, J.; Johnson, Mark A.; Scott Pegau, W.

    2013-07-01

    Oceanographic observations made during the Sound Predictions 2009 field experiment in Prince William Sound, Alaska, have documented rapid changes in the upper water column (0-40m) circulation. An assortment of drifting buoys, sampling four different depths, and HF radar surface current mapping, revealed three modes of circulation: anticyclonic, open cyclonic, and closed cyclonic. Each mode was observed at least once within an 18-day window, and the transition between them took as little as a day. Time-resolved hydrographic measurements show that the mass field was variable, but generally arranged such that the surface geostrophic flow should be in a closed-core cyclonic eddy configuration. Observations show that the mass field was likely influenced by relatively low salinity water flowing into Prince William Sound from the shelf, and from local freshwater input. We quantitatively examine why a closed-core circulation was not always observed by focusing on the transition between the closed and open cyclonic flow patterns. The western region of the central sound is a key area for this transition. Here, the high-frequency radar revealed that the closed circulation was established when the net flow shifted direction from northward to southward. A detailed comparison of the meridional geostrophic and wind-driven flows, using measured winds and hydrographic data from CTD profiles and two autonomous vehicles, shows that the geostrophic flow was mostly southward while the wind-driven flow was mostly northward. A net southward flow can be caused by a decrease in the northward wind-driven flow or an increase in the southward geostrophic flow.

  19. Thermal-stress analysis for wood composite blade. [horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Fu, K. C.; Harb, A.

    1984-01-01

    The thermal-stress induced by solar insolation on a wood composite blade of a Mod-OA wind turbine was investigated. The temperature distribution throughout the blade (a heat conduction problem) was analyzed and the thermal-stress distribution of the blades caused by the temperature distribution (a thermal-stress analysis problem) was then determined. The computer programs used for both problems are included along with output examples.

  20. Observations of the structure and evolution of surface and flight-level wind asymmetries in Hurricane Rita (2005)

    NASA Astrophysics Data System (ADS)

    Rogers, Robert; Uhlhorn, Eric

    2008-11-01

    Knowledge of the magnitude and distribution of surface winds, including the structure of azimuthal asymmetries in the wind field, are important factors for tropical cyclone forecasting. With its ability to remotely measure surface wind speeds, the stepped frequency microwave radiometer (SFMR) has assumed a prominent role for the operational tropical cyclone forecasting community. An example of this instrument's utility is presented here, where concurrent measurements of aircraft flight-level and SFMR surface winds are used to document the wind field evolution over three days in Hurricane Rita (2005). The amplitude and azimuthal location (phase) of the wavenumber-1 asymmetry in the storm-relative winds varied at both levels over time. The peak was found to the right of storm track at both levels on the first day. By the third day, the peak in flight-level storm-relative winds remained to the right of storm track, but it shifted to left of storm track at the surface, resulting in a 60-degree shift between the surface and flight-level and azimuthal variations in the ratio of surface to flight-level winds. The asymmetric differences between the surface and flight-level maximum wind radii also varied, indicating a vortex whose tilt was increasing.

  1. Observed surface wind speed declining induced by urbanization in East China

    NASA Astrophysics Data System (ADS)

    Li, Zhengquan; Song, Lili; Ma, Hao; Xiao, Jingjing; Wang, Kuo; Chen, Lian

    2018-02-01

    Monthly wind data from 506 meteorological stations and ERA-Interim reanalysis during 1991-2015, are used to examine the surface wind trend over East China. Furthermore, combining the urbanization information derived from the DMSP/OLS nighttime light data during 1992-2013, the effects of urbanization on surface wind change are investigated by applying the observation minus reanalysis (OMR) method. The results show that the observed surface wind speed over East China is distinctly weakening with a rate of -0.16 m s-1 deca-1 during 1991-2015, while ERA-Interim wind speed does not have significant decreasing or increasing trend in the same period. The observed surface wind declining is mainly attributed to underlying surface changes of stations observational areas that were mostly induced by the urbanization in East China. Moreover, the wind declining intensity is closely related to the urbanization rhythms. The OMR annual surface wind speeds of Rhythm-VS, Rhythm-S, Rhythm-M, Rhythm-F and Rhythm-VF, have decreasing trends with the rates of -0.02 to -0.09, -0.16 to -0.26, -0.22 to -0.30, -0.26 to -0.36 and -0.33 to -0.51 m s-1 deca-1, respectively. The faster urbanization rhythm is, the stronger wind speed weakening presents. Additionally urban expansion is another factor resulted in the observed surface wind declining.

  2. Analysis of stress-strain state of RVS-20000 tank under non-axisymmetric wind load action

    NASA Astrophysics Data System (ADS)

    Tarasenko, A. A.; Chepur, P. V.; Gruchenkova, A. A.

    2018-03-01

    In modern reference documentation, it is customary to set the wind load as uniformly distributed pressure over the area and wall of the tank. Experimental studies in the wind tunnel for various designs of the VST carried out under the guidance of professors V.E. Shutov and V.L. Berezin showed that when wind acts on the shell, there occur rarefaction zones, which must be taken into account during strain analysis of tanks. A finite-element model of the RVS-20000 tank was developed to calculate the wind load in a non-axisymmetric setting, taking into account the array of differentiated values of the aerodynamic coefficient. The distribution of stresses and strains of RVS-20000 metal structures under the effect of unevenly distributed wind pressure with a normal value of Qn = 600 Pa is obtained. It is established that the greatest strains and stresses occur at the interface of the wall and the fixed floor.

  3. Turbulent wind at the equatorial segment of an operating Darrieus wind turbine blade

    NASA Astrophysics Data System (ADS)

    Connell, J. R.; Morris, V. R.

    1989-09-01

    Six turbulent wind time series, measured at equally spaced equator-height locations on a circle 3 m outside a 34-m Darrieus rotor, are analyzed to approximate the wind fluctuations experienced by the rotor. The flatwise lower root-bending stress of one blade was concurrently recorded. The wind data are analyzed in three ways: wind components that are radial and tangential to the rotation of a blade were rotationally sampled; induction and wake effects of the rotor were estimated from the six Eulerian time series; and turbulence spectra of both the measured wind and the modeled wind from the PNL theory of rotationally sampled turbulence. The wind and the rotor response are related by computing the spectral response function of the flatwise lower root-bending stress. Two bands of resonant response that surround the first and second flatwise modal frequencies shift with the rotor rotation rate.

  4. CWEX: Crop/wind-energy experiment: Observations of surface-layer, boundary-layer and mesoscale interactions with a wind farm

    USDA-ARS?s Scientific Manuscript database

    Large wind turbines perturb mean and turbulent wind characteristics, which modify fluxes between the vegetated surface and the lower boundary layer. While simulations have suggested that wind farms could create significant changes in surface fluxes of heat, momentum, moisture, and CO2 over hundreds ...

  5. Crop/Wind-energy Experiment (CWEX): Observations of surface-layer, boundary-layer and mesoscale interactions with a wind farm

    USDA-ARS?s Scientific Manuscript database

    Perturbations of mean and turbulent wind characteristics by large wind turbines modify fluxes between the vegetated surface and the lower boundary layer. While simulations have suggested that wind farms could significantly change surface fluxes of heat, momentum, moisture, and CO2 over hundreds of s...

  6. Manufacturing issues which affect coating erosion performance in wind turbine blades

    NASA Astrophysics Data System (ADS)

    Cortés, E.; Sánchez, F.; Domenech, L.; Olivares, A.; Young, T. M.; O'Carroll, A.; Chinesta, F.

    2017-10-01

    Erosion damage, caused by repeated rain droplet impact on the leading edges of wind turbine blades, is a major cause for cost concern. Resin Infusion (RI) is used in wind energy blades where low weight and high mechanical performance materials are demanded. The surface coating plays a crucial role in the manufacturing and performance response. The Leading Edge coating is usually moulded, painted or sprayed onto the blade surface so adequate adhesion in the layers' characterization through the thickness is required for mechanical performance and durability reasons. In the current work, an investigation has been directed into the resulting rain erosion durability of the coating was undertaken through a combination of mass loss testing measurements with manufacturing processing parameter variations. The adhesion and erosion is affected by the shock wave caused by the collapsing water droplet on impact. The stress waves are transmitted to the substrate, so microestructural discontinuities in coating layers and interfaces play a key role on its degradation. Standard industrial systems are based on a multilayer system, with a high number of interfaces that tend to accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations and their potential stress reduction on the interface. In this research, the input parameters for the appropriate definition of the Cohesive Zone Modelling (CZM) of the coating-substrate interface are outlined by means of Pull off testing and Peeling testing results. It allowed one to optimize manufacturing and coating process for blades into a knowledge-based guidance for leading edge coating material development. It was achieved by investigating the erosion degradation process using both numerical and laboratory techniques (Pull off, Peeling and Rain Erosion Testing in a whirling arm rain erosion test facility).

  7. The relationship between Arabian Sea upwelling and Indian monsoon revisited

    NASA Astrophysics Data System (ADS)

    Yi, X.; Hünicke, B.; Tim, N.; Zorita, E.

    2015-11-01

    Studies based on upwelling indices (sediment records, sea-surface temperature and wind) suggest that upwelling along the western coast of Arabian Sea is strongly affected by the Indian summer monsoon (ISM). In order to examine this relationship directly, we employ the vertical water mass transport produced by the eddy-resolving global ocean simulation STORM driven by meteorological reanalysis over the last 61 years. With its very high spatial resolution (10 km), STORM allows us to identify characteristics of the upwelling system. We analyze the co-variability between upwelling and meteorological and oceanic variables from 1950 to 2010. The analyses reveal high interannual correlations between coastal upwelling and along-shore wind-stress (r=0.73) as well as with sea-surface temperature (r0.83). However, the correlation between the upwelling and the ISM is small and other factors might contribute to the upwelling variability. In addition, no long-term trend is detected in our modeled upwelling time series.

  8. Widespread land surface wind decline in the Northern Hemisphere partly attributed to land surface changes

    NASA Astrophysics Data System (ADS)

    Thepaut, J.; Vautard, R.; Cattiaux, J.; Yiou, P.; Ciais, P.

    2010-12-01

    The decline of surface wind observed in many regions of the world is a potential source of concern for wind power electricity generation. It is also suggested as the main cause of decreasing pan evaporation. In China, a persistent and significant decrease of monsoon winds was observed in all seasons. Surface wind declines were also evidenced in several regions of the world (U.S., Australia, several European countries). Except over China, no clear explanation was given for the wind decrease in the regions studied. Whether surface winds decrease is due to changes in the global atmospheric circulation or its variability, in surface processes or to observational trends has therefore not been elucidated. The identification of the drivers of such a decline requires a global investigation of available surface and upper-air wind data, which has not been conducted so far. Here we use global datasets of in-situ wind measurements that contain surface weather stations wind data (hourly or three-hourly data acquisition time step) and rawinsonde vertical wind data profiles (monthly time step) prepared by the NCAR. A set of 822 worldwide surface stations with continuous wind records was selected after a careful elimination of stations with obvious breaks and large gaps. This dataset mostly covers the Northern mid latitudes over the period 1979-2008. Using this data set, we found that annual mean wind speeds have declined at 73% of the surface stations over the past 30 years. In the Northern Hemisphere, positive wind trends are found only in a few places. In Europe, Central Asia, Eastern Asia and in North America the annual mean surface wind speed has decreased on average at a rate of -2.9, -5.9, -4.2, and -1.8 %/decade respectively, i.e. a decrease of about 10% in 30 years and up to about 20% in Central Asia. These results are robust to changes in the station selection method and parameters. By contrast, upper-air winds observed from rawinsondes, geostrophic winds deduced from pressure gradients, and modeled winds from weather re-analyses do not exhibit any comparable stilling trends than at surface stations. For instance, large-scale circulation changes captured in the most recent European Centre for Medium Range Weather Forecast re-analysis (ERA-interim) can only explain only up to 10-50% of the wind stilling, depending on the region. In addition, a significant amount of the slow-down could originate from a generalized increase in surface roughness, due for instance to forest growth and expansion, and urbanization. This hypothesis, which could explain up to 60% of the decline, is supported by remote sensing observations and theoretical calculations combined with meso-scale model simulations. For future wind power energy resource, the part of wind decline due to land cover changes is easier to cope with than that due to global atmospheric circulation slow down.

  9. Forced and intrinsic variability in the response to increased wind stress of an idealized Southern Ocean

    NASA Astrophysics Data System (ADS)

    Wilson, Chris; Hughes, Chris W.; Blundell, Jeffrey R.

    2015-01-01

    use ensemble runs of a three layer, quasi-geostrophic idealized Southern Ocean model to explore the roles of forced and intrinsic variability in response to a linear increase of wind stress imposed over a 30 year period. We find no increase of eastward circumpolar volume transport in response to the increased wind stress. A large part of the resulting time series can be explained by a response in which the eddy kinetic energy is linearly proportional to the wind stress with a possible time lag, but no statistically significant lag is found. However, this simple relationship is not the whole story: several intrinsic time scales also influence the response. We find an e-folding time scale for growth of small perturbations of 1-2 weeks. The energy budget for intrinsic variability at periods shorter than a year is dominated by exchange between kinetic and potential energy. At longer time scales, we find an intrinsic mode with period in the region of 15 years, which is dominated by changes in potential energy and frictional dissipation in a manner consistent with that seen by Hogg and Blundell (2006). A similar mode influences the response to changing wind stress. This influence, robust to perturbations, is different from the supposed linear relationship between wind stress and eddy kinetic energy, and persists for 5-10 years in this model, suggestive of a forced oscillatory mode with period of around 15 years. If present in the real ocean, such a mode would imply a degree of predictability of Southern Ocean dynamics on multiyear time scales.

  10. Wind-Induced Reconfigurations in Flexible Branched Trees

    NASA Astrophysics Data System (ADS)

    Ojo, Oluwafemi; Shoele, Kourosh

    2017-11-01

    Wind induced stresses are the major mechanical cause of failure in trees. We know that the branching mechanism has an important effect on the stress distribution and stability of a tree in the wind. Eloy in PRL 2011, showed that Leonardo da Vinci's original observation which states the total cross section of branches is conserved across branching nodes is the best configuration for resisting wind-induced fracture in rigid trees. However, prediction of the fracture risk and pattern of a tree is also a function of their reconfiguration capabilities and how they mitigate large wind-induced stresses. In this studies through developing an efficient numerical simulation of flexible branched trees, we explore the role of the tree flexibility on the optimal branching. Our results show that the probability of a tree breaking at any point depends on both the cross-section changes in the branching nodes and the level of tree flexibility. It is found that the branching mechanism based on Leonardo da Vinci's original observation leads to a uniform stress distribution over a wide range of flexibilities but the pattern changes for more flexible systems.

  11. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.

    PubMed

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-08-09

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.

  12. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction

    PubMed Central

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-01-01

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932

  13. Evaluation of methods for characterizing surface topography of models for high Reynolds number wind-tunnels

    NASA Technical Reports Server (NTRS)

    Teague, E. C.; Vorburger, T. V.; Scire, F. E.; Baker, S. M.; Jensen, S. W.; Gloss, B. B.; Trahan, C.

    1982-01-01

    Current work by the National Bureau of Standards at the NASA National Transonic Facility (NTF) to evaluate the performance of stylus instruments for determining the topography of models under investigation is described along with instrumentation for characterization of the surface microtopography. Potential areas of surface effects are reviewed, and the need for finer surfaced models for the NTF high Reynolds number flows is stressed. Current stylus instruments have a radii as large as 25 microns, and three models with surface finishes of 4-6, 8-10, and 12-15 micro-in. rms surface finishes were fabricated for tests with a stylus with a tip radius of 1 micron and a 50 mg force. Work involving three-dimensional stylus profilometry is discussed in terms of stylus displacement being converted to digital signals, and the design of a light scattering instrument capable of measuring the surface finish on curved objects is presented.

  14. Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America

    NASA Astrophysics Data System (ADS)

    Münnich, M.; Neelin, J. D.

    2005-11-01

    In late boreal spring, especially May, a strong relationship exists in observations among precipitation anomalies over equatorial South America and the Atlantic intertropical convergence zone (ITCZ), and eastern equatorial Pacific and central equatorial Atlantic sea surface temperature anomalies (SSTA). A chain of correlations of equatorial Pacific SSTA, western equatorial Atlantic wind stress (WEA), equatorial Atlantic SSTA, sea surface height, and precipitation supports a causal chain in which El Niño/Southern Oscillation (ENSO) induces WEA stress anomalies, which in turn affect Atlantic equatorial ocean dynamics. These correlations show strong seasonality, apparently arising within the atmospheric links of the chain. This pathway and the influence of equatorial Atlantic SSTA on South American rainfall in May appear independent of that of the northern tropical Atlantic. Brazil's Nordeste is affected by the northern tropical Atlantic. The equatorial influence lies further to the north over the eastern Amazon and the Guiana Highlands.

  15. Variation of the low level winds during the passage of a thunderstorm gust front

    NASA Technical Reports Server (NTRS)

    Sinclair, R. W.; Anthes, R. A.; Panofsky, H. A.

    1973-01-01

    Three time histories of wind profiles in thunderstorm gust fronts at Cape Kennedy and three at Oklahoma City are analyzed. Wind profiles at maximum wind strength below 100 m follow logarithmic laws, so that winds above the surface layer can be estimated from surface winds once the roughness length is known. A statistical analysis of 81 cases of surface winds during thunderstorms at Tampa revealed no predictor with skill to predict the time of maximum gust. Some 34% of the variance of the strength of the gust is accounted for by a stability index and surface wind prior to the gust; the regression equations for these variables are given. The coherence between microscale wind speed variations at the different levels has the same proportions as in non-thunderstorm cases.

  16. Rotating electric machine with fluid supported parts

    DOEpatents

    Smith, Jr., Joseph L.; Kirtley, Jr., James L.

    1981-01-01

    A rotating electric machine in which the armature winding thereof and other parts are supported by a liquid to withstand the mechanical stresses applied during transient overloads and the like. In particular, a narrow gap is provided between the armature winding and the stator which supports it and this gap is filled with an externally pressurized viscous liquid. The liquid is externally pressurized sufficiently to balance the static loads on the armature winding. Transient mechanical loads which deform the armature winding alter the gap dimensions and thereby additionally pressurize the viscous liquid to oppose the armature winding deformation and more nearly uniformly to distribute the resulting mechanical stresses.

  17. The effect of the arbitrary level assignment of satellite cloud motion wind vectors on wind analyses in the pre-thunderstorm environment

    NASA Technical Reports Server (NTRS)

    Peslen, C. A.; Koch, S. E.; Uccellini, L. W.

    1985-01-01

    The impact of satellite-derived cloud motion vectors on SESAME rawinsonde wind fields was studied in two separate cases. The effect of wind and moisture gradients on the arbitrary assignment of the satellite data is assessed to coordinate surfaces in a severe storm environment marked by strong vertical wind shear. Objective analyses of SESAME rawinsonde winds and combined winds are produced and differences between these two analyzed fields are used to make an assessment of coordinate level choice. It is shown that the standard method of arbitrarily assigning wind vectors to a low level coordinate surface yields systematic differences between the rawinsonde and combined wind analyses. Arbitrary assignment of cloud motions to the 0.9 sigma surface produces smaller differences than assignment to the 825 mb pressure surface. Systematic differences occur near moisture discontinuities and in regions of horizontal and vertical wind shears. The differences between the combined and SESAME wind fields are made smallest by vertically interpolating cloud motions to either a pressure or sigma surface.

  18. Mechanism for Surface Warming in the Equatorial Pacific during 1994-95

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele M.; Borovikov, Anna; Schopf, Paul S.

    1999-01-01

    Mechanisms controlling the variation in sea surface temperature warm event in the equatorial Pacific were investigated through ocean model simulations. In addition, the mechanisms of the climatological SST cycle were investigated. The dominant mechanisms governing the seasonal cycle of SST vary significantly across the basin. In the western Pacific the annual cycle of SST is primarily in response to external heat flux. In the central basin the magnitude of zonal advection is comparable to that of the external heat flux. In the eastern basin the role of zonal advection is reduced and the vertical mixing is more important. In the easternmost equatorial Pacific the vertical entrainment contribution is as large as that of vertical diffusion. The model estimate of the vertical mixing contribution to the mixed layer heat budget compared well with estimates obtained by analysis of observations using the same diagnostic vertical mixing scheme. During 1994- 1995 the largest positive SST anomaly was observed in the mid-basin and was related to reduced latent heat flux due to weak surface winds. In the western basin the initial warming was related to enhanced external heating and reduced cooling effects of both vertical mixing and horizontal advection associated with weaker than usual wind stress. In the eastern Pacific where winds were not significantly anomalous throughout 1994-1995, only a moderate warm surface anomaly was detected. This is in contrast to strong El Nino events where the SST anomaly is largest in the eastern basin and, as shown by previous studies, the anomaly is due to zonal advection rather than anomalous surface heat flux. The end of the warm event was marked by cooling in July 1995 everywhere across the equatorial Pacific.

  19. A model of air-sea gas exchange incorporating the physics of the turbulent boundary layer and the properties of the sea surface

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Schluessel, Peter

    The model presented contains interfacial, bubble-mediated, ocean mixed layer, and remote sensing components. The interfacial (direct) gas transfer dominates under conditions of low and—for quite soluble gases like CO2—moderate wind speeds. Due to the similarity between the gas and heat transfer, the temperature difference, ΔT, across the thermal molecular boundary layer (cool skin of the ocean) and the interfacial gas transfer coefficient, Kint are presumably interrelated. A coupled parameterization for ΔT and Kint has been derived in the context of a surface renewal model [Soloviev and Schluessel, 1994]. In addition to the Schmidt, Sc, and Prandtl, Pr, numbers, the important parameters are the surface Richardson number, Rƒ0, and the Keulegan number, Ke. The more readily available cool skin data are used to determine the coefficients that enter into both parameterizations. At high wind speeds, the Ke-number dependence is further verified with the formula for transformation of the surface wind stress to form drag and white capping, which follows from the renewal model. A further extension of the renewal model includes effects of solar radiation and rainfall. The bubble-mediated component incorporates the Merlivat et al. [1993] parameterization with the empirical coefficients estimated by Asher and Wanninkhof [1998]. The oceanic mixed layer component accounts for stratification effects on the air-sea gas exchange. Based on the example of GasEx-98, we demonstrate how the results of parameterization and modeling of the air-sea gas exchange can be extended to the global scale, using remote sensing techniques.

