Sample records for surface-associated plasminogen binding

  1. Subunits of the Pyruvate Dehydrogenase Cluster of Mycoplasma pneumoniae Are Surface-Displayed Proteins that Bind and Activate Human Plasminogen

    PubMed Central

    Gründel, Anne; Friedrich, Kathleen; Pfeiffer, Melanie; Jacobs, Enno; Dumke, Roger

    2015-01-01

    The dual role of glycolytic enzymes in cytosol-located metabolic processes and in cell surface-mediated functions with an influence on virulence is described for various micro-organisms. Cell wall-less bacteria of the class Mollicutes including the common human pathogen Mycoplasma pneumoniae possess a reduced genome limiting the repertoire of virulence factors and metabolic pathways. After the initial contact of bacteria with cells of the respiratory epithelium via a specialized complex of adhesins and release of cell-damaging factors, surface-displayed glycolytic enzymes may facilitate the further interaction between host and microbe. In this study, we described detection of the four subunits of pyruvate dehydrogenase complex (PDHA-D) among the cytosolic and membrane-associated proteins of M. pneumoniae. Subunits of PDH were cloned, expressed and purified to produce specific polyclonal guinea pig antisera. Using colony blotting, fractionation of total proteins and immunofluorescence experiments, the surface localization of PDHA-C was demonstrated. All recombinant PDH subunits are able to bind to HeLa cells and human plasminogen. These interactions can be specifically blocked by the corresponding polyclonal antisera. In addition, an influence of ionic interactions on PDHC-binding to plasminogen as well as of lysine residues on the association of PDHA-D with plasminogen was confirmed. The PDHB subunit was shown to activate plasminogen and the PDHB-plasminogen complex induces degradation of human fibrinogen. Hence, our data indicate that the surface-associated PDH subunits might play a role in the pathogenesis of M. pneumoniae infections by interaction with human plasminogen. PMID:25978044

  2. Plasminogen associates with phosphatidylserine-exposing platelets and contributes to thrombus lysis under flow

    PubMed Central

    Whyte, Claire S.; Swieringa, Frauke; Mastenbroek, Tom G.; Lionikiene, Ausra S.; Lancé, Marcus D.; van der Meijden, Paola E. J.; Heemskerk, Johan W. M.

    2015-01-01

    The interaction of plasminogen with platelets and their localization during thrombus formation and fibrinolysis under flow are not defined. Using a novel model of whole blood thrombi, formed under flow, we examine dose-dependent fibrinolysis using fluorescence microscopy. Fibrinolysis was dependent upon flow and the balance between fibrin formation and plasminogen activation, with tissue plasminogen activator-mediated lysis being more efficient than urokinase plasminogen activator-mediated lysis. Fluorescently labeled plasminogen radiates from platelet aggregates at the base of thrombi, primarily in association with fibrin. Hirudin attenuates, but does not abolish plasminogen binding, denoting the importance of fibrin. Flow cytometry revealed that stimulation of platelets with thrombin/convulxin significantly increased the plasminogen signal associated with phosphatidylserine (PS)-exposing platelets. Binding was attenuated by tirofiban and Gly-Pro-Arg-Pro amide, confirming a role for fibrin in amplifying plasminogen binding to PS-exposing platelets. Confocal microscopy revealed direct binding of plasminogen and fibrinogen to different platelet subpopulations. Binding of plasminogen and fibrinogen co-localized with PAC-1 in the center of spread platelets. In contrast, PS-exposing platelets were PAC-1 negative, and bound plasminogen and fibrinogen in a protruding “cap.” These data show that different subpopulations of platelets harbor plasminogen by diverse mechanisms and provide an essential scaffold for the accumulation of fibrinolytic proteins that mediate fibrinolysis under flow. PMID:25712989

  3. Interaction of Trypanosoma evansi with the plasminogen-plasmin system.

    PubMed

    Acosta, Héctor; Rondón-Mercado, Rocío; Avilán, Luisana; Concepción, Juan Luis

    2016-08-15

    Trypanosoma evansi is a widely-distributed haemoflagellated parasite of veterinary importance that infects a variety of mammals including horses, mules, camels, buffalos, cattle and deer. It is the causal agent of a trypanosomiasis known as Surra which produces epidemics of great economic importance in Africa, Asia and South America. The main pathology includes an enlarged spleen with hypertrophy of lymphoid follicles, congested lungs, neuronal degeneration and meningoencephalitis, where migration of the parasites from the blood to the tissues is essential. Most cells, including pathogenic cells, use diverse strategies for tissue invasion, such as the expression of surface receptors to bind plasminogen or plasmin. In this work, we show that T. evansi is able to bind plasminogen and plasmin on its surface. The analysis of this binding revealed a high affinity dissociation constant (Kd of 0.080±0.009μM) and 1×10(5) plasminogen binding sites per cell. Also a second population of receptors with a Kd of 0.255±0.070μM and 3.2×10(4) plasminogen binding sites per cell was determined. Several proteins with molecular masses between ∼18 and ∼70kDa are responsible for this binding. This parasite-plasminogen interaction may be important in the establishment of the infection in the vertebrate host, where the physiological concentration of available plasminogen is around 2μM. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Penicillin binding protein 3 of Staphylococcus aureus NCTC 8325-4 binds and activates human plasminogen.

    PubMed

    Kylväjä, Riikka; Ojalehto, Tuomas; Kainulainen, Veera; Virkola, Ritva; Westerlund-Wikström, Benita

    2016-08-04

    Staphylococcus aureus is a versatile pathogen expressing a number of virulence-associated adhesive molecules. In a previous study, we generated in a secretion-competent Escherichia coli strain a library of random FLAG-tag positive (FTP) polypeptides of S. aureus. To identify adhesive proteins and gain additional knowledge on putative virulence factors of S. aureus, we here screened the FTP library against human serum proteins. Staphylococcus aureus NCTC 8325-4, origin of the FTP library, adhered to immobilized plasminogen in vitro. In an enzyme-linked immunoassay a C-terminal part of penicillin binding protein 3 (PBP3), included in the FTP library, bound to immobilized plasminogen. We expressed and purified full-length PBP3 and its C-terminal fragments as recombinant proteins. In a time-resolved fluorometry-based assay the PBP3 polypeptides bound to immobilized plasminogen. The polypeptides enhanced formation of plasmin from plasminogen as analyzed by cleavage of a chromogenic plasmin substrate. The present findings, although preliminary, demonstrate reliably that S. aureus NCTC 8325-4 adheres to immobilized plasminogen in vitro and that the adhesion may be mediated by a C-terminal fragment of the PBP3 protein. The full length PBP3 and the penicillin binding C-terminal domain of PBP3 expressed as recombinant proteins bound plasminogen and activated plasminogen to plasmin. These phenomena were inhibited by the lysine analogue ε-aminocaproic acid suggesting that the binding is mediated by lysine residues. A detailed molecular description of surface molecules enhancing the virulence of S. aureus will aid in understanding of its pathogenicity and help in design of antibacterial drugs in the future.

  5. Analysis of a two-domain binding site for the urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein.

    PubMed

    Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C

    2001-07-01

    The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.

  6. Inhibition of cell surface mediated plasminogen activation by a monoclonal antibody against alpha-Enolase.

    PubMed

    López-Alemany, Roser; Longstaff, Colin; Hawley, Stephen; Mirshahi, Massoud; Fábregas, Pere; Jardí, Merce; Merton, Elizabeth; Miles, Lindsey A; Félez, Jordi

    2003-04-01

    Localization of plasmin activity on leukocyte surfaces plays a critical role in fibrinolysis as well as in pathological and physiological processes in which cells must degrade the extracellular matrix in order to migrate. The binding of plasminogen to leukocytic cell lines induces a 30- to 80-fold increase in the rate of plasminogen activation by tissue-type (tPA) and urokinase-type (uPA) plasminogen activators. In the present study we have examined the role of alpha-enolase in plasminogen activation on the cell surface. We produced and characterized a monoclonal antibody (MAb) 11G1 against purified alpha-enolase, which abrogated about 90% of cell-dependent plasminogen activation by either uPA or tPA on leukocytoid cell lines of different lineages: B-lymphocytic, T-lymphocytic, granulocytic, and monocytic cells. In addition, MAb 11G1 also blocked enhancement of plasmin formation by peripheral blood neutrophils and monocytes. In contrast, MAb 11G1 did not affect plasmin generation in the presence of fibrin, indicating that this antibody did not interact with fibrinolytic components in the absence of cells. These data suggest that, although leukocytic cells display several molecules that bind plasminogen, alpha-enolase is responsible for the majority of the promotion of plasminogen activation on the surfaces of leukocytic cells. Copyright 2003 Wiley-Liss, Inc.

  7. Role of the urokinase plasminogen activator receptor in mediating impaired efferocytosis of anti-SSA/Ro-bound apoptotic cardiocytes: Implications in the pathogenesis of congenital heart block.

    PubMed

    Briassouli, Paraskevi; Komissarova, Elena V; Clancy, Robert M; Buyon, Jill P

    2010-08-06

    Binding of maternal anti-Ro/La antibodies to cognate antigen expressed on apoptotic cardiocytes decreases clearance by healthy cardiocytes, which may contribute to the development of autoimmune associated congenital heart block and fatal cardiomyopathy. Given recent evidence implicating the urokinase plasminogen activator receptor (uPAR) as a "don't eat me" signal during efferocytosis, experiments addressed whether surface bound anti-Ro antibodies inhibit apoptotic cell removal via an effect on the expression/function of the urokinase-type plasminogen activator protease uPA/uPAR system. As assessed by flow cytometry and confocal microscopy, uPAR colocalizes and interacts with Ro60 on the surface of apoptotic human fetal cardiocytes. Blocking of uPAR enhances phagocytosis of apoptotic cardiocytes by healthy cardiocytes and reverses the anti-Ro60-dependent impaired clearance of apoptotic cardiocytes. Binding of anti-Ro60 antibodies to apoptotic cardiocytes results in increased uPAR expression, as well as enhanced uPA activity. The binding of anti-Ro60 did not alter other surface molecules involved in cell recognition (calreticulin, CD31, or CD47). These data suggest that increased uPAR expression and uPA activity induced by anti-Ro60 binding to the apoptotic fetal cardiocyte provide a molecular basis by which these antibodies inhibit efferocytosis and ultimately lead to scar of the fetal conduction system and working myocardium.

  8. Epsilon-aminocaproic acid prevents high glucose and insulin induced-invasiveness in MDA-MB-231 breast cancer cells, modulating the plasminogen activator system.

    PubMed

    Viedma-Rodríguez, Rubí; Martínez-Hernández, María Guadalupe; Flores-López, Luis Antonio; Baiza-Gutman, Luis Arturo

    2018-01-01

    Obesity and type II diabetes mellitus have contributed to the increase of breast cancer incidence worldwide. High glucose concentration promotes the proliferation of metastatic cells, favoring the activation of the plasminogen/plasmin system, thus contributing to tumor progression. The efficient formation of plasmin is dependent on the binding of plasminogen to the cell surface. We studied the effect of ε-aminocaproic acid (EACA), an inhibitor of the binding of plasminogen to cell surface, on proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and plasminogen activation system, in metastatic MDA-MB-231 breast cancer cells grown in a high glucose microenvironment and treated with insulin. MDA-MB-231 cells were treated with EACA 12.5 mmol/L under high glucose 30 mmol/L (HG) and high glucose and insulin 80 nmol/L (HG-I) conditions, evaluating: cell population growth, % of viability, migratory, and invasive abilities, as well as the expression of uPA, its receptor (uPAR), and its inhibitor (PAI-1), by real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, MMP-2 and MMP-9 mRNAs were evaluated by RT-PCR. Markers of EMT were evaluated by Western blot. Additionally, the presence of active uPA was studied by gel zymography, using casein-plasminogen as substrates. EACA prevented the increase in cell population, migration and invasion induced by HG and insulin, which was associated with the inhibition of EMT and the attenuation of HG- and insulin-dependent expression of uPA, uPAR, PAI-1, MMP-2, MMP-9, α-enolase (ENO A), and HCAM. The interaction of plasminogen to the cell surface and plasmin formation are mediators of the prometastasic action of hyperglycemia and insulin, potentially, EACA can be employed in the prevention and as adjuvant treatment of breast tumorigenesis promoted by hyperglycemia and insulin.

  9. Network of Surface-Displayed Glycolytic Enzymes in Mycoplasma pneumoniae and Their Interactions with Human Plasminogen

    PubMed Central

    Gründel, Anne; Pfeiffer, Melanie; Jacobs, Enno

    2015-01-01

    In different bacteria, primarily cytosolic and metabolic proteins are characterized as surface localized and interacting with different host factors. These moonlighting proteins include glycolytic enzymes, and it has been hypothesized that they influence the virulence of pathogenic species. The presence of surface-displayed glycolytic enzymes and their interaction with human plasminogen as an important host factor were investigated in the genome-reduced and cell wall-less microorganism Mycoplasma pneumoniae, a common agent of respiratory tract infections of humans. After successful expression of 19 glycolytic enzymes and production of polyclonal antisera, the localization of proteins in the mycoplasma cell was characterized using fractionation of total proteins, colony blot, mild proteolysis and immunofluorescence of M. pneumoniae cells. Eight glycolytic enzymes, pyruvate dehydrogenases A to C (PdhA-C), glyceraldehyde-3-phosphate dehydrogenase (GapA), lactate dehydrogenase (Ldh), phosphoglycerate mutase (Pgm), pyruvate kinase (Pyk), and transketolase (Tkt), were confirmed as surface expressed and all are able to interact with plasminogen. Plasminogen bound to recombinant proteins PdhB, GapA, and Pyk was converted to plasmin in the presence of urokinase plasminogen activator and plasmin-specific substrate d-valyl-leucyl-lysine-p-nitroanilide dihydrochloride. Furthermore, human fibrinogen was degraded by the complex of plasminogen and recombinant protein PdhB or Pgm. In addition, surface-displayed proteins (except PdhC) bind to human lung epithelial cells, and the interaction was reduced significantly by preincubation of cells with antiplasminogen. Our results suggest that plasminogen binding and activation by different surface-localized glycolytic enzymes of M. pneumoniae may play a role in successful and long-term colonization of the human respiratory tract. PMID:26667841

  10. Specificity determinants in the interaction of apolipoprotein(a) kringles with tetranectin and LDL.

    PubMed

    Caterer, Nigel R; Graversen, Jonas H; Jacobsen, Christian; Moestrup, Søren K; Sigurskjold, Bent W; Etzerodt, Michael; Thøgersen, Hans C

    2002-11-01

    Lipoprotein(a) is composed of low density lipoprotein and apolipoprotein(a). Apolipoprotein(a) has evolved from plasminogen and contains 10 different plasminogen kringle 4 homologous domains [KIV(1-110)]. Previous studies indicated that lipoprotein(a) non-covalently binds the N-terminal region of lipoprotein B100 and the plasminogen kringle 4 binding plasma protein tetranectin. In this study recombinant KIV(2), KIV(7) and KIV(10) derived from apolipoprotein(a) were produced in E. coli and the binding to tetranectin and low density lipoprotein was examined. Only KIV(10) bound to tetranectin and binding was similar to that of plasminogen kringle 4 to tetranectin. Only KIV(7) bound to LDL. In order to identify the residues responsible for the difference in specificity between KIV(7) and KIV(10), a number of surface-exposed residues located around the lysine binding clefts were exchanged. Ligand binding analysis of these derivatives showed that Y62, and to a minor extent W32 and E56, of KIV(7) are important for LDL binding to KIV(7), whereas R32 and D56 of KIV(10) are required for tetranectin binding of KIV(10).

  11. Seahorse-derived peptide suppresses invasive migration of HT1080 fibrosarcoma cells by competing with intracellular α-enolase for plasminogen binding and inhibiting uPA-mediated activation of plasminogen.

    PubMed

    Kim, Yong-Tae; Kim, Se-kwon; Jeon, You-Jin; Park, Sun Joo

    2014-12-01

    α-Enolase is a glycolytic enzyme and a surface receptor for plasminogen. α-Enolase-bound plasminogen promotes tumor cell invasion and cancer metastasis by activating plasmin and consequently degrading the extracellular matrix degradation. Therefore, α-enolase and plasminogen are novel targets for cancer therapy. We found that the amino acid sequence of a peptide purified from enzymatic hydrolysates of seahorse has striking similarities to that of α-enolase. In this study, we report that this peptide competes with cellular α-enolase for plasminogen binding and suppresses urokinase plasminogen activator (uPA)-mediated activation of plasminogen, which results in decreased invasive migration of HT1080 fibrosarcoma cells. In addition, the peptide treatment decreased the expression levels of uPA compared to that of untreated controls. These results provide new insight into the mechanism by which the seahorse-derived peptide suppresses invasive properties of human cancer cells. Our findings suggest that this peptide could emerge as a potential therapeutic agent for cancer.

  12. Seahorse-derived peptide suppresses invasive migration of HT1080 fibrosarcoma cells by competing with intracellular α-enolase for plasminogen binding and inhibiting uPA-mediated activation of plasminogen

    PubMed Central

    Kim, Yong-Tae; Kim, Se-kwon; Jeon, You-Jin; Park, Sun Joo

    2014-01-01

    α-Enolase is a glycolytic enzyme and a surface receptor for plasminogen. α-Enolase-bound plasminogen promotes tumor cell invasion and cancer metastasis by activating plasmin and consequently degrading the extracellular matrix degradation. Therefore, α-enolase and plasminogen are novel targets for cancer therapy. We found that the amino acid sequence of a peptide purified from enzymatic hydrolysates of seahorse has striking similarities to that of α-enolase. In this study, we report that this peptide competes with cellular α-enolase for plasminogen binding and suppresses urokinase plasminogen activator (uPA)-mediated activation of plasminogen, which results in decreased invasive migration of HT1080 fibrosarcoma cells. In addition, the peptide treatment decreased the expression levels of uPA compared to that of untreated controls. These results provide new insight into the mechanism by which the seahorse-derived peptide suppresses invasive properties of human cancer cells. Our findings suggest that this peptide could emerge as a potential therapeutic agent for cancer. [BMB Reports 2014; 47(12): 691-696] PMID:24602611

  13. Analysis of Paracoccidioides secreted proteins reveals fructose 1,6-bisphosphate aldolase as a plasminogen-binding protein.

    PubMed

    Chaves, Edilânia Gomes Araújo; Weber, Simone Schneider; Báo, Sonia Nair; Pereira, Luiz Augusto; Bailão, Alexandre Melo; Borges, Clayton Luiz; Soares, Célia Maria de Almeida

    2015-02-27

    Despite being important thermal dimorphic fungi causing Paracoccidioidomycosis, the pathogenic mechanisms that underlie the genus Paracoccidioides remain largely unknown. Microbial pathogens express molecules that can interact with human plasminogen, a protein from blood plasma, which presents fibrinolytic activity when activated into plasmin. Additionally, plasmin exhibits the ability of degrading extracellular matrix components, favoring the pathogen spread to deeper tissues. Previous work from our group demonstrated that Paracoccidioides presents enolase, as a protein able to bind and activate plasminogen, increasing the fibrinolytic activity of the pathogen, and the potential for adhesion and invasion of the fungus to host cells. By using proteomic analysis, we aimed to identify other proteins of Paracoccidioides with the ability of binding to plasminogen. In the present study, we employed proteomic analysis of the secretome, in order to identify plasminogen-binding proteins of Paracoccidioides, Pb01. Fifteen proteins were present in the fungal secretome, presenting the ability to bind to plasminogen. Those proteins are probable targets of the fungus interaction with the host; thus, they could contribute to the invasiveness of the fungus. For validation tests, we selected the protein fructose 1,6-bisphosphate aldolase (FBA), described in other pathogens as a plasminogen-binding protein. The protein FBA at the fungus surface and the recombinant FBA (rFBA) bound human plasminogen and promoted its conversion to plasmin, potentially increasing the fibrinolytic capacity of the fungus, as demonstrated in fibrin degradation assays. The addition of rFBA or anti-rFBA antibodies was capable of reducing the interaction between macrophages and Paracoccidioides, possibly by blocking the binding sites for FBA. These data reveal the possible participation of the FBA in the processes of cell adhesion and tissue invasion/dissemination of Paracoccidioides. These data indicate that Paracoccidioides is a pathogen that has several plasminogen-binding proteins that likely play important roles in pathogen-host interaction. In this context, FBA is a protein that might be involved somehow in the processes of invasion and spread of the fungus during infection.

  14. Phosphatidylserine as an anchor for plasminogen and its plasminogen receptor, Histone H2B, to the macrophage surface

    PubMed Central

    DAS, R.; PLOW, E. F.

    2013-01-01

    Summary Background Plasminogen (Plg) binding to cell surface Plg receptors (Plg-Rs) on the surface of macrophages facilitates Plg activation and migration of these cells. Histone H2B (H2B) acts as a Plg-R and its cell surface expression is upregulated when monocytes are differentiated to macrophages via a pathway dependent on L-type Ca2+ channels and intracellular Ca2+. Objectives We sought to investigate the mechanism by which H2B, a protein without a transmembrane domain, is retained on themacrophage surface. Methods THP-1 monocytoid cells were induced to differentiate with interferon gamma + Vitamin D3 or to undergo apoptosis by treatment with camptothecin. Flow cytometry and cell surface biotinylation followed by Western blotting were used to measure the interrelationship between Plg binding, cell surface expression of H2B and outermembrane exposure of phosphatidylserine (PS). Results H2B interacted directly with PS via an electrostatic interaction. Anti-PS or PS binding proteins, annexin V and protein S, diminished H2B interaction with PS on the surface of differentiated or apoptotic cells and these same reagents inhibited Plg binding to these cells. L-type Ca2+ channels played a significant role in PS exposure, H2B surface expression and Plg binding induced either by differentiation or apoptosis. Conclusions These data suggest that H2B tethers to the surface of cells by interacting with PS on differentiated or apoptotic monocytoid cells. L-type Ca2+ channels regulate PS exposure on the surface of these cells. The exposed PS interacts directly with H2B and hence provides sites for Plg to bind to. PMID:21040449

  15. Binding of human plasminogen by the lipoprotein LipL46 of Leptospira interrogans.

    PubMed

    Santos, Jadson V; Pereira, Priscila R M; Fernandes, Luis G V; Siqueira, Gabriela Hase; de Souza, Gisele O; Souza Filho, Antônio; Vasconcellos, Silvio A; Heinemann, Marcos B; Chapola, Erica G B; Nascimento, Ana L T O

    2018-02-01

    Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira. Bacteria disseminate via the bloodstream and colonize the renal tubules of reservoir hosts. Leptospiral surface-exposed proteins are important targets, because due to their location they can elicit immune response and mediate adhesion and invasion processes. LipL46 has been previously reported to be located at the leptospiral outer membrane and recognized by antibodies present in serum of infected hamsters. In this study, we have confirmed the cellular location of this protein by immunofluorescence and FACS. We have cloned and expressed the recombinant protein LipL46 in its soluble form. LipL46 was recognized by confirmed leptospirosis human serum, suggesting its expression during infection. Binding screening of LipL46 with extracellular matrix (ECM) and plasma components showed that this protein interacts with plasminogen. The binding is dose-dependent on protein concentration, but saturation was not reached with the range of protein concentration used. Kringle domains of plasminogen and lysine residues of the recombinant protein are involved in the binding because the lysine analog, amino caproic acid (ACA) almost totally inhibited the reaction. The interaction of LipL46 with plasminogen generates plasmin in the presence of plasminogen activator uPA. Because plasmin generated at the leptospiral surface can degrade ECM molecules and decrease opsonophagocytosis, we tentatively infer that Lip46 has a role in helping the invasion process of pathogenic Leptospira. Copyright © 2017. Published by Elsevier Ltd.

  16. Urokinase links plasminogen activation and cell adhesion by cleavage of the RGD motif in vitronectin.

    PubMed

    De Lorenzi, Valentina; Sarra Ferraris, Gian Maria; Madsen, Jeppe B; Lupia, Michela; Andreasen, Peter A; Sidenius, Nicolai

    2016-07-01

    Components of the plasminogen activation system including urokinase (uPA), its inhibitor (PAI-1) and its cell surface receptor (uPAR) have been implicated in a wide variety of biological processes related to tissue homoeostasis. Firstly, the binding of uPA to uPAR favours extracellular proteolysis by enhancing cell surface plasminogen activation. Secondly, it promotes cell adhesion and signalling through binding of the provisional matrix protein vitronectin. We now report that uPA and plasmin induces a potent negative feedback on cell adhesion through specific cleavage of the RGD motif in vitronectin. Cleavage of vitronectin by uPA displays a remarkable receptor dependence and requires concomitant binding of both uPA and vitronectin to uPAR Moreover, we show that PAI-1 counteracts the negative feedback and behaves as a proteolysis-triggered stabilizer of uPAR-mediated cell adhesion to vitronectin. These findings identify a novel and highly specific function for the plasminogen activation system in the regulation of cell adhesion to vitronectin. The cleavage of vitronectin by uPA and plasmin results in the release of N-terminal vitronectin fragments that can be detected in vivo, underscoring the potential physiological relevance of the process. © 2016 The Authors.

  17. Regulation of Plasminogen Activation on Cell Surfaces and Fibrin.

    PubMed

    Urano, Tetsumei; Castellino, Francis J; Suzuki, Yuko

    2018-05-20

    The fibrinolytic system dissolves fibrin and maintains vascular patency. Recent advances in imaging analyses allowed visualization of the spatiotemporal regulatory mechanism of fibrinolysis, as well as its regulation by other plasma haemostasis cofactors. Vascular endothelial cells (VECs) retain tissue-type plasminogen activator (tPA) after secretion and maintain high plasminogen (plg) activation potential on their surfaces. As in plasma, the serpin, plasminogen activator inhibitor type 1 (PAI-1), regulates fibrinolytic potential via inhibition of the VEC surface-bound plg activator, tPA. Once fibrin is formed, plg activation by tPA is initiated and effectively amplified on the surface of fibrin, and fibrin is rapidly degraded. The specific binding of plg and tPA to lytic edges of partly degraded fibrin via newly generated C-terminal lysine residues, which amplifies fibrin digestion, is a central aspect of this pathophysiological mechanism. Thrombomodulin (TM) plays a role in the attenuation of the plg binding on fibrin and the associated fibrinolysis, which is reversed by a carboxypeptidase B inhibitor. This suggests that the plasma procarboxypeptidase B, thrombin activatable fibrinolysis inhibitor (TAFI), which is activated by thrombin bound to TM on VECs, is a critical aspect of the regulation of plg activation on VECs and subsequent fibrinolysis. Platelets also contain PAI-1, TAFI, TM and the fibrin crosslinking enzyme, Factor (F) XIIIa, and either secrete or expose these agents upon activation in order to regulate fibrinolysis. In this review, the native machinery of plg activation and fibrinolysis, as well as their spatiotemporal regulatory mechanisms, as revealed by imaging analyses, are discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Plasmin cleaves fibrinogen and the human complement proteins C3b and C5 in the presence of Leptospira interrogans proteins: A new role of LigA and LigB in invasion and complement immune evasion.

    PubMed

    Castiblanco-Valencia, Mónica Marcela; Fraga, Tatiana Rodrigues; Pagotto, Ana Helena; Serrano, Solange Maria de Toledo; Abreu, Patricia Antonia Estima; Barbosa, Angela Silva; Isaac, Lourdes

    2016-05-01

    Plasminogen is a single-chain glycoprotein found in human plasma as the inactive precursor of plasmin. When converted to proteolytically active plasmin, plasmin(ogen) regulates both complement and coagulation cascades, thus representing an important target for pathogenic microorganisms. Leptospira interrogans binds plasminogen, which is converted to active plasmin. Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules that interact with extracellular matrix components and complement regulators, including proteins of the FH family and C4BP. In this work, we demonstrate that these multifunctional molecules also bind plasminogen through both N- and C-terminal domains. These interactions are dependent on lysine residues and are affected by ionic strength. Competition assays suggest that plasminogen does not share binding sites with C4BP or FH on Lig proteins at physiological molar ratios. Plasminogen bound to Lig proteins is converted to proteolytic active plasmin in the presence of urokinase-type plasminogen activator (uPA). Lig-bound plasmin is able to cleave the physiological substrates fibrinogen and the complement proteins C3b and C5. Taken together, our data point to a new role of LigA and LigB in leptospiral invasion and complement immune evasion. Plasmin(ogen) acquisition by these versatile proteins may contribute to Leptospira infection, favoring bacterial survival and dissemination inside the host. Copyright © 2016. Published by Elsevier GmbH.

  19. The interplay between tissue plasminogen activator domains and fibrin structures in the regulation of fibrinolysis: kinetic and microscopic studies

    PubMed Central

    Thelwell, Craig; Williams, Stella C.; Silva, Marta M. C. G.; Szabó, László; Kolev, Krasimir

    2011-01-01

    Regulation of tissue-type plasminogen activator (tPA) depends on fibrin binding and fibrin structure. tPA structure/function relationships were investigated in fibrin formed by high or low thrombin concentrations to produce a fine mesh and small pores, or thick fibers and coarse structure, respectively. Kinetics studies were performed to investigate plasminogen activation and fibrinolysis in the 2 types of fibrin, using wild-type tPA (F-G-K1-K2-P, F and K2 binding), K1K1-tPA (F-G-K1-K1-P, F binding), and delF-tPA (G-K1-K2-P, K2 binding). There was a trend of enzyme potency of tPA > K1K1-tPA > delF-tPA, highlighting the importance of the finger domain in regulating activity, but the differences were less apparent in fine fibrin. Fine fibrin was a better surface for plasminogen activation but more resistant to lysis. Scanning electron and confocal microscopy using orange fluorescent fibrin with green fluorescent protein-labeled tPA variants showed that tPA was strongly associated with agglomerates in coarse but not in fine fibrin. In later lytic stages, delF-tPA-green fluorescent protein diffused more rapidly through fibrin in contrast to full-length tPA, highlighting the importance of finger domain-agglomerate interactions. Thus, the regulation of fibrinolysis depends on the starting nature of fibrin fibers and complex dynamic interaction between tPA and fibrin structures that vary over time. PMID:20966169

  20. The Interaction of Streptococcal Enolase with Canine Plasminogen: The Role of Surfaces in Complex Formation

    PubMed Central

    Balhara, Vinod; Deshmukh, Sasmit S.; Kálmán, László; Kornblatt, Jack A.

    2014-01-01

    The enolase from Streptococcus pyogenes (Str enolase F137L/E363G) is a homo-octamer shaped like a donut. Plasminogen (Pgn) is a monomeric protein composed of seven discrete separated domains organized into a lock washer. The enolase is known to bind Pgn. In past work we searched for conditions in which the two proteins would bind to one another. The two native proteins in solution would not bind under any of the tried conditions. We found that if the structures were perturbed binding would occur. We stated that only the non-native Str enolase or Pgn would interact such that we could detect binding. We report here the results of a series of dual polarization interferometry (DPI) experiments coupled with atomic force microscopy (AFM), isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and fluorescence. We show that the critical condition for forming stable complexes of the two native proteins involves Str enolase binding to a surface. Surfaces that attract Str enolase are a sufficient condition for binding Pgn. Under certain conditions, Pgn adsorbed to a surface will bind Str enolase. PMID:24520380

  1. Endogenously Generated Plasmin at the Vascular Wall Injury Site Amplifies Lysine Binding Site-Dependent Plasminogen Accumulation in Microthrombi

    PubMed Central

    Brzoska, Tomasz; Tanaka-Murakami, Aki; Suzuki, Yuko; Sano, Hideto; Kanayama, Naohiro; Urano, Tetsumei

    2015-01-01

    The fibrinolytic system plays a pivotal role in the regulation of hemostasis; however, it remains unclear how and when the system is triggered to induce thrombolysis. Using intra-vital confocal fluorescence microscopy, we investigated the process of plasminogen binding to laser-induced platelet-rich microthrombi generated in the mesenteric vein of transgenic mice expressing green fluorescent protein (GFP). The accumulation of GFP-expressing platelets as well as exogenously infused Alexa Fluor 568-labeled Glu-plasminogen (Glu-plg) on the injured vessel wall was assessed by measuring the increase in the corresponding fluorescence intensities. Glu-plg accumulated in a time-dependent manner in the center of the microthrombus, where phosphatidylserine is exposed on platelet surfaces and fibrin formation takes place. The rates of binding of Glu-plg in the presence of ε-aminocaproic acid and carboxypeptidase B, as well as the rates of binding of mini-plasminogen lacking kringle domains 1-4 and lysine binding sites, were significantly lower than that of Glu-plg alone, suggesting that the binding was dependent on lysine binding sites. Furthermore, aprotinin significantly suppressed the accumulation of Glu-plg, suggesting that endogenously generated plasmin activity is a prerequisite for the accumulation. In spite of the endogenous generation of plasmin and accumulation of Glu-plg in the center of microthrombi, the microthrombi did not change in size during the 2-hour observation period. When human tissue plasminogen activator was administered intravenously, Glu-plg further accumulated and the microthrombi were lysed. Glu-plg appeared to accumulate in the center of microthrombi in the early phase of microthrombus formation, and plasmin activity and lysine binding sites were required for this accumulation. PMID:25806939

  2. Binding of high molecular weight kininogen to human endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor.

    PubMed Central

    Colman, R W; Pixley, R A; Najamunnisa, S; Yan, W; Wang, J; Mazar, A; McCrae, K R

    1997-01-01

    The urokinase receptor (uPAR) binds urokinase-type plasminogen activator (u-PA) through specific interactions with uPAR domain 1, and vitronectin through interactions with a site within uPAR domains 2 and 3. These interactions promote the expression of cell surface plasminogen activator activity and cellular adhesion to vitronectin, respectively. High molecular weight kininogen (HK) also stimulates the expression of cell surface plasminogen activator activity through its ability to serve as an acquired receptor for prekallikrein, which, after its activation, may directly activate prourokinase. Here, we report that binding of the cleaved form of HK (HKa) to human umbilical vein endothelial cells (HUVEC) is mediated through zinc-dependent interactions with uPAR. These occur through a site within uPAR domains 2 and 3, since the binding of 125I-HKa to HUVEC is inhibited by vitronectin, anti-uPAR domain 2 and 3 antibodies and soluble, recombinant uPAR (suPAR), but not by antibody 7E3, which recognizes the beta chain of the endothelial cell vitronectin receptor (integrin alphavbeta3), or fibrinogen, another alphavbeta3 ligand. We also demonstrate the formation of a zinc-dependent complex between suPAR and HKa. Interactions of HKa with endothelial cell uPAR may underlie its ability to promote kallikrein-dependent cell surface plasmin generation, and also explain, in part, its antiadhesive properties. PMID:9294114

  3. Plasminogen fragments K 1-3 and K 5 bind to different sites in fibrin fragment DD.

    PubMed

    Grinenko, T V; Kapustianenko, L G; Yatsenko, T A; Yusova, O I; Rybachuk, V N

    2016-01-01

    Specific plasminogen-binding sites of fibrin molecule are located in Аα148-160 regions of C-terminal domains. Plasminogen interaction with these sites initiates the activation process of proenzyme and subsequent fibrin lysis. In this study we investigated the binding of plasminogen fragments K 1-3 and K 5 with fibrin fragment DD and their effect on Glu-plasminogen interaction with DD. It was shown that the level of Glu-plasminogen binding to fibrin fragment DD is decreased by 50-60% in the presence of K 1-3 and K 5. Fragments K 1-3 and K 5 have high affinity to fibrin fragment DD (Kd is 0.02 for K 1-3 and 0.054 μМ for K 5). K 5 interaction is independent and K 1-3 is partly dependent on C-terminal lysine residues. K 1-3 interacts with complex of fragment DD-immobilized K 5 as well as K 5 with complex of fragment DD-immobilized K 1-3. The plasminogen fragments do not displace each other from binding sites located in fibrin fragment DD, but can compete for the interaction. The results indicate that fibrin fragment DD contains different binding sites for plasminogen kringle fragments K 1-3 and K 5, which can be located close to each other. The role of amino acid residues of fibrin molecule Аα148-160 region in interaction with fragments K 1-3 and K 5 is discussed.

  4. Antibiotic modulation of the plasminogen binding ability of viridans group streptococci.

    PubMed

    Teles, Cristina; Smith, Andrew; Lang, Sue

    2012-01-01

    The ability of viridans group streptococci to bind human plasminogen and its subsequent activation into plasmin may contribute to the pathogenesis of infective endocarditis (IE) by leading to a decreased stability of the streptococcal vegetation and facilitating dehiscence of emboli. At levels greater than or equal to their MICs, penicillin, vancomycin, and linezolid are efficacious in the treatment of streptococcal endocarditis. However, at sub-MICs, antibiotics can modulate the expression of bacterial genes, including virulence-associated genes, which can have counterproductive effects on the treatment of endocarditis. The effects of 1/8× and 1/4× MICs of penicillin, vancomycin, and linezolid on the plasminogen binding ability of IE isolates Streptococcus mitis 881/956, Streptococcus oralis 12601, and Streptococcus sanguinis 12403 were assessed phenotypically and the expression of plasminogen receptors α-enolase and glyceraldehyde 3-phosphate dehydrogenase of S. oralis 12601 when exposed to 1/4× MIC of penicillin, was analyzed through quantitative reverse transcription (qRT)-PCR. The plasminogen binding ability of S. mitis 881/956 and S. sanguinis 12403 remained unaffected by exposure to sub-MICs of all of the antibiotics tested, while that of S. oralis 12601 was significantly enhanced by all of the antibiotics tested at sub-MICs. qRT-PCR analysis of S. oralis 12601 demonstrated an upregulation of the eno and gapdh genes, indicating an overexpression of plasminogen receptors. These findings suggest that for some endocarditis isolates, the effect of antibiotic sub-MICs, in addition to a reduced antibacterial effect, may influence the clinical response to nonsurgical therapy. It remains difficult to accurately predict isolate responses to sub-MIC antimicrobials since there appears to be interspecies variation.

  5. Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties

    PubMed Central

    Nguyen, Leonard T.; Vogel, Hans J.

    2016-01-01

    Staphylokinase (Sak) is a plasminogen activator protein that is secreted by many Staphylococcus aureus strains. Sak also offers protection by binding and inhibiting specific antimicrobial peptides (AMPs). Here, we evaluate Sak as a more general interaction partner for AMPs. Studies with melittin, mCRAMP, tritrpticin and bovine lactoferricin indicate that the truncation of the first ten residues of Sak (SakΔN10), which occurs in vivo and uncovers important residues in a bulge region, improves its affinity for AMPs. Melittin and mCRAMP have a lower affinity for SakΔN10, and in docking studies, they bind to the N-terminal segment and bulge region of SakΔN10. By comparison, lactoferricin and tritrpticin form moderately high affinity 1:1 complexes with SakΔN10 and their cationic residues form several electrostatic interactions with the protein’s α-helix. Overall, our work identifies two distinct AMP binding surfaces on SakΔN10 whose occupation would lead to either inhibition or promotion of its plasminogen activating properties. PMID:27554435

  6. Targeting of antibody-conjugated plasminogen activators to the pulmonary vasculature.

    PubMed

    Muzykantov, V R; Barnathan, E S; Atochina, E N; Kuo, A; Danilov, S M; Fisher, A B

    1996-11-01

    Thrombolytic therapy has not been widely used for pulmonary embolism due to less than optimal results with conventional plasminogen activators. We propose a new approach to deliver plasminogen activators to the luminal surface of the pulmonary vasculature to potentially improve dissolution of pulmonary thromboemboli. Our previous studies have documented that a monoclonal antibody (mAb) to angiotensin-converting enzyme (anti-angiotensin-converting enzyme mAb 9B9) accumulates in the lungs of various animal species after systemic administration. We coupled 125I-labeled biotinylated plasminogen activators (single-chain urokinase plasminogen activator, tissue-type plasminogen activator and streptokinase) to biotinylated mAb 9B9, using streptavidin as a cross-linker. The fibrinolytic activity of plasminogen activators was not changed significantly by either biotinylation or by coupling to streptavidin. Antibody-conjugated plasminogen activators bind to the antigen immobilized in plastic wells and provide lysis of fibrin clots formed in these wells. Therefore, antibody-conjugated plasminogen activators bound to their target antigen retain their capacity to activate plasminogen. One hour after i.v. injection of mAb 9B9-conjugated radiolabeled biotinylated single-chain urokinase plasminogen activator, biotinylated tissue-type plasminogen activator or biotinylated-streptokinase in rats, the level of radiolabel was 7.4 +/- 0.8, 5.9 +/- 0.4 and 3.6 +/- 0.4% of injected dose/g (ID/g) of lung tissue vs. 0.5 +/- 0.01, 0.3 +/- 0.01 and 0.6 +/- 0.3% ID/g after injection of the same activators conjugated with control mouse IgG (P < .01 in all cases). Injection of mAb 9B9-conjugated radiolabeled plasminogen activator led to its rapid pulmonary uptake with a peak value 6.2 +/- 1.2% ID/g attained 3 hr after injection. One day later, 2.2 +/- 0.5% of the injected radioactivity was found per gram of lung tissue, although the blood level was 0.13 +/- 0.03% ID/g (lung/blood ratio 16.7 +/- 0.3). Therefore, conjugation of plasminogen activators with anti-angiotensin-converting enzyme mAb 9B9 provides their specific targeting to and prolonged association with the pulmonary vasculature. These results provide a basis for study of the local pulmonary fibrinolysis by mAb 9B9-conjugated plasminogen activators.

  7. Surface-Expressed Enolase Contributes to the Pathogenesis of Clinical Isolate SSU of Aeromonas hydrophila▿

    PubMed Central

    Sha, Jian; Erova, Tatiana E.; Alyea, Rebecca A.; Wang, Shaofei; Olano, Juan P.; Pancholi, Vijay; Chopra, Ashok K.

    2009-01-01

    In this study, we demonstrated that the surface-expressed enolase from diarrheal isolate SSU of Aeromonas hydrophila bound to human plasminogen and facilitated the latter's tissue-type plasminogen activator-mediated activation to plasmin. The bacterial surface-bound plasmin was more resistant to the action of its specific physiological inhibitor, the antiprotease α2-antiplasmin. We found that immunization of mice with purified recombinant enolase significantly protected the animals against a lethal challenge dose of wild-type (WT) A. hydrophila. Minimal histological changes were noted in organs from mice immunized with enolase and then challenged with WT bacteria compared to severe pathological changes found in the infected and nonimmunized group of animals. This correlated with the smaller bacterial load of WT bacteria in the livers and spleens of enolase-immunized mice than that found in the nonimmunized controls. We also showed that the enolase gene could potentially be important for the viability of A. hydrophila SSU as we could delete the chromosomal copy of the enolase gene only when another copy of the targeted gene was supplied in trans. By site-directed mutagenesis, we altered five lysine residues located at positions 343, 394, 420, 427, and 430 of enolase in A. hydrophila SSU; the mutated forms of enolase were hyperexpressed in Escherichia coli, and the proteins were purified. Our results indicated that lysine residues at positions 420 and 427 of enolase were crucial in plasminogen-binding activity. We also identified a stretch of amino acid residues (252FYDAEKKEY260) in the A. hydrophila SSU enolase involved in plasminogen binding. To our knowledge, this is the first report of the direct involvement of surface-expressed enolase in the pathogenesis of A. hydrophila SSU infections and of any gram-negative bacteria in general. PMID:19270100

  8. Structural Basis of Interaction between Urokinase-Type Plasminogen Activator and Its Receptor

    PubMed Central

    Barinka, Cyril; Parry, Graham; Callahan, Jennifer; Shaw, David E.; Kuo, Alice; Bdeir, Khalil; Cines, Douglas B.; Mazar, Andrew; Lubkowski, Jacek

    2009-01-01

    Summary Recent studies indicate that binding of urokinase-type plasminogen activator (uPA) to its high affinity receptor (uPAR), orchestrates uPAR interactions with other cellular components that play a pivotal role in diverse (patho-)physiological processes including wound healing, angiogenesis, inflammation, and cancer metastasis. However, notwithstanding the wealth of biochemical data available describing the activities of uPAR, little is known as to the exact mode of uPAR-uPA interactions and the presumed conformational changes that accompanying uPA-uPAR engagement. Here we report the crystal structure of soluble urokinase plasminogen activator receptor (suPAR), which contains the three domains of the wild-type receptor but lacks the cell surface anchoring sequence, in complex with the amino terminal fragment of urokinase-type plasminogen activator (ATF), at the resolution of 2.8 Å. We also report the 1.9 Å crystal structure of the free ATF. Our results provide a structural basis, represented by conformational changes induced in uPAR, for several published biochemical observations describing the nature of uPAR-uPA interactions and provide insight into mechanisms that may be responsible for the cellular responses induced by uPA binding. PMID:16979660

  9. Clot accumulation characteristics of plasminogen-bearing liposomes in a flow-system. Groningen Utrecht Institute for Drug Exploration.

    PubMed

    Heeremans, J L; Prevost, R; Feitsma, H; Kluft, C; Crommelin, D J

    1998-01-01

    In this study, the clot accumulation properties of liposome-coupled plasminogen were compared to those of free (non-liposomal) plasminogen in an in vitro, closed-loop, flow-system. After introduction of a clot into the closed system, double-radiolabelled plasminogen-liposomes were administered and the accumulation of radiolabel on the entire clot was measured. Liposomal plasminogen showed improved accumulation over free plasminogen, on both a fibrin clot and a whole blood clot. Moreover, once liposomal plasminogen was fibrin associated, it could not be washed away with buffer, in contrast to free plasminogen. Liposomal plasminogen was able to compete successfully with an excess of free plasminogen. The plateau levels for the accumulated amount of plasminogen depended on the incubated amount of plasminogen and were influenced by partial degradation of the clot. Furthermore, it was shown that a threshold liposomal plasminogen surface-density was needed for optimum clot accumulation.

  10. Vibrio parahaemolyticus enolase is an adhesion-related factor that binds plasminogen and functions as a protective antigen.

    PubMed

    Jiang, Wei; Han, Xiangan; Wang, Quan; Li, Xintong; Yi, Li; Liu, Yongjie; Ding, Chan

    2014-06-01

    Vibrio parahaemolyticus, an emerging food and waterborne pathogen, is a leading cause of seafood poisoning worldwide. Surface proteins can directly participate in microbial virulence by facilitating pathogen dissemination via interactions with host factors. Screening and identification of protective antigens is important for developing therapies against V. parahaemolyticus infections. Here, we systematically characterized a novel immunogenic enolase of V. parahaemolyticus. The enolase gene of V. parahaemolyticus ATCC33847 was cloned, sequenced, and expressed in Escherichia coli BL21. Enzymatic assays revealed that the purified recombinant V. parahaemolyticus enolase protein catalyzes the dehydration of 2-phospho-D-glycerate to phosphoenolpyruvate. Western blot analysis showed that V. parahaemolyticus enolase was detectable in the extracellular, outer membrane (OM) and cytoplasmic protein fractions using antibodies against the recombinant enolase. Surface expression of enolase was further confirmed by immunogold staining and mass spectrometry (liquid chromatography-tandem mass spectrometry) analysis of OM protein profiles. Notably, V. parahaemolyticus enolase was identified as a human plasminogen-binding protein with the enzyme-linked immunosorbent assay. The values obtained for adherence and inhibition suggest a role of surface-exposed enolase in epithelial adherence of V. parahaemolyticus. We further showed that enolase confers efficient immunity against challenge with a lethal dose of V. parahaemolyticus in a mouse model. To our knowledge, this is the first study to demonstrate the plasminogen-binding activity of enolase that is an adhesion-related factor of V. parahaemolyticus. Our findings collectively imply that enolase plays important roles in pathogenicity, supporting its utility as a novel vaccine candidate against V. parahaemolyticus infection.

  11. Characterization of two new putative adhesins of Leptospira interrogans.

    PubMed

    Figueredo, Jupciana M; Siqueira, Gabriela H; de Souza, Gisele O; Heinemann, Marcos B; Vasconcellos, Silvio A; Chapola, Erica G B; Nascimento, Ana L T O

    2017-01-01

    We here report the characterization of two novel proteins encoded by the genes LIC11122 and LIC12287, identified in the genome sequences of Leptospira interrogans, annotated, respectively, as a putative sigma factor and a hypothetical protein. The CDSs LIC11122 and LIC12287 have signal peptide SPII and SPI and are predicted to be located mainly at the cytoplasmic membrane of the bacteria. The genes were cloned and the proteins expressed using Escherichia coli. Proteinase K digestion showed that both proteins are surface exposed. Evaluation of interaction of recombinant proteins with extracellular matrix components revealed that they are laminin binding and they were called Lsa19 (LIC11122) and Lsa14 (LIC12287), for Leptospiral-surface adhesin of 19 and 14 kDa, respectively. The bindings were dose-dependent on protein concentration, reaching saturation, fulfilling the ligand-binding criteria. Reactivity of the recombinant proteins with leptospirosis human sera has shown that Lsa19 and, to a lesser extent, Lsa14, are recognized by antibodies, suggesting that, most probably, Lsa19 is expressed during infection. The proteins interact with plasminogen and generate plasmin in the presence of urokinase-type plasminogen activator. Plasmin generation in Leptospira has been associated with tissue penetration and immune evasion strategies. The presence of a sigma factor on the cell surface playing a secondary role, probably mediating host -pathogen interaction, suggests that LIC11122 is a moonlighting protein candidate. Although the biological significance of these putative adhesins will require the generation of mutants, our data suggest that Lsa19 is a potential candidate for future evaluation of its role in adhesion/colonization activities during L. interrogans infection.

  12. Cell Surface Translocation of Annexin A2 Facilitates Glutamate-induced Extracellular Proteolysis*

    PubMed Central

    Valapala, Mallika; Maji, Sayantan; Borejdo, Julian; Vishwanatha, Jamboor K.

    2014-01-01

    Glutamate-induced elevation in intracellular Ca2+ has been implicated in excitotoxic cell death. Neurons respond to increased glutamate levels by activating an extracellular proteolytic cascade involving the components of the plasmin-plasminogen system. AnxA2 is a Ca2+-dependent phospholipid binding protein and serves as an extracellular proteolytic center by recruiting the tissue plasminogen activator and plasminogen and mediating the localized generation of plasmin. Ratiometric Ca2+ imaging and time-lapse confocal microscopy demonstrated glutamate-induced Ca2+ influx. We showed that glutamate translocated both endogenous and AnxA2-GFP to the cell surface in a process dependent on the activity of the NMDA receptor. Glutamate-induced translocation of AnxA2 is dependent on the phosphorylation of tyrosine 23 at the N terminus, and mutation of tyrosine 23 to a non-phosphomimetic variant inhibits the translocation process. The cell surface-translocated AnxA2 forms an active plasmin-generating complex, and this activity can be neutralized by a hexapeptide directed against the N terminus. These results suggest an involvement of AnxA2 in potentiating glutamate-induced cell death processes. PMID:24742684

  13. Myelin basic protein stimulates plasminogen activation via tissue plasminogen activator following binding to independent l-lysine-containing domains.

    PubMed

    Gonzalez-Gronow, Mario; Fiedler, Jenny L; Farias Gomez, Cristian; Wang, Fang; Ray, Rupa; Ferrell, Paul D; Pizzo, Salvatore V

    2017-08-26

    Myelin basic protein (MBP) is a key component of myelin, the specialized lipid membrane that encases the axons of all neurons. Both plasminogen (Pg) and tissue-type plasminogen activator (t-PA) bind to MBP with high affinity. We investigated the kinetics and mechanisms involved in this process using immobilized MBP and found that Pg activation by t-PA is significantly stimulated by MBP. This mechanism involves the binding of t-PA via a lysine-dependent mechanism to the Lys 91 residue of the MBP NH 2 -terminal region Asp 82 -Pro 99 , and the binding of Pg via a lysine-dependent mechanism to the Lys 122 residue of the MBP COOH-terminal region Leu 109 -Gly 126 . In this context, MBP mimics fibrin and because MBP is a plasmin substrate, our results suggest direct participation of the Pg activation system on MBP physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The tissue-type plasminogen activator–plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: evidence from mice and humans

    PubMed Central

    Sashindranath, Maithili; Sales, Eunice; Daglas, Maria; Freeman, Roxann; Samson, Andre L.; Cops, Elisa J.; Beckham, Simone; Galle, Adam; McLean, Catriona; Morganti-Kossmann, Cristina; Rosenfeld, Jeffrey V.; Madani, Rime; Vassalli, Jean-Dominique; Su, Enming J.; Lawrence, Daniel A.

    2012-01-01

    The neurovascular unit provides a dynamic interface between the circulation and central nervous system. Disruption of neurovascular integrity occurs in numerous brain pathologies including neurotrauma and ischaemic stroke. Tissue plasminogen activator is a serine protease that converts plasminogen to plasmin, a protease that dissolves blood clots. Besides its role in fibrinolysis, tissue plasminogen activator is abundantly expressed in the brain where it mediates extracellular proteolysis. However, proteolytically active tissue plasminogen activator also promotes neurovascular disruption after ischaemic stroke; the molecular mechanisms of this process are still unclear. Tissue plasminogen activator is naturally inhibited by serine protease inhibitors (serpins): plasminogen activator inhibitor-1, neuroserpin or protease nexin-1 that results in the formation of serpin:protease complexes. Proteases and serpin:protease complexes are cleared through high-affinity binding to low-density lipoprotein receptors, but their binding to these receptors can also transmit extracellular signals across the plasma membrane. The matrix metalloproteinases are the second major proteolytic system in the mammalian brain, and like tissue plasminogen activators are pivotal to neurological function but can also degrade structures of the neurovascular unit after injury. Herein, we show that tissue plasminogen activator potentiates neurovascular damage in a dose-dependent manner in a mouse model of neurotrauma. Surprisingly, inhibition of activity following administration of plasminogen activator inhibitor-1 significantly increased cerebrovascular permeability. This led to our finding that formation of complexes between tissue plasminogen activator and plasminogen activator inhibitor-1 in the brain parenchyma facilitates post-traumatic cerebrovascular damage. We demonstrate that following trauma, the complex binds to low-density lipoprotein receptors, triggering the induction of matrix metalloproteinase-3. Accordingly, pharmacological inhibition of matrix metalloproteinase-3 attenuates neurovascular permeability and improves neurological function in injured mice. Our results are clinically relevant, because concentrations of tissue plasminogen activator: plasminogen activator inhibitor-1 complex and matrix metalloproteinase-3 are significantly elevated in cerebrospinal fluid of trauma patients and correlate with neurological outcome. In a separate study, we found that matrix metalloproteinase-3 and albumin, a marker of cerebrovascular damage, were significantly increased in brain tissue of patients with neurotrauma. Perturbation of neurovascular homeostasis causing oedema, inflammation and cell death is an important cause of acute and long-term neurological dysfunction after trauma. A role for the tissue plasminogen activator–matrix metalloproteinase axis in promoting neurovascular disruption after neurotrauma has not been described thus far. Targeting tissue plasminogen activator: plasminogen activator inhibitor-1 complex signalling or downstream matrix metalloproteinase-3 induction may provide viable therapeutic strategies to reduce cerebrovascular permeability after neurotrauma. PMID:22822039

  15. Polyphosphate colocalizes with factor XII on platelet-bound fibrin and augments its plasminogen activator activity

    PubMed Central

    Lionikiene, Ausra S.; Georgiev, Georgi; Klemmer, Anja; Brain, Chelsea; Kim, Paul Y.

    2016-01-01

    Activated factor XII (FXIIa) has plasminogen activator capacity but its relative contribution to fibrinolysis is considered marginal compared with urokinase and tissue plasminogen activator. Polyphosphate (polyP) is released from activated platelets and mediates FXII activation. Here, we investigate the contribution of polyP to the plasminogen activator function of αFXIIa. We show that both polyP70, of the chain length found in platelets (60-100 mer), and platelet-derived polyP significantly augment the plasminogen activation capacity of αFXIIa. PolyP70 stimulated the autoactivation of FXII and subsequent plasminogen activation, indicating that once activated, αFXIIa remains bound to polyP70. Indeed, complex formation between polyP70 and αFXIIa provides protection against autodegradation. Plasminogen activation by βFXIIa was minimal and not enhanced by polyP70, highlighting the importance of the anion binding site. PolyP70 did not modulate plasmin activity but stimulated activation of Glu and Lys forms of plasminogen by αFXIIa. Accordingly, polyP70 was found to bind to FXII, αFXIIa, and plasminogen, but not βFXIIa. Fibrin and polyP70 acted synergistically to enhance αFXIIa-mediated plasminogen activation. The plasminogen activator activity of the αFXIIa-polyP70 complex was modulated by C1 inhibitor and histidine-rich glycoprotein, but not plasminogen activator inhibitors 1 and 2. Platelet polyP and FXII were found to colocalize on the activated platelet membrane in a fibrin-dependent manner and decorated fibrin strands extending from platelet aggregates. We show that in the presence of platelet polyP and the downstream substrate fibrin, αFXIIa is a highly efficient and favorable plasminogen activator. Our data are the first to document a profibrinolytic function of platelet polyP. PMID:27694320

  16. Fructose-1,6-bisphosphate aldolase of Neisseria meningitidis binds human plasminogen via its C-terminal lysine residue.

    PubMed

    Shams, Fariza; Oldfield, Neil J; Lai, Si Kei; Tunio, Sarfraz A; Wooldridge, Karl G; Turner, David P J

    2016-04-01

    Neisseria meningitidis is a leading cause of fatal sepsis and meningitis worldwide. As for commensal species of human neisseriae, N. meningitidis inhabits the human nasopharynx and asymptomatic colonization is ubiquitous. Only rarely does the organism invade and survive in the bloodstream leading to disease. Moonlighting proteins perform two or more autonomous, often dissimilar, functions using a single polypeptide chain. They have been increasingly reported on the surface of both prokaryotic and eukaryotic organisms and shown to interact with a variety of host ligands. In some organisms moonlighting proteins perform virulence-related functions, and they may play a role in the pathogenesis of N. meningitidis. Fructose-1,6-bisphosphate aldolase (FBA) was previously shown to be surface-exposed in meningococci and involved in adhesion to host cells. In this study, FBA was shown to be present on the surface of both pathogenic and commensal neisseriae, and surface localization and anchoring was demonstrated to be independent of aldolase activity. Importantly, meningococcal FBA was found to bind to human glu-plasminogen in a dose-dependent manner. Site-directed mutagenesis demonstrated that the C-terminal lysine residue of FBA was required for this interaction, whereas subterminal lysine residues were not involved. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  17. Composite poly(methyl methacrylate-methacrylic acid-2-hydroxyethyl methacrylate) latex for immunoassay. The case of plasminogen.

    PubMed

    Miksa, B; Wilczynska, M; Cierniewski, C; Basinska, T; Slomkowski, S

    1995-01-01

    Poly(methyl methacrylate-methacrylic acid-2-hydroxyethyl methacrylate) latex (ACRYLAT) was synthesized by radical precipitation polymerization. The mass median diameter (MMD) and the geometrical standard deviation (GSD) of the ACRYLAT particles were 138 nm and 1.2, respectively. The concentration of the titrable carboxylic groups in the surface layer of latex particles was equal to 8.41 x 10(-6) mol m-2. Latex was able to bind up to 2.82 x 10(-7) mol of 1-aminopyrene per 1 m2 of the surface of the latex particles due to the ionic interactions between carboxylate anions and ammonium cations of protonated 1-aminopyrene. ACRYLAT was able to immobilize covalently human serum albumin in amounts up to 0.23 mg m-2. Aggregation of ACRYLAT with immobilized HSA, induced with specific antibodies (anti-HSA), was investigated turbidimetrically. The results indicated that in the model turbidimetric immunoassay, ACRYLAT coated with HSA can be used for the detection of anti-HSA in the goat anti-HSA serum diluted from 50 to 7000-fold. Immobilization of rabbit antibodies to plasminogen (anti-Plg) to ACRYLAT via the epsilon-aminocaproic acid linkers provided particles which were used for the development of the turbidimetric immunoassay for plasminogen. In this assay plasminogen could be detected in concentration ranging from 0.75 to 75 micrograms ml-1 in the blood plasma.

  18. Polyphosphate colocalizes with factor XII on platelet-bound fibrin and augments its plasminogen activator activity.

    PubMed

    Mitchell, Joanne L; Lionikiene, Ausra S; Georgiev, Georgi; Klemmer, Anja; Brain, Chelsea; Kim, Paul Y; Mutch, Nicola J

    2016-12-15

    Activated factor XII (FXIIa) has plasminogen activator capacity but its relative contribution to fibrinolysis is considered marginal compared with urokinase and tissue plasminogen activator. Polyphosphate (polyP) is released from activated platelets and mediates FXII activation. Here, we investigate the contribution of polyP to the plasminogen activator function of αFXIIa. We show that both polyP 70 , of the chain length found in platelets (60-100 mer), and platelet-derived polyP significantly augment the plasminogen activation capacity of αFXIIa. PolyP 70 stimulated the autoactivation of FXII and subsequent plasminogen activation, indicating that once activated, αFXIIa remains bound to polyP 70 Indeed, complex formation between polyP 70 and αFXIIa provides protection against autodegradation. Plasminogen activation by βFXIIa was minimal and not enhanced by polyP 70 , highlighting the importance of the anion binding site. PolyP 70 did not modulate plasmin activity but stimulated activation of Glu and Lys forms of plasminogen by αFXIIa. Accordingly, polyP 70 was found to bind to FXII, αFXIIa, and plasminogen, but not βFXIIa. Fibrin and polyP 70 acted synergistically to enhance αFXIIa-mediated plasminogen activation. The plasminogen activator activity of the αFXIIa-polyP 70 complex was modulated by C1 inhibitor and histidine-rich glycoprotein, but not plasminogen activator inhibitors 1 and 2. Platelet polyP and FXII were found to colocalize on the activated platelet membrane in a fibrin-dependent manner and decorated fibrin strands extending from platelet aggregates. We show that in the presence of platelet polyP and the downstream substrate fibrin, αFXIIa is a highly efficient and favorable plasminogen activator. Our data are the first to document a profibrinolytic function of platelet polyP. © 2016 by The American Society of Hematology.

  19. Stimulation of cell-surface urokinase-type plasminogen activator activity and cell migration in vascular endothelial cells by a novel hexapeptide analogue of neurotensin.

    PubMed

    Ushiro, S; Mizoguchi, K; Yoshida, S; Jimi, S; Fujiwara, T; Yoshida, M; Wei, E T; Kitabgi, P; Amagaya, S; Ono, M; Kuwano, M

    1997-12-01

    To investigate if neurotensin (NT) could induce activation of urokinase-type plasminogen activator (uPA) in vascular endothelial cells, we utilized the acetyl-NT (8-13) analogue, TJN-950, in which the C-terminal leucine is reduced to leucinol. TJN-950 inhibited the binding of 125I-NT to membranes of newborn rat brains and of COS-7 cells transfected with rat NT receptor cDNA, but at 10(4) higher doses than NT (8-13). However, TJN-950 was as effective as NT in inducing the fibrinolytic activity in bovine vascular aortic and human umbilical vein endothelial cells, and enhanced the migration of vascular endothelial cells. Moreover, administration of TJN-950 induced neovascularization in the rat cornea in vivo. TJN-950 had no effect on expression of uPA, plasminogen activator inhibitor-1 or uPA receptor mRNA. The binding of 125I-TJN-950 to cell membranes was blocked by unlabeled uPA and TJN-950, but not the amino-terminal or 12-32 fragment of uPA. TJN-950 may enhance uPA activity in vascular endothelial cells by interacting with the uPA receptor, resulting in induction of angiogenesis.

  20. Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins.

    PubMed

    Glenting, Jacob; Beck, Hans Christian; Vrang, Astrid; Riemann, Holger; Ravn, Peter; Hansen, Anne Maria; Antonsson, Martin; Ahrné, Siv; Israelsen, Hans; Madsen, Søren

    2013-06-12

    An important criterion for the selection of a probiotic bacterial strain is its ability to adhere to the mucosal surface. Adhesion is usually mediated by proteins or other components located on the outer cell surface of the bacterium. In the present study we characterized the adhesive properties of two classical intracellular enzymes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and enolase (ENO) isolated from the outer cell surface of the probiotic bacterium Lactobacillus plantarum 299v. None of the genes encoded signal peptides or cell surface anchoring motifs that could explain their extracellular location on the bacterial surface. The presence of the glycolytic enzymes on the outer surface was verified by western blotting using polyclonal antibodies raised against the specific enzymes. GAPDH and ENO showed a highly specific binding to plasminogen and fibronectin whereas GAPDH but not ENO showed weak binding to mucin. Furthermore, a pH dependent and specific binding of GAPDH and ENO to intestinal epithelial Caco-2 cells at pH 5 but not at pH 7 was demonstrated. The results showed that these glycolytic enzymes could play a role in the adhesion of the probiotic bacterium L. plantarum 299v to the gastrointestinal tract of the host. Finally, a number of probiotic as well non-probiotic Lactobacillus strains were analyzed for the presence of GAPDH and ENO on the outer surface, but no correlation between the extracellular location of these enzymes and the probiotic status of the applied strains was demonstrated. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets.

    PubMed

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Camproux, Anne-Claude; Petitjean, Michel

    2017-11-01

    We analyzed 78 binding pockets of the human urokinase plasminogen activator (uPA) catalytic domain extracted from a data set of crystallized uPA-ligand complexes. These binding pockets were computed with an original geometric method that does NOT involve any arbitrary parameter, such as cutoff distances, angles, and so on. We measured the deviation from convexity of each pocket shape with the pocket convexity index (PCI). We defined a new pocket descriptor called distributional sphericity coefficient (DISC), which indicates to which extent the protein atoms of a given pocket lie on the surface of a sphere. The DISC values were computed with the freeware PCI. The pocket descriptors and their high correspondences with ligand descriptors are crucial for polypharmacology prediction. We found that the protein heavy atoms lining the urokinases binding pockets are either located on the surface of their convex hull or lie close to this surface. We also found that the radii of the urokinases binding pockets and the radii of their ligands are highly correlated (r = 0.9).

  2. Interaction of Leptospira Elongation Factor Tu with Plasminogen and Complement Factor H: A Metabolic Leptospiral Protein with Moonlighting Activities

    PubMed Central

    Abe, Cecília M.; Monaris, Denize; Morais, Zenaide M.; Souza, Gisele O.; Vasconcellos, Sílvio A.; Isaac, Lourdes; Abreu, Patrícia A. E.; Barbosa, Angela S.

    2013-01-01

    The elongation factor Tu (EF-Tu), an abundant bacterial protein involved in protein synthesis, has been shown to display moonlighting activities. Known to perform more than one function at different times or in different places, it is found in several subcellular locations in a single organism, and may serve as a virulence factor in a range of important human pathogens. Here we demonstrate that Leptospira EF-Tu is surface-exposed and performs additional roles as a cell-surface receptor for host plasma proteins. It binds plasminogen in a dose-dependent manner, and lysine residues are critical for this interaction. Bound plasminogen is converted to active plasmin, which, in turn, is able to cleave the natural substrates C3b and fibrinogen. Leptospira EF-Tu also acquires the complement regulator Factor H (FH). FH bound to immobilized EF-Tu displays cofactor activity, mediating C3b degradation by Factor I (FI). In this manner, EF-Tu may contribute to leptospiral tissue invasion and complement inactivation. To our knowledge, this is the first description of a leptospiral protein exhibiting moonlighting activities. PMID:24312361

  3. The Glycolytic Enzyme Triosephosphate Isomerase of Trichomonas vaginalis Is a Surface-Associated Protein Induced by Glucose That Functions as a Laminin- and Fibronectin-Binding Protein

    PubMed Central

    Miranda-Ozuna, Jesús F. T.; Hernández-García, Mar S.; Brieba, Luis G.; Benítez-Cardoza, Claudia G.; Ortega-López, Jaime; González-Robles, Arturo

    2016-01-01

    Triosephosphate isomerase of Trichomonas vaginalis (TvTIM) is a 27-kDa cytoplasmic protein encoded by two genes, tvtim1 and tvtim2, that participates in glucose metabolism. TvTIM is also localized to the parasite surface. Thus, the goal of this study was to identify the novel functions of the surface-associated TvTIM in T. vaginalis and to assess the effect of glucose as an environmental factor that regulates its expression and localization. Reverse transcription-PCR (RT-PCR) showed that the tvtim genes were differentially expressed in response to glucose concentration. tvtim1 was overexpressed under glucose-restricted (GR) conditions, whereas tvtim2 was overexpressed under glucose-rich, or high-glucose (HG), conditions. Western blot and indirect immunofluorescence assays also showed that glucose positively affected the amount and surface localization of TvTIM in T. vaginalis. Affinity ligand assays demonstrated that the recombinant TvTIM1 and TvTIM2 proteins bound to laminin (Lm) and fibronectin (Fn) but not to plasminogen. Moreover, higher levels of adherence to Lm and Fn were detected in parasites grown under HG conditions than in those grown under GR conditions. Furthermore, pretreatment of trichomonads with an anti-TvTIMr polyclonal antibody or pretreatment of Lm- or Fn-coated wells with both recombinant proteins (TvTIM1r and TvTIM2r) specifically reduced the binding of live parasites to Lm and Fn in a concentration-dependent manner. Moreover, T. vaginalis was exposed to different glucose concentrations during vaginal infection of women with trichomoniasis. Our data indicate that TvTIM is a surface-associated protein under HG conditions that mediates specific binding to Lm and Fn as a novel virulence factor of T. vaginalis. PMID:27481251

  4. Identification and characterization of Taenia solium enolase as a plasminogen-binding protein.

    PubMed

    Ayón-Núñez, Dolores A; Fragoso, Gladis; Espitia, Clara; García-Varela, Martín; Soberón, Xavier; Rosas, Gabriela; Laclette, Juan P; Bobes, Raúl J

    2018-06-01

    The larval stage of Taenia solium (cysticerci) is the causal agent of human and swine cysticercosis. When ingested by the host, T. solium eggs are activated and hatch in the intestine, releasing oncospheres that migrate to various tissues and evolve into cysticerci. Plasminogen (Plg) receptor proteins have been reported to play a role in migration processes for several pathogens. This work is aimed to identify Plg-binding proteins in T. solium cysticerci and determine whether T. solium recombinant enolase (rTsEnoA) is capable of specifically binding and activating human Plg. To identify Plg-binding proteins, a 2D-SDS-PAGE ligand blotting was performed, and recognized spots were identified by MS/MS. Seven proteins from T. solium cysticerci were found capable of binding Plg: fascicilin-1, fasciclin-2, enolase, MAPK, annexin, actin, and cytosolic malate dehydrogenase. To determine whether rTsEnoA binds human Plg, a ligand blotting was performed and the results were confirmed by ELISA both in the presence and absence of εACA, a competitive Plg inhibitor. Finally, rTsEnoA-bound Plg was activated to plasmin in the presence of tPA. To better understand the evolution of enolase isoforms in T. solium, a phylogenetic inference analysis including 75 enolase amino acid sequences was conducted. The origin of flatworm enolase isoforms, except for Eno4, is independent of their vertebrate counterparts. Therefore, herein we propose to designate tapeworm protein isoforms as A, B, C, and 4. In conclusion, recombinant enolase showed a strong plasminogen binding and activating activity in vitro. T. solium enolase could play a role in parasite invasion along with other plasminogen-binding proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Potent antitumor activity of a urokinase-activated engineered anthrax toxin

    NASA Astrophysics Data System (ADS)

    Liu, Shihui; Aaronson, Hannah; Mitola, David J.; Leppla, Stephen H.; Bugge, Thomas H.

    2003-01-01

    The acquisition of cell-surface urokinase plasminogen activator activity is a hallmark of malignancy. We generated an engineered anthrax toxin that is activated by cell-surface urokinase in vivo and displays limited toxicity to normal tissue but broad and potent tumoricidal activity. Native anthrax toxin protective antigen, when administered with a chimeric anthrax toxin lethal factor, Pseudomonas exotoxin fusion protein, was extremely toxic to mice, causing rapid and fatal organ damage. Replacing the furin activation sequence in anthrax toxin protective antigen with an artificial peptide sequence efficiently activated by urokinase greatly attenuated toxicity to mice. In addition, the mutation conferred cell-surface urokinase-dependent toxin activation in vivo, as determined by using a panel of plasminogen, plasminogen activator, plasminogen activator receptor, and plasminogen activator inhibitor-deficient mice. Surprisingly, toxin activation critically depended on both urokinase plasminogen activator receptor and plasminogen in vivo, showing that both proteins are essential cofactors for the generation of cell-surface urokinase. The engineered toxin displayed potent tumor cell cytotoxicity to a spectrum of transplanted tumors of diverse origin and could eradicate established solid tumors. This tumoricidal activity depended strictly on tumor cell-surface plasminogen activation. The data show that a simple change of protease activation specificity converts anthrax toxin from a highly lethal to a potent tumoricidal agent.

  6. The activation of plasminogen by Hageman factor (Factor XII) and Hageman factor fragments.

    PubMed Central

    Goldsmith, G H; Saito, H; Ratnoff, O S

    1978-01-01

    Activation of plasminogen through surface-mediated reactions is well recognized. In the presence of kaolin, purified Hageman factor (Factor XII) changed plasminogen to plasmin, as assayed upon a synthetic amide substrate and by fibrinolysis. Kinetic studies suggested an enzymatic action of Hageman factor upon its substrate, plasminogen. Hageman factor fragments, at a protein concentration equivalent to whole Hageman factor, activated plasminogen to a lesser extent. These protein preparations were not contaminated with other agents implicated in surface-mediated fibrinolysis. Diisopropyl fluorophosphate treatment of plasminogen did not inhibit its activation by Hageman factor. These studies indicate that Hageman factor has a hitherto unsuspected function, the direct activation of plasminogen. PMID:659637

  7. Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets

    PubMed Central

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Camproux, Anne-Claude

    2017-01-01

    Abstract We analyzed 78 binding pockets of the human urokinase plasminogen activator (uPA) catalytic domain extracted from a data set of crystallized uPA–ligand complexes. These binding pockets were computed with an original geometric method that does NOT involve any arbitrary parameter, such as cutoff distances, angles, and so on. We measured the deviation from convexity of each pocket shape with the pocket convexity index (PCI). We defined a new pocket descriptor called distributional sphericity coefficient (DISC), which indicates to which extent the protein atoms of a given pocket lie on the surface of a sphere. The DISC values were computed with the freeware PCI. The pocket descriptors and their high correspondences with ligand descriptors are crucial for polypharmacology prediction. We found that the protein heavy atoms lining the urokinases binding pockets are either located on the surface of their convex hull or lie close to this surface. We also found that the radii of the urokinases binding pockets and the radii of their ligands are highly correlated (r = 0.9). PMID:28570103

  8. Protein Corona in Response to Flow: Effect on Protein Concentration and Structure.

    PubMed

    Jayaram, Dhanya T; Pustulka, Samantha M; Mannino, Robert G; Lam, Wilbur A; Payne, Christine K

    2018-04-09

    Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Aβ delays fibrin clot lysis by altering fibrin structure and attenuating plasminogen binding to fibrin

    PubMed Central

    Zamolodchikov, Daria

    2012-01-01

    Alzheimer disease is characterized by the presence of increased levels of the β-amyloid peptide (Aβ) in the brain parenchyma and cerebral blood vessels. This accumulated Aβ can bind to fibrin(ogen) and render fibrin clots more resistant to degradation. Here, we demonstrate that Aβ42 specifically binds to fibrin and induces a tighter fibrin network characterized by thinner fibers and increased resistance to lysis. However, Aβ42-induced structural changes cannot be the sole mechanism of delayed lysis because Aβ overlaid on normal preformed clots also binds to fibrin and delays lysis without altering clot structure. In this regard, we show that Aβ interferes with the binding of plasminogen to fibrin, which could impair plasmin generation and fibrin degradation. Indeed, plasmin generation by tissue plasminogen activator (tPA), but not streptokinase, is slowed in fibrin clots containing Aβ42, and clot lysis by plasmin, but not trypsin, is delayed. Notably, plasmin and tPA activities, as well as tPA-dependent generation of plasmin in solution, are not decreased in the presence of Aβ42. Our results indicate the existence of 2 mechanisms of Aβ42 involvement in delayed fibrinolysis: (1) through the induction of a tighter fibrin network composed of thinner fibers, and (2) through inhibition of plasmin(ogen)–fibrin binding. PMID:22238323

  10. Selection of High-Affinity Peptidic Serine Protease Inhibitors with Increased Binding Entropy from a Back-Flip Library of Peptide-Protease Fusions.

    PubMed

    Sørensen, Hans Peter; Xu, Peng; Jiang, Longguang; Kromann-Hansen, Tobias; Jensen, Knud J; Huang, Mingdong; Andreasen, Peter A

    2015-09-25

    We have developed a new concept for designing peptidic protein modulators, by recombinantly fusing the peptidic modulator, with randomized residues, directly to the target protein via a linker and screening for internal modulation of the activity of the protein. We tested the feasibility of the concept by fusing a 10-residue-long, disulfide-bond-constrained inhibitory peptide, randomized in selected positions, to the catalytic domain of the serine protease murine urokinase-type plasminogen activator. High-affinity inhibitory peptide variants were identified as those that conferred to the fusion protease the lowest activity for substrate hydrolysis. The usefulness of the strategy was demonstrated by the selection of peptidic inhibitors of murine urokinase-type plasminogen activator with a low nanomolar affinity. The high affinity could not have been predicted by rational considerations, as the high affinity was associated with a loss of polar interactions and an increased binding entropy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Expression profiles of glyceraldehyde-3-phosphate dehydrogenase from Clonorchis sinensis: a glycolytic enzyme with plasminogen binding capacity.

    PubMed

    Hu, Yue; Zhang, Erhong; Huang, Lisi; Li, Wenfang; Liang, Pei; Wang, Xiaoyun; Xu, Jin; Huang, Yan; Yu, Xinbing

    2014-12-01

    Globally, 15-20 million people are infected with Clonorchis sinensis (C. sinensis) which results in clonorchiasis. In China, clonorchiasis is considered to be one of the fastest-growing food-borne parasitic diseases. That more key molecules of C. sinensis are characterized will be helpful to understand biology and pathogenesis of the carcinogenic liver fluke. Glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) from many species have functions other than their catalytic role in glycolysis. In the present study, we analyzed the sequence and structure of GAPDH from C. sinensis (CsGAPDH) by using bioinformatics tools and obtained its recombinant protein by prokaryotic expression system, to learn its expression profiles and molecular property. CsGAPDH could bind to human intrahepatic biliary epithelial cell in vivo and in vitro by the method of immunofluorescence assays. CsGAPDH also disturbed in lumen of biliary tract near to the parasite in the liver of infected rat. Western blotting analysis together with immunofluorescence assay indicated that CsGAPDH was a component of excretory/secretory proteins (CsESPs) and a surface-localized protein of C. sinensis. Quantitative real-time PCR (Q-PCR) and Western blotting demonstrated that CsGAPDHs are expressed at the life stages of adult worm, metacercaria, and egg, but the expression levels were different from each other. Recombinant CsGAPDH (rCsGAPDH) was confirmed to have the capacity to catalyze the conversion of glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate which was inhibited by AMP in a dose-dependent manner. In addition, rCsGAPDH was able to interact with human plasminogen in a dose-dependent manner by ELISA. The interaction could be inhibited by lysine. The plasminogen binding capacity of rCsGAPDH along with the distribution of CsGAPDH in vivo and in the liver of C. sinensis-infected rat hinted that surface-localized CsGAPDH might play an important role in host invasion of the worm besides its glycolytic activity. Our work will be a cornerstone for getting more messages about CsGAPDH and its role in biology and parasitism of C. sinensis.

  12. The Glycolytic Enzyme Triosephosphate Isomerase of Trichomonas vaginalis Is a Surface-Associated Protein Induced by Glucose That Functions as a Laminin- and Fibronectin-Binding Protein.

    PubMed

    Miranda-Ozuna, Jesús F T; Hernández-García, Mar S; Brieba, Luis G; Benítez-Cardoza, Claudia G; Ortega-López, Jaime; González-Robles, Arturo; Arroyo, Rossana

    2016-10-01

    Triosephosphate isomerase of Trichomonas vaginalis (TvTIM) is a 27-kDa cytoplasmic protein encoded by two genes, tvtim1 and tvtim2, that participates in glucose metabolism. TvTIM is also localized to the parasite surface. Thus, the goal of this study was to identify the novel functions of the surface-associated TvTIM in T. vaginalis and to assess the effect of glucose as an environmental factor that regulates its expression and localization. Reverse transcription-PCR (RT-PCR) showed that the tvtim genes were differentially expressed in response to glucose concentration. tvtim1 was overexpressed under glucose-restricted (GR) conditions, whereas tvtim2 was overexpressed under glucose-rich, or high-glucose (HG), conditions. Western blot and indirect immunofluorescence assays also showed that glucose positively affected the amount and surface localization of TvTIM in T. vaginalis Affinity ligand assays demonstrated that the recombinant TvTIM1 and TvTIM2 proteins bound to laminin (Lm) and fibronectin (Fn) but not to plasminogen. Moreover, higher levels of adherence to Lm and Fn were detected in parasites grown under HG conditions than in those grown under GR conditions. Furthermore, pretreatment of trichomonads with an anti-TvTIMr polyclonal antibody or pretreatment of Lm- or Fn-coated wells with both recombinant proteins (TvTIM1r and TvTIM2r) specifically reduced the binding of live parasites to Lm and Fn in a concentration-dependent manner. Moreover, T. vaginalis was exposed to different glucose concentrations during vaginal infection of women with trichomoniasis. Our data indicate that TvTIM is a surface-associated protein under HG conditions that mediates specific binding to Lm and Fn as a novel virulence factor of T. vaginalis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Host Genes and Resistance/Sensitivity to Military Priority Pathogens

    DTIC Science & Technology

    2010-06-01

    Publications 1. Clinton, S. R., J . E. Bina, T. P. Hatch, M. A. Whitt, and M. A. Miller. 2010. Binding and activation of host plasminogen on the surface...outcomes Publications 1. Boon AC, Debeauchamp J , Krauss S, Rubrum A, Webb AD, Webster RG, McElhaney J , Webby RJ. Cross-reactive neutralizing...antibodies directed against pandemic H1N1 2009 virus are protective in a highly sensitive DBA/2 influenza mouse model. J Virol. 2010; in print

  14. Novel Leptospira interrogans protein Lsa32 is expressed during infection and binds laminin and plasminogen.

    PubMed

    Domingos, Renan F; Fernandes, Luis G; Romero, Eliete C; de Morais, Zenaide M; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2015-04-01

    Pathogenic Leptospira is the aetiological agent of leptospirosis, a life-threatening disease of human and veterinary concern. The quest for novel antigens that could mediate host-pathogen interactions is being pursued. Owing to their location, these antigens have the potential to elicit numerous activities, including immune response and adhesion. This study focuses on a hypothetical protein of Leptospira, encoded by the gene LIC11089, and its three derived fragments: the N-terminal, intermediate and C terminus regions. The gene coding for the full-length protein and fragments was cloned and expressed in Escherichia coli BL21(SI) strain by using the expression vector pAE. The recombinant protein and fragments tagged with hexahistidine at the N terminus were purified by metal affinity chromatography. The leptospiral full-length protein, named Lsa32 (leptospiral surface adhesin, 32 kDa), adheres to laminin, with the C terminus region being responsible for this interaction. Lsa32 binds to plasminogen in a dose-dependent fashion, generating plasmin when an activator is provided. Moreover, antibodies present in leptospirosis serum samples were able to recognize Lsa32. Lsa32 is most likely a new surface protein of Leptospira, as revealed by proteinase K susceptibility. Altogether, our data suggest that this multifaceted protein is expressed during infection and may play a role in host-L. interrogans interactions. © 2015 The Authors.

  15. The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain.

    PubMed Central

    Lorentsen, R H; Graversen, J H; Caterer, N R; Thogersen, H C; Etzerodt, M

    2000-01-01

    Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element. Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6-15) are shown to be of primary importance in heparin binding. PMID:10727405

  16. The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain.

    PubMed

    Lorentsen, R H; Graversen, J H; Caterer, N R; Thogersen, H C; Etzerodt, M

    2000-04-01

    Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element. Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6-15) are shown to be of primary importance in heparin binding.