  20. Offshore Wind Turbines Subjected to Hurricanes

    NASA Astrophysics Data System (ADS)

    Amirinia, Gholamreza

    Hurricane Andrew (1992) caused one of the largest property losses in U.S. history, but limited availability of surface wind measurements hindered the advancement of wind engineering research. Many studies have been conducted on regular boundary layer winds (non-hurricane winds) and their effects on the structures. In this case, their results were used in the standards and codes; however, hurricane winds and their effects on the structures still need more studies and observations. Analysis of hurricane surface winds revealed that turbulence spectrum of hurricane winds differs from that of non-hurricane surface winds. Vertical profile of wind velocity and turbulence intensity are also important for determining the wind loads on high-rise structures. Vertical profile of hurricane winds is affected by different parameters such as terrain or surface roughness. Recent studies show that wind velocity profile and turbulence intensity of hurricane winds may be different from those used in the design codes. Most of the studies and available models for analyzing wind turbines subjected to high-winds neglect unsteady aerodynamic forces on a parked wind tower. Since the blade pitch angle in a parked wind turbine is usually about 90°, the drag coefficient on blade airfoils are very small therefore the along-wind aerodynamic forces on the blades are smaller than those on the tower. Hence, the tower in parked condition plays an important role in along-wind responses of the wind turbine. The objectives of this study are, first, to explore the nature of the hurricane surface winds. Next, to establish a time domain procedure for addressing structure-wind-wave-soil interactions. Third, investigating the behavior of wind turbines subjected to hurricane loads resulted form hurricane nature and, lastly, to investigate reconfiguration of turbine structure to reduce wind forces. In order to achieve these objective, first, recent observations on hurricane turbulence models were discussed. Then a new formulation for addressing unsteady wind forces on the tower was introduced and NREL-FAST package was modified with the new formulation. Interaction of wind-wave-soil-structure was also included in the modification. After customizing the package, the tower and blade buffeting responses, the low cycle fatigue during different hurricane categories, and extreme value of the short-term responses were analyzed. In the second part, piezoelectric materials were used to generate perturbations on the surface of a specimen in the wind tunnel. This perturbation was used to combine upward wall motion and surface curvature. For this purpose, a Macro Fiber Composite (MFC) material was mounted on the surface of a cylindrical specimen for generating perturbation in the wind tunnel. Four different perturbation frequencies (1 Hz, 2 Hz, 3 Hz, and 4Hz) as well as the baseline specimen were tested in a low-speed wind tunnel (Re= 2.8x104). Results showed that recently observed turbulence models resulted in larger structural responses and low-cycle fatigue damage than existing models. In addition, extreme value analysis of the short-term results showed that the IEC 61400-3 recommendation for wind turbine class I was sufficient for designing the tower for wind turbine class S subjected to hurricane; however, for designing the blade, IEC 61400-3 recommendations for class I underestimated the responses. In addition, wind tunnel testing results showed that the perturbation of the surface of the specimen increased the turbulence in the leeward in specific distance from the specimen. The surface perturbation technique had potential to reduce the drag by 4.8%.

  1. Multivariate optimum interpolation of surface pressure and winds over oceans

    NASA Technical Reports Server (NTRS)

    Bloom, S. C.

    1984-01-01

    The observations of surface pressure are quite sparse over oceanic areas. An effort to improve the analysis of surface pressure over oceans through the development of a multivariate surface analysis scheme which makes use of surface pressure and wind data is discussed. Although the present research used ship winds, future versions of this analysis scheme could utilize winds from additional sources, such as satellite scatterometer data.

  2. Properties of small-scale interfacial turbulence from a novel thermography based approach

    NASA Astrophysics Data System (ADS)

    Schnieders, Jana; Garbe, Christoph

    2013-04-01

    Oceans cover nearly two thirds of the earth's surface and exchange processes between the Atmosphere and the Ocean are of fundamental environmental importance. At the air-sea interface, complex interaction processes take place on a multitude of scales. Turbulence plays a key role in the coupling of momentum, heat and mass transfer [2]. Here we use high resolution infrared imagery to visualize near surface aqueous turbulence. Thermographic data is analized from a range of laboratory facilities and experimental conditions with wind speeds ranging from 1ms-1 to 7ms-1 and various surface conditions. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: (1) The surface heat patterns show characteristic features of scales. (2) The structure of these patterns change with increasing wind stress and surface conditions. We present a new image processing based approach to the analysis of the spacing of cold streaks based on a machine learning approach [4, 1] to classify the thermal footprints of near surface turbulence. Our random forest classifier is based on classical features in image processing such as gray value gradients and edge detecting features. The result is a pixel-wise classification of the surface heat pattern with a subsequent analysis of the streak spacing. This approach has been presented in [3] and can be applied to a wide range of experimental data. In spite of entirely different boundary conditions, the spacing of turbulent cells near the air-water interface seems to match the expected turbulent cell size for flow near a no-slip wall. The analysis of the spacing of cold streaks shows consistent behavior in a range of laboratory facilities when expressed as a function of water sided friction velocity, u*. The scales systematically decrease until a point of saturation at u* = 0.7 cm/s. Results suggest a saturation in the tangential stress, anticipating that similar behavior will be observed in the open ocean. A comparison with studies of small-scale Langmuir circulations and Langmuir numbers shows that thermal footprints in infrared images are consistent with Langmuir circulations and depend strongly on wind wave conditions. Our approach is not limited to laboratory measurments. In the near future, we will deploy it on in-situ measurements and verify our findings in these more challenging conditions. References [1] L. Breimann. Random forests. Machine Learning, 45:5-32, 2001. [2] S. P. McKenna and W. R. McGillis. The role of free-surface turbulence and surfactants in air-water gas transfer. Int. J. Heat Mass Transfer, 47:539-553, 2004. [3] J Schnieders, C. S. Garbe, W.L. Peirson, and C. J. Zappa. Analyzing the footprints of near surface aqueous turbulence - an image processing based approach. Journal of Geophysical Research-Oceans, 2013. [4] Christoph Sommer, Christoph Straehle, Ullrich Koethe, and Fred A. Hamprecht. ilastik: Interactive learning and segmentation toolkit. In 8th IEEE International Symposium on Biomedical Imaging (ISBI 2011), 2011. [5] W.-T. Tsai, S.-M. Chen, and C.-H. Moeng. A numerical study on the evolution and structure of a stress-driven free-surface turbulent shear flow. J. Fluid Mech., 545:163-192, 2005.

  3. How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?

    NASA Astrophysics Data System (ADS)

    Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.

    2013-12-01

    Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in simulated wind speeds at rotor-disk heights from WRF which indicated, in part, the sensitivity of lower PBL winds to surface energy exchange. We also found significant differences in energy partitioning between sensible heat and latent energy depending on choice of land surface model. Overall, the most consistent, accurate model results were produced using Noah-MP. Noah-MP was most accurate at simulating energy fluxes and wind shear. Hub-height wind speed, however, was predicted with most accuracy with Pleim-Xiu. This suggests that simulating wind shear in the surface layer is consistent with accurately simulating surface energy exchange while the exact magnitudes of wind speed may be more strongly influenced by the PBL dynamics. As the nation is working towards a 20% wind energy goal by 2030, increasing the accuracy of wind forecasting at rotor-disk heights becomes more important considering that utilities require wind farms to estimate their power generation 24 to 36 hours ahead and face penalties for inaccuracies in those forecasts.

  4. Mars boundary layer simulations - Comparison with Viking lander and entry observations

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Houben, H. C.

    1991-01-01

    Diurnal variations of wind and temperature in the lower Martian atmosphere are simulated with a boundary layer model that includes radiative heating in a dusty CO2 atmosphere, turbulence generated by convection and/or shear stresses, a surface heat budget, and time varying pressure forces due to sloping terrain. Model results for early northern summer are compared with Viking lander observations to determine the model's strengths and weaknesses, and suitability as an engineering model.

  5. Biogeochemical cycling in the ocean. Part 1: Introduction to the effects of upwelling along the west coast of North America

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1986-01-01

    Coastal upwelling is examined as it relates to the cycling of chemical species in coastal waters along the west coast of North America. The temporal and spatial features of upwelling phenomena in the Eastern boundary regions of the North Pacific Ocean are presented and discussed in terms of upwelling episodes. Climate conditions affecting upwelling include: thermal effects, wind-induced shear stress which moves surface layers, and the curl of the wind stress vector which is thought to affect the extent and nature of upwelling and the formation of offshore convergent downwelling fronts. These effects and the interaction of sunlight and upwelled nutrients which result in a biological bloom in surface waters is modeled analytically. The roles of biological and chemical species, including the effects of predation, are discussed in that context, and relevant remote sensing and in situ observations are presented. Climatological, oceanographic, biological, physical, chemical events, and processes that pertain to biogeochemical cycling are presented and described by a set of partial differential equations. Simple preliminary results are obtained and are compared with data. Thus a fairly general framework has been laid where the many facets of biogeochemical cycling in coastal upwelled waters can be examined in their relationship to one another, and to the whole, to whatever level of detail or approximation is warranted or desired.

  6. Climate anomalies generate an exceptional dinoflagellate bloom in San Francisco Bay

    USGS Publications Warehouse

    Cloern, J.E.; Schraga, T.S.; Lopez, C.B.; Knowles, N.; Grover, Labiosa R.; Dugdale, R.

    2005-01-01

    We describe a large dinoflagellate bloom, unprecedented in nearly three decades of observation, that developed in San Francisco Bay (SFB) during September 2004. SFB is highly enriched in nutrients but has low summer-autumn algal biomass because wind stress and tidally induced bottom stress produce a well mixed and light-limited pelagic habitat. The bloom coincided with calm winds and record high air temperatures that stratified the water column and suppressed mixing long enough for motile dinoflagellates to grow and accumulate in surface waters. This event-scale climate pattern, produced by an upper-atmosphere high-pressure anomaly off the U.S. west coast, followed a summer of weak coastal upwelling and high dinoflagellate biomass in coastal waters that apparently seeded the SFB bloom. This event suggests that some red tides are responses to changes in local physical dynamics that are driven by large-scale atmospheric processes and operate over both the event scale of biomass growth and the antecedent seasonal scale that shapes the bloom community. Copyright 2005 by the American Geophysical Union.

  7. New observations of Yanai waves and equatorial inertia-gravity waves in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Farrar, J. T.; Durland, T.

    2011-12-01

    In the 1970's and 1980's, there was a great deal of research activity on near-equatorial variability at periods of days to weeks associated with oceanic equatorial inertia-gravity waves and Yanai waves. At that time, the measurements available for studying these waves were much more limited than today: most of the available observations were from island tide gauges and a handful of short mooring records. We use more than a decade of the extensive modern data record from the TAO/TRITON mooring array in the Pacific Ocean to re-examine the internal-wave climate in the equatorial Pacific, with a focus on interpretation of the zonal-wavenumber/frequency spectrum of surface dynamic height relative to 500-m depth. Many equatorial-wave meridional modes can be identified, for both the first and second baroclinic mode. We also estimated zonal-wavenumber/frequency spectra for the zonal and meridional wind stress components. The location and extent of spectral peaks in dynamic height is readily rationalized using basic, linear theory of forced equatorial waves and the observed wind stress spectrum.

  8. Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport

    NASA Astrophysics Data System (ADS)

    Weaver, C. M.; Wiggs, G.

    2007-12-01

    Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant analysis revealed that turbulent events with a positive horizontal component, such as sweeps and outward interactions, were responsible for the majority of sand transport. On the dune surface results demonstrate the development and modification of turbulence and sediment flux in key regions: toe, crest and brink. Analysis suggests that these modifications are directly controlled by streamline curvature and flow acceleration. Conflicting models of dune development, morphology and stability arise when based upon either the dynamics of measured turbulent flow or mean flow.

  9. Interannual Variability of Sea Level in Tropical Pacific during 1993-2014

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Greatbatch, R. J.; Claus, M.

    2016-12-01

    More than 40 years ago, sea level variability in the tropical Pacific was being studied using linear shallow water models driven by observed estimates of the surface wind stress. At that time, the only available sea level data was from the sparse tide gauge record. However, with the advent of satellite data, there has been a revolution in the available data coverage for sea level. Here, a linear model, consisting of the first five baroclinic normal modes, and driven by ERA-Interim monthly wind stress anomalies, is used to investigate interannual variability in tropical Pacific sea level as seen in satellite altimeter data. The model output is fitted to the altimeter data along the equator, in order to derive the vertical profile for the wind forcing, and showing that a signature from modes higher than mode six cannot be extracted from the altimeter data. It is shown that the model has considerable skill at capturing interannual sea level variability both on and off the equator. The correlation between modelled and satellite-derived sea level data exceeds 0.8 over a wide range of longitudes along the equator and readily captures the observed ENSO events. Overall, the combination of the first, second and third and fifth modes can provide a robust estimate of the interannual sea level variability, the second mode being the most dominant. A remarkable feature of both the model and the altimeter data is the presence of a pivot point in the western Pacific on the equator. We show that the westward displacement of the pivot point from the centre of the basin is partly a signature of the recharge/discharge mechanism but is also strongly influenced by the fact that most of the wind stress variance along the equator is found in the western part of the basin. We also show that the Sverdrup transport plays no role in the recharge/discharge mechanism in our model.

  10. February 2003 marine atmospheric conditions and the bora over the northern Adriatic

    USGS Publications Warehouse

    Dorman, C.E.; Carniel, S.; Cavaleri, L.; Sclavo, M.; Chiggiato, J.; Doyle, J.; Haack, T.; Pullen, J.; Grbec, B.; Vilibic, I.; Janekovic, I.; Lee, C.; Malacic, V.; Orlic, M.; Paschini, E.; Russo, A.; Signell, R.P.

    2007-01-01

    A winter oceanographic field experiment provided an opportunity to examine the atmospheric marine conditions over the northern Adriatic. Mean February winds are from a northeasterly direction over most of the Adriatic and a more northerly direction along the western coast. Wind speeds are fastest in jets over the NE coast during bora events and weakest in the mid-northwestern Adriatic. Diurnal air temperature cycles are smallest on the NE coast and largest in the midwestern Adriatic. The maximum sea-air difference is +10??C on the eastern coast and near zero on the midwestern Adriatic. Boras are northeasterly (from) wind events that sweep off Croatia and Slovenia, bringing slightly colder and drier air over the northern Adriatic. The main bora season is December to March. Winter 2002-2003 was normal for bora events. Synoptic-scale temporal variations are correlated over the northern Adriatic. Fastest Bora winds and highest wind stress over the northern Adriatic is concentrated in four topographically controlled jets. The strongest is the Senj Jet, while the Trieste Jet extends across the entire northern Adriatic. Between each two jets is a weak wind zone. The greatest mean net heat loss is in bora jets in the NE Adriatic, where it was -438 W m-2 and is weakest in the midwestern northern Adriatic, where it was near zero. Wind stress is concentrated over the NE half of Adriatic in four bora jets, while wind stress is weak in the NW Adriatic. There is significant variation in wind stress mean and standard deviation structure over the northern Adriatic with each bora event. Copyright 2006 by the American Geophysical Union.

  11. A novel boundary layer sensor utilizing domain switching in ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.

    1991-01-01

    This paper describes the design and the principles of operation of a novel sensor for the optical detection of a shear stress field induced by air or gas flow on a rigid surface. The detection relies on the effects of shear-induced optical switching in ferroelectric liquid crystals. It is shown that the method overcomes many of the limitations of similar measuring techniques including those using cholesteric liquid crystals. The present method offers a preferred alternative for flow visualization and skin friction measurements in wind-tunnel experiments on laminar boundary layer transition investigations. A theoretical model for the optical response to shear stress is presented together with a schematic diagram of the experimental setup.

  12. Intraseasonal patterns in coastal plankton biomass off central Chile derived from satellite observations and a biochemical model

    NASA Astrophysics Data System (ADS)

    Gomez, Fabian A.; Spitz, Yvette H.; Batchelder, Harold P.; Correa-Ramirez, Marco A.

    2017-10-01

    Subseasonal (5-130 days) environmental variability can strongly affect plankton dynamics, but is often overlooked in marine ecology studies. We documented the main subseasonal patterns of plankton biomass in the coastal upwelling system off central Chile, the southern part of the Humboldt System. Subseasonal variability was extracted from temporal patterns in satellite data of wind stress, sea surface temperature, and chlorophyll from the period 2003-2011, and from a realistically forced eddy-resolving physical-biochemical model from 2003 to 2008. Although most of the wind variability occurs at submonthly frequencies (< 30 days), we found that the dominant subseasonal pattern of phytoplankton biomass is within the intraseasonal band (30-90 days). The strongest intraseasonal coupling between wind and plankton is in spring-summer, when increased solar radiation enhances the phytoplankton response to upwelling. Biochemical model outputs show intraseasonal shifts in plankton community structure, mainly associated with the large fluctuations in diatom biomass. Diatom biomass peaks near surface during strong upwelling, whereas small phytoplankton biomass peaks at subsurface depths during relaxation or downwelling periods. Strong intraseasonally forced changes in biomass and species composition could strongly impact trophodynamics connections in the ecosystem, including the recruitment of commercially important fish species such as common sardine and anchovy. The wind-driven variability of chlorophyll concentration was connected to mid- and high-latitude atmospheric anomalies, which resemble disturbances with frequencies similar to the tropical Madden-Julian Oscillation.

  13. Understanding multidecadal variability in ENSO amplitude

    NASA Astrophysics Data System (ADS)

    Russell, A.; Gnanadesikan, A.

    2013-12-01

    Sea surface temperatures (SSTs) in the tropical Pacific vary as a result of the coupling between the ocean and atmosphere driven largely by the El Niño - Southern Oscillation (ENSO). ENSO has a large impact on the local climate and hydrology of the tropical Pacific, as well as broad-reaching effects on global climate. ENSO amplitude is known to vary on long timescales, which makes it very difficult to quantify its response to climate change and constrain the physical processes that drive it. In order to assess the extent of unforced multidecadal changes in ENSO variability, a linear regression of local SST changes is applied to the GFDL CM2.1 model 4000-yr pre-industrial control run. The resulting regression coefficient strengths, which represent the sensitivity of SST changes to thermocline depth and zonal wind stress, vary by up to a factor of 2 on multi-decadal time scales. This long-term modulation in ocean-atmosphere coupling is highly correlated with ENSO variability, but do not explain the reasons for such variability. Variation in the relationship between SST changes and wind stress points to a role for changing stratification in the central equatorial Pacific in modulating ENSO amplitudes with stronger stratification reducing the response to winds. The main driving mechanism we have identified for higher ENSO variance are changes in the response of zonal winds to SST anomalies. The shifting convection and precipitation patterns associated with the changing state of the atmosphere also contribute to the variability of the regression coefficients. These mechanisms drive much of the variability in ENSO amplitude and hence ocean-atmosphere coupling in the tropical Pacific.

  14. Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones: Progress, Challenges, and Ways Forward

    NASA Astrophysics Data System (ADS)

    Chen, Shuyi

    2015-04-01

    It has long been recognized that air-sea interaction plays an important role in tropical cyclones (TC) intensity change. However, most current numerical weather prediction (NWP) models are deficient in predicting TC intensity. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in TCs push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. Parameterizations of air-sea fluxes in NWP models are often crude and create "manmade" energy source/sink that does not exist, especially in the absence of a fully interactive ocean in the model. The erroneous surface heat, moisture, and momentum fluxes can cause compounding errors in the model (e.g., precipitation, water vapor, boundary layer properties). The energy source (heat and moisture fluxes from the ocean) and sink (surface friction and wind-induced upper ocean cooling) are critical to TC intensity. However, observations of air-sea fluxes in TCs are very limited, especially in extreme high wind conditions underneath of the eyewall region. The Coupled Boundary Layer Air-Sea Transfer (CBLAST) program was designed to better understand the air-sea interaction, especially in high wind conditions, which included laboratory and coupled model experiments and field campaign in 2003-04 hurricane seasons. Significant progress has been made in better understanding of air-sea exchange coefficients up to 30 m/s, i.e., a leveling off in drag coefficient and relatively invariant exchange coefficient of enthalpy with wind speed. More recently, the Impact of Typhoon on the Ocean in the Pacific (ITOP) field campaign in 2010 has provided an unprecedented data set to study the air-sea fluxes in TCs and their impact on TC structure and intensity. More than 800 GPS dropsondes and 900 AXBTs/AXCTs as well as drifters, floats, and moorings were deployed in TCs, including Typhoons Fanapi and Malakas, and Supertyphoon Megi with a record peak wind speed of more than 80 m/s. It is found that the air-sea fluxes are quite asymmetric around a storm with complex features representing various air-sea interaction processes in TCs. A unique observation in Typhoon Fanapi is the development of a stable boundary layer in the near-storm cold wake region, which has a direct impact on TC inner core structure and intensity. Despite of the progress, challenges remain. Air-sea momentum exchange in wind speed greater than 30-40 m/s is largely unresolved. Directional wind-wave stress and wave-current stress are difficult to determine from observations. Effects of sea spray on the air-sea fluxes are still not well understood. This talk will provide an overview on progress made in recent years, challenges we are facing, and ways forward. An integrated coupled observational and atmosphere-wave-ocean modeling system is urgently needed, in which coupled model development and targeted observations from field campaign and lab measurements together form the core of the research and prediction system. Another important aspect is that fully coupled models provide explicit, integrated impact forecasts of wind, rain, waves, ocean currents and surges in TCs and winter storms, which are missing in most current NWP models. It requires a new strategy for model development, evaluation, and verification. Ensemble forecasts using high-resolution coupled atmosphere-wave-ocean models can provide probabilistic forecasts and quantitative uncertainty estimates, which also allow us to explore new methodologies to verify probabilistic impact forecasts and evaluate model physics using a stochastic approach. Examples of such approach in TCs including Superstorm Sandy will be presented.

  15. Can salt marshes survive sea level rise ?

    NASA Astrophysics Data System (ADS)

    Tambroni, N.; Seminara, G.

    2008-12-01

    Stability of salt marshes is a very delicate issue depending on the subtle interplay among hydrodynamics, morphodynamics and ecology. In fact, the elevation of the marsh platform depends essentially on three effects: i) the production of soil associated with sediments resuspended by tidal currents and wind waves in the adjacent tidal flats, advected to the marsh and settling therein; ii) production of organic sediments by the salt marsh vegetation; iii) soil 'loss' driven by sea level rise and subsidence. In order to gain insight into the mechanics of the process, we consider a schematic configuration consisting of a salt marsh located at the landward end of a tidal channel connected at the upstream end with a tidal sea, under different scenarios of sea level rise. We extend the simple 1D model for the morphodynamic evolution of a tidal channel formulated by Lanzoni and Seminara (2002, Journal of Geophysical Research-Oceans, 107, C1) allowing for sediment resuspension in the channel and vegetation growth in the marsh using the depth dependent model of biomass productivity of Spartina proposed by Morris et al. (2002, Ecology, 83, pp. 2869 - 2877). We first focus on the case of a tide dominated salt marsh neglecting wind driven sediment resuspension in the shoal. Results show that the production of biomass plays a crucial role on salt marsh stability and, provided productivity is high enough, it may turn out to be sufficient to counteract the effects of sea level rise even in the absence of significant supply of mineral sediments. The additional effect of wind resuspension is then introduced. Note that the wind action is twofold: on one hand, it generates wind waves the amplitude of which is strongly dependent on shoal depth and wind fetch; on the other hand, it generates currents driven by the surface setup induced by the shear stress acting on the free surface. Here, each contribution is analysed separately. Results show that the values of bottom stress induced by wind setup are small compared with those associated with wind waves. However, the permanence of wind currents makes them as significant as the oscillating tidal currents in determining the direction and the intensity of the residual sediment flux. Marshes are typically characterised by a variety of vegetation species competing for habitat space within the intertidal zone: we analyze this feature by considering the case of two different species. Preliminary results show that the presence of a species characterised by a narrower habitat range, lower optimum elevation and biomass productivity, has a positive feedback on the growth of the other species. Moreover, the presence of an invader raises marsh elevation above the value reached in the presence of just one species. Finally, we investigate the effect of a reduction of the amount of sediments supplied from the sea.