  17. Inhibition of PAI-1 Antiproteolytic Activity Against tPA by RNA Aptamers

    PubMed Central

    Damare, Jared; Brandal, Stephanie

    2014-01-01

    Plasminogen activator inhibitor-1 (PAI-1; SERPINE1) inhibits the plasminogen activators: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). Elevated levels of PAI-1 have been correlated with an increased risk for cardiovascular disease. Pharmacologically suppressing PAI-1 might prevent, or successfully treat PAI-1 related vascular diseases. This can potentially be accomplished by using small RNA molecules (aptamers). This study's goal is to develop RNA aptamers to a region of PAI-1 that will prevent the ability of PAI-1 to interact with the plasminogen activators. The aptamers were generated through a systematic evolution of ligands via exponential enrichment approach that ensures the creation of RNA molecules that bind to our target protein, PAI-1. In vitro assays were used to determine the effect of these aptamers on PAI-1's inhibitory activity. Three aptamers that bind to PAI-1 with affinities in the nanomolar range were isolated. The aptamer clones R10-4 and R10-2 inhibited PAI-1's antiproteolytic activity against tPA and disrupted PAI-1's ability to form a stable covalent complex with tPA. Increasing aptamer concentrations correlated positively with an increase in cleaved PAI-1. To the best of our knowledge, this is the first report of RNA molecules that inhibit the antiproteolytic activity of PAI-1. PMID:24922319

  18. Lsa30, a novel adhesin of Leptospira interrogans binds human plasminogen and the complement regulator C4bp.

    PubMed

    Souza, Natalie M; Vieira, Monica L; Alves, Ivy J; de Morais, Zenaide M; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2012-09-01

    Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Surface proteins have the potential to promote several activities, including adhesion. This work aimed to study the leptospiral coding sequence (CDS) LIC11087, genome annotated as hypothetical outer membrane protein. The LIC11087 gene was cloned and expressed in Escherichia coli BL21 (DE3) strain by using the expression vector pAE. The recombinant protein tagged with N-terminal 6XHis was purified by metal-charged chromatography and characterized by circular dichroism (CD) spectroscopy. The recombinant protein has the ability to mediate attachment to the extracellular matrix (ECM) components, laminin and plasma fibronectin, and was named Lsa30 (Leptospiral surface adhesin of 30 kDa). Lsa30 binds to laminin and to plasma fibronectin in a dose-dependent and saturable manner, with dissociation equilibrium constants (K(D)) of 292 ± 24 nm and 157 ± 35 nm, respectively. Moreover, the Lsa30 is a plasminogen (PLG) receptor, capable of generating plasmin, in the presence of activator. This protein may interfere with the complement cascade by interacting with C4bp regulator. The Lsa30 is probably a new surface protein of Leptospira as revealed by immunofluorescence assays with living organisms and the reactivity with antibodies present in serum samples of experimentally infected hamsters. Thus, Lsa30 is a novel versatile protein that may play a role in mediating adhesion and may help pathogenic Leptospira to overcome tissue barriers and to escape the immune system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Reduced Plasminogen Binding and Delayed Activation Render γ′-Fibrin More Resistant to Lysis than γA-Fibrin*

    PubMed Central

    Kim, Paul Y.; Vu, Trang T.; Leslie, Beverly A.; Stafford, Alan R.; Fredenburgh, James C.; Weitz, Jeffrey I.

    2014-01-01

    Fibrin (Fn) clots formed from γ′-fibrinogen (γ′-Fg), a variant with an elongated γ-chain, are resistant to lysis when compared with clots formed from the predominant γA-Fg, a finding previously attributed to differences in clot structure due to delayed thrombin-mediated fibrinopeptide (FP) B release or impaired cross-linking by factor XIIIa. We investigated whether slower lysis of γ′-Fn reflects delayed plasminogen (Pg) binding and/or activation by tissue plasminogen activator (tPA), reduced plasmin-mediated proteolysis of γ′-Fn, and/or altered cross-linking. Clots formed from γ′-Fg lysed more slowly than those formed from γA-Fg when lysis was initiated with tPA/Pg when FPA and FPB were both released, but not when lysis was initiated with plasmin, or when only FPA was released. Pg bound to γ′-Fn with an association rate constant 22% lower than that to γA-Fn, and the lag time for initiation of Pg activation by tPA was longer with γ′-Fn than with γA-Fn. Once initiated, however, Pg activation kinetics were similar. Factor XIIIa had similar effects on clots formed from both Fg isoforms. Therefore, slower lysis of γ′-Fn clots reflects delayed FPB release, which results in delayed binding and activation of Pg. When clots were formed from Fg mixtures containing more than 20% γ′-Fg, the upper limit of the normal level, the delay in lysis was magnified. These data suggest that circulating levels of γ′-Fg modulate the susceptibility of clots to lysis by slowing Pg activation by tPA and provide another example of the intimate connections between coagulation and fibrinolysis. PMID:25128532

  20. Characterization of three novel adhesins of Leptospira interrogans.

    PubMed

    Siqueira, Gabriela H; Atzingen, Marina V; Alves, Ivy J; de Morais, Zenaide M; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2013-12-01

    We report cloning, expression, purification, and characterization of three predicted leptospiral membrane proteins (LIC11360, LIC11009, and LIC11975). In silico analysis and proteinase K accessibility data suggest that these proteins might be surface exposed. We show that proteins encoded by LIC11360, LIC11009 and LIC11975 genes interact with laminin in a dose-dependent and saturable manner. The proteins are referred to as leptospiral surface adhesions 23, 26, and 36 (Lsa23, Lsa26, and Lsa36), respectively. These proteins also bind plasminogen and generate active plasmin. Attachment of Lsa23 and Lsa36 to fibronectin occurs through the involvement of the 30-kDa and 70-kDa heparin-binding domains of the ligand. Dose-dependent, specific-binding of Lsa23 to the complement regulator C4BP and to a lesser extent, to factor H, suggests that this protein may interfere with the complement cascade pathways. Leptospira spp. may use these interactions as possible mechanisms during the establishment of infection.

  1. Characterization of Three Novel Adhesins of Leptospira interrogans

    PubMed Central

    Siqueira, Gabriela H.; Atzingen, Marina V.; Alves, Ivy J.; de Morais, Zenaide M.; Vasconcellos, Silvio A.; Nascimento, Ana L. T. O.

    2013-01-01

    We report cloning, expression, purification, and characterization of three predicted leptospiral membrane proteins (LIC11360, LIC11009, and LIC11975). In silico analysis and proteinase K accessibility data suggest that these proteins might be surface exposed. We show that proteins encoded by LIC11360, LIC11009 and LIC11975 genes interact with laminin in a dose-dependent and saturable manner. The proteins are referred to as leptospiral surface adhesions 23, 26, and 36 (Lsa23, Lsa26, and Lsa36), respectively. These proteins also bind plasminogen and generate active plasmin. Attachment of Lsa23 and Lsa36 to fibronectin occurs through the involvement of the 30-kDa and 70-kDa heparin-binding domains of the ligand. Dose-dependent, specific-binding of Lsa23 to the complement regulator C4BP and to a lesser extent, to factor H, suggests that this protein may interfere with the complement cascade pathways. Leptospira spp. may use these interactions as possible mechanisms during the establishment of infection. PMID:23958908

  2. Discovery of novel urokinase plasminogen activator (uPA) inhibitors using ligand-based modeling and virtual screening followed by in vitro analysis.

    PubMed

    Al-Sha'er, Mahmoud A; Khanfar, Mohammad A; Taha, Mutasem O

    2014-01-01

    Urokinase plasminogen activator (uPA)-a serine protease-is thought to play a central role in tumor metastasis and angiogenesis and, therefore, inhibition of this enzyme could be beneficial in treating cancer. Toward this end, we explored the pharmacophoric space of 202 uPA inhibitors using seven diverse sets of inhibitors to identify high-quality pharmacophores. Subsequently, we employed genetic algorithm-based quantitative structure-activity relationship (QSAR) analysis as a competition arena to select the best possible combination of pharmacophoric models and physicochemical descriptors that can explain bioactivity variation within the training inhibitors (r (2) 162 = 0.74, F-statistic = 64.30, r (2) LOO = 0.71, r (2) PRESS against 40 test inhibitors = 0.79). Three orthogonal pharmacophores emerged in the QSAR equation suggesting the existence of at least three binding modes accessible to ligands within the uPA binding pocket. This conclusion was supported by receiver operating characteristic (ROC) curve analyses of the QSAR-selected pharmacophores. Moreover, the three pharmacophores were comparable with binding interactions seen in crystallographic structures of bound ligands within the uPA binding pocket. We employed the resulting pharmacophoric models and associated QSAR equation to screen the national cancer institute (NCI) list of compounds. The captured hits were tested in vitro. Overall, our modeling workflow identified new low micromolar anti-uPA hits.

  3. Urokinase-Type Plasminogen Activator Receptor Is Internalized by Different Mechanisms in Polarized and Nonpolarized Madin–Darby Canine Kidney Epithelial Cells

    PubMed Central

    Vilhardt, Frederik; Nielsen, Morten; Sandvig, Kirsten; van Deurs, Bo

    1999-01-01

    Accumulated data indicate that endocytosis of the glycosylphosphatidyl-inositol-anchored protein urokinase plasminogen activator receptor (uPAR) depends on binding of the ligand uPA:plasminogen activator inhibitor-1 (PAI-1) and subsequent interaction with internalization receptors of the low-density lipoprotein receptor family, which are internalized through clathrin-coated pits. This interaction is inhibited by receptor-associated protein (RAP). We show that uPAR with bound uPA:PAI-1 is capable of entering cells in a clathrin-independent process. First, HeLaK44A cells expressing mutant dynamin efficiently internalized uPA:PAI-1 under conditions in which transferrin endocytosis was blocked. Second, in polarized Madin–Darby canine kidney (MDCK) cells, which expressed human uPAR apically, the low basal rate of uPAR ligand endocytosis, which could not be inhibited by RAP, was increased by forskolin or phorbol ester (phorbol 12-myristate 13-acetate), which selectively up-regulate clathrin-independent endocytosis from the apical domain of epithelial cells. Third, in subconfluent nonpolarized MDCK cells, endocytosis of uPA:PAI-1 was only decreased marginally by RAP. At the ultrastructural level uPAR was largely excluded from clathrin-coated pits in these cells and localized in invaginated caveolae only in the presence of cross-linking antibodies. Interestingly, a larger fraction of uPAR in nonpolarized relative to polarized MDCK cells was insoluble in Triton X-100 at 0°C, and by surface labeling with biotin we also show that internalized uPAR was mainly detergent insoluble, suggesting a correlation between association with detergent-resistant membrane microdomains and higher degree of clathrin-independent endocytosis. Furthermore, by cryoimmunogold labeling we show that 5–10% of internalized uPAR in nonpolarized, but not polarized, MDCK cells is targeted to lysosomes by a mechanism that is regulated by ligand occupancy. PMID:9880335

  4. Rationale for the selective administration of tranexamic acid to inhibit fibrinolysis in the severely injured patient.

    PubMed

    Moore, Ernest E; Moore, Hunter B; Gonzalez, Eduardo; Sauaia, Angela; Banerjee, Anirban; Silliman, Christopher C

    2016-04-01

    Postinjury fibrinolysis can manifest as three distinguishable phenotypes: 1) hyperfibrinolysis, 2) physiologic, and 3) hypofibrinolysis (shutdown). Hyperfibrinolysis is associated with uncontrolled bleeding due to clot dissolution; whereas, fibrinolysis shutdown is associated with organ dysfunction due to microvascular occlusion. The incidence of fibrinolysis phenotypes at hospital arrival in severely injured patients is: 1) hyperfibrinolysis 18%, physiologic 18%, and shutdown 64%. The mechanisms responsible for dysregulated fibrinolysis following injury remain uncertain. Animal work suggests hypoperfusion promotes fibrinolysis, while tissue injury inhibits fibrinolysis. Clinical experience is consistent with these observations. The predominant mediator of postinjury hyperfibrinolysis appears to be tissue plasminogen activator (tPA) released from ischemic endothelium. The effects of tPA are accentuated by impaired hepatic clearance. Fibrinolysis shutdown, on the other hand, may occur from inhibition of circulating tPA, enhanced clot strength impairing the binding of tPA and plasminogen to fibrin, or the inhibition of plasmin. Plasminogen activator inhibitor -1 (PAI-1) binding of circulating tPA appears to be a major mechanism for postinjury shutdown. The sources of PAI-1 include endothelium, platelets, and organ parenchyma. The laboratory identification of fibrinolysis phenotype, at this moment, is best determined with viscoelastic hemostatic assays (TEG, ROTEM). While D-dimer and plasmin antiplasmin (PAP) levels corroborate fibrinolysis, they do not provide real-time assessment of the circulating blood capacity. Our clinical studies indicate that fibrinolysis is a very dynamic process and our experimental work suggests plasma first resuscitation reverses hyperfibrinolysis. Collectively, we believe recent clinical and experimental work suggest antifibrinolytic therapy should be employed selectively in the acutely injured patient, and optimally guided by TEG or ROTEM. © 2016 AABB.

  5. Small molecule antagonists of the urokinase (uPA): urokinase receptor (uPAR) interaction with high reported potencies show only weak effects in cell-based competition assays employing the native uPAR ligand.

    PubMed

    De Souza, Melissa; Matthews, Hayden; Lee, Jodi A; Ranson, Marie; Kelso, Michael J

    2011-04-15

    Binding of the urokinase-type plasminogen activator (uPA) to its cell-surface-bound receptor uPAR and upregulation of the plasminogen activation system (PAS) correlates with increased metastasis and poor prognosis in several tumour types. Disruptors of the uPA:uPAR interaction represent promising anti-tumour/metastasis agents and several approaches have been explored for this purpose, including the use of small molecule antagonists. Two highly potent non-peptidic antagonists 1 and 2 (IC(50)1=0.8 nM, IC(50)2=33 nM) from the patent literature were reportedly identified using competition assays employing radiolabelled uPAR-binding uPA fragments and appeared as useful pharmacological tools for studying the PAS. Before proceeding to such studies, confirmation was sought that 1 and 2 retained their potencies in physiologically relevant cell-based competition assays employing uPAR's native binding partner high molecular weight uPA (HMW-uPA). This study describes a new solution phase synthesis of 1, a mixed solid/solution phase synthesis of 2 and reports the activities of 1 and 2 in semi-quantitative competition flow cytometry assays and quantitative cell-based uPA activity assays that employed HMW-uPA as the competing ligand. The flow cytometry experiments revealed that high concentrations of 2 (10-100 μM) are required to compete with HMW-uPA for uPAR binding and that 1 shows no antagonist effects at 100 μM. The cell-based enzyme activity assays similarly revealed that 1 and 2 are poor inhibitors of cell surface-bound HMW-uPA activity (IC(50) >100 μM for 1 and 2). The report highlights the dangers of identifying false-positive lead uPAR antagonists from competition assays employing labelled competing ligands other than the native HMW-uPA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Thrombin-activable fibrinolysis inhibitor attenuates (DD)E-mediated stimulation of plasminogen activation by reducing the affinity of (DD)E for tissue plasminogen activator. A potential mechanism for enhancing the fibrin specificity of tissue plasminogen activator.

    PubMed

    Stewart, R J; Fredenburgh, J C; Rischke, J A; Bajzar, L; Weitz, J I

    2000-11-24

    A complex of d-dimer noncovalently associated with fragment E ((DD)E), a degradation product of cross-linked fibrin that binds tissue plasminogen activator (t-PA) and plasminogen (Pg) with affinities similar to those of fibrin, compromises the fibrin specificity of t-PA by stimulating systemic Pg activation. In this study, we examined the effect of thrombin-activable fibrinolysis inhibitor (TAFI), a latent carboxypeptidase B (CPB)-like enzyme, on the stimulatory activity of (DD)E. Incubation of (DD)E with activated TAFI (TAFIa) or CPB (a) produces a 96% reduction in the capacity of (DD)E to stimulate t-PA-mediated activation of Glu- or Lys-Pg by reducing k(cat) and increasing K(m) for the reaction; (b) induces the release of 8 mol of lysine/mol of (DD)E, although most of the stimulatory activity is lost after release of only 4 mol of lysine/mol (DD)E; and (c) reduces the affinity of (DD)E for Glu-Pg, Lys-Pg, and t-PA by 2-, 4-, and 160-fold, respectively. Because TAFIa- or CPB-exposed (DD)E produces little stimulation of Glu-Pg activation by t-PA, (DD)E is not degraded into fragment E and d-dimer, the latter of which has been reported to impair fibrin polymerization. These data suggest a novel role for TAFIa. By attenuating systemic Pg activation by (DD)E, TAFIa renders t-PA more fibrin-specific.

  7. Inhibition of plasminogen activator inhibitor-1 binding to endocytosis receptors of the low-density-lipoprotein receptor family by a peptide isolated from a phage display library

    PubMed Central

    Jensen, Jan K.; Malmendal, Anders; Schiøtt, Birgit; Skeldal, Sune; Pedersen, Katrine E.; Celik, Leyla; Nielsen, Niels Chr.; Andreasen, Peter A.; Wind, Troels

    2006-01-01

    The functions of the serpin PAI-1 (plasminogen activator inhibitor-1) are based on molecular interactions with its target proteases uPA and tPA (urokinase-type and tissue-type plasminogen activator respectively), with vitronectin and with endocytosis receptors of the low-density-lipoprotein family. Understanding the significance of these interactions would be facilitated by the ability to block them individually. Using phage display, we have identified the disulfide-constrained peptide motif CFGWC with affinity for natural human PAI-1. The three-dimensional structure of a peptide containing this motif (DVPCFGWCQDA) was determined by liquid-state NMR spectroscopy. A binding site in the so-called flexible joint region of PAI-1 was suggested by molecular modelling and validated through binding studies with various competitors and site-directed mutagenesis of PAI-1. The peptide with an N-terminal biotin inhibited the binding of the uPA–PAI-1 complex to the endocytosis receptors low-density-lipoprotein-receptor-related protein 1A (LRP-1A) and very-low-density-lipoprotein receptor (VLDLR) in vitro and inhibited endocytosis of the uPA–PAI-1 complex in U937 cells. We conclude that the isolated peptide represents a novel approach to pharmacological interference with the functions of PAI-1 based on inhibition of one specific molecular interaction. PMID:16813566

  8. Fibrinolytic and procoagulant activities of Yersinia pestis and Salmonella enterica.

    PubMed

    Korhonen, T K

    2015-06-01

    Pla of the plague bacterium Yersinia pestis and PgtE of the enteropathogen Salmonella enterica are surface-exposed, transmembrane β-barrel proteases of the omptin family that exhibit a complex array of interactions with the hemostatic systems in vitro, and both proteases are established virulence factors. Pla favors fibrinolysis by direct activation of plasminogen, inactivation of the serpins plasminogen activator inhibitor-1 and α2-antiplasmin, inactivation of the thrombin-activable fibrinolysis inhibitor, and activation of single-chain urokinase. PgtE is structurally very similar but exhibits partially different functions and differ in expression control. PgtE proteolysis targets control aspects of fibrinolysis, and mimicry of matrix metalloproteinases enhances cell migration that should favor the intracellular spread of the bacterium. Enzymatic activity of both proteases is strongly influenced by the environment-induced variations in lipopolysaccharide that binds to the β-barrel. Both proteases cleave the tissue factor pathway inhibitor and thus also express procoagulant activity. © 2015 International Society on Thrombosis and Haemostasis.

  9. SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G

    PubMed Central

    Bergmann, Simone; Eichhorn, Inga; Kohler, Thomas P.; Hammerschmidt, Sven; Goldmann, Oliver; Rohde, Manfred; Fulde, Marcus

    2017-01-01

    The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm-positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis, respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis. The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis. PMID:28401063

  10. Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions

    PubMed Central

    Cunningham, Orla; Andolfo, Annapaola; Santovito, Maria Lisa; Iuzzolino, Lucia; Blasi, Francesco; Sidenius, Nicolai

    2003-01-01

    The urokinase-type plasminogen activator receptor (uPAR/CD87) is a glycosylphosphatidylinositol-anchored membrane protein with multiple functions in extracellular proteolysis, cell adhesion, cell migration and proliferation. We now report that cell surface uPAR dimerizes and that dimeric uPAR partitions preferentially to detergent-resistant lipid rafts. Dimerization of uPAR did not require raft partitioning as the lowering of membrane cholesterol failed to reduce dimerization and as a transmembrane uPAR chimera, which does not partition to lipid rafts, also dimerized efficiently. While uPA bound to uPAR independently of its membrane localization and dimerization status, uPA-induced uPAR cleavage was strongly accelerated in lipid rafts. In contrast to uPA, the binding of Vn occurred preferentially to raft- associated dimeric uPAR and was completely blocked by cholesterol depletion. PMID:14609946

  11. Dysfunction of annexin A2 contributes to hyperglycaemia-induced loss of human endothelial cell surface fibrinolytic activity.

    PubMed

    Dai, Haibin; Yu, Zhanyang; Fan, Xiang; Liu, Ning; Yan, Min; Chen, Zhong; Lo, Eng H; Hajjar, Katherine A; Wang, Xiaoying

    2013-06-01

    Hyperglycaemia impairs fibrinolytic activity on the surface of endothelial cells, but the underlying mechanisms are not fully understood. In this study, we tested the hypothesis that hyperglycaemia causes dysfunction of the endothelial membrane protein annexin A2, thereby leading to an overall reduction of fibrinolytic activity. Hyperglycaemia for 7 days significantly reduced cell surface fibrinolytic activity in human brain microvascular endothelial cells (HBMEC). Hyperglycaemia also decreased tissue type plasminogen activator (t-PA), plasminogen, and annexin A2 mRNA and protein expression, while increasing plasminogen activator inhibitor-1 (PAI-1). No changes in p11 mRNA or protein expression were detected. Hyperglycaemia significantly increased AGE-modified forms of total cellular and membrane annexin A2. The hyperglycemia-associated reduction in fibrinolytic activity was fully restored upon incubation with recombinant annexin A2 (rA2), but not AGE-modified annexin A2 or exogenous t-PA. Hyperglycaemia decreased t-PA, upregulated PAI-1 and induced AGE-related disruption of annexin A2 function, all of which contributed to the overall reduction in endothelial cell surface fibrinolytic activity. Further investigations to elucidate the underlying molecular mechanisms and pathophysiological implications of A2 derivatisation might ultimately lead to a better understanding of mechanisms of impaired vascular fibrinolysis, and to development of new interventional strategies for the thrombotic vascular complications in diabetes.

  12. Dysfunction of annexin A2 contributes to hyperglycaemia-induced loss of human endothelial cell surface fibrinolytic activity

    PubMed Central

    Dai, Haibin; Yu, Zhanyang; Fan, Xiang; Liu, Ning; Yan, Min; Chen, Zhong; Lo, Eng H.; Hajjar, Katherine A.; Wang, Xiaoying

    2014-01-01

    Summary Hyperglycaemia impairs fibrinolytic activity on the surface of endothelial cells, but the underlying mechanisms are not fully understood. In this study, we tested the hypothesis that hyperglycaemia causes dysfunction of the endothelial membrane protein annexin A2, thereby leading to an overall reduction of fibrinolytic activity. Hyperglycaemia for 7 days significantly reduced cell surface fibrinolytic activity in human brain microvascular endothelial cells (HBMEC). Hyperglycaemia also decreased tissue type plasminogen activator (t-PA), plasminogen, and annexin A2 mRNA and protein expression, while increasing plasminogen activator inhibitor-1 (PAI-1). No changes in p11 mRNA or protein expression were detected. Hyperglycaemia significantly increased AGE-modified forms of total cellular and membrane annexin A2. The hyperglycemia-associated reduction in fibrinolytic activity was fully restored upon incubation with recombinant annexin A2 (rA2), but not AGE-modified annexin A2 or exogenous t-PA. Hyperglycaemia decreased t-PA, upregulated PAI-1 and induced AGE-related disruption of annexin A2 function, all of which contributed to the overall reduction in endothelial cell surface fibrinolytic activity. Further investigations to elucidate the underlying molecular mechanisms and pathophysiological implications of A2 derivatisation might ultimately lead to a better understanding of mechanisms of impaired vascular fibrinolysis, and to development of new interventional strategies for the thrombotic vascular complications in diabetes. PMID:23572070

  13. Molecular adaptation of a plant-bacterium outer membrane protease towards plague virulence factor Pla

    PubMed Central

    2011-01-01

    Background Omptins are a family of outer membrane proteases that have spread by horizontal gene transfer in Gram-negative bacteria that infect vertebrates or plants. Despite structural similarity, the molecular functions of omptins differ in a manner that reflects the life style of their host bacteria. To simulate the molecular adaptation of omptins, we applied site-specific mutagenesis to make Epo of the plant pathogenic Erwinia pyrifoliae exhibit virulence-associated functions of its close homolog, the plasminogen activator Pla of Yersinia pestis. We addressed three virulence-associated functions exhibited by Pla, i.e., proteolytic activation of plasminogen, proteolytic degradation of serine protease inhibitors, and invasion into human cells. Results Pla and Epo expressed in Escherichia coli are both functional endopeptidases and cleave human serine protease inhibitors, but Epo failed to activate plasminogen and to mediate invasion into a human endothelial-like cell line. Swapping of ten amino acid residues at two surface loops of Pla and Epo introduced plasminogen activation capacity in Epo and inactivated the function in Pla. We also compared the structure of Pla and the modeled structure of Epo to analyze the structural variations that could rationalize the different proteolytic activities. Epo-expressing bacteria managed to invade human cells only after all extramembranous residues that differ between Pla and Epo and the first transmembrane β-strand had been changed. Conclusions We describe molecular adaptation of a protease from an environmental setting towards a virulence factor detrimental for humans. Our results stress the evolvability of bacterial β-barrel surface structures and the environment as a source of progenitor virulence molecules of human pathogens. PMID:21310089

  14. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays.

    PubMed

    Pieters, Marlien; Barnard, Sunelle A; Loots, Du Toit; Rijken, Dingeman C

    2017-01-01

    Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable) on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g), platelet-containing (352 g) and platelet-rich plasma (200 g) were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation). Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin) showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly through release of latent plasminogen activator inhibitor-1 with limited effects on plasminogen activator inhibitor-1 activity, tissue plasminogen activator/plasminogen activator inhibitor-1 complex or plasma clot lysis time. Platelets may however also have functional effects on plasma fibrinolytic potential in the presence of high platelet counts, such as in platelet-rich plasma.

  15. Fibrin-Enhanced Canonical Wnt Signaling Directs Plasminogen Expression in Cementoblasts

    PubMed Central

    Rahman, Saeed Ur; Ryoo, Hyun-Mo

    2017-01-01

    Cementum is a mineralized layer on the tooth’s root surface and facilitates the biomechanical anchoring of fibrous connective tissues as a part of tooth-supportive complexes. Previously, we observed that OCCM30 cementoblasts cultured on fibrin matrices underwent apoptosis due to fibrin degradation through the expression of proteases. Here, we demonstrated that OCCM30 on fibrin matrices (OCCM30-fibrin) enhanced canonical Wnt signaling, which directed to plasminogen expression. The OCCM30-fibrin showed higher levels of Wnt3a expression, nuclear translocation of β-catenin, and T-cell factor (TCF) optimal motif (TOP) reporter activity than the cells on tissue culture dishes (OCCM30-TCD), indicating that the OCCM30-fibrin enhanced canonical Wnt/β-catenin signaling. Also, OCCM30-fibrin expressed biomineralization-associated markers at higher levels than OCCM30-TCD, of which levels were further increased with LiCl, a Wnt signaling activator. The OCCM30 cementoblasts simultaneously showed that high levels of plasminogen, a critical component of fibrinolysis, were expressed in the OCCM30-fibrin. Activation of canonical Wnt signaling with LiCl treatment or with forced lymphoid enhancer factor 1 (LEF1)-expression increased the expression of plasminogen. On the contrary, the inhibition of canonical Wnt signaling with siRNAs against Wnt3a or β-catenin abrogated fibrin-enhanced plasminogen expression. Furthermore, there are three conserved putative response elements for the LEF1/β-catenin complex in the plasminogen proximal promoter regions (−900 to +54). Site-directed mutations and chromatin immunoprecipitation indicated that canonical Wnt signaling directed plasminogen expression. Taken together, this study suggests that fibrin-based materials can modulate functional periodontal formations in controlling cementoblast differentiation and fibrin degradation. PMID:29120400

  16. Tranexamic acid in treatment of melasma: A comprehensive review of clinical studies.

    PubMed

    Taraz, Mohammad; Niknam, Somayeh; Ehsani, Amir Houshang

    2017-05-01

    Melasma is a human melanogenesis dysfunction that results in localized, chronic acquired hyperpigmentation of the skin. It has a significant impact on appearance, causing psychosocial and emotional distress, and reducing the quality of life of the affected patients. Tranexamic acid (TA) is a plasmin inhibitor used to prevent abnormal fibrinolysis to reduce blood loss and exerts its effect by reversibly blocking lysine binding sites on plasminogen molecules, thus inhibiting plasminogen activator (PA) from converting plasminogen to plasmin. As plasminogen also exists in human epidermal basal cells and cultured human keratinocyte are known to produce PA, there is basic rationale that TA will affect keratinocyte function and interaction. A thorough literature review indicates that while TA is used through various route of administration including oral, topical, and intradermal injection and as adjutant therapy with laser to treat melasma, its efficacy is not established adequately. Further studies are needed to clarify the role of TA in treatment of melasma. © 2017 Wiley Periodicals, Inc.

  17. [Insulin-like growth factor-binding protein-1: a new biochemical marker of nonalcoholic fatty liver disease?].

    PubMed

    Graffigna, Mabel Nora; Belli, Susana H; de Larrañaga, Gabriela; Fainboim, Hugo; Estepo, Claudio; Peres, Silvia; García, Natalia; Levalle, Oscar

    2009-03-01

    to assess the presence of nonalcoholic fatty liver disease in patients with risk factors for this pathology (obesity, dyslipidemia, metabolic syndrome and diabetes type 2) and to determine the role of insulin, HOMA index, insulin-like growth factor-binding protein-1, sex hormone-binding globulin and plasminogen activator inhibitor type 1, as biochemical markers. Ninety-one patients with risk factors for nonalcoholic fatty liver disease were evaluated. Serum transaminases, insulin, sex hormone-binding globulin, insulin-like growth factor-binding protein-1 and plasminogen activator inhibitor type 1 were measured. The diagnosis of fatty liver was performed by ultrasonography and liver biopsies were performed to 31 subjects who had steatosis by ultrasonography and high alanine aminotransferase. Nonalcoholic fatty liver disease was present in 65 out of 91 patients (71,4%). Liver biopsy performed to 31 subjects confirmed nonalcoholic steatohepatitis. Twenty-five patients had different degrees of fibrosis. Those individuals with fatty liver had higher waist circumference, serum levels of triglycerides, insulin and HOMA index, and lower serum insulin-like growth factor-binding protein-1 concentration. The degree ofhepatic steatosis by ultrasonography was positively correlated to waist circumference, triglycerides, insulin and HOMA index (p<0,003; p<0,003; p<0,002 and p<0,001, respectively), and was negatively correlated to HDL-cholesterol and insulin-like growth factor-binding protein-1 (p<0,025 and p<0,018, respectively). We found a high prevalence of NAFLD in patients with risk factors, most of them overweight or obese. Although SHBG and PAI-1 have a closely relationship to insulin resistance, they did not show to be markers of NAFLD. Regardless of low IGFBP-1 levels associated with NAFLD, serum IGFBP-1 measure is less accessible than insulin and triglycerides levels, HOMA index and waist circumference. Moreover, it is not a better marker for NAFLD than the above mentioned.

  18. Characterization of Novel OmpA-Like Protein of Leptospira interrogans That Binds Extracellular Matrix Molecules and Plasminogen

    PubMed Central

    Oliveira, Rosane; de Morais, Zenaide Maria; Gonçales, Amane Paldes; Romero, Eliete Caló; Vasconcellos, Silvio Arruda; Nascimento, Ana L. T. O.

    2011-01-01

    Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease of human and veterinary concern. The identification of novel proteins that mediate host-pathogen interactions is important for understanding the bacterial pathogenesis as well as to identify protective antigens that would help fight the disease. We describe in this work the cloning, expression, purification and characterization of three predicted leptospiral membrane proteins, LIC10258, LIC12880 (Lp30) and LIC12238. We have employed Escherichia coli BL21 (SI) strain as a host expression system. Recently, we have identified LIC12238 as a plasminogen (PLG)-binding receptor. We show now that Lp30 and rLIC10258 are also PLG-receptors of Leptospira, both exhibiting dose-dependent and saturating binding (K D, 68.8±25.2 nM and 167.39±60.1 nM, for rLIC10258 and rLIC12880, respectively). In addition, LIC10258, which is a novel OmpA-like protein, binds laminin and plasma fibronectin ECM molecules and hence, it was named Lsa66 (Leptospiral surface adhesin of 66 kDa). Binding of Lsa66 to ECM components was determined to be specific, dose-dependent and saturable, with a K D of 55.4±15.9 nM to laminin and of 290.8±11.8 nM to plasma fibronectin. Binding of the recombinant proteins to PLG or ECM components was assessed by using antibodies against each of the recombinant proteins obtained in mice and confirmed by monoclonal anti-polyhistidine antibodies. Lsa66 caused partial inhibition on leptospiral adherence to immobilized ECM and PLG. Moreover, this adhesin and rLIC12238 are recognized by antibodies in serum samples of confirmed leptospirosis cases. Thus, Lsa66 is a novel OmpA-like protein with dual activity that may promote the attachment of Leptospira to host tissues and may contribute to the leptospiral invasion. To our knowledge, this is the first leptospiral protein with ECM and PLG binding properties reported to date. PMID:21755014

  19. Characterization of novel OmpA-like protein of Leptospira interrogans that binds extracellular matrix molecules and plasminogen.

    PubMed

    Oliveira, Rosane; de Morais, Zenaide Maria; Gonçales, Amane Paldes; Romero, Eliete Caló; Vasconcellos, Silvio Arruda; Nascimento, Ana L T O

    2011-01-01

    Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease of human and veterinary concern. The identification of novel proteins that mediate host-pathogen interactions is important for understanding the bacterial pathogenesis as well as to identify protective antigens that would help fight the disease. We describe in this work the cloning, expression, purification and characterization of three predicted leptospiral membrane proteins, LIC10258, LIC12880 (Lp30) and LIC12238. We have employed Escherichia coli BL21 (SI) strain as a host expression system. Recently, we have identified LIC12238 as a plasminogen (PLG)-binding receptor. We show now that Lp30 and rLIC10258 are also PLG-receptors of Leptospira, both exhibiting dose-dependent and saturating binding (K(D), 68.8±25.2 nM and 167.39±60.1 nM, for rLIC10258 and rLIC12880, respectively). In addition, LIC10258, which is a novel OmpA-like protein, binds laminin and plasma fibronectin ECM molecules and hence, it was named Lsa66 (Leptospiral surface adhesin of 66 kDa). Binding of Lsa66 to ECM components was determined to be specific, dose-dependent and saturable, with a K(D) of 55.4±15.9 nM to laminin and of 290.8±11.8 nM to plasma fibronectin. Binding of the recombinant proteins to PLG or ECM components was assessed by using antibodies against each of the recombinant proteins obtained in mice and confirmed by monoclonal anti-polyhistidine antibodies. Lsa66 caused partial inhibition on leptospiral adherence to immobilized ECM and PLG. Moreover, this adhesin and rLIC12238 are recognized by antibodies in serum samples of confirmed leptospirosis cases. Thus, Lsa66 is a novel OmpA-like protein with dual activity that may promote the attachment of Leptospira to host tissues and may contribute to the leptospiral invasion. To our knowledge, this is the first leptospiral protein with ECM and PLG binding properties reported to date.

  20. Platelets Contain Tissue Factor Pathway Inhibitor-2 Derived from Megakaryocytes and Inhibits Fibrinolysis*

    PubMed Central

    Vadivel, Kanagasabai; Ponnuraj, Sathya-Moorthy; Kumar, Yogesh; Zaiss, Anne K.; Bunce, Matthew W.; Camire, Rodney M.; Wu, Ling; Evseenko, Denis; Herschman, Harvey R.; Bajaj, Madhu S.; Bajaj, S. Paul

    2014-01-01

    Tissue factor pathway inhibitor-2 (TFPI-2) is a homologue of TFPI-1 and contains three Kunitz-type domains and a basic C terminus region. The N-terminal domain of TFPI-2 is the only inhibitory domain, and it inhibits plasma kallikrein, factor XIa, and plasmin. However, plasma TFPI-2 levels are negligible (≤20 pm) in the context of influencing clotting or fibrinolysis. Here, we report that platelets contain significant amounts of TFPI-2 derived from megakaryocytes. We employed RT-PCR, Western blotting, immunohistochemistry, and confocal microscopy to determine that platelets, MEG-01 megakaryoblastic cells, and bone marrow megakaryocytes contain TFPI-2. ELISA data reveal that TFPI-2 binds factor V (FV) and partially B-domain-deleted FV (FV-1033) with Kd ∼9 nm and binds FVa with Kd ∼100 nm. Steady state analysis of surface plasmon resonance data reveal that TFPI-2 and TFPI-1 bind FV-1033 with Kd ∼36–48 nm and bind FVa with Kd ∼252–456 nm. Further, TFPI-1 (but not TFPI-1161) competes with TFPI-2 in binding to FV. These data indicate that the C-terminal basic region of TFPI-2 is similar to that of TFPI-1 and plays a role in binding to the FV B-domain acidic region. Using pull-down assays and Western blots, we show that TFPI-2 is associated with platelet FV/FVa. TFPI-2 (∼7 nm) in plasma of women at the onset of labor is also, in part, associated with FV. Importantly, TFPI-2 in platelets and in plasma of pregnant women inhibits FXIa and tissue-type plasminogen activator-induced clot fibrinolysis. In conclusion, TFPI-2 in platelets from normal or pregnant subjects and in plasma from pregnant women binds FV/Va and regulates intrinsic coagulation and fibrinolysis. PMID:25262870

  1. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes.

    PubMed

    Wang, Sibao; Ghosh, Anil K; Bongio, Nicholas; Stebbings, Kevin A; Lampe, David J; Jacobs-Lorena, Marcelo

    2012-07-31

    The most vulnerable stages of Plasmodium development occur in the lumen of the mosquito midgut, a compartment shared with symbiotic bacteria. Here, we describe a strategy that uses symbiotic bacteria to deliver antimalaria effector molecules to the midgut lumen, thus rendering host mosquitoes refractory to malaria infection. The Escherichia coli hemolysin A secretion system was used to promote the secretion of a variety of anti-Plasmodium effector proteins by Pantoea agglomerans, a common mosquito symbiotic bacterium. These engineered P. agglomerans strains inhibited development of the human malaria parasite Plasmodium falciparum and rodent malaria parasite Plasmodium berghei by up to 98%. Significantly, the proportion of mosquitoes carrying parasites (prevalence) decreased by up to 84% for two of the effector molecules, scorpine, a potent antiplasmodial peptide and (EPIP)(4), four copies of Plasmodium enolase-plasminogen interaction peptide that prevents plasminogen binding to the ookinete surface. We demonstrate the use of an engineered symbiotic bacterium to interfere with the development of P. falciparum in the mosquito. These findings provide the foundation for the use of genetically modified symbiotic bacteria as a powerful tool to combat malaria.

  2. Plasminogen binding inhibitors demonstrate unwanted activities on GABAA and glycine receptors in human iPSC derived neurons.

    PubMed

    Kristensson, Lisbeth; Lundin, Anders; Gustafsson, David; Fryklund, Jan; Fex, Tomas; Louise, Delsing; Ryberg, Erik

    2018-05-11

    Plasminogen binding inhibitors (PBIs) reduce the risk of bleeding in hemorrhagic conditions. However, generic PBIs are also associated with an increased risk of seizures, an adverse effect linked to unwanted activities towards inhibitory neuronal receptors. Development of novel PBIs serve to remove compounds with such properties, but progress is limited by a lack of higher throughput methods with human translatability. Herein we apply human induced pluripotent stem cell (hiPSC) derived neurons in combination with dynamic mass redistribution (DMR) technology to demonstrate robust and reproducible modulation of both GABA A and glycine receptors. These cells respond to GABA (EC 50 0.33 ± 0.18 μM), glycine (EC 50 11.0 ± 3.7 μM) and additional ligands in line with previous reports from patch clamp technologies. Additionally, we identify and characterize a competitive antagonistic behavior of the prototype inhibitor and drug tranexamic acid (TXA). Finally, we demonstrate proof of concept for effective counter-screening of lead series compounds towards unwanted GABA A receptor activities. No activity was observed for a previously identified PBI candidate drug, AZD6564, whereas a discontinued analog, AZ13267257, could be characterized as a potent GABA A receptor agonist. Copyright © 2018. Published by Elsevier B.V.

  3. Post-Transcriptional Regulation of Urokinase-type Plasminogen Activator Receptor Expression in Lipopolysaccharide-induced Acute Lung Injury

    PubMed Central

    Bhandary, Yashodhar P.; Velusamy, Thirunavukkarasu; Shetty, Praveenkumar; Shetty, Rashmi S.; Idell, Steven; Cines, Douglas B.; Jain, Deepika; Bdeir, Khalil; Abraham, Edward; Tsuruta, Yuko; Shetty, Sreerama

    2009-01-01

    Rationale: Urokinase-type plasminogen activator (uPA) receptor (uPAR) is required for the recruitment of neutrophils in response to infection. uPA induces its own expression in lung epithelial cells, which involves its interaction with cell surface uPAR. Regulation of uPAR expression is therefore crucial for uPA-mediated signaling in infectious acute lung injury (ALI). Objectives: To determine the role of uPA in uPAR expression during ALI caused by sepsis. Methods: We used Western blot, Northern blot, Northwestern assay, and immunohistochemistry. Phosphate-buffered saline– and lipopolysaccharide (LPS)-treated wild-type and uPA−/− mice were used. Measurements and Main Results: Biological activities of uPA, including proteolysis, cell adhesion, migration, proliferation, and differentiation, are dependent on its association with uPAR. Bacterial endotoxin (LPS) is a major cause of pulmonary dysfunction and infection-associated mortality. The present study shows that LPS induces uPAR expression both in vitro and in vivo, and that the mechanism involves post-transcriptional stabilization of uPAR mRNA by reciprocal interaction of phosphoglycerate kinase (PGK) and heterogeneous nuclear ribonucleoprotein C (hnRNPC) with uPAR mRNA coding region and 3′ untranslated region determinants, respectively. The process involves tyrosine phosphorylation of PGK and hnRNPC. uPA−/− mice failed to induce uPAR expression after LPS treatment. In these mice, LPS treatment failed to alter the binding of PGK and hnRNPC protein with uPAR mRNA due to lack of tyrosine phosphorylation. Conclusions: Our study shows that induction of LPS-mediated uPAR expression is mediated through tyrosine phosphorylation of PGK and hnRNPC. This involves expression of uPA as an obligate intermediary. PMID:19029002

  4. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells

    NASA Astrophysics Data System (ADS)

    Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm; Iversen, Frank; Liu, Zhuo; Thomsen, Karen; Pedersen, Michael; Skrydstrup, Troels; Nielsen, Niels Chr.; Ploug, Michael; Kjems, Jørgen

    2013-08-01

    Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery.Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr32922d

  5. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor: a study based on biosensor technology.

    PubMed

    List, K; Høyer-Hansen, G; Rønne, E; Danø, K; Behrendt, N

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or interference with conformational properties of the receptor critical for ligand binding. This distinction is central when employing the antibodies as tools in the elucidation of the structure-function relationship of the protein in question. We have studied the effect of monoclonal antibodies against the urokinase plasminogen activator receptor (uPAR), a protein located on the surface of various types of malignant and normal cells which is involved in the direction of proteolytic degradation reactions in the extracellular matrix. We show that surface plasmon resonance/biomolecular interaction analysis (BIA) can be employed as a highly useful tool to characterize the inhibitory mechanism of specific antagonist antibodies. Two inhibitory antibodies against uPAR, mAb R3 and mAb R5, were shown to exhibit competitive and non-competitive inhibition, respectively, of ligand binding to the receptor. The former antibody efficiently blocked the receptor against subsequent ligand binding but was unable to promote the dissociation of a preformed receptor-ligand complex. The latter antibody was capable of binding the preformed complex, forming a transient trimolecular assembly, and promoting the dissociation of the uPA/uPAR complex. The continuous recording of binding and dissociation, obtained in BIA, is central in characterizing these phenomena. The identification of a non-competitive inhibitory mechanism against this receptor reveals the presence of a determinant which influences the binding properties of a remote site in the molecular structure and which could be an important target for a putative synthetic antagonist.

  6. Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis

    PubMed Central

    Lacroix, Romaric; Plawinski, Laurent; Robert, Stéphane; Doeuvre, Loïc; Sabatier, Florence; Martinez de Lizarrondo, Sara; Mezzapesa, Anna; Anfosso, Francine; Leroyer, Aurelie S.; Poullin, Pascale; Jourde, Noémie; Njock, Makon-Sébastien; Boulanger, Chantal M.; Anglés-Cano, Eduardo; Dignat-George, Françoise

    2012-01-01

    Background We recently assigned a new fibrinolytic function to cell-derived microparticles in vitro. In this study we explored the relevance of this novel property of microparticles to the in vivo situation. Design and Methods Circulating microparticles were isolated from the plasma of patients with thrombotic thrombocytopenic purpura or cardiovascular disease and from healthy subjects. Microparticles were also obtained from purified human blood cell subpopulations. The plasminogen activators on microparticles were identified by flow cytometry and enzyme-linked immunosorbent assays; their capacity to generate plasmin was quantified with a chromogenic assay and their fibrinolytic activity was determined by zymography. Results Circulating microparticles isolated from patients generate a range of plasmin activity at their surface. This property was related to a variable content of urokinase-type plasminogen activator and/or tissue plasminogen activator. Using distinct microparticle subpopulations, we demonstrated that plasmin is generated on endothelial and leukocyte microparticles, but not on microparticles of platelet or erythrocyte origin. Leukocyte-derived microparticles bear urokinase-type plasminogen activator and its receptor whereas endothelial microparticles carry tissue plasminogen activator and tissue plasminogen activator/inhibitor complexes. Conclusions Endothelial and leukocyte microparticles, bearing respectively tissue plasminogen activator or urokinase-type plasminogen activator, support a part of the fibrinolytic activity in the circulation which is modulated in pathological settings. Awareness of this blood-borne fibrinolytic activity conveyed by microparticles provides a more comprehensive view of the role of microparticles in the hemostatic equilibrium. PMID:22733025

  7. The fibrinolytic system: A new target for treatment of depression with psychedelics.

    PubMed

    Idell, R D; Florova, G; Komissarov, A A; Shetty, S; Girard, R B S; Idell, S

    2017-03-01

    Current understanding of the neurobiology of depression has grown over the past few years beyond the traditional monoamine theory of depression to include chronic stress, inflammation and disrupted synaptic plasticity. Tissue plasminogen activator (tPA) is a key factor that not only promotes fibrinolysis via the activation of plasminogen, but also contributes to regulation of synaptic plasticity and neurogenesis through plasmin-mediated activation of a probrain derived neurotrophic factor (BDNF) to mature BDNF. ProBDNF activation could potentially be supressed by competition with fibrin for plasmin and tPA. High affinity binding of plasmin and tPA to fibrin could result in a decrease of proBDNF activation during brain inflammation leading to fibrosis further perpetuating depressed mood. There is a paucity of data explaining the possible role of the fibrinolytic system or aberrant extravascular fibrin deposition in depression. We propose that within the brain, an imbalance between tPA and urokinase plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) and neuroserpin favors the inhibitors, resulting in changes in neurogenesis, synaptic plasticity, and neuroinflammation that result in depressive behavior. Our hypothesis is that peripheral inflammation mediates neuroinflammation, and that cytokines such as tumor necrosis factor alpha (TNF-α) can inhibit the fibrinolytic system by up- regulating PAI-1 and potentially neuroserpin. We propose that the decrement of the activity of tPA and uPA occurs with downregulation of uPA in part involving the binding and clearance from the surface of neural cells of uPA/PAI-1 complexes by the urokinase receptor uPAR. We infer that current antidepressants and ketamine mitigate depressive symptoms by restoring the balance of the fibrinolytic system with increased activity of tPA and uPA with down-regulated intracerebral expression of their inhibitors. We lastly hypothesize that psychedelic 5-ht2a receptor agonists, such as psilocybin, can improve mood through anti- inflammatory and pro-fibrinolytic effects that include blockade of TNF-α activity leading to decreased PAI-1 activity and increased clearance. The process involves disinhibition of tPA and uPA with subsequent increased cleavage of proBDNF which promotes neurogenesis, decreased neuroinflammation, decreased fibrin deposition, normalized glial-neuronal cross-talk, and optimally functioning neuro-circuits involved in mood. We propose that psilocybin can alleviate deleterious changes in the brain caused by chronic stress leading to restoration of homeostatic brain fibrinolytic capacity leading to euthymia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Plasminogen replacement therapy for the treatment of children and adults with congenital plasminogen deficiency

    PubMed Central

    Nakar, Charles; Parker, Joseph M.; Albert, Gary R.; Moran, John E.; Thibaudeau, Karen; Thukral, Neelam; Hardesty, Brandon M.; Laurin, Pierre; Sandset, Per Morten

    2018-01-01

    Congenital plasminogen deficiency is caused by mutations in PLG, the gene coding for production of the zymogen plasminogen, and is an ultrarare disorder associated with abnormal accumulation or growth of fibrin-rich pseudomembranous lesions on mucous membranes. Left untreated, these lesions may impair organ function and impact quality of life. Plasminogen replacement therapy should provide an effective treatment of the manifestations of congenital plasminogen deficiency. An open-label phase 2/3 study of human Glu-plasminogen administered IV at 6.6 mg/kg every 2 to 4 days in 15 patients with congenital plasminogen deficiency is ongoing. Reported here are data on 14 patients who completed at least 12 weeks of treatment. The primary end point was an increase in trough plasminogen activity levels by at least an absolute 10% above baseline. The secondary end point was clinical success, defined as ≥50% improvement in lesion number/size or functionality impact from baseline. All patients achieved at least an absolute 10% increase in trough plasminogen activity above baseline. Clinical success was observed in all patients with clinically visible (conjunctiva and gingiva), nonvisible (nasopharynx, bronchus, colon, kidney, cervix, and vagina), and wound-healing manifestations of the disease. Therapeutic effects were rapid, as all but 2 lesions resolved or improved after 4 weeks of treatment. Human Glu-plasminogen was well tolerated in both children and adults. This study provides critical first evidence of the clinical utility of ongoing replacement therapy with human Glu-plasminogen for the treatment of children and adults with congenital plasminogen deficiency. This trial was registered at www.clinicaltrials.gov as #NCT02690714. PMID:29321155

  9. Intracellular activation of the fibrinolytic cascade in the Quebec Platelet Disorder.

    PubMed

    Sheth, Prameet M; Kahr, Walter H A; Haq, M Anwar; Veljkovic, Dragoslava Kika; Rivard, Georges E; Hayward, Catherine P M

    2003-08-01

    The Quebec Platelet Disorder (QPD) is an unusual bleeding disorder associated with increased platelet stores of urokinase-type plasminogen activator (u-PA) and proteolysis of platelet alpha-granule proteins. The increased u-PA and proteolyzed plasminogen in QPD platelets led us to investigate possible contributions of intracellular plasmin generation to QPD alpha-granule proteolysis. ELISA indicated there were normal amounts of plasminogen and plasmin-alpha(2)-antiplasmin (PAP) complexes in QPD plasmas. Like normal platelets, QPD platelets contained only a small proportion of the blood plasminogen, however, they contained an increased amount of PAP complexes compared to normal platelets (P < 0.005). The quantities of plasminogen stored in platelets were important to induce QPD-like proteolysis of normal alpha-granule proteins by two chain u-PA (tcu-PA) in vitro. Moreover, adding supplemental plasminogen to QPD, but not to control, platelet lysates, triggered further alpha-granule protein proteolysis to forms that comigrated with plasmin degraded proteins. These data suggest the generation of increased but limiting amounts of plasmin within platelets is involved in producing the unique phenotypic changes to alpha-granule proteins in QPD platelets. The QPD is the only known bleeding disorder associated with chronic, intracellular activation of the fibrinolytic cascade.

  10. 12/15-Lipoxygenase Inhibition or Knockout Reduces Warfarin-Associated Hemorrhagic Transformation After Experimental Stroke.

    PubMed

    Liu, Yu; Zheng, Yi; Karatas, Hulya; Wang, Xiaoying; Foerch, Christian; Lo, Eng H; van Leyen, Klaus

    2017-02-01

    For stroke prevention, patients with atrial fibrillation typically receive oral anticoagulation. The commonly used anticoagulant warfarin increases the risk of hemorrhagic transformation (HT) when a stroke occurs; tissue-type plasminogen activator treatment is therefore restricted in these patients. This study was designed to test the hypothesis that 12/15-lipoxygenase (12/15-LOX) inhibition would reduce HT in warfarin-treated mice subjected to experimental stroke. Warfarin was dosed orally in drinking water, and international normalized ratio values were determined using a Coaguchek device. C57BL6J mice or 12/15-LOX knockout mice were subjected to transient middle cerebral artery occlusion with 3 hours severe ischemia (model A) or 2 hours ischemia and tissue-type plasminogen activator infusion (model B), with or without the 12/15-LOX inhibitor ML351. Hemoglobin was determined in brain homogenates, and hemorrhage areas on the brain surface and in brain sections were measured. 12/15-LOX expression was detected by immunohistochemistry. Warfarin treatment resulted in reproducible increased international normalized ratio values and significant HT in both models. 12/15-LOX knockout mice suffered less HT after severe ischemia, and ML351 reduced HT in wild-type mice. When normalized to infarct size, ML351 still independently reduced hemorrhage. HT after tissue-type plasminogen activator was similarly reduced by ML351. In addition to its benefits in infarct size reduction, 12/15-LOX inhibition also may independently reduce HT in warfarin-treated mice. ML351 should be further evaluated as stroke treatment in anticoagulated patients suffering a stroke, either alone or in conjunction with tissue-type plasminogen activator. © 2017 American Heart Association, Inc.

  11. Effects of lipoprotein(a) on thrombolysis.

    PubMed

    von Hodenberg, E; Pestel, E; Kreuzer, J; Freitag, M; Bode, C

    1994-01-01

    Lipoprotein(a) (Lp(a)) and plasminogen share a high degree of structural homology. Therefore it has been suggested that elevated levels of Lp(a) may inhibit the profibrinolytic activity at the cell surface and increase the risk of thrombosis by competitive inhibition of plasminogen. In the present study we evaluated whether high levels of Lp(a) affect thrombolytic therapy in patients with acute myocardial infarction. Forty-one patients with acute myocardial infarction were treated with a combination of recombinant tissue-type plasminogen activator and human single-chain urokinase-type plasminogen activator. Coronary patency was assessed angiographically 90 min after initiation of treatment. Thrombolysis was successful in 30 and unsuccessful in 11 patients. Patients with high Lp(a) levels (> 25 mg/dl) (n = 9) responded equally well to thrombolytic therapy (8 of 9, patency 89%) as did patients with normal or low levels of Lp(a) (22 of 32, patency 70%, difference P > 0.1). The results demonstrate that high levels of Lp(a) do not influence thrombolysis in patients with acute myocardial infarction when low-dose pharmacologic concentrations of recombinant tissue-type plasminogen activator and human single chain urokinase-type plasminogen activator are applied in combination.

  12. Identification and functional characterization of alpha-enolase from Taenia pisiformis metacestode.

    PubMed

    Zhang, Shaohua; Guo, Aijiang; Zhu, Xueliang; You, Yanan; Hou, Junling; Wang, Qiuxia; Luo, Xuenong; Cai, Xuepeng

    2015-04-01

    Enolase belongs to glycolytic enzymes with moonlighting functions. The role of enolase in Taenia species is still poorly understood. In this study, the full length of cDNA encoding for Taenia pisiformis alpha-enolase (Tpeno) was cloned from larval parasites and soluble recombinant Tpeno protein (rTpeno) was produced. Western blot indicated that both rTpeno and the native protein in excretion-secretion antigens from the larvae were recognized by anti-rTpeno monoclonal antibodies (MAbs). The primary structure of Tpeno showed the presence of a highly conserved catalytic site for substrate binding and an enolase signature motif. rTpeno enzymatic activities of catalyzing the reversible dehydration of 2-phosphoglycerate (2-PGA) to phosphoenolpyruvate (PEP) and vice versa were shown to be 30.71 ± 2.15 U/mg (2-PGA to PEP) and 11.29 ± 2.38 U/mg (PEP to 2-PGA), respectively. Far-Western blotting showed that rTpeno could bind to plasminogen, however its binding ability was inhibited by ϵ-aminocaproic acid (ϵACA) in a competitive ELISA test. Plasminogen activation assay showed that plasminogen bound to rTpeno could be converted into active plasmin using host-derived activators. Immunohistochemistry and immunofluorescence indicated that Tpeno was distributed in the bladder wall of the metacestode and the periphery of calcareous corpuscles. In addition, a vaccine trial showed that the enzyme could produce a 36.4% protection rate in vaccinated rabbits against experimental challenges from T. pisiformis eggs. These results suggest that Tpeno with multiple functions may play significant roles in the migration, growth, development and adaptation of T. pisiformis for survival in the host environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eren, Elif; Murphy, Megan; Goguen, Jon

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changesmore » of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.« less

  14. Characterization of the Annonaceous acetogenin, annonacinone, a natural product inhibitor of plasminogen activator inhibitor-1

    NASA Astrophysics Data System (ADS)

    Pautus, Stéphane; Alami, Mouad; Adam, Fréderic; Bernadat, Guillaume; Lawrence, Daniel A.; de Carvalho, Allan; Ferry, Gilles; Rupin, Alain; Hamze, Abdallah; Champy, Pierre; Bonneau, Natacha; Gloanec, Philippe; Peglion, Jean-Louis; Brion, Jean-Daniel; Bianchini, Elsa P.; Borgel, Delphine

    2016-11-01

    Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of the tissue type and urokinase type plasminogen activators. High levels of PAI-1 are correlated with an increased risk of thrombotic events and several other pathologies. Despite several compounds with in vitro activity being developed, none of them are currently in clinical use. In this study, we evaluated a novel PAI-1 inhibitor, annonacinone, a natural product from the Annonaceous acetogenins group. Annonacinone was identified in a chromogenic screening assay and was more potent than tiplaxtinin. Annonacinone showed high potency ex vivo on thromboelastography and was able to potentiate the thrombolytic effect of tPA in vivo in a murine model. SDS-PAGE showed that annonacinone inhibited formation of PAI-1/tPA complex via enhancement of the substrate pathway. Mutagenesis and molecular dynamics allowed us to identify annonacinone binding site close to helix D and E and β-sheets 2A.

  15. Inhibitory Effects of Lysine Analogues on t-PA Induced Whole Blood Clot Lysis

    DTIC Science & Technology

    1994-01-01

    aminocaproic acid (EACA) and trans-4-amino- methyl cyclohexane carboxylic acid (AMCA) are used to prevent excessive bleeding in patients with... aminocaproic acid (EACA) and the others have lower affinity binding sites (K&=5 mM) (5). The lysine analogues EACA and trans-4-aniinomethyl...JL, Wissler FC. Quantitative determination of the binding of epsilon- aminocaproic acid to native plasminogen. J Biol Chem 253, 727-732, 1978. 6

  16. Successful Tissue Plasminogen Activator for a Patient with Stroke After Stanford Type A Aortic Dissection Treatment.

    PubMed

    Matsuzono, Kosuke; Suzuki, Masayuki; Arai, Naoto; Kim, Younhee; Ozawa, Tadashi; Mashiko, Takafumi; Shimazaki, Haruo; Koide, Reiji; Fujimoto, Shigeru

    2018-07-01

    Some stroke patients with the acute aortic dissection receiving thrombolysis treatment resulted in fatalities. Thus, the concurrent acute aortic dissection is the contraindication for the intravenous recombinant tissue-type plasminogen activator. However, the safety and the effectiveness of the intravenous recombinant tissue-type plasminogen activator therapy are not known in patients with stroke some days after acute aortic dissection treatment. Here, we first report a case of a man with a cardioembolism due to the nonvalvular atrial fibrillation, who received the intravenous recombinant tissue-type plasminogen activator therapy 117 days after the traumatic Stanford type A acute aortic dissection operation. Without the intravenous recombinant tissue-type plasminogen activator therapy, the prognosis was expected to be miserable. However, the outcome was good with no complication owing to the intravenous recombinant tissue-type plasminogen activator therapy. Our case suggests the effectiveness and the safety of the intravenous recombinant tissue-type plasminogen activator therapy to the ischemic stroke some days after acute aortic dissection treatment. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  17. Fibrin Accumulation Secondary to Loss of Plasmin-Mediated Fibrinolysis Drives Inflammatory Osteoporosis in Mice

    PubMed Central

    Cole, Heather A.; Ohba, Tetsuro; Nyman, Jeffry S.; Hirotaka, Haro; Cates, Justin M. M.; Flick, Matthew J.; Degen, Jay L.; Schoenecker, Jonathan G.

    2015-01-01

    Objective Osteoporosis is a skeletal disorder characterized by low bone mass and increased bone fragility associated with aging, menopause, smoking, obesity, or diabetes. Persistent inflammation has been identified as an instigating factor in progressive bone loss. In addition to the role of fibrin in coagulation, inordinate fibrin deposition within a tissue matrix results in increased local inflammation. Given that fibrin accumulation is a hallmark of osteoporosis-related co-morbidities, we undertook this study to test the hypothesis that persistent fibrin deposition causes inflammatory osteoporosis. Methods Multiple imaging modalities, bone integrity metrics, and histologic analyses were employed to evaluate skeletal derangements in relation to fibrin deposition, circulating fibrinogen levels, and systemic markers of inflammation in mice that were plasminogen deficient and in plasminogen-deficient mice that were concomitantly either fibrinogen deficient or carrying a mutant form of fibrinogen lacking the αMβ2 binding motif. Results Mice generated with a genetic deficit in the key fibrinolytic protease, plasmin, uniformly developed severe osteoporosis. Furthermore, the development of osteoporosis was fibrin(ogen) dependent, and the derangements in the bone remodeling unit were mechanistically tied to fibrin(ogen)-mediated activation of osteoclasts via activation of the leukocyte integrin receptor αMβ2 on monocytes and secondary stimulation of osteoblasts by RANKL. Notably, the genetic elimination of fibrin(ogen) or the expression of a mutant form of fibrinogen retaining clotting function but lacking the αMβ2 binding motif prevented the degenerative skeletal phenotypes, resulting in normal local and systemic cytokine levels. Conclusion Taken together, these data reveal for the first time that fibrin promotes inflammation-driven systemic osteoporosis, which suggests a novel association between hemostasis, inflammation, and bone biology. PMID:24664548

  18. Fibrin accumulation secondary to loss of plasmin-mediated fibrinolysis drives inflammatory osteoporosis in mice.

    PubMed

    Cole, Heather A; Ohba, Tetsuro; Nyman, Jeffry S; Hirotaka, Haro; Cates, Justin M M; Flick, Matthew J; Degen, Jay L; Schoenecker, Jonathan G

    2014-08-01

    Osteoporosis is a skeletal disorder characterized by low bone mass and increased bone fragility associated with aging, menopause, smoking, obesity, or diabetes. Persistent inflammation has been identified as an instigating factor in progressive bone loss. In addition to the role of fibrin in coagulation, inordinate fibrin deposition within a tissue matrix results in increased local inflammation. Given that fibrin accumulation is a hallmark of osteoporosis-related comorbidities, we undertook this study to test the hypothesis that persistent fibrin deposition causes inflammatory osteoporosis. Multiple imaging modalities, bone integrity metrics, and histologic analyses were employed to evaluate skeletal derangements in relation to fibrin deposition, circulating fibrinogen levels, and systemic markers of inflammation in mice that were plasminogen deficient and in plasminogen-deficient mice that were concomitantly either fibrinogen deficient or carrying a mutant form of fibrinogen lacking the αM β2 binding motif. Mice generated with a genetic deficit in the key fibrinolytic protease, plasmin, uniformly developed severe osteoporosis. Furthermore, the development of osteoporosis was fibrin(ogen) dependent, and the derangements in the bone remodeling unit were mechanistically tied to fibrin(ogen)-mediated activation of osteoclasts via activation of the leukocyte integrin receptor αM β2 on monocytes and secondary stimulation of osteoblasts by RANKL. Notably, the genetic elimination of fibrin(ogen) or the expression of a mutant form of fibrinogen retaining clotting function but lacking the αM β2 binding motif prevented the degenerative skeletal phenotypes, resulting in normal local and systemic cytokine levels. Taken together, these data reveal for the first time that fibrin promotes inflammation-driven systemic osteoporosis, which suggests a novel association between hemostasis, inflammation, and bone biology. Copyright © 2014 by the American College of Rheumatology.

  19. Co-ordinated spatial propagation of blood plasma clotting and fibrinolytic fronts

    PubMed Central

    Zhalyalov, Ansar S.; Panteleev, Mikhail A.; Gracheva, Marina A.; Ataullakhanov, Fazoil I.

    2017-01-01

    Fibrinolysis is a cascade of proteolytic reactions occurring in blood and soft tissues, which functions to disintegrate fibrin clots when they are no more needed. In order to elucidate its regulation in space and time, fibrinolysis was investigated using an in vitro reaction-diffusion experimental model of blood clot formation and dissolution. Clotting was activated by a surface with immobilized tissue factor in a thin layer of recalcified blood plasma supplemented with tissue plasminogen activator (TPA), urokinase plasminogen activator or streptokinase. Formation and dissolution of fibrin clot was monitored by videomicroscopy. Computer systems biology model of clot formation and lysis was developed for data analysis and experimental planning. Fibrin clot front propagated in space from tissue factor, followed by a front of clot dissolution propagating from the same source. Velocity of lysis front propagation linearly depended on the velocity clotting front propagation (correlation r2 = 0.91). Computer model revealed that fibrin formation was indeed the rate-limiting step in the fibrinolysis front propagation. The phenomenon of two fronts which switched the state of blood plasma from liquid to solid and then back to liquid did not depend on the fibrinolysis activator. Interestingly, TPA at high concentrations began to increase lysis onset time and to decrease lysis propagation velocity, presumably due to plasminogen depletion. Spatially non-uniform lysis occurred simultaneously with clot formation and detached the clot from the procoagulant surface. These patterns of spatial fibrinolysis provide insights into its regulation and might explain clinical phenomena associated with thrombolytic therapy. PMID:28686711

  20. Evaluation of two novel leptospiral proteins for their interaction with human host components.

    PubMed

    Silva, Lucas P; Fernandes, Luis G V; Vieira, Monica L; de Souza, Gisele O; Heinemann, Marcos B; Vasconcellos, Silvio A; Romero, Eliete C; Nascimento, Ana L T O

    2016-07-01

    Pathogenic species of the genus Leptospira are the etiological agents of leptospirosis, the most widespread zoonosis. Mechanisms involved in leptospiral pathogenesis are not well understood. By data mining the genome sequences of Leptospira interrogans we have identified two proteins predicted to be surface exposed, LIC10821 and LIC10064. Immunofluorescence and proteinase K assays confirmed that the proteins are exposed. Reactivity of the recombinant proteins with human sera has shown that rLIC10821, but not rLIC10064, is recognized by antibodies in confirmed leptospirosis serum samples, suggesting its expression during infection. The rLIC10821 was able to bind laminin, in a dose-dependent fashion, and was called Lsa37 (leptospiral surface adhesin of 37 kDa). Studies with human plasma components demonstrated that rLIC10821 interacts with plasminogen (PLG) and fibrinogen (Fg). The binding of Lsa37 with PLG generates plasmin when PLG activator was added. Fibrin clotting reduction was observed in a thrombin-catalyzed reaction, when Fg was incubated with Lsa37, suggesting that this protein may interfere in the coagulation cascade during the disease. Although LIC10064 protein is more abundant than the corresponding Lsa37, binding activity with all the components tested was not detected. Thus, Lsa37 is a novel versatile adhesin that may mediate Leptospira-host interactions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. The Extracellular Protein Factor Epf from Streptococcus pyogenes Is a Cell Surface Adhesin That Binds to Cells through an N-terminal Domain Containing a Carbohydrate-binding Module*

    PubMed Central

    Linke, Christian; Siemens, Nikolai; Oehmcke, Sonja; Radjainia, Mazdak; Law, Ruby H. P.; Whisstock, James C.; Baker, Edward N.; Kreikemeyer, Bernd

    2012-01-01

    Streptococcus pyogenes is an exclusively human pathogen. Streptococcal attachment to and entry into epithelial cells is a prerequisite for a successful infection of the human host and requires adhesins. Here, we demonstrate that the multidomain protein Epf from S. pyogenes serotype M49 is a streptococcal adhesin. An epf-deficient mutant showed significantly decreased adhesion to and internalization into human keratinocytes. Cell adhesion is mediated by the N-terminal domain of Epf (EpfN) and increased by the human plasma protein plasminogen. The crystal structure of EpfN, solved at 1.6 Å resolution, shows that it consists of two subdomains: a carbohydrate-binding module and a fibronectin type III domain. Both fold types commonly participate in ligand receptor and protein-protein interactions. EpfN is followed by 18 repeats of a domain classified as DUF1542 (domain of unknown function 1542) and a C-terminal cell wall sorting signal. The DUF1542 repeats are not involved in adhesion, but biophysical studies show they are predominantly α-helical and form a fiber-like stalk of tandem DUF1542 domains. Epf thus conforms with the widespread family of adhesins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), in which a cell wall-attached stalk enables long range interactions via its adhesive N-terminal domain. PMID:22977243

  2. The extracellular protein factor Epf from Streptococcus pyogenes is a cell surface adhesin that binds to cells through an N-terminal domain containing a carbohydrate-binding module.

    PubMed

    Linke, Christian; Siemens, Nikolai; Oehmcke, Sonja; Radjainia, Mazdak; Law, Ruby H P; Whisstock, James C; Baker, Edward N; Kreikemeyer, Bernd

    2012-11-02

    Streptococcus pyogenes is an exclusively human pathogen. Streptococcal attachment to and entry into epithelial cells is a prerequisite for a successful infection of the human host and requires adhesins. Here, we demonstrate that the multidomain protein Epf from S. pyogenes serotype M49 is a streptococcal adhesin. An epf-deficient mutant showed significantly decreased adhesion to and internalization into human keratinocytes. Cell adhesion is mediated by the N-terminal domain of Epf (EpfN) and increased by the human plasma protein plasminogen. The crystal structure of EpfN, solved at 1.6 Å resolution, shows that it consists of two subdomains: a carbohydrate-binding module and a fibronectin type III domain. Both fold types commonly participate in ligand receptor and protein-protein interactions. EpfN is followed by 18 repeats of a domain classified as DUF1542 (domain of unknown function 1542) and a C-terminal cell wall sorting signal. The DUF1542 repeats are not involved in adhesion, but biophysical studies show they are predominantly α-helical and form a fiber-like stalk of tandem DUF1542 domains. Epf thus conforms with the widespread family of adhesins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), in which a cell wall-attached stalk enables long range interactions via its adhesive N-terminal domain.

  3. Functional cloning of the proto-oncogene brain factor-1 (BF-1) as a Smad-binding antagonist of transforming growth factor-beta signaling.

    PubMed

    Rodriguez, C; Huang, L J; Son, J K; McKee, A; Xiao, Z; Lodish, H F

    2001-08-10

    Using the plasminogen activator inhibitor (PAI) promoter to drive the expression of a reporter gene (mouse CD2), we devised a system to clone negative regulators of the transforming growth factor-beta (TGF-beta) signaling pathway. We infected a TGF-beta-responsive cell line (MvLu1) with a retroviral cDNA library, selecting by fluorescence-activated cell sorter single cells displaying low PAI promoter activity in response to TGF-beta. Using this strategy we cloned the proto-oncogene brain factor-1 (BF-1). BF-1 represses the PAI promoter in part by associating with both unphosphorylated Smad3 (in the cytoplasm) and phosphorylated Smad3 (in the nucleus), thus preventing its binding to DNA. BF-1 also associates with Smad1, -2, and -4; the Smad MH2 domain binds to BF-1, and the C-terminal segment of BF-1 is uniquely and solely required for binding to Smads. Further, BF-1 represses another TGF-beta-induced promoter (p15), it up-regulates a TGF-beta-repressed promoter (Cyclin A), and it reverses the growth arrest caused by TGF-beta. Our results suggest that BF-1 is a general inhibitor of TGF-beta signaling and as such may play a key role during brain development.

  4. LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex.

    PubMed

    Goodier, John L; Zhang, Lili; Vetter, Melissa R; Kazazian, Haig H

    2007-09-01

    LINE-1 retrotransposons constitute one-fifth of human DNA and have helped shape our genome. A full-length L1 encodes a 40-kDa RNA-binding protein (ORF1p) and a 150-kDa protein (ORF2p) with endonuclease and reverse transcriptase activities. ORF1p is distinctive in forming large cytoplasmic foci, which we identified as cytoplasmic stress granules. A phylogenetically conserved central region of the protein is critical for wild-type localization and retrotransposition. Yeast two-hybrid screens revealed several RNA-binding proteins that coimmunoprecipitate with ORF1p and colocalize with ORF1p in foci. Two of these proteins, YB-1 and hnRNPA1, were previously reported in stress granules. We identified additional proteins associated with stress granules, including DNA-binding protein A, 9G8, and plasminogen activator inhibitor RNA-binding protein 1 (PAI-RBP1). PAI-RBP1 is a homolog of VIG, a part of the Drosophila melanogaster RNA-induced silencing complex (RISC). Other RISC components, including Ago2 and FMRP, also colocalize with PAI-RBP1 and ORF1p. We suggest that targeting ORF1p, and possibly the L1 RNP, to stress granules is a mechanism for controlling retrotransposition and its associated genetic and cellular damage.

  5. Fibrinogen and fibrin.

    PubMed

    Weisel, John W

    2005-01-01

    Fibrinogen is a large, complex, fibrous glycoprotein with three pairs of polypeptide chains linked together by 29 disulfide bonds. It is 45 nm in length, with globular domains at each end and in the middle connected by alpha-helical coiled-coil rods. Both strongly and weakly bound calcium ions are important for maintenance of fibrinogen's structure and functions. The fibrinopeptides, which are in the central region, are cleaved by thrombin to convert soluble fibrinogen to insoluble fibrin polymer, via intermolecular interactions of the "knobs" exposed by fibrinopeptide removal with "holes" always exposed at the ends of the molecules. Fibrin monomers polymerize via these specific and tightly controlled binding interactions to make half-staggered oligomers that lengthen into protofibrils. The protofibrils aggregate laterally to make fibers, which then branch to yield a three-dimensional network-the fibrin clot-essential for hemostasis. X-ray crystallographic structures of portions of fibrinogen have provided some details on how these interactions occur. Finally, the transglutaminase, Factor XIIIa, covalently binds specific glutamine residues in one fibrin molecule to lysine residues in another via isopeptide bonds, stabilizing the clot against mechanical, chemical, and proteolytic insults. The gene regulation of fibrinogen synthesis and its assembly into multichain complexes proceed via a series of well-defined steps. Alternate splicing of two of the chains yields common variant molecular isoforms. The mechanical properties of clots, which can be quite variable, are essential to fibrin's functions in hemostasis and wound healing. The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active enzyme plasmin, results in digestion of fibrin at specific lysine residues. Fibrin(ogen) also specifically binds a variety of other proteins, including fibronectin, albumin, thrombospondin, von Willebrand factor, fibulin, fibroblast growth factor-2, vascular endothelial growth factor, and interleukin-1. Studies of naturally occurring dysfibrinogenemias and variant molecules have increased our understanding of fibrinogen's functions. Fibrinogen binds to activated alphaIIbbeta3 integrin on the platelet surface, forming bridges responsible for platelet aggregation in hemostasis, and also has important adhesive and inflammatory functions through specific interactions with other cells. Fibrinogen-like domains originated early in evolution, and it is likely that their specific and tightly controlled intermolecular interactions are involved in other aspects of cellular function and developmental biology.

  6. The influence of opioids on urokinase plasminogen activator on protein and mRNA level in MCF-7 breast cancer cell line.

    PubMed

    Gach, Katarzyna; Szemraj, Janusz; Fichna, Jakub; Piestrzeniewicz, Mariola; Delbro, Dick S; Janecka, Anna

    2009-10-01

    Urokinase plasminogen activator plays a key role in tumor-associated processes, increasing cancer cell invasion and metastasis, and is therefore used as a marker in cancer prognosis. In this study, we have determined the effect of mu-opioid receptor agonists and antagonists on the urokinase plasminogen activator secretion in MCF-7 cell line. It was shown that mu-opioid receptor agonists, such as morphine and endomorphins, greatly stimulate urokinase plasminogen activator secretion, while naloxone and MOR-selective antagonists elicit the opposite effect. The same tendency was observed also on the urokinase plasminogen activator mRNA level. However, neither agonists nor antagonists had any effect on proliferation of MCF-7 cells. The findings reported in this study may be useful in designing further experiments aimed at elucidating the role of the opioid system in cancer cells.

  7. Urokinase receptor expression involves tyrosine phosphorylation of phosphoglycerate kinase.

    PubMed

    Shetty, Praveenkumar; Velusamy, Thirunavukkarasu; Bhandary, Yashodhar P; Liu, Ming C; Shetty, Sreerama

    2010-02-01

    The interaction of urokinase-type plasminogen activator (uPA) with its receptor, uPAR, plays a central role in several pathophysiological processes, including cancer. uPA induces its own cell surface receptor expression through stabilization of uPAR mRNA. The mechanism involves binding of a 51 nt uPAR mRNA coding sequence with phosphoglycerate kinase (PGK) to down regulate cell surface uPAR expression. Tyrosine phosphorylation of PGK mediated by uPA treatment enhances uPAR mRNA stabilization. In contrast, inhibition of tyrosine phosphorylation augments PGK binding to uPAR mRNA and attenuates uPA-induced uPAR expression. Mapping the specific peptide region of PGK indicated that its first quarter (amino acids 1-100) interacts with uPAR mRNA. To determine if uPAR expression by uPA is regulated through activation of tyrosine residues of PGK, we mutated the specific tyrosine residue and tested mutant PGK for its ability to interfere with uPAR expression. Inhibition of tyrosine phosphorylation by mutating Y76 residue abolished uPAR expression induced by uPA treatment. These findings collectively demonstrate that Y76 residue present in the first quarter of the PGK molecule is involved in lung epithelial cell surface uPAR expression. This region can effectively mimic the function of a whole PGK molecule in inhibiting tumor cell growth.

  8. Receptor-Targeted Nanoparticles for In Vivo Imaging of Breast Cancer

    PubMed Central

    Yang, Lily; Peng, Xiang-Hong; Wang, Y. Andrew; Wang, Xiaoxia; Cao, Zehong; Ni, Chunchun; Karna, Prasanthi; Zhang, Xinjian; Wood, William C.; Gao, Xiaohu; Nie, Shuming; Mao, Hui

    2009-01-01

    Purpose Cell surface receptor-targeted magnetic iron oxide (IO) nanoparticles provide molecular magnetic resonance imaging (MRI) contrast agents for improving specificity of the detection of human cancer. Experimental design The present study reports the development of a novel targeted IO nanoparticle using a recombinant peptide containing the amino-terminal fragment (ATF) of urokinase plasminogen activator conjugated to IO nanoparticles (ATF-IO). This nanoparticle targets urokinase plasminogen activator receptor (uPAR), which is overexpressed in breast cancer tissues. Results ATF-IO nanoparticles are able to specifically bind to and be internalized by uPAR-expressing tumor cells. Systemic delivery of ATF-IO nanoparticles into mice bearing subcutaneous and intraperitoneal mammary tumors leads to the accumulation of the particles in tumors, generating a strong MRI contrast detectable by a clinical MRI scanner at a field strength of 3 Tesla. Target specificity of ATF-IO nanoparticles demonstrated by in vivo MRI is further confirmed by near infrared (NIR) fluorescence imaging of the mammary tumors using NIR dye-labeled ATF peptides conjugated to IO nanoparticles. Furthermore, mice administered ATF-IO nanoparticles exhibit lower uptake of the particles in the liver and spleen compared to those receiving non-targeted IO nanoparticles. Conclusions Our results suggest that uPAR-targeted ATF-IO nanoparticles have potential as molecularly-targeted, dual modality imaging agents for in vivo imaging of breast cancer. PMID:19584158

  9. Virtual screening using molecular simulations.

    PubMed

    Yang, Tianyi; Wu, Johnny C; Yan, Chunli; Wang, Yuanfeng; Luo, Ray; Gonzales, Michael B; Dalby, Kevin N; Ren, Pengyu

    2011-06-01

    Effective virtual screening relies on our ability to make accurate prediction of protein-ligand binding, which remains a great challenge. In this work, utilizing the molecular-mechanics Poisson-Boltzmann (or Generalized Born) surface area approach, we have evaluated the binding affinity of a set of 156 ligands to seven families of proteins, trypsin β, thrombin α, cyclin-dependent kinase (CDK), cAMP-dependent kinase (PKA), urokinase-type plasminogen activator, β-glucosidase A, and coagulation factor Xa. The effect of protein dielectric constant in the implicit-solvent model on the binding free energy calculation is shown to be important. The statistical correlations between the binding energy calculated from the implicit-solvent approach and experimental free energy are in the range of 0.56-0.79 across all the families. This performance is better than that of typical docking programs especially given that the latter is directly trained using known binding data whereas the molecular mechanics is based on general physical parameters. Estimation of entropic contribution remains the barrier to accurate free energy calculation. We show that the traditional rigid rotor harmonic oscillator approximation is unable to improve the binding free energy prediction. Inclusion of conformational restriction seems to be promising but requires further investigation. On the other hand, our preliminary study suggests that implicit-solvent based alchemical perturbation, which offers explicit sampling of configuration entropy, can be a viable approach to significantly improve the prediction of binding free energy. Overall, the molecular mechanics approach has the potential for medium to high-throughput computational drug discovery. Copyright © 2011 Wiley-Liss, Inc.

  10. Role of Endogenous Factors in Response of Erythrocyte Membrane in Patients with Cardiovascular Diseases under Conditions of Ischemic Exposure.

    PubMed

    Pivovarov, Yu I; Kuznetsova, E E; Koryakina, L B; Gorokhova, V G; Kuril'skaya, T E

    2015-05-01

    We studied specific features of erythrocyte membrane response to short-term occlusion of the brachial artery in patients with cardiovascular pathology. Under ischemic conditions, processes of sorption were primarily intensified in patients with effort angina and processes of hemoglobin binding with erythrocyte membrane predominated in patients with essential hypertension. These changes in the cell membrane were related to modulation of aggregation properties of erythrocytes (in patients with angina) and plasminogen activity (in patients with essential hypertension). They can also be associated with changes in glucose levels (effort angina) and uric acid (essential hypertension) whose effects can be significantly modified by other endogenous factors.

  11. Reprogrammed streptokinases develop fibrin-targeting and dissolve blood clots with more potency than tissue plasminogen activator

    PubMed Central

    SAZONOVA, I. Y.; MCNAMEE, R. A.; HOUNG, A. K.; KING, S. M.; HEDSTROM, L.; REED, G. L.