  16. Analyses and simulations of the upper ocean's response to Hurricane Felix at the Bermuda Testbed Mooring site: 13-23 August 1995

    NASA Astrophysics Data System (ADS)

    Zedler, S. E.; Dickey, T. D.; Doney, S. C.; Price, J. F.; Yu, X.; Mellor, G. L.

    2002-12-01

    The center of Hurricane Felix passed 85 km to the southwest of the Bermuda Testbed Mooring (BTM; 31°44'N, 64°10'W) site on 15 August 1995. Data collected in the upper ocean from the BTM during this encounter provide a rare opportunity to investigate the physical processes that occur in a hurricane's wake. Data analyses indicate that the storm caused a large increase in kinetic energy at near-inertial frequencies, internal gravity waves in the thermocline, and inertial pumping, mixed layer deepening, and significant vertical redistribution of heat, with cooling of the upper 30 m and warming at depths of 30-70 m. The temperature evolution was simulated using four one-dimensional mixed layer models: Price-Weller-Pinkel (PWP), K Profile Parameterization (KPP), Mellor-Yamada 2.5 (MY), and a modified version of MY2.5 (MY2). The primary differences in the model results were in their simulations of temperature evolution. In particular, when forced using a drag coefficient that had a linear dependence on wind speed, the KPP model predicted sea surface cooling, mixed layer currents, and the maximum depth of cooling closer to the observations than any of the other models. This was shown to be partly because of a special parameterization for gradient Richardson number (RgKPP) shear instability mixing in response to resolved shear in the interior. The MY2 model predicted more sea surface cooling and greater depth penetration of kinetic energy than the MY model. In the MY2 model the dissipation rate of turbulent kinetic energy is parameterized as a function of a locally defined Richardson number (RgMY2) allowing for a reduction in dissipation rate for stable Richardson numbers (RgMY2) when internal gravity waves are likely to be present. Sensitivity simulations with the PWP model, which has specifically defined mixing procedures, show that most of the heat lost from the upper layer was due to entrainment (parameterized as a function of bulk Richardson number RbPWP), with the remainder due to local Richardson number (RgPWP) instabilities. With the exception of the MY model the models predicted reasonable estimates of the north and east current components during and after the hurricane passage at 25 and 45 m. Although the results emphasize differences between the modeled responses to a given wind stress, current controversy over the formulation of wind stress from wind speed measurements (including possible sea state and wave age and sheltering effects) cautions against using our results for assessing model skill. In particular, sensitivity studies show that MY2 simulations of the temperature evolution are excellent when the wind stress is increased, albeit with currents that are larger than observed. Sensitivity experiments also indicate that preexisting inertial motion modulated the amplitude of poststorm currents, but that there was probably not a significant resonant response because of clockwise wind rotation for our study site.

  17. A simple method for simulating wind profiles in the boundary layer of tropical cyclones

    DOE PAGES

    Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; ...

    2016-11-01

    A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method alsomore » requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Lastly, temporal spectra from LES produce an inertial subrange for frequencies ≳0.1 Hz, but only when the horizontal grid spacing ≲20 m.« less

  18. A Simple Method for Simulating Wind Profiles in the Boundary Layer of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; Zhang, Jun A.

    2017-03-01

    A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method also requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Temporal spectra from LES produce an inertial subrange for frequencies ≳ 0.1 Hz, but only when the horizontal grid spacing ≲ 20 m.

  19. On the physical air-sea fluxes for climate modeling

    NASA Astrophysics Data System (ADS)

    Bonekamp, J. G.

    2001-02-01

    At the sea surface, the atmosphere and the ocean exchange momentum, heat and freshwater. Mechanisms for the exchange are wind stress, turbulent mixing, radiation, evaporation and precipitation. These surface fluxes are characterized by a large spatial and temporal variability and play an important role in not only the mean atmospheric and oceanic circulation, but also in the generation and sustainment of coupled climate fluctuations such as the El Niño/La Niña phenomenon. Therefore, a good knowledge of air-sea fluxes is required for the understanding and prediction of climate changes. As part of long-term comprehensive atmospheric reanalyses with `Numerical Weather Prediction/Data assimilation' systems, data sets of global air-sea fluxes are generated. A good example is the 15-year atmospheric reanalysis of the European Centre for Medium--Range Weather Forecasts (ECMWF). Air-sea flux data sets from these reanalyses are very beneficial for climate research, because they combine a good spatial and temporal coverage with a homogeneous and consistent method of calculation. However, atmospheric reanalyses are still imperfect sources of flux information due to shortcomings in model variables, model parameterizations, assimilation methods, sampling of observations, and quality of observations. Therefore, assessments of the errors and the usefulness of air-sea flux data sets from atmospheric (re-)analyses are relevant contributions to the quantitative study of climate variability. Currently, much research is aimed at assessing the quality and usefulness of the reanalysed air-sea fluxes. Work in this thesis intends to contribute to this assessment. In particular, it attempts to answer three relevant questions. The first question is: What is the best parameterization of the momentum flux? A comparison is made of the wind stress parameterization of the ERA15 reanalysis, the currently generated ERA40 reanalysis and the wind stress measurements over the open ocean. The comparison reveals some clear differences in the mean drag coefficient. In addition, this study has indicated that progress has been made from the ERA15 to the ERA40 reanalyses by replacing the model parameterization with a constant Charnock parameter with one which depends on the sea state. The second research question is whether comparison of the response of an ocean model with ocean observations can be exploited to assess the quality of air-sea fluxes of the ERA15 reanalysis. To answer this question in a systematic way an inverse modeling approach is adopted using a four-dimensional variational data assimilation (4DVAR) scheme. Firstly, the functioning of the 4DVAR system is demonstrated from identical twin experiments. These experiments reveal that in the equatorial Pacific, a large reduction in wind-stress and upper-ocean temperature misfits can be achieved using an assimilation time window of eight weeks. It is concluded that the usefulness of inverse ocean modeling technique for global surface flux assessment is limited. The main merit of the developed ocean 4DVAR scheme will be to diagnose errors in the ocean analyses of the ocean model. The last research question is: are the ERA15 fluxes useful for the study of regional patterns of climate variability? The climate mode of consideration is the Antarctic Circumpolar Wave. This study stresses the importance to have the right climatological forcing conditions to assess time scales of climate variability and it confirms the usefulness of ERA15 air-sea fluxes as ocean model forcing fields to study climate variability on the interannual time scale.

  20. Coupling of WRF meteorological model to WAM spectral wave model through sea surface roughness at the Balearic Sea: impact on wind and wave forecasts

    NASA Astrophysics Data System (ADS)

    Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.

    2012-04-01

    Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over sea z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent air flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the sea surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that sea surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer sea surface roughness description. Coupling WRF and WAM is thus a common way to improve the sea surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave interactions. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological processes (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the scope of the 7th EU FP Project FIELD_AC, assesses the impact of coupling WAM and WRF on wind and wave forecasts on the Balearic Sea, and compares it with other possible improvements, like using available high-resolution circulation information from MyOcean GMES core services, or assimilating altimeter data on the Western Mediterranean. This is done in an ordered fashion following statistical design rules, which allows to extract main effects of each of the factors considered (coupling, better circulation information, data assimilation following Lionello et al., 1992) as well as two-factor interactions. Moreover, the statistical significance of these improvements can be tested in the future, though this requires maximum likelihood ratio tests with correlated data. Charnock, H. (1955) Wind stress on a water surface. Quart.J. Row. Met. Soc. 81: 639-640 Donelan, M. (1982) The dependence of aerodynamic drag coefficient on wave parameters. Proc. 1st Int. Conf. on Meteorology and Air-Sea Interactions of teh Coastal Zone. The Hague (Netherlands). AMS. 381-387 Janssen, P.A.E.M., Doyle, J., Bidlot, J., Hansen, B., Isaksen, L. and Viterbo, P. (1990) The impact of oean waves on the atmosphere. Seminars of the ECMWF. Lionello, P., Günther, H., and Janssen P.A.E.M. (1992) Assimilation of altimeter data in a global third-generation wave model. Journal of Geophysical Research 97 (C9): 453-474. Warner, J., Armstrong, B., He, R. and Zambon, J.B. (2010) Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. Ocean Modelling 35: 230-244.

  1. Northerly surface winds over the eastern North Pacific Ocean in spring and summer

    USGS Publications Warehouse

    Taylor, S.V.; Cayan, D.R.; Graham, N.E.; Georgakakos, K.P.

    2008-01-01

    Persistent spring and summer northerly surface winds are the defining climatological feature of the western coast of North America, especially south of the Oregon coast. Northerly surface winds are important for upwelling and a vast array of other biological, oceanic, and atmospheric processes. Intermittence in northerly coastal surface wind is characterized and wind events are quantitatively defined using coastal buoy data south of Cape Mendocino on the northern California coast. The defined wind events are then used as a basis for composites in order to explain the spatial evolution of various atmospheric and oceanic processes. Wind events involve large-scale changes in the three-dimensional atmospheric circulation including the eastern North Pacific subtropical anticyclone and southeast trade winds. Composites of QSCAT satellite scatterometer wind estimates from 1999 to 2005 based on a single coastal buoy indicate that wind events typically last 72-96 h and result in anomalies in surface wind and Ekman pumping that extend over 1000 kin from the west coast of North America. It may be useful to consider ocean circulation and dependent ecosystem dynamics and the distribution of temperature, moisture, and aerosols in the atmospheric boundary layer in the context of wind events defined herein. Copyright 2008 by the American Geophysical Union.

  2. Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves

    NASA Astrophysics Data System (ADS)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  3. Comparison of CFD simulations to non-rotating MEXICO blades experiment in the LTT wind tunnel of TUDelft

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; van Zuijlen, Alexander; van Bussel, Gerard

    2014-06-01

    In this paper, three dimensional flow over non-rotating MEXICO blades is simulated by CFD methods. The numerical results are compared with the latest MEXICO wind turbine blades measurements obtained in the low speed low turbulence (LTT) wind tunnel of Delft University of Technology. This study aims to validate CFD codes by using these experimental data measured in well controlled conditions. In order to avoid use of wind tunnel corrections, both the blades and the wind tunnel test section are modelled in the simulations. The ability of Menter's k - ω shear stress transport (SST) turbulence model is investigated at both attached flow and massively separated flow cases. Steady state Reynolds averaged Navier Stokes (RANS) equations are solved in these computations. The pressure distribution at three measured sections are compared under the conditions of different inflow velocities and a range of angles of attack. The comparison shows that at attached flow condition, good agreement can be obtained for all three airfoil sections. Even with massively separated flow, still fairly good pressure distribution comparison can be found for the DU and NACA airfoil sections, although the RISØ section shows poor comparison. At the near stall case, considerable deviations exists on the forward half part of the upper surface for all three sections.

  4. Seasonal Sea-Level Variations in San Francisco Bay in Response to Atmospheric Forcing, 1980

    USGS Publications Warehouse

    Wang, Jingyuan; Cheng, R.T.; Smith, P.C.

    1997-01-01

    The seasonal response of sea level in San Francisco Bay (SFB) to atmospheric forcing during 1980 is investigated. The relations between sea-level data from the Northern Reach, Central Bay and South Bay, and forcing by local wind stresses, sea level pressure (SLP), runoff and the large scale sea level pressure field are examined in detail. The analyses show that the sea-level elevations and slopes respond to the along-shore wind stress T(V) at most times of the year, and to the cross-shore wind stress T(N) during two transition periods in spring and autumn. River runoff raises the sea-level elevation during winter. It is shown that winter precipitation in the SFB area is mainly attributed to the atmospheric circulation associated with the Alcutian Low, which transports the warm, moist air into the Bay area. A multiple linear regression model is employed to estimate the independent contributions of barometric pressure and wind stress to adjusted sea level. These calculations have a simple dynamical interpretation which confirms the importance of along-shore wind to both sea level and north-south slope within the Bay.

  5. High resolution modelling and observation of wind-driven surface currents in a semi-enclosed estuary

    NASA Astrophysics Data System (ADS)

    Nash, S.; Hartnett, M.; McKinstry, A.; Ragnoli, E.; Nagle, D.

    2012-04-01

    Hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Firstly, the wind data used in hydrodynamic models is usually measured on land and can be quite different in magnitude and direction from offshore winds. Secondly, surface winds are spatially-varying but due to a lack of data it is common practice to specify a non-varying wind speed and direction across the full extents of a model domain. These problems can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In the present research, a wind forecast model is coupled with a three-dimensional numerical model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of surface wind data resolution on model accuracy. High resolution and low resolution wind fields are specified to the model and the computed surface currents are compared with high resolution surface current measurements obtained from two high frequency SeaSonde-type Coastal Ocean Dynamics Applications Radars (CODAR). The wind forecast models used for the research are Harmonie cy361.3, running on 2.5 and 0.5km spatial grids for the low resolution and high resolution models respectively. The low-resolution model runs over an Irish domain on 540x500 grid points with 60 vertical levels and a 60s timestep and is driven by ECMWF boundary conditions. The nested high-resolution model uses 300x300 grid points on 60 vertical levels and a 12s timestep. EFDC (Environmental Fluid Dynamics Code) is used for the hydrodynamic model. The Galway Bay model has ten vertical layers and is resolved spatially and temporally at 150m and 4 sec respectively. The hydrodynamic model is run for selected hindcast dates when wind fields were highly energetic. Spatially- and temporally-varying wind data is provided by offline coupling with the wind forecast models. Modelled surface currents show good correlation with CODAR observed currents and the resolution of the surface wind data is shown to be important for model accuracy.

  6. Robotic Measurement of Aeolian Processes

    NASA Astrophysics Data System (ADS)

    Roberts, S.; Duperret, J. M.; Jerolmack, D. J.; Lancaster, N.; Nikolich, G.; Shipley, T. F.; Van Pelt, R. S.; Zobeck, T. M.; Koditschek, D. E.

    2015-12-01

    Local and regional measurements of sand transport and dust emission in complex natural settings presently lack spatiotemporal resolution adequate to inform models relevant for land management, climate policy, and the basic science of geomorphology. Deployments of wind, sand and dust sensors sophisticated enough to begin unpacking the complex relations among wind turbulence, surface roughness, sand flux and dust emission remain largely stationary. Aerial observations from satellites, planes and even UAVs help fill in, but none of these modalities offer the hope of "capturing the action" by being at the right place at the right time relative to the highly localized nature of sediment transport during wind storms. We have been developing a legged robot capable of rapidly traversing desert terrain, and are now adapting it to serve as a platform for scientific instrumentation. We aim to field a semi-autonomous, reactive mobile sensory package suited to the needs of aeolian science that can address the limitations of existing alternatives. This presentation reports on early trials in the Jornada LTER and White Sands National Monument aimed at gathering measurements of airflow and rates of sand transport on a dune face, assessing the role of roughness elements such as vegetation in modifying the wind shear stresses incident on the surface, and estimating erosion susceptibility in a natural arid soil. We will solicit ideas from the audience about other potentially interesting and viable measurement targets. Future close collaboration between aeolian, cognitive and robotics scientists such as we hope to promote through this presentation may yield machines with scientifically relevant sensory suites possessing sufficient autonomy to operate in-situ at the most intense episodes of wind and sediment movement under conditions far too uncomfortable and hazardous for human presence.

  7. Hydrological state of the Large Aral Sea in the fall season of 2013

    NASA Astrophysics Data System (ADS)

    Izhitskiy, Alexander; Zavialov, Peter

    2014-05-01

    We report here the results of the latest expedition of the Shirshov Institute to the Aral Sea. The survey encompassed 8 field days in October-November, 2013. Direct measurements of thermohaline characteristics and water currents were conducted in the western basin of the Large Aral Sea during the expedition. Vertical profiles of temperature and salinity were obtained using a CTD profiler at 9 stations, situated on two cross-sections of the western basin. Four mooring stations equipped with current meters, as well as pressure gauges, were deployed for 4-6 days on the slopes of the deepest portion of the western basin. A portable automatic meteorological station, continuously recording the variability of wind and principal meteorological parameters, was installed near the mooring sites. Analysis of the current measurements data along with the meteorological data records demonstrated the current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity series versus the wind stress allowed to quantify the response of the system to the wind forcing. Together with the similar results of more earlier surveys, recently collected data shows that the mean surface circulation of the western basin remains anti-cyclonic under the predominant winds. Character of the interannual variability of salinity values in the Aral Sea water manifested increase in the surface layer during last 5 years. On the other hand, salinity values in the bottom layer appear to be decreased due to ceasing of the influence of the interbasin water exchange since 2010. Water level of the Large Aral Sea is still falling. Assessment of the on-going changes holds promise to help predicting the subsequent state of the Aral Sea region.

  8. Rotor dynamic considerations for large wind power generator systems

    NASA Technical Reports Server (NTRS)

    Ormiston, R. A.

    1973-01-01

    Successful large, reliable, low maintenance wind turbines must be designed with full consideration for minimizing dynamic response to aerodynamic, inertial, and gravitational forces. Much of existing helicopter rotor technology is applicable to this problem. Compared with helicopter rotors, large wind turbines are likely to be relatively less flexible with higher dimensionless natural frequencies. For very large wind turbines, low power output per unit weight and stresses due to gravitational forces are limiting factors. The need to reduce rotor complexity to a minimum favors the use of cantilevered (hingeless) rotor configurations where stresses are relieved by elastic deformations.

  9. On-line consolidation of thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Shih, Po-Jen

    An on-line consolidation system, which includes a computer-controlled filament winding machine and a consolidation head assembly, has been designed and constructed to fabricate composite parts from thermoplastic towpregs. A statistical approach was used to determine the significant processing parameters and their effect on the mechanical and physical properties of composite cylinders fabricated by on-line consolidation. A central composite experimental design was used to select the processing conditions for manufacturing the composite cylinders. The thickness, density, void content, degree of crystallinity and interlaminar shear strength (ILSS) were measured for each composite cylinder. Micrographs showed that complete intimate contact and uniform fiber-matrix distribution were achieved. The degree of crystallinity of the cylinders was found to be in the range of 25-30%. Under optimum processing conditions, an ILSS of 58 MPa and a void content of <1% were achieved for APC-2 (PEEK/Carbon fiber) composite cylinders. An in-situ measurement system which uses a slip ring assembly and a computer data acquisition system was developed to obtain temperature data during winding. Composite cylinders were manufactured with eight K-type thermocouples installed in various locations inside the cylinder. The temperature distribution inside the composite cylinder during winding was measured for different processing conditions. ABAQUS finite element models of the different processes that occur during on-line consolidation were constructed. The first model was used to determine the convective heat transfer coefficient for the hot-air heat source. A convective heat transfer coefficient of 260 w/msp{2°}K was obtained by matching the calculated temperature history to the in-situ measurement data. To predict temperature distribution during winding an ABAQUS winding simulation model was developed. The winding speed was modeled by incrementally moving the convective boundary conditions around the outer surface of the composite cylinder. A towpreg heating model was constructed to predict the temperature distribution on the cross section of the incoming towpreg. For the process-induced thermal stresses analysis, a thermoelastic finite element model was constructed. Using the temperature history obtained from thermal analysis as the initial conditions, the thermal stresses during winding and cooling were investigated.

  10. Ground Cloud Dispersion Measurements During the Titan IV Mission A-18 (23 October 1997) at Vandenberg Air Force Base

    DTIC Science & Technology

    1999-02-20

    958.88 BASE= 0.00 SECOND SELECTED LAYER HEIGHT- (METERS) TOP = 3008.96 BASE= 958.88 SIGMAR (AZ) AT THE SURFACE (DEGREES) 5.7504 SIGMER(EL) AT THE SURFACE... SIGMAR (AZ) AT THE SURFACE (DEGREES) 5.7504 SIGMER(EL) AT THE SURFACE (DEGREES) 1.0344 MET. WIND WIND LAYER WIND SPEED WIND DIRECTION SIGMA OF SIGMA OF NO

  11. A coupled aero-structural model of a HAWT blade for dynamic load and response prediction in time-domain for health monitoring applications

    NASA Astrophysics Data System (ADS)

    Sauder, Heather Scot

    To reach the high standards set for renewable energy production in the US and around the globe, wind turbines with taller towers and longer blades are being designed for onshore and offshore wind developments to capture more energy from higher winds aloft and a larger rotor diameter. However, amongst all the wind turbine components wind turbine blades are still the most prone to damage. Given that wind turbine blades experience dynamic loads from multiple sources, there is a need to be able to predict the real-time load, stress distribution and response of the blade in a given wind environment for damage, flutter and fatigue life predictions. Current methods of wind-induced response analysis for wind turbine blades use approximations that are not suitable for wind turbine blade airfoils which are thick, and therefore lead to inaccurate life predictions. Additionally, a time-domain formulation can prove to be especially advantageous for predicting aerodynamic loads on wind turbine blades since they operate in a turbulent atmospheric boundary layer. This will help to analyze the blades on wind turbines that operate individually or in a farm setting where they experience high turbulence in the wake of another wind turbine. A time-domain formulation is also useful for examining the effects of gusty winds that are transient in nature like in gust fronts, thunderstorms or extreme events such as hurricanes, microbursts, and tornadoes. Time-domain methods present the opportunity for real-time health monitoring strategies that can easily be used with finite element methods for prediction of fatigue life or onset of flutter instability. The purpose of the proposed work is to develop a robust computational model to predict the loads, stresses and response of a wind turbine blade in operating and extreme wind conditions. The model can be used to inform health monitoring strategies for preventative maintenance and provide a realistic number of stress cycles that the blade will experience for fatigue life prediction procedures. To fill in the gaps in the existing knowledge and meet the overall goal of the proposed research, the following objectives were accomplished: (a) improve the existing aeroelastic (motion- and turbulence-induced) load models to predict the response of wind turbine blade airfoils to understand its behavior in turbulent wind, (b) understand, model and predict the response of wind turbine blades in transient or gusty wind, boundary-layer wind and incoherent wind over the span of the blade, (c) understand the effects of aero-structural coupling between the along-wind, cross-wind and torsional vibrations, and finally (d) develop a computational tool using the improved time-domain load model to predict the real-time load, stress distribution and response of a given wind turbine blade during operating and parked conditions subject to a specific wind environment both in a short and long term for damage, flutter and fatigue life predictions.

  12. Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database

    NASA Astrophysics Data System (ADS)

    Klotz, Bradley W.; Jiang, Haiyan

    2016-10-01

    A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.

  13. Wind stress and heat fluxes over a Brazilian Coastal Upwelling

    NASA Astrophysics Data System (ADS)

    Dourado, Marcelo; Candella, Rogério

    2017-04-01

    Coastal upwelling zones have been intensively studied in the last decades especially due to their importance to the biological cycle. The coastal upwelling system of the Cabo Frio region (east coast of the Rio de Janeiro state, Brazil) keeps the surface water cold during most part of the year, what induces a stable atmospheric boundary layer associated to northeast winds. The main goal of this study is to investigate the wind stress and heat fluxes exchanges between the ocean and the atmosphere in that area. For this purpose, a set of hourly data meteorological and oceanographic data collected by a Wavescan metocean buoy anchored at 23o59S; 42oW, were used, as well as solar radiation and relative humidity from a terrestrial meteorological station from the Instituto Nacional de Meteorologia (InMet). COARE 3.0 algorithm was used to calculate the latent and sensible heat fluxes. In this discussion, positive values represent fluxes towards the ocean. The average net heat flux over our study period is 88 W m-2. The reduction of the net heat flux is due to the increase of the ocean latent heat loss, although a reduction in incoming shortwave radiation and an increase in ocean long wave cooling also contributes. The latent heat is 20 times larger than the sensible heat flux, but the mean value of the latent heat flux, 62 W m-2, is half the typical value found in open ocean. The temporal variability of both sensible and latent heat fluxes reflects their dependence on wind speed and air-sea temperature differences. When upwelling events, here periods when diurnal SST is lower than 18oC, are compared with undisturbed (without upwelling) events, it can be noted the sensible heat fluxes are positives and 10 times greater in magnitude. This is related to an increment, during these upwelling events, of the air-sea temperature difference and an increasing of the wind speed. The cold waters of the upwelling increase the air-sea temperature gradient and, also, the horizontal land-sea gradient. This could intensifies the sea breeze. At the same time, the latent heat flux to the atmosphere is reduced. As expected, cold waters from the upwelling imply in the reduction of the evaporation, and so the latent heat fluxes also reduce significantly. As upwelling events in this region are associated to the presence of the South Atlantic high pressure, NE winds, during these periods of cold water the net heat flux toward the ocean surface is intensified.

  14. Distinctive Features of Surface Winds over Indian Ocean Between Strong and Weak Indian Summer Monsoons: Implications With Respect To Regional Rainfall Change in India

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Bourassa, M. A.; Ali, M. M.

    2017-12-01

    This observational study focuses on characterizing the surface winds in the Arabian Sea (AS), the Bay of Bengal (BoB), and the southern Indian Ocean (SIO) with special reference to the strong and weak Indian summer monsoon rainfall (ISMR) using the latest daily gridded rainfall dataset provided by the Indian Meteorological Department (IMD) and the Cross-Calibrated Multi-Platform (CCMP) gridded wind product version 2.0 produced by Remote Sensing System (RSS) over the overlapped period 1991-2014. The potential links between surface winds and Indian regional rainfall are also examined. Results indicate that the surface wind speeds in AS and BoB during June-August are almost similar during strong ISMRs and weak ISMRs, whereas significant discrepancies are observed during September. By contrast, the surface wind speeds in SIO during June-August are found to be significantly different between strong and weak ISMRs, where they are similar during September. The significant differences in monthly mean surface wind convergence between strong and weak ISMRs are not coherent in space in the three regions. However, the probability density function (PDF) distributions of daily mean area-averaged values are distinctive between strong and weak ISMRs in the three regions. The correlation analysis indicates the area-averaged surface wind speeds in AS and the area-averaged wind convergence in BoB are highly correlated with regional rainfall for both strong and weak ISMRs. The wind convergence in BoB during strong ISMRs is relatively better correlated with regional rainfall than during weak ISMRs. The surface winds in SIO do not greatly affect Indian rainfall in short timescales, however, they will ultimately affect the strength of monsoon circulation by modulating Indian Ocean Dipole (IOD) mode via atmosphere-ocean interactions.

  15. A 100-kW metal wind turbine blade basic data, loads and stress analysis

    NASA Technical Reports Server (NTRS)

    Cherritt, A. W.; Gaidelis, J. A.

    1975-01-01

    A rotor loads computer program was used to define the steady state and cyclic loads acting on 60 ft long metal blades designed for the ERDA/NASA 100 kW wind turbine. Blade load and stress analysis used to support the structural design are presented. For the loading conditions examined, the metal blades are structurally adequate for use, within the normal operating range, as part of the wind turbine system.

  16. The Effect of Overstory Removal Upon Surface WInd in a Black Spruce Bog

    Treesearch

    James M. Brown

    1972-01-01

    Wind passage was measured over a black spruce canopy, at the surface under the canopy, and in a clearcut strip in a northern Minnesota bog. During a 40-day period wind below the canopy was 10 percent of that above the canopy while the wind in the clearcut strip was 45 percent of the total above the canopy. Wind at the surface of the clearcut strip was of longer...

  17. The variability of the surface wind field in the equatorial Pacific Ocean: Criteria for satellite measurements

    NASA Technical Reports Server (NTRS)

    Halpern, D.

    1984-01-01

    The natural variability of the equatorial Pacific surface wind field is described from long period surface wind measurements made at three sites along the equator (95 deg W, 109 deg 30 W, 152 deg 30 W). The data were obtained from surface buoys moored in the deep ocean far from islands or land, and provide criteria to adequately sample the tropical Pacific winds from satellites.

  18. Spatiotemporal distribution of nitrogen dioxide within and around a large-scale wind farm - a numerical case study

    NASA Astrophysics Data System (ADS)

    Mo, Jingyue; Huang, Tao; Zhang, Xiaodong; Zhao, Yuan; Liu, Xiao; Li, Jixiang; Gao, Hong; Ma, Jianmin

    2017-12-01

    As a renewable and clean energy source, wind power has become the most rapidly growing energy resource worldwide in the past decades. Wind power has been thought not to exert any negative impacts on the environment. However, since a wind farm can alter the local meteorological conditions and increase the surface roughness lengths, it may affect air pollutants passing through and over the wind farm after released from their sources and delivered to the wind farm. In the present study, we simulated the nitrogen dioxide (NO2) air concentration within and around the world's largest wind farm (Jiuquan wind farm in Gansu Province, China) using a coupled meteorology and atmospheric chemistry model WRF-Chem. The results revealed an edge effect, which featured higher NO2 levels at the immediate upwind and border region of the wind farm and lower NO2 concentration within the wind farm and the immediate downwind transition area of the wind farm. A surface roughness length scheme and a wind turbine drag force scheme were employed to parameterize the wind farm in this model investigation. Modeling results show that both parameterization schemes yield higher concentration in the immediate upstream of the wind farm and lower concentration within the wind farm compared to the case without the wind farm. We infer this edge effect and the spatial distribution of air pollutants to be the result of the internal boundary layer induced by the changes in wind speed and turbulence intensity driven by the rotation of the wind turbine rotor blades and the enhancement of surface roughness length over the wind farm. The step change in the roughness length from the smooth to rough surfaces (overshooting) in the upstream of the wind farm decelerates the atmospheric transport of air pollutants, leading to their accumulation. The rough to the smooth surface (undershooting) in the downstream of the wind farm accelerates the atmospheric transport of air pollutants, resulting in lower concentration level.

  19. An atlas of monthly mean distributions of SSMI surface wind speed, AVHRR/2 sea surface temperature, AMI surface wind velocity, TOPEX/POSEIDON sea surface height, and ECMWF surface wind velocity during 1993

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.

    1995-01-01

    The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.

  20. Influence of Persistent Wind Scour on the Surface Mass Balance of Antarctica

    NASA Technical Reports Server (NTRS)

    Das, Indrani; Bell, Robin E.; Scambos, Ted A.; Wolovick, Michael; Creyts, Timothy T.; Studinger, Michael; Fearson, Nicholas; Nicolas, Julien P.; Lenaerts, Jan T. M.; vandenBroeke, Michiel R.

    2013-01-01

    Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimating the snow. This wind scour results in numerous localized regions (< or = 200 sq km) with reduced surface accumulation. Estimates of Antarctic surface mass balance rely on sparse point measurements or coarse atmospheric models that do not capture these local processes, and overestimate the net mass input in wind-scour zones. Here we combine airborne radar observations of unconformable stratigraphic layers with lidar-derived surface roughness measurements to identify extensive wind-scour zones over Dome A, in the interior of East Antarctica. The scour zones are persistent because they are controlled by bedrock topography. On the basis of our Dome A observations, we develop an empirical model to predict wind-scour zones across the Antarctic continent and find that these zones are predominantly located in East Antarctica. We estimate that approx. 2.7-6.6% of the surface area of Antarctica has persistent negative net accumulation due to wind scour, which suggests that, across the continent, the snow mass input is overestimated by 11-36.5 Gt /yr in present surface-mass-balance calculations.

  1. Observational Studies of Parameters Influencing Air-sea Gas Exchange

    NASA Astrophysics Data System (ADS)

    Schimpf, U.; Frew, N. M.; Bock, E. J.; Hara, T.; Garbe, C. S.; Jaehne, B.

    A physically-based modeling of the air-sea gas transfer that can be used to predict the gas transfer rates with sufficient accuracy as a function of micrometeorological parameters is still lacking. State of the art are still simple gas transfer rate/wind speed relationships. Previous measurements from Coastal Ocean Experiment in the Atlantic revealed positive correlations between mean square slope, near surface turbulent dis- sipation, and wind stress. It also demonstrated a strong negative correlation between mean square slope and the fluorescence of surface-enriched colored dissolved organic matter. Using heat as a proxy tracer for gases the exchange process at the air/water interface and the micro turbulence at the water surface can be investigated. The anal- ysis of infrared image sequences allow the determination of the net heat flux at the ocean surface, the temperature gradient across the air/sea interface and thus the heat transfer velocity and gas transfer velocity respectively. Laboratory studies were carried out in the new Heidelberg wind-wave facility AELOTRON. Direct measurements of the Schmidt number exponent were done in conjunction with classical mass balance methods to estimate the transfer velocity. The laboratory results allowed to validate the basic assumptions of the so called controlled flux technique by applying differ- ent tracers for the gas exchange in a large Schmidt number regime. Thus a modeling of the Schmidt number exponent is able to fill the gap between laboratory and field measurements field. Both, the results from the laboratory and the field measurements should be able to give a further understanding of the mechanisms controlling the trans- port processes across the aqueous boundary layer and to relate the forcing functions to parameters measured by remote sensing.

  2. Buoyancy forcing and the MOC: insights from experiments, simulations and global models

    NASA Astrophysics Data System (ADS)

    White, B. L.; Passaggia, P. Y.; Zemskova, V.

    2017-12-01

    The driving forces behind the Meridional Overturning Circulation (MOC) have been widely debated, with wind-driven upwelling, surface buoyancy fluxes due to heating/cooling/freshwater input, and vertical diffusion due to turbulent mixing all thought to play significant roles. To explore the specific role of buoyancy forcing we present results from experiments and simulations of Horizontal Convection (HC), where a circulation is driven by differential buoyancy forcing applied along a horizontal surface. We interpret these results using energy budgets based on the local Available Potential Energy framework introduced in [Scotti and White, J. Fluid Mech., 2014]. We first describe HC experiments driven by the diffusion of salt in water across membranes localized at the surface, at Schmidt numbers {Sc}≈ 610 and Rayleigh numbers in the range 1012 < Ra=Δ b L3/(ν κ ) < 1017, where ν is the kinematic viscosity of water, κ is the diffusion coefficient of salt, L=[.5,2,5]m is the length of the different tanks and Δ b=g(ρ salt}-ρ {fresh}/ρ_{fresh is the reduced gravity difference. We show that the scaling follows a Nu ˜ Ra1/4 type scaling recently theorized by Shishkina et; al. (2016). We then present numerical results for rotating horizontal convection with a zonally re-entrant channel to represent the Southern Ocean branch of the MOC. While the zonal wind stress profile is important to the spatial pattern of the circulation, perhaps surprisingly, the energy budget shows only a weak dependence on the magnitude of the wind input, suggesting that surface APE generation by buoyancy forcing is dominant in driving the overturning circulation.

  3. Modeling possible spreadings of a buoyant surface plume with lagrangian and eulerian approaches at different resolutions using flow syntheses from 1992-2007 - a Gulf of Mexico study

    NASA Astrophysics Data System (ADS)

    Tulloch, R.; Hill, C. N.; Jahn, O.

    2010-12-01

    We present results from an ensemble of BP oil spill simulations. The oil spill slick is modeled as a buoyant surface plume that is transported by ocean currents modulated, in some experiments, by surface winds. Ocean currents are taken from ECCO2 project (see http://ecco2.org ) observationally constrained state estimates spanning 1992-2007. In this work we (i) explore the role of increased resolution of ocean eddies, (ii) compare inferences from particle based, lagrangian, approaches with eulerian, field based, approaches and (ii) examine the impact of differential response of oil particles and water to normal and extreme, hurricane derived, wind stress. We focus on three main questions. Is the simulated response to an oil spill markedly different for different years, depending on ocean circulation and wind forcing? Does the simulated response depend heavily on resolution and are lagrangian and eulerian estimates comparable? We start from two regional configurations of the MIT General Circulation Model (MITgcm - see http://mitgcm.org ) at 16km and 4km resolutions respectively, both covering the Gulf of Mexico and western North Atlantic regions. The simulations are driven at open boundaries with momentum and hydrographic fields from ECCO2 observationally constrained global circulation estimates. The time dependent surface flow fields from these simulations are used to transport a dye that can optionally decay over time (approximating biological breakdown) and to transport lagrangian particles. Using these experiments we examine the robustness of conclusions regarding the fate of a buoyant slick, injected at a single point. In conclusion we discuss how future drilling operations could use similar approaches to better anticipate outcomes of accidents both in this region and elsewhere.

  4. The aeolian wind tunnel

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.

    1991-01-01

    The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.

  5. Effect of film slicks on near-surface wind

    NASA Astrophysics Data System (ADS)

    Charnotskii, Mikhail; Ermakov, Stanislav; Ostrovsky, Lev; Shomina, Olga

    2016-09-01

    The transient effects of horizontal variation of sea-surface wave roughness due to surfactant films on near-surface turbulent wind are studied theoretically and experimentally. Here we suggest two practical schemes for calculating variations of wind velocity profiles near the water surface, the average short-wave roughness of which is varying in space and time when a film slick is present. The schemes are based on a generalized two-layer model of turbulent air flow over a rough surface and on the solution of the continuous model involving the equation for turbulent kinetic energy of the air flow. Wave tank studies of wind flow over wind waves in the presence of film slicks are described and compared with theory.

  6. Ocean Wave Simulation Based on Wind Field

    PubMed Central

    2016-01-01

    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates. PMID:26808718

  7. Ocean Wave Simulation Based on Wind Field.

    PubMed

    Li, Zhongyi; Wang, Hao

    2016-01-01

    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  8. Osan AB, Korea. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1982-06-14

    USAFETAC SURFACE WINDS2 AIR WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 1471220 OSAN AS KO 73-S1 FED...BRANCHusAF’TAC SURFACE WINDS AIR WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 47122’ OSAN AS KO 73-81 NOV _RLL

  9. A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes.

    PubMed

    Barbagallo, Salvatore; Consoli, Simona; Russo, Alfonso

    2009-01-01

    Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (r(ah)) is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (r(s)) is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF) over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI) were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i) data from the semi-empirical approach "K(c) reflectance-based", which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii) surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations.

  10. Method of eliminating the training effect in superconducting coils by post-wind preload

    DOEpatents

    Heim, Joseph R.

    1976-01-01

    The training effect in superconducting coils is eliminated by winding the coil with a composite material that includes both a superconductor and a normal material and then applying stresses to the wound coil in the direction that electromagnetic stresses will be applied to the coil during normal use and in a magnitude greater than the calculated magnitude of the greatest electromagnetic stresses to be applied to the coil.

  11. Finite Element Analysis for the Web Offset of Wind Turbine Blade

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Wang, Xin; Zheng, Changwei; Cao, Jinxiang; Zou, Pingguo

    2017-05-01

    The web is an important part of wind turbine blade, which improves bending properties. Much of blade process is handmade, so web offset of wind turbine blade is one of common quality defects. In this paper, a 3D parametric finite element model of a blade for 2MW turbine was established by ANSYS. Stress distributions in different web offset values were studied. There were three kinds of web offset. The systematic study of web offset was done by orthogonal experiment. The most important factor of stress distributions was found. The analysis results have certain instructive significance to design and manufacture of wind turbine blade.

  12. A Note on the Barotropic Response of Sea Level to Time-Dependent Wind Forcing

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Davidson, Roger A.

    1995-01-01

    This study examines the extent to which sea level variations at periods between 30 days and 1 year and spatial scales greater than 1000 km can be described by the wind- driven linear barotropic vorticity dynamics. The TOPEX/POSEIDON altimetric observations of sea level and the wind products of the National Meteorological Center are used as the database for the study. Each term of the linear barotropic vorticity equation was evaluated by averaging over regions of 10 deg x 10 deg. In most of the open ocean the result of the analysis suggests that the sea level variabilities at the scales considered cannot be fully described by the equation; the apparent net vorticity change is more than what can be explained by the local wind stress curl. In the few regions where the wind stress curl is strong enough to balance the vorticity budget, predominantly in the northeast Pacific and the southeast Pacific, the balance is basically achieved in terms of the time-dependent topographic Sverdrup relation, namely, the balance between the advection of the planetary vorticity plus the topography-induced vorticity and the forcing by the wind stress curl.

  13. Recent recovery of surface wind speed after decadal decrease: a focus on South Korea

    NASA Astrophysics Data System (ADS)

    Kim, JongChun; Paik, Kyungrock

    2015-09-01

    We investigate the multi-decadal variability of observed surface wind speed around South Korea. It is found that surface wind speed exhibits decreasing trend from mid-1950s until 2003, which is similar with the trends reported for other parts of the world. However, the decreasing trend ceases and becomes unclear since then. It is revealed that decreasing wind speed until 2003 is strongly associated with the decreasing trend of the spatial variance in both atmospheric pressure and air temperature across the East Asia for the same period. On the contrary, break of decreasing trend in surface wind speed since 2003 is associated with increasing spatial variance in surface temperature over the East Asia. Ground observation shows that surface wind speed and air temperature exhibit highly negative correlations for both summer and winter prior to 2003. However, since 2003, the correlations differ between seasons. We suggest that mechanisms behind the recent wind speed trend are different between summer and winter. This is on the basis of an interesting finding that air temperature has decreased while surface temperature has increased during winter months since 2003. We hypothesize that such contrasting temperature trends indicate more frequent movement of external cold air mass into the region since 2003. We also hypothesize that increasing summer wind speed is driven by intrusion of warm air mass into the region which is witnessed via increasing spatial variance in surface temperature across East Asia and the fact that both air and surface temperature rise together.

  14. Latitudinal Discontinuity in Thermal Conditions along the Nearshore of Central-Northern Chile

    PubMed Central

    Tapia, Fabian J.; Largier, John L.; Castillo, Manuel; Wieters, Evie A.; Navarrete, Sergio A.

    2014-01-01

    Over the past decade, evidence of abrupt latitudinal changes in the dynamics, structure and genetic variability of intertidal and subtidal benthic communities along central-northern Chile has been found consistently at 30–32°S. Changes in the advective and thermal environment in nearshore waters have been inferred from ecological patterns, since analyses of in situ physical data have thus far been missing. Here we analyze a unique set of shoreline temperature data, gathered over 4–10 years at 15 sites between 28–35°S, and combine it with satellite-derived winds and sea surface temperatures to investigate the latitudinal transition in nearshore oceanographic conditions suggested by recent ecological studies. Our results show a marked transition in thermal conditions at 30–31°S, superimposed on a broad latitudinal trend, and small-scale structures associated with cape-and-bay topography. The seasonal cycle dominated temperature variability throughout the region, but its relative importance decreased abruptly south of 30–31°S, as variability at synoptic and intra-seasonal scales became more important. The response of shoreline temperatures to meridional wind stress also changed abruptly at the transition, leading to a sharp drop in the occurrence of low-temperature waters at northern sites, and a concurrent decrease in corticated algal biomass. Together, these results suggest a limitation of nitrate availability in nearshore waters north of the transition. The localized alongshore change results from the interaction of latitudinal trends (e.g., wind stress, surface warming, inertial period) with a major headland-bay system (Punta Lengua de Vaca at 30.25°S), which juxtaposes a southern stretch of coast characterized by upwelling with a northern stretch of coast characterized by warm surface waters and stratification. This transition likely generates a number of latitude-dependent controls on ecological processes in the nearshore that can explain species-specific effects, and add strength to the suggestion of an oceanography-driven, major spatial transition in coastal communities at 30–31°S. PMID:25334020

  15. Finite Element Analysis of Single Wheat Mechanical Response to Wind and Rain Loads

    NASA Astrophysics Data System (ADS)

    Liang, Li; Guo, Yuming

    One variety of wheat in the breeding process was chosen to determine the wheat morphological traits and biomechanical properties. ANSYS was used to build the mechanical model of wheat to wind load and the dynamic response of wheat to wind load was simulated. The maximum Von Mises stress is obtained by the powerful calculation function of ANSYS. And the changing stress and displacement of each node and finite element in the process of simulation can be output through displacement nephogram and stress nephogram. The load support capability can be evaluated and to predict the wheat lodging. It is concluded that computer simulation technology has unique advantages such as convenient and efficient in simulating mechanical response of wheat stalk under wind and rain load. Especially it is possible to apply various load types on model and the deformation process can be observed simultaneously.

  16. The 14 month wind stressed residual circulation (pole tide) in the North Sea

    NASA Technical Reports Server (NTRS)

    Oconnor, W. P.

    1986-01-01

    From published research it is known that a quasi-periodic 14 month atmospheric pressure oscillation of a few tenths of a millibar exists in the region of the North and Baltic Seas. At some time in the cycle the associated wind stress has a westerly component that drives a circulation in the North Sea. The results of a dynamical model and comparisons with several North Sea residual circulation studies show that a large sea level gradient results along the Dutch coast. It is this feature that has been referred to as the enhanced pole tide. The dynamical similarity of this pole tide in the North and Baltic Seas to the annual and seasonal wind forced circulations is considered. It is inferred that the large deviations of the pole tide from equilibrium at coastal stations are the result of this sea level set up forces by the 14 month wind stress cycle.

  17. New weather index

    NASA Astrophysics Data System (ADS)

    Scientists at the National Oceanic and Atmospheric Administration (NOAA) and the University of Delaware have refined the wind-chill factor, a common measurement of weather discomfort, into a new misery register called the weather stress index. In addition to the mix of temperature and wind speed data used to calculate wind chill, the recipe for the index adds two new ingredients—humidity and a dash of benchmark statistics—to estimate human reaction to weather conditions. NOAA says that the weather stress index estimates human reaction to weather conditions and that the reaction depends on variations from the ‘normal’ conditions in the locality involved.Discomfort criteria for New Orleans, La., and Bismarck, N.D., for example, differ drastically. According to NOAA, when it's the middle of winter and it's -10°C with a relative humidity of 80% and 24 km/h winds, persons in New Orleans would be highly stressed while those in Bismarck wouldn't bat an eye.

  18. Methane flux across the air-water interface - Air velocity effects

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  19. Objective estimation of tropical cyclone innercore surface wind structure using infrared satellite images

    NASA Astrophysics Data System (ADS)

    Zhang, Changjiang; Dai, Lijie; Ma, Leiming; Qian, Jinfang; Yang, Bo

    2017-10-01

    An objective technique is presented for estimating tropical cyclone (TC) innercore two-dimensional (2-D) surface wind field structure using infrared satellite imagery and machine learning. For a TC with eye, the eye contour is first segmented by a geodesic active contour model, based on which the eye circumference is obtained as the TC eye size. A mathematical model is then established between the eye size and the radius of maximum wind obtained from the past official TC report to derive the 2-D surface wind field within the TC eye. Meanwhile, the composite information about the latitude of TC center, surface maximum wind speed, TC age, and critical wind radii of 34- and 50-kt winds can be combined to build another mathematical model for deriving the innercore wind structure. After that, least squares support vector machine (LSSVM), radial basis function neural network (RBFNN), and linear regression are introduced, respectively, in the two mathematical models, which are then tested with sensitivity experiments on real TC cases. Verification shows that the innercore 2-D surface wind field structure estimated by LSSVM is better than that of RBFNN and linear regression.