    2013-01-01

    Summary Background: Given the worldwide epidemic of cardiovascular diseases, a more effective means of dissolving thrombi that cause heart attacks, could markedly reduce death, disability and healthcare costs. Plasminogen activators (PAs) such as streptokinase (SK) and tissue plasminogen activator (TPA) are currently used to dissolve fibrin thrombi. SK is cheaper and more widely available, but it appears less effective because it lacks TPA’s fibrin-targeted properties that focus plasminogen activation on the fibrin surface. Objective: We examined whether re-programming SK’s mechanism of action would create PAs with greater fibrin-targeting and potency than TPA. Methods and Results: When fibrinogen consumption was measured in human plasma, reprogrammed molecules SKΔ1 and SKΔ59 were 5-fold and > 119-fold more fibrin-dependent than SK (P < 0.0001), and 2-fold and > 50-fold more fibrin-dependent than TPA (P < 0.001). The marked fibrin-targeting of SKΔ59 was due to the fact that: (i) it did not generate plasmin in plasma, (ii) it was rapidly inhibited by α2-antiplasmin, and (iii) it only processed fibrin-bound plasminogen. To assess the fibrin-targeting and therapeutic potential of these PAs in vivo, a novel ‘humanized’ fibrinolysis model was created by reconstituting plasminogen-deficient mice with human plasminogen. When compared with TPA, SKΔ1 and SKΔ59 were 4-fold (P < 0.0001) and 2-fold (P < 0.003) more potent at dissolving blood clots in vivo, respectively, on a mass-dose basis and 2–3 logs more potent than TPA (P < 0.0001) when doses were calibrated by standard activity assays. Conclusion: These experiments suggest that reprogramming SK’s mechanism of action markedly enhances fibrin-targeting and creates, in comparison with TPA, activators with greater fibrinolytic potency. PMID:19566545

  12. Reprogrammed streptokinases develop fibrin-targeting and dissolve blood clots with more potency than tissue plasminogen activator.

    PubMed

    Sazonova, I Y; McNamee, R A; Houng, A K; King, S M; Hedstrom, L; Reed, G L

    2009-08-01

    Given the worldwide epidemic of cardiovascular diseases, a more effective means of dissolving thrombi that cause heart attacks, could markedly reduce death, disability and healthcare costs. Plasminogen activators (PAs) such as streptokinase (SK) and tissue plasminogen activator (TPA) are currently used to dissolve fibrin thrombi. SK is cheaper and more widely available, but it appears less effective because it lacks TPA's fibrin-targeted properties that focus plasminogen activation on the fibrin surface. We examined whether re-programming SK's mechanism of action would create PAs with greater fibrin-targeting and potency than TPA. When fibrinogen consumption was measured in human plasma, reprogrammed molecules SKDelta1 and SKDelta59 were 5-fold and > 119-fold more fibrin-dependent than SK (P < 0.0001), and 2-fold and > 50-fold more fibrin-dependent than TPA (P < 0.001). The marked fibrin-targeting of SKDelta59 was due to the fact that: (i) it did not generate plasmin in plasma, (ii) it was rapidly inhibited by alpha2-antiplasmin, and (iii) it only processed fibrin-bound plasminogen. To assess the fibrin-targeting and therapeutic potential of these PAs in vivo, a novel 'humanized' fibrinolysis model was created by reconstituting plasminogen-deficient mice with human plasminogen. When compared with TPA, SKDelta1 and SKDelta59 were 4-fold (P < 0.0001) and 2-fold (P < 0.003) more potent at dissolving blood clots in vivo, respectively, on a mass-dose basis and 2-3 logs more potent than TPA (P < 0.0001) when doses were calibrated by standard activity assays. These experiments suggest that reprogramming SK's mechanism of action markedly enhances fibrin-targeting and creates, in comparison with TPA, activators with greater fibrinolytic potency.

  13. SKI promotes Smad3 linker phosphorylations associated with the tumor-promoting trait of TGFbeta.

    PubMed

    Lin, Qiushi; Chen, Dahu; Timchenko, Nikolai A; Medrano, Estela E

    2010-05-01

    The transcriptional co-regulator SKI is a potent inhibitor of TGFbeta-growth inhibitory signals. SKI binds to receptor-activated Smads in the nucleus, forming repressor complexes containing HDACs, mSin3, NCoR, and other protein partners. Alternatively, SKI binds to activated Smads in the cytoplasm, preventing their nuclear translocation. SKI is necessary for anchorage-independent growth of melanoma cells in vitro, and most important, for human melanoma xenograft growth in vivo. We recently identified a novel role of SKI in TGFbeta signaling. SKI promotes the switch of Smad3 from repressor of proliferation to activator of oncogenesis by facilitating phosphorylations in the linker domain. High levels of endogenous SKI are required by the tumor promoting trait of TGFbeta to induce expression of the plasminogen-activator inhibitor-1 (PAI-1), sustained expression of C-Myc and for aborting upregulation of p21(Waf-1). Here we discuss how SKI diversifies and amplifies its functions by associating with multiple protein partners and by promoting Smad3 linker phosphorylation(s) in response to TGFbeta signaling in melanoma cells.

  14. Characterization of a Novel Class of Polyphenolic Inhibitors of Plasminogen Activator Inhibitor-1*

    PubMed Central

    Cale, Jacqueline M.; Li, Shih-Hon; Warnock, Mark; Su, Enming J.; North, Paul R.; Sanders, Karen L.; Puscau, Maria M.; Emal, Cory D.; Lawrence, Daniel A.

    2010-01-01

    Plasminogen activator inhibitor type 1, (PAI-1) the primary inhibitor of the tissue-type (tPA) and urokinase-type (uPA) plasminogen activators, has been implicated in a wide range of pathological processes, making it an attractive target for pharmacologic inhibition. Currently available small-molecule inhibitors of PAI-1 bind with relatively low affinity and do not inactivate PAI-1 in the presence of its cofactor, vitronectin. To search for novel PAI-1 inhibitors with improved potencies and new mechanisms of action, we screened a library selected to provide a range of biological activities and structural diversity. Five potential PAI-1 inhibitors were identified, and all were polyphenolic compounds including two related, naturally occurring plant polyphenols that were structurally similar to compounds previously shown to provide cardiovascular benefit in vivo. Unique second generation compounds were synthesized and characterized, and several showed IC50 values for PAI-1 between 10 and 200 nm. This represents an enhanced potency of 10–1000-fold over previously reported PAI-1 inactivators. Inhibition of PAI-1 by these compounds was reversible, and their primary mechanism of action was to block the initial association of PAI-1 with a protease. Consistent with this mechanism and in contrast to previously described PAI-1 inactivators, these compounds inactivate PAI-1 in the presence of vitronectin. Two of the compounds showed efficacy in ex vivo plasma and one blocked PAI-1 activity in vivo in mice. These data describe a novel family of high affinity PAI-1-inactivating compounds with improved characteristics and in vivo efficacy, and suggest that the known cardiovascular benefits of dietary polyphenols may derive in part from their inactivation of PAI-1. PMID:20061381

  15. High-level expression of a novel recombinant human plasminogen activator (rhPA) in the milk of transgenic rabbits and its thrombolytic bioactivity in vitro.

    PubMed

    Song, Shaozheng; Ge, Xin; Cheng, Yaobin; Lu, Rui; Zhang, Ting; Yu, Baoli; Ji, Xueqiao; Qi, Zhengqiang; Rong, Yao; Yuan, Yuguo; Cheng, Yong

    2016-08-01

    The human tissue-type plasminogen activator (tPA) is a key kinase of fibrinolysis that plays an important role in dissolving fibrin clots to promote thrombolysis. The recombinant human plasminogen activator (rhPA) has more thrombolytic advantages than the wild type tPA. To increase the half-life and thrombolytic activity of tPA, a mutant containing only the essential K2 fibrin-binding and P activating plasminogen domains of the wild type tPA was cloned. This fragment was then inserted into goat β-casein regulatory sequences. Then, a mammary gland-specific expression vector, PCL25/rhPA, was constructed, and the transgenic rabbits were generated. In this study, 18 live transgenic founders (12♀, 6♂) were generated using pronuclear microinjection. Six transgenic rabbits were obtained, and the expression levels of rhPA in the milk had a range of 15.2-630 µg/ml. A fibrin agarose plate assay of rhPA showed that it had strong thrombolytic bioactivity in vitro, and the highest specific activity was >360 (360 times more than that of alteplase). The results indicated that the rhPA containing only the K2 and P domains is efficiently expressed with higher thrombolytic bioactivity in the milk of transgenic rabbits. Our study also demonstrated a new method for the large-scale production of clinically relevant recombinant pharmaceutical proteins in the mammary glands of transgenic rabbits.

  16. Using every trick in the book: the Pla surface protease of Yersinia pestis.

    PubMed

    Suomalainen, Marjo; Haiko, Johanna; Ramu, Päivi; Lobo, Leandro; Kukkonen, Maini; Westerlund-Wikström, Benita; Virkola, Ritva; Lähteenmäki, Kaarina; Korhonen, Timo K

    2007-01-01

    The Pla surface protease of Yersinia pestis, encoded by the Y. pestis-specific plasmid pPCP1, is a versatile virulence factor. In vivo studies have shown that Pla is essential in the establishment of bubonic plague, and in vitro studies have demonstrated various putative virulence functions for the Pla molecule. Pla is a surface protease of the omptin family, and its proteolytic targets include the abundant, circulating human zymogen plasminogen, which is activated by Pla to the serine protease plasmin. Plasmin is important in cell migration, and Pla also proteolytically inactivates the main circulating inhibitor of plasmin, alpha2-antiplasmin. Pla also is an adhesin with affinity for laminin, a major glycoprotein of mammalian basement membranes, which is degraded by plasmin but not by Pla. Together, these functions create uncontrolled plasmin proteolysis targeted at tissue barriers. Other proteolytic targets for Pla include complement proteins. Pla also mediates bacterial invasion into human endothelial cell lines; the adhesive and invasive charateristics of Pla can be genetically dissected from its proteolytic activity. Pla is a 10-stranded antiparallel beta-barrel with five surface-exposed short loops, where the catalytic residues are oriented inwards at the top of the beta-barrel. The sequence of Pla contains a three-dimensional motif for protein binding to lipid A of the lipopolysaccharide. Indeed, the proteolytic activity of Pla requires rough lipopolysaccharide but is sterically inhibited by the O antigen in smooth LPS, which may be the selective advantage of the loss of O antigen in Y. pestis. Members of the omptin family are highly similar in structure but differ in functions and virulence association. The catalytic residues of omptins are conserved, but the variable substrate specificities in proteolysis by Pla and other omptins are dictated by the amino acid sequences near or at the surface loops, and hence reflect differences in substrate binding. The closest orthologs of Pla are PgtE of Salmonella and Epo of Erwinia, which functionally differ from Pla. Pla gives a model of how a horizontally transferred protein fold can diverge into a powerful virulence factor through adaptive mutations.

  17. Protein-Binding RNA Aptamers Affect Molecular Interactions Distantly from Their Binding Sites

    PubMed Central

    Dupont, Daniel M.; Thuesen, Cathrine K.; Bøtkjær, Kenneth A.; Behrens, Manja A.; Dam, Karen; Sørensen, Hans P.; Pedersen, Jan S.; Ploug, Michael; Jensen, Jan K.; Andreasen, Peter A.

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site. PMID:25793507

  18. Activity of Nanobins Targeted to the Urokinase Plasminogen Activator System

    NASA Astrophysics Data System (ADS)

    Hankins, Patrick Leon

    While innovations in nanotechnology have resulted in numerous medical advancements for the treatment of cancer, there remains an urgent unmet need for safe and efficient molecular platforms that facilitate the delivery of potent therapeutics to solid tumors. Nanoscale formulations help to overcome the poor bioavailability and systemic organ toxicity associated with many small molecule drugs. Of these nanoparticle drug delivery systems, the greatest clinical successes to date have employed simple nanoscale lipid bilayer assemblies which encase large payloads of chemotherapeutic. While the nanobin platform we have developed has seen initial success through the passive accumulation into tumors, actively targeting nanobins to tumor specific antigens has the potential to increase the therapeutic index of these nanoparticle drugs. We have identified the urokinase plasminogen activator (uPA) and its cell surface bound receptor (uPAR) as ideal targets for drug delivery due to their selective overexpression in metastatic cancers and their important role in tumor progression. From a panel of monoclonal antibodies targeted to uPA and uPAR, we have selected ATN291 and ATN658 as lead candidates for nanobin targeting based on their tumor cell binding and ability to be internalized by cells. A novel method of conjugating antibodies to liposomes was developed for our nanobin platform that preserves the high binding affinity and specificity of these antibodies. We evaluated these uPA- and uPAR-targeted nanobins in several xenograft tumor models and found that they were well-tolerated over a wide range of doses and demonstrated significantly increased antitumor efficacy over untargeted nanobins in multiple tumor types. Preliminary studies suggest that uPA-targeted nanobins are readily internalized by tumor cells, and we believe this is the mechanism for their increased antitumor effect. A method for radiolabeling nanobins with gallium-67 was developed, and preliminary SPECT-CT imaging studies showed the preferential accumulation of these nanobins in an orthotopic model of breast cancer. Due to their biocompatibility, robustness, and extensive history in the clinic, liposomes are an ideal drug delivery vehicle for the development of targeted therapies. The data presented in this thesis demonstrates the potential for active targeting to increase the therapeutic index of nanoscale drug delivery systems by increasing antitumor effect while simultaneously preventing drug uptake in peripheral tissue. In particular, targeting nanoparticles to the uPA system is a promising strategy for the treatment of many advanced, metastatic cancers.

  19. Interactions of surface-displayed glycolytic enzymes of Mycoplasma pneumoniae with components of the human extracellular matrix.

    PubMed

    Gründel, Anne; Jacobs, Enno; Dumke, Roger

    2016-12-01

    Mycoplasma pneumoniae is a major cause of community-acquired respiratory infections worldwide. Due to the strongly reduced genome, the number of virulence factors expressed by this cell wall-less pathogen is limited. To further understand the processes during host colonization, we investigated the interactions of the previously confirmed surface-located glycolytic enzymes of M. pneumoniae (pyruvate dehydrogenase A-C [PdhA-C], glyceraldehyde-3-phosphate dehydrogenase [GapA], lactate dehydrogenase [Ldh], phosphoglycerate mutase [Pgm], pyruvate kinase [Pyk] and transketolase [Tkt]) to the human extracellular matrix (ECM) proteins fibrinogen (Fn), fibronectin (Fc), lactoferrin (Lf), laminin (Ln) and vitronectin (Vc), respectively. Concentration-dependent interactions between Fn and Vc and all eight recombinant proteins derived from glycolytic enzymes, between Ln and PdhB-C, GapA, Ldh, Pgm, Pyk and Tkt, between Lf and PdhA-C, GapA and Pyk, and between Fc and PdhC and GapA were demonstrated. In most cases, these associations are significantly influenced by ionic forces and by polyclonal sera against recombinant proteins. In immunoblotting, the complex of human plasminogen, activator (tissue-type or urokinase plasminogen activator) and glycolytic enzyme was not able to degrade Fc, Lf and Ln, respectively. In contrast, degradation of Vc was confirmed in the presence of all eight enzymes tested. Our data suggest that the multifaceted associations of surface-localized glycolytic enzymes play a potential role in the adhesion and invasion processes during infection of human respiratory mucosa by M. pneumoniae. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Interaction of fucoidan with proteases and inhibitors of coagulation and fibrinolysis.

    PubMed

    Minix, R; Doctor, V M

    1997-09-01

    The interactions of fucoidan with glutamic plasminogen (Glu-Plg), two-chain tissue plasminogen activator (t-PA), LMwt-urokinase, thrombin, and antithrombin III (AT-III) were investigated using fucoidan-sepharose affinity chromatography. The results showed 1) a high degree of affinity between fucoidan-sepharose and Glu-Plg; Lmwt-urokinase and thrombin while t-Pa and AT-III did not bind with fucoidan-sepharose. 2) The double reciprocal plot for the LMwt-urokinase activation of Glu-Plg showed that plasminogen activator inhibitor (PAI-1) inhibited this reaction in a noncompetitive manner and that the presence of fucoidan decreased Km for this interaction by 50% and increased Kcat by 30-fold, 3) The double reciprocal plot for the t-PA activation of Glu-Plg showed that PAI-1 inhibited this reaction in a competitive manner and that fucoidan in conjunction with 6-aminohexanoic acid (6-AH) increased Kcat for this interaction by 5-fold without affecting Km. 4) Fucoidan enhanced the interaction of thrombin with both AT-III and heparin cofactor II (HC-II) and it was more effective than unfractionated heparin of LMwt-heparin in enhancing the interaction of HC-II with thrombin.

  1. Peroxisome Proliferator-Activated Receptor-γ Ligands Alter Breast Cancer Cell Motility through Modulation of the Plasminogen Activator System

    PubMed Central

    Carter, Jennifer C.; Church, Frank C.

    2011-01-01

    We investigated peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands effect on cell motility and the plasminogen activator system using normal MCF-10A and malignant MCF-10CA1 cell lines. Ciglitazone reduced both wound-induced migration and chemotaxis. However, the effect was not reversed with pretreatment of cells with the PPAR-γ-specific antagonist GW9662. Immunoblot analysis of conditioned media showed ciglitazone decreased plasminogen activator inhibitor-1 (PAI-1) in both cell lines; this effect was also unaltered by PPAR-γ antagonism. Alternatively, treatment with the ω-6 fatty acid arachidonic acid (ArA), but not the ω-3 fatty acid docosahexanoic acid, increased both MCF-10A cell migration and cell surface uPA activity. Pretreatment with a PPAR-γ antagonist reversed these effects, suggesting that ArA mediates its effect on cell motility and uPA activity through PPAR-γ activation. Collectively, the data suggest PPAR-γ ligands have a differential effect on normal and malignant cell migration and the plasminogen activation system, resulting from PPAR-γ-dependent and PPAR-γ-independent effects. PMID:22131991

  2. Increased expression of urokinase plasminogen activator in Quebec platelet disorder is linked to megakaryocyte differentiation

    PubMed Central

    Veljkovic, D. Kika; Rivard, Georges E.; Diamandis, Maria; Blavignac, Jessica; Cramer-Bordé, Elisabeth M.

    2009-01-01

    Quebec platelet disorder (QPD) is an inherited bleeding disorder associated with increased urokinase plasminogen activator (uPA) in platelets but not in plasma, intraplatelet plasmin generation, and α-granule protein degradation. These abnormalities led us to investigate uPA expression by QPD CD34+ progenitors, cultured megakaryocytes, and platelets, and whether uPA was stored in QPD α-granules. Although QPD CD34+ progenitors expressed normal amounts of uPA, their differentiation into megakaryocytes abnormally increased expression of the uPA gene but not the flanking genes for vinculin or calcium/calmodulin-dependent protein kinase IIγ on chromosome 10. The increased uPA production by cultured QPD megakaryocytes mirrored their production of α-granule proteins, which was normal. uPA was localized to QPD α-granules and it showed extensive colocalization with α-granule proteins in both cultured QPD megakaryocytes and platelets, and with plasminogen in QPD platelets. In QPD megakaryocytes, cultured without or with plasma as a source of plasminogen, α-granule proteins were stored undegraded and this was associated with much less uPA-plasminogen colocalization than in QPD platelets. Our studies indicate that the overexpression of uPA in QPD emerges with megakaryocyte differentiation, without altering the expression of flanking genes, and that uPA is costored with α-granule proteins prior to their proteolysis in QPD. PMID:19029443

  3. Increased expression of urokinase plasminogen activator in Quebec platelet disorder is linked to megakaryocyte differentiation.

    PubMed

    Veljkovic, D Kika; Rivard, Georges E; Diamandis, Maria; Blavignac, Jessica; Cramer-Bordé, Elisabeth M; Hayward, Catherine P M

    2009-02-12

    Quebec platelet disorder (QPD) is an inherited bleeding disorder associated with increased urokinase plasminogen activator (uPA) in platelets but not in plasma, intraplatelet plasmin generation, and alpha-granule protein degradation. These abnormalities led us to investigate uPA expression by QPD CD34(+) progenitors, cultured megakaryocytes, and platelets, and whether uPA was stored in QPD alpha-granules. Although QPD CD34(+) progenitors expressed normal amounts of uPA, their differentiation into megakaryocytes abnormally increased expression of the uPA gene but not the flanking genes for vinculin or calcium/calmodulin-dependent protein kinase IIgamma on chromosome 10. The increased uPA production by cultured QPD megakaryocytes mirrored their production of alpha-granule proteins, which was normal. uPA was localized to QPD alpha-granules and it showed extensive colocalization with alpha-granule proteins in both cultured QPD megakaryocytes and platelets, and with plasminogen in QPD platelets. In QPD megakaryocytes, cultured without or with plasma as a source of plasminogen, alpha-granule proteins were stored undegraded and this was associated with much less uPA-plasminogen colocalization than in QPD platelets. Our studies indicate that the overexpression of uPA in QPD emerges with megakaryocyte differentiation, without altering the expression of flanking genes, and that uPA is costored with alpha-granule proteins prior to their proteolysis in QPD.

  4. Synthesis and characterization of an 111In-labeled peptide for the in vivo localization of human cancers expressing the urokinase-type plasminogen activator receptor (uPAR)

    PubMed Central

    Liu, Dijie; Overbey, Douglas; Watkinson, Lisa; Giblin, Michael F.

    2009-01-01

    This study describes the synthesis and preliminary biologic evaluation of an 111Inlabeled peptide antagonist of the urokinase-type plasminogen activator receptor (uPAR) as a potential probe for assessing metastatic potential of human breast cancer in vivo. The peptide (NAc-dD-CHA-F-dS-dR-Y-L-W-S-βAla)2-K-K(DOTA)-NH2 was synthesized and conjugated with the DOTA chelating moiety via conventional Solid-Phase Peptide Synthesis (SPPS), purified by reversed-phase HPLC, and characterized by MALDI-TOF MS and receptor binding assay. In vitro receptor binding studies demonstrated an IC50 of 240 ± 125 nM for the peptide, compared with IC50’s of 0.44 ± 0.02 and 0.75 ± 0.01 nM for the amino terminal fragment (ATF) of the urokinase-type plasminogen activator (uPA) and full-length uPA, respectively. In vivo biodistribution studies were carried out using SCID mice bearing MDA-MB-231 human breast cancer xenografts. Biodistribution data was collected at 1, 4, and 24 hr post-injection of 111In-DOTA-peptide, and compared with data obtained using a scrambled control peptide, as well as with data obtained using wild-type ATF radiolabeled with I-125. Biodistribution studies showed rapid elimination of the 111In-labeled peptide from the blood pool, with 0.12 ± 0.06% ID/g remaining in blood at 4 hr pi. Elimination was seen primarily via the renal/urinary route, with 83.9 ± 2.2%ID in the urine at the same timepoint. Tumor uptake at this time was 0.53 ± 0.11%ID/g, resulting in tumor: blood and tumor: muscle ratios of 4.2 and 9.4, respectively. Uptake in tumor was significantly higher than that obtained using a scrambled control peptide that showed no specific binding to uPAR (p < 0.05). In vitro and ex vivo results both suggested that the magnitude of tumor-specific binding was reduced in this model by endogenous expression of uPA. The results indicate that radiolabeled peptide uPAR antagonists may find application in the imaging and therapy of uPAR-expressing breast cancers in vivo. PMID:19354275

  5. Fibrinolysis and Proliferative Endarteritis: Two Related Processes in Chronic Infections? The Model of the Blood-Borne Pathogen Dirofilaria immitis

    PubMed Central

    González-Miguel, Javier; Morchón, Rodrigo; Siles-Lucas, Mar; Simón, Fernando

    2015-01-01

    The interaction between blood-borne pathogens and fibrinolysis is one of the most important mechanisms that mediate invasion and the establishment of infectious agents in their hosts. However, overproduction of plasmin (final product of the route) has been related in other contexts to proliferation and migration of the arterial wall cells and degradation of the extracellular matrix. We have recently identified fibrinolysis-activating antigens from Dirofilaria immitis, a blood-borne parasite whose key pathological event (proliferative endarteritis) is produced by similar mechanisms to those indicated above. The objective of this work is to study how two of this antigens [actin (ACT) and fructose-bisphosphate aldolase (FBAL)] highly conserved in pathogens, activate fibrinolysis and to establish a relationship between this activation and the development of proliferative endarteritis during cardiopulmonary dirofilariasis. We demonstrate that both proteins bind plasminogen, enhance plasmin generation, stimulate the expression of the fibrinolytic activators tPA and uPA in endothelial cell cultures and are located on the surface of the worm in contact with the host’s blood. ELISA, western blot and immunofluorescence techniques were employed for this purpose. Additionally, the implication of lysine residues in this interaction was analyzed by bioinformatics. The involvement of plasmin generated by the ACT/FBAL and plasminogen binding in cell proliferation and migration, and degradation of the extracellular matrix were shown in an “in vitro” model of endothelial and smooth muscle cells in culture. The obtained results indicate that ACT and FBAL from D. immitis activate fibrinolysis, which could be used by the parasite like a survival mechanism to avoid the clot formation. However, long-term overproduction of plasmin can trigger pathological events similar to those described in the emergence of proliferative endarteritis. Due to the high degree of evolutionary conservation of these antigens, similar processes may occur in other blood-borne pathogens. PMID:25875022

  6. Decoy Plasminogen Receptor Containing a Selective Kunitz-Inhibitory Domain

    PubMed Central

    2015-01-01

    Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 in which P2′ residue Leu17 (bovine pancreatic trypsin inhibitor numbering) is mutated to Arg selectively inhibits the active site of plasmin with ∼5-fold improved affinity. Thrombin cleavage (24 h extended incubation at a 1:50 enzyme-to-substrate ratio) of the KD1 mutant (Leu17Arg) yielded a smaller molecule containing the intact Kunitz domain with no detectable change in the active-site inhibitory function. The N-terminal sequencing and MALDI-TOF/ESI data revealed that the starting molecule has a C-terminal valine (KD1L17R-VT), whereas the smaller molecule has a C-terminal lysine (KD1L17R-KT). Because KD1L17R-KT has C-terminal lysine, we examined whether it could serve as a decoy receptor for plasminogen/plasmin. Such a molecule might inhibit plasminogen activation as well as the active site of generated plasmin. In surface plasmon resonance experiments, tissue plasminogen activator (tPA) and Glu-plasminogen bound to KD1L17R-KT (Kd ∼ 0.2 to 0.3 μM) but not to KD1L17R-VT. Furthermore, KD1L17R-KT inhibited tPA-induced plasma clot fibrinolysis more efficiently than KD1L17R-VT. Additionally, compared to ε-aminocaproic acid KD1L17R-KT was more effective in reducing blood loss in a mouse liver-laceration injury model, where the fibrinolytic system is activated. In further experiments, the micro(μ)-plasmin–KD1L17R-KT complex inhibited urokinase-induced plasminogen activation on phorbol-12-myristate-13-acetate-stimulated U937 monocyte-like cells, whereas the μ-plasmin–KD1L17R-VT complex failed to inhibit this process. In conclusion, KD1L17R-KT inhibits the active site of plasmin as well as acts as a decoy receptor for the kringle domain(s) of plasminogen/plasmin; hence, it limits both plasmin generation and activity. With its dual function, KD1L17R-KT could serve as a preferred agent for controlling plasminogen activation in pathological processes. PMID:24383758

  7. Decoy plasminogen receptor containing a selective Kunitz-inhibitory domain.

    PubMed

    Kumar, Yogesh; Vadivel, Kanagasabai; Schmidt, Amy E; Ogueli, Godwin I; Ponnuraj, Sathya M; Rannulu, Nalaka; Loo, Joseph A; Bajaj, Madhu S; Bajaj, S Paul

    2014-01-28

    Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 in which P2' residue Leu17 (bovine pancreatic trypsin inhibitor numbering) is mutated to Arg selectively inhibits the active site of plasmin with ∼5-fold improved affinity. Thrombin cleavage (24 h extended incubation at a 1:50 enzyme-to-substrate ratio) of the KD1 mutant (Leu17Arg) yielded a smaller molecule containing the intact Kunitz domain with no detectable change in the active-site inhibitory function. The N-terminal sequencing and MALDI-TOF/ESI data revealed that the starting molecule has a C-terminal valine (KD1L17R-VT), whereas the smaller molecule has a C-terminal lysine (KD1L17R-KT). Because KD1L17R-KT has C-terminal lysine, we examined whether it could serve as a decoy receptor for plasminogen/plasmin. Such a molecule might inhibit plasminogen activation as well as the active site of generated plasmin. In surface plasmon resonance experiments, tissue plasminogen activator (tPA) and Glu-plasminogen bound to KD1L17R-KT (Kd ∼ 0.2 to 0.3 μM) but not to KD1L17R-VT. Furthermore, KD1L17R-KT inhibited tPA-induced plasma clot fibrinolysis more efficiently than KD1L17R-VT. Additionally, compared to ε-aminocaproic acid KD1L17R-KT was more effective in reducing blood loss in a mouse liver-laceration injury model, where the fibrinolytic system is activated. In further experiments, the micro(μ)-plasmin-KD1L17R-KT complex inhibited urokinase-induced plasminogen activation on phorbol-12-myristate-13-acetate-stimulated U937 monocyte-like cells, whereas the μ-plasmin-KD1L17R-VT complex failed to inhibit this process. In conclusion, KD1L17R-KT inhibits the active site of plasmin as well as acts as a decoy receptor for the kringle domain(s) of plasminogen/plasmin; hence, it limits both plasmin generation and activity. With its dual function, KD1L17R-KT could serve as a preferred agent for controlling plasminogen activation in pathological processes.

  8. Quebec platelet disorder: features, pathogenesis and treatment.

    PubMed

    Diamandis, Maria; Veljkovic, D Kika; Maurer-Spurej, Elisabeth; Rivard, Georges E; Hayward, Catherine P M

    2008-03-01

    Quebec platelet disorder (QPD) is a rare, autosomal-dominant, inherited bleeding disorder that is associated with unique abnormalities in fibrinolysis. Its hallmark features are delayed-onset bleeding following hemostatic challenges that responds to fibrinolytic inhibitor therapy and increased expression and storage of the fibrinolytic enzyme urokinase plasminogen activator in platelets, without increased plasma urokinase plasminogen activator or systemic fibrinolysis. The increased urokinase plasminogen activator in QPD platelets is only partially inhibited, and, as a result, there is intraplatelet generation of plasmin, and secondary degradation of many platelet alpha-granule proteins. During clot formation, the urokinase plasminogen activator released by QPD platelets leads to platelet-dependent increased fibrinolysis, and this is postulated to be a major contributor to QPD bleeding. The focus of the present review is to summarize the current state of knowledge on QPD, including the history of this disorder, its clinical and laboratory features, and recommended approaches for its diagnosis and treatment.

  9. Treatment of plasminogen deficiency patients with fresh frozen plasma.

    PubMed

    Kızılocak, Hande; Ozdemir, Nihal; Dikme, Gürcan; Koç, Begüm; Atabek, Ayşe Ayzıt; Çokuğraş, Haluk; İskeleli, Güzin; Dönmez-Demir, Buket; Christiansen, Nina Merete; Ziegler, Maike; Ozdağ, Hilal; Schuster, Volker; Celkan, Tiraje

    2018-02-01

    Congenital plasminogen (Plg) deficiency leads to the development of ligneous membranes on mucosal surfaces. Here, we report our experience with local and intravenous fresh frozen plasma (FFP). We retrospectively reviewed medical files of 17 patients and their eight first-degree relatives. Conjunctivitis was the main complaint. Thirteen patients were treated both with intravenous and conjunctival FFP. Venous thrombosis did not develop in any. Genetic evaluation revealed heterogeneous mutations as well as polymorphisms. Diagnosis and treatment of Plg deficiency is challenging; topical and intravenous FFP may be an alternative treatment. © 2017 Wiley Periodicals, Inc.

  10. Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies.

    PubMed

    Adibhatla, Rao Muralikrishna; Hatcher, James F

    2008-06-01

    Today there exists only one FDA-approved treatment for ischemic stroke; i.e., the serine protease tissue-type plasminogen activator (tPA). In the aftermath of the failed stroke clinical trials with the nitrone spin trap/radical scavenger, NXY-059, a number of articles raised the question: are we doing the right thing? Is the animal research truly translational in identifying new agents for stroke treatment? This review summarizes the current state of affairs with plasminogen activators in thrombolytic therapy. In addition to therapeutic value, potential side effects of tPA also exist that aggravate stroke injury and offset the benefits provided by reperfusion of the occluded artery. Thus, combinational options (ultrasound alone or with microspheres/nanobubbles, mechanical dissociation of clot, activated protein C (APC), plasminogen activator inhibitor-1 (PAI-1), neuroserpin and CDP-choline) that could offset tPA toxic side effects and improve efficacy are also discussed here. Desmoteplase, a plasminogen activator derived from the saliva of Desmodus rotundus vampire bat, antagonizes vascular tPA-induced neurotoxicity by competitively binding to low-density lipoprotein related-receptors (LPR) at the blood-brain barrier (BBB) interface, minimizing the tPA uptake into brain parenchyma. tPA can also activate matrix metalloproteinases (MMPs), a family of endopeptidases comprised of 24 mammalian enzymes that primarily catalyze the turnover and degradation of the extracellular matrix (ECM). MMPs have been implicated in BBB breakdown and neuronal injury in the early times after stroke, but also contribute to vascular remodeling, angiogenesis, neurogenesis and axonal regeneration during the later repair phase after stroke. tPA, directly or by activation of MMP-9, could have beneficial effects on recovery after stroke by promoting neurovascular repair through vascular endothelial growth factor (VEGF). However, any treatment regimen directed at MMPs must consider their pleiotropic nature and the likelihood of either beneficial or detrimental effects that might depend on the timing of the treatment in relation to the stage of brain injury.

  11. Platelets from patients with the Quebec platelet disorder contain and secrete abnormal amounts of urokinase-type plasminogen activator.

    PubMed

    Kahr, W H; Zheng, S; Sheth, P M; Pai, M; Cowie, A; Bouchard, M; Podor, T J; Rivard, G E; Hayward, C P

    2001-07-15

    The Quebec platelet disorder (QPD) is an autosomal dominant platelet disorder associated with delayed bleeding and alpha-granule protein degradation. The degradation of alpha-granule, but not plasma, fibrinogen in patients with the QPD led to the investigation of their platelets for a protease defect. Unlike normal platelets, QPD platelets contained large amounts of fibrinolytic serine proteases that had properties of plasminogen activators. Western blot analysis, zymography, and immunodepletion experiments indicated this was because QPD platelets contained large amounts of urokinase-type plasminogen activator (u-PA) within a secretory compartment. u-PA antigen was not increased in all QPD plasmas, whereas it was increased more than 100-fold in QPD platelets (P <.00009), which contained increased u-PA messenger RNA. Although QPD platelets contained 2-fold more plasminogen activator inhibitor 1 (PAI-1) (P <.0008) and 100-fold greater u-PA-PAI-1 complexes (P <.0002) than normal platelets, they contained excess u-PA activity, predominantly in the form of two chain (tcu-PA), which required additional PAI-1 for full inhibition. There was associated proteolysis of plasminogen in QPD platelets, to forms that comigrated with plasmin. When similar amounts of tcu-PA were incubated with normal platelet secretory proteins, many alpha-granule proteins were proteolyzed to forms that resembled degraded QPD platelet proteins. These data implicate u-PA in the pathogenesis of alpha-granule protein degradation in the QPD. Although patients with the QPD have normal to increased u-PA levels in their plasma, without evidence of systemic fibrinogenolysis, their increased platelet u-PA could contribute to bleeding by accelerating fibrinolysis within the hemostatic plug. QPD is the only inherited bleeding disorder in humans known to be associated with increased u-PA.

  12. Fiber intake and plasminogen activator inhibitor-1 in type 2 diabetes: Look AHEAD (Action for Health in Diabetes) Trial findings at baseline and 1 year

    USDA-ARS?s Scientific Manuscript database

    Plasminogen activator inhibitor 1 (PAI-1) is elevated in obese individuals with type 2 diabetes and may contribute, independently of traditional factors, to increased cardiovascular disease risk. Fiber intake may decrease PAI-1 levels. We examined the associations of fiber intake and its changes wit...

  13. Effect of reoxygenation on the hypoxia-induced up-regulation of serine protease inhibitor PAI-1 in head and neck cancer cells.

    PubMed

    Sprague, Lisa D; Mengele, Karin; Schilling, Daniela; Geurts-Moespot, Anneke; Sweep, Fred C G J; Stadler, Peter; Schmitt, Manfred; Molls, Michael

    2006-01-01

    In squamous cell carcinoma of the head and neck (SCCHN), hypoxia is considered a crucial physiological modulator for malignant progression, wherebythe plasminogen activation system is involved in overlapping functions such as moulding of the extracellular matrix, cell proliferation and signal transduction. Little is known about the effects of reoxygenation on the plasminogen activation system in SCCHN cells. Three human SCCHN cell lines (BHY, CAL27, FaDu) and a non-transformed human fibroblast cell line (VH7) were exposed to hypoxic (<0.5% O(2)) conditions for up to 72 h and subsequently reoxygenated at normoxic conditions for 24 h. Urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) protein concentration and former protein activity were determined by ELISA and complex ELISA, respectively. Reoxygenation induced significant changes in cell-associated and secreted PAI-1 protein compared to the normoxic control. Significant increase in cell-associated and secreted uPA protein after reoxygenation was only observed for some of the cell lines. Determination of uPA-PAI-1 complex formation revealed the release of active protein into the cell supernatant. The beneficial role of reoxygenation during radiation therapy is widely accepted. However, reoxygenation does not seem to counteract the effects induced by hypoxia on the plasminogen activation system. Fatally irradiated reoxygenat- ed tumour cells might still produce sufficient amounts of 'harmful' protein and thus initiate a path for invasion and metastasis for surviving tumour cells.

  14. Efficient copackaging and cotransport yields postsynaptic colocalization of neuromodulators associated with synaptic plasticity.

    PubMed

    Lochner, J E; Spangler, E; Chavarha, M; Jacobs, C; McAllister, K; Schuttner, L C; Scalettar, B A

    2008-09-01

    Recent data suggest that tissue plasminogen activator (tPA) influences long-term plasticity at hippocampal synapses by converting plasminogen into plasmin, which then generates mature brain-derived neurotrophic factor (mBDNF) from its precursor, proBDNF. Motivated by this hypothesis, we used fluorescent chimeras, expressed in hippocampal neurons, to elucidate (1) mechanisms underlying plasminogen secretion from hippocampal neurons, (2) if tPA, plasminogen, and proBDNF are copackaged and cotransported in hippocampal neurons, especially within dendritic spines, and (3) mechanisms mediating the transport of these neuromodulators to sites of release. We find that plasminogen chimeras traffic through the regulated secretory pathway of hippocampal neurons in dense-core granules (DCGs) and that tPA, plasminogen, and proBDNF chimeras are extensively copackaged in DCGs throughout hippocampal neurons. We also find that 80% of spines that contain DCGs contain chimeras of these neuromodulators in the same DCG. Finally, we demonstrate, for the first time, that neuromodulators undergo cotransport along dendrites in rapidly mobile DCGs, indicating that neuromodulators can be efficiently recruited into active spines. These results support the hypothesis that tPA mediates synaptic activation of BDNF by demonstrating that tPA, plasminogen, and proBDNF colocalize in DCGs in spines, where these neuromodulators can undergo activity-dependent release and then interact and/or mediate changes that influence synaptic efficacy. The results also raise the possibility that frequency-dependent changes in extents of neuromodulator release from DCGs influence the direction of plasticity at hippocampal synapses by altering the relative proportions of two proteins, mBDNF and proBDNF, that exert opposing effects on synaptic efficacy.

  15. Statins Increase Plasminogen Activator Inhibitor Type 1 Gene Transcription through a Pregnane X Receptor Regulated Element

    PubMed Central

    Stanley, Frederick M.; Linder, Kathryn M.; Cardozo, Timothy J.

    2015-01-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a multifunctional protein that has important roles in inflammation and wound healing. Its aberrant regulation may contribute to many disease processes such as heart disease. The PAI-1 promoter is responsive to multiple inputs including cytokines, growth factors, steroids and oxidative stress. The statin drugs, atorvastatin, mevastatin and rosuvastatin, increased basal and stimulated expression of the PAI-1 promoter 3-fold. A statin-responsive, nuclear hormone response element was previously identified in the PAI-1 promoter, but it was incompletely characterized. We characterized this direct repeat (DR) of AGGTCA with a 3-nucleotide spacer at -269/-255 using deletion and directed mutagenesis. Deletion or mutation of this element increased basal transcription from the promoter suggesting that it repressed PAI-1 transcription in the unliganded state. The half-site spacing and the ligand specificity suggested that this might be a pregnane X receptor (PXR) responsive element. Computational molecular docking showed that atorvastatin, mevastatin and rosuvastatin were structurally compatible with the PXR ligand-binding pocket in its agonist conformation. Experiments with Gal4 DNA binding domain fusion proteins showed that Gal4-PXR was activated by statins while other DR + 3 binding nuclear receptor fusions were not. Overexpression of PXR further enhanced PAI-1 transcription in response to statins. Finally, ChIP experiments using Halo-tagged PXR and RXR demonstrated that both components of the PXR-RXR heterodimer bound to this region of the PAI-1 promoter. PMID:26379245

  16. The Plasminogen Activation System Promotes Dendritic Spine Recovery and Improvement in Neurological Function After an Ischemic Stroke

    PubMed Central

    Jeanneret, Valerie; Yepes, Manuel

    2016-01-01

    Advances in neurocritical care and interventional neuroradiology have led to a significant decrease in acute ischemic stroke (AIS) mortality. In contrast, due to the lack of an effective therapeutic strategy to promote neuronal recovery among AIS survivors, cerebral ischemia is still a leading cause of disability in the world. Ischemic stroke has a harmful impact on synaptic structure and function, and plasticity-mediated synaptic recovery is associated with neurological improvement following an AIS. Dendritic spines (DSs) are specialized dendritic protrusions that receive most of the excitatory input in the brain. The deleterious effect of cerebral ischemia on DSs morphology and function has been associated with impaired synaptic transmission and neurological deterioration. However, these changes are reversible if cerebral blood flow is restored on time, and this recovery has been associated with neurological improvement following an AIS. Tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) are two serine proteases that besides catalyzing the conversion of plasminogen into plasmin in the intravascular and pericellular environment, respectively, are also are efficient inductors of synaptic plasticity. Accordingly, recent evidence indicates that both, tPA and uPA, protect DSs from the metabolic stress associated with the ischemic injury, and promote their morphological and functional recovery during the recovery phase from an AIS. Here we will review data indicating that plasticity-induced changes in DSs and the associated post-synaptic density play a pivotal role in the recovery process from AIS, making special emphasis on the role of tPA and uPA in this process. PMID:26846991

  17. [Clinical and etiopathogenetic role of plasminogen and metaloproteinase systems in the tumor growth. Pericellular proteolysis of extracellular matrix and tumor growth].

    PubMed

    Cosić, Sanda Jelisavac; Kovac, Zdenko

    2011-01-01

    Pericellular proteolysis is a cascade process involved in degradation of extracellular matrix. This process is included in various physiological and pathological processes. Pericellullar proteolysis has major functions like degradation of tissue stroma and weakening of intercellular connections but it also has a function in the synthesis of bioactive molecules (cytokines, growth factors and inhibitory factors). Plasminogen system is involved in fibrinolysis and starts metalloproteinase activation. Activity of proteolytic molecules is controlled by the rate of zymogenic activation, half-life of molecules, and action of inhibitory molecules. Inhibition is achieved through direct binding of inhibitor and enzyme and takes a few steps. Pericellular proteolysis is involved in tumor invasion and metastasis, inflammatory reaction, degenerative diseases and other diseases. Pathophysiological regulation of pericellular proteolysis in mentioned diseases contributes to clinical properties of diseases and has diagnostic and therapeutic importance.

  18. Efficient co-packaging and co-transport yields post-synaptic co-localization of neuromodulators associated with synaptic plasticity

    PubMed Central

    Lochner, J. E.; Spangler, E.; Chavarha, M.; Jacobs, C.; McAllister, K.; Schuttner, L. C.; Scalettar, B. A.

    2009-01-01

    Recent data suggest that tissue plasminogen activator (tPA) influences long-term plasticity at hippocampal synapses by converting plasminogen into plasmin, which then generates mature brain-derived neurotrophic factor (mBDNF) from its precursor, proBDNF. Motivated by this hypothesis, we used fluorescent chimeras, expressed in hippocampal neurons, to elucidate (1) mechanisms underlying plasminogen secretion from hippocampal neurons, (2) if tPA, plasminogen, and proBDNF are co-packaged and co-transported in hippocampal neurons, especially within dendritic spines, and (3) mechanisms mediating the transport of these neuromodulators to sites of release. We find that plasminogen chimeras traffic through the regulated secretory pathway of hippocampal neurons in dense-core granules (DCGs) and that tPA, plasminogen, and proBDNF chimeras are extensively co-packaged in DCGs throughout hippocampal neurons. We also find that 80% of spines that contain DCGs contain chimeras of these neuromodulators in the same DCG. Finally, we demonstrate, for the first time, that neuromodulators undergo co-transport along dendrites in rapidly mobile DCGs, indicating that neuromodulators can be efficiently recruited into active spines. These results support the hypothesis that tPA mediates synaptic activation of BDNF by demonstrating that tPA, plasminogen, and proBDNF co-localize in DCGs in spines, where these neuromodulators can undergo activity-dependent release and then interact and/or mediate changes that influence synaptic efficacy. The results also raise the possibility that frequency-dependent changes in extents of neuromodulator release from DCGs influence the direction of plasticity at hippocampal synapses by altering the relative proportions of two proteins, mBDNF and proBDNF, that exert opposing effects on synaptic efficacy. PMID:18563704

  19. Contact activation: a revision.

    PubMed

    Schmaier, A H

    1997-07-01

    In conclusion, a revised view of the contact system has been presented. This system has little to do with the initiation of hemostasis. Like lupus anticoagulants, deficiencies of contact proteins give prolonged APTTs but may be risk factors for thrombosis. BK from kininogens is a potent modulator of vascular biology inducing vasodilation, tissue plasminogen activator release, and prostacyclin liberation. Kininogens, themselves, are selective inhibitors of alpha-thrombin-induced platelet activation preventing alpha-thrombin from cleaving the cloned thrombin receptor after arginine41. Kininogens' alpha-thrombin inhibitory activity exists in intact kininogens, BK, and all of BK's breakdown products. HK also is the pivotal protein for contact protein assembly on endothelium. It is the receptor for prekallikrein which when bound to HK becomes activated to kallikrein by an endothelial cell enzyme system independent of activated forms of plasma factor XII. Prekallikrein activation on endothelial cells results in kinetically favorable single chain urokinase and plasminogen activation. Thus the "physiologic, negatively charged surface" for contact system activation is really the assembly of these proteins on cell membranes and activation by membrane-associated enzymes.

  20. Complement Evasion by Pathogenic Leptospira.

    PubMed

    Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva

    2016-01-01

    Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira . Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira , have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.

  1. Complement Evasion by Pathogenic Leptospira

    PubMed Central

    Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva

    2016-01-01

    Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira, have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host. PMID:28066433

  2. Biotypes and ScM types of isolates of Streptococcus canis from diseased and healthy cats.

    PubMed

    Timoney, J F; Velineni, S; Ulrich, B; Blanchard, P

    2017-04-08

    Lancefield group G Streptococcus canis is a component of the normal urogenital and pharyngeal flora of the cat. It is also frequently implicated in epizootics of severe disease in closed cat colonies and animal shelters. Given the importance of S canis as a feline pathogen and relative lack of published information on characteristics potentially associated with virulence, the authors have compared isolates from healthy and diseased cats in New York and California using fermentation profiles (biotype) and ScM sequences. With few exceptions, isolates associated with disease were biotype 1. Four alleles of scm were identified of which type 1 dominated in diseased cats. Type 4 allelic variants were found only in healthy cats and all but one were biotype 2. Type 2 and 3 alleles showed extensive N-terminal variation suggesting a plasminogen-binding site as found on the type 1 allele was absent. Cat antisera to ScM were opsonobactericidal, and these potentially protective antibodies increased during convalescence. British Veterinary Association.

  3. The Association of Plasminogen Activator Inhibitor Type 1 (PAI-1) Level and PAI-1 4G/5G Gene Polymorphism with the Formation and the Grade of Endometrial Cancer.

    PubMed

    Yıldırım, Malik Ejder; Karakuş, Savas; Kurtulgan, Hande Küçük; Kılıçgün, Hasan; Erşan, Serpil; Bakır, Sevtap

    2017-08-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor (Serpine 1), and it inhibits both tissue plasminogen activator and urokinase plasminogen activator which are important in fibrinolysis. We aimed to find whether there is a possible association between PAI-1 level, PAI-1 4G/5G polymorphism, and endometrial cancer. PAI-1 levels in peripheral blood were determined in 82 patients with endometrial carcinoma and 76 female healthy controls using an enzyme-linked immunoassay (ELISA). Then, the genomic DNA was extracted and screened by reverse hybridization procedure (Strip assay) to detect PAI 1 4G/5G polymorphism. The levels of PAI-1 in the patients were higher statistically in comparison to controls (P < 0.001). The distribution of PAI-1 4G/5G polymorphism was quite different between patients and controls (P = 0.008), and 4G allelic frequency was significantly higher in the patients of endometrial cancer than in controls (P = 0.026). We found significant difference between Grade 1 and Grade 2+3 patients in terms of the PAI-1 levels (P = 0.047). There was no association between PAI-1 4G/5G polymorphism and the grades of endometrial cancer (P = 0.993). Our data suggest that the level of PAI-1 and PAI-1 4G/5G gene polymorphism are effective in the formation of endometrial cancer. PAI-1 levels are also associated with the grades of endometrial cancer.

  4. Sequence variations and protein expression levels of the two immune evasion proteins Gpm1 and Pra1 influence virulence of clinical Candida albicans isolates.

    PubMed

    Luo, Shanshan; Hipler, Uta-Christina; Münzberg, Christin; Skerka, Christine; Zipfel, Peter F

    2015-01-01

    Candida albicans, the important human fungal pathogen uses multiple evasion strategies to control, modulate and inhibit host complement and innate immune attack. Clinical C. albicans strains vary in pathogenicity and in serum resistance, in this work we analyzed sequence polymorphisms and variations in the expression levels of two central fungal complement evasion proteins, Gpm1 (phosphoglycerate mutase 1) and Pra1 (pH-regulated antigen 1) in thirteen clinical C. albicans isolates. Four nucleotide (nt) exchanges, all representing synonymous exchanges, were identified within the 747-nt long GPM1 gene. For the 900-nt long PRA1 gene, sixteen nucleotide exchanges were identified, which represented synonymous, as well as non-synonymous exchanges. All thirteen clinical isolates had a homozygous exchange (A to G) at position 73 of the PRA1 gene. Surface levels of Gpm1 varied by 8.2, and Pra1 levels by 3.3 fold in thirteen tested isolates and these differences influenced fungal immune fitness. The high Gpm1/Pra1 expressing candida strains bound the three human immune regulators more efficiently, than the low expression strains. The difference was 44% for Factor H binding, 51% for C4BP binding and 23% for plasminogen binding. This higher Gpm1/Pra1 expressing strains result in enhanced survival upon challenge with complement active, Factor H depleted human serum (difference 40%). In addition adhesion to and infection of human endothelial cells was increased (difference 60%), and C3b surface deposition was less effective (difference 27%). Thus, variable expression levels of central immune evasion protein influences immune fitness of the human fungal pathogen C. albicans and thus contribute to fungal virulence.

  5. Tissue Plasminogen Activator Binding to Superparamagnetic Iron Oxide Nanoparticle—Covalent Versus Adsorptive Approach

    NASA Astrophysics Data System (ADS)

    Friedrich, Ralf P.; Zaloga, Jan; Schreiber, Eveline; Tóth, Ildikó Y.; Tombácz, Etelka; Lyer, Stefan; Alexiou, Christoph

    2016-06-01

    Functionalized superparamagnetic iron oxide nanoparticles are frequently used to develop vehicles for drug delivery, hyperthermia, and photodynamic therapy and as tools used for magnetic separation and purification of proteins or for biomolecular imaging. Depending on the application, there are various possible covalent and non-covalent approaches for the functionalization of particles, each of them shows different advantages and disadvantages for drug release and activity at the desired location.

  6. Overexpression of SERBP1 (Plasminogen activator inhibitor 1 RNA binding protein) in human breast cancer is correlated with favourable prognosis.

    PubMed

    Serce, Nuran Bektas; Boesl, Andreas; Klaman, Irina; von Serényi, Sonja; Noetzel, Erik; Press, Michael F; Dimmler, Arno; Hartmann, Arndt; Sehouli, Jalid; Knuechel, Ruth; Beckmann, Matthias W; Fasching, Peter A; Dahl, Edgar

    2012-12-13

    Plasminogen activator inhibitor 1 (PAI-1) overexpression is an important prognostic and predictive biomarker in human breast cancer. SERBP1, a protein that is supposed to regulate the stability of PAI-1 mRNA, may play a role in gynaecological cancers as well, since upregulation of SERBP1 was described in ovarian cancer recently. This is the first study to present a systematic characterisation of SERBP1 expression in human breast cancer and normal breast tissue at both the mRNA and the protein level. Using semiquantitative realtime PCR we analysed SERBP1 expression in different normal human tissues (n = 25), and in matched pairs of normal (n = 7) and cancerous breast tissues (n = 7). SERBP1 protein expression was analysed in two independent cohorts on tissue microarrays (TMAs), an initial evaluation set, consisting of 193 breast carcinomas and 48 normal breast tissues, and a second large validation set, consisting of 605 breast carcinomas. In addition, a collection of benign (n = 2) and malignant (n = 6) mammary cell lines as well as breast carcinoma lysates (n = 16) were investigated for SERBP1 expression by Western blot analysis. Furthermore, applying non-radioisotopic in situ hybridisation a subset of normal (n = 10) and cancerous (n = 10) breast tissue specimens from the initial TMA were analysed for SERBP1 mRNA expression. SERBP1 is not differentially expressed in breast carcinoma compared to normal breast tissue, both at the RNA and protein level. However, recurrence-free survival analysis showed a significant correlation (P = 0.008) between abundant SERBP1 expression in breast carcinoma and favourable prognosis. Interestingly, overall survival analysis also displayed a tendency (P = 0.09) towards favourable prognosis when SERBP1 was overexpressed in breast cancer. The RNA-binding protein SERBP1 is abundantly expressed in human breast cancer and may represent a novel breast tumour marker with prognostic significance. Its potential involvement in the plasminogen activator protease cascade warrants further investigation.

  7. Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague.

    PubMed

    Sebbane, Florent; Jarrett, Clayton O; Gardner, Donald; Long, Daniel; Hinnebusch, B Joseph

    2006-04-04

    Yersinia pestis is transmitted by fleas and causes bubonic plague, characterized by severe local lymphadenitis that progresses rapidly to systemic infection and life-threatening septicemia. Here, we show that although flea-borne transmission usually leads to bubonic plague in mice, it can also lead to primary septicemic plague. However, intradermal injection of Y. pestis, commonly used to mimic transmission by fleabite, leads only to bubonic plague. A Y. pestis strain lacking the plasmid-encoded cell-surface plasminogen activator, which is avirulent by intradermal or s.c. injection, was able to cause fatal primary septicemic plague at low incidence, but not bubonic plague, when transmitted by fleas. The results clarify a long-standing uncertainty about the etiology of primary septicemic plague and support an evolutionary scenario in which plague first emerged as a flea-borne septicemic disease of limited transmissibility. Subsequent acquisition of the plasminogen activator gene by horizontal transfer enabled the bubonic form of disease and increased the potential for epidemic spread.

  8. Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression.

    PubMed

    Tsai, Shih-Jen

    2017-12-22

    Major depressive disorder is a common illness worldwide, but the pathogenesis of the disorder remains incompletely understood. The tissue-type plasminogen activator-plasminogen proteolytic cascade is highly expressed in the brain regions involved in mood regulation and neuroplasticity. Accumulating evidence from animal and human studies suggests that tissue-type plasminogen activator and its chief inhibitor, plasminogen activator inhibitor-1, are related to stress reaction and depression. Furthermore, the neurotrophic hypothesis of depression postulates that compromised neurotrophin brain-derived neurotrophic factor (BDNF) function is directly involved in the pathophysiology of depression. In the brain, the proteolytic cleavage of proBDNF, a BDNF precursor, to mature BDNF through plasmin represents one mechanism that can change the direction of BDNF action. We also discuss the implications of tissue-type plasminogen activator and plasminogen activator inhibitor-1 alterations as biomarkers for major depressive disorder. Using drugs that increase tissue-type plasminogen activator or decrease plasminogen activator inhibitor-1 levels may open new avenues to develop conceptually novel therapeutic strategies for depression treatment.

  9. Glycation induces formation of amyloid cross-beta structure in albumin.

    PubMed

    Bouma, Barend; Kroon-Batenburg, Loes M J; Wu, Ya-Ping; Brünjes, Bettina; Posthuma, George; Kranenburg, Onno; de Groot, Philip G; Voest, Emile E; Gebbink, Martijn F B G

    2003-10-24

    Amyloid fibrils are components of proteinaceous plaques that are associated with conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis. Amyloid polypeptides share a specific quarternary structure element known as cross-beta structure. Commonly, fibrillar aggregates are modified by advanced glycation end products (AGE). In addition, AGE formation itself induces protein aggregation. Both amyloid proteins and protein-AGE adducts bind multiligand receptors, such as receptor for AGE, CD36, and scavenger receptors A and B type I, and the serine protease tissue-type plasminogen activator (tPA). Based on these observations, we hypothesized that glycation induces refolding of globular proteins, accompanied by formation of cross-beta structure. Using transmission electron microscopy, we demonstrate here that glycated albumin condensates into fibrous or amorphous aggregates. These aggregates bind to amyloid-specific dyes Congo red and thioflavin T and to tPA. In contrast to globular albumin, glycated albumin contains amino acid residues in beta-sheet conformation, as measured with circular dichroism spectropolarimetry. Moreover, it displays cross-beta structure, as determined with x-ray fiber diffraction. We conclude that glycation induces refolding of initially globular albumin into amyloid fibrils comprising cross-beta structure. This would explain how glycated ligands and amyloid ligands can bind to the same multiligand "cross-beta structure" receptors and to tPA.

  10. The association between the 4G/5G polymorphism in the promoter of the plasminogen activator inhibitor-1 gene and extension of postsurgical calf vein thrombosis.

    PubMed

    Ferrara, Filippo; Meli, Francesco; Raimondi, Francesco; Montalto, Salvatore; Cospite, Valentina; Novo, Giuseppina; Novo, Salvatore

    2013-04-01

    The objective of this study was to evaluate whether the presence of a plasminogen activator inhibitor type 1 (PAI-1) promoter polymorphism 4G/5G could significantly influence the proximal extension of vein thrombosis in spite of anticoagulant treatment in patients with calf vein thrombosis (CVT) following orthopaedic, urological and abdominal surgery. We studied 168 patients with CVT, who had undergone orthopaedic, urological and abdominal surgery, subdivided as follows: first, 50 patients with thrombosis progression; second, 118 patients without thrombosis progression. The 4G/5G polymorphism of the plasminogen activator inhibitor 1 was evaluated in all patients and in 70 healthy matched controls. We also studied PAI-1 activity in plasma. The presence of 4G/5G genotype was significantly increased in the group of patients with the extension of thrombotic lesions and was associated with an increase in CVT extension risk (odds ratio adjusted for sex 2.692; 95% confidence interval 1.302-4.702). Moreover, we observed a significant increase of PAI-1 plasma activity in patients with extension of thrombotic lesion vs. patients without extension (P=0.0001). Patients with 4G/5G genotype in the promoter of the plasminogen activator inhibitor - 1 gene present a higher risk of extension of thrombotic lesions.

  11. Plasminogen stimulates propagation of protease-resistant prion protein in vitro.

    PubMed

    Mays, Charles E; Ryou, Chongsuk

    2010-12-01

    To clarify the role of plasminogen as a cofactor for prion propagation, we conducted functional assays using a cell-free prion protein (PrP) conversion assay termed protein misfolding cyclic amplification (PMCA) and prion-infected cell lines. Here, we report that plasminogen stimulates propagation of the protease-resistant scrapie PrP (PrP(Sc)). Compared to control PMCA conducted without plasminogen, addition of plasminogen in PMCA using wild-type brain material significantly increased PrP conversion, with an EC(50) = ∼56 nM. PrP conversion in PMCA was substantially less efficient with plasminogen-deficient brain material than with wild-type material. The activity stimulating PrP conversion was specific for plasminogen and conserved in its kringle domains. Such activity was abrogated by modification of plasminogen structure and interference of PrP-plasminogen interaction. Kinetic analysis of PrP(Sc) generation demonstrated that the presence of plasminogen in PMCA enhanced the PrP(Sc) production rate to ∼0.97 U/μl/h and reduced turnover time to ∼1 h compared to those (∼0.4 U/μl/h and ∼2.5 h) obtained without supplementation. Furthermore, as observed in PMCA, plasminogen and kringles promoted PrP(Sc) propagation in ScN2a and Elk 21(+) cells. Our results demonstrate that plasminogen functions in stimulating conversion processes and represents the first cellular protein cofactor that enhances the hypothetical mechanism of prion propagation.

  12. Protease-activated receptor 2 (PAR2) is upregulated by Acanthamoeba plasminogen activator (aPA) and induces proinflammatory cytokine in human corneal epithelial cells.

    PubMed

    Tripathi, Trivendra; Abdi, Mahshid; Alizadeh, Hassan

    2014-05-29

    Acanthamoeba plasminogen activator (aPA) is a serine protease elaborated by Acanthamoeba trophozoites that facilitates the invasion of trophozoites to the host and contributes to the pathogenesis of Acanthamoeba keratitis (AK). The aim of this study was to explore if aPA stimulates proinflammatory cytokine in human corneal epithelial (HCE) cells via the protease-activated receptors (PARs) pathway. Acanthamoeba castellanii trophozoites were grown in peptone-yeast extract glucose for 7 days, and the supernatants were collected and centrifuged. The aPA was purified using the fast protein liquid chromatography system, and aPA activity was determined by zymography assays. Human corneal epithelial cells were incubated with or without aPA (100 μg/mL), PAR1 agonists (thrombin, 10 μM; TRAP-6, 10 μM), and PAR2 agonists (SLIGRL-NH2, 100 μM; AC 55541, 10 μM) for 24 and 48 hours. Inhibition of PAR1 and PAR2 involved preincubating the HCE cells for 1 hour with the antagonist of PAR1 (SCH 79797, 60 μM) and PAR2 (FSLLRY-NH2, 100 μM) with or without aPA. Human corneal epithelial cells also were preincubated with PAR1 and PAR2 antagonists and then incubated with or without PAR1 agonists (thrombin and TRAP-6) and PAR2 agonists (SLIGRL-NH2 and AC 55541). Expression of PAR1 and PAR2 was examined by quantitative RT-PCR (qRT-PCR), flow cytometry, and immunocytochemistry. Interleukin-8 expression was quantified by qRT-PCR and ELISA. Human corneal epithelial cells constitutively expressed PAR1 and PAR2 mRNA. Acanthamoeba plasminogen activator and PAR2 agonists significantly upregulated PAR2 mRNA expression (1- and 2-fold, respectively) (P < 0.05). Protease-activated receptor 2 antagonist significantly inhibited aPA, and PAR2 agonists induced PAR2 mRNA expression in HCE cells (P < 0.05). Protease-activated receptor 1 agonists, but not aPA, significantly upregulated PAR1 mRNA expression, which was significantly inhibited by PAR1 antagonist in HCE cells. Acanthamoeba plasminogen activator and PAR2 agonists stimulated IL-8 mRNA expression and protein production, which is significantly diminished by PAR2 antagonist (P < 0.05). Protease-activated receptor 1 antagonist did not alter aPA-stimulated IL-8 mRNA expression and protein production in HCE cells. Flow cytometry and immunocytochemistry showed that aPA and SLIGRL-NH2 (PAR2 agonist) upregulated PAR2 surface protein as compared to that in unstimulated HCE cells. Thrombin, but not aPA, stimulated PAR1 surface protein in HCE cells. Acanthamoeba plasminogen activator specifically induces expression and production of IL-8 in HCE cells via PAR2 pathway, and PAR2 antagonists may be used as a therapeutic target in AK. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  13. Joint analysis of multiple biomarkers for identifying type 2 diabetes in middle-aged and older Chinese: a cross-sectional study

    PubMed Central

    Wu, Hongyu; Yu, Zhijie; Qi, Qibin; Li, Huaixing; Sun, Qi

    2011-01-01

    Objective Identifying individuals with high risk of type 2 diabetes is important. To evaluate discriminatory ability of multiple biomarkers for type 2 diabetes in a Chinese population. Methods Plasma adiponectin, plasminogen activator inhibitor-1, retinol-binding protein 4, resistin, C-reactive protein, interleukin 6 (IL-6), tumour necrosis factor α receptor 2 and ferritin were measured in a population-based sample of 3189 Chinese (1419 men and 1770 women) aged 50–70 years. A weighted biomarkers risk score (BRS) was developed based on the strength of associations of these biomarkers with type 2 diabetes. The discriminatory ability was tested by the area under receiver operating characteristics curve (AUC). Results Adiponectin, plasminogen activator inhibitor-1, IL-6 and ferritin were independently associated with the prevalence of type 2 diabetes, and they were used to calculate the biomarkers risk score (BRS). After adjustment for the confounding factors, the ORs for type 2 diabetes and impaired fasting glucose with each point increment of BRS were 1.28 (95% CI 1.22 to 1.34) and 1.16 (1.12 to 1.20), respectively. Compared with those in the lowest quintile of the BRS, the participants in the highest quintile have an OR (95% CI) of 6.67 (4.21 to 10.55) for type 2 diabetes. The area under the curve for the BRS and conventional risk factors alone was 0.73 and 0.76, respectively, and substantially increased to 0.81 after combining both BRS and conventional risk factors (p<0.001). Conclusions These data suggest that combining multiple biomarkers and conventional risk factors might substantially enhance the ability to identify individuals with type 2 diabetes. More prospective data are warranted to confirm this observation. PMID:22021786

  14. "Features of two proteins of Leptospira interrogans with potential role in host-pathogen interactions"

    PubMed Central

    2012-01-01

    Background Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp. Results We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (KD) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a KD of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG. Conclusions We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro. PMID:22463075

  15. Proteases induce secretion of collagenase and plasminogen activator by fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werb, Z.; Aggeler, J.

    1978-04-01

    We have observed that treatment of rabbit synovial fibroblasts with proteolytic enzymes can induce secretion of collagenase (EC 3.4.24.7) and plasminogen activator (EC 3.4.21.-). Cells treated for 2 to 24 hr with plasmin, trypsin, chymotrypsin, pancreatic elastase, papain, bromelain, thermolysin, or ..cap alpha..-protease but not with thrombin or neuraminidase secreted detectable amounts of collagenase within 16 to 48 hr. Treatment of fibroblasts with trypsin also induced secretion of plasminogen activator. Proteases initiated secretion of collagenase (up to 20 units per 10/sup 6/ cells per 24 hr) only when treatment produced decreased cell adhesion. Collagenase production did not depend on continuedmore » presence of proteolytic activity or on subsequent cell adhesion, spreading, or proliferation. Routine subculturing with crude trypsin also induced collagenase secretion by cells. Secretion of collagenase was prevented and normal spreading was obtained if the trypsinized cells were placed into medium containing fetal calf serum. Soybean trypsin inhibitor, ..cap alpha../sub 1/-antitrypsin, bovine serum albumin, collagen, and fibronectin did not inhibit collagenase production. Although proteases that induced collagenase secretion also removed surface glycoprotein, the kinetics of induction of cell protease secretion were different from those for removal of fibronectin. Physiological inducers of secretion of collagenase and plasminogen activator by cells have not been identified. These results suggest that extracellular proteases in conjunction with plasma proteins may govern protease secretion by cells.« less

  16. Role of Matricellular Proteins in Disorders of the Central Nervous System.

    PubMed

    Jayakumar, A R; Apeksha, A; Norenberg, M D

    2017-03-01

    Matricellular proteins (MCPs) are actively expressed non-structural proteins present in the extracellular matrix, which rapidly turnover and possess regulatory roles, as well as mediate cell-cell interactions. MCPs characteristically contain binding sites for other extracellular proteins, cell surface receptors, growth factors, cytokines and proteases, that provide structural support for surrounding cells. MCPs are present in most organs, including brain, and play a major role in cell-cell interactions and tissue repair. Among the MCPs found in brain include thrombospondin-1/2, secreted protein acidic and rich in cysteine family (SPARC), including Hevin/SC1, Tenascin C and CYR61/Connective Tissue Growth Factor/Nov family of proteins, glypicans, galectins, plasminogen activator inhibitor (PAI-1), autotaxin, fibulin and perisostin. This review summarizes the potential role of MCPs in the pathogenesis of major neurological disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, ischemia, trauma, hepatic encephalopathy, Down's syndrome, autism, multiple sclerosis, brain neoplasms, Parkinson's disease and epilepsy. Potential therapeutic opportunities of MCP's for these disorders are also considered in this review.

  17. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane

    PubMed Central

    Hellriegel, Christian; Caiolfa, Valeria R.; Corti, Valeria; Sidenius, Nicolai; Zamai, Moreno

    2011-01-01

    We studied the molecular forms of the GPI-anchored urokinase plasminogen activator receptor (uPAR-mEGFP) in the human embryo kidney (HEK293) cell membrane and demonstrated that the binding of the amino-terminal fragment (ATF) of urokinase plasminogen activator is sufficient to induce the dimerization of the receptor. We followed the association kinetics and determined precisely the dimeric stoichiometry of uPAR-mEGFP complexes by applying number and brightness (N&B) image analysis. N&B is a novel fluctuation-based approach for measuring the molecular brightness of fluorophores in an image time sequence in live cells. Because N&B is very sensitive to long-term temporal fluctuations and photobleaching, we have introduced a filtering protocol that corrects for these important sources of error. Critical experimental parameters in N&B analysis are illustrated and analyzed by simulation studies. Control experiments are based on mEGFP-GPI, mEGFP-mEGFP-GPI, and mCherry-GPI, expressed in HEK293. This work provides a first direct demonstration of the dimerization of uPAR in live cells. We also provide the first methodological guide on N&B to discern minor changes in molecular composition such as those due to dimerization events, which are involved in fundamental cell signaling mechanisms.—Hellriegel, C., Caiolfa, V. R., Corti, V., Sidenius, N., Zamai, M. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane. PMID:21602447

  18. Binding of anti-SSA antibodies to apoptotic fetal cardiocytes stimulates urokinase plasminogen activator (uPA)/uPA receptor-dependent activation of TGF-β and potentiates fibrosis.

    PubMed

    Briassouli, Paraskevi; Rifkin, Daniel; Clancy, Robert M; Buyon, Jill P

    2011-11-15

    In congenital heart block (CHB), binding of maternal anti-SSA/Ro Abs to fetal apoptotic cardiocytes impairs their removal by healthy cardiocytes and increases urokinase plasminogen activator (uPA)/uPA receptor (uPAR)-dependent plasmin activation. Because the uPA/uPAR system plays a role in TGF-β activation, we evaluated whether anti-Ro binding to apoptotic cardiocytes enhances plasmin-mediated activation of TGF-β, thereby promoting a profibrosing phenotype. Supernatants from cocultures of healthy cardiocytes and apoptotic cardiocytes bound by IgG from a mother whose child had CHB (apoptotic-CHB-IgG [apo-CHB-IgG]) exhibited significantly increased levels of active TGF-β compared with supernatants from cocultures of healthy cardiocytes and apoptotic cardiocytes preincubated with IgG from a healthy donor. Treatment of the culture medium with anti-TGF-β Ab or TGF-β inhibitor (SB431542) abrogated the luciferase response, thereby confirming TGF-β dependency. Increased uPA levels and activity were present in supernatants generated from cocultures of healthy cardiocytes and apo-CHB-IgG cardiocytes compared with healthy cardiocytes and apoptotic cardiocytes preincubated with IgG from a healthy donor, respectively. Treatment of apo-CHB-IgG cardiocytes with anti-uPAR or anti-uPA Abs or plasmin inhibitor aprotinin prior to coculturing with healthy cardiocytes attenuated TGF-β activation. Supernatants derived from cocultures of healthy cardiocytes and apo-CHB-IgG cardiocytes promoted Smad2 phosphorylation and fibroblast transdifferentiation, as evidenced by increased smooth muscle actin and collagen expression, which decreased when fibroblasts were treated with supernatants from cocultures pretreated with uPAR Abs. These data suggested that binding of anti-Ro Abs to apoptotic cardiocytes triggers TGF-β activation, by virtue of increasing uPAR-dependent uPA activity, thus initiating and amplifying a cascade of events that promotes myofibroblast transdifferentiation and scar.

  19. Estriol-induced fibrinolysis due to the activation of plasminogen to plasmin by nitric oxide synthesis in platelets.

    PubMed

    Jana, Pradipta; Maiti, Smarajit; Kahn, Nighat N; Sinha, Asru K

    2015-04-01

    Estriol, an oestrogen, at 0.6 nmol/l was reported to inhibit ADP-induced platelet aggregation through nitric oxide synthesis. As nitric oxide has been reported to cause fibrinolysis due to the activation of plasminogen to plasmin, the role of estriol as a fibrinolytic agent was investigated. Also, the mechanism of estriol-induced nitric oxide synthesis in anucleated platelets was investigated. The estriol-induced lysis of platelet-rich plasma (PRP) clot was determined by photography of the clot lysis and by the assay of fibrin degradation products in the lysate and was obtained by SDS-PAGE. Nitric oxide was determined by methemoglobin method. The platelet membrane protein was isolated from the platelets by using Triton X-100 (0.05% v/v). The binding of estriol to the protein was determined by Scatchard plot by using an ELISA for estriol. Estriol at 0.6 nmol/l was found to lyse the clotted PRP due to fibrinolysis that produced fibrin degradation products in the lysate. The amino acid analysis of the platelet membrane protein, which resembles with nitric oxide synthase (NOS) activity, was activated nearly 10-fold over the control in the presence of estriol and was identified to be a human serum albumin precursor (Mr. 69 kDa) that binds to estriol with Kd1 of 6.0 × 10 mol/l and 39 ± 2 molecules of estriol bound the NOS molecule. The estriol-induced nitric oxide is capable of inducing fibrinolysis of the clotted PRP. The binding of estriol to platelet membrane NOS activated the enzyme in the absence of DNA in the platelet.

  20. Association of late-onset Alzheimer disease with a genotype of PLAU, the gene encoding urokinase-type plasminogen activator on chromosome 10q22.2.

    PubMed

    Finckh, U; van Hadeln, K; Müller-Thomsen, T; Alberici, A; Binetti, G; Hock, C; Nitsch, R M; Stoppe, G; Reiss, J; Gal, A

    2003-08-01

    Urokinase-type plasminogen activator (uPA) converts plasminogen to plasmin. Plasmin is involved in processing of amyloid precursor protein and degrades secreted and aggregated amyloid-beta, a hallmark of Alzheimer disease (AD). PLAU, the gene encoding uPA, maps to chromosome 10q22.2 between two regions showing linkage to late-onset AD (LOAD). We genotyped a frequent C/T single nucleotide polymorphism in codon 141 of PLAU (P141L) in 347 patients with LOAD and 291 control subjects. LOAD was associated with homozygous C/C PLAU genotype in the whole sample (chi2=15.7, P=0.00039, df 2), as well as in all sub-samples stratified by gender or APOE epsilon4 carrier status (chi2> or = 6.84, P< or =0.033, df 2). Odds ratio for LOAD due to homozygosity C/C was 1.89 (95% confidence interval 1.37-2.61). PLAU is a promising new candidate gene for LOAD, with allele C (P141) being a recessive risk allele or allele T (L141) conferring protection.

  1. 21 CFR 866.5715 - Plasminogen immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5715 Plasminogen immunological test system. (a) Identification. A plasminogen immunological test system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Plasminogen immunological test system. 866.5715...

  2. [Cell-derived microparticles unveil their fibrinolytic and proteolytic function].

    PubMed

    Doeuvre, Loïc; Angles-Cano, Eduardo

    2009-01-01

    Cell-derived microparticles (MP) are membrane microvesicles, 0.1-1 microm in size, shed by cells following activation or during apoptosis in a variety of pathological conditions. MPs released by blood cells or by vascular endothelial cells display molecular signatures that allow their identification and functional characterization. In addition, they provide tissue factor (TF) and a procoagulant phospholipid surface. Therefore, at present, the most strongly established applied research on MPs is their procoagulant activity as a determinant of thrombotic risk in various clinical conditions. Previous studies have indicated that MPs derived from malignant cells express matrix metalloproteinases, urokinase and its receptor (uPA/uPAR) that, in the presence of plasminogen, may act in concert to degrade extracellular matrix proteins. Recently, it was shown that MPs from TNFa-stimulated endothelial cells served as a surface for interaction with plasminogen and its conversion into plasmin by the uPA/uPAR system expressed at their surface. This capacity of MPs to promote plasmin generation confers them a new profibrinolytic and proteolytic function that may be of relevance in fibrinolysis, cell migration, angiogenesis, dissemination of malignant cells, cell detachment and apoptosis.

  3. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type β transforming growth factor

    PubMed Central

    Xu, Weidong; Angelis, Konstantina; Danielpour, David; Haddad, Maher M.; Bischof, Oliver; Campisi, Judith; Stavnezer, Ed; Medrano, Estela E.

    2000-01-01

    The c-ski protooncogene encodes a transcription factor that binds DNA only in association with other proteins. To identify co-binding proteins, we performed a yeast two-hybrid screen. The results of the screen and subsequent co-immunoprecipitation studies identified Smad2 and Smad3, two transcriptional activators that mediate the type β transforming growth factor (TGF-β) response, as Ski-interacting proteins. In Ski-transformed cells, all of the Ski protein was found in Smad3-containing complexes that accumulated in the nucleus in the absence of added TGF-β. DNA binding assays showed that Ski, Smad2, Smad3, and Smad4 form a complex with the Smad/Ski binding element GTCTAGAC (SBE). Ski repressed TGF-β-induced expression of 3TP-Lux, the natural plasminogen activator inhibitor 1 promoter and of reporter genes driven by the SBE and the related CAGA element. In addition, Ski repressed a TGF-β-inducible promoter containing AP-1 (TRE) elements activated by a combination of Smads, Fos, and/or Jun proteins. Ski also repressed synergistic activation of promoters by combinations of Smad proteins but failed to repress in the absence of Smad4. Thus, Ski acts in opposition to TGF-β-induced transcriptional activation by functioning as a Smad-dependent co-repressor. The biological relevance of this transcriptional repression was established by showing that overexpression of Ski abolished TGF-β-mediated growth inhibition in a prostate-derived epithelial cell line. PMID:10811875

  4. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor.

    PubMed

    Xu, W; Angelis, K; Danielpour, D; Haddad, M M; Bischof, O; Campisi, J; Stavnezer, E; Medrano, E E

    2000-05-23

    The c-ski protooncogene encodes a transcription factor that binds DNA only in association with other proteins. To identify co-binding proteins, we performed a yeast two-hybrid screen. The results of the screen and subsequent co-immunoprecipitation studies identified Smad2 and Smad3, two transcriptional activators that mediate the type beta transforming growth factor (TGF-beta) response, as Ski-interacting proteins. In Ski-transformed cells, all of the Ski protein was found in Smad3-containing complexes that accumulated in the nucleus in the absence of added TGF-beta. DNA binding assays showed that Ski, Smad2, Smad3, and Smad4 form a complex with the Smad/Ski binding element GTCTAGAC (SBE). Ski repressed TGF-beta-induced expression of 3TP-Lux, the natural plasminogen activator inhibitor 1 promoter and of reporter genes driven by the SBE and the related CAGA element. In addition, Ski repressed a TGF-beta-inducible promoter containing AP-1 (TRE) elements activated by a combination of Smads, Fos, and/or Jun proteins. Ski also repressed synergistic activation of promoters by combinations of Smad proteins but failed to repress in the absence of Smad4. Thus, Ski acts in opposition to TGF-beta-induced transcriptional activation by functioning as a Smad-dependent co-repressor. The biological relevance of this transcriptional repression was established by showing that overexpression of Ski abolished TGF-beta-mediated growth inhibition in a prostate-derived epithelial cell line.

  5. Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague

    PubMed Central

    Sebbane, Florent; Jarrett, Clayton O.; Gardner, Donald; Long, Daniel; Hinnebusch, B. Joseph

    2006-01-01

    Yersinia pestis is transmitted by fleas and causes bubonic plague, characterized by severe local lymphadenitis that progresses rapidly to systemic infection and life-threatening septicemia. Here, we show that although flea-borne transmission usually leads to bubonic plague in mice, it can also lead to primary septicemic plague. However, intradermal injection of Y. pestis, commonly used to mimic transmission by fleabite, leads only to bubonic plague. A Y. pestis strain lacking the plasmid-encoded cell-surface plasminogen activator, which is avirulent by intradermal or s.c. injection, was able to cause fatal primary septicemic plague at low incidence, but not bubonic plague, when transmitted by fleas. The results clarify a long-standing uncertainty about the etiology of primary septicemic plague and support an evolutionary scenario in which plague first emerged as a flea-borne septicemic disease of limited transmissibility. Subsequent acquisition of the plasminogen activator gene by horizontal transfer enabled the bubonic form of disease and increased the potential for epidemic spread. PMID:16567636

  6. Imaging analyses of coagulation-dependent initiation of fibrinolysis on activated platelets and its modification by thrombin-activatable fibrinolysis inhibitor.

    PubMed

    Brzoska, Tomasz; Suzuki, Yuko; Sano, Hideto; Suzuki, Seiichirou; Tomczyk, Martyna; Tanaka, Hiroki; Urano, Tetsumei

    2017-04-03

    Using intravital confocal microscopy, we observed previously that the process of platelet phosphatidylserine (PS) exposure, fibrin formation and lysine binding site-dependent plasminogen (plg) accumulation took place only in the centre of thrombi, not at their periphery. These findings prompted us to analyse the spatiotemporal regulatory mechanisms underlying coagulation and fibrinolysis. We analysed the fibrin network formation and the subsequent lysis in an in vitro experiment using diluted platelet-rich plasma supplemented with fluorescently labelled coagulation and fibrinolytic factors, using confocal laser scanning microscopy. The structure of the fibrin network formed by supplemented tissue factor was uneven and denser at the sites of coagulation initiation regions (CIRs) on PS-exposed platelets. When tissue-type plasminogen activator (tPA; 7.5 nM) was supplemented, labelled plg (50 nM) as well as tPA accumulated at CIRs, from where fibrinolysis started and gradually expanded to the peripheries. The lysis time at CIRs and their peripheries (50 µm from the CIR) were 27.9 ± 6.6 and 44.4 ± 9.7 minutes (mean ± SD, n=50 from five independent experiments) after the addition of tissue factor, respectively. Recombinant human soluble thrombomodulin (TMα; 2.0 nM) attenuated the CIR-dependent plg accumulation and strongly delayed fibrinolysis at CIRs. A carboxypeptidase inhibitor dose-dependently enhanced the CIR-dependent fibrinolysis initiation, and at 20 µM it completely abrogated the TMα-induced delay of fibrinolysis. Our findings are the first to directly present crosstalk between coagulation and fibrinolysis, which takes place on activated platelets' surface and is further controlled by thrombin-activatable fibrinolysis inhibitor (TAFI).

  7. Treatment With Tissue Plasminogen Activator in the Golden Hour and the Shape of the 4.5-Hour Time-Benefit Curve in the National United States Get With The Guidelines-Stroke Population.

    PubMed

    Kim, Joon-Tae; Fonarow, Gregg C; Smith, Eric E; Reeves, Mathew J; Navalkele, Digvijaya D; Grotta, James C; Grau-Sepulveda, Maria V; Hernandez, Adrian F; Peterson, Eric D; Schwamm, Lee H; Saver, Jeffrey L

    2017-01-10

    Earlier tissue plasminogen activator treatment improves ischemic stroke outcome, but aspects of the time-benefit relationship still not well delineated are: (1) the degree of additional benefit accrued with treatment in the first 60 minutes after onset, and (2) the shape of the time-benefit curve through 4.5 hours. We analyzed patients who had acute ischemic stroke treated with intravenous tissue plasminogen activator within 4.5 hours of onset from the Get With The Guidelines-Stroke US national program. Onset-to-treatment time was analyzed as a continuous, potentially nonlinear variable and as a categorical variable comparing patients treated within 60 minutes of onset with later epochs. Among 65 384 tissue plasminogen activator-treated patients, the median onset-to-treatment time was 141 minutes (interquartile range, 110-173) and 878 patients (1.3%) were treated within the first 60 minutes. Treatment within 60 minutes, compared with treatment within 61 to 270 minutes, was associated with increased odds of discharge to home (adjusted odds ratio, 1.25; 95% confidence interval, 1.07-1.45), independent ambulation at discharge (adjusted odds ratio, 1.22; 95% confidence interval, 1.03-1.45), and freedom from disability (modified Rankin Scale 0-1) at discharge (adjusted odds ratio, 1.72; 95% confidence interval, 1.21-2.46), without increased hemorrhagic complications or in-hospital mortality. The pace of decline in benefit of tissue plasminogen activator from onset-to-treatment times of 20 through 270 minutes was mildly nonlinear for discharge to home, with more rapid benefit loss in the first 170 minutes than later, and linear for independent ambulation and in-hospital mortality. Thrombolysis started within the first 60 minutes after onset is associated with best outcomes for patients with acute ischemic stroke, and benefit declined more rapidly early after onset for the ability to be discharged home. These findings support intensive efforts to organize stroke systems of care to improve the timeliness of thrombolytic therapy in acute ischemic stroke. © 2016 American Heart Association, Inc.

  8. The volume- and surface-binding energies of ice systems containing CO, CO2, and H2O

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1990-01-01

    Laboratory-measured, temperature-dependent sticking efficiencies are presently used to derive the surface-binding energies of CO and CO2 on H2O-rich ices, with a view to determining the condensation and vaporization properties of these systems as well as to the measured energies' implications for both cometary behavior and the evolution of interstellar ices. The molecular volume and the surface binding energies are not found to be necessarily related on the basis of simple nearest-neighbor scaling in surface and bulk sites; this may be due to the physical constraints associated with matrix structure-associated physical constraints, which sometimes dominate the volume-binding energies.

  9. Tissue Plasminogen Activator Induction in Purkinje Neurons After Cerebellar Motor Learning

    NASA Astrophysics Data System (ADS)

    Seeds, Nicholas W.; Williams, Brian L.; Bickford, Paula C.

    1995-12-01

    The cerebellar cortex is implicated in the learning of complex motor skills. This learning may require synaptic remodeling of Purkinje cell inputs. An extracellular serine protease, tissue plasminogen activator (tPA), is involved in remodeling various nonneural tissues and is associated with developing and regenerating neurons. In situ hybridization showed that expression of tPA messenger RNA was increased in the Purkinje neurons of rats within an hour of their being trained for a complex motor task. Antibody to tPA also showed the induction of tPA protein associated with cerebellar Purkinje cells. Thus, the induction of tPA during motor learning may play a role in activity-dependent synaptic plasticity.

  10. Pivotal role of tissue plasminogen activator in the mechanism of action of electroconvulsive therapy.

    PubMed

    Hoirisch-Clapauch, Silvia; Mezzasalma, Marco A U; Nardi, Antonio E

    2014-02-01

    Electroconvulsive therapy is an important treatment option for major depressive disorders, acute mania, mood disorders with psychotic features, and catatonia. Several hypotheses have been proposed as electroconvulsive therapy's mechanism of action. Our hypothesis involves many converging pathways facilitated by increased synthesis and release of tissue-plasminogen activator. Human and animal experiments have shown that tissue-plasminogen activator participates in many mechanisms of action of electroconvulsive therapy or its animal variant, electroconvulsive stimulus, including improved N-methyl-D-aspartate receptor-mediated signaling, activation of both brain-derived neurotrophic factor and vascular endothelial growth factor, increased bioavailability of zinc, purinergic release, and increased mobility of dendritic spines. As a result, tissue-plasminogen activator helps promote neurogenesis in limbic structures, modulates synaptic transmission and plasticity, improves cognitive function, and mediates antidepressant effects. Notably, electroconvulsive therapy seems to influence tissue-plasminogen activator metabolism. For example, electroconvulsive stimulus increases the expression of glutamate decarboxylase 65 isoform in γ-aminobutyric acid-releasing neurons, which enhances the release of tissue-plasminogen activator, and the expression of p11, a protein involved in plasminogen and tissue-plasminogen activator assembling. This paper reviews how electroconvulsive therapy correlates with tissue-plasminogen activator. We suggest that interventions aiming at increasing tissue-plasminogen activator levels or its bioavailability - such as daily aerobic exercises together with a carbohydrate-restricted diet, or normalization of homocysteine levels - be evaluated in controlled studies assessing response and remission duration in patients who undergo electroconvulsive therapy.

  11. Thrombin stimulates increased plasminogen activator inhibitor-1 release from liver compared to lung endothelium.

    PubMed

    Huebner, Benjamin R; Moore, Ernest E; Moore, Hunter B; Gonzalez, Eduardo; Kelher, Marguerite R; Sauaia, Angela; Banerjee, Anirban; Silliman, Christopher C

    2018-05-01

    Plasminogen activator inhibitor-1 (PAI-1) is a major regulator of the fibrinolytic system, covalently binding to tissue plasminogen activator and blocking its activity. Fibrinolysis shutdown is evident in the majority of severely injured patients in the first 24 h and is thought to be due to PAI-1. The source of this PAI-1 is thought to be predominantly endothelial cells, but there are known organ-specific differences, with higher levels thought to be in the liver. Thrombin generation is also elevated in injured patients and is a potent stimulus for PAI-1 release in human umbilical endothelial cells. We hypothesize that thrombin induces liver endothelial cells to release increased amounts of PAI-1, versus pulmonary endothelium, consisting of both stored PAI-1 and a larger contribution from de novo PAI-1 synthesis. Human liver sinusoidal endothelial cells (LSECs) and human microvascular lung endothelial cells (HMVECs) were stimulated in vitro ± thrombin (1 and 5 IU/mL) for 15-240 min, the supernatants were collected, and PAI-1 was measured by enzyme-linked immunosorbent assays. To elucidate the PAI-1 contribution from storage versus de novo synthesis, cycloheximide (10 μg/mL) was added before thrombin in separate experiments. While both LSECs and HMVECs rapidly stimulated PAI-1 release, LSECs released more PAI-1 than HMVECs in response to high-dose thrombin, whereas low-dose thrombin did not provoke immediate release. LSECs continued to release PAI-1 over the ensuing 240 min, whereas HMVECs did not. Cycloheximide did not inhibit early PAI-1 release from LSECs but did at the later time points (30-240 min). Thrombin elicits increased amounts of PAI-1 release from liver endothelium compared with lung, with a small presynthesized stored contribution and a later, larger increase in PAI-1 release via de novo synthesis. This study suggests that the liver may be an important therapeutic target for inhibition of the hypercoagulable surgical patient and the associated complications that result. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Overexpression of SERBP1 (Plasminogen activator inhibitor 1 RNA binding protein) in human breast cancer is correlated with favourable prognosis

    PubMed Central

    2012-01-01

    Background Plasminogen activator inhibitor 1 (PAI-1) overexpression is an important prognostic and predictive biomarker in human breast cancer. SERBP1, a protein that is supposed to regulate the stability of PAI-1 mRNA, may play a role in gynaecological cancers as well, since upregulation of SERBP1 was described in ovarian cancer recently. This is the first study to present a systematic characterisation of SERBP1 expression in human breast cancer and normal breast tissue at both the mRNA and the protein level. Methods Using semiquantitative realtime PCR we analysed SERBP1 expression in different normal human tissues (n = 25), and in matched pairs of normal (n = 7) and cancerous breast tissues (n = 7). SERBP1 protein expression was analysed in two independent cohorts on tissue microarrays (TMAs), an initial evaluation set, consisting of 193 breast carcinomas and 48 normal breast tissues, and a second large validation set, consisting of 605 breast carcinomas. In addition, a collection of benign (n = 2) and malignant (n = 6) mammary cell lines as well as breast carcinoma lysates (n = 16) were investigated for SERBP1 expression by Western blot analysis. Furthermore, applying non-radioisotopic in situ hybridisation a subset of normal (n = 10) and cancerous (n = 10) breast tissue specimens from the initial TMA were analysed for SERBP1 mRNA expression. Results SERBP1 is not differentially expressed in breast carcinoma compared to normal breast tissue, both at the RNA and protein level. However, recurrence-free survival analysis showed a significant correlation (P = 0.008) between abundant SERBP1 expression in breast carcinoma and favourable prognosis. Interestingly, overall survival analysis also displayed a tendency (P = 0.09) towards favourable prognosis when SERBP1 was overexpressed in breast cancer. Conclusions The RNA-binding protein SERBP1 is abundantly expressed in human breast cancer and may represent a novel breast tumour marker with prognostic significance. Its potential involvement in the plasminogen activator protease cascade warrants further investigation. PMID:23236990

  13. Association between plasminogen activator inhibitor-1 4G/5G gene polymorphism and immunoglobulin A nephropathy susceptibility.

    PubMed

    Zhou, Tian-Biao; Jiang, Zong-Pei

    2015-02-01

    The association between plasminogen activator inhibitor-1 (PAI-1) 4 G/5 G gene polymorphism and immunoglobulin A nephropathy (IgAN) risk is still controversial. A meta-analysis was performed to evaluate the association between PAI-1 4 G/5 G gene polymorphism and IgAN susceptibility. A predefined literature search and selection of eligible relevant studies were performed to collect data from electronic database. Four articles were identified for the analysis of association between PAI-1 4 G/5 G gene polymorphism and IgAN risk. 4 G allele was not associated with IgAN susceptibility in overall populations and in Asians. Furthermore, 4 G/4 G and 5 G/5 G genotype were not associated with IgAN for overall populations, Asians. In conclusion, PAI-1 4 G/5 G gene polymorphism was not associated with IgAN risk in overall populations and in Asians. However, more studies should be performed in the future.

  14. Computational analysis of blood clot dissolution using a vibrating catheter tip.

    PubMed

    Lee, Jeong Hyun; Oh, Jin Sun; Yoon, Bye Ri; Choi, Seung Hong; Rhee, Kyehan; Jho, Jae Young; Han, Moon Hee

    2012-04-01

    We developed a novel concept of endovascular thrombolysis that employs a vibrating electroactive polymer actuator. In order to predict the efficacy of thrombolysis using the developed vibrating actuator, enzyme (plasminogen activator) perfusion into a clot was analyzed by solving flow fields and species transport equations considering the fluid structure interaction. In vitro thrombolysis experiments were also performed. Computational results showed that plasminogen activator perfusion into a clot was enhanced by actuator vibration at frequencies of 1 and 5 Hz. Plasminogen activator perfusion was affected by the actuator oscillation frequencies and amplitudes that were determined by electromechanical characteristics of a polymer actuator. Computed plasminogen activator perfused volumes were compared with experimentally measured dissolved clot volumes. The computed plasminogen activator perfusion volumes with threshold concentrations of 16% of the initial plasminogen activator concentration agreed well with the in vitro experimental data. This study showed the effectiveness of actuator oscillation on thrombolysis and the validity of the computational plasminogen activator perfusion model for predicting thrombolysis in complex flow fields induced by an oscillating actuator.

  15. A Cyclic Peptidic Serine Protease Inhibitor: Increasing Affinity by Increasing Peptide Flexibility

    PubMed Central

    Jiang, Longguang; Paaske, Berit; Kromann-Hansen, Tobias; Jensen, Jan K.; Sørensen, Hans Peter; Liu, Zhuo; Nielsen, Jakob T.; Christensen, Anni; Hosseini, Masood; Sørensen, Kasper K.; Nielsen, Niels Christian; Jensen, Knud J.; Huang, Mingdong; Andreasen, Peter A.

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase-type plasminogen activator (uPA). We used X-ray crystal structure analysis, site-directed mutagenesis, liquid state NMR, surface plasmon resonance analysis, and isothermal titration calorimetry and wild type and engineered variants of murine and human uPA. We demonstrate that Arg6 inserts into the S1 specificity pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending on changes in both P1 - S1 and exosite interactions. Site-directed mutagenesis showed that exosite interactions, while still supporting high affinity binding, differed substantially between different uPA variants. Surprisingly, high affinity binding was facilitated by Ala-substitution of Asp9 of the peptide, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden. PMID:25545505

  16. [Tumor-associated prognostic factors of the plasminogen activator family: determination and clinical value of u-PA, t-PA, PAI-1, and PAI-2].

    PubMed

    Mengele, K; Harbeck, N; Reuning, U; Magdolen, V; Schmitt, M

    2005-08-01

    Proteolytic factors belonging t the plasminogen activator family (plasmin, u-PA, t-PA, u-PAR, PAI-1, and PAI-2), which usually are involved in blood clotting and degradation of blood clots, are also present in healthy and diseased tissue of the kidney, lung, liver, gastro-intestinal tract, breast, prostate, ovary, and brain. These factors are engaged in brain development, angiogenesis and vascular invasion, wound healing as well as in placenta development and embryogenesis. Plasminogen activators u-PA and t-PA, their inhibitors PAI-1 and PAI-2, and the u-PA-receptor (u-PAR, CD87) are often elevated in solid malignant tumour tissues compared to their normal counterparts. In breast cancer patients, an elevated tumour tissue extract antigen content of u-PA, PAI-1, and u-PAR is associated with increased tumour aggressiveness and poor prognosis; in contrary, an elevated content of t-PA and PAI-2 indicates a favourable prognosis. For clinical relevant determination of these proteolytic factors in tumour tissue extracts, only enzymo-immunometric tests (ELISA) are recommended. Enzymometric and enzymographic tests are actually conducted only in an experimental, preclinical context.

  17. Urokinase receptor is associated with the components of the JAK1/STAT1 signaling pathway and leads to activation of this pathway upon receptor clustering in the human kidney epithelial tumor cell line TCL-598.

    PubMed

    Koshelnick, Y; Ehart, M; Hufnagl, P; Heinrich, P C; Binder, B R

    1997-11-07

    The urokinase-type plasminogen activator (uPA) binds to cells via a specific receptor attached to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. Despite the lack of a transmembrane domain, the urokinase receptor (uPAR) is capable of transducing extracellular signals affecting growth, migration, and adhesion. Several Tyr kinases of the src family as well as beta1, beta2, and beta3 integrins were found to be associated with the uPAR. We found that in the human kidney epithelial line TCL-598, also components of the JAK1/STAT1 signal transduction pathway including gp130, are associated with uPAR as revealed by coimmunoprecipitation and are co-localized in caveolae. Upon clustering of uPA.uPAR complex by a monoclonal antibody, JAK1 associates with uPAR, which in turn leads to STAT1 phosphorylation, dimerization, specific binding to DNA, and gene activation. To prove the dependence of STAT1 activation on the uPAR, TCL-598 cells were treated with sense and antisense uPAR oligonucleotides. In antisense-treated cells in which uPAR expression was reduced to less then one third, activation of STAT1 by the clustering antibody was abolished while STAT1 activation by interferon-gamma was unaffected. Therefore, in this cell line, uPA.uPAR also utilizes the JAK1/STAT1 pathway for signaling, and gp130 might be the transmembrane adapter for this signal transduction pathway.

  18. A Role of Plasminogen in Promoting the Immune Escape in Small Cell Lung Cancer

    DTIC Science & Technology

    2016-11-01

    dissociation of the protective “coat” from the tumor cell surface to improve the outcome of immunotherapy. 15. SUBJECT TERMS 16. SECURITY...about lung tumor biology. Further studies may lead to development of novel therapeutic approaches based on the dissociation of the protective “coat

  19. Keeping the blood flowing—plasminogen activator genes and feeding behavior in vampire bats

    NASA Astrophysics Data System (ADS)

    Tellgren-Roth, Åsa; Dittmar, Katharina; Massey, Steven E.; Kemi, Cecilia; Tellgren-Roth, Christian; Savolainen, Peter; Lyons, Leslie A.; Liberles, David A.

    2009-01-01

    The blood feeding vampire bats emerged from New World leaf-nosed bats that fed on fruit and insects. Plasminogen activator, a serine protease that regulates blood coagulation, is known to be expressed in the saliva of Desmodus rotundus (common vampire bat) and is thought to be a key enzyme for the emergence of blood feeding in vampire bats. To better understand the evolution of this biological function, we studied the plasminogen activator (PA) genes from all vampire bat species in light of their feeding transition to bird and subsequently mammalian blood. We include the rare species Diphylla ecaudata and Diaemus youngi, where plasminogen activator had not previously been studied and demonstrate that PA gene duplication observed in Desmodus is not essential to the vampire phenotype, but relates to the emergence of predominant mammalian blood feeding in this species. Plasminogen activator has evolved through gene duplication, domain loss, and sequence evolution leading to change in fibrin-specificity and susceptibility to plasminogen activator inhibitor-1. Before undertaking this study, only the four plasminogen activator isoforms from Desmodus were known. The evolution of vampire bat plasminogen activators can now be linked phylogenetically to the transition in feeding behavior among vampire bat species from bird to mammalian blood.

  20. Active Plasma Kallikrein Localizes to Mast Cells and Regulates Epithelial Cell Apoptosis, Adipocyte Differentiation, and Stromal Remodeling during Mammary Gland Involution*

    PubMed Central

    Lilla, Jennifer N.; Joshi, Ravi V.; Craik, Charles S.; Werb, Zena

    2009-01-01

    The plasminogen cascade of serine proteases directs both development and tumorigenesis in the mammary gland. Plasminogen can be activated to plasmin by urokinase-type plasminogen activator (uPA), tissue-type plasminogen activator (tPA), and plasma kallikrein (PKal). The dominant plasminogen activator for mammary involution is PKal, a serine protease that participates in the contact activation system of blood coagulation. We observed that the prekallikrein gene (Klkb1) is expressed highly in the mammary gland during stromal remodeling periods including puberty and postlactational involution. We used a variant of ecotin (ecotin-PKal), a macromolecular inhibitor of serine proteases engineered to be highly specific for active PKal, to demonstrate that inhibition of PKal with ecotin-PKal delays alveolar apoptosis, adipocyte replenishment, and stromal remodeling in the involuting mammary gland, producing a phenotype resembling that resulting from plasminogen deficiency. Using biotinylated ecotin-PKal, we localized active PKal to connective tissue-type mast cells in the mammary gland. Taken together, these results implicate PKal as an effector of the plasminogen cascade during mammary development. PMID:19297327

  1. Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology.

    PubMed

    Bache, Michael; Bosco, Filippo G; Brøgger, Anna L; Frøhling, Kasper B; Alstrøm, Tommy Sonne; Hwu, En-Te; Chen, Ching-Hsiu; Eugen-Olsen, Jesper; Hwang, Ing-Shouh; Boisen, Anja

    2013-11-08

    In this work the use of a high-throughput nanomechanical detection system based on a DVD-ROM optical drive and cantilever sensors is presented for the detection of urokinase plasminogen activator receptor inflammatory biomarker (uPAR). Several large scale studies have linked elevated levels of soluble uPAR (suPAR) to infectious diseases, such as HIV, and certain types of cancer. Using hundreds of cantilevers and a DVD-based platform, cantilever deflection response from antibody-antigen recognition is investigated as a function of suPAR concentration. The goal is to provide a cheap and portable detection platform which can carry valuable prognostic information. In order to optimize the cantilever response the antibody immobilization and unspecific binding are initially characterized using quartz crystal microbalance technology. Also, the choice of antibody is explored in order to generate the largest surface stress on the cantilevers, thus increasing the signal. Using optimized experimental conditions the lowest detectable suPAR concentration is currently around 5 nM. The results reveal promising research strategies for the implementation of specific biochemical assays in a portable and high-throughput microsensor-based detection platform.

  2. Persons with Quebec platelet disorder have a tandem duplication of PLAU, the urokinase plasminogen activator gene.

    PubMed

    Paterson, Andrew D; Rommens, Johanna M; Bharaj, Bhupinder; Blavignac, Jessica; Wong, Isidro; Diamandis, Maria; Waye, John S; Rivard, Georges E; Hayward, Catherine P M

    2010-02-11

    Quebec platelet disorder (QPD) is an autosomal dominant bleeding disorder linked to a region on chromosome 10 that includes PLAU, the urokinase plasminogen activator gene. QPD increases urokinase plasminogen activator mRNA levels, particularly during megakaryocyte differentiation, without altering expression of flanking genes. Because PLAU sequence changes were excluded as the cause of this bleeding disorder, we investigated whether the QPD mutation involved PLAU copy number variation. All 38 subjects with QPD had a direct tandem duplication of a 78-kb genomic segment that includes PLAU. This mutation was specific to QPD as it was not present in any unaffected family members (n = 114), unrelated French Canadians (n = 221), or other persons tested (n = 90). This new information on the genetic mutation will facilitate diagnostic testing for QPD and studies of its pathogenesis and prevalence. QPD is the first bleeding disorder to be associated with a gene duplication event and a PLAU mutation.

  3. Dose dependency of outcomes of intrapleural fibrinolytic therapy in new rabbit empyema models

    PubMed Central

    Florova, Galina; Azghani, Ali O.; Buchanan, Ann; Boren, Jake; Allen, Timothy; Rahman, Najib M.; Koenig, Kathleen; Chamiso, Mignote; Karandashova, Sophia; Henry, James; Idell, Steven

    2016-01-01

    The incidence of empyema (EMP) is increasing worldwide; EMP generally occurs with pleural loculation and impaired drainage is often treated with intrapleural fibrinolytic therapy (IPFT) or surgery. A number of IPFT options are used clinically with empiric dosing and variable outcomes in adults. To evaluate mechanisms governing intrapleural fibrinolysis and disease outcomes, models of Pasteurella multocida and Streptococcus pneumoniae were generated in rabbits and the animals were treated with either human tissue (tPA) plasminogen activator or prourokinase (scuPA). Rabbit EMP was characterized by the development of pleural adhesions detectable by chest ultrasonography and fibrinous coating of the pleura. Similar to human EMP, rabbits with EMP accumulated sizable, 20- to 40-ml fibrinopurulent pleural effusions associated with extensive intrapleural organization, significantly increased pleural thickness, suppression of fibrinolytic and plasminogen-activating activities, and accumulation of high levels of plasminogen activator inhibitor 1, plasminogen, and extracellular DNA. IPFT with tPA (0.145 mg/kg) or scuPA (0.5 mg/kg) was ineffective in rabbit EMP (n = 9 and 3 for P. multocida and S. pneumoniae, respectively); 2 mg/kg tPA or scuPA IPFT (n = 5) effectively cleared S. pneumoniae-induced EMP collections in 24 h with no bleeding observed. Although intrapleural fibrinolytic activity for up to 40 min after IPFT was similar for effective and ineffective doses of fibrinolysin, it was lower for tPA than for scuPA treatments. These results demonstrate similarities between rabbit and human EMP, the importance of pleural fluid PAI-1 activity, and levels of plasminogen in the regulation of intrapleural fibrinolysis and illustrate the dose dependency of IPFT outcomes in EMP. PMID:27343192

  4. Dose dependency of outcomes of intrapleural fibrinolytic therapy in new rabbit empyema models.

    PubMed

    Komissarov, Andrey A; Florova, Galina; Azghani, Ali O; Buchanan, Ann; Boren, Jake; Allen, Timothy; Rahman, Najib M; Koenig, Kathleen; Chamiso, Mignote; Karandashova, Sophia; Henry, James; Idell, Steven

    2016-08-01

    The incidence of empyema (EMP) is increasing worldwide; EMP generally occurs with pleural loculation and impaired drainage is often treated with intrapleural fibrinolytic therapy (IPFT) or surgery. A number of IPFT options are used clinically with empiric dosing and variable outcomes in adults. To evaluate mechanisms governing intrapleural fibrinolysis and disease outcomes, models of Pasteurella multocida and Streptococcus pneumoniae were generated in rabbits and the animals were treated with either human tissue (tPA) plasminogen activator or prourokinase (scuPA). Rabbit EMP was characterized by the development of pleural adhesions detectable by chest ultrasonography and fibrinous coating of the pleura. Similar to human EMP, rabbits with EMP accumulated sizable, 20- to 40-ml fibrinopurulent pleural effusions associated with extensive intrapleural organization, significantly increased pleural thickness, suppression of fibrinolytic and plasminogen-activating activities, and accumulation of high levels of plasminogen activator inhibitor 1, plasminogen, and extracellular DNA. IPFT with tPA (0.145 mg/kg) or scuPA (0.5 mg/kg) was ineffective in rabbit EMP (n = 9 and 3 for P. multocida and S. pneumoniae, respectively); 2 mg/kg tPA or scuPA IPFT (n = 5) effectively cleared S. pneumoniae-induced EMP collections in 24 h with no bleeding observed. Although intrapleural fibrinolytic activity for up to 40 min after IPFT was similar for effective and ineffective doses of fibrinolysin, it was lower for tPA than for scuPA treatments. These results demonstrate similarities between rabbit and human EMP, the importance of pleural fluid PAI-1 activity, and levels of plasminogen in the regulation of intrapleural fibrinolysis and illustrate the dose dependency of IPFT outcomes in EMP. Copyright © 2016 the American Physiological Society.

  5. Gene expression of fibrinolytic factors urokinase plasminogen activator and plasminogen activator inhibitor-1 in rabbit temporo-mandibular joint cartilage with disc displacement.

    PubMed

    Zhan, Jing; Gu, Zhi-yuan; Wu, Li-qun; Zhang, Yin-kai; Hu, Ji-an

    2005-06-20

    The urokinase plasminogen activator system is believed to play an important role in degradation of the extracellular matrix associated with cartilage and bone destruction; however its precise roles in temporomandibular disorders have not yet been clarified. The aims of this study were to investigate the gene expression of fibrinolytic factors urokinase plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) in the articular cartilage of rabbit temporomandibular joint (TMJ) with disc displacement (DD) and to probe the relationship between fibrinolytic activity and cartilage remodeling. Disc displacement of right joints was performed in 36 of 78 rabbits under investigation. The animals were sacrificed at 4 days and 1, 2, 4, 8 and 12 weeks after surgery, respectively. The right joints of these animals were harvested and processed for the examination of mRNA expression of uPA and PAI-1 in articular cartilage using in situ hybridization techniques. The expression of uPA and PAI-1 was co-expressed weakly in the chondrocytes from transitive zone to hypertrophic zone and mineralized zone, while no hybridizing signals were shown in proliferative zone and superficial zone in control rabbits. The most striking was the up-regulation of uPA and PAI-1 mRNA in 4-day rabbits postoperatively at the onset of cartilage degeneration. The strongest hybridizing signals for uPA and PAI-1 were seen in 2-week rabbits postoperatively. After 2 weeks, the expression of uPA and PAI-1 began to decrease and reached nearly normal level at 12 weeks. The expression of the uPA/PAI-1 system coincides with the pathological changes in condylar cartilage after DD. The uPA/PAI-1 system may be one of the essential mediators in articular cartilage remodeling.

  6. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    PubMed

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N

    2015-12-01

    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  7. Galectin-8 induces partial epithelial–mesenchymal transition with invasive tumorigenic capabilities involving a FAK/EGFR/proteasome pathway in Madin–Darby canine kidney cells

    PubMed Central

    Oyanadel, Claudia; Holmes, Christopher; Pardo, Evelyn; Retamal, Claudio; Shaughnessy, Ronan; Smith, Patricio; Cortés, Priscilla; Bravo-Zehnder, Marcela; Metz, Claudia; Feuerhake, Teo; Romero, Diego; Roa, Juan Carlos; Montecinos, Viviana; Soza, Andrea; González, Alfonso

    2018-01-01

    Epithelial cells can acquire invasive and tumorigenic capabilities through epithelial–mesenchymal-transition (EMT). The glycan-binding protein galectin-8 (Gal-8) activates selective β1-integrins involved in EMT and is overexpressed by certain carcinomas. Here we show that Gal-8 overexpression or exogenous addition promotes proliferation, migration, and invasion in nontumoral Madin–Darby canine kidney (MDCK) cells, involving focal-adhesion kinase (FAK)-mediated transactivation of the epidermal growth factor receptor (EGFR), likely triggered by α5β1integrin binding. Under subconfluent conditions, Gal-8–overexpressing MDCK cells (MDCK-Gal-8H) display hallmarks of EMT, including decreased E-cadherin and up-regulated expression of vimentin, fibronectin, and Snail, as well as increased β-catenin activity. Changes related to migration/invasion included higher expression of α5β1 integrin, extracellular matrix-degrading MMP13 and urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) protease systems. Gal-8–stimulated FAK/EGFR pathway leads to proteasome overactivity characteristic of cancer cells. Yet MDCK-Gal-8H cells still develop apical/basolateral polarity reverting EMT markers and proteasome activity under confluence. This is due to the opposite segregation of Gal-8 secretion (apical) and β1-integrins distribution (basolateral). Strikingly, MDCK-Gal-8H cells acquired tumorigenic potential, as reflected in anchorage-independent growth in soft agar and tumor generation in immunodeficient NSG mice. Therefore, Gal-8 can promote oncogenic-like transformation of epithelial cells through partial and reversible EMT, accompanied by higher proliferation, migration/invasion, and tumorigenic properties. PMID:29298841

  8. Effects of hypoxia and reoxygenation on the expression levels of the urokinase-type plasminogen activator, its inhibitor plasminogen activator inhibitor type-1 and the urokinase-type plasminogen activator receptor in human head and neck tumour cells.

    PubMed

    Sprague, Lisa D; Tomaso, Herbert; Mengele, Karin; Schilling, Daniela; Bayer, Christine; Stadler, Peter; Schmitt, Manfred; Molls, Michael

    2007-05-01

    One aim during oncological radiation therapy is to induce reoxygenation in hypoxic tumours in order to enhance radiosensitivity and ultimately increase cell death. In squamous cell carcinomas of the head and neck (SCCHN), hypoxia is considered a pivotal physiological modulator for malignant progression, whereby the plasminogen activation system is involved in overlapping functions such as the shaping of the extracellular matrix, cell proliferation and signal transduction. Since little is known about reoxygenation and the plasminogen activation system in SCCHN, three human SCCHN cell lines (BHY, FaDu, and CAL27) and a non-transformed control cell line (VH7) were exposed to hypoxic (<0.5% O2) conditions for up to 72 h and subsequently reoxygenated for 24 h at normoxic conditions. The mRNA expression of the urokinase-type plasminogen activator (uPA), the plasminogen activator inhibitor type-1 (PAI-1) and the urokinase-type plasminogen activator receptor (uPAR) was assessed by means of real-time semi-quantitative RT-PCR, and the protein expression was determined by immunoenzymometric quantification (ELISA). Both hypoxia and reoxygenation induced statistically significant changes in uPA, PAI-1 and uPAR mRNA and protein levels in the various cell lines investigated, showing that oxygen tension is a strong modulator of the plasminogen activation system in vitro. However, no uniform correlation pattern was found between the mRNA and protein levels analysed over all three time-points (24, 48, and 72 h) and oxygen treatment variants (N, H, R) nor according to oxygen treatment conditions over all three time-points. Changes in oxygen tension could therefore be modulating the fragile balance between the various components of the plasminogen activation system in SSCHN ultimately leading to an increased tumour matrix disruption, alterations in cell invasiveness, and the dissemination of tumour cells to distant organs.

  9. Plasminogen activator inhibitor-1 4G/5G polymorphism is associated with type 2 diabetes risk

    PubMed Central

    Zhao, Luqian; Huang, Ping

    2013-01-01

    A number of studies were performed to assess the association between plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphism and susceptibility to type 2 diabetes (T2DM). However, the results were inconsistent and inconclusive. In the present study, the possible association was investigated by a meta-analysis. Eligible articles were identified for the period up to June 2013. Pooled odds ratios (OR) with 95% confidence intervals (CI) were appropriately derived from random-effects models or fixed-effects models. Fourteen case-control studies with a total of 2487 cases and 3538 controls were eligible. In recessive model, PAI-1 4G/5G polymorphism was associated with T2DM risk (OR = 1.23; 95% CI 1.07-1.41; P = 0.004). In the subgroup analysis by ethnicity, a significant association was found among Asians (OR = 1.27; 95% CI 1.08-1.51; P = 0.005). This meta-analysis suggested that PAI-1 4G/5G polymorphism may be associated with T2DM development. PMID:24040470

  10. A novel polymorphism in the PAI-1 gene promoter enhances gene expression. A novel pro-thrombotic risk factor?

    PubMed

    Liguori, Renato; Quaranta, Sandro; Di Fiore, Rosanna; Elce, Ausilia; Castaldo, Giuseppe; Amato, Felice

    2014-12-01

    Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of tissue-type plasminogen activator in plasma and the most important regulator of the fibrinolytic pathway. The 4G/5G polymorphism (rs1799889) in the PAI-1 promoter is associated with altered PAI-1 transcription. We have identified a new 4G/5G allele, in which a T is inserted near the 4G tract or replaces a G in the 5G tract, forming a T plus 4G (T4G) region. This new variant was first identified in two women, one had experienced juvenile myocardial infarction, the other repeated miscarriage; both had increased PAI-1 plasma activity. In view of the important influence of this promoter region on PAI-1 protein plasma level, we performed in vitro evaluation of the effects of the T4G variant on the transcription activity of the PAI-1 gene promoter. In silico prediction analysis showed that presence of the T4G allele disrupts the E-Box region upstream of the T4G variant, altering the affinity of the target sequence for E-Box binding factors like upstream stimulatory factor-1 (USF-1). Basal T4G promoter activity was 50% higher compared to 4G and 5G variants, but it was less stimulated by USF-1 overexpression. We also analyzed the effects of IL-1β and IL-6 on the PAI-1 promoter activity of our three constructs and showed that the T4G variant was less affected by IL-1β than the other variants. These findings indicate that the T4G variant may be a novel risk factor for thrombotic events. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Lytic resistance of fibrin containing red blood cells

    PubMed Central

    Wohner, Nikolett; Sótonyi, Péter; Machovich, Raymund; Szabó, László; Tenekedjiev, Kiril; Silva, Marta M.C.G.; Longstaff, Colin; Kolev, Krasimir

    2012-01-01

    Objective Arterial thrombi contain variable amounts of red blood cell (RBC), which interact with fibrinogen through an eptifibatide-sensitive receptor and modify the structure of fibrin. Here we evaluate the modulator role of RBCs in the lytic susceptibility of fibrin. Methods and Results If fibrin is formed at increasing RBC counts, scanning electron microscopy evidenced a decrease in fiber diameter from 150 nm to 96 nm at 40 %(v/v) RBC, an effect susceptible to eptifibatide inhibition (restoring 140 nm diameter). RBC prolonged the lysis time in a homogeneous-phase fibrinolytic assay with tissue plasminogen activator (tPA) by up to 22.7±1.6 %, but not in the presence of eptifibatide. Confocal laser microscopy using green fluorescent protein (GFP)-labeled tPA and orange fluorescent fibrin showed that 20-40 %(v/v) RBC significantly slowed down the dissolution of the clots. tPA-GFP did not accumulate on the surface of fibrin containing RBC at any cell count above 10 %. The presence of RBC in the clot suppressed the tPA-induced plasminogen activation resulting in a 45 % less plasmin generated after 30 min activation at 40 %(v/v) RBC. Conclusion RBCs confer lytic resistance to fibrin resulting from modified fibrin structure and impaired plasminogen activation through a mechanism that involves eptifibatide-sensitive fibrinogen-RBC interactions. PMID:21737785

  12. A label-free photoelectrochemical biosensor for urokinase-type plasminogen activator detection based on a g-C3N4/CdS nanocomposite.

    PubMed

    Liu, Xing-Pei; Chen, Jing-Shuai; Mao, Chang-Jie; Niu, He-Lin; Song, Ji-Ming; Jin, Bao-Kang

    2018-09-26

    Herein, we established a novel ultrasensitive photoelectrochemical biosensor for detecting urokinase-type plasminogen activator (u-PA), based on a g-C 3 N 4 /CdS nanocomposite. The prepared nanocomposite was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible absorption spectroscopy, and Fourier transform infrared spectroscopy, thus indicating that the nanocomposite was prepared successfully. In the typical process, the prepared nanocomposite was deposited on the surface of a bare FTO electrode. After being air-dried, the g-C 3 N 4 /CdS nanocomposite modified electrode was successively incubated with antibody against urokinase-type plasminogen activator and the blocking agent BSA to produce a photoelectrochemical biosensor for u-PA. In the presence of target u-PA antigen, the photocurrent response of the prepared biosensor electrode decreased significantly. The proposed novel photoelectrochemical biosensor exhibited good sensitivity, specificity, and reproducibility for u-PA detection, and a low detection limit of 33 fg mL -1 , ranging from 1 μg mL -1 -0.1 pg mL -1 . The proposed strategy should provide a promising method for detection of other biomarkers. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Blockade by phosphorothioate aptamers of advanced glycation end products-induced damage in cultured pericytes and endothelial cells.

    PubMed

    Higashimoto, Yuichiro; Matsui, Takanori; Nishino, Yuri; Taira, Junichi; Inoue, Hiroyoshi; Takeuchi, Masayoshi; Yamagishi, Sho-Ichi

    2013-11-01

    Advanced glycation end products (AGEs) not only inhibit DNA synthesis of retinal pericytes, but also elicit vascular hyperpermeability, pathological angiogenesis, and thrombogenic reactions by inducing vascular endothelial growth factor (VEGF) and plasminogen activator inhibitor-1 (PAI-1) through the interaction with the receptor for AGEs (RAGE), thereby being involved in the pathogenesis of diabetic retinopathy. In this study, we screened novel phosphorothioate-modified aptamers directed against AGEs (AGEs-thioaptamers) using a combinatorial chemistry in vitro, and examined whether these aptamers could inhibit the AGE-induced damage in both retinal pericytes and human umbilical vein endothelial cells (HUVECs). We identified 11 AGEs-thioaptamers; among them, clones #4, #7s and #9s aptamers had higher binding affinity to AGEs-human serum albumin (HSA) than the others. Surface plasmon resonance analysis revealed that KD values of #4s, #7s and #9s were 0.63, 0.36, and 0.57nM, respectively. Furthermore, these 3 clones dose-dependently restored the decrease in DNA synthesis in AGE-exposed pericytes. AGEs significantly increased RAGE, VEGF and PAI-1 mRNA levels in HUVEC, all of which were completely blocked by the treatment with 20nM clone #4s aptamer. Quartz crystal microbalance analysis confirmed that #4s aptamer dose-dependently inhibited the binding of AGEs-HSA to RAGE. Our present study demonstrated that AGEs-thioaptamers could inhibit the harmful effects of AGEs in pericytes and HUVEC by suppressing the binding of AGEs to RAGE. Blockade by AGEs-thioaptamers of the AGEs-RAGE axis might be a novel therapeutic strategy for diabetic retinopathy. © 2013.

  14. Leukocyte Cell Surface Proteinases: Regulation of Expression, Functions, and Mechanisms of Surface Localization

    PubMed Central

    Owen, Caroline A.

    2008-01-01

    A number of proteinases are expressed on the surface of leukocytes including members of the serine, metallo-, and cysteine proteinase superfamilies. Some proteinases are anchored to the plasma membrane of leukocytes by a transmembrane domain or a glycosyl phosphatidyl inositol (GPI) anchor. Other proteinases bind with high affinity to classical receptors, or with lower affinity to integrins, proteoglycans, or other leukocyte surface molecules. Leukocyte surface levels of proteinases are regulated by: 1) cytokines, chemokines, bacterial products, and growth factors which stimulate synthesis and/or release of proteinase by cells; 2) the availability of surface binding sites for proteinases; and/or 3) internalization or shedding of surface-bound proteinases. The binding of proteinases to leukocyte surfaces serves many functions including: 1) concentrating the activity of proteinases to the immediate pericellular environment; 2) facilitating pro-enzyme activation; 3) increasing proteinase stability and retention in the extracellular space; 4) regulating leukocyte function by proteinases signaling through cell surface binding sites or other surface proteins; and 5) protecting proteinases from inhibition by extracellular proteinase inhibitors. There is strong evidence that membrane-associated proteinases on leukocytes play critical roles in wound healing, inflammation, extracellular matrix remodeling, fibrinolysis, and coagulation. This review will outline the biology of membrane-associated proteinases expressed by leukocytes and their roles in physiologic and pathologic processes. PMID:18329945

  15. Features of Two New Proteins with OmpA-Like Domains Identified in the Genome Sequences of Leptospira interrogans

    PubMed Central

    Teixeira, Aline F.; de Morais, Zenaide M.; Kirchgatter, Karin; Romero, Eliete C.; Vasconcellos, Silvio A.; Nascimento, Ana Lucia T. O.

    2015-01-01

    Leptospirosis is an acute febrile disease caused by pathogenic spirochetes of the genus Leptospira. It is considered an important re-emerging infectious disease that affects humans worldwide. The knowledge about the mechanisms by which pathogenic leptospires invade and colonize the host remains limited since very few virulence factors contributing to the pathogenesis of the disease have been identified. Here, we report the identification and characterization of two new leptospiral proteins with OmpA-like domains. The recombinant proteins, which exhibit extracellular matrix-binding properties, are called Lsa46 - LIC13479 and Lsa77 - LIC10050 (Leptospiral surface adhesins of 46 and 77 kDa, respectively). Attachment of Lsa46 and Lsa77 to laminin was specific, dose dependent and saturable, with KD values of 24.3 ± 17.0 and 53.0 ± 17.5 nM, respectively. Lsa46 and Lsa77 also bind plasma fibronectin, and both adhesins are plasminogen (PLG)-interacting proteins, capable of generating plasmin (PLA) and as such, increase the proteolytic ability of leptospires. The proteins corresponding to Lsa46 and Lsa77 are present in virulent L. interrogans L1-130 and in saprophyte L. biflexa Patoc 1 strains, as detected by immunofluorescence. The adhesins are recognized by human leptospirosis serum samples at the onset and convalescent phases of the disease, suggesting that they are expressed during infection. Taken together, our data could offer valuable information to the understanding of leptospiral pathogenesis. PMID:25849456

  16. Mapping the Interactions of Dengue Virus NS1 Protein with Human Liver Proteins Using a Yeast Two-Hybrid System: Identification of C1q as an Interacting Partner

    PubMed Central

    Allonso, Diego; Nogueira, Mauricio L.; Mohana-Borges, Ronaldo

    2013-01-01

    Dengue constitutes a global health concern. The clinical manifestation of this disease varies from mild febrile illness to severe hemorrhage and/or fatal hypovolemic shock. Flavivirus nonstructural protein 1 (NS1) is a secreted glycoprotein that is displayed on the surface of infected cells but is absent in viral particles. NS1 accumulates at high levels in the plasma of dengue virus (DENV)-infected patients, and previous reports highlight its involvement in immune evasion, dengue severity, liver dysfunction and pathogenesis. In the present study, we performed a yeast two-hybrid screen to search for DENV2 NS1-interacting partners using a human liver cDNA library. We identified fifty genes, including human complement component 1 (C1q), which was confirmed by coimmunoprecipitation, ELISA and immunofluorescence assays, revealing for the first time the direct binding of this protein to NS1. Furthermore, the majority of the identified genes encode proteins that are secreted into the plasma of patients, and most of these proteins are classified as acute-phase proteins (APPs), such as plasminogen, haptoglobin, hemopexin, α-2-HS-glycoprotein, retinol binding protein 4, transferrin, and C4. The results presented here confirm the direct interaction of DENV NS1 with a key protein of the complement system and suggest a role for this complement protein in the pathogenesis of DENV infection. PMID:23516407

  17. Short-term Effects of Air Temperature on Blood Markers of Coagulation and Inflammation in Potentially Susceptible Individuals

    EPA Science Inventory

    Objectives: Changes in air temperature are associated with an increase in cardiovascular events, but the role of pro-coagulant and pro-inflammatory blood markers is still poorly understood. We investigated the association between air temperature and fibrinogen, plasminogen act...

  18. Genetics Home Reference: complete plasminogen activator inhibitor 1 deficiency

    MedlinePlus

    ... Affected females may have excessive bleeding associated with menstruation (menorrhagia) and abnormal bleeding in pregnancy and childbirth. ... frequently in females because of its effects on menstruation, pregnancy, and childbirth. Related Information What information about ...

  19. Characteristics of the level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1.

    PubMed

    Mengele, Karin; Napieralski, Rudolf; Magdolen, Viktor; Reuning, Ute; Gkazepis, Apostolos; Sweep, Fred; Brünner, Nils; Foekens, John; Harbeck, Nadia; Schmitt, Manfred

    2010-10-01

    In cancer, the serine protease urokinase-type plasminogen activator, its inhibitor (plasminogen activator inhibitor type-1) and the receptor (CD87), among other proteolytic factors, are involved in tumor cell dissemination and turnover of the extracellular matrix. Unsurprisingly, a battery of very uniform data, amassed since the end of the 1990s, has put these members of the plasminogen activation system into the forefront of prognostic/predictive cancer biomarkers relevant to predict the clinical course of cancer patients and their response to cancer therapy. The present review focuses on the molecular characteristics of the disease forecast biomarkers urokinase-type plasminogen activator and plasminogen activator inhibitor type-1, and techniques to quantitatively assess these cancer biomarkers, in the context of potential clinical application and personalized disease management.

  20. Antihypertensive treatment prolongs tissue plasminogen activator door-to-treatment time: secondary analysis of the INSTINCT trial.

    PubMed

    Skolarus, Lesli E; Scott, Phillip A; Burke, James F; Adelman, Eric E; Frederiksen, Shirley M; Kade, Allison M; Kalbfleisch, Jack D; Ford, Andria L; Meurer, William J

    2012-12-01

    Identifying modifiable tissue plasminogen activator treatment delays may improve stroke outcomes. We hypothesized that prethrombolytic antihypertensive treatment (AHT) may prolong door-to-treatment time (DTT). We performed an analysis of consecutive tissue plasminogen activator-treated patients at 24 randomly selected community hospitals in the Increasing Stroke Treatment through Interventional Behavior Change Tactics (INSTINCT) trial between 2007 and 2010. DTT among stroke patients who received prethrombolytic AHT were compared with those who did not receive prethrombolytic AHT. We then calculated a propensity score for the probability of receiving prethrombolytic AHT using logistic regression with demographics, stroke risk factors, home medications, stroke severity (National Institutes of Health Stroke Scale), onset-to-door time, admission glucose, pretreatment blood pressure, emergency medical service transport, and location at time of stroke as independent variables. A paired t test was performed to compare the DTT between the propensity-matched groups. Of 534 tissue plasminogen activator-treated stroke patients analyzed, 95 received prethrombolytic AHT. In the unmatched cohort, patients who received prethrombolytic AHT had a longer DTT (mean increase, 9 minutes; 95% confidence interval, 2-16 minutes) than patients who did not. After propensity matching, patients who received prethrombolytic AHT had a longer DTT (mean increase, 10.4 minutes; 95% confidence interval, 1.9-18.8) than patients who did not receive prethrombolytic AHT. Prethrombolytic AHT is associated with modest delays in DTT. This represents a potential target for quality-improvement initiatives. Further research evaluating optimum prethrombolytic hypertension management is warranted.

  1. OmpL1 Is an Extracellular Matrix- and Plasminogen-Interacting Protein of Leptospira spp.

    PubMed Central

    Fernandes, Luis G. V.; Vieira, Monica L.; Kirchgatter, Karin; Alves, Ivy J.; de Morais, Zenaide M.; Vasconcellos, Silvio A.; Romero, Eliete C.

    2012-01-01

    Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical β-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with KD (equilibrium dissociation constant) values of 2,099.93 ± 871.03 nM and 1,239.23 ± 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a KD of 368.63 ± 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection. PMID:22802342

  2. OmpL1 is an extracellular matrix- and plasminogen-interacting protein of Leptospira spp.

    PubMed

    Fernandes, Luis G V; Vieira, Monica L; Kirchgatter, Karin; Alves, Ivy J; de Morais, Zenaide M; Vasconcellos, Silvio A; Romero, Eliete C; Nascimento, Ana L T O

    2012-10-01

    Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical β-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with K(D) (equilibrium dissociation constant) values of 2,099.93 ± 871.03 nM and 1,239.23 ± 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a K(D) of 368.63 ± 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection.

  3. Urokinase-type plasminogen activator receptor (uPAR) ligation induces a raft-localized integrin signaling switch that mediates the hypermotile phenotype of fibrotic fibroblasts.

    PubMed

    Grove, Lisa M; Southern, Brian D; Jin, Tong H; White, Kimberly E; Paruchuri, Sailaja; Harel, Efrat; Wei, Ying; Rahaman, Shaik O; Gladson, Candece L; Ding, Qiang; Craik, Charles S; Chapman, Harold A; Olman, Mitchell A

    2014-05-02

    The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol-linked membrane protein with no cytosolic domain that localizes to lipid raft microdomains. Our laboratory and others have documented that lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) exhibit a hypermotile phenotype. This study was undertaken to elucidate the molecular mechanism whereby uPAR ligation with its cognate ligand, urokinase, induces a motile phenotype in human lung fibroblasts. We found that uPAR ligation with the urokinase receptor binding domain (amino-terminal fragment) leads to enhanced migration of fibroblasts on fibronectin in a protease-independent, lipid raft-dependent manner. Ligation of uPAR with the amino-terminal fragment recruited α5β1 integrin and the acylated form of the Src family kinase, Fyn, to lipid rafts. The biological consequences of this translocation were an increase in fibroblast motility and a switch of the integrin-initiated signal pathway for migration away from the lipid raft-independent focal adhesion kinase pathway and toward a lipid raft-dependent caveolin-Fyn-Shc pathway. Furthermore, an integrin homologous peptide as well as an antibody that competes with β1 for uPAR binding have the ability to block this effect. In addition, its relative insensitivity to cholesterol depletion suggests that the interactions of α5β1 integrin and uPAR drive the translocation of α5β1 integrin-acylated Fyn signaling complexes into lipid rafts upon uPAR ligation through protein-protein interactions. This signal switch is a novel pathway leading to the hypermotile phenotype of IPF patient-derived fibroblasts, seen with uPAR ligation. This uPAR dependent, fibrotic matrix-selective, and profibrotic fibroblast phenotype may be amenable to targeted therapeutics designed to ameliorate IPF.

  4. Characterization of Interactions between Heparin/Glycosaminoglycan and Adeno-associated Virus

    PubMed Central

    Zhang, Fuming; Aguilera, Javier; Beaudet, Julie M.; Xie, Qing; Lerch, Thomas F.; Davulcu, Omar; Colón, Wilfredo; Chapman, Michael S.; Linhardt, Robert J.

    2013-01-01

    Adeno-associated virus (AAV) is a key candidate in the development of gene therapy. In this report, we used surface plasmon resonance spectroscopy to study the interaction between AAV and heparin and other glycosaminoglycans. Surface plasmon resonance results revealed that heparin binds to AAV with extremely high affinity. Solution competition studies shows that AAV binding to heparin is chain length dependent. AAV prefers to bind full chain heparin. All sulfo groups (especially N-sulfo and 6-O-sulfo groups) on heparin are important for the AAV- heparin interaction. Higher levels of sulfo group substitution in GAGs enhance their binding affinities. Atomic force microscopy was also performed to image AAV-2 complexed with heparin. PMID:23952613

  5. High Throughput Screening for Compounds That Alter Muscle Cell Glycosylation Identifies New Role for N-Glycans in Regulating Sarcolemmal Protein Abundance and Laminin Binding*

    PubMed Central

    Cabrera, Paula V.; Pang, Mabel; Marshall, Jamie L.; Kung, Raymond; Nelson, Stanley F.; Stalnaker, Stephanie H.; Wells, Lance; Crosbie-Watson, Rachelle H.; Baum, Linda G.

    2012-01-01

    Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function. PMID:22570487

  6. Specificity of marine microbial surface interactions.

    PubMed Central

    Imam, S H; Bard, R F; Tosteson, T R

    1984-01-01

    The macromolecular surface components involved in intraspecific cell surface interactions of the green microalga Chlorella vulgaris and closely associated bacteria were investigated. The specific surface attachment between this alga and its associated bacteria is mediated by lectin-like macromolecules associated with the surfaces of these cells. The binding activity of these surface polymers was inhibited by specific simple sugars; this suggests the involvement of specific receptor-ligand binding sites on the interactive surfaces. Epifluorescent microscopic evaluation of bacteria-alga interactions in the presence and absence of the macromolecules that mediate these interactions showed that the glycoproteins active in these processes were specific to the microbial sources from which they were obtained. The demonstration and definition of the specificity of these interactions in mixed microbial populations may play an important role in our understanding of the dynamics of marine microbial populations in the sea. PMID:6508293

  7. 4G/5G polymorphism of plasminogen activator inhibitor-1 gene is associated with polycystic ovary syndrome in Chinese patients: a meta-analysis.

    PubMed

    Wang, Li-Hong; Wang, Li-Mei; Zhou, Na

    2015-09-01

    To date, case-control studies on the association between a single-nucleotide polymorphism (SNP) in the plasminogen activator inhibitor-1 (PAI-1) gene and polycystic ovary syndrome (PCOS) have provided controversial results. The electronic databases PubMed, Embase, Web of Science, and CNKI (China National Knowledge Infrastructure) were searched for studies to include in the present meta-analysis. The fixed effects and random effects models showed that the 4G allele was associated with a risk of PCOS compared with the 5G allele in Chinese patients (OR = 2.05; 95 % CI = 1.56-2.69), but not in Caucasian patients (OR = 1.05; 95 % CI = 0.81-1.37). The contrast of homozygotes and the recessive and dominant models produced the same pattern of results as the allele contrast. Our pooled data suggest evidence for a major role of PAI-1 gene 4G/5G polymorphism in the pathogenesis of PCOS among Chinese patients.

  8. Effects of gestational hypertension and pre-eclampsia in mRNA expression of fibrinolysis genes in primary cultured human umbilical vein endothelial cells.

    PubMed

    Poblete-Naredo, Irais; Rodríguez-Yáñez, Yury; Corona-Núñez, Rogelio O; González-Monroy, Stuart; Salinas, Juan E; Albores, Arnulfo

    2018-05-17

    Hypertension disorders (HD) and pre-eclampsia (PRE) are leading causes of maternal deaths worldwide. PRE is associated with vascular endothelial dysfunction and with deregulation of the fibrinolysis pathway genes. Fibrinolysis is the fibrin clot hydrolysis process catalyzed by plasmin, a proteolytic enzyme formed from plasminogen. Plasminogen is cleaved by tissue-type (tPA) and urokinase-type (uPA) activators and inhibited by the plasminogen activator inhibitors type-1 (PAI-1) and type-2 (PAI-2). The whole process maintains blood hemostasis. This study aims to assess PAI-1, PAI-2, tPA and uPA mRNA expression in primary cultured human umbilical vein endothelial cells (HUVEC) isolated and cultured from healthy, HD and PRE women. Results show that PAI-1 and PAI-2 mRNA decreased in HD-HUVEC, whereas PAI-1 and uPA decreased in PRE-HUVEC cultures compared to control ones. Notably, the expression ratio between pro- and anti-fibrinolytic actors remained unchanged among the studied groups. It seems that newborn's hemostasis is maintained balanced probably by a compensatory mechanism that involves changes in the fibrinolysis gene expression profile. The real impact of these changes in mRNA expression is unknown, however, it is suggested that these changes could be associated with an increased predisposition to vascular disease development in the progeny. Copyright © 2018. Published by Elsevier Ltd.

  9. Meta-analysis of the association between plasminogen activator inhibitor-1 4G/5G polymorphism and recurrent pregnancy loss.

    PubMed

    Li, Xuejiao; Liu, Yukun; Zhang, Rui; Tan, Jianping; Chen, Libin; Liu, Yinglin

    2015-04-11

    The association between plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphism and recurrent pregnancy loss (RPL) risk is still contradictory. We thus performed a meta-analysis. Relevant studies were searched for in PubMed, Web of Science, Embase, and Cochrane Library. An odds ratio (OR) with a 95% confidence interval (CI) was used to assess the association between PAI-1 4G/5G polymorphism and RPL risk. A total of 22 studies with 4306 cases and 3076 controls were included in this meta-analysis. We found that PAI-1 4G/5G polymorphism was significantly associated with an increased RPL risk (OR=1.89; 95% CI 1.34-2.67; P=0.0003). In the subgroup analysis by race, PAI-1 4G/5G polymorphism was significantly associated with an increased RPL risk in Caucasians (OR=2.23; 95% CI 1.44-3.46; P=0.0003). However, no significant association was observed in Asians (OR=1.47; 95% CI 0.84-2.59; P=0.18). In conclusion, this meta-analysis suggests that PAI-1 4G/5G polymorphism might be associated with RPL development in Caucasians.

  10. Ultrasound-assisted lysis using recombinant tissue plasminogen activator and the EKOS EkoSonic endovascular system for treating right atrial thrombus and massive pulmonary embolism: A case study.

    PubMed

    Shammas, N W; Padaria, R; Ahuja, G

    2015-12-01

    Right atrial thrombus in the setting of a large pulmonary embolus is rare and is associated with serious adverse events. This case report presents the role played by EKOS EkoSonic ultrasound system in successfully treating right atrial thrombus and massive pulmonary embolism. A 69-year-old female presented with a massive pulmonary embolus and a large mobile right atrial thrombus. She was treated with catheter-directed lysis using the EKOS EkoSonic ultrasound system and tissue plasminogen activator, with complete resolution of her right atrial thrombus and a marked improvement in her pulmonary embolus and hemodynamics. This case report provides a new and an effective option to treat right atrial thrombus associated with a large pulmonary embolus leading to a good outcome. © The Author(s) 2014.

  11. Nucleolin inhibits Fas ligand binding and suppresses Fas-mediated apoptosis in vivo via a surface nucleolin-Fas complex.

    PubMed

    Wise, Jillian F; Berkova, Zuzana; Mathur, Rohit; Zhu, Haifeng; Braun, Frank K; Tao, Rong-Hua; Sabichi, Anita L; Ao, Xue; Maeng, Hoyoung; Samaniego, Felipe

    2013-06-06

    Resistance to Fas-mediated apoptosis is associated with poor cancer outcomes and chemoresistance. To elucidate potential mechanisms of defective Fas signaling, we screened primary lymphoma cell extracts for Fas-associated proteins that would have the potential to regulate Fas signaling. An activation-resistant Fas complex selectively included nucleolin. We confirmed the presence of nucleolin-Fas complexes in B-cell lymphoma cells and primary tissues, and the absence of such complexes in B-lymphocytes from healthy donors. RNA-binding domain 4 and the glycine/arginine-rich domain of nucleolin were essential for its association with Fas. Nucleolin colocalized with Fas on the surface of B-cell lymphoma cells. Nucleolin knockdown sensitized BJAB cells to Fas ligand (FasL)-induced and Fas agonistic antibody-induced apoptosis through enhanced binding, suggesting that nucleolin blocks the FasL-Fas interaction. Mice transfected with nucleolin were protected from the lethal effects of agonistic anti-mouse Fas antibody (Jo2) and had lower rates of hepatocyte apoptosis, compared with vector and a non-Fas-binding mutant of nucleolin. Our results show that cell surface nucleolin binds Fas, inhibits ligand binding, and thus prevents induction of Fas-mediated apoptosis in B-cell lymphomas and may serve as a new therapeutic target.

  12. Nucleolin inhibits Fas ligand binding and suppresses Fas-mediated apoptosis in vivo via a surface nucleolin-Fas complex

    PubMed Central

    Wise, Jillian F.; Berkova, Zuzana; Mathur, Rohit; Zhu, Haifeng; Braun, Frank K.; Tao, Rong-Hua; Sabichi, Anita L.; Ao, Xue; Maeng, Hoyoung

    2013-01-01

    Resistance to Fas-mediated apoptosis is associated with poor cancer outcomes and chemoresistance. To elucidate potential mechanisms of defective Fas signaling, we screened primary lymphoma cell extracts for Fas-associated proteins that would have the potential to regulate Fas signaling. An activation-resistant Fas complex selectively included nucleolin. We confirmed the presence of nucleolin-Fas complexes in B-cell lymphoma cells and primary tissues, and the absence of such complexes in B-lymphocytes from healthy donors. RNA-binding domain 4 and the glycine/arginine-rich domain of nucleolin were essential for its association with Fas. Nucleolin colocalized with Fas on the surface of B-cell lymphoma cells. Nucleolin knockdown sensitized BJAB cells to Fas ligand (FasL)-induced and Fas agonistic antibody-induced apoptosis through enhanced binding, suggesting that nucleolin blocks the FasL–Fas interaction. Mice transfected with nucleolin were protected from the lethal effects of agonistic anti-mouse Fas antibody (Jo2) and had lower rates of hepatocyte apoptosis, compared with vector and a non-Fas-binding mutant of nucleolin. Our results show that cell surface nucleolin binds Fas, inhibits ligand binding, and thus prevents induction of Fas-mediated apoptosis in B-cell lymphomas and may serve as a new therapeutic target. PMID:23599269

  13. Intrapleural Adenoviral Delivery of Human Plasminogen Activator Inhibitor–1 Exacerbates Tetracycline-Induced Pleural Injury in Rabbits

    PubMed Central

    Karandashova, Sophia; Florova, Galina; Azghani, Ali O.; Komissarov, Andrey A.; Koenig, Kathy; Tucker, Torry A.; Allen, Timothy C.; Stewart, Kris; Tvinnereim, Amy

    2013-01-01

    Elevated concentrations of plasminogen activator inhibitor–1 (PAI-1) are associated with pleural injury, but its effects on pleural organization remain unclear. A method of adenovirus-mediated delivery of genes of interest (expressed under a cytomegalovirus promoter) to rabbit pleura was developed and used with lacZ and human (h) PAI-1. Histology, β-galactosidase staining, Western blotting, enzymatic and immunohistochemical analyses of pleural fluids (PFs), lavages, and pleural mesothelial cells were used to evaluate the efficiency and effects of transduction. Transduction was selective and limited to the pleural mesothelial monolayer. The intrapleural expression of both genes was transient, with their peak expression at 4 to 5 days. On Day 5, hPAI-1 (40–80 and 200–400 nM of active and total hPAI-1 in lavages, respectively) caused no overt pleural injury, effusions, or fibrosis. The adenovirus-mediated delivery of hPAI-1 with subsequent tetracycline-induced pleural injury resulted in a significant exacerbation of the pleural fibrosis observed on Day 5 (P = 0.029 and P = 0.021 versus vehicle and adenoviral control samples, respectively). Intrapleural fibrinolytic therapy (IPFT) with plasminogen activators was effective in both animals overexpressing hPAI-1 and control animals with tetracycline injury alone. An increase in intrapleural active PAI-1 (from 10–15 nM in control animals to 20–40 nM in hPAI-1–overexpressing animals) resulted in the increased formation of PAI-1/plasminogen activator complexes in vivo. The decrease in intrapleural plasminogen-activating activity observed at 10 to 40 minutes after IPFT correlates linearly with the initial concentration of active PAI-1. Therefore, active PAI-1 in PFs affects the outcome of IPFT, and may be both a biomarker of pleural injury and a molecular target for its treatment. PMID:23002099

  14. Probing mass-transport and binding inhomogeneity in macromolecular interactions by molecular interferometric imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Wang, Xuefeng; Nolte, David

    2009-02-01

    In solid-support immunoassays, the transport of target analyte in sample solution to capture molecules on the sensor surface controls the detected binding signal. Depletion of the target analyte in the sample solution adjacent to the sensor surface leads to deviations from ideal association, and causes inhomogeneity of surface binding as analyte concentration varies spatially across the sensor surface. In the field of label-free optical biosensing, studies of mass-transport-limited reaction kinetics have focused on the average response on the sensor surface, but have not addressed binding inhomogeneities caused by mass-transport limitations. In this paper, we employ Molecular Interferometric Imaging (MI2) to study mass-transport-induced inhomogeneity of analyte binding within a single protein spot. Rabbit IgG binding to immobilized protein A/G was imaged at various concentrations and under different flow rates. In the mass-transport-limited regime, enhanced binding at the edges of the protein spots was caused by depletion of analyte towards the center of the protein spots. The magnitude of the inhomogeneous response was a function of analyte reaction rate and sample flow rate.

  15. Monomer–dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies

    PubMed Central

    Caiolfa, Valeria R.; Zamai, Moreno; Malengo, Gabriele; Andolfo, Annapaola; Madsen, Chris D.; Sutin, Jason; Digman, Michelle A.; Gratton, Enrico; Blasi, Francesco; Sidenius, Nicolai

    2007-01-01

    To search for functional links between glycosylphosphatidylinositol (GPI) protein monomer–oligomer exchange and membrane dynamics and confinement, we studied urokinase plasminogen activator (uPA) receptor (uPAR), a GPI receptor involved in the regulation of cell adhesion, migration, and proliferation. Using a functionally active fluorescent protein–uPAR in live cells, we analyzed the effect that extracellular matrix proteins and uPAR ligands have on uPAR dynamics and dimerization at the cell membrane. Vitronectin directs the recruitment of dimers and slows down the diffusion of the receptors at the basal membrane. The commitment to uPA–plasminogen activator inhibitor type 1–mediated endocytosis and recycling modifies uPAR diffusion and induces an exchange between uPAR monomers and dimers. This exchange is fully reversible. The data demonstrate that cell surface protein assemblies are important in regulating the dynamics and localization of uPAR at the cell membrane and the exchange of monomers and dimers. These results also provide a strong rationale for dynamic studies of GPI-anchored molecules in live cells at steady state and in the absence of cross-linker/clustering agents. PMID:18056417

  16. 4G/5G Plasminogen Activator Inhibitor-1 Polymorphisms and Haplotypes Are Associated with Pneumonia

    PubMed Central

    Yende, Sachin; Angus, Derek C.; Ding, Jingzhong; Newman, Anne B.; Kellum, John A.; Li, Rongling; Ferrell, Robert E.; Zmuda, Joseph; Kritchevsky, Stephen B.; Harris, Tamara B.; Garcia, Melissa; Yaffe, Kristine; Wunderink, Richard G.

    2007-01-01

    Rationale: Plasminogen activator inhibitor (PAI)-1 inhibits urokinase and tissue plasminogen activator, required for host response to infection. Whether variation within the PAI-1 gene is associated with increased susceptibility to infection is unknown. Objectives: To ascertain the role of the 4G/5G polymorphism and other genetic variants within the PAI-1 gene. We hypothesized that variants associated with increased PAI-1 expression would be associated with an increased occurrence of community-acquired pneumonia (CAP). Methods: Longitudinal analysis (>12 yr) of the Health, Aging, and Body Composition cohort, aged 65–74 years at start of analysis. Measurements and Main Results: We genotyped the 4G/5G PAI-1 polymorphism and six additional single nucleotide polymorphisms. Of the 3,075 subjects, 272 (8.8%) had at least one hospitalization for CAP. Among whites, variants at the PAI4G,5G, PAI2846, and PAI7343 sites had higher risk of CAP (P = 0.018, 0.021, and 0.021, respectively). At these sites, variants associated with higher PAI-1 expression were associated with increased CAP susceptibility. Compared with the 5G/5G genotypes at PAI4G,5G site, the 4G/4G and 4G/5G genotypes were associated with a 1.98-fold increased risk of CAP (95% confidence interval, 1.2–3.2; P = 0.006). In whole blood stimulation assay, subjects with a 4G allele had 3.3- and 1.9-fold increased PAI-1 expression (P = 0.043 and 0.034, respectively). In haplotype analysis, the 4G/G/C/A haplotype at the PAI4G,5G, PAI2846, PAI4588, and PAI7343 single nucleotide polymorphisms was associated with higher CAP susceptibility, whereas the 5G/G/C/A haplotype was associated with lower CAP susceptibility. No associations were seen among blacks. Conclusions: Genotypes associated with increased expression of PAI-1 were associated with increased susceptibility to CAP in elderly whites. PMID:17761618

  17. Disulfide bonding arrangements in active forms of the somatomedin B domain of human vitronectin.

    PubMed

    Kamikubo, Yuichi; De Guzman, Roberto; Kroon, Gerard; Curriden, Scott; Neels, Jaap G; Churchill, Michael J; Dawson, Philip; Ołdziej, Stanisław; Jagielska, Anna; Scheraga, Harold A; Loskutoff, David J; Dyson, H Jane

    2004-06-01

    The N-terminal cysteine-rich somatomedin B (SMB) domain (residues 1-44) of the human glycoprotein vitronectin contains the high-affinity binding sites for plasminogen activator inhibitor-1 (PAI-1) and the urokinase receptor (uPAR). We previously showed that the eight cysteine residues of recombinant SMB (rSMB) are organized into four disulfide bonds in a linear uncrossed pattern (Cys(5)-Cys(9), Cys(19)-Cys(21), Cys(25)-Cys(31), and Cys(32)-Cys(39)). In the present study, we use an alternative method to show that this disulfide bond arrangement remains a major preferred one in solution, and we determine the solution structure of the domain using NMR analysis. The solution structure shows that the four disulfide bonds are tightly packed in the center of the domain, replacing the traditional hydrophobic core expected for a globular protein. The few noncysteine hydrophobic side chains form a cluster on the outside of the domain, providing a distinctive binding surface for the physiological partners PAI-1 and uPAR. The hydrophobic surface consists mainly of side chains from the loop formed by the Cys(25)-Cys(31) disulfide bond, and is surrounded by conserved acidic and basic side chains, which are likely to contribute to the specificity of the intermolecular interactions of this domain. Interestingly, the overall fold of the molecule is compatible with several arrangements of the disulfide bonds. A number of different disulfide bond arrangements were able to satisfy the NMR restraints, and an extensive series of conformational energy calculations performed in explicit solvent confirmed that several disulfide bond arrangements have comparable stabilization energies. An experimental demonstration of the presence of alternative disulfide conformations in active rSMB is provided by the behavior of a mutant in which Asn(14) is replaced by Met. This mutant has the same PAI-1 binding activity as rVN1-51, but its fragmentation pattern following cyanogen bromide treatment is incompatible with the linear uncrossed disulfide arrangement. These results suggest that active forms of the SMB domain may have a number of allowed disulfide bond arrangements as long as the Cys(25)-Cys(31) disulfide bond is preserved.

  18. Human basic fibroblast growth factor fused with Kringle4 peptide binds to a fibrin scaffold and enhances angiogenesis.

    PubMed

    Zhao, Wenxue; Han, Qianqian; Lin, Hang; Sun, Wenjie; Gao, Yuan; Zhao, Yannan; Wang, Bin; Wang, Xia; Chen, Bing; Xiao, Zhifeng; Dai, Jianwu

    2009-05-01

    Appropriate three-dimensional (3D) scaffolds and signal molecules could accelerate tissue regeneration and wound repair. In this work, we targeted human basic fibroblast growth factor (bFGF), a potent angiogenic factor, to a fibrin scaffold to improve therapeutic angiogenesis. We fused bFGF to the Kringle4 domain (K4), a fibrin-binding peptide from human plasminogen, to endow bFGF with specific fibrin-binding ability. The recombinant K4bFGF bound specifically to the fibrin scaffold so that K4bFGF was delivered in a site-specific manner, and the fibrin scaffold provided 3D support for cell migration and proliferation. Subcutaneous implantation of the fibrin scaffolds bound with K4bFGF but not with bFGF induced neovascularization. Immunohistochemical analysis showed significantly more proliferation cells in the fibrin scaffolds incorporated with K4bFGF than in those with bFGF. Moreover, the regenerative tissues were integrated well with the fibrin scaffolds, suggesting its good biocompatibility. In summary, targeted delivery of K4bFGF could potentially improve therapeutic angiogenesis.

  19. The biochemistry and immunology of non-canonical forms of HLA-B27.

    PubMed

    Shaw, Jacqueline; Hatano, Hiroko; Kollnberger, Simon

    2014-01-01

    HLA-B27 (B27) is strongly associated with the spondyloarthritides. B27 is expressed at the cell surface of antigen presenting cells (APC) both as canonical β2m-associated and non-canonical β2m-free heavy chain (FHC) forms which include B27 dimers (termed B272). B27 FHC forms arise in an endosomal compartment from recycling β2m-associated B27. Formation of cell surface FHC dimers is critically dependent on an unpaired reactive cysteine 67 in the α1 helix of the class I heavy chain. HLA-B27 also form redox-inducible β2m-associated dimers on exosomes and apoptosing cells. By contrast with cell surface expressed cysteine 67-dependent heavy chain dimers these dimers are dependent on a cytoplasmic cysteine 325 for their formation. HLA-B27 binds to immunoregulatory receptors including members of the Killer cell Immunoglobulin-like (KIR) and Leukocyte Immunoglobulin-like receptor family. B27 FHC bind to different but overlapping sets of these immunoreceptors compared to classical β2m-associated HLA-B27. B27 FHC bind more strongly to KIR3DL2 and LILRB2 immune receptor than other β2m-associated HLA-class I ligands. Genetic studies have implicated genes which control production of the important proinflammatory cytokine IL-17 in the pathogenesis of spondyloarthritis. Cell surface HLA-B27 FHC binding to these immune receptors or acting through other mechanisms could impact on the pathogenesis of spondyloarthritis by promoting immune cell production of IL-17. Here we review the literature on these non-canonical forms of HLA-B27 and the immune receptors they bind to and discuss the possible relevance of these interactions to the pathogenesis of spondyloarthropathy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Expression of the plasminogen activator system and the inhibitors PAI-1 and PAI-2 in posttraumatic lesions of the CNS and brain injuries following dramatic circulatory arrests: an immunohistochemical study.

    PubMed

    Dietzmann, K; von Bossanyi, P; Krause, D; Wittig, H; Mawrin, C; Kirches, E

    2000-01-01

    Plasminogen activators as inducible extracellular serine proteases are involved in a variety of processes, such as the degradation of brain structures. In regions of brain degradation, an increase in the expression of genes encoding cytokines and proteinases has recently been demonstrated. We tested the hypothesis, whether the plasminogen activator system as well as the plasminogen activator inhibitors are expressed and possibly involved in a proteolytic cascade that breaks down the extracellular matrix as a result of ischemic or posttraumatic brain destructions. To study this supposition, we investigated immunohistochemically the expression of tPA, uPA and its receptor, the plasminogen activator inhibitors PAI-1 and PAI-2, tetranectin as well as the laminin breakdown as an event of secondary brain injury. Brain tissue from 21 autopsy cases with severe brain injuries, material from 14 ischemic infarcts and 11 controls with acute hypoxia were used. All components of the plasminogen activator system studied were over-expressed immunohistochemically in reactive astrocytes, microglia and endothelial cells around the lesion zone. Tetranectin showed an analogous distribution to the plasminogen activator system. A reduced immunoreactivity of laminin within the identical region of destruction was detected concomitant with laminin remnants in perivascular macrophages, so that a remarkable role of the plasmin cascade in the degradation of extracellular matrix proteins in the brain is taken into consideration.

  1. Interactions between Hofmeister anions and the binding pocket of a protein.

    PubMed

    Fox, Jerome M; Kang, Kyungtae; Sherman, Woody; Héroux, Annie; Sastry, G Madhavi; Baghbanzadeh, Mostafa; Lockett, Matthew R; Whitesides, George M

    2015-03-25

    This paper uses the binding pocket of human carbonic anhydrase II (HCAII, EC 4.2.1.1) as a tool to examine the properties of Hofmeister anions that determine (i) where, and how strongly, they associate with concavities on the surfaces of proteins and (ii) how, upon binding, they alter the structure of water within those concavities. Results from X-ray crystallography and isothermal titration calorimetry show that most anions associate with the binding pocket of HCAII by forming inner-sphere ion pairs with the Zn(2+) cofactor. In these ion pairs, the free energy of anion-Zn(2+) association is inversely proportional to the free energetic cost of anion dehydration; this relationship is consistent with the mechanism of ion pair formation suggested by the "law of matching water affinities". Iodide and bromide anions also associate with a hydrophobic declivity in the wall of the binding pocket. Molecular dynamics simulations suggest that anions, upon associating with Zn(2+), trigger rearrangements of water that extend up to 8 Å away from their surfaces. These findings expand the range of interactions previously thought to occur between ions and proteins by suggesting that (i) weakly hydrated anions can bind complementarily shaped hydrophobic declivities, and that (ii) ion-induced rearrangements of water within protein concavities can (in contrast with similar rearrangements in bulk water) extend well beyond the first hydration shells of the ions that trigger them. This study paints a picture of Hofmeister anions as a set of structurally varied ligands that differ in size, shape, and affinity for water and, thus, in their ability to bind to—and to alter the charge and hydration structure of—polar, nonpolar, and topographically complex concavities on the surfaces of proteins.

  2. Proteolysis of plasminogen activator inhibitor-1 by Yersinia pestis remodulates the host environment to promote virulence.

    PubMed

    Eddy, J L; Schroeder, J A; Zimbler, D L; Caulfield, A J; Lathem, W W

    2016-09-01

    Essentials Effect of plasminogen activator inhibitor (PAI)-1 on plague and its Y. pestis cleavage is unknown. An intranasal mouse model of infection was used to determine the role of PAI-1 in pneumonic plague. PAI-1 is cleaved and inactivated by the Pla protease of Y. pestis in the lung airspace. PAI-1 impacts both bacterial outgrowth and the immune response to respiratory Y. pestis infection. Click to hear Dr Bock discuss pathogen activators of plasminogen. Background The hemostatic regulator plasminogen activator inhibitor-1 (PAI-1) inactivates endogenous plasminogen activators and aids in the immune response to bacterial infection. Yersinia pestis, the causative agent of plague, produces the Pla protease, a virulence factor that is required during plague. However, the specific hemostatic proteins cleaved by Pla in vivo that contribute to pathogenesis have not yet been fully elucidated. Objectives To determine whether PAI-1 is cleaved by the Pla protease during pneumonic plague, and to define the impact of PAI-1 on Y. pestis respiratory infection in the presence or absence of Pla. Methods An intranasal mouse model of pneumonic plague was used to assess the levels of total and active PAI-1 in the lung airspace, and the impact of PAI-1 deficiency on bacterial pathogenesis, the host immune response and plasmin generation following infection with wild-type or ∆pla Y. pestis. Results We found that Y. pestis cleaves and inactivates PAI-1 in the lungs in a Pla-dependent manner. The loss of PAI-1 enhances Y. pestis outgrowth in the absence of Pla, and is associated with increased conversion of plasminogen to plasmin. Furthermore, we found that PAI-1 regulates immune cell recruitment, cytokine production and tissue permeability during pneumonic plague. Conclusions Our data demonstrate that PAI-1 is an in vivo target of the Pla protease in the lungs, and that PAI-1 is a key regulator of the pulmonary innate immune response. We conclude that the inactivation of PAI-1 by Y. pestis alters the host environment to promote virulence during pneumonic plague. © 2016 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.

  3. Antibody binding to neuronal surface in Sydenham chorea, but not in PANDAS or Tourette syndrome

    PubMed Central

    Merheb, V.; Ding, A.; Murphy, T.; Dale, R.C.

    2011-01-01

    Objective: To test the hypothesis that Sydenham chorea (SC) immunoglobulin G (IgG) autoantibodies bind to specific neuronal surface proteins, whereas IgG from patients with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS) or Tourette syndrome (TS) do not bind to neuronal surface proteins. Methods: We used live differentiated SH-SY5Y cells, which have neuronal and dopaminergic characteristics. Using flow cytometry, we measured serum IgG cell surface binding in patients with SC (n = 11), PANDAS (n = 12), and TS (n = 11), and compared the findings to healthy controls (n = 11) and other neurologic controls (n = 11). In order to determine the specificity of binding to neuronal antigens, we also used a non-neuronal cell line, HEK 293. Results: The mean IgG cell surface binding was significantly higher in the SC group compared to all other groups (p < 0.001). By contrast, there was no difference between the PANDAS or TS groups and the controls. Using the non-neuronal HEK-293 cells, there was no significant difference in IgG cell surface binding between any groups. Conclusions: Serum autoantibodies that bind to neuronal cell surface antigens are present in SC, but not in PANDAS or TS. These findings strengthen the hypothesis that SC is due to a pathogenic autoantibody, but weaken the autoantibody hypothesis in PANDAS and TS. PMID:21411742

  4. Antibody binding to neuronal surface in Sydenham chorea, but not in PANDAS or Tourette syndrome.

    PubMed

    Brilot, F; Merheb, V; Ding, A; Murphy, T; Dale, R C

    2011-04-26

    To test the hypothesis that Sydenham chorea (SC) immunoglobulin G (IgG) autoantibodies bind to specific neuronal surface proteins, whereas IgG from patients with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS) or Tourette syndrome (TS) do not bind to neuronal surface proteins. We used live differentiated SH-SY5Y cells, which have neuronal and dopaminergic characteristics. Using flow cytometry, we measured serum IgG cell surface binding in patients with SC (n = 11), PANDAS (n = 12), and TS (n = 11), and compared the findings to healthy controls (n = 11) and other neurologic controls (n = 11). In order to determine the specificity of binding to neuronal antigens, we also used a non-neuronal cell line, HEK 293. The mean IgG cell surface binding was significantly higher in the SC group compared to all other groups (p < 0.001). By contrast, there was no difference between the PANDAS or TS groups and the controls. Using the non-neuronal HEK-293 cells, there was no significant difference in IgG cell surface binding between any groups. Serum autoantibodies that bind to neuronal cell surface antigens are present in SC, but not in PANDAS or TS. These findings strengthen the hypothesis that SC is due to a pathogenic autoantibody, but weaken the autoantibody hypothesis in PANDAS and TS.

  5. Epidermal growth factor- and hepatocyte growth factor-receptor activity in serum-free cultures of human hepatocytes.

    PubMed

    Runge, D M; Runge, D; Dorko, K; Pisarov, L A; Leckel, K; Kostrubsky, V E; Thomas, D; Strom, S C; Michalopoulos, G K

    1999-02-01

    Serum-free primary cultures of hepatocytes are a useful tool to study factors triggering hepatocyte proliferation and regeneration. We have developed a chemically defined serum-free system that allows human hepatocyte proliferation in the presence of epidermal growth factor and hepatocyte growth factor. DNA synthesis and accumulation were determined by [3H]thymidine incorporation and fluorometry, respectively. Western blot analyses and co-immunoprecipitations were used to investigate the association of proteins involved in epidermal growth factor and hepatocyte growth factor activation and signaling: epidermal growth factor receptor, hepatocyte growth factor receptor (MET), urokinase-type plasminogen activator and its receptor, and a member of the signal transducer and activator of transcription family, STAT-3. Primary human hepatocytes proliferated under serum-free conditions in a chemically defined medium for up to 12 days. Epidermal growth factor-receptor and MET were present and functional, decreasing over time. MET, urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor co-precipitated to varying degrees during the culture period. STAT-3 co-precipitated with epidermal growth factor-receptor and MET to varying degrees. Proliferation of human hepatocytes can improve by modification of a chemically defined medium originally used for rat hepatocyte cultures. In these long-term cultures of human hepatocytes, hepatocyte growth factor and epidermal growth factor can stimulate growth and differentiation by interacting with their receptors and initiating downstream signaling. This involves complex formation of the receptors with other plasma membrane components for MET (urokinase-type plasminogen activator in context of its receptor) and activation of STAT-3 for both receptors.

  6. Postoperative bleeding in cardiac surgery: the role of tranexamic acid in patients homozygous for the 5G polymorphism of the plasminogen activator inhibitor-1 gene.