  20. Forecasting Cool Season Daily Peak Winds at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Barrett, Joe, III; Short, David; Roeder, William

    2008-01-01

    The expected peak wind speed for the day is an important element in the daily 24-Hour and Weekly Planning Forecasts issued by the 45th Weather Squadron (45 WS) for planning operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The morning outlook for peak speeds also begins the warning decision process for gusts ^ 35 kt, ^ 50 kt, and ^ 60 kt from the surface to 300 ft. The 45 WS forecasters have indicated that peak wind speeds are a challenging parameter to forecast during the cool season (October-April). The 45 WS requested that the Applied Meteorology Unit (AMU) develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. The tool must only use data available by 1200 UTC to support the issue time of the Planning Forecasts. Based on observations from the KSC/CCAFS wind tower network, surface observations from the Shuttle Landing Facility (SLF), and CCAFS upper-air soundings from the cool season months of October 2002 to February 2007, the AMU created multiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence, the temperature inversion depth, strength, and wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft. Six synoptic patterns were identified: 1) surface high near or over FL, 2) surface high north or east of FL, 3) surface high south or west of FL, 4) surface front approaching FL, 5) surface front across central FL, and 6) surface front across south FL. The following six predictors were selected: 1) inversion depth, 2) inversion strength, 3) wind gust factor, 4) synoptic weather pattern, 5) occurrence of precipitation at the SLF, and 6) strongest wind in the lowest 3000 ft. The forecast tool was developed as a graphical user interface with Microsoft Excel to help the forecaster enter the variables, and run the appropriate regression equations. Based on the forecaster's input and regression equations, a forecast of the day's peak and average wind is generated and displayed. The application also outputs the probability that the peak wind speed will be ^ 35 kt, 50 kt, and 60 kt.

  1. Arctic Ice-Ocean Coupling and Gyre Equilibration Observed With Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dewey, Sarah; Morison, James; Kwok, Ronald; Dickinson, Suzanne; Morison, David; Andersen, Roger

    2018-02-01

    Model and observational evidence has shown that ocean current speeds in the Beaufort Gyre have increased and recently stabilized. Because these currents rival ice drift speeds, we examine the potential for the Beaufort Gyre's shift from a system in which the wind drives the ice and the ice drives a passive ocean to one in which the ocean often, in the absence of high winds, drives the ice. The resultant stress exerted on the ocean by the ice and the resultant Ekman pumping are reversed, without any change in average wind stress curl. Through these curl reversals, the ice-ocean stress provides a key feedback in Beaufort Gyre stabilization. This manuscript constitutes one of the first observational studies of ice-ocean stress inclusive of geostrophic ocean currents, by making use of recently available remote sensing data.

  2. Commercial applications of satellite oceanography

    NASA Technical Reports Server (NTRS)

    Montgomery, D. R.

    1981-01-01

    It is shown that in the next decade the oceans' commercial users will require an operational oceanographic satellite system or systems capable of maximizing real-time coverage over all ocean areas. Seasat studies suggest that three spacecraft are required to achieve this. Here, the sensor suite would measure surface winds, wave heights (and spectral energy distribution), ice characteristics, sea-surface temperature, ocean colorimetry, height of the geoid, salinity, and subsurface thermal structure. The importance of oceanographic data being distributed to commercial users within two hours of observation time is stressed. Also emphasized is the importance of creating a responsive oceanographic satellite data archive. An estimate of the potential dollar benefits of such an operational oceanographic satellite system is given.

  3. Greenhouse warming, decadal variability, or El Nino? An attempt to understand the anomalous 1990s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latif, M.; Eckert, C.; Kleeman, R.

    The dominant variability modes in the Tropics are investigated and contrasted with the anomalous situation observed during the last few years. The prime quantity analyzed is anomalous sea surface temperature (SST) in the region 30{degrees}S-60{degrees}N. Additionally, observed tropical surface wind stress fields were investigated. Further tropical atmospheric information was derived from a multidecadal run with an atmospheric general circulation model that was forced by the same SSTs. The tropical SST variability can be characterized by three modes: an interannual mode [the El Nino-Southern Oscillation (ENSO)], a decadal mode, and a trend or unresolved ultra-low-frequency variability. 48 refs., 20 figs.

  4. Regional impacts of ocean color on tropical Pacific variability

    NASA Astrophysics Data System (ADS)

    Anderson, W.; Gnanadesikan, A.; Wittenberg, A.

    2009-08-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño) while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  5. Regional impacts of ocean color on tropical Pacific variability

    NASA Astrophysics Data System (ADS)

    Anderson, W.; Gnanadesikan, A.; Wittenberg, A.

    2009-02-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño) while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  6. Predicting drifter trajectories and particle dispersion in the Caribbean using a high resolution coastal ocean forecasting system

    NASA Astrophysics Data System (ADS)

    Solano, M.

    2016-02-01

    The present study discusses the accuracy of a high-resolution ocean forecasting system in predicting floating drifter trajectories and the uncertainty of modeled particle dispersion in coastal areas. Trajectories were calculated using an offline particle-tracking algorithm coupled to the operational model developed for the region of Puerto Rico by CariCOOS. Both, a simple advection algorithm as well as the Larval TRANSport (LTRANS) model, a more sophisticated offline particle-tracking application, were coupled to the ocean model. Numerical results are compared with 12 floating drifters deployed in the near-shore of Puerto Rico during February and March 2015, and tracked for several days using Global Positioning Systems mounted on the drifters. In addition the trajectories have also been calculated with the AmSeas Navy Coastal Ocean Model (NCOM). The operational model is based on the Regional Ocean Modeling System (ROMS) with a uniform horizontal resolution of 1/100 degrees (1.1km). Initial, surface and open boundary conditions are taken from NCOM, except for wind stress, which is computed using winds from the National Digital Forecasting Database. Probabilistic maps were created to quantify the uncertainty of particle trajectories at different locations. Results show that the forecasted trajectories are location dependent, with tidally active regions having the largest error. The predicted trajectories by both the ROMS and NCOM models show good agreement on average, however both perform differently at particular locations. The effect of wind stress on the drifter trajectories is investigated to account for wind slippage. Furthermore, a real case scenario is presented where simulated trajectories show good agreement when compared to the actual drifter trajectories.

  7. On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lu, Hao; Porté-Agel, Fernando

    2015-10-01

    With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.

  8. Disruption of the air-sea interface and formation of two-phase transitional layer in hurricane conditions

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Matt, S.; Fujimura, A.

    2012-04-01

    The change of the air-sea interaction regime in hurricane conditions is linked to the mechanism of direct disruption of the air-sea interface by pressure fluctuations working against surface tension forces (Soloviev and Lukas, 2010). The direct disruption of the air-sea interface due to the Kelvin-Helmholtz (KH) instability and formation of a two-phase transitional layer have been simulated with a computational fluid dynamics model. The volume of fluid multiphase model included surface tension at the water-air interface. The model was initialized with either a flat interface or short wavelets. Wind stress was applied at the upper boundary of the air layer, ranging from zero stress to hurricane force stress in different experiments. Under hurricane force wind, the numerical model demonstrated disruption of the air-water interface and the formation of spume and the two-phase transition layer. In the presence of a transition layer, the air-water interface is no longer explicitly identifiable. As a consequence, the analysis of dimensions suggests a linear dependence for velocity and logarithm of density on depth (which is consistent with the regime of marginal stability in the transition layer). The numerical simulations confirmed the presence of linear segments in the corresponding profiles within the transition layer. This permitted a parameterization of the equivalent drag coefficient due to the presence of the two-phase transition layer at the air-sea interface. This two-phase layer parameterization represented the lower limit imposed on the drag coefficient under hurricane conditions. The numerical simulations helped to reduce the uncertainty in the critical Richardson number applicable to the air-sea interface and in the values of two dimensionless constants; this reduced the uncertainty in the parameterization of the lower limit on the drag coefficient. The available laboratory data (Donelan et al., 2004) are bounded by the two-phase layer parameterization from below and the wave resistance parameterization from above. The available field data (Powell et al., 2003; Black et al., 2007) fall between these two parameterizations, for wind speeds of up to 50 m/s. A few points from the dropsonde data from Powell et al. (2003), obtained at very high wind speeds, are below the theoretical lower limit on the drag coefficient. We also conducted a numerical experiment with imposed short wavelets. Streamwise coherent structures were observed on the water surface, which were especially prominent on the top of wave crests. These intermittent streamwise structures on the top of wavelets, with periodicity in the transverse direction, presumably were a result of the Tollmien-Schlichting (TS) instability. Similar processes take place at the atomization of liquid fuels in cryogenic and diesel engines (Yecko et al., 2002). According to McNaughton and Brunet (2002), the nonlinear stage of the TS instability results in streamwise streaks followed by fluid ejections. This mechanism can contribute to the generation of spume in the form of streaks. Foam streaks are an observable feature on photographic images of the ocean surface under hurricane conditions. The mechanism of the TS instability can also contribute to dispersion of oil spills and other pollutants in hurricane conditions.

  9. Space-based surface wind vectors to aid understanding of air-sea interactions

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Bloom, S. C.; Hoffman, R. N.; Ardizzone, J. V.; Brin, G.

    1991-01-01

    A novel and unique ocean-surface wind data-set has been derived by combining the Defense Meteorological Satellite Program Special Sensor Microwave Imager data with additional conventional data. The variational analysis used generates a gridded surface wind analysis that minimizes an objective function measuring the misfit of the analysis to the background, the data, and certain a priori constraints. In the present case, the European Center for Medium-Range Weather Forecasts surface-wind analysis is used as the background.

  10. Randolph AFB, San Antonio, Texas. Revised Uniform Summary of Surface Weather Observations (RUSSWO)

    DTIC Science & Technology

    1976-03-19

    FoRM ARE oUsoIII ’, " ’ . . . " " -,, ’:,,,:t."," *4 -- ".°" "- . . . " ’ * "- : ; Ir , ( DATA PROCESSING BRANCH EtAC/USAF SURFACE WINDS AIR" WATHER ...FORM ARI OS$Oitlt_ ___ _zT z __ __ ___......- ___ _ _ _ .4. .. . II DATA PROCESSIN G BRASFCH FTAC/USAF SURFACE WINDS AiR WATHER SERVICE/MAC PERCENTAGE...SURFACE WINDS 1 A/R WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) ( 12911- RANDOLPH AFBJTEXAS/SAN

  11. Adding insult to injury: The development of psychosocial stress in Ontario wind turbine communities.

    PubMed

    Walker, Chad; Baxter, Jamie; Ouellette, Danielle

    2015-05-01

    Though historically dismissed as not-in-my-backyard (NIMBY) attitudes, reports of psychosocial stress linked to wind energy developments have emerged in Ontario, Canada. While the debate and rhetoric intensify concerning whether wind turbines 'actually' cause 'health' effects, less sincere attention has been given to the lived experience and mental well-being of those near turbines. Drawing on theories of environmental stress, this grounded theory, mixed-method (n = 26 interviews; n = 152 questionnaires) study of two communities in 2011 and 2012 traces how and why some wind turbine community residents suffer substantial changes to quality of life, develop negative perceptions of 'the other' and in some cases, experience intra-community conflict. Policy-related forces, along with existing community relationships may help explain much of these differences between communities. We suggest a move beyond debating simply whether or not 'annoyance' represents a 'health impact' and instead focus on ways to minimize and attenuate these feelings of threat (risk) and stress at the community level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Northern North Atlantic Sea Surface Height and Ocean Heat Content Variability

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Rhines, Peter; Worthen, Denise L.

    2013-01-01

    The evolution of nearly 20 years of altimetric sea surface height (SSH) is investigated to understand its association with decadal to multidecadal variability of the North Atlantic heat content. Altimetric SSH is dominated by an increase of about 14 cm in the Labrador and Irminger seas from 1993 to 2011, while the opposite has occurred over the Gulf Stream region over the same time period. During the altimeter period the observed 0-700 m ocean heat content (OHC) in the subpolar gyre mirrors the increased SSH by its dominantly positive trend. Over a longer period, 1955-2011, fluctuations in the subpolar OHC reflect Atlantic multidecadal variability (AMV) and can be attributed to advection driven by the wind stress ''gyre mode'' bringing more subtropical waters into the subpolar gyre. The extended subpolar warming evident in SSH and OHC during the altimeter period represents transition of the AMV from cold to warm phase. In addition to the dominant trend, the first empirical orthogonal function SSH time series shows an abrupt change 2009-2010 reaching a new minimum in 2010. The change coincides with the change in the meridional overturning circulation at 26.5N as observed by the RAPID (Rapid Climate Change) project, and with extreme behavior of the wind stress gyre mode and of atmospheric blocking. While the general relationship between northern warming and Atlantic meridional overturning circulation (AMOC) volume transport remains undetermined, the meridional heat and salt transport carried by AMOC's arteries are rich with decade-to-century timescale variability.

  13. Experimental study of temporal evolution of waves under transient wind conditions

    NASA Astrophysics Data System (ADS)

    Zavadsky, Andrey; Shemer, Lev

    2016-11-01

    Temporal variation of the waves excited by nearly sudden wind forcing over an initially still water surface is studied in a small wind-wave flume at Tel Aviv University for variety of fetches and wind velocities. Simultaneous measurements of the surface elevation using a conventional capacitance wave-gauge and of the surface slope in along-wind and cross-wind directions by a laser slope gauge were performed. Variation with time of two components of instantaneous surface velocity was measured by particle tracking velocimetry. The size of the experimental facility and thus relatively short characteristic time scales of the phenomena under investigation, as well as an automated experimental procedure controlling the experiments made it possible to record a large amount of independent realizations for each wind-fetch condition. Sufficient data were accumulated to compute reliable ensemble averaged temporal variation of governing wave parameters. The essentially three-dimensional structure of wind-waves at all stages of evolution is demonstrated. The results obtained at each wind-fetch condition allowed to characterize the major stages of the evolution of the wind-wave field and to suggest a plausible scenario for the initial growth of the wind-waves.

  14. Quantification of Processing Effects on Filament Wound Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Aiello, Robert A.; Chamis, Christos C.

    1999-01-01

    A computational simulation procedure is described which is designed specifically for the modeling and analysis of filament wound pressure vessels. Cylindrical vessels with spherical or elliptical end caps can be generated automatically. End caps other than spherical or elliptical may be modeled by varying circular sections along the x-axis according to the C C! end cap shape. The finite element model generated is composed of plate type quadrilateral shell elements on the entire vessel surface. This computational procedure can also be sued to generate grid, connectivity and material cards (bulk data) for component parts of a larger model. These bulk data are assigned to a user designated file for finite element structural/stress analysis of composite pressure vessels. The procedure accommodates filament would pressure vessels of all types of shells-of-revolution. It has provisions to readily evaluate initial stresses due to pretension in the winding filaments and residual stresses due to cure temperature.

  15. Quantification of Processing Effects on Filament Wound Pressure Vessels. Revision

    NASA Technical Reports Server (NTRS)

    Aiello, Robert A.; Chamis, Christos C.

    2002-01-01

    A computational simulation procedure is described which is designed specifically for the modeling and analysis of filament wound pressure vessels. Cylindrical vessels with spherical or elliptical end caps can be generated automatically. End caps other than spherical or elliptical may be modeled by varying circular sections along the x-axis according to the end cap shape. The finite element model generated is composed of plate type quadrilateral shell elements on the entire vessel surface. This computational procedure can also be used to generate grid, connectivity and material cards (bulk data) for component parts of a larger model. These bulk data are assigned to a user designated file for finite element structural/stress analysis of composite pressure vessels. The procedure accommodates filament wound pressure vessels of all types of shells-of -revolution. It has provisions to readily evaluate initial stresses due to pretension in the winding filaments and residual stresses due to cure temperature.

  16. The dune effect on sand-transporting winds on Mars.

    PubMed

    Jackson, Derek W T; Bourke, Mary C; Smyth, Thomas A G

    2015-11-05

    Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface-atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern 'wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today.

  17. An atlas of monthly mean distributions of GEOSAT sea surface height, SSMI surface wind speed, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1988

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Zlotnicki, V.; Newman, J.; Brown, O.; Wentz, F.

    1991-01-01

    Monthly mean global distributions for 1988 are presented with a common color scale and geographical map. Distributions are included for sea surface height variation estimated from GEOSAT; surface wind speed estimated from the Special Sensor Microwave Imager on the Defense Meteorological Satellite Program spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer on NOAA spacecrafts; and the Cartesian components of the 10m height wind vector computed by the European Center for Medium Range Weather Forecasting. Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.

  18. Air-sea interaction over the Indian Ocean due to variations in the Indonesian throughflow

    NASA Astrophysics Data System (ADS)

    Wajsowicz, R. C.

    The effects of the Indonesian throughflow on the upper thermocline circulation and surface heat flux over the Indian Ocean are presented for a 3-D ocean model forced by two different monthly wind-stress climatologies, as they show interesting differences, which could have implications for long-term variability in the Indian and Australasian monsoons. The effects are determined by contrasting a control run with a run in which the throughflow is blocked by an artificial land-bridge across the exit channels into the Indian Ocean. In the model forced by ECMWF wind stresses, there is little impact on the annual mean surface heat flux in the region surrounding the throughflow exit straits, whereas in the model forced by SSM/I-based wind stresses, a modest throughflow of less than 5 ×106 m3s-1 over the upper 300 m induces an extra 10-50 Wm-2 output. In the SSM/I-forced model, there is insignificant penetration of the throughflow into the northern Indian Ocean. However, in the ECMWF-forced model, the throughflow induces a 5-10 Wm-2 reduction in heat input into the ocean, i.e., an effective output, over the Somali Current in the annual mean. These differences are attributed to differences in the strength and direction of the Ekman transport of the ambient flow, and the vertical structure of the transport and temperature anomalies associated with the throughflow. In both models, the throughflow induces a 5-30 Wm-2 increase in net output over a broad swathe of the southern Indian Ocean, and a reduction in heat output of 10-60 Wm-2 in a large L-shaped band around Tasmania. Effective increases in throughflow-induced net output reach up to 40 (60) Wm-2 over the Agulhas Current retroflection in the ECMWF (SSM/I)-forced model. Seasonal variations in the throughflow's effect on the net surface heat flux are attributed to seasonal variations in the ambient circulation of the Indian Ocean, specifically in coastal upwelling along the south Javan, west Australian, and Somalian coasts, and in the depth of convective overturning between 40°S to 50°S, and its sensing of the mean throughflow's thermal anomaly. The seasonal anomalies plus annual mean yield maximum values for the throughflow-induced net surface heat output in boreal summer. Values may exceed 40 Wm-2 in the southern Indian Ocean interior in both models, exceed 60 Wm-2 over the Agulhas retroflection and immediate vicinity of the exit channels in the SSM/I-forced model, and reach 30 Wm-2 over the Somali jet in the ECMWF-forced model.

  19. Vertical axis wind turbine airfoil

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  20. A vorticity budget for the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Le Bras, Isabela; Toole, John

    2017-04-01

    We develop a depth-averaged vorticity budget framework to diagnose the dynamical balance of the Gulf Stream, and apply this framework to observations and the ECCO state estimate (Wunsch and Heimbach 2013) above the thermocline in the subtropical North Atlantic. Using the hydrographic and ADCP data along the WOCE/CLIVAR section A22 and a variety of wind stress data products, we find that the advective vorticity flux out of the western region is on the same order as the wind stress forcing over the eastern portion of the gyre. This is consistent with a large-scale balance between a negative source of vorticity from wind stress forcing and a positive source of vorticity in the western region. Additionally, the form of the vorticity flux indicates that the Gulf Stream has a significant inertial component. In the ECCO state estimate, we diagnose a seasonal cycle in advective vorticity flux across a meridional section associated with seasonal fluctuations in Gulf Stream transport. This vorticity flux is forced by wind stress over the eastern subtropical North Atlantic and balanced by lateral friction with the western boundary. The lateral friction in ECCO is a necessary parameterization of smaller scale processes that occur in the real ocean, and quantifying these remains an open and interesting question. This simplified framework provides a means to interpret large scale ocean dynamics. In our application, it points to wind stress forcing over the subtropical North Altantic as an important regulator of the Gulf Stream and hence the climate system.

  1. Phytoplankton pigment patterns and wind forcing off central California

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.; Barksdale, Brett

    1991-01-01

    Mesoscale variability in phytoplankton pigment distributions of central California during the spring-summer upwelling season are studied via a 4-yr time series of high-resolution coastal zone color scanner imagery. Empirical orthogonal functions are used to decompose the time series of spatial images into its dominant modes of variability. The coupling between wind forcing of the upper ocean and phytoplankton distribution on mesoscales is investigated. Wind forcing, in particular the curl of the wind stress, was found to play an important role in the distribution of phytoplankton pigment in the California Current. The spring transition varies in timing and intensity from year to year but appears to be a recurrent feature associated with the rapid onset of the upwelling-favorable winds. Although the underlying dynamics may be dominated by processes other than forcing by wind stress curl, it appears that curl may force the variability of the filaments and hence the pigment patterns.

  2. Human cold stress of strong local-wind "Hijikawa-arashi" in Japan, based on the UTCI index and thermo-physiological responses

    NASA Astrophysics Data System (ADS)

    Ohashi, Yukitaka; Katsuta, Takumi; Tani, Haruka; Okabayashi, Taiki; Miyahara, Satoshi; Miyashita, Ryoji

    2018-03-01

    We investigated the cold stress caused by a strong local wind called "Hijikawa-arashi," through in situ vital measurements and the Universal Thermal Climate Index (UTCI). This wind is a very interesting winter phenomenon, localized in an area within 1 km of the seashore in Ozu City, Ehime Prefecture in Japan. When a strong Hijikawa-arashi (HA) occurred at 14-15 m s-1, the UTCI decreased to - 30 °C along the bridge where commuting residents are the most exposed to strong and cold winds. On the bridge, most participants in our experiment felt "very cold" or "extremely cold." The UTCI of HA can be predicted from a multiple regression equation using wind speed and air temperature. The cold HA wind is also harmful to human thermo-physiological responses. It leads to higher blood pressure and increased heart rate, both of which act as cardiovascular stress triggers. Increases of 6-10 mmHg and 3-6 bpm for every 10 °C reduction in UTCI were seen on all observational days, including HA and non-HA days. In fact, the participants' body skin temperatures decreased by approximately 1.2 to 1.7 °C for every 10 °C reduction in UTCI. Thus, the UTCI variation due to the HA outbreak corresponded well with the cold sensation and thermo-physiological responses in humans. This result suggests that daily UTCI monitoring enables the prediction of thermo-physiological responses to the HA cold stress.

  3. The dynamics of subtidal poleward flows over a narrow continental shelf, Palos Verdes, CA

    USGS Publications Warehouse

    Noble, M.A.; Ryan, H.F.; Wiberg, P.L.

    2002-01-01

    The Palos Verdes peninsula is a short, very narrow (< 3 km) shelf in southern California that is bracketed by two large embayments. In May 1992, arrays of up to 4 moorings and 2 benthic tripods were deployed in a yearlong study of the circulation processes over this shelf and the adjacent slope. Wind stress, coastal sea level, atmospheric pressure and wave records were obtained from offshore sites and from coastal stations surrounding Palos Verdes. Bottom stress calculated for the mid-shelf sites using a boundary-layer model and data from the above instruments indicated the bottom drag coefficient over this shelf is about 0.003 Currents flow toward the northwest along the shelf and upper slope. Speeds are generally around 20-30 cm/s. There was no obvious seasonal structure in the flow. The first EOF for subtidal alongshelf current accounted for nearly 70% of the variance at sites on the shelf and upper slope. The dominant fluctuations had periods between 5 and 20 days, periods longer than seen in the regional wind stress field. Coastal sea level and the alongshore gradient in sea level had a similar concentration of energy in the 5-20 day frequency band. About 30% of the alongshelf flow was coherent with the alongshelf pressure gradient; currents flowed down the pressure gradient with minimal phase lag. Winds accounted for only 15-20% of the variance in subtidal currents, but the measured effect of wind stress was large. A 1 dyne/cm2 wind stress was associated with a 20-30 cm/s alongshore current. Both the regional wind stress and the alongshelf pressure gradients had spatial scales much larger than found on this small shelf. Subtidal flows forced by these regional fields were set up in the adjacent, much broader basins. The currents amplified as they moved onto the narrow shelf between the basins. Hence, local wind-driven currents had anomalously large amplitudes. The momentum equations for alongshelf wind or pressure gradients did not balance because some of the measured terms were associated with regional fields, others with local process. Our observations suggest that it is more difficult to determine which measured fields reflect the local processes in regions with rapidly changing topography. ?? 2002 Elsevier Science Ltd. All rights reserved.

  4. Toward understanding the physical link between turbines and microclimate impacts from in situ measurements in a large wind farm

    NASA Astrophysics Data System (ADS)

    Rajewski, Daniel A.; Takle, Eugene S.; Prueger, John H.; Doorenbos, Russell K.

    2016-11-01

    Recent wind farm studies have revealed elevated nighttime surface temperatures but have not validated physical mechanisms that create the observed effects. We report measurements of concurrent differences in surface wind speed, temperature, fluxes, and turbulence upwind and downwind of two turbine lines at the windward edge of a utility-scale wind farm. On the basis of these measurements, we offer a conceptual model based on physical mechanisms of how wind farms affect their own microclimate. Periods of documented curtailment and zero-power production of the wind farm offer useful opportunities to rigorously evaluate the microclimate impact of both stationary and operating turbines. During an 80 min nighttime wind farm curtailment, we measured abrupt and large changes in turbulent fluxes of momentum and heat leeward of the turbines. At night, wind speed decreases in the near wake when turbines are off but abruptly increases when turbine operation is resumed. Our measurements are compared with Moderate Resolution Imaging Spectroradiometer Terra and Aqua satellite measurements reporting wind farms to have higher nighttime surface temperatures. We demonstrate that turbine wakes modify surface fluxes continuously through the night, with similar magnitudes during the Terra and Aqua transit periods. Cooling occurs in the near wake and warming in the far wake when turbines are on, but cooling is negligible when turbines are off. Wind speed and surface stratification have a regulating effect of enhancing or decreasing the impact on surface microclimate due to turbine wake effects.

  5. A Reexamination of the Emergy Input to a System from the Wind.

    EPA Science Inventory

    The wind energy absorbed in the global boundary layer (GBL, 900 mb surface) is the basis for calculating the wind emergy input for any system on the Earth’s surface. Estimates of the wind emergy input to a system depend on the amount of wind energy dissipated, which can have a ra...

  6. An equilibrium model for the coupled ocean-atmosphere boundary layer in the tropics

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Betts, Alan K.

    1991-01-01

    An atmospheric convective boundary layer (CBL) model is coupled to an ocean mixed-layer (OML) model in order to study the equilibrium state of the coupled system in the tropics, particularly in the Pacific region. The equilibrium state of the coupled system is solved as a function of sea-surface temperature (SST) for a given surface wind and as a function of surface wind for a given SST. It is noted that in both cases, the depth of the CBL and OML increases and the upwelling below the OML decreases, corresponding to either increasing SST or increasing surface wind. The coupled ocean-atmosphere model is solved iteratively as a function of surface wind for a fixed upwelling and a fixed OML depth, and it is observed that SST falls with increasing wind in both cases. Realistic gradients of mixed-layer depth and upwelling are observed in experiments with surface wind and SST prescribed as a function of longitude.

  7. Strength evaluation of socket joints

    NASA Technical Reports Server (NTRS)

    Rash, Larry C.

    1994-01-01

    This report documents the development of a set of equations that can be used to provide a relatively simple solution for identifying the strength of socket joints and for most cases avoid the need of more lengthy analyses. The analytical approach was verified by comparison of the contact load distributions to results obtained from a finite element analysis. The contacting surfaces for the specific joint in this analysis are in the shape of frustrums of a cone and are representative of the tapered surfaces in the socket-type joints used to join segments of model support systems for wind tunnels. The results are in the form of equations that can be used to determine the contact loads and stresses in the joint from the given geometry and externally applied loads. Equations were determined to define the bending moments and stresses along the length of the joints based on strength and materials principles. The results have also been programmed for a personal computer and a copy of the program is included.

  8. How far can we prevent further physical soil degradation in the future?

    NASA Astrophysics Data System (ADS)

    Horn, Rainer

    2017-04-01

    Arable as well as forest soils are exposed to increasing external stresses, which coincide with a further and deeper reaching soil degradation, which may result in an aggravation of hydraulic, gaseous, thermal but also physicochemical and chemical soil functions. The decline coincides with a simultaneous reduction in useable land areas and worsens food production amongst others. Therefore, it is mandatory, that stable soil structure from the surface down to depth prevents soil compaction, sustains water infiltration, reduces rates of soil erosion by water and wind in each case to the minimum possible under the soil, terrain, land use, and climatic conditions in which the soils occur. It improves organic carbon storage in soils and optimizes microbial activity and functions. These benefits coincide with sustainable soil properties and soil management systems, which prevent - deep mechanical stress propagation which can cause irreversible soil deformation, - loss of surface soil layers with coinciding organic and mineral nutrient pool available for microbial processing and plant uptake, - Truncation of soil horizons, or damage on private and public infrastructures (roads, houses) and downstream fields. In order to prevent negative impacts on soils, it is recommended, that A) concerning prevention of soil compaction - stresses applied to soils shall not exceed the mechanical soil stability to maintain the actual functioning of chemical, physical and biological processes and to utilize their resilience (i.e. the elasticity), - land use management strategies have to be related to the actual soil properties in order to optimize plant growth, yield, filtering and buffering of infiltrating water, and carbon sequestration. B) soil erosion by - water, wind, and tillage is counteracted by an adequate surface soil stability including a site specific residue management (e.g. conservation tillage), controlled traffic and harvesting, ecological grassland use strategies (e.g. fodder production and harvesting, adequate animal grazing), - wind is furthermore minimized by adequate hedgerow plantations, continuous cover crop growth, optimized particle bindings by water, infiltrating organic acids, appropriate grazing intensity. Agroforestry can be considered as an additional positive measure to reduce soil erosion risks generally and to ameliorate degraded sites. C) -plant cover on slopes remains untouched, overgrazing and consecutive soil homogenization especially under moist climatic conditions must be prevented but adjusted to the actual structure stability of the hillsides. The communication of these findings followed by application of such measures can help farmers and foresters as well as landowners to prevent (further) physical soil degradation in the future.

  9. Large-Eddy Simulation Sensitivities to Variations of Configuration and Forcing Parameters in Canonical Boundary-Layer Flows for Wind Energy Applications

    DOE PAGES

    Mirocha, Jeffrey D.; Churchfield, Matthew J.; Munoz-Esparza, Domingo; ...

    2017-08-28

    Here, the sensitivities of idealized Large-Eddy Simulations (LES) to variations of model configuration and forcing parameters on quantities of interest to wind power applications are examined. Simulated wind speed, turbulent fluxes, spectra and cospectra are assessed in relation to variations of two physical factors, geostrophic wind speed and surface roughness length, and several model configuration choices, including mesh size and grid aspect ratio, turbulence model, and numerical discretization schemes, in three different code bases. Two case studies representing nearly steady neutral and convective atmospheric boundary layer (ABL) flow conditions over nearly flat and homogeneous terrain were used to force andmore » assess idealized LES, using periodic lateral boundary conditions. Comparison with fast-response velocity measurements at five heights within the lowest 50 m indicates that most model configurations performed similarly overall, with differences between observed and predicted wind speed generally smaller than measurement variability. Simulations of convective conditions produced turbulence quantities and spectra that matched the observations well, while those of neutral simulations produced good predictions of stress, but smaller than observed magnitudes of turbulence kinetic energy, likely due to tower wakes influencing the measurements. While sensitivities to model configuration choices and variability in forcing can be considerable, idealized LES are shown to reliably reproduce quantities of interest to wind energy applications within the lower ABL during quasi-ideal, nearly steady neutral and convective conditions over nearly flat and homogeneous terrain.« less

  10. Large-Eddy Simulation Sensitivities to Variations of Configuration and Forcing Parameters in Canonical Boundary-Layer Flows for Wind Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirocha, Jeffrey D.; Churchfield, Matthew J.; Munoz-Esparza, Domingo

    Here, the sensitivities of idealized Large-Eddy Simulations (LES) to variations of model configuration and forcing parameters on quantities of interest to wind power applications are examined. Simulated wind speed, turbulent fluxes, spectra and cospectra are assessed in relation to variations of two physical factors, geostrophic wind speed and surface roughness length, and several model configuration choices, including mesh size and grid aspect ratio, turbulence model, and numerical discretization schemes, in three different code bases. Two case studies representing nearly steady neutral and convective atmospheric boundary layer (ABL) flow conditions over nearly flat and homogeneous terrain were used to force andmore » assess idealized LES, using periodic lateral boundary conditions. Comparison with fast-response velocity measurements at five heights within the lowest 50 m indicates that most model configurations performed similarly overall, with differences between observed and predicted wind speed generally smaller than measurement variability. Simulations of convective conditions produced turbulence quantities and spectra that matched the observations well, while those of neutral simulations produced good predictions of stress, but smaller than observed magnitudes of turbulence kinetic energy, likely due to tower wakes influencing the measurements. While sensitivities to model configuration choices and variability in forcing can be considerable, idealized LES are shown to reliably reproduce quantities of interest to wind energy applications within the lower ABL during quasi-ideal, nearly steady neutral and convective conditions over nearly flat and homogeneous terrain.« less

  11. Roughness Effects on Wind-Turbine Wake Dynamics in a Boundary-Layer Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Barlas, E.; Buckingham, S.; van Beeck, J.

    2016-01-01

    Increasing demand in wind energy has resulted in increasingly clustered wind farms, and raised the interest in wake research dramatically in the last couple of years. To this end, the present work employs an experimental approach with scaled three-bladed wind-turbine models in a large boundary-layer wind-tunnel. Time-resolved measurements are carried out with a three-component hot-wire anemometer in the mid-vertical plane of the wake up to a downstream distance of eleven turbine diameters. The major issue addressed is the wake dynamics i.e. the flow and turbulence characteristics as well as spectral content under two different neutral boundary-layer inflow conditions. The wind tunnel is arranged with and without roughened surfaces in order to mimic moderately rough and smooth conditions. The inflow characterization is carried out by using all three velocity components, while the rest of the study is focused on the streamwise component's evolution. The results show an earlier wake recovery, i.e. the velocity deficit due to the turbine is less persistent for the rough case due to higher incoming turbulence levels. This paves the way for enhanced mixing from higher momentum regions of the boundary layer towards the centre of the wake. The investigation on the turbulent shear stresses is in line with this observation as well. Moreover, common as well as distinguishing features of the turbulent-scales evolution are detected for rough and smooth inflow boundary-layer conditions. Wake meandering disappears for rough inflow conditions but persists for smooth case with a Strouhal number similar to that of a solid disk wake.

  12. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    NASA Astrophysics Data System (ADS)

    Rinker, Jennifer M.

    2016-09-01

    This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a highdimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project. The fit of the calibrated response surface is evaluated in terms of error between the model and the training data and in terms of the convergence. The Sobol SIs are calculated using the calibrated response surface, and the convergence is examined. The Sobol SIs reveal that, of the four turbulence parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed and turbulence intensity.

  13. Wind flow modulation due to variations of the water surface roughness

    NASA Astrophysics Data System (ADS)

    Shomina, Olga; Ermakov, Stanislav; Kapustin, Ivan; Lazareva, Tatiana

    2016-04-01

    Air-ocean interaction is a classical problem in atmosphere and ocean physics, which has important geophysical applications related to calculation of vertical and horizontal humidity, aerosol and gas fluxes, development of global climate models and weather forecasts. The structure of wind flow over fixed underlying surfaces, such as forestry, buildings, mountains, is well described, while the interaction between a rough water surface and turbulent wind is far more complicated because of the presence of wind waves with different wavelength and amplitudes and propagating with different velocities and directions. The aim of this study was to investigate experimentally the variability of the wind profile structure due to variations of wave characteristics. The surface roughness variations were produced using a) surfactant films (oleic acid) spread on the water surface and b) mechanically generated waves superimposed on wind waves. The first case is related to oil slicks on sea surface, the second one - to the sea swell, which propagates into zones with lower wind velocities and interacts with wind flow. Laboratory experiments were conducted in the Oval Wind Wave Tank (OWWT) at the Institute of Applied Physics, cross-section of the wind channel is 30 cm x30 cm. Wave amplitude and the spectrum of surface waves were measured by a wire wave gauge, the wind speed was measured using a hot-wire anemometer DISA and a Pitot tube. In the experiments with surfactants, two frequencies of dripping of the oleic acid were studied, so that low concentration films with the elasticity parameters of about 19 mN/m and the high concentration ("thick") films with the elasticity of 34 mN/m were formed. In the experiments with mechanically generated waves (MGW) different regimes were studied with MGW amplitude of 3.4 mm and of 4.4 mm, and with MGW frequencies of 3.3 Hz and 3.7 Hz. It was shown, that: a) the mean velocity of the wind flow in the presence of surfactant and MGW can be described by a logarithmic profile; b) in the presence of a surfactant film an increase of wind speed was revealed; the more elastic films was deployed on the surface - the stronger wind acceleration was detected; c) MGW result in deceleration of wind flow, the larger MGW amplitude the stronger wind flow reduction is; d) the wind deceleration effect is more pronounced for MGW with higher frequency, i.e. for slower propagating MGW. e) experimental dependencies of the logarithmic wind profile characteristics as functions of the rout mean square (RMS) wave height were obtained demonstrating the growth of the wind friction velocity and the roughness coefficient with RMS. The work has been supported by the Russian Foundation of Basic Research (Projects № 14-05-31535, 14-05-00876, 15-35-20992).

  14. Wind-Tunnel Experiments for Gas Dispersion in an Atmospheric Boundary Layer with Large-Scale Turbulent Motion

    NASA Astrophysics Data System (ADS)

    Michioka, Takenobu; Sato, Ayumu; Sada, Koichi

    2011-10-01

    Large-scale turbulent motions enhancing horizontal gas spread in an atmospheric boundary layer are simulated in a wind-tunnel experiment. The large-scale turbulent motions can be generated using an active grid installed at the front of the test section in the wind tunnel, when appropriate parameters for the angular deflection and the rotation speed are chosen. The power spectra of vertical velocity fluctuations are unchanged with and without the active grid because they are strongly affected by the surface. The power spectra of both streamwise and lateral velocity fluctuations with the active grid increase in the low frequency region, and are closer to the empirical relations inferred from field observations. The large-scale turbulent motions do not affect the Reynolds shear stress, but change the balance of the processes involved. The relative contributions of ejections to sweeps are suppressed by large-scale turbulent motions, indicating that the motions behave as sweep events. The lateral gas spread is enhanced by the lateral large-scale turbulent motions generated by the active grid. The large-scale motions, however, do not affect the vertical velocity fluctuations near the surface, resulting in their having a minimal effect on the vertical gas spread. The peak concentration normalized using the root-mean-squared value of concentration fluctuation is remarkably constant over most regions of the plume irrespective of the operation of the active grid.

  15. Anisotropic Solar Wind Sputtering of the Lunar Surface Induced by Crustal Magnetic Anomalies

    NASA Technical Reports Server (NTRS)

    Poppe, A. R.; Sarantos, M.; Halekas, J. S.; Delory, G. T.; Saito, Y.; Nishino, M.

    2014-01-01

    The lunar exosphere is generated by several processes each of which generates neutral distributions with different spatial and temporal variability. Solar wind sputtering of the lunar surface is a major process for many regolith-derived species and typically generates neutral distributions with a cosine dependence on solar zenith angle. Complicating this picture are remanent crustal magnetic anomalies on the lunar surface, which decelerate and partially reflect the solar wind before it strikes the surface. We use Kaguya maps of solar wind reflection efficiencies, Lunar Prospector maps of crustal field strengths, and published neutral sputtering yields to calculate anisotropic solar wind sputtering maps. We feed these maps to a Monte Carlo neutral exospheric model to explore three-dimensional exospheric anisotropies and find that significant anisotropies should be present in the neutral exosphere depending on selenographic location and solar wind conditions. Better understanding of solar wind/crustal anomaly interactions could potentially improve our results.

  16. Oscillation of Surface PM2.5 Concentration Resulting from an Alternation of Easterly and Southerly Winds in Beijing: Mechanisms and Implications

    NASA Astrophysics Data System (ADS)

    Sun, Zhaobin; Zhang, Xiaoling; Zhao, Xiujuan; Xia, Xiangao; Miao, Shiguang; Li, Ziming; Cheng, Zhigang; Wen, Wei; Tang, Yixi

    2018-04-01

    We used simultaneous measurements of surface PM2.5 concentration and vertical profiles of aerosol concentration, temperature, and humidity, together with regional air quality model simulations, to study an episode of aerosol pollution in Beijing from 15 to 19 November 2016. The potential effects of easterly and southerly winds on the surface concentrations and vertical profiles of the PM2.5 pollution were investigated. Favorable easterly winds produced strong upward motion and were able to transport the PM2.5 pollution at the surface to the upper levels of the atmosphere. The amount of surface PM2.5 pollution transported by the easterly winds was determined by the strength and height of the upward motion produced by the easterly winds and the initial height of the upward wind. A greater amount of PM2.5 pollution was transported to upper levels of the atmosphere by upward winds with a lower initial height. The pollutants were diluted by easterly winds from clean ocean air masses. The inversion layer was destroyed by the easterly winds and the surface pollutants and warm air masses were then lifted to the upper levels of the atmosphere, where they re-established a multi-layer inversion. This region of inversion was strengthened by the southerly winds, increasing the severity of pollution. A vortex was produced by southerly winds that led to the convergence of air along the Taihang Mountains. Pollutants were transported from southern-central Hebei Province to Beijing in the boundary layer. Warm advection associated with the southerly winds intensified the inversion produced by the easterly winds and a more stable boundary layer was formed. The layer with high PM2.5 concentration became dee-per with persistent southerly winds of a certain depth. The polluted air masses then rose over the northern Taihang Mountains to the northern mountainous regions of Hebei Province.

  17. Effects of Cross-axis Wind Jet Events on the Northern Red Sea Circulation

    NASA Astrophysics Data System (ADS)

    Menezes, V. V.; Bower, A. S.; Farrar, J. T.

    2016-12-01

    Despite its small size, the Red Sea has a complex circulation. There are boundary currents in both sides of the basin, a meridional overturning circulation, water mass formation in the northern part and an intense eddy activity. This complex pattern is driven by strong air-sea interactions. The Red Sea has one of the largest evaporation rates of the global oceans (2m/yr), an intricate and seasonally varying wind pattern. The winds blowing over the Northern Rea Sea (NRS, north of 20N) are predominantly southeastward along the main axis all year round; in the southern, they reverse seasonally due to the monsoonal regime. Although the winds are mostly along-axis in the NRS, several works have shown that sometimes during the boreal winter, the winds blow in a cross-axis direction. The westward winds from Saudi Arabia bring relatively cold dry air and dust from the desert, enhancing heat loss and evaporation off the Red Sea. These wind-jet events may contribute to increased eddy activity and are a trigger for water mass formation. Despite that, our knowledge about the cross-axis winds and their effect on NRS circulation is still incipient. In the present work we analyze 10-years of Quikscat scatterometer winds and altimetric sea surface height anomalies, together with 2-yrs of mooring data, to characterize the westward wind jet events and their impacts on the circulation. We show that the cross-axis winds are, indeed, an important component of the wind regime, explaining 11% of wind variability of the NRS (well-described by a 2nd EOF mode). The westward events occur predominantly in the winter, preferentially in January (about 15 events in 10-years) and have a mean duration of 4-5 days, with a maximum of 12 days (north of 22N). There are around 6 events per year, but in 2002-2003 and 2007-2008, twice more events were detected. The westward wind events are found to strongly modify the wind stress curl, causing a distinct positive/negative curl pattern along the main axis. This pattern enhances the eddy activity and impacts the NRS circulation.

  18. Implement a Sub-grid Turbulent Orographic Form Drag in WRF and its application to Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Yang, K.; Wang, Y.; Huang, B.

    2017-12-01

    Sub-grid-scale orographic variation exerts turbulent form drag on atmospheric flows. The Weather Research and Forecasting model (WRF) includes a turbulent orographic form drag (TOFD) scheme that adds the stress to the surface layer. In this study, another TOFD scheme has been incorporated in WRF3.7, which exerts an exponentially decaying drag on each model layer. To investigate the effect of the new scheme, WRF with the old and new one was used to simulate the climate over the complex terrain of the Tibetan Plateau. The two schemes were evaluated in terms of the direct impact (on wind) and the indirect impact (on air temperature, surface pressure and precipitation). Both in winter and summer, the new TOFD scheme reduces the mean bias in the surface wind, and clearly reduces the root mean square error (RMSEs) in comparisons with the station measurements (Figure 1). Meanwhile, the 2-m air temperature and surface pressure is also improved (Figure 2) due to the more warm air northward transport across south boundary of TP in winter. The 2-m air temperature is hardly improved in summer but the precipitation improvement is more obvious, with reduced mean bias and RMSEs. This is due to the weakening of water vapor flux (at low-level flow with the new scheme) crossing the Himalayan Mountains from South Asia.

  19. Meridional overturning circulations driven by surface wind and buoyancy forcing

    NASA Astrophysics Data System (ADS)

    Bell, M. J.

    2016-02-01

    A conceptual picture of the Meridional Overturning Circulation (MOC) is developed using 2- and 3-layer models governed by the planetary geostrophic equations and simple global geometries. The picture has four main elements. First cold water driven to the surface in the South Atlantic north of Drake passage by Ekman upwelling is transformed into warmer water by heat input at the surface from the atmosphere. Second the model's boundary conditions constrain the depths of the isopycnal layers to be almost flat along the eastern boundaries of the ocean. This results in, third, warm water reaching high latitudes in the northern hemisphere where it is transformed into cold water by surface heat loss. Finally it is assumed that western boundary currents are able to close the circulations. The results from a set of numerical experiments for the upwelling limb in the Southern Hemisphere are summarised in a simple conceptual schematic. Analytical solutions have been found for the down-welling limb assuming the wind stress in the Northern Hemisphere is negligible. Expressions for the depth of the isopycnal interface on the eastern boundary and the strength of the MOC obtained by combining these solutions in a 2-layer model are generally consistent with and complementary to those obtained by Gnandesikan (1999). The MOC in two basins one of which has a strong halocline is also discussed.