    PubMed

    Iribarren, Jose L; Jimenez, Juan J; Hernández, Domingo; Brouard, Maitane; Riverol, Debora; Lorente, Leonardo; de La Llana, Ramiro; Nassar, Ibrahim; Perez, Rosalia; Martinez, Rafael; Mora, Maria L

    2008-04-01

    Plasminogen activator inhibitor 1 (PAI-1) attenuates the conversion of plasminogen to plasmin. Polymorphisms of the PAI-1 gene are associated with varying PAI-1 levels and risk of prothrombotic events in nonsurgical patients. The purpose of this study, a secondary analysis of a clinical trial, was to investigate whether PAI-1 genotype affects the efficacy of tranexamic acid (TA) in reducing postoperative chest tube blood loss of patients undergoing cardiopulmonary bypass. Fifty patients were classified according to PAI-1 genotype (4G/4G, 4G/5G, or 5G/5G). Twenty-four received 2 g TA before and after cardiopulmonary bypass, whereas 26 received placebo. The authors recorded data related to coagulation, fibrinolysis, and bleeding before surgery, at admission to the intensive care unit (0 h), and 4 and 24 h later. In patients not receiving TA, those with the 5G/5G genotype had significantly higher chest tube blood loss and transfusion requirements compared with patients with the other genotypes at all time points. Patients with the 5G/5G genotype receiving TA showed significantly lower blood loss compared with the placebo group. There were no significant differences in blood loss or transfusion requirements between patients with the 4G/4G genotype when TA was used. Plasminogen activator inhibitor-1 5G/5G homozygotes who did not receive TA showed significantly greater postoperative bleeding than patients with other PAI-1 genotypes. 5G/5G homozygotes who received TA showed the greatest blood-sparing benefit.

  7. Gene polymorphisms of fibrinolytic enzymes in coal workers' pneumoconiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, L.C.; Tseng, J.C.; Hua, C.C.

    2006-03-15

    The authors assessed the gene polymorphisms of missense C/T polymorphism in exon 6 of the urokinase-plasminogen activator (PLAU) gene (PLAU P141L), A/u-repeat in intron 8 of the tissue-type plasminogen activator (PLAT) gene (PLAT TPA25 Alu insertion), and 4G/5G in the promoter region of the serine proteinase inhibitor, clade E (SERPINE) or plasminogen activator inhibitor type 1 gene (SERPINE1 -675 4G/5G) in 153 healthy volunteers and 154 retired coal miners with coal miners' pneumoconiosis (CWP). The CWP subjects included 94 individuals with simple pneumoconiosis and 60 individuals with progressive massive fibrosis presenting with worse pulmonary function. The distributions of genotypes ofmore » these three genes did not differ between the control and CWP subjects or between subjects with simple pneumoconiosis and those with progressive massive fibrosis. However, by assessing duration of work and its interaction with genotypes by means of logistic regression, the authors found the missense C/T polymorphism in exon 6 of the PLAU gene to be an effect modifier of the association between work duration and the development of progressive massive fibrosis.« less

  8. Insulin-like growth factor binding proteins initiate cell death and extracellular matrix remodeling in the mammary gland.

    PubMed

    Flint, D J; Boutinaud, M; Tonner, E; Wilde, C J; Hurley, W; Accorsi, P A; Kolb, A F; Whitelaw, C B A; Beattie, J; Allan, G J

    2005-08-01

    We have demonstrated that insulin-like growth factor binding protein-5 (IGFBP-5) production by mammary epithelial cells increases dramatically during forced involution of the mammary gland in rats, mice and pigs. We proposed that growth hormone (GH) increases the survival factor IGF-I, whilst prolactin (PRL) enhances the effects of GH by decreasing the concentration of IGFBP-5, which would otherwise inhibit the actions of IGFs. To demonstrate a causal relationship between IGFBP-5 and cell death, we created transgenic mice expressing IGFBP-5, specifically, in the mammary gland. DNA content in the mammary glands of transgenic mice was decreased as early as day 10 of pregnancy. Mammary cell number and milk synthesis were both decreased by approximately 50% during the first 10 days of lactation. The concentrations of the pro-apoptotic molecule caspase-3 was increased in transgenic animals whilst the concentrations of two pro-survival molecules Bcl-2 and Bcl-x were both decreased. In order to examine whether IGFBP-5 acts by inhibiting the survival effect of IGF-I, we examined IGF receptor- and Akt-phoshorylation and showed that both were inhibited. These studies also indicated that the effects of IGFBP-5 could be mediated in part by IGF-independent effects involving potential interactions with components of the extracellular matrix involved in tissue remodeling, such as components of the plasminogen system, and the matrix metallo-proteinases (MMPs). Mammary development was normalised in transgenic mice by R3-IGF-I, an analogue of IGF-I which binds weakly to IGFBPs, although milk production was only partially restored. In contrast, treatment with prolactin was able to inhibit early involutionary processes in normal mice but was unable to prevent this in mice over-expressing IGFBP-5, although it was able to inhibit activation of MMPs. Thus, IGFBP-5 can simultaneously inhibit IGF action and activate the plasminogen system thereby coordinating cell death and tissue remodeling processes. The ability to separate these properties, using mutant IGFBPs, is currently under investigation.

  9. Comparative Proteomics of Tandem Mass Spectrometry Analyses for Bacterial Strains Identification and Differentiation

    DTIC Science & Technology

    2012-02-01

    risk, bio -terrorism utility, Homeland Security, agricultural monitoring, quality of foodstuffs, environmental monitoring, and biological warfare agents...CAL19717 Putative surface antigen CAL21872 Putative sigma 54 modulation protein NP_395233 Plasminogen activator protease precursor CAL19882 OMP...S. (2005). Chemical and biological weapons : current concepts for future defenses. Johns Hopkins APL Tech. Digest, 26, 321-333. Dworzanski, J.P

  10. Triglycerides as an early pathophysiological marker of endothelial dysfunction in nondiabetic women with a previous history of gestational diabetes.

    PubMed

    Sokup, Alina; Góralczyk, Barbara; Góralczyk, Krzysztof; Rość, Danuta

    2012-02-01

    To investigate whether baseline triglyceride levels are associated with early glucose dysregulation and/or cardiovascular risk in women with a previous history of gestational diabetes. Prospective postpregnancy cohort study. Polish university hospitals. Participants included 125 women with previous gestational diabetes and 40 women with normal glucose regulation during pregnancy. All women were studied 2-24 months (mean 12 ± 10 months) after the index pregnancy. Women with previous gestational diabetes were divided into tertiles in accordance with baseline triglyceride levels. We assessed glucose regulation (oral glucose tolerance test), insulin resistance (homeostasis model assessment), markers of endothelial dysfunction (soluble: intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, tissue plasminogen activator antigen, von Willebrand factor antigen), fibrinolysis (plasminogen activator inhibitor antigen), inflammation (high-sensitivity C-reactive protein) and lipid levels. Women with previous gestational diabetes (78% normal glucose regulation, 22% impaired glucose tolerance) had a high cardiometabolic risk profile compared with control women (100% normal glucose regulation). Baseline triglycerides >0.83 mmol/l were associated with a higher prevalence of impaired glucose tolerance, higher high-sensitivity C-reactive protein and triglyceride/high-density lipoprotein-cholesterol ratio. Triglycerides >1.22 mmol/l were associated with higher body fat indexes, higher insulin resistance, higher levels of endothelial dysfunction biomarkers, higher plasminogen activator inhibitor antigen and dyslipidemia. Only E-selectin was independently associated with triglyceride levels. Baseline triglyceride levels are a cardiovascular risk marker as well as a pathophysiological parameter independently associated with endothelial dysfunction in nondiabetic women with previous gestational diabetes at 2-24 months after an index pregnancy. Normalization of triglycerides should be included in preventive therapy after a pregnancy complicated by gestational diabetes. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  11. Plasminogen Activator Inhibitor-2 Polymorphism Associates with Recurrent Coronary Event Risk in Patients with High HDL and C-Reactive Protein Levels

    PubMed Central

    Corsetti, James P.; Salzman, Peter; Ryan, Dan; Moss, Arthur J.; Zareba, Wojciech; Sparks, Charles E.

    2013-01-01

    The objective of this work was to investigate whether fibrinolysis plays a role in establishing recurrent coronary event risk in a previously identified group of postinfarction patients. This group of patients was defined as having concurrently high levels of high-density lipoprotein cholesterol (HDL-C) and C-reactive protein (CRP) and was previously demonstrated to be at high-risk for recurrent coronary events. Potential risk associations of a genetic polymorphism of plasminogen activator inhibitor-2 (PAI-2) were probed as well as potential modulatory effects on such risk of a polymorphism of low-density lipoprotein receptor related protein (LRP-1), a scavenger receptor known to be involved in fibrinolysis in the context of cellular internalization of plasminogen activator/plansminogen activator inhibitor complexes. To this end, Cox multivariable modeling was performed as a function of genetic polymorphisms of PAI-2 (SERPINB, rs6095) and LRP-1 (LRP1, rs1800156) as well as a set of clinical parameters, blood biomarkers, and genetic polymorphisms previously demonstrated to be significantly and independently associated with risk in the study population including cholesteryl ester transfer protein (CETP, rs708272), p22phox (CYBA, rs4673), and thrombospondin-4 (THBS4, rs1866389). Risk association was demonstrated for the reference allele of the PAI-2 polymorphism (hazard ratio 0.41 per allele, 95% CI 0.20-0.84, p=0.014) along with continued significant risk associations for the p22phox and thrombospondin-4 polymorphisms. Additionally, further analysis revealed interaction of the LRP-1 and PAI-2 polymorphisms in generating differential risk that was illustrated using Kaplan-Meier survival analysis. We conclude from the study that fibrinolysis likely plays a role in establishing recurrent coronary risk in postinfarction patients with concurrently high levels of HDL-C and CRP as manifested by differential effects on risk by polymorphisms of several genes linked to key actions involved in the fibrinolytic process. PMID:23874812

  12. Meta-Analysis of the Association between Plasminogen Activator Inhibitor-1 4G/5G Polymorphism and Recurrent Pregnancy Loss

    PubMed Central

    Li, Xuejiao; Liu, Yukun; Zhang, Rui; Tan, Jianping; Chen, Libin; Liu, Yinglin

    2015-01-01

    Background The association between plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphism and recurrent pregnancy loss (RPL) risk is still contradictory. We thus performed a meta-analysis. Material/Methods Relevant studies were searched for in PubMed, Web of Science, Embase, and Cochrane Library. An odds ratio (OR) with a 95% confidence interval (CI) was used to assess the association between PAI-1 4G/5G polymorphism and RPL risk. Results A total of 22 studies with 4306 cases and 3076 controls were included in this meta-analysis. We found that PAI-1 4G/5G polymorphism was significantly associated with an increased RPL risk (OR=1.89; 95% CI 1.34–2.67; P=0.0003). In the subgroup analysis by race, PAI-1 4G/5G polymorphism was significantly associated with an increased RPL risk in Caucasians (OR=2.23; 95% CI 1.44–3.46; P=0.0003). However, no significant association was observed in Asians (OR=1.47; 95% CI 0.84–2.59; P=0.18). Conclusions In conclusion, this meta-analysis suggests that PAI-1 4G/5G polymorphism might be associated with RPL development in Caucasians. PMID:25862335

  13. Phosphonic Acids on an Atomically Defined Oxide Surface: The Binding Motif Changes with Surface Coverage.

    PubMed

    Schuschke, Christian; Schwarz, Matthias; Hohner, Chantal; Silva, Thais N; Fromm, Lukas; Döpper, Tibor; Görling, Andreas; Libuda, Jörg

    2018-04-19

    We have studied the anchoring mechanism of a phosphonic acid on an atomically defined oxide surface. Using time-resolved infrared reflection absorption spectroscopy, we investigated the reaction of deuterated phenylphosphonic acid (DPPA, C 6 H 5 PO 3 D 2 ) with an atomically defined Co 3 O 4 (111) surface in situ during film growth by physical vapor deposition. We show that the binding motif of the phosphonate anchor group changes as a function of coverage. At low coverage, DPPA binds in the form of a chelating tridentate phosphonate, while a transition to a chelating bidentate occurs close to monolayer saturation coverage. However, the coverage-dependent change in the binding motif is not associated with a major change of the molecular orientation, suggesting that the rigid phosphonate linker always maintains the DPPA in a strongly tilted orientation irrespective of the surface coverage.

  14. Mass-transport limitations in spot-based microarrays.

    PubMed

    Zhao, Ming; Wang, Xuefeng; Nolte, David

    2010-09-20

    Mass transport of analyte to surface-immobilized affinity reagents is the fundamental bottleneck for sensitive detection in solid-support microarrays and biosensors. Analyte depletion in the volume adjacent to the sensor causes deviation from ideal association, significantly slows down reaction kinetics, and causes inhomogeneous binding across the sensor surface. In this paper we use high-resolution molecular interferometric imaging (MI2), a label-free optical interferometry technique for direct detection of molecular films, to study the inhomogeneous distribution of intra-spot binding across 100 micron-diameter protein spots. By measuring intra-spot binding inhomogeneity, reaction kinetics can be determined accurately when combined with a numerical three-dimensional finite element model. To ensure homogeneous binding across a spot, a critical flow rate is identified in terms of the association rate k(a) and the spot diameter. The binding inhomogeneity across a spot can be used to distinguish high-affinity low-concentration specific reactions from low-affinity high-concentration non-specific binding of background proteins.

  15. Hydronephrosis is associated with elevated plasmin in urine in pediatric patients and rats and changes in NCC and γ-ENaC abundance in rat kidney.

    PubMed

    Zachar, Rikke; Al-Mashhadi, Ammar; Dimke, Henrik; Svenningsen, Per; Jensen, Boye L; Carlström, Mattias

    2018-05-16

    Obstruction of urine flow at the level of the pelvo-ureteric junction (UPJO) and subsequent development of hydronephrosis is one of the most common congenital renal malformations. UPJO is associated with development of salt-sensitive hypertension, which is set by the obstructed kidney, and with a stimulated renin-angiotensin-aldosterone system (RAAS) in rodent models. This study aimed at investigating the hypothesis that i) in pediatric patients with UPJO the RAAS is activated prior to surgical relief of the obstruction; ii) in rats with UPJO the RAAS activation is reflected by increased abundance of renal aldosterone-stimulated Na+ transporters; and iii) the injured UPJO kidney allows aberrant filtration of plasminogen leading to proteolytic activation of the epithelial sodium channel gamma subunit (γ-ENaC). Hydronephrosis due to UPJO in pediatric patients and rats was associated with increased urinary plasminogen/creatinine ratio. In pediatric patients, plasma renin, angiotensin II, urine and plasma aldosterone and urine soluble pro-renin receptor did not differ significantly before and after surgery, or compared with controls. Increased plasmin/plasminogen ratio was seen in UPJO rats. Intact γ-ENaC abundance was not changed in UPJO kidney while low-molecular cleavage product abundance increased. The Na-Cl cotransporter (NCC) displayed significantly lower abundance in the UPJO kidney compared to the non-obstructed contralateral kidney. The Na-K-ATPase alpha-subunit was unaltered. Treatment with an angiotensin-converting enzyme inhibitor (8 days, captopril) significantly lowered blood pressure in UPJO rats. It is concluded that the RAAS contributes to hypertension following partial obstruction of urine flow at the pelvo-ureteric junction with potential contribution from proteolytic activation of ENaC.

  16. Podocyte injury: the role of proteinuria, urinary plasminogen, and oxidative stress

    PubMed Central

    Tian, Runxia; Wong, Jenny S.; He, John C.; Campbell, Kirk N.

    2016-01-01

    Podocytes are the key target for injury in proteinuric glomerular diseases that result in podocyte loss, progressive focal segmental glomerular sclerosis (FSGS), and renal failure. Current evidence suggests that the initiation of podocyte injury and associated proteinuria can be separated from factors that drive and maintain these pathogenic processes leading to FSGS. In nephrotic urine aberrant glomerular filtration of plasminogen (Plg) is activated to the biologically active serine protease plasmin by urokinase-type plasminogen activator (uPA). In vivo inhibition of uPA mitigates Plg activation and development of FSGS in several proteinuric models of renal disease including 5/6 nephrectomy. Here, we show that Plg is markedly increased in the urine in two murine models of proteinuric kidney disease associated with podocyte injury: Tg26 HIV-associated nephropathy and the Cd2ap−/− model of FSGS. We show that human podocytes express uPA and three Plg receptors: uPAR, tPA, and Plg-RKT. We demonstrate that Plg treatment of podocytes specifically upregulates NADPH oxidase isoforms NOX2/NOX4 and increases production of mitochondrial-dependent superoxide anion (O2−) that promotes endothelin-1 synthesis. Plg via O2− also promotes expression of the B scavenger receptor CD36 and subsequent increased intracellular cholesterol uptake resulting in podocyte apoptosis. Taken together, our findings suggest that following disruption of the glomerular filtration barrier at the onset of proteinuric disease, podocytes are exposed to Plg resulting in further injury mediated by oxidative stress. We suggest that chronic exposure to Plg could serve as a “second hit” in glomerular disease and that Plg is potentially an attractive target for therapeutic intervention. PMID:27335373

  17. A study of the possible association of plasminogen activator inhibitor type 1 4G/5G insertion/deletion polymorphism with susceptibility to schizophrenia and in its subtypes.

    PubMed

    Yenilmez, C; Ozdemir Koroglu, Z; Kurt, H; Yanas, M; Colak, E; Degirmenci, I; Gunes, H V

    2017-02-01

    Inhibition of the fibrinolytic system may occur at the level of plasminogen activation, mainly by PAI-1. Mental and physical stress caused to alterations of platelet function, and also decreased to fibrinolytic activity. Furthermore, stress-induced thrombosis regulation was proposed to be by PAI-1 in schizophrenia patients. In this study, the distribution of genotypes and frequency of alleles of the plasminogen activator inhibitor type 1 (PAI-1) gene 4G/5G polymorphism in different Turkish clinical schizophrenia subtypes was investigated for its role in schizophrenia development. The clinical schizophrenia subtypes include paranoid, catatonic, disorganized, undifferentiated and residual, as diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition IV (DSM-IV). Samples of genomic DNA (250 total, including 150 schizophrenia patients and 100 healthy subjects) were analysed. PAI-1 4G/5G genotyping was performed by polymerase chain reaction-allele-specific amplification. PCR products were separated by 2% agarose gel electrophoresis and then visualized. The genotype distributions (P = 0·136) and allele frequencies (P = 0·721 for 4G, P = 0. 097 for 5G) were not significantly different between patients with schizophrenia and control subjects for the 4G/5G polymorphism. Similar results were also found for the genotype distributions (P = 0·640) and allele frequencies (P = 0·763 for 4G, P = 0·448 for 5G) in the clinical schizophrenia subtypes compared to the each other. We conclude that PAI-1 4G/5G polymorphism was not significantly associated with schizophrenia or its subtypes in the Turkish population. However, we recognize that with our sample sizes, we cannot exclude weak associations. © 2016 John Wiley & Sons Ltd.

  18. Serine proteases, inhibitors and receptors in renal fibrosis

    PubMed Central

    Eddy, Allison A.

    2011-01-01

    Summary Chronic kidney disease (CKD) is estimated to affect one in eight adults. Their kidney function progressively deteriorates as inflammatory and fibrotic processes damage nephrons. New therapies to prevent renal functional decline must build on basic research studies that identify critical cellular and molecular mediators. Plasminogen activator inhibitor-1 (PAI-1), a potent fibrosis-promoting glycoprotein, is one promising candidate. Absent from normal kidneys, PAI-1 is frequently expressed in injured kidneys. Studies in genetically engineered mice have demonstrated its potency as a pro-fibrotic molecule. Somewhat surprising, its ability to inhibit serine protease activity does not appear to be its primary pro-fibrotic effect in CKD. Both tissue-type plasminogen activator and plasminogen deficiency significantly reduced renal fibrosis severity after ureteral obstruction, while genetic urokinase (uPA) deficiency had no effect. PAI-1 expression is associated with enhanced recruitment of key cellular effectors of renal fibrosis – interstitial macrophages and myofibroblasts. The ability of PAI-1 to promote cell migration involves interactions with the low-density lipoprotein receptor-associate protein-1 and also complex interactions with uPA bound to its receptor (uPAR) and several leukocyte and matrix integrins that associate with uPAR as co-receptors. uPAR is expressed by several cell types in damaged kidneys, and studies in uPAR-deficient mice have shown that its serves a protective role. uPAR mediates additional anti-fibrotic effects - it interacts with specific co-receptors to degrade PAI-1 and extracellular collagens, and soluble uPAR has leukocyte chemoattractant properties. Molecular pathways activated by serine proteases and their inhibitor, PAI-1, are promising targets for future anti-fibrotic therapeutic agents. PMID:19350108

  19. Cadmium exposure is associated with soluble urokinase plasminogen activator receptor, a circulating marker of inflammation and future cardiovascular disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fagerberg, Björn, E-mail: bjorn.fagerberg@wlab.gu.

    Background: Diet and smoking are the main sources of cadmium exposure in the general population. Cadmium increases the risk of cardiovascular diseases, and experimental studies show that it induces inflammation. Blood cadmium levels are associated with macrophages in human atherosclerotic plaques. Soluble urokinase-type plasminogen activator receptor (suPAR) is an emerging biomarker for cardiovascular events related to inflammation and atherosclerotic plaques. The aim was to examine whether blood cadmium levels are associated with circulating suPAR and other markers of inflammation. Methods: A population sample of 4648 Swedish middle-aged women and men was examined cross-sectionally in 1991–1994. Plasma suPAR was assessed bymore » ELISA, leukocytes were measured by standard methods, and blood cadmium was analysed by inductively coupled plasma mass spectrometry. Prevalent cardiovascular disease, ultrasound-assessed carotid plaque occurrence, and several possible confounding factors were recorded. Results: After full adjustment for risk factors and confounding variables, a 3-fold increase in blood cadmium was associated with an 10.9% increase in suPAR concentration (p<0.001). In never-smokers, a 3-fold increase in blood cadmium was associated with a 3.7% increase in suPAR concentration (p<0.01) after full adjustment. Blood cadmium was not associated with C-reactive protein, white blood cell count and Lp-PLA2 but with neutrophil/lymphocyte ratio in one of two statistical models. Conclusions: Exposure to cadmium was associated with increased plasma suPAR in the general population, independently of smoking and cardiovascular disease. These results imply that cadmium is a possible cause for raised levels of this inflammatory marker. - Highlights: • Cadmium is a toxic proinflammatory, proatherosclerotic metal. • Soluble urokinase-type plasminogen activator receptor (suPAR) in plasma is a promising proinflammatory marker of atherosclerosis. • Blood cadmium and plasma suPAR were measured in a cohort of 4648 Swedish men and women. • Blood cadmium was positively associated with plasma suPAR, also in never smokers.« less

  20. Novel actions of tissue-type plasminogen activator in chronic kidney disease: a paradigm shift

    PubMed Central

    Hu, Kebin; Mars, Wendy M.; Liu, Youhua

    2009-01-01

    Tissue-type plasminogen activator (tPA) is traditionally viewed as a simple serine protease whose main function is to convert plasminogen into biologically active plasmin. As a protease, tPA plays a crucial role in regulating blood fibrinolysis, in maintaining the homeostasis of extracellular matrix (ECM) and in modulating the post-translational activation of growth factors. However, emerging evidence indicates that tPA may also function as a cytokine that transmits its signal across the cell membrane, initiates a diverse array of intracellular signaling, and dictates gene expression in the nuclei. Structurally, tPA is a kringle-containing protein that shares significant similarity to other classic cytokines such as hepatocyte growth factor (HGF) and macrophage-stimulating protein (MSP). Although there is no dedicated receptor, tPA binds to the cell membrane low density lipoprotein (LDL) receptor-related protein-1 (LRP-1), triggers LRP-1 tyrosine phosphorylation, and activates various intracellular signaling. As a cytokine, tPA plays a pivotal role in the pathogenesis of renal interstitial fibrosis through diverse mechanisms. It induces matrix matelloproteinase-9 (MMP-9) gene expression in renal interstitial fibroblasts, which causes the destruction of the tubular basement membrane (TBM), thereby facilitating tubular epithelial to mesenchymal transition (EMT). tPA also potentiates myofibroblast activation from quiescent interstitial fibroblasts through LRP-1-mediated recruitment of β1 integrin signaling. Furthermore, tPA acts as a survival factor that protects renal interstitial fibroblasts/myofibroblasts from apoptosis, thereby resulting in an expansion of myofibroblast populations in diseased kidney. Together, a growing body of evidence has implicated tPA as a fibrogenic cytokine that promotes the progression of kidney diseases. These new findings have radically changed our conception of tPA in renal fibrogenesis and represent a paradigm shift towards uncovering its cytokine function. A better understanding of renal tPA biology will ultimately translate into more rational therapeutic remedies for patients with chronic kidney fibrosis. PMID:18508579

  1. Enhanced functional stability of plasminogen activator inhibitor-1 in patients with livedoid vasculopathy.

    PubMed

    Agirbasli, Mehmet; Eren, Mesut; Eren, Fatih; Murphy, Sheila B; Serdar, Zehra A; Seckin, Dilek; Zara, Tuba; Cem Mat, M; Demirkesen, Cuyan; Vaughan, Douglas E

    2011-07-01

    Livedoid vasculopathy (LV) is a chronic, recurrent, painful cutaneous disease with distinctive clinical features and an uncertain etiology. The skin lesions are recognizable by focal purpura, depigmentation and shallow ulcers. Thrombophilic conditions occur frequently in patients with LV. While no definitive treatment exists for LV, smoking cessation, antiplatelet therapy, immunosuppressive treatment, and anabolic steroids are often included in the therapeutic ladder. Recently, a possible link between LV and impaired fibrinolysis was established as cutaneous LV lesions responded to tissue plasminogen activator (t-PA) infusion suggesting that inhibition of the fibrinolysis through plasminogen activator inhibitor-1 (PAI-1) activity may determine the disease course in patients with LV. In this study, we investigated PAI-1 antigen (Ag) and activity levels in 20 patients with biopsy proven LV (mean age 26 ± 11, M/F = 7/13, median disease duration 3.5 years). All patients received antiplatelet treatment with aspirin and/or dipyrimadole and 14 patients received anabolic steroids or immunosuppressive treatment. Fasting PAI-1 Ag and activity levels were measured at 9 AM in all patients. Both Ag (34 (26) ng/ml) (median (interquartile range)) and specific activity (17 (23) IU/fmole) levels of PAI-1 were moderately elevated in LV patients compared to the controls, however, PAI-1 kinetic studies demonstrated markedly enhanced stability of PAI-1 activity in plasma from patients with LV. Specific activity at 16 h was significantly higher than expected specific activity levels (7 (11) vs. 0.07 (0.09) IU/fmole, P < 0.01). While the exact mechanism of increased stability of PAI-1 activity is not known, it may be due to post-translational modifications or increased binding affinity for a stabilizing cofactor. In conclusion, enhanced stability of PAI-1 may contribute to the pathophysiology of LV, and systemic or local treatment with PAI-1 inhibitors may offer a potential treatment alternative in patients with LV.

  2. Convection, diffusion and reaction in a surface-based biosensor: modeling of cooperativity and binding site competition on the surface and in the hydrogel.

    PubMed

    Lebedev, Konstantin; Mafé, Salvador; Stroeve, Pieter

    2006-04-15

    We study theoretically the transport and kinetic processes underlying the operation of a biosensor (particularly the surface plasmon sensor "Biacore") used to study the surface binding kinetics of biomolecules in solution to immobilized receptors. Unlike previous studies, we concentrate mainly on the modeling of system-specific phenomena rather than on the influence of mass transport limitations on the intrinsic kinetic rate constants determined from binding data. In the first problem, the case of two-site binding where each receptor unit on the surface can accommodate two analyte molecules on two different sites is considered. One analyte molecule always binds first to a specific site. Subsequently, the second analyte molecule can bind to the adjacent unoccupied site. In the second problem, two different analytes compete for one binding site on the same surface receptor. Finally, the third problem considers the case of positive cooperativity among bound molecules in the hydrogel using a simple mean-field approach. The transport in both the flow channel and the hydrogel phases of the biosensor is taken into account in this case (with few exceptions, most previous studies assume a simpler model in which the hydrogel is treated as a planar surface with the receptors). We consider simultaneously diffusion and convection through the flow channel together with diffusion and cooperativity binding on the surface and in the hydrogel. In each case, typical results for the concentration contours of the free and bound molecules in the flow channel and hydrogel regions are presented together with the time-dependent association/dissociation curves and reaction rates. For binding site competition, the analysis predicts overshoot phenomena.

  3. Real-time and label-free analysis of binding thermodynamics of carbohydrate-protein interactions on unfixed cancer cell surfaces using a QCM biosensor

    PubMed Central

    Li, Xueming; Song, Siyu; Shuai, Qi; Pei, Yihan; Aastrup, Teodor; Pei, Yuxin; Pei, Zhichao

    2015-01-01

    A novel approach to the study of binding thermodynamics and kinetics of carbohydrate-protein interactions on unfixed cancer cell surfaces using a quartz crystal microbalance (QCM) biosensor was developed, in which binding events take place at the cell surface, more closely mimicking a biologically relevant environment. In this study, colon adenocarcinoma cells (KM-12) and ovary adenocarcinoma cells (SKOV-3) grew on the optimized polystyrene-coated biosensor chip without fixation. The association and dissociation between the cell surface carbohydrates and a range of lectins, including WGA, Con A, UEA-I, GS-II, PNA and SBA, were monitored in real time and without label for evaluation of cell surface glycosylation. Furthermore, the thermodynamic and kinetic parameters of the interaction between lectins and cell surface glycan were studied, providing detailed information about the interactions, such as the association rate constant, dissociation rate constant, affinity constant, as well as the changes of entropy, enthalpy and Gibbs free energy. This application provides an insight into the cell surface glycosylation and the complex molecular recognition on the intact cell surface, which may have impacts on disease diagnosis and drug discovery. PMID:26369583

  4. Binding and orientation of fibronectin on polystyrene surfaces using immobilized bacterial adhesin-related peptides.

    PubMed

    Klueh, U; Bryers, J D; Kreutzer, D L

    2003-10-01

    Fibronectin (FN) is known to bind to bacteria via high affinity receptors on bacterial surfaces known as adhesins. The binding of bacteria to FN is thought to have a key role in foreign device associated infections. For example, previous studies have indicated that Staphylococcus aureus adhesins bind to the 29 kDa NH(3) terminus end of FN, and thereby promote bacteria adherence to surfaces. Recently, the peptide sequences within the S. aureus adhesin molecule that are responsible for FN binding have been identified. Based on these observations, we hypothesize that functional FN can be bound and specifically oriented on polystyrene surfaces using bacterial adhesin-related (BRP-A) peptide. We further hypothesize that monoclonal antibodies that react with specific epitopes on the FN can be used to quantify both FN binding and orientation on these surfaces. Based on this hypothesis, we initiated a systematic investigation of the binding and orientation of FN on polystyrene surfaces using BRP-A peptide. To test this hypothesis, the binding and orientation of the FN to immobilized BRP-A was quantified using (125)I-FN, and monoclonal antibodies. (125)I-FN was used to quantitate FN binding to peptide-coated polystyrene surfaces. The orientation of bound FN was demonstrated by the use of monoclonal antibodies, which are reactive with the amine (N) or carboxyl (C) termini of the FN. The results of our studies demonstrated that when the BRP-A peptide was used to bind FN to surfaces that: 1. functional FN was bound to the peptide; 2. anti-C terminus antibodies bound to the peptide FN; and 3. only limited binding of anti-N terminus antibodies to peptide-bound FN occurred. We believe that the data that indicate an enhanced binding of anti-C antibodies reactive to anti-N antibodies are a result of the FN binding in an oriented manner with the N termini of FN bound tightly to the BRP-A on the polystyrene surface. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 36-43, 2003

  5. Endotoxin induction of an inhibitor of plasminogen activator in bovine pulmonary artery endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The effects of bacterial lipopolysaccharide (endotoxin) on the fibrinolytic activity of bovine pulmonary artery endothelial cells were examined. Endotoxin suppressed the net fibrinolytic activity of cell extracts and conditioned media in a dose-dependent manner. The effects of endotoxin required at least 6 h for expression. Cell extracts and conditioned media contained a 44-kDa urokinase-like plasminogen activator. Media also contained multiple plasminogen activators with molecular masses of 65-75 and 80-100 kDa. Plasminogen activators in extracts and media were unchanged by treatment of cells with endotoxin. Diisopropyl fluorophosphate (DFP)-abolished fibrinolytic activity of extracts and conditioned media. DFP-treated samples from endotoxin-treated but notmore » untreated cells inhibited urokinase and tissue plasminogen activator, but not plasmin. Inhibitory activity was lost by incubation at pH 3 or heating to 56/sup 0/C for 10 min. These treatments did not affect inhibitory activity of fetal bovine serum. Incubation of /sup 125/I-urokinase with DFP-treated medium from endotoxin-treated cells produced an inactive complex with an apparent molecular mass of 80-85 kDa.« less

  6. Association between plasminogen activator inhibitor-1 -675 4G/5G polymorphism and sepsis: a meta-analysis.

    PubMed

    Li, Li; Nie, Wei; Zhou, Hongfeng; Yuan, Weifeng; Li, Weifeng; Huang, Wenjie

    2013-01-01

    Several studies have evaluated the association between plasminogen activator inhibitor-1 (PAI-1) -675 4G/5G polymorphism and sepsis in different populations. However, the available results are conflicting. A search of Pubmed and EMBASE databases was performed to identify relevant studies for inclusion in the meta-analysis. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were determined using a random-effects model. Twelve case-control studies and three cohort studies were included. Overall, a significant association between 4G/5G polymorphism and sepsis risk was observed for 4G/4G vs. 4G/5G +5G/5G (OR = 1.30, 95% CI 1.08-1.56, P = 0.006). In addition, there was a significant association between PAI-1 4G/5G polymorphism and sepsis-related mortality (OR = 1.72, 95% CI 1.27-2.33, P = 0.0005). In subgroup analyses, increased sepsis risk and mortality risk were found in Caucasians and in patients with sepsis. This meta-analysis suggested that the PAI-1 -675 4G/5G polymorphism was a risk factor for sepsis and sepsis mortality.

  7. Fast and automated functional classification with MED-SuMo: an application on purine-binding proteins.

    PubMed

    Doppelt-Azeroual, Olivia; Delfaud, François; Moriaud, Fabrice; de Brevern, Alexandre G

    2010-04-01

    Ligand-protein interactions are essential for biological processes, and precise characterization of protein binding sites is crucial to understand protein functions. MED-SuMo is a powerful technology to localize similar local regions on protein surfaces. Its heuristic is based on a 3D representation of macromolecules using specific surface chemical features associating chemical characteristics with geometrical properties. MED-SMA is an automated and fast method to classify binding sites. It is based on MED-SuMo technology, which builds a similarity graph, and it uses the Markov Clustering algorithm. Purine binding sites are well studied as drug targets. Here, purine binding sites of the Protein DataBank (PDB) are classified. Proteins potentially inhibited or activated through the same mechanism are gathered. Results are analyzed according to PROSITE annotations and to carefully refined functional annotations extracted from the PDB. As expected, binding sites associated with related mechanisms are gathered, for example, the Small GTPases. Nevertheless, protein kinases from different Kinome families are also found together, for example, Aurora-A and CDK2 proteins which are inhibited by the same drugs. Representative examples of different clusters are presented. The effectiveness of the MED-SMA approach is demonstrated as it gathers binding sites of proteins with similar structure-activity relationships. Moreover, an efficient new protocol associates structures absent of cocrystallized ligands to the purine clusters enabling those structures to be associated with a specific binding mechanism. Applications of this classification by binding mode similarity include target-based drug design and prediction of cross-reactivity and therefore potential toxic side effects.

  8. Fast and automated functional classification with MED-SuMo: An application on purine-binding proteins

    PubMed Central

    Doppelt-Azeroual, Olivia; Delfaud, François; Moriaud, Fabrice; de Brevern, Alexandre G

    2010-01-01

    Ligand–protein interactions are essential for biological processes, and precise characterization of protein binding sites is crucial to understand protein functions. MED-SuMo is a powerful technology to localize similar local regions on protein surfaces. Its heuristic is based on a 3D representation of macromolecules using specific surface chemical features associating chemical characteristics with geometrical properties. MED-SMA is an automated and fast method to classify binding sites. It is based on MED-SuMo technology, which builds a similarity graph, and it uses the Markov Clustering algorithm. Purine binding sites are well studied as drug targets. Here, purine binding sites of the Protein DataBank (PDB) are classified. Proteins potentially inhibited or activated through the same mechanism are gathered. Results are analyzed according to PROSITE annotations and to carefully refined functional annotations extracted from the PDB. As expected, binding sites associated with related mechanisms are gathered, for example, the Small GTPases. Nevertheless, protein kinases from different Kinome families are also found together, for example, Aurora-A and CDK2 proteins which are inhibited by the same drugs. Representative examples of different clusters are presented. The effectiveness of the MED-SMA approach is demonstrated as it gathers binding sites of proteins with similar structure-activity relationships. Moreover, an efficient new protocol associates structures absent of cocrystallized ligands to the purine clusters enabling those structures to be associated with a specific binding mechanism. Applications of this classification by binding mode similarity include target-based drug design and prediction of cross-reactivity and therefore potential toxic side effects. PMID:20162627

  9. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site

    PubMed Central

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J.

    2016-01-01

    ABSTRACT Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. IMPORTANCE We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. PMID:26764003

  10. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site.

    PubMed

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J; Hogle, James M

    2016-01-13

    Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Dynamic changes in plasma tissue plasminogen activator, plasminogen activator inhibitor-1 and beta-thromboglobulin content in ischemic stroke.

    PubMed

    Zhuang, Ping; Wo, Da; Xu, Zeng-Guang; Wei, Wei; Mao, Hui-ming

    2015-07-01

    The aim of this paper is to investigate the corresponding variations of plasma tissue plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) activities, and beta-thromboglobulin (β-TG) content in patients during different stages of ischemic stroke. Ischemic stroke is a common disease among aging people and its occurrence is associated with abnormalities in the fibrinolytic system and platelet function. However, few reports focus on the dynamic changes in the plasma fibrinolytic system and β-TG content in patients with ischemic stroke. Patients were divided into three groups: acute, convalescent and chronic. Plasma t-PA and PAI-1 activities were determined by chromogenic substrate analysis and plasma β-TG content was detected by radioimmunoassay. Patients in the acute stage of ischemic stroke had significantly increased levels of t-PA activity and β-TG content, but PAI-1 activity was significantly decreased. Negative correlations were found between plasma t-PA and PAI-1 activities and between plasma t-PA activity and β-TG content in patients with acute ischemic stroke. There were significant differences in plasma t-PA and PAI-1 activities in the aged control group, as well as in the acute, convalescent and chronic groups. It can be speculated that the increased activity of t-PA in patients during the acute stage was the result of compensatory function, and that the increase in plasma β-TG level not only implies the presence of ischemic stroke but is likely a cause of ischemic stroke. During the later stages of ischemic stroke, greater attention is required in monitoring levels of PAI-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Twelve-Month Clinical and Quality-of-Life Outcomes in the Interventional Management of Stroke III Trial.

    PubMed

    Palesch, Yuko Y; Yeatts, Sharon D; Tomsick, Thomas A; Foster, Lydia D; Demchuk, Andrew M; Khatri, Pooja; Hill, Michael D; Jauch, Edward C; Jovin, Tudor G; Yan, Bernard; von Kummer, Rüdiger; Molina, Carlos A; Goyal, Mayank; Schonewille, Wouter J; Mazighi, Mikael; Engelter, Stefan T; Anderson, Craig; Spilker, Judith; Carrozzella, Janice; Ryckborst, Karla J; Janis, L Scott; Simpson, Annie; Simpson, Kit N; Broderick, Joseph P

    2015-05-01

    Randomized trials have indicated a benefit for endovascular therapy in appropriately selected stroke patients at 3 months, but data regarding outcomes at 12 months are currently lacking. We compared functional and quality-of-life outcomes at 12 months overall and by stroke severity in stroke patients treated with intravenous tissue-type plasminogen activator followed by endovascular treatment as compared with intravenous tissue-type plasminogen activator alone in the Interventional Management of Stroke III Trial. The key outcome measures were a modified Rankin Scale score ≤2 (functional independence) and the Euro-QoL EQ-5D, a health-related quality-of-life measure. 656 subjects with moderate-to-severe stroke (National Institutes of Health Stroke Scale ≥8) were enrolled at 58 centers in the United States (41 sites), Canada (7), Australia (4), and Europe (6). There was an interaction between treatment group and stroke severity in the repeated measures analysis of modified Rankin Scale ≤2 outcome (P=0.039). In the 204 participants with severe stroke (National Institutes of Health Stroke Scale ≥20), a greater proportion of the endovascular group had a modified Rankin Scale ≤2 (32.5%) at 12 months as compared with the intravenous tissue-type plasminogen activator group (18.6%, P=0.037); no difference was seen for the 452 participants with moderately severe strokes (55.6% versus 57.7%). In participants with severe stroke, the endovascular group had 35.2 (95% confidence interval: 2.1, 73.3) more quality-adjusted-days over 12 months as compared with intravenous tissue-type plasminogen activator alone. Endovascular therapy improves functional outcome and health-related quality-of-life at 12 months after severe ischemic stroke. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00359424. © 2015 American Heart Association, Inc.

  13. Genome-Wide Association Study for Circulating Tissue Plasminogen Activator (tPA) Levels and Functional Follow-up Implicates Endothelial STXBP5 and STX2

    PubMed Central

    Huang, Jie; Huffman, Jennifer E.; Yamkauchi, Munekazu; Trompet, Stella; Asselbergs, Folkert W.; Sabater-Lleal, Maria; Trégouët, David-Alexandre; Chen, Wei-Min; Smith, Nicholas L.; Kleber, Marcus E.; Shin, So-Youn; Becker, Diane M.; Tang, Weihong; Dehghan, Abbas; Johnson, Andrew D.; Truong, Vinh; Folkersen, Lasse; Yang, Qiong; Oudot-Mellakh, Tiphaine; Buckley, Brendan M.; Moore, Jason H.; Williams, Frances M.K.; Campbell, Harry; Silbernagel, Günther; Vitart, Veronique; Rudan, Igor; Tofler, Geoffrey H.; Navis, Gerjan J.; DeStefano, Anita; Wright, Alan F.; Chen, Ming-Huei; de Craen, Anton J.M.; Worrall, Bradford B.; Rudnicka, Alicja R.; Rumley, Ann; Bookman, Ebony B.; Psaty, Bruce M.; Chen, Fang; Keene, Keith L.; Franco, Oscar H.; Böhm, Bernhard O.; Uitterlinden, Andre G.; Carter, Angela M.; Jukema, J. Wouter; Sattar, Naveed; Bis, Joshua C.; Ikram, Mohammad A.; Sale, Michèle M.; McKnight, Barbara; Fornage, Myriam; Ford, Ian; Taylor, Kent; Slagboom, P. Eline; McArdle, Wendy L.; Hsu, Fang-Chi; Franco-Cereceda, Anders; Goodall, Alison H.; Yanek, Lisa R.; Furie, Karen L.; Cushman, Mary; Hofman, Albert; Witteman, Jacqueline CM.; Folsom, Aaron R.; Basu, Saonli; Matijevic, Nena; van Gilst, Wiek H.; Wilson, James F.; Westendorp, Rudi G.J.; Kathiresan, Sekar; Reilly, Muredach P.; Tracy, Russell P.; Polasek, Ozren; Winkelmann, Bernhard R.; Grant, Peter J.; Hillege, Hans L.; Cambien, Francois; Stott, David J.; Lowe, Gordon D.; Spector, Timothy D.; Meigs, James B.; Marz, Winfried; Eriksson, Per; Becker, Lewis C.; Morange, Pierre-Emmanuel; Soranzo, Nicole; Williams, Scott M.; Hayward, Caroline; van der Harst, Pim; Hamsten, Anders; Lowenstein, Charles J.; Strachan, David P.; O'Donnell, Christopher J.

    2014-01-01

    Objective Tissue plasminogen activator (tPA), a serine protease, catalyzes the conversion of plasminogen to plasmin, the major enzyme responsible for endogenous fibrinolysis. In some populations, elevated plasma levels of tPA have been associated with myocardial infarction and other cardiovascular diseases (CVD). We conducted a meta-analysis of genome-wide association studies (GWAS) to identify novel correlates of circulating levels of tPA. Approach and Results Fourteen cohort studies with tPA measures (N=26,929) contributed to the meta-analysis. Three loci were significantly associated with circulating tPA levels (P <5.0×10−8). The first locus is on 6q24.3, with the lead SNP (rs9399599, P=2.9×10−14) within STXBP5. The second locus is on 8p11.21. The lead SNP (rs3136739, P=1.3×10−9) is intronic to POLB and less than 200kb away from the tPA encoding gene PLAT. We identified a non-synonymous SNP (rs2020921) in modest LD with rs3136739 (r2 = 0.50) within exon 5 of PLAT (P=2.0×10−8). The third locus is on 12q24.33, with the lead SNP (rs7301826, P=1.0×10−9) within intron 7 of STX2. We further found evidence for association of lead SNPs in STXBP5 and STX2 with expression levels of the respective transcripts. In in vitro cell studies, silencing STXBP5 decreased release of tPA from vascular endothelial cells, while silencing of STX2 increased tPA release. Through an in-silico lookup, we found no associations of the three lead SNPs with coronary artery disease or stroke. Conclusions We identified three loci associated with circulating tPA levels, the PLAT region, STXBP5 and STX2. Our functional studies implicate a novel role for STXBP5 and STX2 in regulating tPA release. PMID:24578379

  14. Nuclear Factor YY1 Inhibits Transforming Growth Factor β- and Bone Morphogenetic Protein-Induced Cell Differentiation

    PubMed Central

    Kurisaki, Keiko; Kurisaki, Akira; Valcourt, Ulrich; Terentiev, Alexei A.; Pardali, Katerina; ten Dijke, Peter; Heldin, Carl-Henrik; Ericsson, Johan; Moustakas, Aristidis

    2003-01-01

    Smad proteins transduce transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signals that regulate cell growth and differentiation. We have identified YY1, a transcription factor that positively or negatively regulates transcription of many genes, as a novel Smad-interacting protein. YY1 represses the induction of immediate-early genes to TGF-β and BMP, such as the plasminogen activator inhibitor 1 gene (PAI-1) and the inhibitor of differentiation/inhibitor of DNA binding 1 gene (Id-1). YY1 inhibits binding of Smads to their cognate DNA elements in vitro and blocks Smad recruitment to the Smad-binding element-rich region of the PAI-1 promoter in vivo. YY1 interacts with the conserved N-terminal Mad homology 1 domain of Smad4 and to a lesser extent with Smad1, Smad2, and Smad3. The YY1 zinc finger domain mediates the association with Smads and is necessary for the repressive effect of YY1 on Smad transcriptional activity. Moreover, downregulation of endogenous YY1 by antisense and small interfering RNA strategies results in enhanced transcriptional responses to TGF-β or BMP. Ectopic expression of YY1 inhibits, while knockdown of endogenous YY1 enhances, TGF-β- and BMP-induced cell differentiation. In contrast, overexpression or knockdown of YY1 does not affect growth inhibition induced by TGF-β or BMP. Accordingly, YY1 does not interfere with the regulation of immediate-early genes involved in the TGF-β growth-inhibitory response, the cell cycle inhibitors p15 and p21, and the proto-oncogene c-myc. In conclusion, YY1 represses Smad transcriptional activities in a gene-specific manner and thus regulates cell differentiation induced by TGF-β superfamily pathways. PMID:12808092

  15. Surface-Bound Casein Modulates the Adsorption and Activity of Kinesin on SiO2 Surfaces

    PubMed Central

    Ozeki, Tomomitsu; Verma, Vivek; Uppalapati, Maruti; Suzuki, Yukiko; Nakamura, Mikihiko; Catchmark, Jeffrey M.; Hancock, William O.

    2009-01-01

    Abstract Conventional kinesin is routinely adsorbed to hydrophilic surfaces such as SiO2. Pretreatment of surfaces with casein has become the standard protocol for achieving optimal kinesin activity, but the mechanism by which casein enhances kinesin surface adsorption and function is poorly understood. We used quartz crystal microbalance measurements and microtubule gliding assays to uncover the role that casein plays in enhancing the activity of surface-adsorbed kinesin. On SiO2 surfaces, casein adsorbs as both a tightly bound monolayer and a reversibly bound second layer that has a dissociation constant of 500 nM and can be desorbed by washing with casein-free buffer. Experiments using truncated kinesins demonstrate that in the presence of soluble casein, kinesin tails bind well to the surface, whereas kinesin head binding is blocked. Removing soluble casein reverses these binding profiles. Surprisingly, reversibly bound casein plays only a moderate role during kinesin adsorption, but it significantly enhances kinesin activity when surface-adsorbed motors are interacting with microtubules. These results point to a model in which a dynamic casein bilayer prevents reversible association of the heads with the surface and enhances association of the kinesin tail with the surface. Understanding protein-surface interactions in this model system should provide a framework for engineering surfaces for functional adsorption of other motor proteins and surface-active enzymes. PMID:19383474

  16. Ligand binding induces a sharp decrease in hydrophobicity of folate binding protein assessed by 1-anilinonaphthalene-8-sulphonate which suppresses self-association of the hydrophobic apo-protein.

    PubMed

    Holm, Jan; Lawaetz, Anders J; Hansen, Steen I

    2012-08-17

    High affinity folate binding protein (FBP) regulates as a soluble protein and as a cellular receptor intracellular trafficking of folic acid, a vitamin of great importance to cell growth and division. We addressed two issues of potential importance to the biological function of FBP, a possible decrease of the surface hydrophobicity associated with the ligand-induced conformation change of FBP, and protein-inter-protein interactions involved in self-association of hydrophobic apo-FBP. The extrinsic fluorescent apolar dye 1-anilinonaphthalene-8-sulphonate (ANS) exhibited enhanced fluorescence intensity and a blueshift of emission maximum from 510-520 nm to 460-470 nm upon addition of apo-FBP indicating binding to a strongly hydrophobic environment. Neither enhancement of fluorescence nor blueshift of ANS emission maximum occurred when folate-ligated holo-FBP replaced apo-FBP. The drastic decrease in surface hydrophobicity of holo-FBP could have bearings on the biological function of FBP since changes in surface hydrophobicity have critical effects on the biological function of receptors and transport proteins. ANS interacts with exposed hydrophobic surfaces on proteins and may thereby block and prevent aggregation of proteins (chaperone-like effect). Hence, hydrophobic interactions seemed to participate in the concentration-dependent self-association of apo-FBP which was suppressed by high ANS concentrations in light scatter measurements. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. AMBIENT COARSE PARTICULATE MATTER ASSOCIATED WITH PLASMINOGEN AND FIBRIOGEN LEVELS IN ADULT ASTHMATICS

    EPA Science Inventory

    Introduction: Recent reports indicate that the elderly and those with cardiovascular disease are susceptible to fine and coarse particulate matter (PM 2.5, PM 2.5-10) exposures. Asthmatics are thought to be primarily affected via airway inflammation. We investigated whether mark...

  18. Adiponectin, C-reactive protein, fibrinogen and tissue plasminogen activator antigen levels among glucose-intolerant women with and without histories of gestational diabetes.

    PubMed

    Kim, C; Christophi, C A; Goldberg, R B; Perreault, L; Dabelea, D; Marcovina, S M; Pi-Sunyer, X; Barrett-Connor, E

    2016-01-01

    To examine concentrations of biomarkers (adiponectin, C-reactive protein, fibrinogen and tissue plasminogen-activator antigen) associated with glucose homeostasis and diabetes risk by history of gestational diabetes (GDM). We conducted a secondary analysis of the Diabetes Prevention Program, a randomized trial of lifestyle intervention or metformin for diabetes prevention. At baseline, participants were overweight and had impaired glucose tolerance. Biomarkers at baseline and 1 year after enrolment were compared between parous women with (n = 350) and without histories of GDM (n = 1466). Cox proportional hazard models evaluated whether history of GDM was associated with diabetes risk, after adjustment for baseline biomarker levels as well as for change in biomarker levels, demographic factors and anthropometrics. At baseline, women with histories of GDM had lower adiponectin (7.5 μg/ml vs. 8.7 μg/ml; p < 0.0001) and greater log C-reactive protein (-0.90 mg/l vs. -0.78 mg/l, p = 0.04) levels than women without histories of GDM, but these associations did not persist after adjustment for demographic factors. Fibrinogen and tissue plasminogen-activator antigen were similar between women with and without histories of GDM. Women with and without histories of GDM had a similar pattern of changes in biomarkers within randomization arm. Adjustment for age, race/ethnicity, baseline weight, change in weight, baseline biomarker level and change in biomarker level did not significantly alter the association between history of GDM, and diabetes risk. Among women with impaired glucose tolerance, biomarkers in women with and without histories of GDM are similar and respond similarly to lifestyle changes and metformin. Adjustment for biomarker levels did not explain the higher risk of diabetes observed in women with histories of GDM. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.

  19. The metabolic syndrome is associated with a higher resistance to intravenous thrombolysis for acute ischemic stroke in women than in men.

    PubMed

    Arenillas, Juan F; Sandoval, Patricio; Pérez de la Ossa, Natalia; Millán, Mónica; Guerrero, Cristina; Escudero, Domingo; Dorado, Laura; López-Cancio, Elena; Castillo, José; Dávalos, Antoni

    2009-02-01

    The metabolic syndrome (MetS) might confer a higher resistance to intravenous thrombolysis in acute middle cerebral artery (MCA) ischemic stroke. MetS increases the risk of stroke in women to a greater extent than in men. We aimed to investigate whether there might be sex differences in the impact of MetS on the response to intravenous thrombolysis for acute MCA ischemic stroke. We prospectively studied consecutive ischemic stroke patients, treated with intravenous tissue-type plasminogen activator according to SITS-MOST criteria, with an MCA occlusion on prebolus transcranial Doppler examination. Resistance to thrombolysis was defined as the absence of complete MCA recanalization 24 hours after tissue-type plasminogen activator infusion by transcranial Doppler criteria. MetS was diagnosed according to the criteria established by the American Heart Association/National Heart, Lung, and Blood Institute 2005 statement. A total of 125 patients (75 men, 50 women; mean age, 67.6+/-11 years) were included. MetS was diagnosed in 76 (61%) patients. Resistance to clot lysis at 24 hours was observed in 53 (42%) patients. Two multivariate-adjusted, logistic-regression models identified that MetS was associated with a higher resistance to tissue-type plasminogen activator, independently of other significant baseline variables (odds ratio=9.8; 95% CI, 3.5 to 27.8; P=0.0001) and of the individual components of the MetS. The MetS was associated with a significantly higher odds of resistance to thrombolysis in women (odds ratio=17.5; 95% CI, 1.9 to 163.1) than in men (odds ratio=5.1; 95% CI, 1.6 to 15.6; P for interaction=0.0004). The effect of MetS on the resistance to intravenous thrombolysis for acute MCA ischemic stroke appears to be more pronounced in women than in men.

  20. Depletion of tissue plasminogen activator attenuates lung ischemia-reperfusion injury via inhibition of neutrophil extravasation.

    PubMed

    Zhao, Yunge; Sharma, Ashish K; LaPar, Damien J; Kron, Irving L; Ailawadi, Gorav; Liu, Yuan; Jones, David R; Laubach, Victor E; Lau, Christine L

    2011-05-01

    Ischemia-reperfusion (IR) injury following lung transplantation remains a major source of early morbidity and mortality. Histologically, this inflammatory process is characterized by neutrophil infiltration and activation. We previously reported that lung IR injury was significantly attenuated in plasminogen activator inhibitor-1-deficient mice. In this study, we explored the potential role of tissue plasminogen activator (tPA) in a mouse lung IR injury model. As a result, tPA knockout (KO) mice were significantly protected from lung IR injury through several mechanisms. At the cellular level, tPA KO specifically blocked neutrophil extravasation into the interstitium, and abundant homotypic neutrophil aggregation (HNA) was detected in the lung microvasculature of tPA KO mice after IR. At the molecular level, inhibition of neutrophil extravasation was associated with reduced expression of platelet endothelial cell adhesion molecule-1 mediated through the tPA/ LDL receptor-related protein/NF-κB signaling pathway, whereas increased P-selectin triggered HNA. At the functional level, tPA KO mice incurred significantly decreased vascular permeability and improved lung function following IR. Protection from lung IR injury in tPA KO mice occurs through a fibrinolysis-independent mechanism. These results suggest that tPA could serve as an important therapeutic target for the prevention and treatment of acute IR injury after lung transplantation.

  1. Surface Plasmon Resonance Study of the Binding of PEO-PPO-PEO Triblock Copolymer and PEO Homopolymer to Supported Lipid Bilayers.

    PubMed

    Kim, Mihee; Vala, Milan; Ertsgaard, Christopher T; Oh, Sang-Hyun; Lodge, Timothy P; Bates, Frank S; Hackel, Benjamin J

    2018-06-12

    Poloxamer 188 (P188), a poly(ethylene oxide)- b-poly(propylene oxide)- b-poly(ethylene oxide) triblock copolymer, protects cell membranes against various external stresses, whereas poly(ethylene oxide) (PEO; 8600 g/mol) homopolymer lacks protection efficacy. As part of a comprehensive effort to elucidate the protection mechanism, we used surface plasmon resonance (SPR) to obtain direct evidence of binding of the polymers onto supported lipid bilayers. Binding kinetics and coverage of P188 and PEO were examined and compared. Most notably, PEO exhibited membrane association comparable to that of P188, evidenced by comparable association rate constants and coverage. This result highlights the need for additional mechanistic understanding beyond simple membrane association to explain the differential efficacy of P188 in therapeutic applications.

  2. Modulation of the malignant phenotype with the urokinase-type plasminogen activator and the type I plasminogen activator inhibitor.

    PubMed

    Sordat, B; Reiter, L; Cajot, J F

    1990-12-02

    Gene transfer techniques were utilized to evaluate the role of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (PAI-1) in enhancing or preventing the expression of the invasive malignant phenotype, respectively. Mouse L-cell transfectants expressing human uPA or human PAI-1 as well as mouse B16 transfectants expressing mouse uPA or human PAI-1 were generated. These transfectants were tested using a variety of experimental methods including smooth muscle cell matrix solubilization in vitro, lung colony formation in vivo and co-cultures of antagonist-expressing cells in vitro. Results from these studies provide direct evidence for an enhancing role of uPA in malignant invasion and experimental metastasis and for a modulatory role of PAI-1 in tumor cell-mediated breakdown of extracellular matrices.

  3. Studies on a complex mechanism for the activation of plasminogen by kaolin and by chloroform: the participation of Hageman factor and additional cofactors

    PubMed Central

    Ogston, Derek; Ogston, C. Marie; Ratnoff, Oscar D.; Forbes, Charles D.

    1969-01-01

    As demonstrated by others, fibrinolytic activity was generated in diluted, acidified normal plasma exposed to kaolin, a process requiring Hageman factor (Factor XII). Generation was impaired by adsorbing plasma with glass or similar agents under conditions which did not deplete its content of Hageman factor or plasminogen. The defect could be repaired by addition of a noneuglobulin fraction of plasma or an agent or agents eluted from diatomaceous earth which had been exposed to normal plasma. The restorative agent, tentatively called Hageman factor-cofactor, was partially purified by chromatography and had an apparent molecular weight of approximately 165,000. It could be distinguished from plasma thromboplastin antecedent (Factor XI) and plasma kallikrein, other substrates of Hageman factor, and from the streptokinase-activated pro-activator of plasminogen. Evidence is presented that an additional component may be needed for the generation of fibrinolytic activity in mixtures containing Hageman factor, HF-cofactor, and plasminogen. The long-recognized generation of plasmin activity in chloroform-treated euglobulin fractions of plasma was found to be dependent upon the presence of Hageman factor. Whether chloroform activation of plasminogen requires Hageman factor-cofactor was not determined, but glass-adsorbed plasma, containing Hageman factor and plasminogen, did not generate appreciable fibrinolytic or caseinolytic activity. These studies emphasize the complex nature of the mechanisms which lead to the generation of plasmin in human plasma. PMID:4241814

  4. The fibrinolytic mechanism of defibrotide: effect of defibrotide on plasmin activity.

    PubMed

    Echart, Cinara L; Graziadio, Barbara; Somaini, Simona; Ferro, Laura I; Richardson, Paul G; Fareed, Jawed; Iacobelli, Massimo

    2009-12-01

    Fibrinolytic activity has been shown to be reduced in many vascular diseases, including hepatic veno-occlusive disease after stem cell transplantation, a microangiopathy characterized by sinusoidal endothelial cell injury. Defibrotide is a polydisperse oligonucleotide with antithrombotic, profibrinolytic, anti-ischemic, and antiadhesive properties. Numerous clinical studies have shown promising activity of defibrotide in the treatment and prevention of veno-occlusive disease, with minimal toxicity. In corollary laboratory studies, defibrotide has been shown to decrease plasminogen activator inhibitor-1, increase tissue plasminogen activator levels, and increase overall plasma fibrinolytic activity in patients. Plasmin, a potent and nonspecific serine protease, plays a pivotal role in fibrinolysis by virtue of its ability to effectively degrade fibrin clots. In this study, defibrotide increases the activity of plasmin in hydrolyzing its substrate in a dose-dependent and length-dependent manner. Similar concentration-dependent effects of defibrotide were observed when plasmin was generated by tissue plasminogen activator or urokinase activation of plasminogen. In contrast, defibrotide had no direct effect on the activation of plasminogen to plasmin. Defibrotide was also able to enhance the activity of plasmin in degrading fibrin clot formed from fibrinogen, plasminogen, and thrombin. This effect was also concentration-dependent and directly correlated with the enzymatic activity of plasmin. This study therefore demonstrates that defibrotide is capable of enhancing the activity of plasmin and so contributes to its fibrinolytic activity. Taken together, these results support the effect of defibrotide in restoring the fibrinolytic vascular phenotype, in microangiopathic conditions such as veno-occlusive disease.

  5. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuziemko, G.M.; Stroh, M.; Stevens, R.C.

    1996-05-21

    The present study determines the affinity of cholera toxin for the ganglioside series GM1, GM2, GM3, GD1A, GD1B, GT1B, asialo GM1, globotriosyl ceramide, and lactosyl ceramide using real time biospecific interaction analysis (surface plasmon resonance, SPR). SPR shows that cholera toxin preferably binds to gangliosides in the following sequence: GM1 > GM2 > GD1A > GM3 > GT1B > GD1B > asialo-GM1. The measured binding affinity of cholera toxin for the ganglioside sequence ranges from 4.61 {times} 10{sup {minus}12} M for GM1 to 1.88 {times} 10{sup {minus}10} M for asialo GM1. The picomolar values obtained by surface plasmon resonance aremore » similar to K{sub d} values determined with whole-cell binding assays. Both whole-cell assays ans SPR measurements on synthetic membranes are higher than free solution measurements by several orders of magnitude. This difference may be caused by the effects of avidity and charged lipid head-groups, which may play a major role in the binding between cholera toxin, the receptor, and the membrane surface. The primary difference between free solution binding studies and surface plasmon resonance studies is that the latter technique is performed on surfaces resembling the cell membrane. Surface plasmon resonance has the further advantage of measuring apparent kinetic association and dissociation rates in real time, providing direct information about binding events at the membrane surface. 34 refs., 8 figs., 2 tabs.« less

  6. Engineering streptokinase for generation of active site-labeled plasminogen analogs*

    PubMed Central

    Laha, Malabika; Panizzi, Peter; Nahrendorf, Matthias; Bock, Paul E.

    2011-01-01

    We previously demonstrated that streptokinase (SK) can be used to generate active site-labeled fluorescent analogs of plasminogen (Pg) by virtue of its non-proteolytic activation of the zymogen. The method is versatile and allows for stoichiometric and active site-specific incorporation of any one of many molecular probes. The limitation of the labeling approach is that it is both time-consuming and low yield. Here we demonstrate an improved method for the preparation of labeled Pg analogs by the use of an engineered SK mutant fusion protein with both COOH- and NH2-terminal His6-tags. The NH2-terminal tag is followed by a tobacco etch virus proteinase cleavage site to ensure that the SK Ile1 residue, essential for conformational activation of Pg, is preserved. The SK COOH-terminal Lys414 residue and residues Arg253-Leu260 in the SK β-domain were deleted to prevent cleavage by plasmin (Pm), and to disable Pg substrate binding to the SK·Pg*/Pm catalytic complexes, respectively. Near-elimination of Pm generation with the SKΔ(R253-L260)ΔK414-His6 mutant increased the yield of labeled Pg 2.6-fold and reduced the time required >2-fold. The versatility of the labeling method was extended to the application of Pg labeled with a near-infrared probe to quantitate Pg receptors on immune cells by flow cytometry. PMID:21570944

  7. Regulatory elements involved in constitutive and phorbol ester-inducible expression of the plasminogen activator inhibitor type 2 gene promoter.

    PubMed Central

    Cousin, E; Medcalf, R L; Bergonzelli, G E; Kruithof, E K

    1991-01-01

    Gene transcription rates and mRNA levels of plasminogen activator inhibitor type 2 (PAI-2) are markedly induced by the tumor promoting agent phorbol 12-myristate 13-acetate (PMA) in human HT1080 fibrosarcoma cells. To identify promoter elements required for basal-, and phorbol ester-inducible expression, deletion mutants of the PAI-1 promoter fused to the chloramphenicol acetyl transferase (CAT) reporter gene, were transiently expressed in HT1080 cells. Constitutive CAT activity was expressed from constructs containing more than 215 bp of promoter sequence, whereas deletion to position -91 bp abolished CAT gene expression. Treatment of transfected cells with PMA resulted in a three- to ten-fold increase in CAT expression from all constructs except from the construct shortened to position -91. DNAse1 protection analysis of the promoter region between -215 and the transcription initiation site revealed numerous protected regions, including two AP1-like binding sites (AP1a and AP1b) and one CRE-like element. Site-directed mutagenesis of the AP1a site or of the CRE-like site resulted in the loss of basal CAT activity and abolished the PMA effect, whereas mutagenesis of AP1b only partially inhibited basal and PMA-mediated expression. Our results suggest that the PAI-2 promoter contains at least two elements required for basal gene transcription and PMA-mediated induction. Images PMID:1650454

  8. Xenon is an inhibitor of tissue-plasminogen activator: adverse and beneficial effects in a rat model of thromboembolic stroke

    PubMed Central

    David, Hélène N; Haelewyn, Benoît; Risso, Jean-Jacques; Colloc'h, Nathalie; Abraini, Jacques H

    2010-01-01

    Preclinical evidence in rodents has proven that xenon may be a very promising neuroprotective agent for treating acute ischemic stroke. This has led to the general thinking that clinical trials with xenon could be initiated in acute stroke patients in a next future. However, an unappreciated physicochemical property of xenon has been that this gas also binds to the active site of a series of serine proteases. Because the active site of serine proteases is structurally conserved, we have hypothesized and investigated whether xenon may alter the catalytic efficiency of tissue-type plasminogen activator (tPA), a serine protease that is the only approved therapy for acute ischemic stroke today. Here, using molecular modeling and in vitro and in vivo studies, we show (1) xenon is a tPA inhibitor; (2) intraischemic xenon dose dependently inhibits tPA-induced thrombolysis and subsequent reduction of ischemic brain damage; (3) postischemic xenon virtually suppresses ischemic brain damage and tPA-induced brain hemorrhages and disruption of the blood–brain barrier. Taken together, these data indicate (1) xenon should not be administered before or together with tPA therapy; (2) xenon could be a golden standard for treating acute ischemic stroke if given after tPA-induced reperfusion, with both unique neuroprotective and antiproteolytic (anti-hemorrhaging) properties. PMID:20087367

  9. FXIa and platelet polyphosphate as therapeutic targets during human blood clotting on collagen/tissue factor surfaces under flow

    PubMed Central

    Zhu, Shu; Travers, Richard J.; Morrissey, James H.

    2015-01-01

    Factor XIIa (FXIIa) and factor XIa (FXIa) contribute to thrombosis in animal models, whereas platelet-derived polyphosphate (polyP) may potentiate contact or thrombin-feedback pathways. The significance of these mediators in human blood under thrombotic flow conditions on tissue factor (TF) –bearing surfaces remains inadequately resolved. Human blood (corn trypsin inhibitor treated [4 μg/mL]) was tested by microfluidic assay for clotting on collagen/TF at TF surface concentration ([TF]wall) from ∼0.1 to 2 molecules per μm2. Anti-FXI antibodies (14E11 and O1A6) or polyP-binding protein (PPXbd) were used to block FXIIa-dependent FXI activation, FXIa-dependent factor IX (FIX) activation, or platelet-derived polyP, respectively. Fibrin formation was sensitive to 14E11 at 0 to 0.1 molecules per µm2 and sensitive to O1A6 at 0 to 0.2 molecules per µm2. However, neither antibody reduced fibrin generation at ∼2 molecules per µm2 when the extrinsic pathway became dominant. Interestingly, PPXbd reduced fibrin generation at low [TF]wall (0.1 molecules per µm2) but not at zero or high [TF]wall, suggesting a role for polyP distinct from FXIIa activation and requiring low extrinsic pathway participation. Regardless of [TF]wall, PPXbd enhanced fibrin sensitivity to tissue plasminogen activator and promoted clot retraction during fibrinolysis concomitant with an observed PPXbd-mediated reduction of fibrin fiber diameter. This is the first detection of endogenous polyP function in human blood under thrombotic flow conditions. When triggered by low [TF]wall, thrombosis may be druggable by contact pathway inhibition, although thrombolytic susceptibility may benefit from polyP antagonism regardless of [TF]wall. PMID:26136249

  10. Photonic Activation of Plasminogen Induced by Low Dose UVB

    PubMed Central

    Correia, Manuel; Snabe, Torben; Thiagarajan, Viruthachalam; Petersen, Steffen Bjørn; Campos, Sara R. R.; Baptista, António M.; Neves-Petersen, Maria Teresa

    2015-01-01

    Activation of plasminogen to its active form plasmin is essential for several key mechanisms, including the dissolution of blood clots. Activation occurs naturally via enzymatic proteolysis. We report that activation can be achieved with 280 nm light. A 2.6 fold increase in proteolytic activity was observed after 10 min illumination of human plasminogen. Irradiance levels used are in the same order of magnitude of the UVB solar irradiance. Activation is correlated with light induced disruption of disulphide bridges upon UVB excitation of the aromatic residues and with the formation of photochemical products, e.g. dityrosine and N-formylkynurenine. Most of the protein fold is maintained after 10 min illumination since no major changes are observed in the near-UV CD spectrum. Far-UV CD shows loss of secondary structure after illumination (33.4% signal loss at 206 nm). Thermal unfolding CD studies show that plasminogen retains a native like cooperative transition at ~70 ºC after UV-illumination. We propose that UVB activation of plasminogen occurs upon photo-cleavage of a functional allosteric disulphide bond, Cys737-Cys765, located in the catalytic domain and in van der Waals contact with Trp761 (4.3 Å). Such proximity makes its disruption very likely, which may occur upon electron transfer from excited Trp761. Reduction of Cys737-Cys765 will result in likely conformational changes in the catalytic site. Molecular dynamics simulations reveal that reduction of Cys737-Cys765 in plasminogen leads to an increase of the fluctuations of loop 760–765, the S1-entrance frame located close to the active site. These fluctuations affect the range of solvent exposure of the catalytic triad, particularly of Asp646 and Ser74, which acquire an exposure profile similar to the values in plasmin. The presented photonic mechanism of plasminogen activation has the potential to be used in clinical applications, possibly together with other enzymatic treatments for the elimination of blood clots. PMID:25635856

  11. Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone's antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations.

    PubMed

    Peluso, John J; Romak, Jonathan; Liu, Xiufang

    2008-02-01

    Progesterone (P4) receptor membrane component-1 (PGRMC1) and its binding partner, plasminogen activator inhibitor 1 RNA binding protein (PAIRBP1) are thought to form a complex that functions as membrane receptor for P4. The present investigations confirm PGRMC1's role in this membrane receptor complex by demonstrating that depleting PGMRC1 with PGRMC1 small interfering RNA results in a 60% decline in [(3)H]P4 binding and the loss of P4's antiapoptotic action. Studies conducted on partially purified GFP-PGRMC1 fusion protein indicate that [(3)H]P4 specifically binds to PGRMC1 at a single site with an apparent K(d) of about 35 nm. In addition, experiments using various deletion mutations reveal that the entire PGRMC1 molecule is required for maximal [(3)H]P4 binding and P4 responsiveness. Analysis of the binding data also suggests that the P4 binding site is within a segment of PGRMC1 that is composed of the transmembrane domain and the initial segment of the C terminus. Interestingly, PAIRBP1 appears to bind to the C terminus between amino acids 70-130, which is distal to the putative P4 binding site. Taken together, these data provide compelling evidence that PGRMC1 is the P4 binding protein that mediates P4's antiapoptotic action. Moreover, the deletion mutation studies indicate that each domain of PGRMC1 plays an essential role in modulating PGRMC1's capacity to both bind and respond to P4. Additional studies are required to more precisely delineate the role of each PGRMC1 domain in transducing P4's antiapoptotic action.

  12. Structural motif screening reveals a novel, conserved carbohydrate-binding surface in the pathogenesis-related protein PR-5d.

    PubMed

    Doxey, Andrew C; Cheng, Zhenyu; Moffatt, Barbara A; McConkey, Brendan J

    2010-08-03

    Aromatic amino acids play a critical role in protein-glycan interactions. Clusters of surface aromatic residues and their features may therefore be useful in distinguishing glycan-binding sites as well as predicting novel glycan-binding proteins. In this work, a structural bioinformatics approach was used to screen the Protein Data Bank (PDB) for coplanar aromatic motifs similar to those found in known glycan-binding proteins. The proteins identified in the screen were significantly associated with carbohydrate-related functions according to gene ontology (GO) enrichment analysis, and predicted motifs were found frequently within novel folds and glycan-binding sites not included in the training set. In addition to numerous binding sites predicted in structural genomics proteins of unknown function, one novel prediction was a surface motif (W34/W36/W192) in the tobacco pathogenesis-related protein, PR-5d. Phylogenetic analysis revealed that the surface motif is exclusive to a subfamily of PR-5 proteins from the Solanaceae family of plants, and is absent completely in more distant homologs. To confirm PR-5d's insoluble-polysaccharide binding activity, a cellulose-pulldown assay of tobacco proteins was performed and PR-5d was identified in the cellulose-binding fraction by mass spectrometry. Based on the combined results, we propose that the putative binding site in PR-5d may be an evolutionary adaptation of Solanaceae plants including potato, tomato, and tobacco, towards defense against cellulose-containing pathogens such as species of the deadly oomycete genus, Phytophthora. More generally, the results demonstrate that coplanar aromatic clusters on protein surfaces are a structural signature of glycan-binding proteins, and can be used to computationally predict novel glycan-binding proteins from 3 D structure.

  13. Resolving distinct molecular origins for copper effects on PAI-1.

    PubMed

    Bucci, Joel C; McClintock, Carlee S; Chu, Yuzhuo; Ware, Gregory L; McConnell, Kayla D; Emerson, Joseph P; Peterson, Cynthia B

    2017-10-01

    Components of the fibrinolytic system are subjected to stringent control to maintain proper hemostasis. Central to this regulation is the serpin plasminogen activator inhibitor-1 (PAI-1), which is responsible for specific and rapid inhibition of fibrinolytic proteases. Active PAI-1 is inherently unstable and readily converts to a latent, inactive form. The binding of vitronectin and other ligands influences stability of active PAI-1. Our laboratory recently observed reciprocal effects on the stability of active PAI-1 in the presence of transition metals, such as copper, depending on the whether vitronectin was also present (Thompson et al. Protein Sci 20:353-365, 2011). To better understand the molecular basis for these copper effects on PAI-1, we have developed a gel-based copper sensitivity assay that can be used to assess the copper concentrations that accelerate the conversion of active PAI-1 to a latent form. The copper sensitivity of wild-type PAI-1 was compared with variants lacking N-terminal histidine residues hypothesized to be involved in copper binding. In these PAI-1 variants, we observed significant differences in copper sensitivity, and these data were corroborated by latency conversion kinetics and thermodynamics of copper binding by isothermal titration calorimetry. These studies identified a copper-binding site involving histidines at positions 2 and 3 that confers a remarkable stabilization of PAI-1 beyond what is observed with vitronectin alone. A second site, independent from the two histidines, binds metal and increases the rate of the latency conversion.

  14. Plasminogen Activator Production Accompanies Loss of Anchorage Regulation in Transformation of Primary Rat Embryo Cells by Simian Virus 40

    PubMed Central

    Pollack, R.; Risser, R.; Conlon, S.; Rifkin, D.

    1974-01-01

    We have isolated several lines of rat embryo cells transformed by simian virus 40. All these lines are fully transformed with regard to saturation density and serum sensitivity, but they differ greatly in their anchorage dependence, as assayed by efficiency of plating in methyl cellulose suspension. This set of lines reveals a consistent relation of plasminogen activator production to plating efficiency in methyl cellulose. T-antigen-positive transformed lines that synthesize activator grow in methyl cellulose suspension, while T-antigen-positive transformed lines that do not synthesize activator fail to form colonies in suspension. Normal rat embryo cells produce very little plasminogen activator and do not grow in methyl cellulose. Sera that permit high levels of plasmin formation and activity support growth in semi-solid medium better than sera whose plasminogen is activated poorly and/or sera that contain inhibitors to plasmin. PMID:4373730

  15. Cell Surface Changes Associated with Cellular Immune Reactions in Drosophila

    NASA Astrophysics Data System (ADS)

    Nappi, Anthony J.; Silvers, Michael

    1984-09-01

    In Drosophila melanogaster a temperature-induced change in immune competence accompanies cell surface alterations that cause its blood cells to adhere and to encapsulate a parasite. At 29 degrees C the blood cells of the tumorous-lethal (Tuml) mutant show a high degree of immune competence and encapsulate the eggs of the parasitic wasp Leptopilina heterotoma. At 21 degrees C the blood cells are essentially immune incompetent. High percentages of lectin binding cells were found under conditions which potentiated cellular encapsulation responses. Some immune reactive blood cells did not bind lectin. The low percentages of lectin binding cells in susceptible hosts suggest that developing parasites alter the cell surface of the blood cells of immune reactive hosts.

  16. Calcium and initial surface binding phase of pinocytosis in Amoeba proteus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prusch, R.D.

    1986-08-01

    The uptake of membrane-bound solute and external medium by bulk-phase pinocytosis in Amoeba proteus is influenced by the level of Ca/sup 2 +/ in the external medium. Increasing external Ca/sup 2 +/ to approx.10/sup -4/ M increases pinocytotic intensity, while increases in Ca/sup 2 +/ above this level decrease the intensity of pinocytosis. The initial interaction of pinocytotic inducers and Ca/sup +2/ at the surface of A moeba proteus was therefore examined. Alcain blue and Na/sup +/, both inducers of pinocytosis, differ in the manner with which they associate with the amoeba surface, suggesting the possibility of different pinocytosis-inducing sitesmore » on the amoeba surface. Low levels of external Ca/sup 2 +/ in the range of 3 x 10/sup -5/ to 4.5 x 10/sup -4/ M increase the amount of cationic inducer associated with the cell surface while, at the same time, decreasing anion association with the cell surface. It is suggested that Ca/sup 2 +/ influences ion association with the cell surface by controlling the availability of negative surface sites, which in turn influences pinocytotic intensity. Surface binding of Na/sup +/, Ca/sup 2 +/ and Cl/sup -/ was determined by adding /sup 22/Na, /sup 45/Ca or /sup 36/Cl.« less

  17. Prevotella intermedia stimulates tissue-type plasminogen activator and plasminogen activator inhibitor-2 expression via multiple signaling pathways in human periodontal ligament cells.

    PubMed

    Guan, Su-Min; He, Jian-Jun; Zhang, Ming; Shu, Lei

    2011-06-01

    Prevotella intermedia is an important periodontal pathogen that induces various inflammatory and immune responses. In this study, we investigated the effects of P. intermedia on the plasminogen system in human periodontal ligament (hPDL) cells and explored the signaling pathways involved. Using semi-quantitative reverse transcription (RT)-PCR and quantitative real-time RT-qPCR, we demonstrated that P. intermedia challenge increased tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor (PAI)-2 expression in a concentration- and time-dependent manner, but exerted no influence on urokinase-type plasminogen activator and PAI-1mRNA expression in hPDL cells. Prevotella intermedia stimulation also enhanced tPA protein secretion as confirmed by enzyme-linked immunosorbent assay. Western blot results revealed that P. intermedia treatment increased phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase (p38). ERK, JNK and protein kinase C inhibitors significantly attenuated the P. intermedia-induced tPA and PAI-2 expression. Furthermore, p38 and phosphatidylinositol 3-kinase inhibitors markedly decreased PAI-2 expression, whereas they showed no or little inhibition on tPA expression. In contrast, inhibition of protein kinase A greatly enhanced the upregulatory effect of P. intermedia on tPA and PAI-2 expression. Our results suggest that P. intermedia may contribute to periodontal tissue destruction by upregulating tPA and PAI-2 expression in hPDL cells via multiple signaling pathways. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Improved neovascularization and wound repair by targeting human basic fibroblast growth factor (bFGF) to fibrin.

    PubMed

    Zhao, Wenxue; Han, Qianqian; Lin, Hang; Gao, Yuan; Sun, Wenjie; Zhao, Yannan; Wang, Bin; Chen, Bing; Xiao, Zhifeng; Dai, Jianwu

    2008-10-01

    Targeted therapy is a new generation of therapeutics, where two critical factors are involved. One is the particular molecular target, and the other is the specific target-binding drug. In this work, the fibrin, a main component of plasma clot at wound sites, was used as the target for human bFGF, aiming to improve therapeutic neovascularization and wound repair. To endow bFGF with fibrin-targeting ability, a fibrin-binding peptide Kringle1 (K1), derived from human plasminogen, was fused to human bFGF. The recombinant K1bFGF showed high fibrin and plasma-clot-binding ability. When applied to the wound sites with plasma clots, K1bFGF induced robust neovascularization and improved wound healing. To extend the application of K1bFGF to other cases where no plasma clots exist, we developed a fibrin-scaffold/K1bFGF system. This system could induce localized neovascularization by delivery of K1bFGF in a sustained and site-targeting manner, and provide a microenvironment promoting cell growth and tissue regeneration. In summary, we successfully used the pathologic environment fibrin clot as the target for bFGF, and based on which bFGF was designed into a targeting agent by introduction of a fibrin-binding peptide. This provides a potential approach to improve therapeutic neovascularization and wound repair.

  19. Association between Plasminogen Activator Inhibitor-1 -675 4G/5G Polymorphism and Sepsis: A Meta-Analysis

    PubMed Central

    Yuan, Weifeng; Li, Weifeng; Huang, Wenjie

    2013-01-01

    Background Several studies have evaluated the association between plasminogen activator inhibitor-1 (PAI-1) -675 4G/5G polymorphism and sepsis in different populations. However, the available results are conflicting. Methods A search of Pubmed and EMBASE databases was performed to identify relevant studies for inclusion in the meta-analysis. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were determined using a random-effects model. Results Twelve case-control studies and three cohort studies were included. Overall, a significant association between 4G/5G polymorphism and sepsis risk was observed for 4G/4G vs. 4G/5G +5G/5G (OR = 1.30, 95% CI 1.08–1.56, P = 0.006). In addition, there was a significant association between PAI-1 4G/5G polymorphism and sepsis-related mortality (OR = 1.72, 95% CI 1.27–2.33, P = 0.0005). In subgroup analyses, increased sepsis risk and mortality risk were found in Caucasians and in patients with sepsis. Conclusions This meta-analysis suggested that the PAI-1 -675 4G/5G polymorphism was a risk factor for sepsis and sepsis mortality. PMID:23382992

  20. Identification of surface domain structure on enamel crystals using polyamidoamine dendrimer

    NASA Astrophysics Data System (ADS)

    Chen, Haifeng; Clarkson, Brian H.; Orr, Bradford; Majoros, Istvan; Banaszak Holl, Mark M.