  20. Evaluation of cold workplaces: an overview of standards for assessment of cold stress.

    PubMed

    Holmér, Ingvar

    2009-07-01

    Many persons world wide are exposed to cold environments, either indoors for example in cold stores, or outdoors. Cold is a hazard to health and may affect safety and performance of work. Basis for the creation of safe and optimal working conditions may be obtained by the application of relevant international standards. ISO 11079 presents a method for evaluation of whole body heat balance. On the basis of climate and activity a required clothing insulation (IREQ) for heat balance is determined. For clothing with known insulation value an exposure time limited is calculated. ISO 11079 also includes criteria for assessment of local cooling. Finger temperatures should not be below 24 degrees C during prolonged exposures or 15 degrees C occasionally. Wind chill temperature indicates the risk of bare skin to freeze for combinations of wind and low temperatures. Special protection of airways is recommended at temperatures below -20 degrees C, in particular during heavy work. Additional standards are available describing evaluation strategies, work place observation checklists and checklist for medical screening. Risks associated with contact with cold surfaces can be evaluated with ISO 13732. The strategy and principles for assessment and prevention of cold stress are reviewed in this paper.

  1. Maize transpiration in response to meteorological conditions

    NASA Astrophysics Data System (ADS)

    Klimešová, Jana; Stŕedová, Hana; Stŕeda, Tomáš

    2013-09-01

    Differences in transpiration of maize (Zea mays L.) plants in four soil moisture regimes were quantified in a pot experiment. The transpiration was measured by the "Stem Heat Balance" method. The dependence of transpiration on air temperature, air humidity, global solar radiation, soil moisture, wind speed and leaf surface temperature were quantified. Significant relationships among transpiration, global radiation and air temperature (in the first vegetation period in the drought non-stressed variant, r = 0.881**, r = 0.934**) were found. Conclusive dependence of transpiration on leaf temperature (r = 0.820**) and wind speed (r = 0.710**) was found. Transpiration was significantly influenced by soil moisture (r = 0.395**, r = 0.528**) under moderate and severe drought stress. The dependence of transpiration on meteorological factors decreased with increasing deficiency of water. Correlation between transpiration and plant dry matter weight (r = 0.997**), plant height (r = 0.973**) and weight of corn cob (r = 0.987**) was found. The results of instrumental measuring of field crops transpiration under diverse moisture conditions at a concurrent monitoring of the meteorological elements spectra are rather unique. These results will be utilized in the effort to make calculations of the evapotranspiration in computing models more accurate.

  2. Mean state dependence of ENSO diversity resulting from an intermediate coupled model

    NASA Astrophysics Data System (ADS)

    Xie, Ruihuang; Jin, Fei-Fei; Mu, Mu

    2016-04-01

    ENSO diversity is referred to the event-to-event differences in the amplitude, longitudinal location of maximum sea surface temperature (SST) anomalies and evolutional mechanisms, as manifested in both observation data and climate model simulations. Previous studies argued that westerly wind burst (WWB) has strong influence on ENSO diversity. Here, we bring evidences, from a modified intermediate complexity Zebiak-Cane (ZC) coupled model, to illustrate that the ENSO diversity is also determined by the mean states. Stabilities of the linearized ZC model reveal that the mean state with weak (strong) wind stress and deep (shallow) thermocline prefers ENSO variation in the equitorial eastern (central) Pacific with a four-year (two-year) period. Weak wind stress and deep thermocline make the thermocline (TH) feedback the dominant contribution to the growth of ENSO SST anomalies, whereas the opposite mean state favors the zonal advective (ZA) feedback. Different leading dynamical SST-controller makes ENSO display its diversity. In a mean state that resembles the recent climate in the tropical Pacific, the four-year and two-year ENSO variations coexist with similar growth rate. Even without WWB forcing, the nonlinear integration results with adjusted parameters in this special mean state also present at least two types of El Niño, in which the maximum warming rates are contributed by either TH or ZA feedback. The consistency between linear and nonlinear model results indicates that the ENSO diversity is dependent on the mean states.

  3. Effect of thermal stability/complex terrain on wind turbine model(s): a wind tunnel study to address complex atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Guala, M.; Hu, S. J.; Chamorro, L. P.

    2011-12-01

    Turbulent boundary layer measurements in both wind tunnel and in the near-neutral atmospheric surface layer revealed in the last decade the significant contribution of the large scales of motions to both turbulent kinetic energy and Reynolds stresses, for a wide range of Reynolds number. These scales are known to grow throughout the logarithmic layer and to extend several boundary layer heights in the streamwise direction. Potentially, they are a source of strong unsteadiness in the power output of wind turbines and in the aerodynamic loads of wind turbine blades. However, the large scales in realistic atmospheric conditions deserves further study, with well controlled boundary conditions. In the atmospheric wind tunnel of the St. Anthony Falls Laboratory, with a 16 m long test section and independently controlled incoming flow and floor temperatures, turbulent boundary layers in a range of stability conditions, from the stratified to the convective case, can be reproduced and monitored. Measurements of fluctuating temperature, streamwise and wall normal velocity components are simultaneously obtained by an ad hoc calibrated and customized triple-wire sensor. A wind turbine model with constant loading DC motor, constant tip speed ratio, and a rotor diameter of 0.128m is used to mimic a large full scale turbine in the atmospheric boundary layer. Measurements of the fluctuating voltage generated by the DC motor are compared with measurements of the blade's angular velocity by laser scanning, and eventually related to velocity measurements from the triple-wire sensor. This study preliminary explores the effect of weak stability and complex terrain (through a set of spanwise aligned topographic perturbations) on the large scales of the flow and on the fluctuations in the wind turbine(s) power output.

  4. Evaluation of reanalysis near-surface winds over northern Africa in Boreal summer

    NASA Astrophysics Data System (ADS)

    Engelstaedter, Sebastian; Washington, Richard

    2014-05-01

    The emission of dust from desert surfaces depends on the combined effects of surface properties such as surface roughness, soil moisture, soil texture and particle size (erodibility) and wind speed (erosivity). In order for dust cycle models to realistically simulate dust emissions for the right reasons, it is essential that erosivity and erodibility controlling factors are represented correctly. There has been a focus on improving dust emission schemes or input fields of soil distribution and texture even though it has been shown that the use of wind fields from different reanalysis datasets to drive the same model can result in significant differences in the dust emissions. Here we evaluate the representation of near-surface wind speed from three different reanalysis datasets (ERA-Interim, CFSR and MERRA) over the North African domain. Reanalysis 10m wind speeds are compared with observations from SYNOP and METAR reports available from the UK Meteorological Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Dataset. We compare 6-hourly observations of 10m wind speed between 1 January 1989 and 31 December 2009 from more the 500 surface stations with the corresponding reanalysis values. A station data based mean wind speed climatology for North Africa is presented. Overall, the representation of 10m winds is relatively poor in all three reanalysis datasets with stations in the northern parts of the Sahara still being better simulated (correlation coefficients ~ 0.5) than stations in the Sahel (correlation coefficients < 0.3) which points at the reanalyses not being able to realistically capture the Sahel dynamics systems. All three reanalyses have a systematic bias towards overestimating wind speed below 3-4 m/s and underestimating wind speed above 4 m/s. This bias becomes larger with increasing wind speed but is independent of the time of day. For instance, 14 m/s observed wind speeds are underestimated on average by 6 m/s in the ERA-Interim reanalysis. Given the cubic relationship between wind speed and dust emission this large underestimation is expected to significantly impact the simulation of dust emissions. A negative relationship between observed and ERA-Interim wind speed is found for winds above 14 m/s indicating that high wind speed generating processes are not well (if at all) represented in the model.

  5. Wind growth and wave breaking in higher-order spectral phase resolved wave models

    NASA Astrophysics Data System (ADS)

    Leighton, R.; Walker, D. T.

    2016-02-01

    Wind growth and wave breaking are a integral parts of the wave evolution. Higher-OrderSpectral models (HoS) describing the non-linear evolution require empirical models for these effects. In particular, the assimilation of phase-resolved remotesensing data will require the prediction and modeling of wave breaking events.The HoS formulation used in this effort is based on fully nonlinear model of O. Nwogu (2009). The model for wave growth due to wind is based on the early normal and tangential stress model of Munk (1947). The model for wave breaking contains two parts. The first part initiates the breaking events based on the local wave geometry and the second part is a model for the pressure field, which acting against the surface normal velocity extracts energy from the wave. The models are tuned to balance the wind energy input with the breaking wave losses and to be similarfield observations of breaking wave coverage. The initial wave field, based on a Pierson-Moskowitz spectrum for 10 meter wind speed of 5-15 m/s, defined over a region of up to approximate 2.5 km on a side with the simulation running for several hundreds of peak wave periods. Results will be presented describing the evolution of the wave field.Sponsored by Office of Naval Research, Code 322

  6. Influence of Transient Atmospheric Circulation on the Surface Heating of the Pacific Warm Pool

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chou, Shu-Hsien; Chan, Pui-King

    2003-01-01

    Analyses of data on clouds, winds, and surface heat fluxes show that the transient behavior of basin-wide large-scale circulation has a significant influence on the warm pool sea surface temperature (SST). Trade winds converge to regions of the highest SST in the equatorial western Pacific. These regions have the largest cloud cover and smallest wind speed. Both surface solar heating and evaporative cooling are weak. The reduced evaporative cooling due to weakened winds exceeds the reduced solar heating due to enhanced cloudiness. The result is a maximum surface heating in the strong convective and high SST regions. Data also show that the maximum surface heating in strong convective regions is interrupted by transient atmospheric and oceanic circulation. Due to the seasonal variation of the insolation at the top of the atmosphere, trade winds and clouds also experience seasonal variations. Regions of high SST and low-level convergence follow the Sun, where the surface heating is a maximum. As the Sun moves away from a convective region, the strong trade winds set in, and the evaporative cooling enhances, resulting in a net cooling of the surface. During an El Nino, the maximum SST and convective region shifts eastward from the maritime continent to the equatorial central Pacific. Following the eastward shift of the maximum SST, the region of maximum cloudiness and surface heating also shift eastward. As the atmospheric and oceanic circulation returns to normal situations, the trade winds increase and the surface heating decreases. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds is one of the major factors that modulate the SST distribution of the Pacific warm pool.

  7. Effect of stress on amorphous bent cores

    NASA Astrophysics Data System (ADS)

    Saito, Akihiko; Yamamoto, Ken-ichi; Kunimori, Osamu

    1992-07-01

    The effect of stress on bent amorphous cores with positive magnetostriction has been investigated. Tension has been applied to the ribbon while winding into the toroid to improve the magnetic properties of the core. The properties of the coercive force of the tension winding core due to applied tension have been made clear from the observation of the domain structure.

  8. Determination of tropical cyclone surface pressure and winds from satellite microwave data

    NASA Technical Reports Server (NTRS)

    Kidder, S. Q.

    1979-01-01

    An approach to the problem of deducing wind speed and pressure around tropical cyclones is presented. The technique, called the Surface Wind Inference from Microwave data (SWIM technique, uses satellites microwave sounder data to measure upper tropospheric temperature anomalies which may then be related to surface pressure anomalies through the hydrostatic and radiative transfer equations. Surface pressure gradients outside of the radius of maximum wind are estimated for the first time. Future instruments may be able to estimate central pressure with + or - 0/1 kPa accuracy.

  9. Synoptic forcing of wind relaxations at Pt. Conception, California

    NASA Astrophysics Data System (ADS)

    Fewings, Melanie R.; Washburn, Libe; Dorman, Clive E.; Gotschalk, Christopher; Lombardo, Kelly

    2016-08-01

    Over the California Current upwelling system in summer, the prevailing upwelling-favorable winds episodically weaken (relax) or reverse direction for a few days. Near Pt. Conception, California, the wind usually does not reverse, but wind relaxation allows poleward oceanic coastal flow with ecological consequences. To determine the offshore extent and synoptic forcing of these wind relaxations, we formed composite averages of wind stress from the QuikSCAT satellite and atmospheric pressure from the North American Regional Reanalysis (NARR) using 67 wind relaxations during summer 2000-2009. Wind relaxations at Pt. Conception are the third stage of an event sequence that repeatedly affects the west coast of North America in summer. First, 5-7 days before the wind weakens near Pt. Conception, the wind weakens or reverses off Oregon and northern California. Second, the upwelling-favorable wind intensifies along central California. Third, the wind relaxes at Pt. Conception, and the area of weakened winds extends poleward to northern California over 3-5 days. The NARR underestimates the wind stress within ˜200 km of coastal capes by a factor of 2. Wind relaxations at Pt. Conception are caused by offshore extension of the desert heat low. This synoptic forcing is related to event cycles that cause wind reversal as in Halliwell and Allen (1987) and Mass and Bond (1996), but includes weaker events. The wind relaxations extend ˜600 km offshore, similarly to the California-scale hydraulic expansion fan shaping the prevailing winds, and ˜1000 km alongshore, limited by an opposing pressure gradient force at Cape Mendocino.

  10. Floating marine debris surface drift: convergence and accumulation toward the South Pacific subtropical gyre.

    PubMed

    Martinez, Elodie; Maamaatuaiahutapu, Keitapu; Taillandier, Vincent

    2009-09-01

    Whatever its origin is, a floating particle at the sea surface is advected by ocean currents. Surface currents could be derived from in situ observations or combined with satellite data. For a better resolution in time and space, we use satellite-derived sea-surface height and wind stress fields with a 1/3 degrees grid from 1993 to 2001 to determine the surface circulation of the South Pacific Ocean. Surface currents are then used to compute the Lagrangian trajectories of floating debris. Results show an accumulation of the debris in the eastern-centre region of the South Pacific subtropical gyre ([120 degrees W; 80 degrees W]-[20 degrees S; 40 degrees S]), resulting from a three-step process: in the first two years, mostly forced by Ekman drift, the debris drift towards the tropical convergence zone ( approximately 30 degrees S). Then they are advected eastward mostly forced by geostrophic currents. They finally reach the eastern-centre region of the South Pacific subtropical gyre from where they could not escape.

  11. CYGNSS Surface Wind Observations and Surface Flux Estimates within Low-Latitude Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Crespo, J.; Posselt, D. J.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS), launched in December 2016, aims to improve estimates of surface wind speeds over the tropical oceans. While CYGNSS's core mission is to provide better estimates of surface winds within the core of tropical cyclones, previous research has shown that the constellation, with its orbital inclination of 35°, also has the ability to observe numerous extratropical cyclones that form in the lower latitudes. Along with its high spatial and temporal resolution, CYGNSS can provide new insights into how extratropical cyclones develop and evolve, especially in the presence of thick clouds and precipitation. We will demonstrate this by presenting case studies of multiple extratropical cyclones observed by CYGNSS early on in its mission in both Northern and Southern Hemispheres. By using the improved estimates of surface wind speeds from CYGNSS, we can obtain better estimates of surface latent and sensible heat fluxes within and around extratropical cyclones. Surface heat fluxes, driven by surface winds and strong vertical gradients of water vapor and temperature, play a key role in marine cyclogenesis as they increase instability within the boundary layer and may contribute to extreme marine cyclogenesis. In the past, it has been difficult to estimate surface heat fluxes from space borne instruments, as these fluxes cannot be observed directly from space, and deficiencies in spatial coverage and attenuation from clouds and precipitation lead to inaccurate estimates of surface flux components, such as surface wind speeds. While CYGNSS only contributes estimates of surface wind speeds, we can combine this data with other reanalysis and satellite data to provide improved estimates of surface sensible and latent heat fluxes within and around extratropical cyclones and throughout the entire CYGNSS mission.

  12. Monitoring of wind load and response for cable-supported bridges in Hong Kong

    NASA Astrophysics Data System (ADS)

    Wong, Kai-yuen; Chan, Wai-Yee K.; Man, King-Leung

    2001-08-01

    Structural health monitoring for the three cable-supported bridges located in the West of Hong Kong or the Tsing Ma Control Area has been carried out since the opening of these bridges to public traffic. The three cable-supported bridges are referred to as the Tsing Ma (suspension) Bridge, the Kap Shui Mun (cable-stayed) Bridge and the Ting Kau (cable-stayed) Bridge. The structural health monitoring works involved are classified as six monitoring categories, namely, wind load and response, temperature load and response, traffic load and response, geometrical configuration monitoring, strains and stresses/forces monitoring and global dynamic characteristics monitoring. As wind loads and responses had been a major concern in the design and construction stages, this paper therefore outlines the work of wind load and response monitoring on Tsing Ma, Kap Shui Mun and Ting Kau Bridges. The paper starts with a brief description of the sensory systems. The description includes the layout and performance requirements of sensory systems for wind load and responses monitoring. Typical results of wind load and response monitoring in graphical forms are then presented. These graphical forms include the plots of wind rose diagrams, wind incidences vs wind speeds, wind turbulence intensities, wind power spectra, gust wind factors, coefficient of terrain roughness, extreme wind analyses, deck deflections/rotations vs wind speeds, acceleration spectra, acceleration/displacement contours, and stress demand ratios. Finally conclusions on wind load and response monitoring on the three cable-supported bridges are drawn.

  13. Near-surface Salinity and Temperature Structure Observed with Dual-Sensor Drifters in the Subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Dong, Shenfu; Goni, Gustavo; Volkov, Denis; Lumpkin, Rick; Foltz, Gregory

    2017-04-01

    Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific Ocean with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of the differences. Measurements from these drifters indicate that, on average, water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths often occur when surface winds are weak. In addition to the expected surface freshening and cooling during rainfall events, surface salinification occurs under weak wind conditions when there is strong surface warming that enhances evaporation and upper ocean stratification. Further examination of the drifter measurements demonstrate that (i) the amount of surface freshening and vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 4 m/s. Its phase is consistent with diurnal changes in surface temperature-induced evaporation. Below a wind speed of 6 m/s, the amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. Wind speed also affects the phasing of the diurnal cycle of T5m with the time of maximum T5m increasing gradually with decreasing wind speed. Wind speed does not affect the phasing of the diurnal cycle of T0.2m. At 0.2 m and 5 m, the diurnal cycle of temperature also depends on surface solar radiation, with the amplitude and time of diurnal maximum increasing as solar radiation increases.

  14. Wind-driven currents in a shallow lake or sea

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Gedney, R. T.

    1971-01-01

    For shallow lakes and seas such as the great lakes (especially Lake Erie) where the depth is not much greater than the Ekman depth, the usual Ekman dynamics cannot be used to predict the wind driven currents. The necessary extension to include shallow bodies of water, given by Welander, leads to a partial differential equation for the surface displacement which in turn determines all other flow quantities. A technique for obtaining exact analytical solutions to Welander's equation for bodies of water with large class of bottom topographies which may or may not contain islands is given. It involves applying conformal mapping methods to an extension of Welander's equation into the complex plane. When the wind stress is constant (which is the usual assumption for lakes) the method leads to general solutions which hold for bodies of water of arbitrary shape (the shape appears in the solutions through a set of constants which are the coefficients in the Laurent expansion of a mapping of the particular lake geometry). The method is applied to an elliptically shaped lake and a circular lake containing an eccentrically located circular island.

  15. The influence of ENSO on an oceanic eddy pair in the South China Sea

    NASA Astrophysics Data System (ADS)

    Chu, Xiaoqing; Dong, Changming; Qi, Yiquan

    2017-03-01

    An eddy pair off the Vietnam coast is one of the most important features of the summertime South China Sea circulation. Its variability is of interest due to its profound impact on regional climate, ecosystems, biological processes, and fisheries. This study examines the influence of the El Niño-Southern Oscillation (ENSO), a basin-scale climatic mode, on the interannual variability of this regional eddy pair using satellite observational data and historical hydrographic measurements. Over the last three decades, the eddy pair strengthened in 1994 and 2002, and weakened in 2006, 2007, and 2008. It was absent in 1988, 1995, 1998, and 2010, coinciding with strong El Nino-to-La Nina transitions. Composite analyses showed that the strong transition events of ENSO led to radical changes in the summer monsoon, through the forcing of a unique sea surface temperature anomaly structure over the tropical Indo-Pacific basin. With weaker zonal wind, a more northward wind direction, and the disappearance of a pair of positive and negative wind stress curls, the eastward current jet turns northward along the Vietnam coast and the eddy pair disappears.

  16. Smart wing wind tunnel model design

    NASA Astrophysics Data System (ADS)

    Martin, Christopher A.; Jasmin, Larry; Flanagan, John S.; Appa, Kari; Kudva, Jayanth N.

    1997-05-01

    To verify the predicted benefits of the smart wing concept, two 16% scale wind tunnel models, one conventional and the other incorporating smart wing design features, were designed, fabricated and tested. Meticulous design of the two models was essential to: (1) ensure the required factor of safety of four for operation in the NASA Langley TDT wind tunnel, (2) efficiently integrate the smart actuation systems, (3) quantify the performance improvements, and (4) facilitate eventual scale-up to operational aircraft. Significant challenges were encountered in designing the attachment of the shape memory alloy control surfaces to the wing box, integration of the SMA torque tube in the wing structure, and development of control mechanisms to protect the model and the tunnel in the event of failure of the smart systems. In this paper, detailed design of the two models are presented. First, dynamic scaling of the models based on the geometry and structural details of the full- scale aircraft is presented. Next, results of the stress, divergence and flutter analyses are summarized. Finally some of the challenges of integrating the smart actuators with the model are highlighted.

  17. SPH Modelling of Sea-ice Pack Dynamics

    NASA Astrophysics Data System (ADS)

    Staroszczyk, Ryszard

    2017-12-01

    The paper is concerned with the problem of sea-ice pack motion and deformation under the action of wind and water currents. Differential equations describing the dynamics of ice, with its very distinct mateFfigrial responses in converging and diverging flows, express the mass and linear momentum balances on the horizontal plane (the free surface of the ocean). These equations are solved by the fully Lagrangian method of smoothed particle hydrodynamics (SPH). Assuming that the ice behaviour can be approximated by a non-linearly viscous rheology, the proposed SPH model has been used to simulate the evolution of a sea-ice pack driven by wind drag stresses. The results of numerical simulations illustrate the evolution of an ice pack, including variations in ice thickness and ice area fraction in space and time. The effects of different initial ice pack configurations and of different conditions assumed at the coast-ice interface are examined. In particular, the SPH model is applied to a pack flow driven by a vortex wind to demonstrate how well the Lagrangian formulation can capture large deformations and displacements of sea ice.

  18. Special Course on Cryogenic Technology for Wind Tunnel Testing,

    DTIC Science & Technology

    1985-07-01

    stresses in the wind tunnel model, say in the wing root, in relation to those in the aircraft in flight are factored by the two ratios, tunnel-to...interferen,’e. Whi le these conments are on the subject only of stresses , aeroelat ic ronsiderat ijns nay be een inore demanding in terms of model and...8217;ociatet with i:pure, stressed , a: orphoiis or microcrystalline structures. As it is difficult , if not i-taossi le, to, recornise these different

  19. An Isopycnic Coordinate Numerical Model of the Agulhas Current with Comparison to Observations

    DTIC Science & Technology

    1990-12-01

    Ocean. It is unique in that the African coast terminates before the current reaches the zero in the wind stress curl in the Indian Ocean basin. Thus...maximum of the stress curl have been approximately preserved from their data. The stress amplitude of 2.5 dyn cm - 2 has been scaled so as to support 50...the latitude of wind curl zero where exchange may occur between the two subtropical gyres, depending on the strength of the model Agulhas

  20. Incorporating Prognostic Marine Nitrogen Fixers and Related Bio-Physical Feedbacks in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Paulsen, H.; Ilyina, T.; Six, K. D.

    2016-02-01

    Marine nitrogen fixers play a fundamental role in the oceanic nitrogen and carbon cycles by providing a major source of `new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Furthermore, nitrogen fixers may regionally have a direct impact on ocean physics and hence the climate system as they form extensive surface mats which can increase light absorption and surface albedo and reduce the momentum input by wind. Resulting alterations in temperature and stratification may feed back on nitrogen fixers' growth itself.We incorporate nitrogen fixers as a prognostic 3D tracer in the ocean biogeochemical component (HAMOCC) of the Max Planck Institute Earth system model and assess for the first time the impact of related bio-physical feedbacks on biogeochemistry and the climate system.The model successfully reproduces recent estimates of global nitrogen fixation rates, as well as the observed distribution of nitrogen fixers, covering large parts of the tropical and subtropical oceans. First results indicate that including bio-physical feedbacks has considerable effects on the upper ocean physics in this region. Light absorption by nitrogen fixers leads locally to surface heating, subsurface cooling, and mixed layer depth shoaling in the subtropical gyres. As a result, equatorial upwelling is increased, leading to surface cooling at the equator. This signal is damped by the effect of the reduced wind stress due to the presence of cyanobacteria mats, which causes a reduction in the wind-driven circulation, and hence a reduction in equatorial upwelling. The increase in surface albedo due to nitrogen fixers has only inconsiderable effects. The response of nitrogen fixers' growth to the alterations in temperature and stratification varies regionally. Simulations with the fully coupled Earth system model are in progress to assess the implications of the biologically induced changes in upper ocean physics for the global climate system.

  1. Near-Surface Wind Predictions in Complex Terrain with a CFD Approach Optimized for Atmospheric Boundary Layer Flows

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, N. S.; Forthofer, J.; Butler, B.; Shannon, K.

    2014-12-01

    Near-surface wind predictions are important for a number of applications, including transport and dispersion, wind energy forecasting, and wildfire behavior. Researchers and forecasters would benefit from a wind model that could be readily applied to complex terrain for use in these various disciplines. Unfortunately, near-surface winds in complex terrain are not handled well by traditional modeling approaches. Numerical weather prediction models employ coarse horizontal resolutions which do not adequately resolve sub-grid terrain features important to the surface flow. Computational fluid dynamics (CFD) models are increasingly being applied to simulate atmospheric boundary layer (ABL) flows, especially in wind energy applications; however, the standard functionality provided in commercial CFD models is not suitable for ABL flows. Appropriate CFD modeling in the ABL requires modification of empirically-derived wall function parameters and boundary conditions to avoid erroneous streamwise gradients due to inconsistences between inlet profiles and specified boundary conditions. This work presents a new version of a near-surface wind model for complex terrain called WindNinja. The new version of WindNinja offers two options for flow simulations: 1) the native, fast-running mass-consistent method available in previous model versions and 2) a CFD approach based on the OpenFOAM modeling framework and optimized for ABL flows. The model is described and evaluations of predictions with surface wind data collected from two recent field campaigns in complex terrain are presented. A comparison of predictions from the native mass-consistent method and the new CFD method is also provided.

  2. Global climate change and intensification of coastal ocean upwelling.

    PubMed

    Bakun, A

    1990-01-12

    A mechanism exists whereby global greenhouse warning could, by intensifying the alongshore wind stress on the ocean surface, lead to acceleration of coastal upwelling. Evidence from several different regions suggests that the major coastal upwelling systems of the world have been growing in upwelling intensity as greenhouse gases have accumulated in the earth's atmosphere. Thus the cool foggy summer conditions that typify the coastlands of northern California and other similar upwelling regions might, under global warming, become even more pronounced. Effects of enhanced upwelling on the marine ecosystem are uncertain but potentially dramatic.

  3. Seasonal prevailing surface winds in Northern Serbia

    NASA Astrophysics Data System (ADS)

    Tošić, Ivana; Gavrilov, Milivoj B.; Marković, Slobodan B.; Ruman, Albert; Putniković, Suzana

    2018-02-01

    Seasonal prevailing surface winds are analyzed in the territory of Northern Serbia, using observational data from 12 meteorological stations over several decades. In accordance with the general definition of prevailing wind, two special definitions of this term are used. The seasonal wind roses in 16 directions at each station are analyzed. This study shows that the prevailing winds in Northern Serbia have northwestern and southeastern directions. Circulation weather types over Serbia are presented in order to determine the connections between the synoptic circulations and prevailing surface winds. Three controlling pressure centers, i.e., the Mediterranean cyclone, Siberian high, and the Azores anticyclone, appear as the most important large-scale factors that influence the creation of the prevailing winds over Northern Serbia. Beside the synoptic cause of the prevailing winds, it is noted that the orography of the eastern Balkans has a major influence on the winds from the second quadrant. It was found that the frequencies of circulation weather types are in agreement with those of the prevailing winds over Northern Serbia.

  4. Wave effects on ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.

    1993-01-01

    The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.

  5. Examination of the wind speed limit function in the Rothermel surface fire spread model

    Treesearch

    Patricia L. Andrews; Miguel G. Cruz; Richard C. Rothermel

    2013-01-01

    The Rothermel surface fire spread model includes a wind speed limit, above which predicted rate of spread is constant. Complete derivation of the wind limit as a function of reaction intensity is given, along with an alternate result based on a changed assumption. Evidence indicates that both the original and the revised wind limits are too restrictive. Wind limit is...

  6. Measurements of wind-waves under transient wind conditions.

    NASA Astrophysics Data System (ADS)

    Shemer, Lev; Zavadsky, Andrey

    2015-11-01

    Wind forcing in nature is always unsteady, resulting in a complicated evolution pattern that involves numerous time and space scales. In the present work, wind waves in a laboratory wind-wave flume are studied under unsteady forcing`. The variation of the surface elevation is measured by capacitance wave gauges, while the components of the instantaneous surface slope in across-wind and along-wind directions are determined by a regular or scanning laser slope gauge. The locations of the wave gauge and of the laser slope gauge are separated by few centimeters in across-wind direction. Instantaneous wind velocity was recorded simultaneously using Pitot tube. Measurements are performed at a number of fetches and for different patterns of wind velocity variation. For each case, at least 100 independent realizations were recorded for a given wind velocity variation pattern. The accumulated data sets allow calculating ensemble-averaged values of the measured parameters. Significant differences between the evolution patterns of the surface elevation and of the slope components were found. Wavelet analysis was applied to determine dominant wave frequency of the surface elevation and of the slope variation at each instant. Corresponding ensemble-averaged values acquired by different sensors were computed and compared. Analysis of the measured ensemble-averaged quantities at different fetches makes it possible to identify different stages in the wind-wave evolution and to estimate the appropriate time and length scales.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weiguo; Shaw, William J.

    This paper compares the wind field from a diagnostic model (CALMET) over complex terrain in the Phoenix region in the USA with observations that are gridded by a state-of-the-art Four-Dimensional Data Assimilation (FDDA) system. The wind difference between the CALMET and FDDA wind fields is larger at night than in the day. The magnitude of the wind difference can be smaller than 5% of the mean wind speed at low levels in areas with dense observational stations, while it can be larger than 80% in areas without observational stations or at high altitudes. The vector-mean wind direction difference over themore » domain is 15 deg on the surface level and 25 deg between 10 and 1500 m. To evaluate the effects of the wind difference on dispersion calculations, dispersion of a hypothetical passive tracer released from surface point sources is simulated by the second-order closure integrated puff (SCIPUFF) model driven by the CALMET and FDDA wind fields, respectively. Differences in the two simulated tracer concentration fields increase with time due to accumulation of effects of the wind differences both near the surface and at higher altitudes. Even for the release in the area with the densest distribution of surface stations, the relative difference in the peak surface concentration from CALMET-SCIPUFF and from FDDA-SCIPUFF is less than 10% only within 0.5 hr after the release in the afternoon, and increases to 70% at 1.5 hr; this is because of large differences in wind above the surface. For the release in the area with few stations, the difference can be larger than 100% or even larger after 1.5 hr from the release. To improve dispersion simulations driven by the CALMET wind in the region, observations at upper-air stations are needed and the current surface observation network needs to be reorganized or more stations are needed to account for the influence of terrain.« less

  8. Wind Streaks on Venus: Clues to Atmospheric Circulation

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Schubert, Gerald; Limonadi, Daniel; Bender, Kelly C.; Newman, William I.; Thomas, Peggy E.; Weitz, Catherine M.; Wall, Stephen D.

    1994-01-01

    Magellan images reveal surface features on Venus attributed to wind processes. Sand dunes, wind-sculpted hills, and more than 5830 wind streaks have been identified. The streaks serve as local "wind vanes," representing wind direction at the time of streak formation and allowing the first global mapping of near-surface wind patterns on Venus. Wind streaks are oriented both toward the equator and toward the west. When streaks associated with local transient events, such as impact cratering, are deleted, the westward component is mostly lost but the equatorward component remains. This pattern is consistent with a Hadley circulation of the lower atmosphere.

  9. WNDCOM: estimating surface winds in mountainous terrain

    Treesearch

    Bill C. Ryan

    1983-01-01

    WNDCOM is a mathematical model for estimating surface winds in mountainous terrain. By following the procedures described, the sheltering and diverting effect of terrain, the individual components of the windflow, and the surface wind in remote mountainous areas can be estimated. Components include the contribution from the synoptic scale pressure gradient, the sea...

  10. Optimizing stellarator coil winding surfaces with Regcoil

    NASA Astrophysics Data System (ADS)

    Bader, Aaron; Landreman, Matt; Anderson, David; Hegna, Chris

    2017-10-01

    We show initial attempts at optimizing a coil winding surface using the Regcoil code [1] for selected quasi helically symmetric equilibria. We implement a generic optimization scheme which allows for variation of the winding surface to allow for improved diagnostic access and allow for flexible divertor solutions. Regcoil and similar coil-solving algorithms require a user-input winding surface, on which the coils lie. Simple winding surfaces created by uniformly expanding the plasma boundary may not be ideal. Engineering constraints on reactor design require a coil-plasma separation sufficient for the introduction of neutron shielding and a tritium generating blanket. This distance can be the limiting factor in determining reactor size. Furthermore, expanding coils in other regions, where possible, can be useful for diagnostic and maintenance access along with providing sufficient room for a divertor. We minimize a target function that includes as constraints, the minimum coil-plasma distance, the winding surface volume, and the normal magnetic field on the plasma boundary. Results are presented for two quasi-symmetric equilibria at different aspect ratios. Work supported by the US DOE under Grant DE-FG02-93ER54222.

  11. Deviations of Atmospheric Coastal Flow from the Open-channel Hydraulics Analogy

    NASA Astrophysics Data System (ADS)

    Rahn, D. A.; Parish, T. R.; Juliano, T. W.

    2017-12-01

    Low-level atmospheric flow along the coast of California bears resemblance to open-channel engineering applications referred to as hydraulic flow. During the warm season, strong equatorward wind is common near the surface. A marked temperature inversion separates the cool, moist marine air and the warm, dry free troposphere aloft. The low-level flow is bounded laterally by the coastal topography. Given the high wind speed in the shallow marine layer, the flow is often supercritical (Fr > 1). Features resembling oblique compression jumps and expansion fans occur near concave and convex bends in the coastline and impact wind energy production, wind stress on the ocean surface, and propagation of electromagnetic waves by modifying the vertical refractivity gradient. An aircraft collected fine-scale measurements offshore of southern California to test how well the observed features conform to the single-layer hydraulic approximation. Although the open-channel framework captures major features of the flow as indicated by prior work, the detailed measurements reveal when the analogy breaks down. The assumption of a passive upper layer can be violated due to mesoscale pressure gradients aloft and lee troughing associated with offshore flow, which can enhance the thinning of the marine layer associated with the expansion fan. The sharp interface between layers can be eroded when Ri becomes low, Kelvin-Helmholtz instability develops, and the structure of the lower atmosphere is drastically altered. This is poorly simulated in operational weather forecast models due to their relatively coarse grid spacing. The layer associated with the expansion fan rarely keeps its identity into the Santa Barbara Channel. An increase of surface heat flux and vertical mixing as the flow moves over warmer sea surface temperatures in the channel rapidly erodes the layer. Only one flight captured a hydraulic jump between the supercritical flow in the expansion fan and the subcritical flow downstream, but its features correspond well to predicted values. The lack of hydraulic jumps on other days is likely due to the loss of layer identity before the jump can be realized.

  12. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004)

    NASA Astrophysics Data System (ADS)

    Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg

    2009-12-01

    Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.

  13. Computing factors of safety against wind-induced tree stem damage.

    PubMed

    Niklas, K J

    2000-04-01

    The drag forces, bending moments and stresses acting on stems differing in size and location within the mechanical infrastructure of a large wild cherry (Prunus serotina Ehrh.) tree are estimated and used to calculate the factor of safety against wind-induced mechanical failure based on the mean breaking stress of intact stems and samples of wood drawn from this tree. The drag forces acting on stems are calculated based on stem projected areas and field measurements of wind speed taken within the canopy and along the length of the trunk. The bending moments and stresses resulting from these forces are shown to increase basipetally in a nearly log-log linear fashion toward the base of the tree. The factor of safety, however, varies in a sinusoidal manner such that the most distal stems have the highest factors of safety, whereas stems of intermediate location and portions of the trunk near ground level have equivalent and much lower factors of safety. This pattern of variation is interpreted to indicate that, as a course of normal growth and development, trees similar to the one examined in this study maintain a cadre of stems prone to wind-induced mechanical damage that can reduce the probability of catastrophic tree failure by reducing the drag forces acting on older portions of the tree. Comparisons among real and hypothetical stems with different taper experiencing different vertical wind speed profiles show that geometrically self-similar stems have larger factors of safety than stems tapering according to elastic or stress self-similarity, and that safety factors are less significantly influenced by the 'geometry' of the wind-profile.

  14. Human cold stress of strong local-wind "Hijikawa-arashi" in Japan, based on the UTCI index and thermo-physiological responses.

    PubMed

    Ohashi, Yukitaka; Katsuta, Takumi; Tani, Haruka; Okabayashi, Taiki; Miyahara, Satoshi; Miyashita, Ryoji

    2018-03-30

    We investigated the cold stress caused by a strong local wind called "Hijikawa-arashi," through in situ vital measurements and the Universal Thermal Climate Index (UTCI). This wind is a very interesting winter phenomenon, localized in an area within 1 km of the seashore in Ozu City, Ehime Prefecture in Japan. When a strong Hijikawa-arashi (HA) occurred at 14-15 m s -1 , the UTCI decreased to - 30 °C along the bridge where commuting residents are the most exposed to strong and cold winds. On the bridge, most participants in our experiment felt "very cold" or "extremely cold." The UTCI of HA can be predicted from a multiple regression equation using wind speed and air temperature. The cold HA wind is also harmful to human thermo-physiological responses. It leads to higher blood pressure and increased heart rate, both of which act as cardiovascular stress triggers. Increases of 6-10 mmHg and 3-6 bpm for every 10 °C reduction in UTCI were seen on all observational days, including HA and non-HA days. In fact, the participants' body skin temperatures decreased by approximately 1.2 to 1.7 °C for every 10 °C reduction in UTCI. Thus, the UTCI variation due to the HA outbreak corresponded well with the cold sensation and thermo-physiological responses in humans. This result suggests that daily UTCI monitoring enables the prediction of thermo-physiological responses to the HA cold stress.

  15. Parallel Computation of Ocean-Atmosphere-Wave Coupled Storm Surge Model

    NASA Astrophysics Data System (ADS)

    Kim, K.; Yamashita, T.

    2003-12-01

    Ocean-atmosphere interactions are very important in the formation and development of tropical storms. These interactions are dominant in exchanging heat, momentum, and moisture fluxes. Heat flux is usually computed using a bulk equation. In this equation air-sea interface supplies heat energy to the atmosphere and to the storm. Dynamical interaction is most often one way in which it is the atmosphere that drives the ocean. The winds transfer momentum to both ocean surface waves and ocean current. The wind wave makes an important role in the exchange of the quantities of motion, heat and a substance between the atmosphere and the ocean. Storm surges can be considered as the phenomena of mean sea-level changes, which are the result of the frictional stresses of strong winds blowing toward the land and causing the set level and the low atmospheric pressure at the centre of the cyclone can additionally raise the sea level. In addition to the rise in water level itself, another wave factor must be considered. A rise of mean sea level due to white-cap wave dissipation should be considered. In bounded bodies of water, such as small seas, wind driven sea level set up is much serious than inverted barometer effects, in which the effects of wind waves on wind-driven current play an important role. It is necessary to develop the coupled system of the full spectral third-generation wind-wave model (WAM or WAVEWATCH III), the meso-scale atmosphere model (MM5) and the coastal ocean model (POM) for simulating these physical interactions. As the component of coupled system is so heavy for personal usage, the parallel computing system should be developed. In this study, first, we developed the coupling system of the atmosphere model, ocean wave model and the coastal ocean model, in the Beowulf System, for the simulation of the storm surge. It was applied to the storm surge simulation caused by Typhoon Bart (T9918) in the Yatsushiro Sea. The atmosphere model and the ocean model have been made the parallel codes by SPMD methods. The wave-current interface model was developed by defining the wave breaking stresses. And we developed the coupling program to collect and distribute the exchanging data with the parallel system. Every models and coupler are executed at same time, and they calculate own jobs and pass data with organic system. MPMD method programming was performed to couple the models. The coupler and each models united by the separated group, and they calculated by the group unit. Also they passed message when exchanging data by global unit. The data are exchanged every 60-second model time that is the least common multiple time of the atmosphere model, the wave model and the ocean model. The model was applied to the storm surge simulation in the Yatsushiro Sea, in which we could not simulated the observed maximum surge height with the numerical model that did not include the wave breaking stress. It is confirmed that the simulation which includes the wave breaking stress effects can produce the observed maximum height, 450 cm, at Matsuai.

  16. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  17. Wind Streaks on Earth; Exploration and Interpretation

    NASA Astrophysics Data System (ADS)

    Cohen-Zada, Aviv Lee; Blumberg, Dan G.; Maman, Shimrit

    2015-04-01

    Wind streaks, one of the most common aeolian features on planetary surfaces, are observable on the surface of the planets Earth, Mars and Venus. Due to their reflectance properties, wind streaks are distinguishable from their surroundings, and they have thus been widely studied by remote sensing since the early 1970s, particularly on Mars. In imagery, these streaks are interpreted as the presence - or lack thereof - of small loose particles on the surface deposited or eroded by wind. The existence of wind streaks serves as evidence for past or present active aeolian processes. Therefore, wind streaks are thought to represent integrative climate processes. As opposed to the comprehensive and global studies of wind streaks on Mars and Venus, wind streaks on Earth are understudied and poorly investigated, both geomorphologically and by remote sensing. The aim of this study is, thus, to fill the knowledge gap about the wind streaks on Earth by: generating a global map of Earth wind streaks from modern high-resolution remotely sensed imagery; incorporating the streaks in a geographic information system (GIS); and overlaying the GIS layers with boundary layer wind data from general circulation models (GCMs) and data from the ECMWF Reanalysis Interim project. The study defines wind streaks (and thereby distinguishes them from other aeolian features) based not only on their appearance in imagery but more importantly on their surface appearance. This effort is complemented by a focused field investigation to study wind streaks on the ground and from a variety of remotely sensed images (both optical and radar). In this way, we provide a better definition of the physical and geomorphic characteristics of wind streaks and acquire a deeper knowledge of terrestrial wind streaks as a means to better understand global and planetary climate and climate change. In a preliminary study, we detected and mapped over 2,900 wind streaks in the desert regions of Earth distributed in approximately 500 sites. Most terrestrial wind streaks are formed on a relatively young geological surface and are concentrated along the equator (± 30°). They are categorized by the combination of their planform and reflectance; with linear-bright and dark are the most common. A site-specific examination of remote-sensing effects on wind streaks identification has been conducted. The results thus far, indicate that in images with varying spatial and spectral specifications some wind streaks are actually composed of other aeolian bedforms, especially dunes. Specific regions of the Earth were then compared qualitatively to surface wind data extracted from a general circulation model. Understanding the mechanism and spatial and temporal distribution of wind streak formation is important not only for understanding surface modifications in the geomorphological context but also for shedding light on past and present climatic processes and atmospheric circulation on Earth. This study yields an explanation for wind streaks as a geomorphological feature. Moreover, it is in this planet-wide geomorphological research ability to lay down the foundations for comparative planetary research.

  18. Wind and Rock

    NASA Image and Video Library

    2011-03-09

    This image from NASA Mars Odyssey is located west of Zephyria Planum. Surfaces in this region have undergone extensive erosion by the wind. Wind is one of the most active processes of erosion on the surface of Mars today.

  19. Response of the Kuroshio Extension path state to near-term global warming in CMIP5 experiments with MIROC4h

    NASA Astrophysics Data System (ADS)

    Li, Rui; Jing, Zhao; Chen, Zhaohui; Wu, Lixin

    2017-04-01

    In this study, responses of the Kuroshio Extension (KE) path state to near-term (2006-2035) global warming are investigated using a Kuroshio-resolving atmosphere-ocean coupled model. Under the representative concentration pathway 4.5 (RCP4.5) forcing, the KE system is intensified and its path state tends to move northward and becomes more stable. It is suggested that the local anticyclonic wind stress anomalies in the KE region favor the spin-up of the southern recirculation gyre, and the remote effect induced by the anticyclonic wind stress anomalies over the central and eastern midlatitude North Pacific also contributes to the stabilization of the KE system substantially. The dominant role of wind stress forcing on KE variability under near-term global warming is further confirmed by adopting a linear 1.5 layer reduced-gravity model forced by wind stress curl field from the present climate model. It is also found that the main contributing longitudinal band for KE index (KEI) moves westward in response to the warmed climate. This results from the northwestward expansion of the large-scale sea level pressure (SLP) field.

  20. Lagrangian drifter design for the determination of surface currents by remote sensing. [for pollution trajectory determination in estuaries

    NASA Technical Reports Server (NTRS)

    Gordon, H. H.; Munday, J. C., Jr.

    1977-01-01

    In estuaries, the interaction of wind, tidal current, and mixing of fresh and saline water produces a variable depth profile of current, with foam lines and convergence zones between water types. Careful measurement of surface currents via Lagrangian drifters requires a drifter design appropriate to both the depth of current to be measured and the tide and wind conditions of interest. The use of remote sensing to track drifters contributes additional constraints on drifter design. Several designs of biodegradable drifters which emit uranine dye plumes, resolvable in aerial imagery to 1:60,000 scale, were tested for wind drag in field conditions against data from calibrated current meters. A 20 cm-vaned wooden drifter and a window shade drifter set to 1.5 m depth had negligible wind drag in winds to 8 m/sec. Prediction of oil slick trajectories using surface current data and a wind factor should be approached cautiously, as surface current data may be wind-contaminated, while the usual 3.5% wind factor is appropriate only for currents measured at depth.

Top