    2002-03-01

    The control of hydroxyapatite crystal nucleation and crystal growth is central to the mineralization and remineralization of enamel and dentin of teeth. However, the precise biomolecular mechanisms involved remain obscure. The intimate association between the crystal's surface and extracellular protein components implies a modulating role for organic crystal interactions probably mediated via specific crystal surface domains. These include lattice defects and specific stereochemical arrays on associated organic molecules. The nature of protein-crystal interaction depends upon the physical forces of attraction / repulsion between specific biomolecular groups and crystal surface domains. The proposed study is to utilize specific polyamidoamine (PAMAM) dendrimers, also known as “artificial proteins”, acting as nanoprobe. These will be used to probe specific surface domain on the surface of the naturally derived crystals of hydroxyapatite and to determine how control of growth and dissolution may be affected at the biomolecular level. The hydroxyapatite crystals are extracted from the maturation stage enamel of rats. Three types of PAMAM dendrimers, respectively with amine-, carboxylic acid and methyl-capped surface, will be applied in the study. The dendrimer binding on the surface of the hydoxyapatite crystals will be characterized using atomic force microscopy (AFM). The different dendrimer binding on the crystals will disclose the specific surface domain structure on the crystals, which is assumed to be important in binding the extracellular protein.

  1. Characterization of protein--DNA interactions using surface plasmon resonance spectroscopy with various assay schemes.

    PubMed

    Teh, Huey Fang; Peh, Wendy Y X; Su, Xiaodi; Thomsen, Jane S

    2007-02-27

    Specific protein-DNA interactions play a central role in transcription and other biological processes. A comprehensive characterization of protein-DNA interactions should include information about binding affinity, kinetics, sequence specificity, and binding stoichiometry. In this study, we have used surface plasmon resonance spectroscopy (SPR) to study the interactions between human estrogen receptors (ER, alpha and beta subtypes) and estrogen response elements (ERE), with four assay schemes. First, we determined the sequence-dependent receptors' binding capacity by monitoring the binding of ER to various ERE sequences immobilized on a sensor surface (assay format denoted as the direct assay). Second, we screened the relative affinity of ER for various ERE sequences using a competition assay, in which the receptors bind to an ERE-immobilized surface in the presence of competitor ERE sequences. Third, we monitored the assembly of ER-ERE complexes on a SPR surface and thereafter the removal and/or dissociation of the ER (assay scheme denoted as the dissociation assay) to determine the binding stoichiometry. Last, a sandwich assay (ER binding to ERE followed by anti-ER recognition of a specific ER subtype) was performed in an effort to understand how ERalpha and ERbeta may associate and compete when binding to the DNA. With these assay schemes, we reaffirmed that (1) ERalpha is more sensitive than ERbeta to base pair change(s) in the consensus ERE, (2) ERalpha and ERbeta form a heterodimer when they bind to the consensus ERE, and (3) the binding stoichiometry of both ERalpha- and ERbeta-ERE complexes is dependent on salt concentration. With this study, we demonstrate the versatility of the SPR analysis. With the involvement of various assay arrangements, the SPR analysis can be further extended to more than kinetics and affinity study.

  2. TAF(II)170 interacts with the concave surface of TATA-binding protein to inhibit its DNA binding activity.

    PubMed

    Pereira, L A; van der Knaap, J A; van den Boom, V; van den Heuvel, F A; Timmers, H T

    2001-11-01

    The human RNA polymerase II transcription factor B-TFIID consists of TATA-binding protein (TBP) and the TBP-associated factor (TAF) TAF(II)170 and can rapidly redistribute over promoter DNA. Here we report the identification of human TBP-binding regions in human TAF(II)170. We have defined the TBP interaction domain of TAF(II)170 within three amino-terminal regions: residues 2 to 137, 290 to 381, and 380 to 460. Each region contains a pair of Huntington-elongation-A subunit-Tor repeats and exhibits species-specific interactions with TBP family members. Remarkably, the altered-specificity TBP mutant (TBP(AS)) containing a triple mutation in the concave surface is defective for binding the TAF(II)170 amino-terminal region of residues 1 to 504. Furthermore, within this region the TAF(II)170 residues 290 to 381 can inhibit the interaction between Drosophila TAF(II)230 (residues 2 to 81) and TBP through competition for the concave surface of TBP. Biochemical analyses of TBP binding to the TATA box indicated that TAF(II)170 region 290-381 inhibits TBP-DNA complex formation. Importantly, the TBP(AS) mutant is less sensitive to TAF(II)170 inhibition. Collectively, our results support a mechanism in which TAF(II)170 induces high-mobility DNA binding by TBP through reversible interactions with its concave DNA binding surface.

  3. Bacillus anthracis Interacts with Plasmin(ogen) to Evade C3b-Dependent Innate Immunity

    PubMed Central

    Chung, Myung-Chul; Tonry, Jessica H.; Narayanan, Aarthi; Manes, Nathan P.; Mackie, Ryan S.; Gutting, Bradford; Mukherjee, Dhritiman V.; Popova, Taissia G.; Kashanchi, Fatah; Bailey, Charles L.; Popov, Serguei G.

    2011-01-01

    The causative agent of anthrax, Bacillus anthracis, is capable of circumventing the humoral and innate immune defense of the host and modulating the blood chemistry in circulation to initiate a productive infection. It has been shown that the pathogen employs a number of strategies against immune cells using secreted pathogenic factors such as toxins. However, interference of B. anthracis with the innate immune system through specific interaction of the spore surface with host proteins such as the complement system has heretofore attracted little attention. In order to assess the mechanisms by which B. anthracis evades the defense system, we employed a proteomic analysis to identify human serum proteins interacting with B. anthracis spores, and found that plasminogen (PLG) is a major surface-bound protein. PLG efficiently bound to spores in a lysine- and exosporium-dependent manner. We identified α-enolase and elongation factor tu as PLG receptors. PLG-bound spores were capable of exhibiting anti-opsonic properties by cleaving C3b molecules in vitro and in rabbit bronchoalveolar lavage fluid, resulting in a decrease in macrophage phagocytosis. Our findings represent a step forward in understanding the mechanisms involved in the evasion of innate immunity by B. anthracis through recruitment of PLG resulting in the enhancement of anti-complement and anti-opsonization properties of the pathogen. PMID:21464960

  4. Echinostoma caproni: identification of enolase in excretory/secretory products, molecular cloning, and functional expression.

    PubMed

    Marcilla, Antonio; Pérez-García, Ana; Espert, Ana; Bernal, Dolores; Muñoz-Antolí, Carla; Esteban, José Guillermo; Toledo, Rafael

    2007-09-01

    In order to investigate molecules that could be involved in host-trematode relationships, we have analysed the excretory/secretory products (ESP) of Echinostoma caproni following a proteomic approach. Actin, Gluthathione S-transferase (GST) and enolase have been identified in the ESP. Enolase, observed to be one of the most abundant proteins, was further characterized. The molecular cloning and in vitro expression in Escherichia coli of E. caproni enolase allowed us to determine that the protein contains 431 amino acids and a theoretical MW of 46272 Da. E. caproni enolase shows high homology to other trematode enolases. The recombinant protein binds specifically to human plasminogen in vitro, as observed for the native protein, confirming its properties as a host-interacting molecule.

  5. Fibrin(ogen) is internalized and degraded by activated human monocytoid cells via Mac-1 (CD11b/CD18): a nonplasmin fibrinolytic pathway.

    PubMed

    Simon, D I; Ezratty, A M; Francis, S A; Rennke, H; Loscalzo, J

    1993-10-15

    Fibrin(ogen) (FGN) is important for hemostasis and wound healing and is cleared from sites of injury primarily by the plasminogen activator system. However, there is emerging evidence in plasminogen activator-deficient transgenic mice that nonplasmin pathways may be important in fibrin(ogen)olysis, as well. Given the proximity of FGN and monocytes within the occlusive thrombus at sites of vascular injury, we considered the possibility that monocytes may play an ancillary role in the degradation and clearance of fibrin. We found that monocytes possess an alternative fibrinolytic pathway that uses the integrin Mac-1, which directly binds and internalizes FGN, resulting in its lysosomal degradation. At 4 degrees C, FGN binds to U937 monocytoid cells in a specific and saturable manner with a kd of 1.8 mumol/L. Binding requires adenosine diphosphate stimulation and is calcium-dependent. At 37 degrees C, FGN and fibrin monomer (FM) are internalized and degraded at rates of 0.37 +/- 0.13 and 0.55 +/- 0.03 microgram/10(6) cells/h by U937 cells, 1.38 +/- 0.02 and 1.20 +/- 0.30 microgram/10(6) cells/h by THP-1 cells, and 2.10 +/- 0.20 and 2.52 +/- 0.18 micrograms/10(6) cells/h by human peripheral blood mononuclear cells, respectively. The serine protease inhibitors, PPACK and aprotinin, and the specific elastase inhibitor, AAPVCK, do not significantly inhibit degradation. However, degradation is inhibited by chloroquine, suggesting that a lysosomal pathway is involved. Factor X, a competitive ligand with FGN for the Mac-1 receptor, also blocks degradation, as does a monoclonal antibody to the alpha-subunit of Mac-1. Autoradiography of radioiodinated, internalized FGN shows that FGN proteolysis by the pathway produces a unique degradation pattern distinct from that observed with plasmin. In a fibrin clot lysis assay, Mac-1-mediated fibrinolysis contributed significantly to total fibrinolysis. In summary, FGN is internalized and degraded by activated human monocytoid cells via Mac-1 in the absence of plasmin, thereby providing an alternative fibrinolytic pathway. Thus, in addition to the function of cell adhesion, integrins may also act as receptors that mediate the internalization and degradation of bound ligands.

  6. THE ROLE OF MICROVASCULAR THROMBOSIS IN PARTICULATE MATTER (PM) AND PM COMPONENT-INDUCED CARDIOVASCULAR EFFECTS: OXIDATIVE STRESS AS A MEDIATOR OF THROMBOSIS

    EPA Science Inventory

    Particulate matter (PM) exposure has been associated with increased plasma fibrinogen. We have found that Spontaneously hypertensive rats respond to PM by increasing fibrinogen and plasminogen activator inhibitor -1 at PM concentration that would cause minimal changes in healthy ...

  7. Plasmin-dependent proteolysis of Tissue Factor Pathway Inhibitor in a mouse model of endotoxemia

    PubMed Central

    Lupu, Cristina; Herlea, Oana; Tang, Haiwang; Lijnen, Roger H.; Lupu, Florea

    2012-01-01

    Summary Background Development of a procoagulant state in sepsis, due to aberrant expression of tissue factor (TF) and sharp decrease of its major inhibitor tissue factor pathway inhibitor (TFPI), could lead to microthrombotic organ failure. The mechanism for the decline of TFPI activity in the lung could involve plasmin-mediated cleavage of the inhibitor. Objective To investigate the effect of plasmin generation on lung-associated TFPI activity, in normal conditions and during infusion of endotoxin (LPS) in mice. Methods Plasmin generation and TFPI activity were assayed in the lungs of mice deficient of tissue-type plasminogen activator (t-PA) or plasminogen (Plg), at 2-hrs after LPS or saline injection. Results The sharp loss of lung-associated TFPI activity at 2-hrs post LPS paralleled the abrupt increase of plasmin generation. TFPI activity was significantly retained in both t-PA-/- and Plg-/- mice, which are unable to generate plasmin. Conclusion The increased plasmin generation during the early stages of sepsis could cleave/inactivate TFPI and thus lead to thrombotic complications. PMID:23106863

  8. Activation of cardiac renin-angiotensin system and plasminogen activator inhibitor-1 gene expressions in oral contraceptive-induced cardiometabolic disorder.

    PubMed

    Olatunji, Lawrence A; Usman, Taofeek O; Seok, Young-Mi; Kim, In-Kyeom

    2017-02-01

    Clinical studies have shown that combined oral contraceptive (COC) use is associated with cardiometabolic disturbances. Elevated renin-angiotensin system (RAS) and plasminogen activator inhibitor-1 (PAI-1) have also been implicated in the development of cardiometabolic events. To determine the effect of COC treatment on cardiac RAS and PAI-1 gene expressions, and whether the effect is circulating aldosterone or corticosterone dependent. Female rats were treated (p.o.) with olive oil (vehicle) or COC (1.0 µg ethinylestradiol and 10.0 µg norgestrel) daily for six weeks. COC treatment led to increases in blood pressure, HOMA-IR, Ace1 mRNA, Atr1 mRNA, Pai1 mRNA, cardiac PAI-1, plasma PAI-1, C-reactive protein, uric acid, insulin and corticosterone. COC treatment also led to dyslipidemia, decreased glucose tolerance and plasma 17β-estradiol. These results demonstrates that hypertension and insulin resistance induced by COC is associated with increased cardiac RAS and PAI-1 gene expression, which is likely to be through corticosterone-dependent but not aldosterone-dependent mechanism.

  9. Dose-ranging study of the novel recombinant plasminogen activator BM 06.022 in healthy volunteers.

    PubMed

    Martin, U; von Möllendorff, E; Akpan, W; Kientsch-Engel, R; Kaufmann, B; Neugebauer, G

    1991-10-01

    The novel recombinant plasminogen activator BM 06.022 consists of the kringle 2 and protease domains of human tissue-type plasminogen activator and is unglycosylated because of its expression in Escherichia coli cells. Pharmacokinetics for activity and hemostatic effects of BM 06.022 were studied in 18 healthy male volunteers after an intravenous bolus injection over 2 minutes. BM 06.022 was administered successively at doses of 0.1125, 0.55, 2.2, 3.3, 4.4, and 5.5 MU to three volunteers. Plasma fibrinogen was unchanged; effects of BM 06.022 were observed on plasminogen only at higher doses, and dose-dependent effects were seen on alpha 2-antiplasmin and fibrin D-dimers. The concentration of plasminogen and alpha 2-antiplasmin was 87% +/- 3% and 79% +/- 3%, respectively, of baseline 2 hours after injection of 5.5 MU of BM 06.022. Fibrin D-dimers were highest with 1147 +/- 380 ng/ml at 5.5 MU of BM 06.022. The area under the activity concentration-time curve (AUC) increased dose-dependently and linearly. At 5.5 MU of BM 06.022, the AUC was 313 +/- 47 IU.hr.ml-1, the total plasma clearance was 306 +/- 40 ml/min, and the half-life was 14.4 +/- 1.1 minutes.

  10. Functional Stability of Plasminogen Activator Inhibitor-1

    PubMed Central

    Kuru, Pinar; Toksoy Oner, Ebru; Agirbasli, Mehmet

    2014-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of plasminogen activators, such as tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), and a major regulator of the fibrinolytic system. PAI-1 plays a pivotal role in acute thrombotic events such as deep vein thrombosis (DVT) and myocardial infarction (MI). The biological effects of PAI-1 extend far beyond thrombosis including its critical role in fibrotic disorders, atherosclerosis, renal and pulmonary fibrosis, type-2 diabetes, and cancer. The conversion of PAI-1 from the active to the latent conformation appears to be unique among serpins in that it occurs spontaneously at a relatively rapid rate. Latency transition is believed to represent a regulatory mechanism, reducing the risk of thrombosis from a prolonged antifibrinolytic action of PAI-1. Thus, relying solely on plasma concentrations of PAI-1 without assessing its function may be misleading in interpreting the role of PAI-1 in many complex diseases. Environmental conditions, interaction with other proteins, mutations, and glycosylation are the main factors that have a significant impact on the stability of the PAI-1 structure. This review provides an overview on the current knowledge on PAI-1 especially importance of PAI-1 level and stability and highlights the potential use of PAI-1 inhibitors for treating cardiovascular disease. PMID:25386620

  11. CO adsorption on (111) and (100) surfaces of the Pt sub 3 Ti alloy. Evidence for parallel binding and strong activation of CO

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, A. B.; Ross, P. N.

    1985-01-01

    The CO adsorption on a 40 atom cluster model of the (111) surface and a 36 atom cluster model of the (100) surface of the Pt3Ti alloy was studied. Parallel binding to high coordinate sites associated with Ti and low CO bond scission barriers are predicted for both surfaces. The binding of CO to Pt sites occurs in an upright orientation. These orientations are a consequence of the nature of the CO pi donation interactions with the surface. On the Ti sites the orbitals donate to the nearly empty Ti 3d band and the antibonding counterpart orbitals are empty. On the Pt sites, however, they are in the filled Pt 5d region of the alloy band, which causes CO to bond in a vertical orientation by 5 delta donation from the carbon end.

  12. Close relationship of tissue plasminogen activator-plasminogen activator inhibitor-1 complex with multiple organ dysfunction syndrome investigated by means of the artificial pancreas

    PubMed Central

    Hoshino, Masami; Haraguchi, Yoshikura; Hirasawa, Hiroyuki; Sakai, Motohiro; Saegusa, Hiroshi; Hayashi, Kazushiro; Horita, Naoki; Ohsawa, Hiroyuki

    2001-01-01

    Background: Glucose tolerance (GT) has not been taken into consideration in investigations concerning relationships between coagulopathy and multiple organ dysfunction syndrome (MODS), and endothelial cell activation/endothelial cell injury (ECA/ECI) in septic patients, although coagulopathy is known to be influenced by blood glucose level. We investigated those relationships under strict blood glucose control and evaluation of GT with the glucose clamp method by means of the artificial pancreas in nine septic patients with glucose intolerance. The relationships between GT and blood stress related hormone levels (SRH) were also investigated. Methods: The amount of metabolized glucose (M value), as the parameter of GT, was measured by the euglycemic hyperinsulinemic glucose clamp method, in which the blood glucose level was clamped at 80 mg/dl under a continuous insulin infusion rate of 1.12 mU/kg per min, using the artificial pancreas, STG-22. Multiple organ failure (MOF) score was calculated using the MOF criteria of Japanese Association for Critical Care Medicine. Regarding coagulopathy, the following parameters were used: disseminated intravascular coagulation (DIC) score (calculated from the DIC criteria of the Ministry of Health and Welfare of Japan) and the parameters used for calculating DIC score, protein-C, protein-S, plasminogen, antithrombin III (AT-III), plasminogen activator inhibitor-1 (PAI-1), and tissue plasminogen activator-PAI-1 (tPA-PAI-1) complex. Thrombomodulin (TM) was measured as the indicator of ECI. Results: There were no significant correlations between M value and SRH, parameters indicating coagulopathy and the MOF score. The MOF score and blood TM levels were positively correlated with DIC score, thrombin-AT-III complex and tPA-PAI-1 complex, and negatively correlated with blood platelet count. Conclusions: GT was not significantly related to SRH, coagulopathy and MODS under strict blood glucose control. Hypercoagulability was closely related to MODS and ECI. Among the parameters indicating coagulopathy, tPA-PAI-1 complex, which is considered to originate from ECA, seemed to be a sensitive parameter of MODS and ECI, and might be a predictive marker of MODS. The treatment for reducing hypercoagulability and ECA/ECI were thought to be justified as one of the therapies for acutely ill septic patients. PMID:11299067

  13. Sickle Mice Are Sensitive to Hypoxia/Ischemia-Induced Stroke but Respond to Tissue-Type Plasminogen Activator Treatment.

    PubMed

    Sun, Yu-Yo; Lee, Jolly; Huang, Henry; Wagner, Mary B; Joiner, Clinton H; Archer, David R; Kuan, Chia-Yi

    2017-12-01

    The effects of lytic stroke therapy in patients with sickle cell anemia are unknown, although a recent study suggested that coexistent sickle cell anemia does not increase the risk of cerebral hemorrhage. This finding calls for systemic analysis of the effects of thrombolytic stroke therapy, first in humanized sickle mice, and then in patients. There is also a need for additional predictive markers of sickle cell anemia-associated vasculopathy. We used Doppler ultrasound to examine the carotid artery of Townes sickle mice tested their responses to repetitive mild hypoxia-ischemia- and transient hypoxia-ischemia-induced stroke at 3 or 6 months of age, respectively. We also examined the effects of tPA (tissue-type plasminogen activator) treatment in transient hypoxia-ischemia-injured sickle mice. Three-month-old sickle cell (SS) mice showed elevated resistive index in the carotid artery and higher sensitivity to repetitive mild hypoxia-ischemia-induced cerebral infarct. Six-month-old SS mice showed greater resistive index and increased flow velocity without obstructive vasculopathy in the carotid artery. Instead, the cerebral vascular wall in SS mice showed ectopic expression of PAI-1 (plasminogen activator inhibitor-1) and P-selectin, suggesting a proadhesive and prothrombotic propensity. Indeed, SS mice showed enhanced leukocyte and platelet adherence to the cerebral vascular wall, broader fibrin deposition, and higher mortality after transient hypoxia-ischemia. Yet, post-transient hypoxia-ischemia treatment with tPA reduced thrombosis and mortality in SS mice. Sickle mice are sensitive to hypoxia/ischemia-induced cerebral infarct but benefit from thrombolytic treatment. An increased resistive index in carotid arteries may be an early marker of sickle cell vasculopathy. © 2017 American Heart Association, Inc.

  14. Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice.

    PubMed

    Siefert, S A; Chabasse, C; Mukhopadhyay, S; Hoofnagle, M H; Strickland, D K; Sarkar, R; Antalis, T M

    2014-10-01

    The resolution of deep vein thrombosis requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. To investigate the role of PAI-2 in venous thrombus formation and resolution. Venous thrombus resolution was compared in wild-type C57BL/6, PAI-2(-/-) , and PAI-1(-/-) mice using the stasis model of deep vein thrombosis. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. We found that the absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2(-/-) mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2-deficient thrombi had increased levels of the neutrophil chemoattractant CXCL2, which was associated with early enhanced neutrophil recruitment. These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. © 2014 International Society on Thrombosis and Haemostasis.

  15. Plasminogen activator inhibitor-1 4G/5G polymorphism, factor V Leiden, prothrombin mutations and the risk of VTE recurrence.

    PubMed

    Sundquist, Kristina; Wang, Xiao; Svensson, Peter J; Sundquist, Jan; Hedelius, Anna; Larsson Lönn, Sara; Zöller, Bengt; Memon, Ashfaque A

    2015-11-25

    Plasminogen-activator inhibitor (PAI)-1 is an important inhibitor of the plasminogen/plasmin system. PAI-1 levels are influenced by the 4G/5G polymorphism in the PAI-1 promoter. We investigated the relationship between the PAI-1 polymorphism and VTE recurrence, and its possible modification by factor V Leiden (FVL) and prothrombin (PTM) mutations. Patients (n=1,069) from the Malmö Thrombophilia Study were followed from discontinuation of anticoagulant treatment until diagnosis of VTE recurrence or the end of the study (maximum follow-up 9.8 years). One hundred twenty-seven patients (11.9 %) had VTE recurrence. PAI-1 was genotyped by TaqMan PCR. Cox regression analysis adjusted for age, sex and acquired risk factors of VTE showed no evidence of an association between PAI-1 genotype and risk of VTE recurrence in the study population as a whole. However, by including an interaction term in the analysis we showed that FVL but not PTM modified the effect of PAI-1 genotype: patients with the 4G allele plus FVL had a higher risk of VTE recurrence [hazard ratio (HR) =2.3, 95 % confidence interval (CI) =1.5-3.3] compared to patients with the 4G allele but no FVL (reference group) or FVL irrespective of PAI-1 genotype (HR=1.8, 95 % CI=1.3-2.5). Compared to reference group, 5G allele irrespective of FVL was associated with lower risk of VTE recurrence only when compared with 4G allele together with FVL. In conclusion, FVL has a modifying effect on PAI-1 polymorphism in relation to risk of VTE recurrence. The role of PAI-1 polymorphism as a risk factor of recurrent VTE may be FVL dependent.

  16. Functional characterization of c-Mpl ectodomain mutations that underlie congenital amegakaryocytic thrombocytopenia.

    PubMed

    Varghese, Leila N; Zhang, Jian-Guo; Young, Samuel N; Willson, Tracy A; Alexander, Warren S; Nicola, Nicos A; Babon, Jeffrey J; Murphy, James M

    2014-02-01

    Activation of the cell surface receptor, c-Mpl, by the cytokine, thrombopoietin (TPO), underpins megakaryocyte and platelet production in mammals. In humans, mutations in c-Mpl have been identified as the molecular basis of Congenital Amegakaryocytic Thrombocytopenia (CAMT). Here, we show that CAMT-associated mutations in c-Mpl principally lead to defective receptor presentation on the cell surface. In contrast, one CAMT mutant c-Mpl, F104S, was expressed on the cell surface, but showed defective TPO binding and receptor activation. Using mutational analyses, we examined which residues adjacent to F104 within the membrane-distal cytokine receptor homology module (CRM) of c-Mpl comprise the TPO-binding epitope, revealing residues within the predicted Domain 1 E-F and A-B loops and Domain 2 F'-G' loop as key TPO-binding determinants. These studies underscore the importance of the c-Mpl membrane-distal CRM to TPO-binding and suggest that mutations within this CRM that perturb TPO binding could give rise to CAMT.

  17. Depletion of tissue plasminogen activator attenuates lung ischemia-reperfusion injury via inhibition of neutrophil extravasation

    PubMed Central

    Zhao, Yunge; Sharma, Ashish K.; LaPar, Damien J.; Kron, Irving L.; Ailawadi, Gorav; Liu, Yuan; Jones, David R.; Laubach, Victor E.

    2011-01-01

    Ischemia-reperfusion (IR) injury following lung transplantation remains a major source of early morbidity and mortality. Histologically, this inflammatory process is characterized by neutrophil infiltration and activation. We previously reported that lung IR injury was significantly attenuated in plasminogen activator inhibitor-1-deficient mice. In this study, we explored the potential role of tissue plasminogen activator (tPA) in a mouse lung IR injury model. As a result, tPA knockout (KO) mice were significantly protected from lung IR injury through several mechanisms. At the cellular level, tPA KO specifically blocked neutrophil extravasation into the interstitium, and abundant homotypic neutrophil aggregation (HNA) was detected in the lung microvasculature of tPA KO mice after IR. At the molecular level, inhibition of neutrophil extravasation was associated with reduced expression of platelet endothelial cell adhesion molecule-1 mediated through the tPA/ LDL receptor-related protein/NF-κB signaling pathway, whereas increased P-selectin triggered HNA. At the functional level, tPA KO mice incurred significantly decreased vascular permeability and improved lung function following IR. Protection from lung IR injury in tPA KO mice occurs through a fibrinolysis-independent mechanism. These results suggest that tPA could serve as an important therapeutic target for the prevention and treatment of acute IR injury after lung transplantation. PMID:21378024

  18. Cpa, the outer membrane protease of Cronobacter sakazakii, activates plasminogen and mediates resistance to serum bactericidal activity.

    PubMed

    Franco, A A; Kothary, M H; Gopinath, G; Jarvis, K G; Grim, C J; Hu, L; Datta, A R; McCardell, B A; Tall, B D

    2011-04-01

    Cronobacter spp. are emerging neonatal pathogens in humans, associated with outbreaks of meningitis and sepsis. To cause disease, they must survive in blood and invade the central nervous system by penetrating the blood-brain barrier. C. sakazakii BAA-894 possesses an ~131-kb plasmid (pESA3) that encodes an outer membrane protease (Cpa) that has significant identity to proteins that belong to the Pla subfamily of omptins. Members of this subfamily of proteins degrade a number of serum proteins, including circulating complement, providing protection from the complement-dependent serum killing. Moreover, proteins of the Pla subfamily can cause uncontrolled plasmin activity by converting plasminogen to plasmin and inactivating the plasmin inhibitor α2-antiplasmin (α2-AP). These reactions enhance the spread and invasion of bacteria in the host. In this study, we found that an isogenic cpa mutant showed reduced resistance to serum in comparison to its parent C. sakazakii BAA-894 strain. Overexpression of Cpa in C. sakazakii or Escherichia coli DH5α showed that Cpa proteolytically cleaved complement components C3, C3a, and C4b. Furthermore, a strain of C. sakazakii overexpressing Cpa caused a rapid activation of plasminogen and inactivation of α2-AP. These results strongly suggest that Cpa may be an important virulence factor involved in serum resistance, as well as in the spread and invasion of C. sakazakii.

  19. Reduced endothelial activation after exercise is associated with improved HbA1c in patients with type 2 diabetes and coronary artery disease.

    PubMed

    Byrkjeland, Rune; Njerve, Ida U; Arnesen, Harald; Seljeflot, Ingebjørg; Solheim, Svein

    2017-03-01

    We have previously reported insignificant changes in HbA 1c after exercise in patients with both type 2 diabetes and coronary artery disease. In this study, we investigated the effect of exercise on endothelial function and possible associations between changes in endothelial function and HbA 1c . Patients with type 2 diabetes and coronary artery disease ( n = 137) were randomised to 12 months exercise or standard follow-up. Endothelial function was assessed by circulating biomarkers (E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, von Willebrand factor, tissue plasminogen activator antigen, asymmetric dimethylarginine and L-arginine/asymmetric dimethylarginine ratio). Differences between the randomised groups were analysed by analysis of covariance and correlations by Spearman's rho or Pearson's correlation. No effect of exercise on endothelial function was demonstrated. The changes in HbA 1c in the exercise group correlated with changes in E-selectin ( r = 0.56, p < 0.001), intercellular adhesion molecule-1 ( r = 0.27, p = 0.052), vascular cell adhesion molecule-1 ( r = 0.32, p = 0.022) and tissue plasminogen activator antigen ( r = 0.35, p =  0.011). HbA 1c decreased significantly more in patients with versus without a concomitant reduction in E-selectin ( p =  0.002), intercellular adhesion molecule-1 ( p =  0.011), vascular cell adhesion molecule-1 ( p =  0.028) and tissue plasminogen activator antigen ( p =  0.009). Exercise did not affect biomarkers of endothelial function in patients with both type 2 diabetes and coronary artery disease. However, changes in biomarkers of endothelial activation correlated with changes in HbA 1c , and reduced endothelial activation was associated with improved HbA 1c after exercise.

  20. Biochemical actions of glucocorticoids on macrophages in culture. Specific inhibition of elastase, collagenase, and plasminogen activator secretion and effects on other metabolic functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werb, Z.

    1978-01-01

    The effects of glucocorticoids on biochemical functions of macrophages from man, mouse, rabbit, and guinea pig were examined. Secretion of plasminogen activator by human peripheral blood monocytes was decreased 50% with 1 nM dexamethasone. Differentiation of murine monocytic and granulocytic colonies in agar from bone marrow precursors was decreased 50% at 7 days with 20 nM dexamethasone. Secretion of elastase, collagenase, and plasminogen activator by resident and thioglycollate-elicited mouse peritoneal macrophages was decreased by dexamethasone, cortisol, and triamcinolone acetonide (1 to 1,000 nM), but not by progesterone, estradiol, and dihydrotestosterone (1,000 nM); in contast, secretion of lysozyme was not affectedmore » by glucocorticoids. The inhibition of macrophage secretion by dexamethasone was both time and dose dependent. Inhibition of macrophage secretion increased with increasing glucocorticoid concentration. Half-maximum inhibition of secretion of elastase, collagenase, and plasminogen activator was seen at dexamethasone concentrations (1 to 10 nM) similar to those that half-saturated the specific glucocorticoid receptors. At high concentrations of dexamethasone (100 to 1,000 nM) the secretion of plasminogen activator was inhibited to a greater extent (>95%) than the secretion of elastase (60 to 80%).Progesterone alone had no effect on secretion, but blocked the inhibitory effects of dexamethasone and cortisol. Secretion of collagenase, neutral proteinases, and plasminogen activator by elicited rabbit alveolar macrophages was inhibited with glucocorticoids (0.1 to 100 nM) but not with progesterone or sex steroids. Secretion of a neutral elastinolytic proteinase by guinea pig alveolar macrophages was also inhibited by dexamethasone.« less

  1. A collaborative sequential meta-analysis of individual patient data from randomized trials of endovascular therapy and tPA vs. tPA alone for acute ischemic stroke: ThRombEctomy And tPA (TREAT) analysis: statistical analysis plan for a sequential meta-analysis performed within the VISTA-Endovascular collaboration.

    PubMed

    MacIsaac, Rachael L; Khatri, Pooja; Bendszus, Martin; Bracard, Serge; Broderick, Joseph; Campbell, Bruce; Ciccone, Alfonso; Dávalos, Antoni; Davis, Stephen M; Demchuk, Andrew; Diener, Hans-Christoph; Dippel, Diederik; Donnan, Geoffrey A; Fiehler, Jens; Fiorella, David; Goyal, Mayank; Hacke, Werner; Hill, Michael D; Jahan, Reza; Jauch, Edward; Jovin, Tudor; Kidwell, Chelsea S; Liebeskind, David; Majoie, Charles B; Martins, Sheila Cristina Ouriques; Mitchell, Peter; Mocco, J; Muir, Keith W; Nogueira, Raul; Saver, Jeffrey L; Schonewille, Wouter J; Siddiqui, Adnan H; Thomalla, Götz; Tomsick, Thomas A; Turk, Aquilla S; White, Philip; Zaidat, Osama; Lees, Kennedy R

    2015-10-01

    Endovascular treatment has been shown to restore blood flow effectively. Second-generation medical devices such as stent retrievers are now showing overwhelming efficacy in clinical trials, particularly in conjunction with intravenous recombinant tissue plasminogen activator. This statistical analysis plan utilizing a novel, sequential approach describes a prospective, individual patient data analysis of endovascular therapy in conjunction with intravenous recombinant tissue plasminogen activator agreed upon by the Thrombectomy and Tissue Plasminogen Activator Collaborative Group. This protocol will specify the primary outcome for efficacy, as 'favorable' outcome defined by the ordinal distribution of the modified Rankin Scale measured at three-months poststroke, but with modified Rankin Scales 5 and 6 collapsed into a single category. The primary analysis will aim to answer the questions: 'what is the treatment effect of endovascular therapy with intravenous recombinant tissue plasminogen activator compared to intravenous tissue plasminogen activator alone on full scale modified Rankin Scale at 3 months?' and 'to what extent do key patient characteristics influence the treatment effect of endovascular therapy?'. Key secondary outcomes include effect of endovascular therapy on death within 90 days; analyses of modified Rankin Scale using dichotomized methods; and effects of endovascular therapy on symptomatic intracranial hemorrhage. Several secondary analyses will be considered as well as expanding patient cohorts to intravenous recombinant tissue plasminogen activator-ineligible patients, should data allow. This collaborative meta-analysis of individual participant data from randomized trials of endovascular therapy vs. control in conjunction with intravenous thrombolysis will demonstrate the efficacy and generalizability of endovascular therapy with intravenous thrombolysis as a concomitant medication. © 2015 World Stroke Organization.

  2. Influence of natural humic acids and synthetic phenolic polymers on fibrinolysis

    NASA Astrophysics Data System (ADS)

    Klöcking, Hans-Peter

    The influence of synthetic and natural phenolic polymers on the release of plasminogen activator was studied in an isolated, perfused, vascular preparation (pig ear). Of the tested synthetic phenolic polymers, the oxidation products of caffeic acid (KOP) and 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), at a concentration of 50 µg/ml perfusate, were able to increase the plasminogen activator activity by 70%. The oxidation products of chlorogenic acid (CHOP), hydrocaffeic acid (HYKOP), pyrogallol (PYROP) and gallic acid (GALOP), at the same concentration, exerted no influence on the release of plasminogen activator. Of the naturally occurring humic acids, the influence of sodium humate was within the same order of magnitude as KOP and 3,4-DHPOP. Ammonium humate was able to increase the plasminogen activator release only at a concentration of 100 µg/ml perfusate. In rats, the t-PA activity increased after i.v. application of 10 mg/kg of KOP, Na-HS or NH4-HS.

  3. Discriminant analysis of the metabolic effects of a new combined contraceptive vaginal ring containing Nestorone/EE vs. a second-generation oral contraceptive containing levonorgestrel/EE.

    PubMed

    Rad, Mandana; Burggraaf, Jacobus; de Kam, Marieke L; Cohen, Adam F; Kluft, Cornelis

    2012-09-01

    Discriminant analysis (DA) was performed on data of two combined hormonal contraceptives (CHC) differing in estrogen ratio to explore whether a combination of variables rather than a single variable distinguishes CHCs better. Data were used of a parallel study in premenopausal women treated for three cycles (21 days on, 7 days off) with a contraceptive vaginal ring delivering Nestorone and ethinyl estradiol (EE) or an oral contraceptive containing levonorgestrel and EE. DA was performed on the change from baseline (CFB) and the end-of-treatment values at 3 months for lipids, sex-hormone binding globulin (SHBG), C-reactive protein, angiotensinogen, blood pressure and hemostasis variables, and on the hemostasis variables only. For the complete set, the CFB for factor VII (FVII), SHBG and plasminogen (PLG), or end-of-treatment SHBG- and FVII level discriminated the treatments best. Maximal discrimination for the hemostasis data was by CFB for FVII and PLG or end-of-treatment FVII level. DA identifies differences between CHCs and may provide information on the factors associated with thrombotic risk. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Effect of dihydrotestosterone on the expression of mucin 1 and the activity of Wnt signaling in mouse corneal epithelial cells.

    PubMed

    Qin, Li; Pei, Cheng; Kang, Qian-Yan; Liu, Zhao; Li, Li

    2016-01-01

    To explore the effects of the androgen dihydrotestosterone on the expression of mucin 1 (MUC1) and the activity of Wnt signaling in mouse corneal epithelial cells. Primary mouse corneal epithelial cells were isolated from the corneas of BALB/c mice. Quantitative real-time polymerase chain reaction, immunofluorescence and Western blot analysis were used to quantify the differential expression of selected genes. The androgen receptor was silenced by transfecting cells with androgen receptor shRNAs. TOP-Flash and FOP-flash reporter plasmids were used to measure β-catenin-driven transcription. Dihydrotestosterone treatment increased MUC1 expression and activated the Wnt signaling pathway and led to the translocation of β-catenin and upregulation of the Wnt downstream target gene TATA box binding protein and urokinase plasminogen activator. These effects were prevented by downregulating the androgen receptor. Androgens may protect against dry eye by regulating the expression of MUC1 which is stimulated by the activation of Wnt signaling via the androgen receptor. An understanding of the mechanisms associated with androgen-mediated protection against dry eye is an important step in developing new therapies for this disease.

  5. Decreased levels of active uPA and KLK8 assessed by [111 In]MICA-401 binding correlate with the seizure burden in an animal model of temporal lobe epilepsy.

    PubMed

    Missault, Stephan; Peeters, Lore; Amhaoul, Halima; Thomae, David; Van Eetveldt, Annemie; Favier, Barbara; Thakur, Anagha; Van Soom, Jeroen; Pitkänen, Asla; Augustyns, Koen; Joossens, Jurgen; Staelens, Steven; Dedeurwaerdere, Stefanie

    2017-09-01

    Urokinase-type plasminogen activator (uPA) and kallikrein-related peptidase 8 (KLK8) are serine proteases that contribute to extracellular matrix (ECM) remodeling after brain injury. They can be labelled with the novel radiotracer [ 111 In]MICA-401. As the first step in exploring the applicability of [ 111 In]MICA-401 in tracing the mechanisms of postinjury ECM reorganization in vivo, we performed in vitro and ex vivo studies, assessing [ 111 In]MICA-401 distribution in the brain in two animal models: kainic acid-induced status epilepticus (KASE) and controlled cortical impact (CCI)-induced traumatic brain injury (TBI). In the KASE model, in vitro autoradiography with [ 111 In]MICA-401 was performed at 7 days and 12 weeks post-SE. To assess seizure burden, rats were monitored using video-electroencephalography (EEG) for 1 month before the 12-week time point. In the CCI model, in vitro autoradiography was performed at 4 days and ex vivo autoradiography at 7 days post-TBI. At 7 days post-SE, in vitro autoradiography revealed significantly decreased [ 111 In]MICA-401 binding in hippocampal CA3 subfield and extrahippocampal temporal lobe (ETL). In the chronic phase, when animals had developed spontaneous seizures, specific binding was decreased in CA3 and CA1/CA2 subfields of hippocampus, dentate gyrus, ETL, and parietal cortex. Of interest, KASE rats with the highest frequency of seizures had the lowest hippocampal [ 111 In]MICA-401 binding (r = -0.76, p ≤ 0.05). Similarly, at 4 days post-TBI, in vitro [ 111 In]MICA-401 binding was significantly decreased in medial and lateral perilesional cortex and ipsilateral dentate gyrus. Ex vivo autoradiography at 7 days post-TBI, however, revealed increased tracer uptake in perilesional cortex and hippocampus, which was likely related to tracer leakage due to blood-brain barrier (BBB) disruption. Strong association of reduced [ 111 In]MICA-401 binding with seizure burden in the KASE model suggests that analysis of reduced levels of active uPA/KLK8 represents a novel biomarker candidate to be explored as a biomarker for epilepsy severity. However, limited BBB permeability of [ 111 In]MICA-401 currently limits its application in vivo. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  6. Fossilized microorganisms associated with zeolite-carbonate interfaces in sub-seafloor hydrothermal environments.

    PubMed

    Ivarsson, M; Lindblom, S; Broman, C; Holm, N G

    2008-03-01

    In this paper we describe carbon-rich filamentous structures observed in association with the zeolite mineral phillipsite from sub-seafloor samples drilled and collected during the Ocean Drilling Program (ODP) Leg 197 at the Emperor Seamounts. The filamentous structures are approximately 5 microm thick and approximately 100-200 microm in length. They are found attached to phillipsite surfaces in veins and entombed in vein-filling carbonates. The carbon content of the filaments ranges between approximately 10 wt% C and 55 wt% C. They further bind to propidium iodide (PI), which is a dye that binds to damaged cell membranes and remnants of DNA. Carbon-rich globular microstructures, 1-2 microm in diameter, are also found associated with the phillipsite surfaces as well as within wedge-shaped cavities in phillipsite assemblages. The globules have a carbon content that range between approximately 5 wt% C and 55 wt% C and they bind to PI. Ordinary globular iron oxides found throughout the samples differ in that they contain no carbon and do not bind to the dye PI. The carbon-rich globules are mostly concentrated to a film-like structure that is attached to the phillipsite surfaces. This film has a carbon content that ranges between approximately 25 wt% C and 75 wt% C and partially binds to PI. EDS analyses show that the carbon in all structures described are not associated with calcium and therefore not bound in carbonates. The carbon content and the binding to PI may indicate that the filamentous structures could represent fossilized filamentous microorganisms, the globules could represent fossilized microbial cells and the film-like structures could represent a microbially produced biofilm. Our results extend the knowledge of possible habitable niches for a deep biosphere in sub-seafloor environments and suggests, as phillipsite is one of the most common zeolite mineral in volcanic rocks of the oceanic crust, that it could be a common feature in the oceanic crust elsewhere.

  7. Recombinant tissue plasminogen activator as a novel treatment option for infective endocarditis: a retrospective clinical study in 32 children.

    PubMed

    Levitas, Aviva; Krymko, Hanna; Richardson, Justin; Zalzstein, Eli; Ioffe, Viktoriya

    2016-01-01

    Infective endocarditis is a life-threatening infectious syndrome, with high morbidity and mortality. Current treatments for infective endocarditis include intravenous antibiotics, surgery, and involve a lengthy hospital stay. We hypothesised that adjunctive recombinant tissue plasminogen activator treatment for infective endocarditis may facilitate faster resolution of vegetations and clearance of positive blood cultures, and therefore decrease morbidity and mortality. This retrospective study included follow-up of patients, from 1997 through 2014, including clinical presentation, causative organism, length of treatment, morbidity, and mortality. We identified 32 patients, all of whom were diagnosed with endocarditis and were treated by recombinant tissue plasminogen activator. Among all, 27 patients (93%) had positive blood cultures, with the most frequent organisms being Staphylococcus epidermis (nine patients), Staphylococcus aureus (six patients), and Candida (nine patients). Upon treatment, in 31 patients (97%), resolution of vegetations and clearance of blood cultures occurred within hours to few days. Out of 32 patients, one patient (3%) died and three patients (9%) suffered embolic or haemorrhagic events, possibly related to the recombinant tissue plasminogen activator. None of the patients required surgical intervention to assist vegetation resolution. In conclusion, it appears that recombinant tissue plasminogen activator may become an adjunctive treatment for infective endocarditis and may decrease morbidity as compared with current guidelines. Prospective multi-centre studies are required to validate our findings.

  8. Evaluation of Prognostic Values of Tissue Plasminogen Activator and Plasminogen Activator Inhibitor-1 in Crimean-Congo Hemorrhagic Fever Patients

    PubMed Central

    Gurbuz, Yunus; Ozturk, Baris; Tutuncu, Emin Ediz; Sencan, Irfan; Cicek Senturk, Gonul; Altay, Fatma Aybala

    2015-01-01

    Background: Crimean-Congo hemorrhagic fever (CCHF) is a widespread disease in Turkey, and was responsible for many deaths in endemic regions during the last decade. The pathogenesis of the disease is not fully understood yet. Objectives: In this study we aimed to determine the levels of tissue plasminogen activator (tPA) and Plasminogen activator inhibitor-1 (PAI-1) as predictors of prognosis in CCHF. Patients and Methods: Patients who were diagnosed by the polymerase chain reaction (PCR) and IgM positivity in the reference laboratory were included in this study. Tissue Plasminogen activator and PAI-1 levels were measured by the enzyme linked immunosorbent assay (ELISA) using a commercial kit (human t-PA ELISA and human PAL-1 ELISA; BioVendor research and diagnostic products, BioVendor-Laboratorni medicina a.s., Brno, Czech Republic). Results: A total of 46 patients participated in this study. The significant differences between recovering patients and the patients who died, regarding Aspartate aminotransferase (AST), Creatine Phosphokinase (CPK), Lactate Dehydrogenase (LDH), Prothrombin Time (PT), activated Partial Thromboplastin time (aPTT), and thrombocyte and fibrinogen levels, were consistent with many clinical studies in the literature. The fatal cases were found to have higher tPA and PAI-1 levels in contrast to the patients who completely recovered. Conclusions: We think that these findings may help the progress of understanding of CCHF pathogenesis. PMID:26587219

  9. [In vitro function of outer membrane protease T of Escherichia coli K1 pathogenic strain].

    PubMed

    Hui, Changye; Guo, Yan; Wu, Shuchi; Peng, Liang; Cao, Hong; Huang, Shenghe

    2010-01-01

    Plasminogen activation and antimicrobial peptide hydrolysis contribute to pathogens invasion and survival in vivo. To demonstrate the expression of outer membrane protease T in E. coli K1 pathogenic strain E44, its activity of plasminogen activator and protamine hydrolysis. After Benzamidine Sepharose Fast Flow and SOURCE 30Q chromatography, we got E44 outer membrane mixed fraction, and examined its activity of plasminogen activation with chromogenic substrate S-2251 method. An ompT deletion mutant of E44 was constructed by using the suicide vector pCVD442, termed as E44ompT. We examined 0.1 mg/mL cationic antimicrobial peptide protamine susceptibility of E44, ompT mutant strain E44ompT and E44ompT harboring pUCT, which was constructed by inserting complete ompT open reading frame into pUC13. We got about 37 kDa E44 membrane extract, which could activate plasminogen, and activation was membrane extract dose dependent. This confirmed the expression of outer membrane protease T in the outer membrane of E44. E44ompT was, more susceptible to 0.1 mg/mL protamine than E44, and E440mpT was partially complemented by pUCT. Outer membrane protease T is expressed in E. coli K1 pathogenic strain E44, and can activate plasminogen and hydrolyze protamine.

  10. Association of Serum Sex Hormones with Hemostatic Factors in Women On and Off Hormone Therapy: The Multiethnic Study of Atherosclerosis.

    PubMed

    Williams, Marlene S; Cushman, Mary; Ouyang, Pamela; Heckbert, Susan R; Kalyani, Rita Rastogi; Vaidya, Dhanajay

    2016-02-01

    Hormone therapy (HT) is associated with increased risk of both venous and arterial thrombosis, which are multifactorial in origin. Our objectives were twofold: first, we sought to examine associations between endogenous serum sex hormone levels and biomarkers of thrombosis and/or coagulation in postmenopausal hormone nonusers. Second, we separately studied the associations between serum sex hormone levels and biomarkers of thrombosis and/or coagulation in postmenopausal hormone users considering the fact that pattern of circulating hormones is different in women taking exogenous hormones. We performed a cross-sectional analysis of postmenopausal women enrolled in a large multiethnic community-based cohort study, The Multiethnic Study of Atherosclerosis. We hypothesized that higher levels of estrogen-related sex hormones would be associated with biomarkers of thrombosis, suggesting mechanisms for differences in thrombotic risk from HT. Women (n = 2878) were included if they were postmenopausal and had thrombotic biomarkers (homocysteine, fibrinogen, C-reactive protein [CRP], factor VIII, and d-dimer) and sex hormone levels (total testosterone [T], bioavailable testosterone, sex hormone binding globulin [SHBG], estradiol [E2], and dehydroepiandrosterone [DHEA]) measured. A smaller random sample of 491 women also had von Willebrand factor (vWF), plasminogen activator inhibitor (PAI-1), and tissue factor pathway inhibitor (TFPI) levels measured. We found that elevated levels of estradiol and SHBG in HT users were associated with elevated levels of CRP and lower levels of TFPI, both of which may be related to a prothrombotic milieu in HT users. HT nonusers had far more prothrombotic associations between elevated serum sex hormone levels and thrombotic biomarkers when compared with HT users.

  11. Expression of PRSS, the plasminogen activator system and its activity in the ovine placentome during Stage 2 of parturition

    USDA-ARS?s Scientific Manuscript database

    The molecular mechanisms responsible for placenta separation are not completely understood. We know placentomes from cases of retained placenta possess limited matrix-metalloprotease (MMP) activity and retained placenta occurs at a greater incidence during induced parturition. The plasminogen activ...

  12. 21 CFR 866.5715 - Plasminogen immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Section 866.5715 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... substance from which plasmin, a blood-clotting factor, is formed) in serum, other body fluids, and tissues. Measurement of plasminogen levels may aid in the diagnosis of fibrinolytic (blood-clotting) disorders. (b...

  13. 21 CFR 866.5715 - Plasminogen immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Section 866.5715 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... substance from which plasmin, a blood-clotting factor, is formed) in serum, other body fluids, and tissues. Measurement of plasminogen levels may aid in the diagnosis of fibrinolytic (blood-clotting) disorders. (b...

  14. 21 CFR 866.5715 - Plasminogen immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Section 866.5715 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... substance from which plasmin, a blood-clotting factor, is formed) in serum, other body fluids, and tissues. Measurement of plasminogen levels may aid in the diagnosis of fibrinolytic (blood-clotting) disorders. (b...

  15. 21 CFR 866.5715 - Plasminogen immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Section 866.5715 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... substance from which plasmin, a blood-clotting factor, is formed) in serum, other body fluids, and tissues. Measurement of plasminogen levels may aid in the diagnosis of fibrinolytic (blood-clotting) disorders. (b...

  16. Metabolic factors, adipose tissue, and plasminogen activator inhibitor-1 levels in Type 2 diabetes

    USDA-ARS?s Scientific Manuscript database

    Plasminogen activator inhibitor-1 (PAI-1) production by adipose tissue is increased in obesity, and its circulating levels are high in type 2 diabetes. PAI-1 increases cardiovascular risk by favoring clot stability, interfering with vascular remodeling, or both. We investigated in obese diabetic per...

  17. Alterations of fibrin network structure mediated by dermatan sulfate.

    PubMed

    Lauricella, Ana María; Castañon, María Mercedes; Kordich, Lucía C; Quintana, Irene L

    2013-02-01

    Dermatan sulfate (DS) is well-known for its anticoagulant activity through binding to heparin cofactor II (HCII) to enhance thrombin inhibition. It has also been reported that DS has a profibrinolytic effect. We have evaluated the effects of DS solutions (4-20 μg/mL) on the formation (by kinetic studies), structure (by electron microscopy and compaction assays) and lysis (with urokinase-type plasminogen activator) of plasma fibrin networks. The results showed that DS significantly prolonged the lag phase and decreased the fibrin formation rate and the optical density of the final networks versus control, in a concentration dependent way. DS-associated networks presented a minor network percentage compared with control, composed of lower number of fibers per field, which resulted significantly thinner and longer. Moreover, DS rendered gels more sensible to rupture by centrifugal force and more susceptible to lysis. When fibrin formation kinetic assays were performed with purified fibrinogen instead of plasma, in the absence of HCII, the optical density of final DS-associated networks was statistically lower than control. Therefore, a direct effect of DS on the thickness of fibers was observed. Since in all in vitro assays low DS concentrations were used, it could be postulated that the fibrin features described above are plausible to be found in in vivo thrombi and therefore, DS would contribute to the formation of less thrombogenic clots.

  18. Comparative secretome analysis of four isogenic Bacillus clausii probiotic strains

    PubMed Central

    2013-01-01

    Background The spore-bearing alkaliphilic Bacillus species constitute a large, heterogeneous group of microorganisms, important for their ability to produce enzymes, antibodies and metabolites of potential medical use. Some Bacillus species are currently being used for manufacturing probiotic products consisting of bacterial spores, exhibiting specific features (colonization, immune-stimulation and antimicrobial activity) that can account for their claimed probiotic properties. In the present work a comparative proteomic study was performed aimed at characterizing the secretome of four closely related isogenic O/C, SIN, N/R and T B. clausii strains, already marketed in a pharmaceutical mixture as probiotics. Results Proteomic analyses revealed a high degree of concordance among the four secretomes, although some proteins exhibited considerable variations in their expression level in the four strains. Among these, some proteins with documented activity in the interaction with host cells were identified, such as the glycolytic enzyme enolase, with a putative plasminogen-binding activity, GroEL, a molecular chaperone shown to be able to bind to mucin, and flagellin protein, a structural flagella protein and a putative immunomodulation agent. Conclusion This study shows, for the first time, differences in the secretome of the OC, SIN, NR and T B. clausii strains. These differences indicate that specific secretome features characterize each of the four strains despite their genotypic similarity. This could confer to the B. clausii strains specific probiotic functions associated with the differentially expressed proteins and indicate that they can cooperate as probiotics as the secretome components of each strain could contribute to the overall activity of a mixed probiotic preparation. PMID:23816335

  19. 13-cis Retinoic Acid Inhibits Development and Progression of Chronic Allograft Nephropathy

    PubMed Central

    Adams, Judith; Kiss, Eva; Arroyo, Ana B.V.; Bonrouhi, Mahnaz; Sun, Qiang; Li, Zhen; Gretz, Norbert; Schnitger, Anna; Zouboulis, Christos C.; Wiesel, Manfred; Wagner, Jürgen; Nelson, Peter J.; Gröne, Hermann-Josef

    2005-01-01

    Chronic allograft nephropathy is characterized by chronic inflammation and fibrosis. Because retinoids exhibit anti-proliferative, anti-inflammatory, and anti-fibrotic functions, the effects of low and high doses of 13-cis-retinoic acid (13cRA) were studied in a chronic Fisher344→Lewis transplantation model. In 13cRA animals, independent of dose (2 or 20 mg/kg body weight/day) and start (0 or 14 days after transplantation) of 13cRA administration, serum creatinine was significantly lower and chronic rejection damage was dramatically reduced, including subendothelial fibrosis of preglomerular vessels and chronic tubulointerstitial damage. The number of infiltrating mononuclear cells and their proliferative activity were significantly diminished. The mRNA expression of chemokines (MCP-1/CCL2, MIP-1α/CCL3, IP-10/CXCL10, RANTES/CCL5) and proteins associated with fibrosis (plasminogen activator inhibitor-1, transforming growth factor-β1, and collagens I and III) were strikingly lower in treated allografts. In vitro, activated peritoneal macrophages of 13cRA-treated rats showed a pronounced decrease in protein secretion of inflammatory cytokines (eg, tumor necrosis factor-α, interleukin-6). The suppression of the proinflammatory chemokine RANTES/CCL5 × 13cRA in fibroblasts could be mapped to a promoter module comprising IRF-1 and nuclear factor-κB binding elements, but direct binding of retinoid receptors to promoter elements could be excluded. In summary, 13cRA acted as a potent immunosuppressive and anti-fibrotic agent able to prevent and inhibit progression of chronic allograft nephropathy. PMID:15972972

  20. Proteins at the Biomaterial Electrolyte Interface

    NASA Astrophysics Data System (ADS)

    Tengvall, Pentti

    2005-03-01

    Proteins adsorb rapidly onto solid and polymeric surfaces because the association process is in the vast majority of cases energetically favourable, i.e. exothermic. The most common exceptions to this rule are hydrophilic interfaces with low net charge and high mobility, e.g. immobilized PEGs. Current research in the research area tries to understand and control unwanted and wanted adsorption by studying the adsorption kinetics, protein surface binding specificity, protein exchange at interfaces, and surface protein repulsion mechanisms. In blood plasma model systems humoral cascade reactions such as surface mediated coagulation and immune complement raise considerable interest due to the immediate association to blood compatibility, and in tissue applications the binding between surfaces and membrane receptors in cells and tissues. Thus, the understanding of interfacial events at the protein level is of large importance in applications such as blood and tissue contacting biomaterials, in vitro medical and biological diagnostics, food industry and in marine anti-fouling technology. Well described consequences of adsorption are a lowered system energy, increased system entropy, irreversible binding, conformational changes, specific surface/protein interactions, and in biomedical materials applications surface opsonization followed by cell-surface interactions and a host tissue response. This lecture will deal with some mechanisms known to be of importance for the adsorption processes, such as the influence of surface chemistry and surface energy, the composition of the protein solution, the Vroman effect, and residence time. Examples will be shown from ellipsometric experiments using different model surfaces in single/few protein solutions, and specific attention be given to blood serum and plasma experiments on coagulation and immune complement at interfaces.

  1. Latent myostatin has significant activity and this activity is controlled more efficiently by WFIKKN1 than by WFIKKN2

    PubMed Central

    Szláma, György; Trexler, Mária; Patthy, László

    2013-01-01

    Myostatin, a negative regulator of skeletal muscle growth, is produced from myostatin precursor by multiple steps of proteolytic processing. After cleavage by a furin-type protease, the propeptide and growth factor domains remain associated, forming a noncovalent complex, the latent myostatin complex. Mature myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases. Here, we show that, in reporter assays, latent myostatin preparations have significant myostatin activity, as the noncovalent complex dissociates at an appreciable rate, and both mature and semilatent myostatin (a complex in which the dimeric growth factor domain interacts with only one molecule of myostatin propeptide) bind to myostatin receptor. The interaction of myostatin receptor with semilatent myostatin is efficiently blocked by WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 or growth and differentiation factor-associated serum protein 2 (WFIKKN1), a large extracellular multidomain protein that binds both mature myostatin and myostatin propeptide [Kondás et al. (2008) J Biol Chem 283, 23677–23684]. Interestingly, the paralogous protein WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 2 or growth and differentiation factor-associated serum protein 1 (WFIKKN2) was less efficient than WFIKKN1 as an antagonist of the interactions of myostatin receptor with semilatent myostatin. Our studies have shown that this difference is attributable to the fact that only WFIKKN1 has affinity for the propeptide domain, and this interaction increases its potency in suppressing the receptor-binding activity of semilatent myostatin. As the interaction of WFIKKN1 with various forms of myostatin permits tighter control of myostatin activity until myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases, WFIKKN1 may have greater potential as an antimyostatic agent than WFIKKN2. Structured digital abstract Furin cleaves Promyostatin by protease assay (View interaction) myostatin binds to PRO by surface plasmon resonance (View interaction) BMP-1 cleaves Promyostatin by protease assay (View interaction) ACR IIB physically interacts with Latent Myostatin by surface plasmon resonance (View interaction) Promyostatin and Promyostatin bind by comigration in gel electrophoresis (View interaction) WFIKKN1 binds to Latent Myostatin by pull down (View interaction) ACR IIB binds to Mature Myostatin by surface plasmon resonance (View Interaction: 1, 2, 3) WFIKKN1 binds to Myostatin Prodomain by surface plasmon resonance (View Interaction: 1, 2, 3) PMID:23829672

  2. Sepsis-Induced Coagulation in the Baboon Lung Is Associated with Decreased Tissue Factor Pathway Inhibitor

    PubMed Central

    Tang, Haiwang; Ivanciu, Lacramioara; Popescu, Narcis; Peer, Glenn; Hack, Erik; Lupu, Cristina; Taylor, Fletcher B.; Lupu, Florea

    2007-01-01

    Increased tissue factor (TF)-dependent procoagulant activity in sepsis may be partly due to decreased expression or function of tissue factor pathway inhibitor (TFPI). To test this hypothesis, baboons were infused with live Escherichia coli and sacrificed after 2, 8, or 24 hours. Confocal and electron microscopy revealed increased leukocyte infiltration and fibrin deposition in the intravascular and interstitial compartments. Large amounts of TF were detected by immunostaining in leukocytes and platelet-rich microthrombi. TF induction was documented by quantitative reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and coagulation assays. Lung-associated TFPI antigen and mRNA decreased during sepsis, and TFPI activity diminished abruptly at 2 hours. Blocking antibodies against TFPI increased fibrin deposition in septic baboon lungs, suggesting that TF-dependent coagulation might be aggravated by reduced endothelial TFPI. Decreased TFPI activity coincided with the release of tissue plasminogen activator and the peak of plasmin generation, suggesting that TFPI could undergo proteolytic inactivation by plasmin. Enhanced plasmin produced in septic baboons by infusion of blocking antibodies against plasminogen activator inhibitor-1 led to decreased lung-associated TFPI and unforeseen massive fibrin deposition. We conclude that activation of TF-driven coagulation not adequately countered by TFPI may underlie the widespread thrombotic complications of sepsis. PMID:17640967

  3. Structure and dynamics of microbe-exuded polymers and their interactions with calcite surfaces.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cygan, Randall Timothy; Mitchell, Ralph; Perry, Thomas D.

    2005-12-01

    Cation binding by polysaccharides is observed in many environments and is important for predictive environmental modeling, and numerous industrial and food technology applications. The complexities of these organo-cation interactions are well suited to predictive molecular modeling studies for investigating the roles of conformation and configuration of polysaccharides on cation binding. In this study, alginic acid was chosen as a model polymer and representative disaccharide and polysaccharide subunits were modeled. The ability of disaccharide subunits to bind calcium and to associate with the surface of calcite was investigated. The findings were extended to modeling polymer interactions with calcium ions.

  4. Applications of Surface Plasmon Resonance for Characterization of Molecules Important in the Pathogenesis and Treatment of Neurodegenerative Diseases

    PubMed Central

    Wittenberg, Nathan J.; Wootla, Bharath; Jordan, Luke R.; Denic, Aleksandar; Warrington, Arthur E.; Oh, Sang-Hyun; Rodriguez, Moses

    2014-01-01

    Characterization of binding kinetics and affinity between a potential new drug and its receptor are key steps in the development of new drugs. Among the techniques available to determine binding affinities, surface plasmon resonance has emerged as the gold standard because it can measure binding and dissociation rates in real-time in a label-free fashion. Surface plasmon resonance is now finding applications in the characterization of molecules for treatment of neurodegenerative diseases, characterization of molecules associated with pathogenesis of neurodegenerative diseases and detection of neurodegenerative disease biomarkers. In addition it has been used in the characterization of a new class of natural autoantibodies that have therapeutic potential in a number of neurologic diseases. In this review we will introduce surface plasmon resonance and describe some applications of the technique that pertain to neurodegenerative disorders and their treatment. PMID:24625008

  5. Surface functionalization of magnetic nanoparticles formed by self-associating hydrophobized oxidized dextrans

    NASA Astrophysics Data System (ADS)

    Farber, Shimon; Ickowicz, Diana E.; Melnik, Kristie; Yudovin-Farber, Ira; Recko, Daniel; Rampersaud, Arfaan; Domb, Abraham J.

    2014-06-01

    Magnetic iron oxide nanoparticles surface covered with oleic acid layer followed by a second layer of hydrophobized oxidized dextran aldehyde were prepared and tested for physico-chemical properties and ligand- and cell-specific binding. It was demonstrated that oleic acid-iron oxide nanoparticles coated with an additional layer of hydrophobized oxidized dextran were dispersible in buffer solutions and possess surface aldehyde active groups available for further binding of ligands or markers via imine or amine bond formation. Hydrophobized dextrans were synthesized by periodate oxidation and conjugation of various alkanamines to oxidized dextran by imination. Physico-chemical properties, as separation using magnetic field, magnetite concentration, and particle diameter, of the prepared magnetic samples are reported. The biotin-binding protein, neutravidin, was coupled to the particle surface by a simple reductive amination procedure. The particles were used for specific cell separation with high specificity.

  6. Association of tagSNPs in the urokinase-plasminogen activator (PLAU) gene with Alzheimer's disease and associated quantitative traits.

    PubMed

    Ozturk, Ayla; Minster, Ryan L; DeKosky, Steven T; Kamboh, M Ilyas

    2007-01-05

    The gene coding for urokinase-plasminogen activator (PLAU) is a strong biological and positional candidate gene for Alzheimer's disease (AD). Previously some studies have examined the role of common variation in the PLAU gene with AD risk but the results have been inconsistent and this inconsistency could have been due to the use of relatively small sample sizes. In this study we evaluated the distribution of four tagSNPs (rs2227562 in intron 5, rs2227564 in exon 6, rs2227571 in intron 9, and rs4065 in 3'UTR) in the PLAU gene in a large case-control study consisting of up to 1,000 AD patients and 697 white control subjects. We examined the role of these tagSNPs with AD risk and quantitative traits of AD, including age-at-onset (AAO), disease duration, and mini-mental state examination (MMSE) scores. The 3'UTR SNP revealed modest significant association with risk (OR = 0.71, 95% CI: 0.53-0.95; P = 0.02), AAO (P = 0.036) and disease duration (P = 0.04) of AD. In addition, the intron 9 SNP also revealed a significant association with AAO (P = 0.01) and disease duration (P = 0.006). Our data on a large number of AD cases and controls suggest that genetic variation in PLAU may affect the risk and AAO of AD.

  7. Association Between Arsenic Exposure From Drinking Water and Plasma Levels of Cardiovascular Markers

    PubMed Central

    Wu, Fen; Jasmine, Farzana; Kibriya, Muhammad G.; Liu, Mengling; Wójcik, Oktawia; Parvez, Faruque; Rahaman, Ronald; Roy, Shantanu; Paul-Brutus, Rachelle; Segers, Stephanie; Slavkovich, Vesna; Islam, Tariqul; Levy, Diane; Mey, Jacob L.; van Geen, Alexander; Graziano, Joseph H.; Ahsan, Habibul; Chen, Yu

    2012-01-01

    The authors conducted a cross-sectional study to assess the relation between arsenic exposure from drinking water and plasma levels of markers of systemic inflammation and endothelial dysfunction (matrix metalloproteinase-9, myeloperoxidase, plasminogen activator inhibitor-1, soluble E-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), and soluble vascular adhesion molecule-1 (VCAM-1)) using baseline data from 668 participants (age, >30 years) in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2007–2008). Both well water arsenic and urinary arsenic were positively associated with plasma levels of soluble VCAM-1. For every 1-unit increase in log-transformed well water arsenic (ln μg/L) and urinary arsenic (ln μg/g creatinine), plasma soluble VCAM-1 was 1.02 (95% confidence interval: 1.01, 1.03) and 1.04 (95% confidence interval: 1.01, 1.07) times greater, respectively. There was a significant interaction between arsenic exposure and higher body mass index, such that the increased levels of plasminogen activator inhibitor-1 and soluble VCAM-1 associated with arsenic exposure were stronger among people with higher body mass index. The findings indicate an effect of chronic arsenic exposure from drinking water on vascular inflammation and endothelial dysfunction that could be modified by body mass index and also suggest a potential mechanism underlying the association between arsenic exposure and cardiovascular disease. PMID:22534204

  8. Association between arsenic exposure from drinking water and plasma levels of cardiovascular markers.

    PubMed

    Wu, Fen; Jasmine, Farzana; Kibriya, Muhammad G; Liu, Mengling; Wójcik, Oktawia; Parvez, Faruque; Rahaman, Ronald; Roy, Shantanu; Paul-Brutus, Rachelle; Segers, Stephanie; Slavkovich, Vesna; Islam, Tariqul; Levy, Diane; Mey, Jacob L; van Geen, Alexander; Graziano, Joseph H; Ahsan, Habibul; Chen, Yu

    2012-06-15

    The authors conducted a cross-sectional study to assess the relation between arsenic exposure from drinking water and plasma levels of markers of systemic inflammation and endothelial dysfunction (matrix metalloproteinase-9, myeloperoxidase, plasminogen activator inhibitor-1, soluble E-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), and soluble vascular adhesion molecule-1 (VCAM-1)) using baseline data from 668 participants (age, >30 years) in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2007-2008). Both well water arsenic and urinary arsenic were positively associated with plasma levels of soluble VCAM-1. For every 1-unit increase in log-transformed well water arsenic (ln μg/L) and urinary arsenic (ln μg/g creatinine), plasma soluble VCAM-1 was 1.02 (95% confidence interval: 1.01, 1.03) and 1.04 (95% confidence interval: 1.01, 1.07) times greater, respectively. There was a significant interaction between arsenic exposure and higher body mass index, such that the increased levels of plasminogen activator inhibitor-1 and soluble VCAM-1 associated with arsenic exposure were stronger among people with higher body mass index. The findings indicate an effect of chronic arsenic exposure from drinking water on vascular inflammation and endothelial dysfunction that could be modified by body mass index and also suggest a potential mechanism underlying the association between arsenic exposure and cardiovascular disease.

  9. A Lipoprotein Receptor Cluster IV Mutant Preferentially Binds Amyloid-β and Regulates Its Clearance from the Mouse Brain*

    PubMed Central

    Sagare, Abhay P.; Bell, Robert D.; Srivastava, Alaka; Sengillo, Jesse D.; Singh, Itender; Nishida, Yoichiro; Chow, Nienwen; Zlokovic, Berislav V.

    2013-01-01

    Soluble low density lipoprotein receptor-related protein-1 (sLRP1) binds ∼70% of amyloid β-peptide (Aβ) in human plasma. In Alzheimer disease (AD) and individuals with mild cognitive impairment converting to AD, plasma sLRP1 levels are reduced and sLRP1 is oxidized, which results in diminished Aβ peripheral binding and higher levels of free Aβ in plasma. Experimental studies have shown that free circulating Aβ re-enters the brain and that sLRP1 and/or its recombinant wild type cluster IV (WT-LRPIV) prevent Aβ from entering the brain. Treatment of Alzheimer APPsw+/0 mice with WT-LRPIV has been shown to reduce brain Aβ pathology. In addition to Aβ, LRPIV binds multiple ligands. To enhance LRPIV binding for Aβ relative to other LRP1 ligands, we generated a library of LRPIV-derived fragments and full-length LRPIV variants with glycine replacing aspartic acid residues 3394, 3556, and 3674 in the calcium binding sites. Compared with WT-LRPIV, a lead LRPIV-D3674G mutant had 1.6- and 2.7-fold higher binding affinity for Aβ40 and Aβ42 in vitro, respectively, and a lower binding affinity for other LRP1 ligands (e.g. apolipoprotein E2, E3, and E4 (1.3–1.8-fold), tissue plasminogen activator (2.7-fold), matrix metalloproteinase-9 (4.1-fold), and Factor Xa (3.8-fold)). LRPIV-D3674G cleared mouse endogenous brain Aβ40 and Aβ42 25–27% better than WT-LRPIV. A 3-month subcutaneous treatment of APPsw+/0 mice with LRPIV-D3674G (40 μg/kg/day) reduced Aβ40 and Αβ42 levels in the hippocampus, cortex, and cerebrospinal fluid by 60–80% and improved cerebral blood flow responses and hippocampal function at 9 months of age. Thus, LRPIV-D3674G is an efficient new Aβ clearance therapy. PMID:23580652

  10. Ethnicity and lipoprotein(a) polymorphism in Native Mexican populations.

    PubMed

    Cardoso-Saldaña, G; De La Peña-Díaz, A; Zamora-González, J; Gomez-Ortega, R; Posadas-Romero, C; Izaguirre-Avila, R; Malvido-Miranda, E; Morales-Anduaga, M E; Anglés-Cano, E

    2006-01-01

    Lp(a) is a lipoparticle of unknown function mainly present in primates and humans. It consists of a low-density lipoprotein and apo(a), a polymorphic glycoprotein. Apo(a) shares sequence homology and fibrin binding with plasminogen, inhibiting its fibrinolytic properties. Lp(a) is considered a link between atherosclerosis and thrombosis. Marked inter-ethnic differences in Lp(a) concentration related to the genetic polymorphism of apo(a) have been reported in several populations. The study examined the structural and functional features of Lp(a) in three Native Mexican populations (Mayos, Mazahuas and Mayas) and in Mestizo subjects. We determined the plasma concentration of Lp(a) by immunonephelometry, apo(a) isoforms by Western blot, Lp(a) fibrin binding by immuno-enzymatic assay and short tandem repeat (STR) polymorphic marker genetic analysis by capillary electrophoresis. Mestizos presented the less skewed distribution and the highest median Lp(a) concentration (13.25 mg dL(-1)) relative to Mazahuas (8.2 mg dL(-1)), Mayas (8.25 mg dL(-1)) and Mayos (6.5 mg dL(-1)). Phenotype distribution was different in Mayas and Mazahuas as compared with the Mestizo group. The higher Lp(a) fibrin-binding capacity was found in the Maya population. There was an inverse relationship between the size of apo(a) polymorphs and both Lp(a) levels and Lp(a) fibrin binding. There is evidence of significative differences in Lp(a) plasma concentration and phenotype distribution in the Native Mexican and the Mestizo group.

  11. Ethnicity and lipoprotein(a) polymorphism in Native Mexican populations

    PubMed Central

    Cardoso-Saldaña, Guillermo; De La Peña-Díaz, Aurora; Zamora-González, José; Gomez-Ortega, Rocio; Posadas-Romero, Carlos; Izaguirre-Avila, Raul; Malvido-Miranda, Elsa; Morales-Anduaga, Maria Elena; Angles-Cano, Eduardo

    2006-01-01

    Background Lp(a) is a lipoparticle of unknown function mainly present in primates and humans. It consists of a low-density lipoprotein and apo(a), a polymorphic glycoprotein. Apo(a) shares sequence homology and fibrin-binding with plasminogen inhibiting its fibrinolytic properties. Lp(a) is considered a link between atherosclerosis and thrombosis. Marked inter-ethnic differences in Lp(a) concentration related to the genetic polymorphism of apo(a), have been reported in several populations. Aim To study the structural and functional features of Lp(a) in three Native Mexican populations (Mayos, Mazahuas and Mayas) and in Mestizo subjects. Methods We determined the plasma concentration of Lp(a) by immunonephelometry, apo(a) isoforms by Western blot, Lp(a) fibrin-binding by immuno-enzymatic assay and STR polymorphic markers genetic analysis by capillary electrophoresis. Results Mestizos presented the less skewed distribution and the highest median Lp(a) concentration (13.25 mg/dL) relative to Mazahuas (8.2 mg/dL), Mayas (8.25 mg/dL) and Mayos (6.5 mg/dL). Phenotype distribution was different in Mayas and Mazahuas as compared to the Mestizo group. The higher Lp(a) fibrin-binding capacity was found in the Maya population. There was an inverse relationship between the size of apo(a) polymorphs and both Lp(a) levels and Lp(a) fibrin binding. Conclusion There is evidence of significative differences in Lp(a) plasma concentration and phenotype distribution in Native Mexican and the Mestizo group. PMID:16684693

  12. Degradation of extracellular matrix by mouse trophoblast outgrowths: a model for implantation

    PubMed Central

    Glass, RH; Aggeler, J; Spindle, A; Pederson, RA; Werb, Z

    1983-01-01

    During implantation the embryo attaches to the endometrial surface and trophoblast traverses the uterine epithelium, anchoring in the uterine connective tissue. To determine whether trophoblast can facilitate invasion of the uterus by degrading components of normal uterine extracellular matrix, mouse blastocysts were cultured on a radio-labeled extracellular matrix that contained glycoproteins, elastin, and collagen. The embryos attached to the matrix, and trophoblast spread over the surface. Starting on day 5 of culture there was a release of labeled peptides into the medium. The radioactive peptides released from the matrix by the embryos had molecular weights ranging from more than 25,000 to more than 200. By day 7 there were areas where individual trophoblast cells had separated from one another, revealing the underlying substratum that was cleared of matrix. When trophoblast cells were lysed with NH(4)OH on day 8, it was apparent that the area underneath the trophoblast outgrowth had been cleared of matrix. Scanning electron microscopy and time-lapse cinemicrography confirmed that the digestion of matrix was highly localized, taking place only underneath the trophoblast, with no evidence of digestion of the matrix beyond the periphery of the trophoblast outgrowth. The sharp boundaries of degredation observed may be due to localized proteinase secretion by trophoblast, to membrane proteinases on the surface of trophoblast, or to endocytosis. Digestion of the matrix was not dependent on plasminogen, thus ruling out a role for plasminogen activator. Digestion was not inhibited by a variety of hormones and inhibitors, including progesterone, 17β-estradiol, leupeptin, EDTA, colchicine, NH(4)Cl, or ε-aminocaproic acid. This system of culturing embryos on extracellular matrix may be useful in determining the processes that regulate trophoblast migration and invasion into the maternal tissues during implantation.0 PMID:6339525

  13. α-Enolase Causes Proinflammatory Activation of Pulmonary Microvascular Endothelial Cells and Primes Neutrophils Through Plasmin Activation of Protease-Activated Receptor 2.

    PubMed

    Bock, Ashley; Tucker, Nicole; Kelher, Marguerite R; Khan, Samina Y; Gonzalez, Eduardo; Wohlauer, Max; Hansen, Kirk; Dzieciatkowska, Monika; Sauaia, Angels; Banerjee, Anirban; Moore, Ernest E; Silliman, Christopher C

    2015-08-01

    Proinflammatory activation of vascular endothelium leading to increased surface expression of adhesion molecules and neutrophil (PMN) sequestration and subsequent activation is paramount in the development of acute lung injury and organ injury in injured patients. We hypothesize that α-enolase, which accumulates in injured patients, primes PMNs and causes proinflammatory activation of endothelial cells leading to PMN-mediated cytotoxicity. Proteomic analyses of field plasma samples from injured versus healthy patients were used for protein identification. Human pulmonary microvascular endothelial cells (HMVECs) were incubated with α-enolase or thrombin, and intercellular adhesion molecule-1 surface expression was measured by flow cytometry. A two-event in vitro model of PMN cytotoxicity HMVECs activated with α-enolase, thrombin, or buffer was used as targets for lysophosphatidylcholine-primed or buffer-treated PMNs. The PMN priming activity of α-enolase was completed, and lysates from both PMNs and HMVECs were immunoblotted for protease-activated receptor 1 (PAR-1) and PAR-2 and coprecipitation of α-enolase with PAR-2 and plasminogen/plasmin. α-Enolase increased 10.8-fold in injured patients (P < 0.05). Thrombin and α-enolase significantly increased intercellular adhesion molecule-1 surface expression on HMVECs, which was inhibited by antiproteases, induced PMN adherence, and served as the first event in the two-event model of PMN cytotoxicity. α-Enolase coprecipitated with PAR-2 and plasminogen/plasmin on HMVECs and PMNs and induced PMN priming, which was inhibited by tranexamic acid, and enzymatic activity was not required. α-Enolase increases after injury and may activate pulmonary endothelial cells and prime PMNs through plasmin activity and PAR-2 activation. Such proinflammatory endothelial activation may predispose to PMN-mediated organ injury.

  14. Kinetic and Thermodynamic Analyses of Interaction between a High-Affinity RNA Aptamer and Its Target Protein.

    PubMed

    Amano, Ryo; Takada, Kenta; Tanaka, Yoichiro; Nakamura, Yoshikazu; Kawai, Gota; Kozu, Tomoko; Sakamoto, Taiichi

    2016-11-15

    AML1 (RUNX1) protein is an essential transcription factor involved in the development of hematopoietic cells. Several genetic aberrations that disrupt the function of AML1 have been frequently observed in human leukemia. AML1 contains a DNA-binding domain known as the Runt domain (RD), which recognizes the RD-binding double-stranded DNA element of target genes. In this study, we identified high-affinity RNA aptamers that bind to RD by systematic evolution of ligands by exponential enrichment. The binding assay using surface plasmon resonance indicated that a shortened aptamer retained the ability to bind to RD when 1 M potassium acetate was used. A thermodynamic study using isothermal titration calorimetry (ITC) showed that the aptamer-RD interaction is driven by a large enthalpy change, and its unfavorable entropy change is compensated by a favorable enthalpy change. Furthermore, the binding heat capacity change was identified from the ITC data at various temperatures. The aptamer binding showed a large negative heat capacity change, which suggests that a large apolar surface is buried upon such binding. Thus, we proposed that the aptamer binds to RD with long-range electrostatic force in the early stage of the association and then changes its conformation and recognizes a large surface area of RD. These findings about the biophysics of aptamer binding should be useful for understanding the mechanism of RNA-protein interaction and optimizing and modifying RNA aptamers.

  15. Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg.

    PubMed

    Stockis, Julie; Colau, Didier; Coulie, Pierre G; Lucas, Sophie

    2009-12-01

    Human Treg and Th clones secrete the latent form of TGF-beta, in which the mature TGF-beta protein is bound to the latency-associated peptide (LAP), and is thereby prevented from binding to the TGF-beta receptor. We previously showed that upon TCR stimulation, human Treg clones but not Th clones produce active TGF-beta and bear LAP on their surface. Here, we show that latent TGF-beta, i.e. both LAP and mature TGF-beta, binds to glycoprotein A repetitions predominant (GARP), a transmembrane protein containing leucine rich repeats, which is present on the surface of stimulated Treg clones but not on Th clones. Membrane localization of latent TGF-beta mediated by binding to GARP may be necessary for the ability of Treg to activate TGF-beta upon TCR stimulation. However, it is not sufficient as lentiviral-mediated expression of GARP in human Th cells induces binding of latent TGF-beta to the cell surface, but does not result in the production of active TGF-beta upon stimulation of these Th cells.

  16. The role of side chain conformational flexibility in surface recognition by Tenebrio molitor antifreeze protein

    PubMed Central

    Daley, Margaret E.; Sykes, Brian D.

    2003-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy was used to investigate the flexibility of the threonine side chains in the β-helical Tenebrio molitor antifreeze protein (TmAFP) at low temperatures. From measurement of the 3Jαβ 1H-1H scalar coupling constants, the χ1 angles and preferred rotamer populations can be calculated. It was determined that the threonines on the ice-binding face of the protein adopt a preferred rotameric conformation at near freezing temperatures, whereas the threonines not on the ice-binding face sample many rotameric states. This suggests that TmAFP maintains a preformed ice-binding conformation in solution, wherein the rigid array of threonines that form the AFP-ice interface matches the ice crystal lattice. A key factor in binding to the ice surface and inhibition of ice crystal growth appears to be the close surface-to-surface complementarity between the AFP and crystalline ice, and the lack of an entropic penalty associated with freezing out motions in a flexible ligand. PMID:12824479

  17. A novel RNA binding surface of the TAM domain of TIP5/BAZ2A mediates epigenetic regulation of rRNA genes.

    PubMed

    Anosova, Irina; Melnik, Svitlana; Tripsianes, Konstantinos; Kateb, Fatiha; Grummt, Ingrid; Sattler, Michael

    2015-05-26

    The chromatin remodeling complex NoRC, comprising the subunits SNF2h and TIP5/BAZ2A, mediates heterochromatin formation at major clusters of repetitive elements, including rRNA genes, centromeres and telomeres. Association with chromatin requires the interaction of the TAM (TIP5/ARBP/MBD) domain of TIP5 with noncoding RNA, which targets NoRC to specific genomic loci. Here, we show that the NMR structure of the TAM domain of TIP5 resembles the fold of the MBD domain, found in methyl-CpG binding proteins. However, the TAM domain exhibits an extended MBD fold with unique C-terminal extensions that constitute a novel surface for RNA binding. Mutation of critical amino acids within this surface abolishes RNA binding in vitro and in vivo. Our results explain the distinct binding specificities of TAM and MBD domains to RNA and methylated DNA, respectively, and reveal structural features for the interaction of NoRC with non-coding RNA. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Downregulation of Extracellular Matrix Metalloproteinase Inducer by scFv-M6-1B9 Intrabody Suppresses Cervical Cancer Invasion Through Inhibition of Urokinase-Type Plasminogen Activator.

    PubMed

    Panich, Tipattaraporn; Tragoolpua, Khajornsak; Pata, Supansa; Tayapiwatana, Chatchai; Intasai, Nutjeera

    2017-02-01

    Overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN) accelerates tumor invasion and metastasis via activation of matrix metalloproteinases (MMPs) and urokinase-type plasminogen activator (uPA) expression. The authors were interested in whether the scFv-M6-1B9 intrabody against EMMPRIN that retains EMMPRIN in endoplasmic reticulum could be a potential tool to suppress cervical cancer invasion through inhibition of uPA. The chimeric adenoviral vector Ad5/F35-scFv-M6-1B9 was transferred into human cervical carcinoma HeLa cells to produce the scFv-M6-1B9 intrabody against EMMPRIN. Cell surface expression of EMMPRIN, the membrane-bound uPA, the enzymatic activity of secreted uPA, and the invasion ability were analyzed. The scFv-M6-1B9 intrabody successfully diminished the cell surface expression of EMMPRIN and the membrane-bound uPA on HeLa cells. uPA activity from tissue culture media of EMMPRIN-downregulated HeLa cells was decreased. The invasion ability of HeLa cells harboring scFv-M6-1B9 intrabody was also suppressed. These results suggested that the scFv-M6-1B9 intrabody might represent a potential approach for invasive cervical cancer treatment. The application of scFv-M6-1B9 intrabody in animal experiments and preclinical studies would be investigated further.

  19. Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moravcevic, Katarina; Mendrola, Jeannine M.; Schmitz, Karl R.

    Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importancemore » of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to coincidence detection, allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.« less

  20. Dynamics of Pseudomonas aeruginosa association with anionic hydrogel surfaces in the presence of aqueous divalent-cation salts

    PubMed Central

    Tran, Victoria B.; Sung, Ye Suel; Fleiszig, Suzanne M.J.; Evans, David J.; Radke, C.J.

    2013-01-01

    Binding of bacteria to solid surfaces is complex with many aspects incompletely understood. We investigate Pseudomonas aeruginosa uptake kinetics onto hydrogel surfaces representative of soft-contact lenses made of nonionic poly(2-hydroxyethylmethacrylate) (p-HEMA), anionic poly(methacrylic acid) (p-MAA), and anionic poly(acrylic acid) (p-AA). Using a parallel-plate flow cell under phase-contrast microscopy, we document a kinetic “burst” at the anionic hydrogel surface: dilute aqueous P. aeruginosa first rapidly accumulates and then rapidly depletes. Upon continuing flow, divalent cations in the suspending solution sorb into the hydrogel network causing the previously surface-accumulated bacteria to desorb. The number of bacteria eventually bound to the surface is low compared to the nonionic p-HEMA hydrogel. We propose that the kinetic burst is due to reversible divalent-cation bridging between the anionic bacteria and the negatively charged hydrogel surface. The number of surface bridging sites diminishes as divalent cations impregnate into and collapse the gel. P. aeruginosa association with the surface then falls. Low eventual binding of P. aeruginosa to the anionic hydrogel is ascribed to increased surface hydrophilicity compared to the counterpart nonionic p-HEMA hydrogel. PMID:21723562

  1. Low-stringency selection of TEM1 for BLIP shows interface plasticity and selection for faster binders

    PubMed Central

    Cohen-Khait, Ruth; Schreiber, Gideon

    2016-01-01

    Protein–protein interactions occur via well-defined interfaces on the protein surface. Whereas the location of homologous interfaces is conserved, their composition varies, suggesting that multiple solutions may support high-affinity binding. In this study, we examined the plasticity of the interface of TEM1 β-lactamase with its protein inhibitor BLIP by low-stringency selection of a random TEM1 library using yeast surface display. Our results show that most interfacial residues could be mutated without a loss in binding affinity, protein stability, or enzymatic activity, suggesting plasticity in the interface composition supporting high-affinity binding. Interestingly, many of the selected mutations promoted faster association. Further selection for faster binders was achieved by drastically decreasing the library–ligand incubation time to 30 s. Preequilibrium selection as suggested here is a novel methodology for specifically selecting faster-associating protein complexes. PMID:27956635

  2. Plasminogen activator inhibitor links obesity and thrombotic cerebrovascular diseases: The roles of PAI-1 and obesity on stroke.

    PubMed

    Chen, Rui; Yan, Jinchuan; Liu, Peijing; Wang, Zhongqun; Wang, Cuiping

    2017-06-01

    One of the global socioeconomic phenomena occurred during the last decades is the increased prevalence of obesity, with direct consequence on the risk of developing thrombotic disorders. As the physiological inhibitor of tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1) is well known for its role in fibrinolysis. More and more evidences have shown that PAI-1 involves in physiopathologic mechanisms of many diseases and metabolic disorder. Increased serum level of PAI-1 has been observed in obesity and it also contributes to the development of adipose tissue and then has effects on obesity. Meantime, obesity affects also the PAI-1 levels. These evidences indicate the complicated interaction between PAI-1 and obesity. Many clinic studies have confirmed that obesity relates to the stroke outcome although there are many contradictory results. Simultaneously, correlation is found between plasma PAI-1 and thrombotic cerebrovascular diseases. This article reviews contemporary knowledge regarding the complex interplay of obesity, PAI-1 and stroke.

  3. Quality aspects of fibrinolytic agents based on biochemical characterization.

    PubMed

    Werner, R G; Bassarab, S; Hoffmann, H; Schlüter, M

    1991-11-01

    The purity, composition and in vitro fibrinolytic activity of four commercially available fibrinolytic agents, alteplase (recombinant tissue plasminogen activator, rt-PA, Actilyse; CAS 105857-23-6), streptokinase, urokinase and anistreplase (ansioyl-plasminogen-streptokinase activator-complex, APSAC), have been compared in this investigation. The fibrinolytic activity was measured in an in vitro thrombolytic assay. In this assay a human blood thrombus is dissolved in an environment of human plasma. This assay is representative for the in vivo situation, where plasminogen activation is also a limiting step in thrombolysis. In the in vitro thrombolytic assay alteplase is about 10 times more effective in clot lysis than either streptokinase or urokinase and more than 300 times more active than anistreplase. In addition, the ratio of active ingredient to total protein content in the preparations was analysed by RP-HPLC, SDS-PAGE, GPC-HPLC and amino acid analysis. The portion of active ingredient per total protein was 99.9% for alteplase, 55% for anistreplase, 20% for urokinase and 1% for streptokinase. This demonstrates that alteplase is the only fibrinolytic agent tested which is essentially free of protein additives of human origine and potential contaminants associated therewith. The superior purity of alteplase compared to the other fibrinolytics was confirmed by SDS-PAGE, RP-HPLC, and HPLC-GPC. Significant levels of aggregates were detected in streptokinase and urokinase preparations, whereas alteplase and anistreplase were essentially free of aggregates. These data demonstrate that there are significant differences in composition, purity and in vitro activity between different fibrinolytic agents.

  4. Cpa, the Outer Membrane Protease of Cronobacter sakazakii, Activates Plasminogen and Mediates Resistance to Serum Bactericidal Activity▿

    PubMed Central

    Franco, A. A.; Kothary, M. H.; Gopinath, G.; Jarvis, K. G.; Grim, C. J.; Hu, L.; Datta, A. R.; McCardell, B. A.; Tall, B. D.

    2011-01-01

    Cronobacter spp. are emerging neonatal pathogens in humans, associated with outbreaks of meningitis and sepsis. To cause disease, they must survive in blood and invade the central nervous system by penetrating the blood-brain barrier. C. sakazakii BAA-894 possesses an ∼131-kb plasmid (pESA3) that encodes an outer membrane protease (Cpa) that has significant identity to proteins that belong to the Pla subfamily of omptins. Members of this subfamily of proteins degrade a number of serum proteins, including circulating complement, providing protection from the complement-dependent serum killing. Moreover, proteins of the Pla subfamily can cause uncontrolled plasmin activity by converting plasminogen to plasmin and inactivating the plasmin inhibitor α2-antiplasmin (α2-AP). These reactions enhance the spread and invasion of bacteria in the host. In this study, we found that an isogenic cpa mutant showed reduced resistance to serum in comparison to its parent C. sakazakii BAA-894 strain. Overexpression of Cpa in C. sakazakii or Escherichia coli DH5α showed that Cpa proteolytically cleaved complement components C3, C3a, and C4b. Furthermore, a strain of C. sakazakii overexpressing Cpa caused a rapid activation of plasminogen and inactivation of α2-AP. These results strongly suggest that Cpa may be an important virulence factor involved in serum resistance, as well as in the spread and invasion of C. sakazakii. PMID:21245266

  5. Plasminogen activator inhibitor-1 is an independent prognostic factor of ovarian cancer and IMD-4482, a novel plasminogen activator inhibitor-1 inhibitor, inhibits ovarian cancer peritoneal dissemination.

    PubMed

    Nakatsuka, Erika; Sawada, Kenjiro; Nakamura, Koji; Yoshimura, Akihito; Kinose, Yasuto; Kodama, Michiko; Hashimoto, Kae; Mabuchi, Seiji; Makino, Hiroshi; Morii, Eiichi; Yamaguchi, Yoichi; Yanase, Takeshi; Itai, Akiko; Morishige, Ken-Ichirou; Kimura, Tadashi

    2017-10-27

    In the present study, the therapeutic potential of targeting plasminogen activator inhibitor-1 (PAI-1) in ovarian cancer was tested. Tissues samples from 154 cases of ovarian carcinoma were immunostained with anti-PAI-1 antibody, and the prognostic value was analyzed. Among the samples, 67% (104/154) showed strong PAI-1 expression; this was significantly associated with poor prognosis (progression-free survival: 20 vs. 31 months, P = 0.0033). In particular, among patients with stage II-IV serous adenocarcinoma, PAI-1 expression was an independent prognostic factor. The effect of a novel PAI-1 inhibitor, IMD-4482, on ovarian cancer cell lines was assessed and its therapeutic potential was examined using a xenograft mouse model of ovarian cancer. IMD-4482 inhibited in vitro cell adhesion to vitronectin in PAI-1-positive ovarian cancer cells, followed by the inhibition of extracellular signal-regulated kinase and focal adhesion kinase phosphorylation through dissociation of the PAI-urokinase receptor complex from integrin αVβ3. IMD-4482 caused G0/G1 cell arrest and inhibited the proliferation of PAI-1-positive ovarian cancer cells. In the xenograft model, IMD-4482 significantly inhibited peritoneal dissemination with the reduction of PAI-1 expression and the inhibition of focal adhesion kinase phosphorylation. Collectively, the functional inhibition of PAI-1 significantly inhibited ovarian cancer progression, and targeting PAI-1 may be a potential therapeutic strategy in ovarian cancer.

  6. Plasminogen activator inhibitor-1 is an independent prognostic factor of ovarian cancer and IMD-4482, a novel plasminogen activator inhibitor-1 inhibitor, inhibits ovarian cancer peritoneal dissemination

    PubMed Central

    Nakatsuka, Erika; Sawada, Kenjiro; Nakamura, Koji; Yoshimura, Akihito; Kinose, Yasuto; Kodama, Michiko; Hashimoto, Kae; Mabuchi, Seiji; Makino, Hiroshi; Morii, Eiichi; Yamaguchi, Yoichi; Yanase, Takeshi; Itai, Akiko; Morishige, Ken-ichirou; Kimura, Tadashi

    2017-01-01

    In the present study, the therapeutic potential of targeting plasminogen activator inhibitor-1 (PAI-1) in ovarian cancer was tested. Tissues samples from 154 cases of ovarian carcinoma were immunostained with anti-PAI-1 antibody, and the prognostic value was analyzed. Among the samples, 67% (104/154) showed strong PAI-1 expression; this was significantly associated with poor prognosis (progression-free survival: 20 vs. 31 months, P = 0.0033). In particular, among patients with stage II-IV serous adenocarcinoma, PAI-1 expression was an independent prognostic factor. The effect of a novel PAI-1 inhibitor, IMD-4482, on ovarian cancer cell lines was assessed and its therapeutic potential was examined using a xenograft mouse model of ovarian cancer. IMD-4482 inhibited in vitro cell adhesion to vitronectin in PAI-1-positive ovarian cancer cells, followed by the inhibition of extracellular signal-regulated kinase and focal adhesion kinase phosphorylation through dissociation of the PAI-urokinase receptor complex from integrin αVβ3. IMD-4482 caused G0/G1 cell arrest and inhibited the proliferation of PAI-1-positive ovarian cancer cells. In the xenograft model, IMD-4482 significantly inhibited peritoneal dissemination with the reduction of PAI-1 expression and the inhibition of focal adhesion kinase phosphorylation. Collectively, the functional inhibition of PAI-1 significantly inhibited ovarian cancer progression, and targeting PAI-1 may be a potential therapeutic strategy in ovarian cancer. PMID:29163796

  7. The Mast Cell, Contact, and Coagulation System Connection in Anaphylaxis

    PubMed Central

    Guilarte, Mar; Sala-Cunill, Anna; Luengo, Olga; Labrador-Horrillo, Moisés; Cardona, Victoria

    2017-01-01

    Anaphylaxis is the most severe form of allergic reaction, resulting from the effect of mediators and chemotactic substances released by activated cells. Mast cells and basophils are considered key players in IgE-mediated human anaphylaxis. Beyond IgE-mediated activation of mast cells/basophils, further mechanisms are involved in the occurrence of anaphylaxis. New insights into the potential relevance of pathways other than mast cell and basophil degranulation have been unraveled, such as the activation of the contact and the coagulation systems. Mast cell heparin released upon activation provides negatively charged surfaces for factor XII (FXII) binding and auto-activation. Activated FXII, the initiating serine protease in both the contact and the intrinsic coagulation system, activates factor XI and prekallikrein, respectively. FXII-mediated bradykinin (BK) formation has been proven in the human plasma of anaphylactic patients as well as in experimental models of anaphylaxis. Moreover, the severity of anaphylaxis is correlated with the increase in plasma heparin, BK formation and the intensity of contact system activation. FXII also activates plasminogen in the fibrinolysis system. Mast cell tryptase has been shown to participate in fibrinolysis through plasmin activation and by facilitating the degradation of fibrinogen. Some usual clinical manifestations in anaphylaxis, such as angioedema or hypotension, or other less common, such as metrorrhagia, may be explained by the direct effect of the activation of the coagulation and contact system driven by mast cell mediators. PMID:28798744

  8. Full-length soluble urokinase plasminogen activator receptor down-modulates nephrin expression in podocytes

    PubMed Central

    Alfano, Massimo; Cinque, Paola; Giusti, Guido; Proietti, Silvia; Nebuloni, Manuela; Danese, Silvio; D’Alessio, Silvia; Genua, Marco; Portale, Federica; Lo Porto, Manuela; Singhal, Pravin C.; Rastaldi, Maria Pia; Saleem, Moin A.; Mavilio, Domenico; Mikulak, Joanna

    2015-01-01

    Increased plasma level of soluble urokinase-type plasminogen activator receptor (suPAR) was associated recently with focal segmental glomerulosclerosis (FSGS). In addition, different clinical studies observed increased concentration of suPAR in various glomerular diseases and in other human pathologies with nephrotic syndromes such as HIV and Hantavirus infection, diabetes and cardiovascular disorders. Here, we show that suPAR induces nephrin down-modulation in human podocytes. This phenomenon is mediated only by full-length suPAR, is time-and dose-dependent and is associated with the suppression of Wilms’ tumor 1 (WT-1) transcription factor expression. Moreover, an antagonist of αvβ3 integrin RGDfv blocked suPAR-induced suppression of nephrin. These in vitro data were confirmed in an in vivo uPAR knock out Plaur−/− mice model by demonstrating that the infusion of suPAR inhibits expression of nephrin and WT-1 in podocytes and induces proteinuria. This study unveiled that interaction of full-length suPAR with αvβ3 integrin expressed on podocytes results in down-modulation of nephrin that may affect kidney functionality in different human pathologies characterized by increased concentration of suPAR. PMID:26380915

  9. A novel embryo culture media supplement that improves pregnancy rates in mice.

    PubMed

    Highet, A R; Bianco-Miotto, T; Pringle, K G; Peura, A; Bent, S; Zhang, J; Nottle, M B; Thompson, J G; Roberts, C T

    2017-03-01

    The preimplantation embryo in vivo is exposed to numerous growth factors in the female reproductive tract, which are not recapitulated in embryo culture media in vitro The IGF2 and plasminogen activator systems facilitate blastocyst development. We hypothesized that the addition of IGF2 in combination with urokinase plasminogen activator (uPA) and plasminogen could improve rates of blastocyst hatching and implantation in mice. B6BcF1 and CBAB6F2 mouse embryos were divided into one of four supplemented culture media treatment groups: (1) control (media only); (2) 12.5 nM IGF2; (3) 10 µg/mL uPA and 5 µg/mL plasminogen; or (4) a combination of IGF2, uPA and plasminogen treatments. Embryo development to blastocyst stage and hatching were assessed before transfer to pseudopregnant recipient females and implantation, pregnancy rates and postnatal growth were assessed. After 90.5 h of culture, IGF2 + U + P treatment increased the percentage of B6BcF1 embryos that were hatching/hatched and percentage developing to blastocyst stage compared with controls (P < 0.02). Following B6BcF1 embryo transfer, IGF2 + U + P treatment increased implantation sites at day 8 of pregnancy compared with controls (P < 0.05). Replication in the CBAB6F2 mouse strain showed significant improvements in pregnancy rates at days 8 and 18 but not in blastocyst development. No adverse effects were seen on gestational age, litter size or birthweight, or the reproductive capacity of offspring of IGF2 + U + P treated embryos. For embryos susceptible to detrimental effects of in vitro culture, IGF2, uPA and plasminogen supplementation of culture media can improve pregnancy success, but the effect of treatment is dependent on the mouse strain. © 2017 Society for Reproduction and Fertility.

  10. Effects of Heparin and ε-Aminocaproic Acid in Dogs on Plasmin- 125I Generation in Response to Urokinase Injections and Venous Injury

    PubMed Central

    Takeda, Y.; Parkhill, T. R.; Nakabayashi, M.

    1972-01-01

    The isotopic method described previously for quantification of plasmin- 125I by disc gel electrophoresis was modified by inclusion of euglobulin precipitation to expand its applicability to plasmas containing low radioactivity of plasmin- 125I and plasminogen- 125I. It was found that the euglobulin precipitation method precipitates 72.4±2.1 (sd)% of both plasmin- 125I and plasminogen- 125I. Using this method and plasminogen- 125I as a tracer, studies were first made of the effects of heparin and ε-aminocaproic acid in dogs on plasmin- 125I generation in responese to a single injection of urokinase and to venous injury; second, of the effects of venous occlusion and thrombosis on plasmin- 125I generation; and third, in vitro studies of plasminogen- 125I affinity to fibrin and its activation in blood clots. The venous injury was produced by the damage of venous endothelium by an injection of 90% phenol and the thrombosis by a thrombin injection into an occluded vein. Heparin and ε-aminocaproic acid under the present experimental conditions inhibited about 78 and 100%, respectively of plasmin- 125I generation by the urokinase injection. Similar inhibitory effects of heparin and ε-aminocaproic acid were observed on plasmin- 125I generation in response to venous injury. The venous occlusion caused a small degree of plasmin- 125I generation, but thrombin thrombosis did not seem to stimulate the generation of plasmin- 125I. The in vitro studies showed that plasminogen- 125I does not have a specific affinity to fibrin and is incorporated into blood clots in approximately equal concentrations as those in serum during clotting processes, and that blood clots per se do not stimulate plasmin- 125I generation. These results suggest that injured veins release considerable amounts of vascular plasminogen activators into circulation and that these play an important role in thrombus dissolution in vivo. PMID:4262519

  11. Effects of Iron Deficiency on Iron Binding and Internalization into Acidic Vacuoles in Dunaliella salina1[W][OA

    PubMed Central

    Paz, Yakov; Shimoni, Eyal; Weiss, Meira; Pick, Uri

    2007-01-01

    Uptake of iron in the halotolerant alga Dunaliella salina is mediated by a transferrin-like protein (TTf), which binds and internalizes Fe3+ ions. Recently, we found that iron deficiency induces a large enhancement of iron binding, which is associated with accumulation of three other plasma membrane proteins that associate with TTf. In this study, we characterized the kinetic properties of iron binding and internalization and identified the site of iron internalization. Iron deficiency induces a 4-fold increase in Fe binding, but only 50% enhancement in the rate of iron uptake and also increases the affinity for iron and bicarbonate, a coligand for iron binding. These results indicate that iron deprivation leads to accumulation and modification of iron-binding sites. Iron uptake in iron-sufficient cells is preceded by an apparent time lag, resulting from prebound iron, which can be eliminated by unloading iron-binding sites. Iron is tightly bound to surface-exposed sites and hardly exchanges with medium iron. All bound iron is subsequently internalized. Accumulation of iron inhibits further iron binding and internalization. The vacuolar inhibitor bafilomycin inhibits iron uptake and internalization. Internalized iron was localized by electron microscopy within vacuolar structures that were identified as acidic vacuoles. Iron internalization is accompanied by endocytosis of surface proteins into these acidic vacuoles. A novel kinetic mechanism for iron uptake is proposed, which includes two pools of bound/compartmentalized iron separated by a rate-limiting internalization stage. The major parameter that is modulated by iron deficiency is the iron-binding capacity. We propose that excessive iron binding in iron-deficient cells serves as a temporary reservoir for iron that is subsequently internalized. This mechanism is particularly suitable for organisms that are exposed to large fluctuations in iron availability. PMID:17513481

  12. Hydration structure of the α-chymotrypsin substrate binding pocket: the impact of constrained geometry

    NASA Astrophysics Data System (ADS)

    Carey, Christina; Cheng, Yuen-Kit; Rossky, Peter J.

    2000-08-01

    The concave substrate binding pocket of α-chymotrypsin binds specifically hydrophobic side chains. In order to understand the hydration structure present in the absence of substrate, and elucidate the character of the solvent displaced on binding, molecular dynamics computer simulation of the solvent in a fully hydrated protein has been carried out and analyzed. The pocket is found to be characterized in terms of a mixed polar and apolar macromolecular surface. It is shown that the simulated solvent structure within it is spatially consistent with that seen via crystallography. The solvent structure is energetically characterized by large losses in hydrogen bonding among solvent molecules except at the mouth of the pocket where exposure to bulk-like solvent is possible. The loss in hydrogen bonding is attributed to the highly constrained geometry available to the solvent, preventing formation of a hydrogen bonding network, with only partial compensation by interactions with the macromolecular surface. The solvent displacement concomitant with substrate binding will therefore be associated with a large enthalpic driving force. This result is at the extreme of a continuum of variable cases of "hydrophobic" hydration, which differ most basically in surface curvature. These range from convex solute surfaces, inducing clathrate-like structures, with negligible hydrogen bond loss, to flat surfaces with significant interfacial loss, to the present concave case with hydrogen bonding losses exceeding 50%.

  13. Krüppel-like factor 17 inhibits urokinase plasminogen activator gene expression to suppress cell invasion through the Src/p38/MAPK signaling pathway in human lung adenocarcinoma

    PubMed Central

    Huang, Shuai; Li, Jiong; Liu, Xiao-Yan; Pan, Xing-Fei; Wang, Qin-Qin; Chen, Li; Lin, Ming-Juan; Huang, Zhi-Hong; Ma, Hong-Ming; Wu, Yi; Liu, Sheng-Ming; Zhou, Yan-Bin

    2017-01-01

    Krüppel-like factor 17 (KLF17) has been reported to be involved in invasion and metastasis suppression in lung cancer, but the molecular mechanisms underlying the anti-invasion and anti-metastasis roles of KLF17 in lung cancer are not fully illustrated. Here, we showed that KLF17 inhibited the invasion of A549 and H322 cells; the anti-invasion effect of KLF17 was associated with the suppression of urokinase plasminogen activator (uPA/PLAU) expression. KLF17 can bind with the promoter of uPA and inhibit its expression. Enforced expression of uPA abrogated the anti-invasion effect of KLF17 in A549 and H322 cells. In addition, immunohistochemistry staining showed that the protein expression of KLF17 was negatively correlated with that of uPA in archived samples from patients with lymph node metastasis of lung adenocarcinoma (rho = −0.62, P = 0.01). The mutually exclusive expression of KLF17 with uPA could predict lymph node metastasis for lung adenocarcinoma (AUC = 0.758, P = 0.005). Enforced expression of KLF17 inhibited the expression of phosphorylated Src and phosphorylated p38/MAPK in A549 and H322 cells. The invasiveness of the cells were suppressed by treating with sb203580 (p38/MAPK inhibitor) or HY-13805 (PP2, Src inhibitor). furthermore, p38/MAPK inhibition could block the KLF17-induced reduction of p-p38/MAPK and uPA, and Src inhibition enhanced the KLF17-induced suppression of p-Src and uPA in A549 and H322 cells. In conclusion, our study indicated that KLF17 suppressed the uPA-mediated invasion of lung adenocarcinoma. The Src and p38/MAPK signaling pathways were suggested as mediators of KLF17-induced uPA inhibition, thus providing evidence that KLF17 might be a potential anti-invasion candidate for lung adenocarcinoma. PMID:28454121

  14. Sequence-Specific Interaction between the Disintegrin Domain of Mouse ADAM 3 and Murine Eggs: Role of β1 Integrin-associated Proteins CD9, CD81, and CD98

    PubMed Central

    Takahashi, Yuji; Bigler, Dora; Ito, Yasuhiko; White, Judith M.

    2001-01-01

    ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-α6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-α6 mAb, or by mAbs against either the αv or β3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other β1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg β1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface “tetraspan web” facilitates fertilization and that it may do so by fostering ADAM–integrin interactions. PMID:11294888

  15. Sequence-specific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: role of beta1 integrin-associated proteins CD9, CD81, and CD98.

    PubMed

    Takahashi, Y; Bigler, D; Ito, Y; White, J M

    2001-04-01

    ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-alpha6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-alpha6 mAb, or by mAbs against either the alphav or beta3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other beta1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg beta1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface "tetraspan web" facilitates fertilization and that it may do so by fostering ADAM-integrin interactions.

  16. The Glycan Microarray Story from Construction to Applications.

    PubMed

    Hyun, Ji Young; Pai, Jaeyoung; Shin, Injae

    2017-04-18

    Not only are glycan-mediated binding processes in cells and organisms essential for a wide range of physiological processes, but they are also implicated in various pathological processes. As a result, elucidation of glycan-associated biomolecular interactions and their consequences is of great importance in basic biological research and biomedical applications. In 2002, we and others were the first to utilize glycan microarrays in efforts aimed at the rapid analysis of glycan-associated recognition events. Because they contain a number of glycans immobilized in a dense and orderly manner on a solid surface, glycan microarrays enable multiple parallel analyses of glycan-protein binding events while utilizing only small amounts of glycan samples. Therefore, this microarray technology has become a leading edge tool in studies aimed at elucidating roles played by glycans and glycan binding proteins in biological systems. In this Account, we summarize our efforts on the construction of glycan microarrays and their applications in studies of glycan-associated interactions. Immobilization strategies of functionalized and unmodified glycans on derivatized glass surfaces are described. Although others have developed immobilization techniques, our efforts have focused on improving the efficiencies and operational simplicity of microarray construction. The microarray-based technology has been most extensively used for rapid analysis of the glycan binding properties of proteins. In addition, glycan microarrays have been employed to determine glycan-protein interactions quantitatively, detect pathogens, and rapidly assess substrate specificities of carbohydrate-processing enzymes. More recently, the microarrays have been employed to identify functional glycans that elicit cell surface lectin-mediated cellular responses. Owing to these efforts, it is now possible to use glycan microarrays to expand the understanding of roles played by glycans and glycan binding proteins in biological systems.

  17. Comparative analyses of the thermodynamic RNA binding signatures of different types of RNA recognition motifs

    PubMed Central

    Cléry, Antoine; Allain, Frédéric H-T

    2017-01-01

    Abstract RNA recognition motifs (RRMs) are structurally versatile domains important in regulation of alternative splicing. Structural mechanisms of sequence-specific recognition of single-stranded RNAs (ssRNAs) by RRMs are well understood. The thermodynamic strategies are however unclear. Therefore, we utilized microcalorimetry and semi-empirical analyses to comparatively analyze the cognate ssRNA binding thermodynamics of four different RRM domains, each with a different RNA binding mode. The different binding modes are: canonical binding to the β-sheet surface; canonical binding with involvement of N- and C-termini; binding to conserved loops; and binding to an α-helix. Our results identify enthalpy as the sole and general force driving association at physiological temperatures. Also, networks of weak interactions are a general feature regulating stability of the different RRM–ssRNA complexes. In agreement, non-polyelectrolyte effects contributed between ∼75 and 90% of the overall free energy of binding in the considered complexes. The various RNA binding modes also displayed enormous heat capacity differences, that upon dissection revealed large differential changes in hydration, conformations and dynamics upon binding RNA. Altogether, different modes employed by RRMs to bind cognate ssRNAs utilize various thermodynamics strategies during the association process. PMID:28334819

  18. Stimulation of plasmin activity in cultured human fibroblast cells by Porphyromonas endodontalis.

    PubMed

    Oikawa, T; Ogura, N; Akiba, M; Abiko, Y; Takiguchi, H; Izumi, H

    1993-09-01

    1. Plasmin activity in the conditioned medium of Gin-1 cells, a human gingival fibroblast cell line, was stimulated by Porphyromonas endodontalis, a putative pathogen of oral submucous abscesses, in a time- and dose-dependent manner. 2. P. endodontalis stimulated the activity of plasminogen activator in both the conditioned medium and the cell lysate. The plasminogen activator in Gin-1 cells was approx. 50 kDa by zymography. 3. The conditioned medium of Gin-1 cells exposed to P. endodontalis stimulated the conversion of human serum prekallikrein to kallikrein. 4. These results suggested that P. endodontalis stimulates the plasminogen activator-plasmin system in Gin-1 cells, and that activated plasmin plays a role in the progress of periodontal tissue inflammation.

  19. Lingual Haematoma due to Tenecteplase in a Patient with Acute Myocardial Infarction

    PubMed Central

    Bal, Muhlis; Salturk, Ziya; Ateş, Ahmet Hakan; Yağcı, Serkan; Coşkun Bal, Gökçen

    2013-01-01

    The use of intravenous thrombolytic agents has revolutionised the treatment of acute myocardial infarction. However, the improvement in mortality rate achieved with these drugs is tempered by the risk of serious bleeding complications, including intracranial haemorrhage. Tenecteplase is a genetically engineered mutant tissue plasminogen activator. Haemorrhagic complications of tissue plasminogen activator (tPA) are well known. Compared to other tPAs, tenecteplase use leads to lower rates of bleeding complications. Here, we report a case of unusual site of spontaneous bleeding, intralingual haematoma during tenecteplase therapy following acute myocardial infarction, which caused significant upper airway obstruction and required tracheotomy to maintain the patient's airway. Clinical dilemmas related to securing the airway or reversing the effects of tissue plasminogen activator are discussed. PMID:23862086

  20. GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells.

    PubMed

    Tran, Dat Q; Andersson, John; Wang, Rui; Ramsey, Heather; Unutmaz, Derya; Shevach, Ethan M

    2009-08-11

    TGF-beta family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-beta is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFbeta-binding protein (LTBP) to produce a large latent form. Latent TGF-beta is also found on the surface of activated FOXP3(+) regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule of unknown function, is critical for tethering TGF-beta to the cell surface. We demonstrate that platelets and activated Tregs co-express latent TGF-beta and GARP on their membranes. The knockdown of GARP mRNA with siRNA prevented surface latent TGF-beta expression on activated Tregs and recombinant latent TGF-beta1 is able to bind directly with GARP. Confocal microscopy and immunoprecipitation strongly support their interactions. The role of TGF-beta on Tregs appears to have dual functions, both for Treg-mediated suppression and infectious tolerance mechanism.

  1. GARP (LRRC32) is essential for the surface expression of latent TGF-β on platelets and activated FOXP3+ regulatory T cells

    PubMed Central

    Tran, Dat Q.; Andersson, John; Wang, Rui; Ramsey, Heather; Unutmaz, Derya; Shevach, Ethan M.

    2009-01-01

    TGF-β family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-β is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFβ-binding protein (LTBP) to produce a large latent form. Latent TGF-β is also found on the surface of activated FOXP3+ regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule of unknown function, is critical for tethering TGF-β to the cell surface. We demonstrate that platelets and activated Tregs co-express latent TGF-β and GARP on their membranes. The knockdown of GARP mRNA with siRNA prevented surface latent TGF-β expression on activated Tregs and recombinant latent TGF-β1 is able to bind directly with GARP. Confocal microscopy and immunoprecipitation strongly support their interactions. The role of TGF-β on Tregs appears to have dual functions, both for Treg-mediated suppression and infectious tolerance mechanism. PMID:19651619

  2. Low-dose spironolactone ameliorates insulin resistance and suppresses elevated plasminogen activator inhibitor-1 during gestational testosterone exposure.

    PubMed

    Olatunji, Lawrence A; Usman, Taofeek O; Akinade, Aminat I; Adeyanju, Oluwaseun A; Kim, InKyeom; Soladoye, Ayodele O

    2017-12-01

    Elevated gestational circulating testosterone has been associated with pathological pregnancies that increase the risk of development of cardiometabolic disorder in later life. We hypothesised that gestational testosterone exposure, in late pregnancy, causes glucose deregulation and atherogenic dyslipidaemia that would be accompanied by high plasminogen activator inhibitor-1 (PAI-1). The study also hypothesise that low-dose spironolactone treatment would ameliorate these effects. Pregnant Wistar rats received vehicle, testosterone (0.5 mg/kg; sc), spironolactone (0.5 mg/kg, po) or testosterone and spironolactone daily between gestational days 15 and 19. Gestational testosterone exposure led to increased HOMA-IR, circulating insulin, testosterone, 1-h post-load glucose, atherogenic dyslipidaemia, PLR, PAI-1 and MDA. However, all these effects, except that of circulating testosterone, were ameliorated by spironolactone. These results demonstrate that low-dose spironolactone ameliorates glucose deregulation and atherogenic dyslipidaemia during elevated gestational testosterone exposure, at least in part, by suppressing elevated PAI-1.

  3. Atomic and molecular adsorption on Au(111)

    DOE PAGES

    Santiago-Rodriguez, Yohaselly; Herron, Jeffrey A.; Curet-Arana, Maria C.; ...

    2014-05-02

    Periodic self-consistent density functional theory (DFT-GGA) calculations were used to study the adsorption of several atomic species, molecular species and molecular fragments on the Au(111) surface with a coverage of 1/4 monolayer (ML). Binding geometries, binding energies, and diffusion barriers were calculated for 27 species. Furthermore, we calculated the surface deformation energy associated with the binding events. The binding strength for all the analyzed species can be ordered as follows: NH 3 < NO < CO < CH 3 < HCO < NH 2 < COOH < OH < HCOO < CNH 2 < H < N < NH

  4. Plasminogen activator inhibitor 1 4G/5G and -844G/A variants in idiopathic recurrent pregnancy loss.

    PubMed

    Magdoud, Kalthoum; Herbepin, Viviana G; Touraine, Renaud; Almawi, Wassim Y; Mahjoub, Touhami

    2013-09-01

    Plasminogen activator inhibitor type 1 (PAI-1) regulates fibrinolysis, and the common promoter region variants -675G/A (4G/5G) and -844G/A are associated with increased thrombotic risk. Despite evidence linking altered fibrinolysis with adverse pregnancy events, including idiopathic recurrent pregnancy loss (RPL), the contribution of PAI-1 variants to RPL risk remains controversial. We investigated the association between the PAI-1 -844G/A and 4G/5G (-675G/A) variants with altered risk of RPL. This was a case-control study involving 304 women with confirmed RPL and 371 age- and ethnically matched control women. PAI-1 genotyping was performed by PCR single-specific primer -675 (G/A) and real-time PCR (-844G/A) analysis. Minor allele frequency (MAF) of 4G/5G (P < 0.001), but not -844G/A (P = 0.507), was higher in RPL cases. PAI-1 4G/5G single-nucleotide polymorphism (SNP) was significantly associated with RPL under additive, dominant, and recessive genetic models; no association of -844G/A with RPL was seen irrespective of the genetic model tested. Taking common -844G/5G haplotype as reference (OR = 1.00), multivariate analysis confirmed the association of 4G-containing -844A/4G (P < 0.001) and -844G/4G (P = 0.011) haplotypes with increased RPL risk. 4G/5G, but not -844G/A, PAI-1 variant is associated with an increased risk of RPL. © 2013 John Wiley & Sons Ltd.

  5. Plasminogen activator inhibitor-1 4G/5G polymorphism and ischemic stroke risk: a meta-analysis in Chinese population.

    PubMed

    Cao, Yuezhou; Chen, Weixian; Qian, Yun; Zeng, Yanying; Liu, Wenhua

    2014-12-01

    The guanosine insertion/deletion polymorphism (4G/5G) of plasminogen activator inhibitor-1 (PAI-1) gene has been suggested as a risk factor for ischemic stroke (IS), but direct evidence from genetic association studies remains inconclusive even in Chinese population. Therefore, we performed a meta-analysis to evaluate this association. All of the relevant studies were identified from PubMed, Embase, Chinese National Knowledge Infrastructure database and Chinese Wanfang database up to September 2013. Statistical analyses were conducted with Revman 5.2 and STATA 12.0 software. Odds ratio (OR) with 95% confidence interval (CI) values were applied to evaluate the strength of the association. Heterogeneity was evaluated by Q-test and the I² statistic. The Begg's test and Egger's test were used to assess the publication bias. A significant association and a borderline association between the PAI-1 4G/5G polymorphism and IS were found under the recessive model (OR = 1.639, 95% CI = 1.136-2.364) and allelic model (OR = 1.256, 95% CI = 1.000-1.578), respectively. However, no significant association was observed under homogeneous comparison model (OR = 1.428, 95% CI = 0.914-2.233), heterogeneous comparison model (OR = 0.856, 95% CI = 0.689-1.063) and dominant model (OR = 1.036, 95% CI = 0.846-1.270). This meta-analysis suggested that 4G4G genotype of PAI-1 4G/5G polymorphism might be a risk factor for IS in the Chinese population.

  6. Curvature Dependent Reactivity of Fullerenes and Nanotubes

    NASA Technical Reports Server (NTRS)

    Park, Seongjun; Cho, Kyeongjae; Srivastava, Deepak

    2000-01-01

    Dependence of pyramidalization angle, examples of nanotube surfaces, internal and external reactivity, and binding energies are some of the topics discussed in this conference presentation preprint. Final conclusions include the relationship between the pyramidal angle of the surface and its associated external reaction energy.

  7. A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer.

    PubMed

    Yonzon, Chanda Ranjit; Jeoung, Eunhee; Zou, Shengli; Schatz, George C; Mrksich, Milan; Van Duyne, Richard P

    2004-10-06

    A comparative analysis of the properties of two optical biosensor platforms: (1) the propagating surface plasmon resonance (SPR) sensor based on a planar, thin film gold surface and (2) the localized surface plasmon resonance (LSPR) sensor based on surface confined Ag nanoparticles fabricated by nanosphere lithography (NSL) are presented. The binding of Concanavalin A (ConA) to mannose-functionalized self-assembled monolayers (SAMs) was chosen to highlight the similarities and differences between the responses of the real-time angle shift SPR and wavelength shift LSPR biosensors. During the association phase in the real-time binding studies, both SPR and LSPR sensors exhibited qualitatively similar signal vs time curves. However, in the dissociation phase, the SPR sensor showed an approximately 5 times greater loss of signal than the LSPR sensor. A comprehensive set of nonspecific binding studies demonstrated that this signal difference was not the consequence of greater nonspecific binding to the LSPR sensor but rather a systematic function of the Ag nanoparticle's nanoscale structure. Ag nanoparticles with larger aspect ratios showed larger dissociation phase responses than those with smaller aspect ratios. A theoretical analysis based on finite element electrodynamics demonstrates that this results from the characteristic decay length of the electromagnetic fields surrounding Ag nanoparticles being of comparable dimensions to the ConA molecules. Finally, an elementary (2 x 1) multiplexed version of an LSPR carbohydrate sensing chip to probe the simultaneous binding of ConA to mannose and galactose-functionalized SAMs has been demonstrated.

  8. Differential compartmentalization of Streptococcus pyogenes virulence factors and host protein binding properties as a mechanism for host adaptation.

    PubMed

    Kilsgård, Ola; Karlsson, Christofer; Malmström, Erik; Malmström, Johan

    2016-11-01

    Streptococcus pyogenes is an important human pathogen responsible for substantial morbidity and mortality worldwide. Although S. pyogenes is a strictly human pathogen with no other known animal reservoir, several murine infection models exist to explore different aspects of the bacterial pathogenesis. Inoculating mice with wild-type S. pyogenes strains can result in the generation of new bacterial phenotypes that are hypervirulent compared to the original inoculum. In this study, we used a serial mass spectrometry based proteomics strategy to investigate if these hypervirulent strains have an altered distribution of virulence proteins across the intracellular, surface associated and secreted bacterial compartments and if any change in compartmentalization can alter the protein-protein interaction network between bacteria and host proteins. Quantitative analysis of the S. pyogenes surface and secreted proteomes revealed that animal passaged strains are associated with significantly higher amount of virulence factors on the bacterial surface and in the media. This altered virulence factor compartmentalization results in increased binding of several mouse plasma proteins to the bacterial surface, a trend that was consistent for mouse plasma from several different mouse strains. In general, both the wild-type strain and animal passaged strain were capable of binding high amounts of human plasma proteins. However, compared to the non-passaged strains, the animal passaged strains displayed an increased ability to bind mouse plasma proteins, in particular for M protein binders, indicating that the increased affinity for mouse blood plasma proteins is a consequence of host adaptation of this pathogen to a new host. In conclusion, plotting the total amount of virulence factors against the total amount of plasma proteins associated to the bacterial surface could clearly separate out animal passaged strains from wild type strains indicating a virulence model that could predict the virulence of a S. pyogenes strain in mice and which could be used to identify key aspects of this bacteria's pathogenesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Fibrin Formation, Structure and Properties

    PubMed Central

    Weisel, John W.; Litvinov, Rustem I.

    2017-01-01

    Fibrinogen and fibrin are essential for hemostasis and are major factors in thrombosis, wound healing, and several other biological functions and pathological conditions. The X-ray crystallographic structure of major parts of fibrin(ogen), together with computational reconstructions of missing portions and numerous biochemical and biophysical studies, have provided a wealth of data to interpret molecular mechanisms of fibrin formation, its organization, and properties. On cleavage of fibrinopeptides by thrombin, fibrinogen is converted to fibrin monomers, which interact via knobs exposed by fibrinopeptide removal in the central region, with holes always exposed at the ends of the molecules. The resulting half-staggered, double-stranded oligomers lengthen into protofibrils, which aggregate laterally to make fibers, which then branch to yield a three-dimensional network. Much is now known about the structural origins of clot mechanical properties, including changes in fiber orientation, stretching and buckling, and forced unfolding of molecular domains. Studies of congenital fibrinogen variants and post-translational modifications have increased our understanding of the structure and functions of fibrin(ogen). The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active proteolytic enzyme, plasmin, results in digestion of fibrin at specific lysine residues. In spite of a great increase in our knowledge of all these interconnected processes, much about the molecular mechanisms of the biological functions of fibrin(ogen) remains unknown, including some basic aspects of clotting, fibrinolysis, and molecular origins of fibrin mechanical properties. Even less is known concerning more complex (patho)physiological implications of fibrinogen and fibrin. PMID:28101869

  10. tPA variant tPA-A296-299 Prevents impairment of cerebral autoregulation and necrosis of hippocampal neurons after stroke by inhibiting upregulation of ET-1.

    PubMed

    Armstead, William M; Hekierski, Hugh; Yarovoi, Serge; Higazi, Abd Al-Roof; Cines, Douglas B

    2018-01-01

    Tissue-type plasminogen activator (tPA) is neurotoxic and exacerbates uncoupling of cerebral blood flow (CBF) and metabolism after stroke, yet it remains the sole FDA-approved drug for treatment of ischemic stroke. Upregulation of c-Jun-terminal kinase (JNK) after stroke contributes to tPA-mediated impairment of autoregulation, but the role of endothelin-1 (ET-1) is unknown. Based on the Glasgow Coma Scale, impaired autoregulation is linked to adverse outcomes after TBI, but correlation with hippocampal histopathology after stroke has not been established. We propose that given after stroke, tPA activates N-Methyl-D-Aspartate receptors (NMDA-Rs) and upregulates ET-1 in a JNK dependent manner, imparing autoregulation and leading to histopathology. After stroke, CBF was reduced in the hippocampus and reduced further during hypotension, which did not occur in hypotensive sham pigs, indicating impairment of autoregulation. Autoregulation and necrosis of hippocampal CA1 and CA3 neurons were further impaired by tPA, but were preserved by the ET-1 antagonist BQ 123 and tPA-A, 296-299 a variant that is fibrinolytic but does not bind to NMDA-Rs. Expression of ET-1 was increased by stroke and potentiated by tPA but returned to sham levels by tPA-A 296-299 and the JNK antagonist SP600125. Results show that JNK releases ET-1 after stroke. Tissue-type plasminogen activator -A 296-299 prevents impairment of cerebral autoregulation and histopathology after stroke by inhibiting upregulation of ET-1. © 2017 Wiley Periodicals, Inc.

  11. Replacement of the V3 domain in the surface subunit of the feline immunodeficiency virus envelope glycoprotein with the equivalent region of a T cell-tropic human immunodeficiency virus type 1 results in a chimeric surface protein that efficiently binds to CXCR4.

    PubMed

    González, Silvia A; Falcón, Juan I; Affranchino, José L

    2014-03-01

    Feline immunodeficiency virus (FIV) and the T cell-tropic strains of human immunodeficiency virus type 1 (HIV-1) share the use of the chemokine receptor CXCR4 for cell entry. To study this process further we developed a cell surface binding assay based on the expression of a soluble version of the FIV SU C-terminally tagged with the influenza virus hemagglutinin epitope (HA). The specificity of the assay was demonstrated by the following evidence: (1) the SU-HA protein bound to HeLa cells that express CXCR4 but not to MDCK cells that lack this chemokine receptor; and (2) binding of the SU-HA to HeLa cells was blocked by incubation with the CXCR4 antagonist AMD3100 as well as with the anti-CXCR4 monoclonal antibody (MAb) 12G5. Deletion of the V3 region from the FIV SU glycoprotein abolished its ability to bind CXCR4-expressing cells. Remarkably, substitution of the V3 domain of the FIV SU by the equivalent region of the HIV-1 NL4-3 isolate resulted in efficient cell surface binding of the chimeric SU protein to CXCR4. Moreover, transfection of MDCK cells with a plasmid encoding human CXCR4 allowed the association of the chimeric SU-HA glycoprotein to the transfected cells. Interestingly, while cell binding of the chimeric FIV-HIV SU was inhibited by an anti-HIV-1 V3 MAb, its association with CXCR4 was found to be resistant to AMD3100. Of note, the chimeric FIV-HIV Env glycoprotein was capable of promoting CXCR4-dependent cell-to-cell fusion.

  12. Gastric Expression of Plasminogen Activator Inhibitor (PAI)-1 Is Associated with Hyperphagia and Obesity in Mice

    PubMed Central

    Kenny, Susan; Gamble, Joanne; Lyons, Suzanne; Vlatković, Nikolina; Dimaline, Rod; Varro, Andrea

    2013-01-01

    The adipokine plasminogen activator inhibitor (PAI)-1 is increased in plasma of obese individuals and exhibits increased expression in the stomachs of individuals infected with Helicobacter. To investigate the relevance of gastric PAI-1, we used 1.1 kb of the H+/K+β subunit promoter to overexpress PAI-1 specifically in mouse gastric parietal cells (PAI-1-H/Kβ mice). We studied the physiological, biochemical, and behavioral characteristics of these and mice null for PAI-1 or a putative receptor, urokinase plasminogen activator receptor (uPAR). PAI-1-H/Kβ mice had increased plasma concentrations of PAI-1 and increased body mass, adiposity, and hyperphagia compared with wild-type mice. In the latter, food intake was inhibited by cholecystokinin (CCK)8s, but PAI-1-H/Kβ mice were insensitive to the satiating effects of CCK8s. PAI-1-H/Kβ mice also had significantly reduced expression of c-fos in the nucleus tractus solitarius in response to CCK8s and refeeding compared with wild-type mice. Exogenous PAI-1 reversed the effects of CCK8s on food intake and c-fos levels in the nucleus tractus solitarius of wild-type mice, but not uPAR-null mice. Infection of C57BL/6 mice with Helicobacter felis increased gastric abundance of PAI-1 and reduced the satiating effects of CCK8s, whereas the response to CCK8s was maintained in infected PAI-1–null mice. In cultured vagal afferent neurons, PAI-1 inhibited stimulation of neuropeptide Y type 2 receptor (Y2R) expression by CCK8s. Thus, gastric expression of PAI-1 is associated with hyperphagia, moderate obesity, and resistance to the satiating effects of CCK indicating a new role in suppressing signals from the upper gut that inhibit food intake. PMID:23254194

  13. Gastric expression of plasminogen activator inhibitor (PAI)-1 is associated with hyperphagia and obesity in mice.

    PubMed

    Kenny, Susan; Gamble, Joanne; Lyons, Suzanne; Vlatkovic, Nikolina; Dimaline, Rod; Varro, Andrea; Dockray, Graham J

    2013-02-01

    The adipokine plasminogen activator inhibitor (PAI)-1 is increased in plasma of obese individuals and exhibits increased expression in the stomachs of individuals infected with Helicobacter. To investigate the relevance of gastric PAI-1, we used 1.1 kb of the H(+)/K(+)β subunit promoter to overexpress PAI-1 specifically in mouse gastric parietal cells (PAI-1-H/Kβ mice). We studied the physiological, biochemical, and behavioral characteristics of these and mice null for PAI-1 or a putative receptor, urokinase plasminogen activator receptor (uPAR). PAI-1-H/Kβ mice had increased plasma concentrations of PAI-1 and increased body mass, adiposity, and hyperphagia compared with wild-type mice. In the latter, food intake was inhibited by cholecystokinin (CCK)8s, but PAI-1-H/Kβ mice were insensitive to the satiating effects of CCK8s. PAI-1-H/Kβ mice also had significantly reduced expression of c-fos in the nucleus tractus solitarius in response to CCK8s and refeeding compared with wild-type mice. Exogenous PAI-1 reversed the effects of CCK8s on food intake and c-fos levels in the nucleus tractus solitarius of wild-type mice, but not uPAR-null mice. Infection of C57BL/6 mice with Helicobacter felis increased gastric abundance of PAI-1 and reduced the satiating effects of CCK8s, whereas the response to CCK8s was maintained in infected PAI-1-null mice. In cultured vagal afferent neurons, PAI-1 inhibited stimulation of neuropeptide Y type 2 receptor (Y2R) expression by CCK8s. Thus, gastric expression of PAI-1 is associated with hyperphagia, moderate obesity, and resistance to the satiating effects of CCK indicating a new role in suppressing signals from the upper gut that inhibit food intake.

  14. Association of Plasminogen Activator Inhibitor-Type 1 (-675 4G/5G) Polymorphism with Pre-Eclampsia: Systematic Review

    PubMed Central

    Morgan, Jessie A.; Bombell, Sarah; McGuire, William

    2013-01-01

    Background and Aims Excessive generation of plasminogen activator inhibitor-type 1 (PAI-1) is implicated in the pathogenesis of pre-eclampsia and related conditions. The PAI-1 (−675 4G/5G) promoter polymorphism (rs1799889) affects transcriptional activity and is a putative genetic risk factor for pre-eclampsia. The aim of this study was identify, appraise and synthesise the available evidence for the association of the PAI-1 (−675 4G/5G) polymorphism with pre-eclampsia. Methods Systematic review and random effects meta-analysis of genetic association studies. Results We found 12 eligible genetic association studies in which a total of 1511 women with pre-eclampsia, eclampsia or HELLP syndrome and 3492 controls participated. The studies were generally small (median number of cases 102, range 24 to 403) and underpowered to detect plausible association sizes. Meta-analysis of all of the studies detected statistically significant gene-disease associations in the recessive [pooled odds ratio 1.28 (95% confidence interval 1.09, 1.50); population attributable risk 7.7%] and dominant [pooled odds ratio 1.21 (95% confidence interval 1.01, 1.44); population attributable risk 13.7%] models. We did not find evidence of statistical heterogeneity, funnel plot asymmetry or small study bias. Conclusions These data suggest that the fibrinolytic pathway regulated by the PAI-1 gene may contribute to the pathogenesis of pre-eclampsia and related conditions. This association, if confirmed in larger genetic association studies, may inform research efforts to develop novel interventions or help to prioritise therapeutic targets that merit evaluation in randomised clinical trials. PMID:23457639

  15. Differential Regulation of PAI-1 in Hantavirus Cardiopulmonary Syndrome and Hemorrhagic Fever With Renal Syndrome.

    PubMed

    Bellomo, Carla; Korva, Miša; Papa, Anna; Mäkelä, Satu; Mustonen, Jukka; Avšič-Županc, Tatjana; Vaheri, Antti; Martinez, Valeria P; Strandin, Tomas

    2018-02-01

    We analyzed the levels of circulating tissue plasminogen activator (tPA) and plasminogen activator inhibitor (PAI)-1 in acute hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS). The levels of tPA commonly increased in both diseases, whereas PAI-1 correlated with disease severity in HCPS but not in HFRS.

  16. Effects of Lewis lung carcinoma on trabecular microstructural changes in wild-type and plasminogen activator inhibitor-1 deficient mice fed a high-fat diet

    USDA-ARS?s Scientific Manuscript database

    Bone is a major target organ of metastasis. The present study investigated the effects of Lewis lung carcinoma (LLC) on trabecular microstructural changes, using tomographic analysis, in distal femur and lumbar 4 vertebra from LLC-bearing wild-type and plasminogen activator inhibitor-1 (PAI-1) defi...

  17. Bleeding risks associated with inheritance of the Quebec platelet disorder.

    PubMed

    McKay, Heather; Derome, Francine; Haq, M Anwar; Whittaker, Susan; Arnold, Emmy; Adam, Frédéric; Heddle, Nancy M; Rivard, Georges E; Hayward, Catherine P M

    2004-07-01

    Quebec platelet disorder (QPD) is an autosomal dominant bleeding disorder associated with increased urokinase-type plasminogen activator in platelets and alpha-granule protein degradation. To determine bleeding risks and common manifestations of QPD, a history questionnaire was developed and administered to 127 relatives in a family with QPD. Data entry was done blinded to affected and unaffected status, determined by assays for platelet urokinase-type plasminogen activator (u-PA) and fibrinogen degradation. Odds ratios (ORs), with 95% confidence intervals (CIs), were determined for items queried. Summative bleeding scores for each individual were calculated using items with OR more than 1. Mean ages (34 years; range, 1-89 years) were similar for affected (n = 23) and unaffected (n = 104) family members. Affected individuals had higher mean bleeding scores (P <.0001) and a much higher likelihood (OR > 20) of having bleeding that led to lifestyle changes, bruises that spread lower or as large or larger than an orange or both, joint bleeds, bleeding longer than 24 hours after dental extractions or deep cuts, and received or been recommended other treatments (fibrinolytic inhibitors) for bleeding. Individuals with QPD and exposure(s) to hemostatic challenges had experienced excessive bleeding only when fibrinolytic inhibitors had not been used. These data illustrate that QPD is associated with increased risks of bleeding that can be modified by fibrinolytic inhibitors.

  18. Binding of Daptomycin to Anionic Lipid Vesicles Is Reduced in the Presence of Lysyl-Phosphatidylglycerol

    PubMed Central

    Khatib, Tala O.; Stevenson, Heather; Yeaman, Michael R.; Bayer, Arnold S.

    2016-01-01

    The cytoplasmic membrane of Staphylococcus aureus contains ∼20 mol% of the net cationic lipid lysyl-phosphatidylglycerol (LPG). Elevated fractions of LPG are associated with increased resistance to cationic antibiotics, including the lipopeptide daptomycin (DAP). Although the surface charge of the bacterial cytoplasmic membrane is altered by LPG, surface binding of DAP was found to be only moderately affected in anionic vesicles containing 20 mol% LPG. These results suggest that charge repulsion cannot fully explain LPG-mediated resistance to cationic peptides. PMID:27216066

  19. On the concept of critical surface excess of micellization.

    PubMed

    Talens-Alesson, Federico I

    2010-11-16

    The critical surface excess of micellization (CSEM) should be regarded as the critical condition for micellization of ionic surfactants instead of the critical micelle concentration (CMC). There is a correspondence between the surface excesses Γ of anionic, cationic, and zwitterionic surfactants at their CMCs, which would be the CSEM values, and the critical association distance for ionic pair association calculated using Bjerrum's correlation. Further support to this concept is given by an accurate method for the prediction of the relative binding of alkali cations onto dodecylsulfate (NaDS) micelles. This method uses a relative binding strength parameter calculated from the values of surface excess Γ at the CMC of the alkali dodecylsulfates. This links both the binding of a given cation onto micelles and the onset for micellization of its surfactant salt. The CSEM concept implies that micelles form at the air-water interface unless another surface with greater affinity for micelles exists. The process would start when surfactant monomers are close enough to each other for ionic pairing with counterions and the subsequent assembly of these pairs becomes unavoidable. This would explain why the surface excess Γ values of different surfactants are more similar than their CMCs: the latter are just the bulk phase concentrations in equilibrium with chemicals with different hydrophobicity. An intriguing implication is that CSEM values may be used to calculate the actual critical distances of ionic pair formation for different cations, replacing Bjerrum's estimates, which only discriminate by the magnitude of the charge.

  20. Membrane Association of the PTEN Tumor Suppressor: Electrostatic Interaction with Phos-phatidylserine-Containing Bilayers and Regulatory Role of the C-Terminal Tail

    PubMed Central

    Shenoy, Siddharth S.; Nanda, Hirsh; Lösche, Mathias

    2012-01-01

    The phosphatidylinositolphosphate phosphatase PTEN is the second most frequently mutated protein in human tumors. Its membrane association, allosteric activation and membrane dissociation are poorly understood. We recently reported PTEN binding affinities to membranes of different compositions and a preliminary investigation of the protein-membrane complex with neutron reflectometry (NR). Here we use NR to validate molecular dynamics (MD) simulations of the protein and study conformational differences of the protein in solution and on anionic membranes. NR shows that full-length PTEN binds to such membranes roughly in the conformation and orientation suggested by the crystal structure of a truncated PTEN protein, in contrast with a recently presented model which suggested that membrane binding depends critically on the SUMOylation of the CBR3 loop of PTEN’s C2 domain. Our MD simulations confirm that PTEN is peripherally bound to the bilayer surface and show slight differences of the protein structure in solution and in the membrane-bound state, where the protein body flattens against the bilayer surface. PTEN’s C2 domain binds phosphatidylserine (PS) tightly through its CBR3 loop, and its phosphatase domain also forms electrostatic interactions with PS. NR and MD results show consistently that PTEN’s unstructured, anionic C-terminal tail is repelled from the bilayer surface. In contrast, this tail is tightly tugged against the C2 domain in solution, partially obstructing the membrane-binding interface of the protein. Arresting the C-terminal tail in this conformation by phosphorylation may provide a control mechanism for PTEN’s membrane binding and activity. PMID:23073177

  1. Membrane association of the PTEN tumor suppressor: electrostatic interaction with phosphatidylserine-containing bilayers and regulatory role of the C-terminal tail.

    PubMed

    Shenoy, Siddharth S; Nanda, Hirsh; Lösche, Mathias

    2012-12-01

    The phosphatidylinositolphosphate phosphatase PTEN is the second most frequently mutated protein in human tumors. Its membrane association, allosteric activation and membrane dissociation are poorly understood. We recently reported PTEN binding affinities to membranes of different compositions (Shenoy et al., 2012, PLoS ONE 7, e32591) and a preliminary investigation of the protein-membrane complex with neutron reflectometry (NR). Here we use NR to validate molecular dynamics (MD) simulations of the protein and study conformational differences of the protein in solution and on anionic membranes. NR shows that full-length PTEN binds to such membranes roughly in the conformation and orientation suggested by the crystal structure of a truncated PTEN protein, in contrast with a recently presented model which suggested that membrane binding depends critically on the SUMOylation of the CBR3 loop of PTEN's C2 domain. Our MD simulations confirm that PTEN is peripherally bound to the bilayer surface and show slight differences of the protein structure in solution and in the membrane-bound state, where the protein body flattens against the bilayer surface. PTEN's C2 domain binds phosphatidylserine (PS) tightly through its CBR3 loop, and its phosphatase domain also forms electrostatic interactions with PS. NR and MD results show consistently that PTEN's unstructured, anionic C-terminal tail is repelled from the bilayer surface. In contrast, this tail is tightly tugged against the C2 domain in solution, partially obstructing the membrane-binding interface of the protein. Arresting the C-terminal tail in this conformation by phosphorylation may provide a control mechanism for PTEN's membrane binding and activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Structure of a Glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface

    PubMed Central

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A.

    2012-01-01

    Summary The ~300 human Cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1’s RING domain, regulates the RBX1-CUL1-containing SCFFBW7 complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN’s selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition. PMID:22748924

  3. Binding of heparin to plasma proteins and endothelial surfaces is inhibited by covalent linkage to antithrombin.

    PubMed

    Chan, Anthony K C; Paredes, Nethnapha; Thong, Bruce; Chindemi, Paul; Paes, Bosco; Berry, Leslie R; Monagle, Paul

    2004-05-01

    Unfractionated heparin (UFH) and low molecular weight heparin (LMWH) are used for prophylaxis and treatment of thrombosis. However, UFH has a short plasma half-life and variable anticoagulant response in vivo due to plasma or vessel wall protein binding and LMWH has a decreased ability to inactivate thrombin, the pivotal enzyme in the coagulation cascade. Covalent linkage of antithrombin to heparin gave a complex (ATH) with superior anticoagulant activity compared to UFH and LMWH, and longer intravenous half-life compared to UFH. We found that plasma proteins bound more to UFH than ATH, and least to LMWH. Also, UFH bound significantly more to endothelial cells than ATH, with 100% of UFH and 94% of ATH binding being on the cell surface and the remainder was endocytosed. Competition studies with UFH confirmed that ATH binding was likely through its heparin moiety. These findings suggest that differences in plasma protein and endothelial cell binding may be due to available heparin chain length. Although ATH is polydisperse, the covalently-linked antithrombin may shield a portion of the heparin chain from association with plasma or endothelial cell surface proteins. This model is consistent with ATH's better bioavailability and more predictable dose response.

  4. Is the Susceptibility Vessel Sign on 3-Tesla Magnetic Resonance T2*-Weighted Imaging a Useful Tool to Predict Recanalization in Intravenous Tissue Plasminogen Activator?

    PubMed

    Yamamoto, N; Satomi, J; Harada, M; Izumi, Y; Nagahiro, S; Kaji, R

    2016-09-01

    The aim of this study was to investigate the independent factors associated with the absence of recanalization approximately 24 h after intravenous administration of tissue-type plasminogen activator (IV TPA). The previous studies have been conducted using 1.5-Tesla (T) magnetic resonance imaging (MRI). We studied whether the characteristics of 3-T MRI findings were useful to predict outcome and recanalization after IV tPA. Patients with internal carotid artery (ICA) or middle cerebral artery (MCA) (horizontal portion, M1; Sylvian portion, M2) occlusion and treated by IV tPA were enrolled. We studied whether the presence of susceptibility vessel sign (SVS) at M1 and low clot burden score on T2*-weighted imaging (T2*-CBS) on 3-T MRI were associated with the absence of recanalization. A total of 49 patients were enrolled (27 men; mean age, 73.9 years). MR angiography obtained approximately 24 h after IV tPA revealed recanalization in 21 (42.9 %) patients. Independent factors associated with the absence of recanalization included ICA or proximal M1 occlusion (odds ratio, 69.6; 95 % confidence interval, 5.05-958.8, p = 0.002). In this study, an independent factor associated with the absence of recanalization may be proximal occlusion of the cerebral arteries rather than SVS in the MCA or low T2*-CBS on 3-T MRI.

  5. Characterization of interactions between Nedd4 and beta and gammaENaC using surface plasmon resonance.

    PubMed

    Asher, C; Chigaev, A; Garty, H

    2001-09-07

    Cell surface expression of the epithelial Na(+) channel ENaC is regulated by the ubiquitin ligase Nedd4. Binding of the WW domains of Nedd4 to the PY region in the carboxy tails of beta and gammaENaC, results in channel ubiquitination and degradation. Kinetic analysis of these interactions has been done using surface plasmon resonance. Synthetic peptides corresponding to the PY regions of beta and gammaENaC were immobilized on a sensor chip and "real-time" kinetics of their binding to recombinant WW proteins was determined. Specificity of the interactions was established by competition experiment, as well as by monitoring effects of a point mutation known to impair Nedd4/ENaC binding. These data provides the first determination of association, dissociation and equilibrium constants for the interactions between WW2 and beta or gammaENaC. Copyright 2001 Academic Press.

  6. FXIa and platelet polyphosphate as therapeutic targets during human blood clotting on collagen/tissue factor surfaces under flow.

    PubMed

    Zhu, Shu; Travers, Richard J; Morrissey, James H; Diamond, Scott L

    2015-09-17

    Factor XIIa (FXIIa) and factor XIa (FXIa) contribute to thrombosis in animal models, whereas platelet-derived polyphosphate (polyP) may potentiate contact or thrombin-feedback pathways. The significance of these mediators in human blood under thrombotic flow conditions on tissue factor (TF) -bearing surfaces remains inadequately resolved. Human blood (corn trypsin inhibitor treated [4 μg/mL]) was tested by microfluidic assay for clotting on collagen/TF at TF surface concentration ([TF]wall) from ∼0.1 to 2 molecules per μm(2). Anti-FXI antibodies (14E11 and O1A6) or polyP-binding protein (PPXbd) were used to block FXIIa-dependent FXI activation, FXIa-dependent factor IX (FIX) activation, or platelet-derived polyP, respectively. Fibrin formation was sensitive to 14E11 at 0 to 0.1 molecules per µm(2) and sensitive to O1A6 at 0 to 0.2 molecules per µm(2). However, neither antibody reduced fibrin generation at ∼2 molecules per µm(2) when the extrinsic pathway became dominant. Interestingly, PPXbd reduced fibrin generation at low [TF]wall (0.1 molecules per µm(2)) but not at zero or high [TF]wall, suggesting a role for polyP distinct from FXIIa activation and requiring low extrinsic pathway participation. Regardless of [TF]wall, PPXbd enhanced fibrin sensitivity to tissue plasminogen activator and promoted clot retraction during fibrinolysis concomitant with an observed PPXbd-mediated reduction of fibrin fiber diameter. This is the first detection of endogenous polyP function in human blood under thrombotic flow conditions. When triggered by low [TF]wall, thrombosis may be druggable by contact pathway inhibition, although thrombolytic susceptibility may benefit from polyP antagonism regardless of [TF]wall. © 2015 by The American Society of Hematology.

  7. MEMBRANE-TYPE 1 MATRIX METALLOPROTEINASE DOWNREGULATES FIBROBLAST GROWTH FACTOR-2 BINDING TO THE CELL SURFACE AND INTRACELLULAR SIGNALING

    PubMed Central

    Tassone, Evelyne; Valacca, Cristina; Mignatti, Paolo

    2014-01-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), a transmembrane proteinase with an extracellular catalytic domain and a short cytoplasmic tail, degrades extracellular matrix components and controls diverse cell functions through proteolytic and non-proteolytic interactions with extracellular, intracellular and transmembrane proteins. Here we show that in tumor cells MT1-MMP downregulates fibroblast growth factor-2 (FGF-2) signaling by reducing the amount of FGF-2 bound to the cell surface with high and low affinity. FGF-2 induces weaker activation of ERK1/2 MAP kinase in MT1-MMP expressing cells than in cells devoid of MT1-MMP. This effect is abolished in cells that express proteolytically inactive MT1-MMP but persists in cells expressing MT1-MMP mutants devoid of hemopexin-like or cytoplasmic domain, showing that FGF-2 signaling is downregulated by MT1-MMP proteolytic activity. MT1-MMP expression results in downregulation of FGFR-1 and -4, and in decreased amount of cell surface-associated FGF-2. In addition, MT1-MMP strongly reduces the amount of FGF-2 bound to the cell surface with low affinity. Because FGF-2 association with low-affinity binding sites is a prerequisite for binding to its high-affinity receptors, downregulation of low-affinity binding to the cell surface results in decreased FGF-2 signaling. Consistent with this conclusion, FGF-2 induction of tumor cell migration and invasion in vitro is stronger in cells devoid of MT1-MMP than in MT1-MMP expressing cells. Thus, MT1-MMP controls FGF-2 signaling by a proteolytic mechanism that decreases the cell’s biological response to FGF-2. PMID:24986796

  8. Ashitaba (Angelica Keiskei) Exudate Prevents Increases in Plasminogen Activator Inhibitor-1 Induced by Obesity in Tsumura Suzuki Obese Diabetic Mice.

    PubMed

    Ohta, Mitsuhiro; Fujinami, Aya; Oishi, Katsutaka; Kobayashi, Norihiro; Ohnishi, Katsunori; Ohkura, Naoki

    2018-04-30

    Angelica keiskei koidzumi (ashitaba) is consumed as a traditional folk medicine and health food in Japan. Ashitaba extract contains abundant flavonoids containing chalcones. Plasminogen activator inhibitor-1 (PAI-1) is the primary physiological inhibitor of tissue plasminogen activator. Excessive amounts of PAI-1 in plasma disrupt the fibrinolytic balance and promote a prothrombotic state with which thrombosis and cardiovascular diseases are associated. In the present study, we investigated the effects of ashitaba yellow exudate (AE) on enhanced PAI-1 levels in Tsumura Suzuki obese diabetic (TSOD) mice. AE significantly decreased food efficiency and plasma PAI-1 in TSOD mice but did not affect lean control Tsumura Suzuki nonobese (TSNO) mice. AE also decreased some parameters in the plasma, such as glucose, insulin, tumor necrosis factor alpha (TNF-α) and gains in body weight, subcutaneous, mesenteric fat weight in TSOD mice but had little effect on these parameters in TSNO mice. Levels of adipose PAI-1 were significantly higher in TSOD than in TSNO mice. Major sources of plasma PAI-1 are thought to be adipose tissue and liver. AE significantly suppressed PAI-1 protein levels in the livers of both TSOD and TSNO mice. These results suggest that AE decreased plasma PAI-1 levels by suppressing both the adipose tissue retention of PAI-1 protein and liver PAI-1 production in TSOD mice. Supplementing the diet with AE might help to prevent thrombotic diseases or alleviate the risk of thrombotic diseases as well as to suppress metabolic state in obese individuals.

  9. Adeno-associated virus type 2 binding study on model heparan sulfate surface

    NASA Astrophysics Data System (ADS)

    Negishi, Atsuko; Liu, Jian; McCarty, Douglas; Samulski, Jude; Superfine, Richard

    2003-11-01

    Understanding the mechanisms involved in virus infections is useful in its application in areas such as gene therapy, drug development and delivery, and biosensors. In collaboration with UNC Gene Therapy Center and School of Pharmacy, we are specifically looking at the interaction between human parvovirus adeno-associated virus type 2 (AAV2), a potential viral vector, and heparan sulfate proteoglycan (HSPG), a known cell surface receptor for AAV2. Recent development in glycobiology has shown that some protein-polysaccharide binding is sugar sequence dependent. Heparan sulfate (HS) is a polysaccharide chain of sulfated iduronic/glucuronic and sulfate glucosamine residues and can be differentiated into sequence specific structures by enzymes. These enzymatic modifications, known as heparan sulfate sulfotransferase modified modifications, have been shown to change the biological nature of heparan sulfate such as specific binding to proteins and viruses. For understanding HS-assisted viral infection mechanisms, we are interested in investigating the binding affinity and stability of AAV to different HS structures. We have developed a model heparan sulfate surface in which AAV adsorption studies are done and analyzed using the atomic force microscope (AFM). In addition, a miniArray assay has been created to facilitate to this study. Adsorption studies are done in 4 white LED wells with approximately 3 mm2 reaction areas which minimize sample use and waste.

  10. Evidence of extensive diversity in bacterial adherence mechanisms that exploit unanticipated stainless steel surface structural complexity for biofilm formation.

    PubMed

    Davis, Elisabeth M; Li, Dongyang; Shahrooei, Mohammad; Yu, Bin; Muruve, Daniel; Irvin, Randall T

    2013-04-01

    Three protease-resistant bioorganic 304 stainless steel surfaces were created through the reaction of synthetic peptides consisting of the D-enantiomeric isomer (D-K122-4), the retro-inverso D-enantiomeric isomer (RI-K122-4), and a combination of the two peptides (D+RI) of the Pseudomonas aeruginosa PilA receptor binding domain with steel surfaces. The peptides used to produce the new materials differ only in handedness of their three-dimensional structure, but they reacted with the steel to yield materials that differed in their surface electron work function (EWF) while displaying an identical chemical composition and equivalent surface adhesive force properties. These surfaces allowed for an assessment of the relative role of surface EWF in initial biofilm formation. We examined the ability of various bacteria (selected strains of Listeria monocytogenes, L. innocua, Staphylococcus aureus and S. epidermidis) to initiate biofilm formation. The D-K1224 generated surface displayed the lowest EWF (classically associated with greater molecular interactions and more extensive biofilm formation) but was observed to be least effectively colonized by bacteria (>50% decrease in bacterial adherence of all strains). The highest surface EWF with the lowest surface free energy (RI-K122-4 generated) was more extensively colonized by bacteria, with the binding of some strains being equivalent to unmodified steel. The D+RI generated surface was least effective in minimizing biofilm formation, where some strains displayed enhanced bacterial colonization. Fluorescent microscopy revealed that the D and RI peptides displayed similar but clearly different binding patterns, suggesting that the peptides recognized different sites on the steel, and that differential binding of the peptides to the steel surfaces influences the binding of different bacterial strains and species. We have demonstrated that stainless steel surfaces can be easily modified by peptides to generate surfaces with new physiochemical properties. The D-K122-4-modified surface substantially decreases biofilm formation compared to the RI-K122-4 and D+RI surfaces. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. An ubiquitin-binding molecule can work as an inhibitor of ubiquitin processing enzymes and ubiquitin receptors.

    PubMed

    Nguyen, Thanh; Ho, Minh; Ghosh, Ambarnil; Kim, Truc; Yun, Sun Il; Lee, Seung Seo; Kim, Kyeong Kyu

    2016-10-07

    The ubiquitin pathway plays a critical role in regulating diverse biological processes, and its dysregulation is associated with various diseases. Therefore, it is important to have a tool that can control the ubiquitin pathway in order to improve understanding of this pathway and to develop therapeutics against relevant diseases. We found that Chicago Sky Blue 6B binds directly to the β-groove, a major interacting surface of ubiquitin. Hence, it could successfully inhibit the enzymatic activity of ubiquitin processing enzymes and the binding of ubiquitin to the CXCR4, a cell surface ubiquitin receptor. Furthermore, we demonstrated that this ubiquitin binding chemical could effectively suppress the ubiquitin induced cancer cell migration by blocking ubiquitin-CXCR4 interaction. Current results suggest that ubiquitin binding molecules can be developed as inhibitors of ubiquitin-protein interactions, which will have the value not only in unveiling the biological role of ubiquitin but also in treating related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Fibrin monomer increases platelet adherence to tumor cells in a flowing system: a possible role in metastasis?

    PubMed

    Biggerstaff, J P; Seth, N B; Meyer, T V; Amirkhosravi, A; Francis, J L

    1998-12-15

    Considerable evidence exists linking hemostasis and malignancy. Platelet adhesion to tumor cells has been implicated in the metastatic process. Plasma fibrinogen (Fg) and fibrin (Fn) monomer, increased in cancer, may play a role in tumor biology. Binding of Fn monomer to tumor cells and its effect on platelet-tumor cell adhesion in a flowing system were studied. Fn monomer was produced by adding thrombin (1 micro/mL) to FXIII- and plasminogen-free Fg in the presence of Gly-Pro-Arg-Pro (GPRP) amide. Fn monomer binding to live A375 cells was visualized by confocal laser scanning microscopy (CLSM). Adherent cells were perfused for 1h with Fn monomer, washed and stained in situ with anti-human Fn (American Biogenetic Sciences, Inc.) followed by goat anti-mouse IgG(FITC). Platelet adherence to Fn monomer treated A375 cells was performed under flow conditions by passing platelets (5x10(4)/microl 0.25 mL/min; labeled with the carbocyanine dye DiI) over the tumor cells for 30 min. CLSM images were obtained after washing. There was considerable binding of Fn monomer, but not Fg alone. Platelets adhered relatively weakly to untreated A375 cells and this was not significantly affected by pre-treatment of the tumor cells with fibrinogen or thrombin. However, pre-treatment with Fn monomer resulted in extensive platelet binding to tumor cells, suggesting that coagulation activation and the subsequent increase in circulating Fn monomer may enhance platelet adhesion to circulating tumor cells and thereby facilitate metastatic spread.

  13. Virulence Gene Pool Detected in Bovine Group C Streptococcus dysgalactiae subsp. dysgalactiae Isolates by Use of a Group A S. pyogenes Virulence Microarray ▿

    PubMed Central

    Rato, Márcia G.; Nerlich, Andreas; Bergmann, René; Bexiga, Ricardo; Nunes, Sandro F.; Vilela, Cristina L.; Santos-Sanches, Ilda; Chhatwal, Gursharan S.

    2011-01-01

    A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans. PMID:21525223

  14. Sulforaphane inhibits TNF-α-induced adhesion molecule expression through the Rho A/ROCK/NF-κB signaling pathway.

    PubMed

    Hung, Chi-Nan; Huang, Hui-Pei; Wang, Chau-Jong; Liu, Kai-Li; Lii, Chong-Kuei

    2014-10-01

    Endothelial dysfunction is an early indicator of cardiovascular diseases. Increased stimulation of tumor necrosis factor-α (TNF-α) triggers the inflammatory mediator secretion of endothelial cells, leading to atherosclerotic risk. In this study, we investigated whether sulforaphane (SFN) affected the expression of intracellular adhesion molecule-1 (ICAM-1) in TNF-α-induced ECV 304 endothelial cells. Our data showed that SFN attenuated TNF-α-induced expression of ICAM-1 in ECV 304 cells. Pretreatment of ECV 304 cells with SFN inhibited dose-dependently the secretion of proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and IL-8. SFN inhibited TNF-α-induced nuclear factor-κB (NF-κB) DNA binding activity. Furthermore, SFN decreased TNF-α-mediated phosphorylation of IκB kinase (IKK) and IκBα, Rho A, ROCK, ERK1/2, and plasminogen activator inhibitor-1 (PAI-1) levels. Collectively, SFN inhibited the NF-κB DNA binding activity and downregulated the TNF-α-mediated induction of ICAM-1 in endothelial cells by inhibiting the Rho A/ROCK/NF-κB signaling pathway, suggesting the beneficial effects of SFN on suppression of inflammation within the atherosclerotic lesion.

  15. Vitamin D binding protein-macrophage activating factor directly inhibits proliferation, migration, and uPAR expression of prostate cancer cells.

    PubMed

    Gregory, Kalvin J; Zhao, Bing; Bielenberg, Diane R; Dridi, Sami; Wu, Jason; Jiang, Weihua; Huang, Bin; Pirie-Shepherd, Steven; Fannon, Michael

    2010-10-18

    Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation.

  16. Vitamin D Binding Protein-Macrophage Activating Factor Directly Inhibits Proliferation, Migration, and uPAR Expression of Prostate Cancer Cells

    PubMed Central

    Bielenberg, Diane R.; Dridi, Sami; Wu, Jason; Jiang, Weihua; Huang, Bin; Pirie-Shepherd, Steven; Fannon, Michael

    2010-01-01

    Background Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. Methods and Findings In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. Conclusions These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation. PMID:20976141

  17. A two-step recognition of signal sequences determines the translocation efficiency of proteins.

    PubMed Central

    Belin, D; Bost, S; Vassalli, J D; Strub, K

    1996-01-01

    The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery. Images PMID:8599930

  18. A two-step recognition of signal sequences determines the translocation efficiency of proteins.

    PubMed

    Belin, D; Bost, S; Vassalli, J D; Strub, K

    1996-02-01

    The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery.

  19. Recombinant interferon-gamma secreted by Chinese hamster ovary-320 cells cultivated in suspension in protein-free media is protected against extracellular proteolysis by the expression of natural protease inhibitors and by the addition of plant protein hydrolysates to the culture medium.

    PubMed

    Mols, J; Peeters-Joris, C; Wattiez, R; Agathos, S N; Schneider, Y-J

    2005-01-01

    Biosafety requirements increasingly restrict the cultivation of mammalian cells producing therapeutic glycoproteins to conditions that are devoid of any compound of animal origin. On cultivation in serum-free media, the proteases inhibitors, usually found in serum, cannot protect secreted recombinant proteins against unwanted endogenous proteolysis. Chinese hamster ovary (CHO) cells, secreting recombinant human interferon-gamma (CHO-320 cell line) and cultivated in suspension in an original protein-free medium, expressed at least two members of the matrix metalloproteinases (MMP), either at the cell surface (proMMP-14 and MMP-14) or secreted (proMMP-9). In addition, tissue- and urinary-type plasminogen activators were also secreted in such culture conditions. At the cell surface, dipeptidyl peptidase IV and tripeptidyl peptidase II (TPPII) activities were also detected, and their activities decreased during time course of batch cultures. The proteolytic activities of these proteins were counterbalanced by (1) their expression as zymogens (proMMP-9, proMMP-14), (2) the expression of their natural inhibitors, tissue inhibitors of metalloproteinases-1 and -2 and plasminogen activator inhibitor-1 (PAI-1), or (3) the addition of plant protein hydrolysates to the culture medium, acting as a nonspecific source of TPPII inhibitors. This study points out that, even in protein-free media, recombinant proteins secreted by CHO cells are actively protected against physiological and unwanted extracellular proteolysis either by endogenous or by exogenous inhibitors.

  20. Kinetic analysis of a monoclonal therapeutic antibody and its single-chain homolog by surface plasmon resonance.

    PubMed

    Patel, Rekha; Andrien, Bruce A

    2010-01-01

    Monoclonal antibodies (mAbs) and antibody fragments have become an emerging class of therapeutics since 1986. Their versatility enables them to be engineered for optimal efficiency and decreased immunogenicity, and the path to market has been set by recent regulatory approvals. One of the initial criteria for success of any protein or antibody therapeutic is to understand its binding characteristics to the target antigen. Surface plasmon resonance (SPR) has been widely used and is an important tool for ligand-antigen binding characterization. In this work, the binding kinetics of a recombinant mAb and its single-chain antibody homolog, single-chain variable fragment (scFv), was analyzed by SPR. These two proteins target the same antigen. The binding kinetics of the mAb (bivalent antibody) and scFv (monovalent scFv) for this antigen was analyzed along with an assessment of the thermodynamics of the binding interactions. Alternative binding configurations were investigated to evaluate potential experimental bias because theoretically experimental binding configuration should have no impact on binding kinetics. Self-association binding kinetics in the proteins' respective formulation solutions and antigen epitope mapping were also evaluated. Functional characterization of monoclonal and single-chain antibodies has become just as important as structural characterization in the biotechnology field.

  1. Ubiquitin Regulates Caspase Recruitment Domain-mediated Signaling by Nucleotide-binding Oligomerization Domain-containing Proteins NOD1 and NOD2*

    PubMed Central

    Ver Heul, Aaron M.; Fowler, C. Andrew; Ramaswamy, S.; Piper, Robert C.

    2013-01-01

    NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins) are intracellular pattern recognition receptors that activate inflammation and autophagy. These pathways rely on the caspase recruitment domains (CARDs) within the receptors, which serve as protein interaction platforms that coordinately regulate immune signaling. We show that NOD1 CARD binds ubiquitin (Ub), in addition to directly binding its downstream targets receptor-interacting protein kinase 2 (RIP2) and autophagy-related protein 16-1 (ATG16L1). NMR spectroscopy and structure-guided mutagenesis identified a small hydrophobic surface of NOD1 CARD that binds Ub. In vitro, Ub competes with RIP2 for association with NOD1 CARD. In vivo, we found that the ligand-stimulated activity of NOD1 with a mutant CARD lacking Ub binding but retaining ATG16L1 and RIP2 binding is increased relative to wild-type NOD1. Likewise, point mutations in the tandem NOD2 CARDs at positions analogous to the surface residues defining the Ub interface on NOD1 resulted in loss of Ub binding and increased ligand-stimulated NOD2 signaling. These data suggest that Ub binding provides a negative feedback loop upon NOD-dependent activation of RIP2. PMID:23300079

  2. Annexin II-binding immunoglobulins in patients with lupus nephritis and their correlation with disease manifestations.

    PubMed

    Cheung, Kwok Fan; Yung, Susan; Chau, Mel K M; Yap, Desmond Y H; Chan, Kwok Wah; Lee, Cheuk Kwong; Tang, Colin S O; Chan, Tak Mao

    2017-04-25

    Annexin II on mesangial cell surface mediates the binding of anti-dsDNA antibodies and consequent downstream inflammatory and fibrotic processes. We investigated the clinical relevance of circulating annexin II-binding immunoglobulins (Igs) in patients with severe proliferative lupus nephritis, and renal annexin II expression in relation to progression of nephritis in New Zealand Black and White F1 mice (NZBWF1/J) mice. Annexin II-binding Igs in serum were measured by ELISA. Ultrastructural localization of annexin II was determined by electron microscopy. Seropositivity rates for annexin II-binding IgG and IgM in patients with active lupus nephritis were significantly higher compared with controls (8.9%, 1.3% and 0.9% for annexin II-binding IgG and 11.1%, 4.0% and 1.9% for annexin II-binding IgM for patients with active lupus nephritis, patients with non-lupus renal disease and healthy subjects respectively). In lupus patients, annexin II-binding IgM level was higher at disease flare compared with remission. Annexin II-binding IgG and IgM levels were associated with that of anti-dsDNA and disease activity. Annexin II-binding IgG and IgM levels correlated with histological activity index in lupus nephritis biopsy samples. In NZBWF1/J mice, serum annexin II-binding IgG and IgM levels and glomerular annexin II and p11 expression increased with progression of active nephritis. Annexin II expression was present on mesangial cell surface and in the mesangial matrix, and co-localized with electron-dense deposits along the glomerular basement membrane. Our results show that circulating annexin II-binding IgG and IgM levels are associated with clinical and histological disease activity in proliferative lupus nephritis. The co-localization of annexin II and p11 expression with immune deposition in the kidney suggests pathogenic relevance. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  3. Risk factors for intracranial hemorrhage in acute ischemic stroke patients treated with recombinant tissue plasminogen activator: a systematic review and meta-analysis of 55 studies.

    PubMed

    Whiteley, William N; Slot, Karsten Bruins; Fernandes, Peter; Sandercock, Peter; Wardlaw, Joanna

    2012-11-01

    Recombinant tissue plasminogen activator (rtPA) is an effective treatment for acute ischemic stroke but is associated with an increased risk of intracranial hemorrhage (ICH). We sought to identify the risk factors for ICH with a systematic review of the published literature. We searched for studies of rtPA-treated stroke patients that reported an association between a variable measured before rtPA infusion and clinically important ICH (parenchymal ICH or ICH associated with clinical deterioration). We calculated associations between baseline variables and ICH with random-effect meta-analyses. We identified 55 studies that measured 43 baseline variables in 65 264 acute ischemic stroke patients. Post-rtPA ICH was associated with higher age (odds ratio, 1.03 per year; 95% confidence interval, 1.01-1.04), higher stroke severity (odds ratio, 1.08 per National Institutes of Health Stroke Scale point; 95% confidence interval, 1.06-1.11), and higher glucose (odds ratio, 1.10 per mmol/L; 95% confidence interval, 1.05-1.14). There was approximately a doubling of the odds of ICH with the presence of atrial fibrillation, congestive heart failure, renal impairment, previous antiplatelet agents, leukoaraiosis, and a visible acute cerebral ischemic lesion on pretreatment brain imaging. Little of the variation in the sizes of the associations among different studies was explained by the source of the cohort, definition of ICH, or degree of adjustment for confounding variables. Individual baseline variables were modestly associated with post-rtPA ICH. Prediction of post-rtPA ICH therefore is likely to be difficult if based on single clinical or imaging factors alone. These observational data do not provide a reliable method for the individualization of treatment according to predicted ICH risk.

  4. The association of clot lysis time with total obesity is partly independent from the association of PAI-1 with central obesity in African adults.

    PubMed

    Eksteen, Philna; Pieters, Marlien; de Lange, Zelda; Kruger, Herculina S

    2015-08-01

    Preliminary evidence indicates that the association of fibrinolytic potential, measured as clot lysis time (CLT), with body composition may differ from that of plasminogen activator inhibitor type-1 (PAI-1). We therefore investigated the association between fibrinolytic markers (plasminogen activator inhibitor type-1 activity (PAI-1act) and CLT) and body composition using detailed body composition analyses. Data from 1288 Africans were cross-sectionally analyzed. Body composition analysis included BMI, waist circumference (WC); waist to height ratio (WHtR), skinfolds and body fat percentage measured with air-displacement plethysmography and bioelectrical impedance analysis. PAI-1act and CLT were significantly higher in women than in men, despite adjustment for differences in body composition. PAI-1act and CLT showed similar linear positive relationships with body composition (BMI, WC, WHtR, skinfolds) in men. In women CLT also showed a linear relationship with body composition, while PAI-1act levels plateaued at higher BMI and did not differ across skinfold categories. PAI-1act showed stronger correlations with body composition markers in men than it did in women, while no sex differences existed for CLT. PAI-1act associated more strongly with central obesity, while CLT associated with total body fat. Observed differences may be related to differences in adipose tissue type, distribution and sequence of accumulation between sexes. PAI-1act is strongly influenced by accumulation of visceral adipose tissue, whereas CLT is associated with obesity independent of type and sequence of body fat accumulation in this African adult study population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Anxiety and depression in patients three months after myocardial infarction: Association with markers of coagulation and the relevance of age.

    PubMed

    Geiser, Franziska; Urbach, Anne Sarah; Harbrecht, Ursula; Conrad, Rupert; Pötzsch, Bernd; Amann, Nele; Kiesewetter, Katharina; Sieke, Alexandra; Wolffs, Kyra; Skowasch, Dirk

    2017-08-01

    Anxiety and depression are associated with an activation of coagulation and an impairment of fibrinolysis, which may contribute to the increased cardiovascular risk associated with the two disorders. However, very few studies have examined the impact of psychological distress on coagulation factors in coronary artery disease patients. The aim of this study was to assess the correlation between anxiety/depression and factors of coagulation and fibrinolysis in patients who had suffered an acute MI three months prior. In 148 patients, anxiety and depression were assessed by the Hospital Anxiety and Depression Scale (HADS) shortly after MI and three months later. At the second time of assessment, plasma levels of fibrinogen, factor VII, factor VIII, von Willebrand factor, prothrombin-fragment 1 and 2, tissue-plasminogen-activator, plasminogen activator inhibitor-1, D-dimer, and homocysteine were measured. In 32% of the patients, elevated levels of anxiety and depression were found three months after a MI. Multiple regression analyses showed that coagulation and fibrinolysis markers were not significantly associated with HADS anxiety and depression scores. We found that age, gender, BMI, and smoking status were significant predictors for haemostasis factors. A higher age was associated with a higher coagulability but lower anxiety levels. We measured parameters of coagulation and fibrinolysis in patients three months after MI and found no predictive value of HADS anxiety and depression scores shortly after MI or at the time of blood sampling. The effects of age on the relationship between anxiety and haemostasis should be further investigated. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Low capping group surface density on zinc oxide nanocrystals.

    PubMed

    Valdez, Carolyn N; Schimpf, Alina M; Gamelin, Daniel R; Mayer, James M

    2014-09-23

    The ligand shell of colloidal nanocrystals can dramatically affect their stability and reaction chemistry. We present a methodology to quantify the dodecylamine (DDA) capping shell of colloidal zinc oxide nanocrystals in a nonpolar solvent. Using NMR spectroscopy, three different binding regimes are observed: strongly bound, weakly associated, and free in solution. The surface density of bound DDA is constant over a range of nanocrystal sizes, and is low compared to both predictions of the number of surface cations and maximum coverages of self-assembled monolayers. The density of strongly bound DDA ligands on the as-prepared ZnO NCs is 25% of the most conservative estimate of the maximum surface DDA density. Thus, these NCs do not resemble the common picture of a densely capped surface ligand layer. Annealing the ZnO NCs in molten DDA for 12 h at 160 °C, which is thought to remove surface hydroxide groups, resulted in a decrease of the weakly associated DDA and an increase in the density of strongly bound DDA, to ca. 80% of the estimated density of a self-assembled monolayer on a flat ZnO surface. These findings suggest that as-prepared nanocrystal surfaces contain hydroxide groups (protons on the ZnO surfaces) that inhibit strong binding of DDA.

  7. Numerical Simulation of Rheological, Chemical and Hydromechanical Processes of Thrombolysis

    NASA Astrophysics Data System (ADS)

    Khramchenkov, E.; Khramchenkov, M.

    2015-04-01

    Mathematical model of clot lysis in blood vessels is developed on the basis of equations of convection-diffusion. Fibrin of the clot is considered stationary solid phase, and plasminogen, plasmin and plasminogen-activators - as dissolved fluid phases. As a result of numerical solution of the model predictions of lysis process are gained. Important influence of clot swelling on the process of lysis is revealed.

  8. High-fat diet enhances and plasminogen activator inhibitor-1 deficiency attenuates bone loss in mice with Lewis Lung carcinoma

    USDA-ARS?s Scientific Manuscript database

    This study determined the effects of a high-fat diet and plasminogen activator inhibitor-1 deficiency (PAI-1-/-) on bone structure in mice bearing Lewis lung carcinoma (LLC) in lungs. Reduction in bone volume fraction (BV/TV) by 22% and 21%, trabecular number (Tb.N) by 8% and 4% and bone mineral de...

  9. Structural Basis for Interactions Between Contactin Family Members and Protein-tyrosine Phosphatase Receptor Type G in Neural Tissues

    DOE PAGES

    Nikolaienko, Roman M.; Hammel, Michal; Dubreuil, Véronique; ...

    2016-08-18

    Protein-tyrosine phosphatase receptor type G (RPTPγ/PTPRG) interacts in vitro with contactin-3-6 (CNTN3-6), a group of glycophosphatidylinositol-anchored cell adhesion molecules involved in the wiring of the nervous system. In addition to PTPRG, CNTNs associate with multiple transmembrane proteins and signal inside the cell via cis-binding partners to alleviate the absence of an intracellular region. Here, we use comprehensive biochemical and structural analyses to demonstrate that PTPRG·CNTN3-6 complexes share similar binding affinities and a conserved arrangement. Furthermore, as a first step to identifying PTPRG·CNTN complexes in vivo, we found that PTPRG and CNTN3 associate in the outer segments of mouse rod photoreceptormore » cells. In particular, PTPRG and CNTN3 form cis-complexes at the surface of photoreceptors yet interact in trans when expressed on the surfaces of apposing cells. Further structural analyses suggest that all CNTN ectodomains adopt a bent conformation and might lie parallel to the cell surface to accommodate these cis and trans binding modes. Taken together, these studies identify a PTPRG·CNTN complex in vivo and provide novel insights into PTPRG- and CNTN-mediated signaling.« less

  10. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms.

    PubMed

    Ng, Filomena; Kittelmann, Sandra; Patchett, Mark L; Attwood, Graeme T; Janssen, Peter H; Rakonjac, Jasna; Gagic, Dragana

    2016-09-01

    Symbiotic associations are ubiquitous in the microbial world and have a major role in shaping the evolution of both partners. One of the most interesting mutualistic relationships exists between protozoa and methanogenic archaea in the fermentative forestomach (rumen) of ruminant animals. Methanogens reside within and on the surface of protozoa as symbionts, and interspecies hydrogen transfer is speculated to be the main driver for physical associations observed between the two groups. In silico analyses of several rumen methanogen genomes have previously shown that up to 5% of genes encode adhesin-like proteins, which may be central to rumen interspecies attachment. We hypothesized that adhesin-like proteins on methanogen cell surfaces facilitate attachment to protozoal hosts. Using phage display technology, we have identified a protein (Mru_1499) from Methanobrevibacter ruminantium M1 as an adhesin that binds to a broad range of rumen protozoa (including the genera Epidinium and Entodinium). This unique adhesin also binds the cell surface of the bacterium Butyrivibrio proteoclasticus, suggesting a broad adhesion spectrum for this protein. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. A Shared Docking Motif in TRF1 and TRF2 Used for Differential Recruitment of Telomeric Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yong; Yang, Yuting; van Overbeek, Megan

    2008-05-01

    Mammalian telomeres are protected by a six-protein complex: shelterin. Shelterin contains two closely related proteins (TRF1 and TRF2), which recruit various proteins to telomeres. We dissect the interactions of TRF1 and TRF2 with their shared binding partner (TIN2) and other shelterin accessory factors. TRF1 recognizes TIN2 using a conserved molecular surface in its TRF homology (TRFH) domain. However, this same surface does not act as a TIN2 binding site in TRF2, and TIN2 binding to TRF2 is mediated by a region outside the TRFH domain. Instead, the TRFH docking site of TRF2 binds a shelterin accessory factor (Apollo), which doesmore » not interact with the TRFH domain of TRF1. Conversely, the TRFH domain of TRF1, but not of TRF2, interacts with another shelterin-associated factor: PinX1.« less

  12. Selection and Screening of DNA Aptamers for Inorganic Nanomaterials.

    PubMed

    Zhou, Yibo; Huang, Zhicheng; Yang, Ronghua; Liu, Juewen

    2018-02-21

    Searching for DNA sequences that can strongly and selectively bind to inorganic surfaces is a long-standing topic in bionanotechnology, analytical chemistry and biointerface research. This can be achieved either by aptamer selection starting with a very large library of ≈10 14 random DNA sequences, or by careful screening of a much smaller library (usually from a few to a few hundred) with rationally designed sequences. Unlike typical molecular targets, inorganic surfaces often have quite strong DNA adsorption affinities due to polyvalent binding and even chemical interactions. This leads to a very high background binding making aptamer selection difficult. Screening, on the other hand, can be designed to compare relative binding affinities of different DNA sequences and could be more appropriate for inorganic surfaces. The resulting sequences have been used for DNA-directed assembly, sorting of carbon nanotubes, and DNA-controlled growth of inorganic nanomaterials. It was recently discovered that poly-cytosine (C) DNA can strongly bind to a diverse range of nanomaterials including nanocarbons (graphene oxide and carbon nanotubes), various metal oxides and transition-metal dichalcogenides. In this Concept article, we articulate the need for screening and potential artifacts associated with traditional aptamer selection methods for inorganic surfaces. Representative examples of application are discussed, and a few future research opportunities are proposed towards the end of this article. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Optical sensors for therapeutic drug monitoring of antidepressants for a better medication adjustment

    NASA Astrophysics Data System (ADS)

    Krieg, Anne K.; Hess, Stefan; Gauglitz, Günter

    2013-05-01

    Therapeutic drug monitoring provides the attending physicians with detailed information on a patient's individual serum level especially during long-term medication. Due to the fact that each patient tolerates drugs or their metabolites differently a medication adjustment can reduce the number and intensity of noticeable side-effects. In particular, psychotropic drugs can cause unpleasant side-effects that affect a patient's life almost as much as the mental disease itself. The tricyclic antidepressants amitriptyline is commonly used for treatment of depressions and was selected for the development of an immunoassay using the direct optical sensor technique Reflectometric Interference Spectroscopy (RIfS). RIfS is a simple, robust and label-free method for direct monitoring of binding events on glass surfaces. Binding to the surface causes a shift of the interference spectrum by a change of the refractive index or physical thickness. This technique can be used for time-resolved observation of association and dissociation of amitriptyline (antigen) and a specific antibody using the binding inhibition test format. An amitriptyline derivative is immobilized on the sensor surface and a specific amount of antibodies can bind to the surface unless the binding is inhibited by free amitriptyline in a sample. No fluorescent label is needed making the whole assay less expensive than label-based methods. With this recently developed immunoassay amitriptyline concentrations in buffer (PBS) can easily be detected down to 500 ng/L.

  14. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerch, Thomas F.; Chapman, Michael S., E-mail: chapmami@ohsu.edu

    2012-02-05

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites ofmore » AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.« less

  15. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerch, Thomas F.; Chapman, Michael S.

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites ofmore » AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.« less

  16. Characterization and kinetics of surface functionalization and binding of biologically and chemically significant molecules

    NASA Astrophysics Data System (ADS)

    Steiner, Rachel

    The purpose of this project is to investigate intermolecular interactions of organic molecular assemblies. By understanding the structure and physical interactions in these assemblies, we gain insights into practical applications for nanoscale systems built upon these surface structures. It is possible for organic chemists to create many forms of modified organic molecules, functionalizing them with specific reactive end groups. Through surface functionalization, enabling covalent or highly associative binding, it is possible to create ordered molecular assemblies of these molecules. Scientists can study the nature of this structure and the intermolecular interactions through spectroscopic, optical, and scattering experiments. To understand the self-assembly process in molecular systems, we preliminarily created monolayer films on silica substrates with a variety of organic molecules. In particular, we functionalized silica substrates with hydroxyl groups and covalently bound acid chloride functionalized aromatic compounds, with and without an underlying adhesion layer of 3-aminopropyltriethoxysilane. We characterized the monolayer assemblies with ellipsometry, UV-vis absorption spectroscopy, FTIR spectroscopy, and fluorescence/photoemission spectroscopy, obtaining a quantitative measure of the molecular surface coverage. In order to understand the nature of these molecular assemblies, we also pursued an in-depth kinetic study to control and optimize the monolayer formation process. Through use of UV-vis spectroscopy, we determined that the monolayer formation can best be modeled with diffusion-limited Langmuir kinetics. Specifically, we concluded that for anthracene acid chloride in dichloromethane the average diffusion coefficient was 1.6x10-7 cm2/sec. Additionally, we find we are able to achieve surface coverages of approximately 2x1014 molecules/cm2. Having established the ability to create ordered molecular assemblies, through surface functionalization, enabling covalent or highly associative binding, we continued to explore the field of molecular assemblies by studying the binding and structure of molecules to carbon nanostructures. Previous studies have shown that alkyl side chains and aromatic compounds, such as pyrene, will bind non-covalently to the sidewalls of carbon nanotubes through pi-pi interactions. We explored functionalization of carbon nanotubes and graphene by using microscopy to examine the adsorption of biomolecules onto nanotube sidewalls and graphene.

  17. Plasminogen activator inhibitor-1 -675 4G/5G polymorphism and polycystic ovary syndrome risk: a meta analysis.

    PubMed

    Liu, Ying; Sun, Mei-Guo; Jiang, Rong; Ding, Rui; Che, Zhen; Chen, Yan-Yan; Yao, Ci-Jiang; Zhu, Xiao-Xia; Cao, Ji-Yu

    2014-03-01

    Several studies have reported that excessive amounts of plasminogen activator inhibitor-1(PAI-1) might increase the incidence of polycystic ovary syndrome(PCOS), but so far the published results were inconsistent. The aim of this study was to further investigate the association between PAI-1 gene polymorphism and the susceptibility to PCOS by performing a meta-analysis. A comprehensive literature search for relevant studies was conducted on google scholar, PubMed, the Chinese National Knowledge Infrastructure (CNKI) and the Chinese Biomedical Literature Database (CBM). This meta-analysis was performed using the STATA 11.0 software and the pooled odds ratio (OR) with 95% confidence interval (CI) was calculated. Ten case-control studies were included in this meta-analysis with a total of 2,079 cases and 1,556 controls. The results showed that PAI-1 -675 4G/5G polymorphism may increase the risk of PCOS, especially among Asian populations. However, there was no statistically significant association between the polymorphism and PCOS risk in Caucasians. Our meta-analysis suggests that PAI-1 -675 4G/5G polymorphism may contribute to increasing susceptibility to PCOS in Asians. Detection of the PAI-1 gene polymorphism might be a promising biomarker for the susceptibility of PCOS.

  18. Topical tissue plasminogen activator appears ineffective for the clearance of intraocular fibrin.

    PubMed

    Zwaan, J; Latimer, W B

    1998-06-01

    To determine the efficacy of topical tissue plasminogen activator (tPA) for the resolution of postoperative or inflammatory intraocular fibrinous exudates. Each treatment consisted of drops of 1 mg/ml tPA given 9 times 5 minutes apart. Records were reviewed and the results at 24 and 48 hours were recorded. Sixty-two patients had a total of 94 treatments. Fibrin exudates following intraocular surgery in 34 patients were treated 44 times. In 6 patients there was a positive result. Fibrin associated with intraocular infection was treated in 9 patients. None showed clear improvement. Nineteen patients had a total of 34 treatments for poorly controlled intraocular pressure (IOP) after glaucoma surgery. Five patients showed adequate control of the IOP, 12 did not change, and 2 had a questionable improvement. Eleven patients had adequate IOP control after additional treatment. Seven required suture lysis, 2 ab interno bleb revision, and 2 YAG capsulotomy or iridotomy to reduce the IOP to an acceptable level. Within the limits of this retrospective study and taking into account that fibrin may resolve spontaneously, it appears that topical tPA drops are not effective for the liquefaction of intraocular fibrin after surgery or in association with intraocular inflammation. They did not improve IOP control after glaucoma surgery.

  19. Extracellular Collagen Promotes Interleukin-1β-Induced Urokinase-Type Plasminogen Activator Production by Human Corneal Fibroblasts.

    PubMed

    Sugioka, Koji; Kodama-Takahashi, Aya; Yoshida, Koji; Aomatsu, Keiichi; Okada, Kiyotaka; Nishida, Teruo; Shimomura, Yoshikazu

    2017-03-01

    Keratocytes maintain homeostasis of the corneal stroma through synthesis, secretion, and degradation of collagen fibrils of the extracellular matrix. Given that these cells are essentially embedded in a collagen matrix, keratocyte-collagen interactions may play a key role in regulation of the expression or activation of enzymes responsible for matrix degradation including urokinase-type plasminogen activator (uPA), plasmin, and matrix metalloproteinases (MMPs). We examined the effect of extracellular collagen on the production of uPA by corneal fibroblasts (activated keratocytes) stimulated with the proinflammatory cytokine interleukin-1β (IL-1β). Human corneal fibroblasts were cultured either on plastic or in a three-dimensional gel of type I collagen. Plasminogen activators were detected by fibrin zymography, whereas the IL-1 receptor (IL-1R) and MMPs were detected by immunoblot analysis. Collagen degradation by corneal fibroblasts was assessed by measurement of hydroxyproline in acid hydrolysates of culture supernatants. Collagen and IL-1β synergistically increased the synthesis and secretion of uPA in corneal fibroblasts. Collagen also upregulated IL-1R expression in the cells in a concentration-dependent manner. The conversion of extracellular plasminogen to plasmin, as well as the plasminogen-dependent activation of MMP-1 and MMP-3 and degradation of collagen apparent in three-dimensional cultures of corneal fibroblasts exposed to IL-1β, were all abolished by a selective uPA inhibitor. Collagen and IL-1β cooperate to upregulate uPA production by corneal fibroblasts. Furthermore, IL-1β-induced collagen degradation by these cells appears to be strictly dependent on uPA expression and mediated by a uPA-plasmin-MMP pathway.

  20. Immunohistochemical analysis of the gingiva with periodontitis of type I plasminogen deficiency compared to gingiva with gingivitis and periodontitis and healthy gingiva.

    PubMed

    Kurtulus Waschulewski, Idil; Gökbuget, Aslan Y; Christiansen, Nina M; Ziegler, Maike; Schuster, Volker; Wahl, Gerhard; Götz, Werner

    2016-12-01

    Type I plasminogen deficiency (Plgdef) is an uncommon chronic inflammation of mucous membranes. Gingival enlargements usually proceed with progressive periodontal destruction and tooth-loss. Plasmin(ogen)-independent enzymatic mechanisms for fibrin clearance have already been discussed in the literature. Our primary objective was to verify, immunohistochemically, the occurrence of different enzymatic factors involved in tissue breakdown of inflamed compared to healthy gingiva. Secondly, we tried to find out, if these patients have a similar microbiological profile to the patients with known gingivitis and periodontitis. Immunohistochemical analysis of enzymes elastase, plasminogen (plg), cathepsin G, matrix-metalloproteinase (MMP)-3 and MMP-7 and of glycoprotein fibrinogen were performed with gingival tissues from 3 healthy controls, 8 patients with Plgdef and 3 patients with gingivitis and periodontitis. Furthermore, plaque from 5 patients with plasminogen deficiency were also obtained to determine the microbiological profile. Significantly high numbers of elastase positive leukocytes were detected in all samples. Staining for MMP-3 and MMP-7 was seen in samples with gingivitis and periodontitis with a stronger staining in samples with periodontitis by Plgdef. Fibrinogen was detectable in all samples. Staining for plg was stronger in samples with periodontitis than in other samples. Staining for cathepsin G was weak in gingivitis and periodontitis. Subgingival microbial flora showed elevated colony forming units of Prevotella intermedia/nigrescens, Fusobacterium spp., Eikenella corrodens, Porphyromonas gingivalis and viridans streptococci. Strong staining of elastase, MMP-3 and MMP-7 and weak staining of plg in Plgdef samples supports the plasmin(ogen) - independent fibrin clearance. Similar subgingival microbiological flora was observed in periodontitis with Plgdef as in other periodontal diseases. Further investigations should determine the exact pathomechanism and focus on effective treatment methods of this entity. Copyright © 2016. Published by Elsevier Ltd.

  1. Gingival crevicular fluid tissue/blood vessel-type plasminogen activator and plasminogen activator inhibitor-2 levels in patients with rheumatoid arthritis: effects of nonsurgical periodontal therapy.

    PubMed

    Kurgan, Ş; Önder, C; Balcı, N; Fentoğlu, Ö; Eser, F; Balseven, M; Serdar, M A; Tatakis, D N; Günhan, M

    2017-06-01

    The aim of this study was to evaluate the effect of nonsurgical periodontal therapy on clinical parameters and gingival crevicular fluid levels of tissue/blood vessel-type plasminogen activator (t-PA) and plasminogen activator inhibitor-2 (PAI-2) in patients with periodontitis, with or without rheumatoid arthritis (RA). Fifteen patients with RA and chronic periodontitis (RA-P), 15 systemically healthy patients with chronic periodontitis (H-P) and 15 periodontally and systemically healthy volunteers (C) were included in the study. Plaque index, gingival index, probing pocket depth, clinical attachment level, bleeding on probing, gingival crevicular fluid t-PA and PAI-2 levels, erythrocyte sedimentation rate, serum C-reactive protein and disease activity score were evaluated at baseline and 3 mo after mechanical nonsurgical periodontal therapy. All periodontal clinical parameters were significantly higher in the RA-P and H-P groups compared with the C group (p < 0.001) and decreased significantly after treatment (p < 0.001). Pretreatment t-PA levels were highest in the RA-P group and significantly decreased post-treatment (p = 0.047). Pre- and post-treatment PAI-2 levels were significantly lower in controls compared with both periodontitis groups (p < 0.05). Gingival crevicular fluid volume and the levels of t-PA and PAI-2 were significantly correlated. In patients with periodontitis and RA, nonsurgical periodontal therapy reduced the pretreatment gingival crevicular fluid t-PA levels, which were significantly correlated with gingival crevicular fluid PAI-2 levels. The significantly higher t-PA and PAI-2 gingival crevicular fluid levels in periodontal patients, regardless of systemic status, suggest that the plasminogen activating system plays a role in the disease process of periodontitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. CorA Is a Copper Repressible Surface-Associated Copper(I)-Binding Protein Produced in Methylomicrobium album BG8

    PubMed Central

    Johnson, Kenneth A.; Ve, Thomas; Larsen, Øivind; Pedersen, Rolf B.; Lillehaug, Johan R.; Jensen, Harald B.; Helland, Ronny; Karlsen, Odd A.

    2014-01-01

    CorA is a copper repressible protein previously identified in the methanotrophic bacterium Methylomicrobium album BG8. In this work, we demonstrate that CorA is located on the cell surface and binds one copper ion per protein molecule, which, based on X-ray Absorption Near Edge Structure analysis, is in the reduced state (Cu(I)). The structure of endogenously expressed CorA was solved using X-ray crystallography. The 1.6 Å three-dimensional structure confirmed the binding of copper and revealed that the copper atom was coordinated in a mononuclear binding site defined by two histidines, one water molecule, and the tryptophan metabolite, kynurenine. This arrangement of the copper-binding site is similar to that of its homologous protein MopE* from Metylococcus capsulatus Bath, confirming the importance of kynurenine for copper binding in these proteins. Our findings show that CorA has an overall fold similar to MopE, including the unique copper(I)-binding site and most of the secondary structure elements. We suggest that CorA plays a role in the M. album BG8 copper acquisition. PMID:24498370

  3. Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doktorova, Milka; Heberle, Frederick A.; Kingston, Richard L.

    Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein’s matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here in this paper, using a broad set of in vitro and in silico techniques we addressed molecularmore » mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins.« less

  4. Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties

    DOE PAGES

    Doktorova, Milka; Heberle, Frederick A.; Kingston, Richard L.; ...

    2017-11-07

    Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein’s matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here in this paper, using a broad set of in vitro and in silico techniques we addressed molecularmore » mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins.« less

  5. Lipid Rafts Act as Specialized Domains for Tetanus Toxin Binding and Internalization into Neurons

    PubMed Central

    Herreros, Judit; Ng, Tony; Schiavo, Giampietro

    2001-01-01

    Tetanus (TeNT) is a zinc protease that blocks neurotransmission by cleaving the synaptic protein vesicle-associated membrane protein/synaptobrevin. Although its intracellular catalytic activity is well established, the mechanism by which this neurotoxin interacts with the neuronal surface is not known. In this study, we characterize p15s, the first plasma membrane TeNT binding proteins and we show that they are glycosylphosphatidylinositol-anchored glycoproteins in nerve growth factor (NGF)-differentiated PC12 cells, spinal cord cells, and purified motor neurons. We identify p15 as neuronal Thy-1 in NGF-differentiated PC12 cells. Fluorescence lifetime imaging microscopy measurements confirm the close association of the binding domain of TeNT and Thy-1 at the plasma membrane. We find that TeNT is recruited to detergent-insoluble lipid microdomains on the surface of neuronal cells. Finally, we show that cholesterol depletion affects a raft subpool and blocks the internalization and intracellular activity of the toxin. Our results indicate that TeNT interacts with target cells by binding to lipid rafts and that cholesterol is required for TeNT internalization and/or trafficking in neurons. PMID:11598183

  6. Binding of PLD2-Generated Phosphatidic Acid to KIF5B Promotes MT1-MMP Surface Trafficking and Lung Metastasis of Mouse Breast Cancer Cells.

    PubMed

    Wang, Ziqing; Zhang, Feng; He, Jingquan; Wu, Ping; Tay, Li Wei Rachel; Cai, Ming; Nian, Weiqi; Weng, Yuanyuan; Qin, Li; Chang, Jeffrey T; McIntire, Laura B; Di Paolo, Gilbert; Xu, Jianming; Peng, Junmin; Du, Guangwei

    2017-10-23

    Little is known about the cellular events promoting metastasis. We show that knockout of phospholipase D 2 (PLD2), which generates the signaling lipid phosphatidic acid (PA), inhibits lung metastases in the mammary tumor virus (MMTV)-Neu transgenic mouse breast cancer model. PLD2 promotes local invasion through the regulation of the plasma membrane targeting of MT1-MMP and its associated invadopodia. A liposome pull-down screen identifies KIF5B, the heavy chain of the motor protein kinesin-1, as a new PA-binding protein. In vitro assays reveal that PA specifically and directly binds to the C terminus of KIF5B. The binding between PLD2-generated PA and KIF5B is required for the vesicular association of KIF5B, surface localization of MT1-MMP, invadopodia, and invasion in cancer cells. Taken together, these results identify a role of PLD2-generated PA in the regulation of kinesin-1 motor functions and breast cancer metastasis and suggest PLD2 as a potential therapeutic target for metastatic breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Further analyses of human kidney cell populations separated on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Stewart, Robin M.; Todd, Paul; Cole, Kenneth D.; Morrison, Dennis R.

    1992-01-01

    Cultured human embryonic kidney cells were separated into electrophoretic subpopulations in laboratory experiments and in two separation experiments on the STS-8 (Challenger) Space Shuttle flight using the mid-deck Continuous Flow Electrophoretic Separator (CFES). Populations of cells from each fraction were cultured for the lifetime of the cells, and supernatant medium was withdrawn and replaced at 4-day intervals. Withdrawn medium was frozen at -120 C for subsequent analysis. Enzyme assays, antibodies and gel electrophoresis were used as analytical tools for the detection and quantization of plasminogen activators in these samples. These assays of frozen-culture supernatant fluids confirmed the electrophoretic separation of plasminogen-activator-producing cells from nonproducing cells, the isolation of cells capable of sustained production, and the separation of cells that produce different plasminogen activators from one other.

  8. Tissue plasminogen activator (tPA) as a reporter gene in transient gene expression.

    PubMed

    Cheng, S M; Lee, S G; Kalyan, N K; McCloud, S; Levner, M; Hung, P P

    1987-01-01

    Using the gene coding for tissue plasminogen activator (tPA) as a reporter gene, a transient gene expression system has been established. Vectors containing the full-length cDNA of tPA with its signal sequences were introduced into mammalian recipient cells by a modified gene transfer procedure. Thirty hours after transfection, the secreted tPA was found in serum-free medium and measured by a fibrin-agarose plate assay (FAPA). In this assay, tPA converts plasminogen into plasmin which then degrades high-Mr fibrin to produce cleared zones. The sizes of these zones correspond to quantities of tPA. The combination of transient tPA expression system and the FAPA provides a quick, sensitive, quantitative and non-destructive method to examine the strength of eukaryotic regulatory elements in tissue-culture cells.

  9. Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning.

    PubMed

    Heredia, Jeremiah D; Park, Jihye; Brubaker, Riley J; Szymanski, Steven K; Gill, Kevin S; Procko, Erik

    2018-06-01

    Chemokine receptors CXCR4 and CCR5 regulate WBC trafficking and are engaged by the HIV-1 envelope glycoprotein gp120 during infection. We combine a selection of human CXCR4 and CCR5 libraries comprising nearly all of ∼7000 single amino acid substitutions with deep sequencing to define sequence-activity landscapes for surface expression and ligand interactions. After consideration of sequence constraints for surface expression, known interaction sites with HIV-1-blocking Abs were appropriately identified as conserved residues following library sorting for Ab binding, validating the use of deep mutational scanning to map functional interaction sites in G protein-coupled receptors. Chemokine CXCL12 was found to interact with residues extending asymmetrically into the CXCR4 ligand-binding cavity, similar to the binding surface of CXCR4 recognized by an antagonistic viral chemokine previously observed crystallographically. CXCR4 mutations distal from the chemokine binding site were identified that enhance chemokine recognition. This included disruptive mutations in the G protein-coupling site that diminished calcium mobilization, as well as conservative mutations to a membrane-exposed site (CXCR4 residues H79 2.45 and W161 4.50 ) that increased ligand binding without loss of signaling. Compared with CXCR4-CXCL12 interactions, CCR5 residues conserved for gp120 (HIV-1 BaL strain) interactions map to a more expansive surface, mimicking how the cognate chemokine CCL5 makes contacts across the entire CCR5 binding cavity. Acidic substitutions in the CCR5 N terminus and extracellular loops enhanced gp120 binding. This study demonstrates how comprehensive mutational scanning can define functional interaction sites on receptors, and novel mutations that enhance receptor activities can be found simultaneously. Copyright © 2018 by The American Association of Immunologists, Inc.

  10. Uninvolved Skin from Psoriatic Patients Develops Signs of Involved Psoriatic Skin after Being Grafted onto Nude Mice

    NASA Astrophysics Data System (ADS)

    Fraki, Jorma E.; Briggaman, Robert A.; Lazarus, Gerald S.

    1982-02-01

    Clinically involved psoriatic epidermis maintains its histological appearance, increased labeling index, and increased level of plasminogen activator after being grafted onto athymic nude mice. Uninvolved psoriatic epidermis develops increases in plasminogen activator activity after being grafted onto athymic nude mice; this is accompanied by an increased labeling index. Thus, psoriatic skin can develop markers of psoriasis independent of the host.

  11. Unusual cause of aborted sudden cardiac death in a teen athlete: homozygosity for the 4G allele of the plasminogen activase inhibitor type 1 gene.

    PubMed

    Phillips, Susie B; Batlivala, Sarosh; Knudson, Jarrod D

    2015-10-01

    Common aetiologies of sudden cardiac death in children include coronary anomalies, channelopathies, and cardiomyopathies. Less frequently, hypercoagulable states cause sudden arrest. We report an unusual case of aborted sudden cardiac death in a teenager, ultimately found to have homozygosity for the 4G allele of the plasminogen activase inhibitor type 1 gene.

  12. Effects of a high-fat diet on spontaneous metastasis of Lewis lung carcinoma in plasminogen activator inhibitor-1 deficient and wild-type mice

    USDA-ARS?s Scientific Manuscript database

    We investigated the effects of plasminogen activator inhibitor-1 (PAI-1) deficiency on spontaneous metastasis of Lewis lung carcinoma (LLC) in PAI-1 deficient (PAI-1-/-) and wildtype mice (C57BL/6J background) fed the AIN93G diet or that diet modified with 45% calories from fat. The high-fat diet i...

  13. Variable Resistance to Plasminogen Activator Initiated Fibrinolysis for Intermediate-Risk Pulmonary Embolism.

    PubMed

    Stubblefield, William B; Alves, Nathan J; Rondina, Matthew T; Kline, Jeffrey A

    2016-01-01

    We examine the clinical significance and biomarkers of tissue plasminogen activator (tPA)-catalyzed clot lysis time (CLT) in patients with intermediate-risk pulmonary embolism (PE). Platelet-poor, citrated plasma was obtained from patients with PE. Healthy age- and sex-matched patients served as disease-negative controls. Fibrinogen, α2-antiplasmin, plasminogen, thrombin activatable fibrinolysis inhibitor (TAFI), plasminogen activator Inhibitor 1 (PAI-1), thrombin time and D-dimer were quantified. Clotting was induced using CaCl2, tissue factor, and phospholipid. Lysis was induced using 60 ng/mL tPA. Time to 50% clot lysis (CLT) was assessed by both thromboelastography (TEG) and turbidimetry (A405). Compared with disease-negative controls, patients with PE exhibited significantly longer mean CLT on TEG (+2,580 seconds, 95% CI 1,380 to 3,720 sec). Patients with PE and a short CLT who were treated with tenecteplase had increased risk of bleeding, whereas those with long CLT had significantly worse exercise tolerance and psychometric testing for quality of life at 3 months. A multivariate stepwise removal regression model selected PAI-1 and TAFI as predictive biomarkers of CLT. The CLT from TEG predicted increased risk of bleeding and clinical failure with tenecteplase treatment for intermediate-risk PE. Plasmatic PAI-1 and TAFI were independent predictors of CLT.

  14. Long- and Short-Term Exposure To Air Pollution and Inflammatory/Hemostatic Markers in Midlife Women

    PubMed Central

    Green, Rochelle; Broadwin, Rachel; Malig, Brian; Basu, Rupa; Gold, Ellen B.; Qi, Lihong; Sternfeld, Barbara; Bromberger, Joyce T.; Greendale, Gail A.; Kravitz, Howard M.; Tomey, Kristin; Matthews, Karen; Derby, Carol; Jackson, Elizabeth A.; Green, Robin; Ostro, Bart

    2016-01-01

    Background Studies have reported associations between long-term air pollution exposures and cardiovascular mortality. The biological mechanisms connecting them remain uncertain. Methods We examined associations of fine particles (PM2.5) and ozone with serum markers of cardiovascular disease risk in a cohort of midlife women. We obtained information from women enrolled at six sites in the multi-ethnic, longitudinal Study of Women's Health Across the Nation, including repeated measurements of high-sensitivity C-reactive protein (hs-CRP), fibrinogen, tissue-type plasminogen activator antigen (tPA-ag), plasminogen activator inhibitor Type 1 (PAI-1), and Factor VIIc (Factor VII coagulant activity). We obtained residence-proximate PM2.5 and ozone monitoring data for a maximum five annual visits, calculating prior year, six-month, one-month, and one-day exposures and their relations to serum markers using longitudinal mixed models. Results For the 2,086 women studied from 1999 through 2004, PM2.5 exposures were associated with all blood markers except Factor VIIc after adjusting for age, race/ethnicity, education, site, body mass index, smoking, and recent alcohol use. Adjusted associations were of the strongest for prior year exposures for hs-CRP (21% increase per 10 μg/m3 PM2.5, 95% CI: 6.6, 37), tPA-ag (8.6%, 95% CI: 1.8, 16), and PAI-1 (35%, 95% CI: 19, 53). An association was also observed between year prior ozone exposure and Factor VIIc (5.7% increase per 10 ppb ozone, 95% CI: 2.9, 8.5). Conclusions Our findings suggest that prior year exposures to PM2.5 and ozone are associated with adverse effects on inflammatory and hemostatic pathways for cardiovascular outcomes in midlife women. PMID:26600256

  15. Gender-specific association of the plasminogen activator inhibitor-1 4G/5G polymorphism with central arterial blood pressure.

    PubMed

    Björck, Hanna M; Eriksson, Per; Alehagen, Urban; De Basso, Rachel; Ljungberg, Liza U; Persson, Karin; Dahlström, Ulf; Länne, Toste

    2011-07-01

    The functional plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphism has previously been associated with hypertension. In recent years, central blood pressure, rather than brachial has been argued a better measure of cardiovascular damage and clinical outcome. The aim of this study was to investigate the possible influence of the 4G/5G polymorphism on central arterial blood pressure in a cohort of elderly individuals. We studied 410 individuals, 216 men and 194 women, aged 70-88. Central pressures and pulse waveforms were calculated from the radial artery pressure waveform by the use of the SphygmoCor system and a generalized transfer function. Brachial pressure was recorded using oscillometric technique (Dinamap, Critikon, Tampa, FL). PAI-1 antigen was determined in plasma. The results showed that central pressures were higher in women carrying the PAI-1 4G/4G genotype compared to female carriers of the 5G/5G genotype, (P = 0.025, P = 0.002, and P = 0.002 for central systolic-, diastolic-, and mean arterial pressure, respectively). The association remained after adjustment for potentially confounding factors related to hypertension. No association of the PAI-1 genotype with blood pressure was found in men. Multiple regression analysis revealed an association between PAI-1 genotype and plasma PAI-1 levels (P = 0.048). Our findings show a gender-specific association of the PAI-1 4G/5G polymorphism with central arterial blood pressure. The genotype effect was independent of other risk factors related to hypertension, suggesting that impaired fibrinolytic potential may play an important role in the development of central hypertension in women.

  16. Structurally distinct toxicity inhibitors bind at common loci on β-amyloid fibril

    PubMed Central

    Keshet, Ben; Gray, Jeffrey J; Good, Theresa A

    2010-01-01

    The accumulation of aggregated β-Amyloid (Aβ) in the brain is a hallmark of Alzheimer's disease and is thought to play a role in the neurotoxicity associated with the disease. The mechanism by which Aβ aggregates induce toxicity is uncertain. Nonetheless, several small molecules have been found to interact with Aβ fibrils and to prevent their toxicity. In this paper we studied the binding of these known toxicity inhibitors to Aβ fibrils, as a means to explore surfaces or loci on Aβ aggregates that may be significant in the mechanism of action of these inhibitors. We believe knowledge of these binding loci will provide insight into surfaces on the Aβ fibrils important in Aβ biological activity. The program DOCK was used to computationally dock the inhibitors to an Aβ fibril. The inhibitors docked at two shared binding loci, near Lys28 and at the C-termini near Asn27 and Val39. The docking predictions were experimentally verified using lysine specific chemical modifications and Aβ fibrils mutated at Asn27. We found that both Congo red and Myricetin, despite being structurally different, bound at the same two sites. Additionally, our data suggests that three additional Aβ toxicity inhibitors may also bind in one of the sites. Identification of these common binding loci provides targets on the Aβ fibril surface that can be tested in the future for their role in Aβ biological activity. PMID:20882638

  17. Molecular mechanism of DNA association with single-stranded DNA binding protein

    PubMed Central

    Maffeo, Christopher

    2017-01-01

    Abstract During DNA replication, the single-stranded DNA binding protein (SSB) wraps single-stranded DNA (ssDNA) with high affinity to protect it from degradation and prevent secondary structure formation. Although SSB binds ssDNA tightly, it can be repositioned along ssDNA to follow the advancement of the replication fork. Using all-atom molecular dynamics simulations, we characterized the molecular mechanism of ssDNA association with SSB. Placed in solution, ssDNA–SSB assemblies were observed to change their structure spontaneously; such structural changes were suppressed in the crystallographic environment. Repeat simulations of the SSB–ssDNA complex under mechanical tension revealed a multitude of possible pathways for ssDNA to come off SSB punctuated by prolonged arrests at reproducible sites at the SSB surface. Ensemble simulations of spontaneous association of short ssDNA fragments with SSB detailed a three-dimensional map of local affinity to DNA; the equilibrium amount of ssDNA bound to SSB was found to depend on the electrolyte concentration but not on the presence of the acidic tips of the SSB tails. Spontaneous formation of ssDNA bulges and their diffusive motion along SSB surface was directly observed in multiple 10-µs-long simulations. Such reptation-like motion was confined by DNA binding to high-affinity spots, suggesting a two-step mechanism for SSB diffusion. PMID:29059392

  18. Leptospira Immunoglobulin-Like Protein B Interacts with the 20th Exon of Human Tropoelastin Contributing to Leptospiral Adhesion to Human Lung Cells

    PubMed Central

    Hsieh, Ching-Lin; Tseng, Andrew; He, Hongxuan; Kuo, Chih-Jung; Wang, Xuannian; Chang, Yung-Fu

    2017-01-01

    Leptospira immunoglobulin-like protein B (LigB), a surface adhesin, is capable of mediating the attachment of pathogenic leptospira to the host through interaction with various components of the extracellular matrix (ECM). Human tropoelastin (HTE), the building block of elastin, confers resilience and elasticity to lung, and other tissues. Previously identified Ig-like domains of LigB, including LigB4 and LigB12, bind to HTE, which is likely to promote Leptospira adhesion to lung tissue. However, the molecular mechanism that mediates the LigB-HTE interaction is unclear. In this study, the LigB-binding site on HTE was further pinpointed to a N-terminal region of the 20th exon of HTE (HTE20N). Alanine mutants of basic and aromatic residues on HTE20N significantly reduced binding to the LigB. Additionally, HTE-binding site was narrowed down to the first β-sheet of LigB12. On this binding surface, residues F1054, D1061, A1065, and D1066 were critical for the association with HTE. Most importantly, the recombinant HTE truncates could diminish the binding of LigB to human lung fibroblasts (WI-38) by 68%, and could block the association of LigA-expressing L. biflexa to lung cells by 61%. These findings should expand our understanding of leptospiral pathogenesis, particularly in pulmonary manifestations of leptospirosis. PMID:28536676

  19. The fibrinogen-binding M1 protein reduces pharyngeal cell adherence and colonization phenotypes of M1T1 group A Streptococcus.

    PubMed

    Anderson, Ericka L; Cole, Jason N; Olson, Joshua; Ryba, Bryan; Ghosh, Partho; Nizet, Victor

    2014-02-07

    Group A Streptococcus (GAS) is a leading human pathogen producing a diverse array of infections from simple pharyngitis ("strep throat") to invasive conditions, including necrotizing fasciitis and toxic shock syndrome. The surface-anchored GAS M1 protein is a classical virulence factor that promotes phagocyte resistance and exaggerated inflammation by binding host fibrinogen (Fg) to form supramolecular networks. In this study, we used a virulent WT M1T1 GAS strain and its isogenic M1-deficient mutant to examine the role of M1-Fg binding in a proximal step in GAS infection-interaction with the pharyngeal epithelium. Expression of the M1 protein reduced GAS adherence to human pharyngeal keratinocytes by 2-fold, and this difference was increased to 4-fold in the presence of Fg. In stationary phase, surface M1 protein cleavage by the GAS cysteine protease SpeB eliminated Fg binding and relieved its inhibitory effect on GAS pharyngeal cell adherence. In a mouse model of GAS colonization of nasal-associated lymphoid tissue, M1 protein expression was associated with an average 6-fold decreased GAS recovery in isogenic strain competition assays. Thus, GAS M1 protein-Fg binding reduces GAS pharyngeal cell adherence and colonization in a fashion that is counterbalanced by SpeB. Inactivation of SpeB during the shift to invasive GAS disease allows M1-Fg binding, increasing pathogen phagocyte resistance and proinflammatory activities.

  20. Biosensor studies of collagen and laminin binding with immobilized Escherichia coli O157:H7 and inhibition with naturally occurring food additives

    NASA Astrophysics Data System (ADS)

    Medina, Marjorie B.

    1999-01-01

    Escherichia coli O157:H7 outbreaks were mostly due to consumption of undercooked contaminated beef which resulted in severe illness and several fatalities. Recalls of contaminated meat are costly for the meat industry. Our research attempts to understand the mechanisms of bacterial adhesion on animal carcass in order to eliminate or reduce pathogens in foods. We have reported the interactions of immobilized E. coli O157:H7 cells with extracellular matrix (ECM) components using a surface plasmon resonance biosensor (BIAcore). These studies showed that immobilized bacterial cells allowed the study of real-time binding interactions of bacterial surface with the ECM compounds, collagen I, laminin and fibronectin. Collagen I and laminin bound to the E. coli sensor surface with dissociation and association rates ranging from 106 to 109. Binding of collagen I and laminin mixture resulted in synergistic binding signals. An inhibition model was derived using collagen-laminin as the ligand which binds with E. coli sensor. A select group of naturally occurring food additives was evaluated by determining their effectivity in inhibiting the collagen-laminin binding to the bacterial sensor. Bound collagen-laminin was detached from the E. coli sensor surface with the aid of an organic acid. The biosensor results were verified with cell aggregation assays which were observed with optical and electron microscopes. These biosensor studies provided understanding of bacterial adhesion to connective tissue macromolecules. It also provided a model system for the rapid assessment of potential inhibitors that can be used in carcass treatment to inhibit or reduce bacterial contamination.

  1. Regulation of HGF and c-MET Interaction in Normal Ovary and Ovarian Cancer.

    PubMed

    Kwon, Youngjoo; Godwin, Andrew K

    2017-04-01

    Binding of hepatocyte growth factor (HGF) to the c-MET receptor has mitogenic, motogenic, and morphogenic effects on cells. The versatile biological effects of HGF and c-MET interactions make them important contributors to the development of malignant tumors. We and others have demonstrated a therapeutic value in targeting the interaction of c-MET and HGF in epithelial ovarian cancer (EOC). However, both HGF and c-MET are expressed in the normal ovary as well. Therefore, it is important to understand the differences in mechanisms that control HGF signaling activation and its functional role in the normal ovary and EOC. In the normal ovary, HGF signaling may be under hormonal regulation. During ovulation, HGF-converting proteases are secreted and the subsequent activation of HGF signaling enhances the proliferation of ovarian surface epithelium in order to replenish the area damaged due to expulsion of the ovum. In contrast, EOC cells that exhibit epithelial characteristics constitutively express both c-MET and HGF-converting proteases such as urokinase-type plasminogen activator. In EOC, mechanisms to control the activation of HGF signaling are absent since HGF is provided locally from the tissue microenvironment as well as remotely throughout the body. Potential incessant HGF signaling in EOC may lead to an increase in proliferation, invasion through the stroma, and migration to other tissues of cancer cells. Therefore, targeting the interaction of c-MET and HGF would be beneficial in treating EOC.

  2. Regulation of HGF and c-MET Interaction in Normal Ovary and Ovarian Cancer

    PubMed Central

    Kwon, Youngjoo; Godwin, Andrew K.

    2016-01-01

    Binding of hepatocyte growth factor (HGF) to the c-MET receptor has mitogenic, motogenic, and morphogenic effects on cells. The versatile biological effects of HGF and c-MET interactions make them important contributors to the development of malignant tumors. We and others have demonstrated a therapeutic value in targeting the interaction of c-MET and HGF in epithelial ovarian cancer (EOC). However, both HGF and c-MET are expressed in the normal ovary as well. Therefore, it is important to understand the differences in mechanisms that control HGF signaling activation and its functional role in the normal ovary and EOC. In the normal ovary, HGF signaling may be under hormonal regulation. During ovulation, HGF-converting proteases are secreted and the subsequent activation of HGF signaling enhances the proliferation of ovarian surface epithelium in order to replenish the area damaged due to expulsion of the ovum. In contrast, EOC cells that exhibit epithelial characteristics constitutively express both c-MET and HGF-converting proteases such as urokinase-type plasminogen activator. In EOC, mechanisms to control the activation of HGF signaling are absent since HGF is provided locally from the tissue microenvironment as well as remotely throughout the body. Potential incessant HGF signaling in EOC may lead to an increase in proliferation, invasion through the stroma, and migration to other tissues of cancer cells. Therefore, targeting the interaction of c-MET and HGF would be beneficial in treating EOC. PMID:27170665

  3. Large heat capacity change in a protein-monovalent cation interaction.

    PubMed

    Guinto, E R; Di Cera, E

    1996-07-09

    Current views about protein-ligand interactions state that electrostatic forces drive the binding of charged species and that burial of hydrophobic and polar surfaces controls the heat capacity change associated with the reaction. For the interaction of a protein with a monovalent cation the electrostatic components are expected to be significant due to the ionic nature of the ligand, whereas the heat capacity change is expected to be small due to the size of the surface area involved in the recognition event. The physiologically important interaction of Na+ with thrombin was studied over the temperature range from 5 to 45 degrees C and the ionic strength range from 50 to 800 mM. These measurements reveal an unanticipated result that bears quite generally on studies of molecular recognition and protein folding. Binding of Na+ to thrombin is characterized by a modest dependence on ionic strength but a large and negative heat capacity change of -1.1 +/- 0.1 kcal mol-1 K-1. The small electrostatic coupling can be explained in terms of a minimal perturbation of the ionic atmosphere of the protein upon Na+ binding. The large heat capacity change, however, is difficult to reconcile with current views on the origin of this effect from surface area changes or large folding transitions coupled to binding. It is proposed that this change is linked to burial of a large cluster of water molecules in the Na+ binding pocket upon Na+ binding. Due to their reduced mobility and highly ordered structure, water molecules sequestered in the interior of a protein must have a lower heat capacity compared to those on the surface of a protein or in the bulk solvent. Hence, a binding or folding event where water molecules are buried may result in significant heat capacity changes independent of changes in exposed hydrophobic surface or coupled conformational transitions.

  4. Cooperative modulation by eIF4G of eIF4E-binding to the mRNA 5' cap in yeast involves a site partially shared by p20.

    PubMed Central

    Ptushkina, M; von der Haar, T; Vasilescu, S; Frank, R; Birkenhäger, R; McCarthy, J E

    1998-01-01

    Interaction between the mRNA 5'-cap-binding protein eIF4E and the multiadaptor protein eIF4G has been demonstrated in all eukaryotic translation assemblies examined so far. This study uses immunological, genetic and biochemical methods to map the surface amino acids on eIF4E that contribute to eIF4G binding. Cap-analogue chromatography and surface plasmon resonance (SPR) analyses demonstrate that one class of mutations in these surface regions disrupts eIF4E-eIF4G association, and thereby polysome formation and growth. The residues at these positions in wild-type eIF4E mediate positive cooperativity between the binding of eIF4G to eIF4E and the latter's cap-affinity. Moreover, two of the mutations confer temperature sensitivity in eIF4G binding to eIF4E which correlates with the formation of large numbers of inactive ribosome 80S couples in vivo and the loss of cellular protein synthesis activity. The yeast 4E-binding protein p20 is estimated by SPR to have a ten times lower binding affinity than eIF4G for eIF4E. Investigation of a second class of eIF4E mutations reveals that p20 shares only part of eIF4G's binding site on the cap-binding protein. The results presented provide a basis for understanding how cycling of eIF4E and eIF4G occurs in yeast translation and explains how p20 can act as a fine, but not as a coarse, regulator of protein synthesis. PMID:9707439

  5. Improving the binding efficiency of quartz crystal microbalance biosensors by applying the electrothermal effect

    PubMed Central

    Huang, Yao-Hung; Chang, Jeng-Shian; Chao, Sheng D.; Wu, Kuang-Chong; Huang, Long-Sun

    2014-01-01

    A quartz crystal microbalance (QCM) serving as a biosensor to detect the target biomolecules (analytes) often suffers from the time consuming process, especially in the case of diffusion-limited reaction. In this experimental work, we modify the reaction chamber of a conventional QCM by integrating into the multi-microelectrodes to produce electrothermal vortex flow which can efficiently drive the analytes moving toward the sensor surface, where the analytes were captured by the immobilized ligands. The microelectrodes are placed on the top surface of the chamber opposite to the sensor, which is located on the bottom of the chamber. Besides, the height of reaction chamber is reduced to assure that the suspended analytes in the fluid can be effectively drived to the sensor surface by induced electrothermal vortex flow, and also the sample costs are saved. A series of frequency shift measurements associated with the adding mass due to the specific binding of the analytes in the fluid flow and the immobilized ligands on the QCM sensor surface are performed with or without applying electrothermal effect (ETE). The experimental results show that electrothermal vortex flow does effectively accelerate the specific binding and make the frequency shift measurement more sensible. In addition, the images of the binding surfaces of the sensors with or without applying electrothermal effect are taken through the scanning electron microscopy. By comparing the images, it also clearly indicates that ETE does raise the specific binding of the analytes and ligands and efficiently improves the performance of the QCM sensor. PMID:25538808

  6. Complement-mediated bactericidal activity of anti-factor H binding protein monoclonal antibodies against the meningococcus relies upon blocking factor H binding.

    PubMed

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2011-09-01

    Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.

  7. Structure of a Glomulin-RBX1-CUL1 Complex: Inhibition of a RING E3 Ligase through Masking of Its E2-Binding Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.

    2012-11-01

    The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF{sup FBW7} complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains themore » basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition.« less

  8. Telemedicine Can Replace the Neurologist on a Mobile Stroke Unit.

    PubMed

    Wu, Tzu-Ching; Parker, Stephanie A; Jagolino, Amanda; Yamal, Jose-Miguel; Bowry, Ritvij; Thomas, Abraham; Yu, Amy; Grotta, James C

    2017-02-01

    The BEST-MSU study (Benefits of Stroke Treatment Delivered Using a Mobile Stroke Unit) is a comparative effectiveness trial in patients randomized to mobile stroke unit or standard management. A substudy tested interrater agreement for tissue-type plasminogen activator eligibility between a telemedicine vascular neurologist and onboard vascular neurologist. On scene, both the telemedicine vascular neurologist and onboard vascular neurologist independently evaluated the patient, documenting their tissue-type plasminogen activator treatment decision, National Institutes of Health Stroke Scale score, and computed tomographic interpretation. Agreement was determined using Cohen κ statistic. Telemedicine-related technical failures that impeded remote assessment were recorded. Simultaneous and independent telemedicine vascular neurologist and onboard vascular neurologist assessment was attempted in 174 patients. In 4 patients (2%), the telemedicine vascular neurologist could not make a decision because of technical problems. The telemedicine vascular neurologist agreed with the onboard vascular neurologist on 88% of evaluations (κ=0.73). Remote telemedicine vascular neurologist assessment is reliable and accurate, supporting either telemedicine vascular neurologist or onboard vascular neurologist assessment on our mobile stroke unit. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02190500. © 2017 American Heart Association, Inc.

  9. Plasminogen activator inhibitor I 4G/5G polymorphism in neonatal respiratory distress syndrome.

    PubMed

    Armangil, Didem; Yurdakök, Murat; Okur, Hamza; Gürgey, Aytemiz

    2011-08-01

    Fibrin monomers inhibit surfactant function. 4G/5G insertion/deletion polymorphism plays an important role in the regulation of plasminogen activator inhibitor 1 (PAI-1) gene expression. To examine the genotype distribution of PAI-1 polymorphism in 60 infants with respiratory distress syndrome (RDS) and 53 controls, an allele-specific polymerase chain reaction (PCR) was used. The proportion of 4G/4G, 4G/5G, and 5G/5G genotypes did not differ statistically between the RDS and control groups (P > .05). Having PAI-1 4G/4G genotype polymorphism appears to increase the risk of RDS (odds ratio [OR] =1.5; 95% confidence interval [CI], 0.5-4.3), although it was not statistically significant. No relation was found between the PAI-1 4G/5G polymorphisms and RDS, but there was an increased risk associated with the 4G variant of the PAI-1 gene. We believe that our findings of increased 4G allele of the PAI-1 gene in infants with RDS would also help to clarify the pathogenesis of RDS.

  10. Quebec platelet disorder is linked to the urokinase plasminogen activator gene (PLAU) and increases expression of the linked allele in megakaryocytes

    PubMed Central

    Diamandis, Maria; Paterson, Andrew D.; Rommens, Johanna M.; Veljkovic, D. Kika; Blavignac, Jessica; Bulman, Dennis E.; Waye, John S.; Derome, Francine; Rivard, Georges E.

    2009-01-01

    Quebec platelet disorder (QPD) is an autosomal dominant disorder with high penetrance that is associated with increased risks for bleeding. The hallmark of QPD is a gain-of-function defect in fibrinolysis due to increased platelet content of urokinase plasminogen activator (uPA) without systemic fibrinolysis. We hypothesized that increased expression of uPA by differentiating QPD megakaryocytes is linked to PLAU. Genetic marker analyses indicated that QPD was significantly linked to a 2-Mb region on chromosome 10q containing PLAU with a maximum multipoint logarithm of the odds (LOD) score of +11 between markers D10S1432 and D10S1136. Analysis of PLAU by sequencing and Southern blotting excluded mutations within PLAU and its known regulatory elements as the cause of QPD. Analyses of uPA mRNA indicated that QPD distinctly increased transcript levels of the linked PLAU allele with megakaryocyte differentiation. These findings implicate a mutation in an uncharacterized cis element near PLAU as the cause of QPD. PMID:18988861

  11. Quebec platelet disorder is linked to the urokinase plasminogen activator gene (PLAU) and increases expression of the linked allele in megakaryocytes.

    PubMed

    Diamandis, Maria; Paterson, Andrew D; Rommens, Johanna M; Veljkovic, D Kika; Blavignac, Jessica; Bulman, Dennis E; Waye, John S; Derome, Francine; Rivard, Georges E; Hayward, Catherine P M

    2009-02-12

    Quebec platelet disorder (QPD) is an autosomal dominant disorder with high penetrance that is associated with increased risks for bleeding. The hallmark of QPD is a gain-of-function defect in fibrinolysis due to increased platelet content of urokinase plasminogen activator (uPA) without systemic fibrinolysis. We hypothesized that increased expression of uPA by differentiating QPD megakaryocytes is linked to PLAU. Genetic marker analyses indicated that QPD was significantly linked to a 2-Mb region on chromosome 10q containing PLAU with a maximum multipoint logarithm of the odds (LOD) score of +11 between markers D10S1432 and D10S1136. Analysis of PLAU by sequencing and Southern blotting excluded mutations within PLAU and its known regulatory elements as the cause of QPD. Analyses of uPA mRNA indicated that QPD distinctly increased transcript levels of the linked PLAU allele with megakaryocyte differentiation. These findings implicate a mutation in an uncharacterized cis element near PLAU as the cause of QPD.

  12. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    NASA Astrophysics Data System (ADS)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore open up new possibilities to modify the implant site and tailor it to a desirable bioactivity.

  13. Biochemical assays on plasminogen activators and hormones from kidney sources

    NASA Technical Reports Server (NTRS)

    Barlow, Grant H.; Lewis, Marian L.; Morrison, Dennis R.

    1988-01-01

    Investigations were established for the purpose of analyzing the conditioned media from human embryonic kidney cell subpopulations separated in space by electrophoresis. This data is based on the experiments performed on STS-8 on the continuous flow electrophoresis system. The primary biological activity that was analyzed was plasminogen activator activity, but some assays for erythropoeitin and human granulocyte colony stimulating activity were also performed. It is concluded that a battery of assays are required to completely define the plasminogen activator profile of a conditioned media from cell culture. Each type of assay measures different parts of the mixture and are influenced by different parameters. The functional role of each assay is given along with an indication of which combination of assays are required to answer specific questions. With this type of information it is possible by combinations of assays with mathematical analysis to pinpoint a specific component of the system.

  14. Highly potent fibrinolytic serine protease from Streptomyces.

    PubMed

    Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi

    2011-01-05

    We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Predictive Role of Coagulation, Fibrinolytic, and Endothelial Markers in Patients with Atrial Fibrillation, Stroke, and Thromboembolism: A Meta-Analysis, Meta-Regression, and Systematic Review.

    PubMed

    Weymann, Alexander; Sabashnikov, Anton; Ali-Hasan-Al-Saegh, Sadeq; Popov, Aron-Frederik; Jalil Mirhosseini, Seyed; Baker, William L; Lotfaliani, Mohammadreza; Liu, Tong; Dehghan, Hamidreza; Yavuz, Senol; de Oliveira Sá, Michel Pompeu Barros; Jang, Jae-Sik; Zeriouh, Mohamed; Meng, Lei; D'Ascenzo, Fabrizio; Deshmukh, Abhishek J; Biondi-Zoccai, Guiseppe; Dohmen, Pascal M; Calkins, Hugh; Cardiac Surgery And Cardiology-Group Imcsc-Group, Integrated Meta-Analysis Of Cardiac

    2017-03-31

    BACKGROUND The pathophysiological mechanism associated with the higher prothrombotic tendency in atrial fibrillation (AF) is complex and multifactorial. However, the role of prothrombotic markers in AF remains inconclusive. MATERIAL AND METHODS We conducted a meta-analysis of observational studies evaluating the association of coagulation activation, fibrinolytic, and endothelial function with occurrence of AF and clinical adverse events. A comprehensive subgroup analysis and meta-regression was performed to explore potential sources of heterogeneity. RESULTS A literature search of major databases retrieved 1703 studies. After screening, a total of 71 studies were identified. Pooled analysis showed the association of coagulation markers (D-dimer (weighted mean difference (WMD) =197.67 and p<0.001), fibrinogen (WMD=0.43 and p<0.001), prothrombin fragment 1-2 (WMD=0.53 and p<0.001), antithrombin III (WMD=23.90 and p=0.004), thrombin-antithrombin (WMD=5.47 and p=0.004));  fibrinolytic markers (tissue-type plasminogen activator (t-PA) (WMD=2.13 and p<0.001), plasminogen activator inhibitor (WMD=11.44 and p<0.001), fibrinopeptide-A (WMD=4.13 and p=0.01)); and  endothelial markers (von Willebrand factor (WMD=27.01 and p<0.001) and soluble thrombomodulin (WMD=3.92 and p<0.001)) with AF. CONCLUSIONS The levels of coagulation, fibrinolytic, and endothelial markers have been reported to be significantly higher in AF patients than in SR patients.

  16. Predictive Role of Coagulation, Fibrinolytic, and Endothelial Markers in Patients with Atrial Fibrillation, Stroke, and Thromboembolism: A Meta-Analysis, Meta-Regression, and Systematic Review

    PubMed Central

    Weymann, Alexander; Sabashnikov, Anton; Ali-Hasan-Al-Saegh, Sadeq; Popov, Aron-Frederik; Mirhosseini, Seyed Jalil; Baker, William L.; Lotfaliani, Mohammadreza; Liu, Tong; Dehghan, Hamidreza; Yavuz, Senol; de Oliveira Sá, Michel Pompeu Barros; Jang, Jae-Sik; Zeriouh, Mohamed; Meng, Lei; D’Ascenzo, Fabrizio; Deshmukh, Abhishek J.; Biondi-Zoccai, Giuseppe; Dohmen, Pascal M.; Calkins, Hugh

    2017-01-01

    Background The pathophysiological mechanism associated with the higher prothrombotic tendency in atrial fibrillation (AF) is complex and multifactorial. However, the role of prothrombotic markers in AF remains inconclusive. Material/Methods We conducted a meta-analysis of observational studies evaluating the association of coagulation activation, fibrinolytic, and endothelial function with occurrence of AF and clinical adverse events. A comprehensive subgroup analysis and meta-regression was performed to explore potential sources of heterogeneity. Results A literature search of major databases retrieved 1703 studies. After screening, a total of 71 studies were identified. Pooled analysis showed the association of coagulation markers (D-dimer (weighted mean difference (WMD)=197.67 and p<0.001), fibrinogen (WMD=0.43 and p<0.001), prothrombin fragment 1–2 (WMD=0.53 and p<0.001), antithrombin III (WMD=23.90 and p=0.004), thrombin-antithrombin (WMD=5.47 and p=0.004)); fibrinolytic markers (tissue-type plasminogen activator (t-PA) (WMD=2.13 and p<0.001), plasminogen activator inhibitor (WMD=11.44 and p<0.001), fibrinopeptide-A (WMD=4.13 and p=0.01)); and endothelial markers (von Willebrand factor (WMD=27.01 and p<0.001) and soluble thrombomodulin (WMD=3.92 and p<0.001)) with AF. Conclusions The levels of coagulation, fibrinolytic, and endothelial markers have been reported to be significantly higher in AF patients than in SR patients. PMID:28360407

  17. Dietary omega-3 polyunsaturated fatty acids induce plasminogen activator activity and DNA damage in rabbit spermatozoa.

    PubMed

    Kokoli, A N; Lavrentiadou, S N; Zervos, I A; Tsantarliotou, M P; Georgiadis, M P; Nikolaidis, E A; Botsoglou, N; Boscos, C M; Taitzoglou, I A

    2017-12-01

    The aim of this study was to determine the effect(s) of dietary omega-3 polyunsaturated fatty acids (ω-3 PUFA) on rabbit semen. Adult rabbit bucks were assigned to two groups that were given two diets, a standard diet (control) and a diet supplemented with ω-3 PUFA. Sperm samples were collected from all bucks with the use of an artificial vagina in 20-day intervals, for a total period of 120 days. The enrichment of membranes in ω-3 PUFA was manifested by the elevation of the 22:5 ω-3 (docosapentaenoic acid [DPA]) levels within 40 days. This increase in DPA content did not affect semen characteristics (i.e., concentration, motility and viability). However, it was associated with the induction of lipid peroxidation in spermatozoa, as determined on the basis of the malondialdehyde content. Lipid peroxidation was associated with DNA fragmentation in ω-3 PUFA-enriched spermatozoa and a concomitant increase in plasminogen activator (PA) activity. The effects of ω-3 PUFA on sperm cells were evident within 40 days of ω-3 PUFA dietary intake and exhibited peack values on day 120. Our findings suggest that an ω-3 PUFA-rich diet may not affect semen characteristics; however, it may have a negative impact on the oxidative status and DNA integrity of the spermatozoa, which was associated with an induction of PAs activity. © 2017 Blackwell Verlag GmbH.

  18. Fisetin Inhibits Migration and Invasion of Human Cervical Cancer Cells by Down-Regulating Urokinase Plasminogen Activator Expression through Suppressing the p38 MAPK-Dependent NF-κB Signaling Pathway

    PubMed Central

    Chou, Ruey-Hwang; Hsieh, Shu-Ching; Yu, Yung-Luen; Huang, Min-Hsien; Huang, Yi-Chang; Hsieh, Yi-Hsien

    2013-01-01

    Fisetin (3,3’,4’,7-tetrahydroxyflavone), a naturally occurring flavonoid, has been reported to inhibit proliferation and induce apoptosis in several cancer types. However, its effect on the anti-metastatic potential of cervical cancer cells remains unclear. In the present study, we found that fisetin inhibits the invasion and migration of cervical cancer cells. The expression and activity of urokinase plasminogen activator (uPA) was significantly suppressed by fisetin in a dose-dependent manner. We also demonstrated that fisetin reduces the phosphorylation of p38 MAPK, but not that of ERK1/2, JNK1/2, or AKT. Addition of a p38 MAPK inhibitor, SB203580, further enhanced the inhibitory effect of fisetin on the expression and activity of uPA and the invasion and motility in cervical cancer cells. Fisetin suppressed the TPA (tetradecanoylphorbol-13-acetate)-induced activation of p38 MAPK and uPA, and inhibited the TPA-enhanced migratory and invasive abilities. Furthermore, the promoter activity of the uPA gene was dramatically repressed by fisetin, which disrupted the nuclear translocation of NF-κB and its binding amount on the promoter of the uPA gene, and these suppressive effects could be further enhanced by SB203580. This study provides strong evidence for the molecular mechanism of fisetin in inhibiting the aggressive phenotypes by repression of uPA via interruption of p38 MAPK-dependent NF-κB signaling pathway in cervical cancer cells and thus contributes insight to the potential of using fisetin as a therapeutic strategy against cervical cancer by inhibiting migration and invasion. PMID:23940799

  19. Endothelial function and insulin resistance in polycystic ovary syndrome: the effects of medical therapy.

    PubMed

    Teede, Helena J; Meyer, Caroline; Hutchison, Samantha K; Zoungas, Sophia; McGrath, Barry P; Moran, Lisa J

    2010-01-01

    To assess the interaction between insulin resistance and endothelial function and the optimal treatment strategy addressing cardiovascular risk in polycystic ovary syndrome. Randomized controlled trial. Controlled clinical study. Overweight age- and body mass index-matched women with polycystic ovary syndrome. Six months metformin (1 g two times per day, n = 36) or oral contraceptive pill (OCP) (35 microg ethinyl E(2)-2 mg cytoproterone acetate, n = 30). Fasting and oral glucose tolerance test glucose and insulin levels, endothelial function (flow-mediated dilation, asymmetric dimethylarginine, plasminogen activator inhibitor-1, von Willebrand factor), inflammatory markers (high-sensitivity C-reactive protein), lipids, and hyperandrogenism. The OCP increased levels of glucose and insulin on oral glucose tolerance test, high-sensitivity C-reactive protein, triglycerides, and sex-hormone binding globulin and decreased levels of low-density lipoprotein cholesterol and T. Metformin decreased levels of fasting insulin, oral glucose tolerance test insulin, high-density lipoprotein cholesterol, and high-sensitivity C-reactive protein. Flow-mediated dilation increased only with metformin (+2.2% +/- 4.8%), whereas asymmetric dimethylarginine decreased equivalently for OCP and metformin (-0.3 +/- 0.1 vs. -0.1 +/- 0.1 mmol/L). Greater decreases in plasminogen activator inhibitor-1 occurred for the OCP than for metformin (-1.8 +/- 1.6 vs. -0.7 +/- 1.7 U/mL). In polycystic ovary syndrome, metformin improves insulin resistance, inflammatory markers, and endothelial function. The OCP worsens insulin resistance and glucose homeostasis, inflammatory markers, and triglycerides and has neutral or positive endothelial effects. The effect of the OCP on cardiovascular risk in polycystic ovary syndrome is unclear. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. A neurokinin 1 receptor antagonist decreases postoperative peritoneal adhesion formation and increases peritoneal fibrinolytic activity.

    PubMed

    Reed, Karen L; Fruin, A Brent; Gower, Adam C; Stucchi, Arthur F; Leeman, Susan E; Becker, James M

    2004-06-15

    Fibrous adhesions remain a major sequela of abdominal surgery. The proinflammatory peptide substance P (SP), known to participate in inflammatory events, may play a key role in adhesion formation. This hypothesis was tested by using an antagonist, CJ-12,255 (Pfizer), that blocks the binding of SP to the neurokinin 1 receptor (NK-1R). Adhesion formation was surgically induced in the peritoneum of rats receiving daily doses of the NK-1R antagonist (NK-1RA; 5.0 or 10.0 mg/kg per day) or saline. On postoperative day 7, both the low and high doses of NK-1RA significantly (P < 0.05) reduced adhesion formation by 45% and 53%, respectively, compared with controls. Subsequently, the effect of NK-1RA administration on peritoneal fibrinolytic activity was investigated to determine a potential mechanism for SP action in the peritoneum. Samples were collected from nonoperated controls and from animals 24 h postsurgery that were administered either NK-1RA or saline. Fibrinolytic activity in peritoneal fluid was assayed by zymography, and expression of tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1, both regulators of fibrinolytic activity, was assessed in peritoneal tissue and fluid by RT-PCR and bioassay, respectively. NK-1RA administration led to a marked (P < 0.05) increase in tPA mRNA levels in peritoneal tissue compared with nonoperated and saline-administered animals. Likewise, NK-1RA administration significantly (P < 0.05) increased tPA in the peritoneal fluid. These data suggest that activation of the NK-1R promotes peritoneal adhesion formation by limiting fibrinolytic activity in the postoperative peritoneum, thus enabling fibrinous adhesions to persist.

  1. A prospective study of soluble receptor for advanced glycation end products and adipokines in association with pancreatic cancer in postmenopausal women.

    PubMed

    White, Donna L; Hoogeveen, Ron C; Chen, Liang; Richardson, Peter; Ravishankar, Milan; Shah, Preksha; Tinker, Lesley; Rohan, Thomas; Whitsel, Eric A; El-Serag, Hashem B; Jiao, Li

    2018-05-01

    Advanced glycation end products (AGEs) dysregulate adipokines and induce inflammation by binding to their adipocyte receptor (RAGE). Soluble RAGE (sRAGE) prevents AGEs/RAGE signaling. We performed a nested case-control study of the association between sRAGE, adipokines, and incident pancreatic cancer risk in the prospective Women's Health Initiative Study. We individually matched controls (n = 802) to cases (n = 472) on age, race, and blood draw date. We evaluated serum concentrations of sRAGE, adiponectin, leptin, monocyte chemotactic protein 1 (MCP1), and plasminogen activator inhibitor-1 (PAI1) using immunoassay. We used conditional logistic regression model to estimate adjusted odds ratios (aORs) and 95% confidence intervals (CIs) for pancreatic cancer over biomarker quartiles (Q1-Q4). We used principal component analysis to create two composite biomarkers and performed a confirmatory factor analysis to examine the association between composite biomarker scores (CBS) and pancreatic cancer risk. Baseline serum sRAGE concentrations were inversely associated with pancreatic cancer risk (aOR Q4 vs. Q1  = 0.70, 95% CI: 0.50-0.99). High MCP1 (aOR Q4 vs. Q1  = 2.55, 95% CI: 1.41-4.61) and the higher CBS including MCP1, PAI1, and leptin (aOR Q4 vs. Q1  = 1.82, 95% CI = 1.04-3.18) were also associated with increased pancreatic cancer risk among women with BMI <25 kg/m 2 (P values for interaction <0.05). We found an inverse association between prediagnostic sRAGE concentrations and risk of incident pancreatic cancer in postmenopausal women. A proinflammatory CBS was associated with increased risk only in women with normal BMI. MCP1 was not modulated by sRAGE. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  2. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; P<0.05) at all examined time points (2 to 24 hours). mRNA half-life studies showed that this response was not due to increased mRNA instability. tPA mRNA expression was decreased (to 10% of stationary control; P<0.05) by low shear stress after 12 hours of exposure and was increased (to 250% of stationary control; P<0.05) after 24 hours at high shear stress. The same trends in PAR-1 mRNA levels were observed in rat smooth muscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  3. The effect of composition, size, and solubility on acute pulmonary injury in rats following exposure to Mexico city ambient particulate matter samples.

    PubMed

    Snow, Samantha J; De Vizcaya-Ruiz, Andrea; Osornio-Vargas, Alvaro; Thomas, Ronald F; Schladweiler, Mette C; McGee, John; Kodavanti, Urmila P

    2014-01-01

    Particulate matter (PM)-associated metals can contribute to adverse cardiopulmonary effects following exposure to air pollution. The aim of this study was to investigate how variation in the composition and size of ambient PM collected from two distinct regions in Mexico City relates to toxicity differences. Male Wistar Kyoto rats (14 wk) were intratracheally instilled with chemically characterized PM10 and PM2.5 from the north and PM10 from the south of Mexico City (3 mg/kg). Both water-soluble and acid-leachable fractions contained several metals, with levels generally higher in PM10 South. The insoluble and total, but not soluble, fractions of all PM induced pulmonary damage that was indicated by significant increases in neutrophilic inflammation, and several lung injury biomarkers including total protein, albumin, lactate dehydrogenase activity, and γ-glutamyl transferase activity 24 and 72 h postexposure. PM10 North and PM2.5 North also significantly decreased levels of the antioxidant ascorbic acid. Elevation in lung mRNA biomarkers of inflammation (tumor necrosis factor [TNF]-α and macrophage inflammatory protein [MIP]-2), oxidative stress (heme oxygenase [HO]-1, lectin-like oxidized low-density lipoprotein receptor [LOX]-1, and inducibile nitric oxide synthase [iNOS]), and thrombosis (tissue factor [TF] and plasminogen activator inhibitor [PAI]-1), as well as reduced levels of fibrinolytic protein tissue plasminogen activator (tPA), further indicated pulmonary injury following PM exposure. These responses were more pronounced with PM10 South (PM10 South > PM10 North > PM2.5 North), which contained higher levels of redox-active transition metals that may have contributed to specific differences in selected lung gene markers. These findings provide evidence that surface chemistry of the PM core and not the water-soluble fraction played an important role in regulating in vivo pulmonary toxicity responses to Mexico City PM.

  4. PAI-1 (Plasminogen Activator Inhibitor-1) Expression Renders Alternatively Activated Human Macrophages Proteolytically Quiescent

    PubMed Central

    Hohensinner, Philipp J.; Baumgartner, Johanna; Kral-Pointner, Julia B.; Uhrin, Pavel; Ebenbauer, Benjamin; Thaler, Barbara; Doberer, Konstantin; Stojkovic, Stefan; Demyanets, Svitlana; Fischer, Michael B.; Huber, Kurt; Schabbauer, Gernot; Speidl, Walter S.

    2017-01-01

    Objective— Macrophages are versatile immune cells capable of polarizing into functional subsets depending on environmental stimulation. In atherosclerotic lesions, proinflammatory polarized macrophages are associated with symptomatic plaques, whereas Th2 (T-helper cell type 2) cytokine–polarized macrophages are inversely related with disease progression. To establish a functional cause for these observations, we analyzed extracellular matrix degradation phenotypes in polarized macrophages. Approach and Results— We provide evidence that proinflammatory polarized macrophages rely on membrane-bound proteases including MMP-14 (matrix metalloproteinase-14) and the serine protease uPA (urokinase plasminogen activator) together with its receptor uPAR for extracellular matrix degradation. In contrast, Th2 cytokine alternatively primed macrophages do not show different proteolytic activity in comparison to unpolarized macrophages and lack increased localization of MMP-14 and uPA receptor to the cell membrane. Nonetheless, they express the highest amount of the serine protease uPA. However, uPA activity is blocked by similarly increased expression of its inhibitor PAI-1 (plasminogen activator inhibitor 1). When inhibiting PAI-1 or when analyzing macrophages deficient in PAI-1, Th2 cytokine–polarized macrophages display the same matrix degradation capability as proinflammatory-primed macrophages. Within atherosclerotic lesions, macrophages positive for the alternative activation marker CD206 express high levels of PAI-1. In addition, to test changed tissue remodeling capacities of alternatively activated macrophages, we used a bleomycin lung injury model in mice reconstituted with PAI-1−/− bone marrow. These results supported an enhanced remodeling phenotype displayed by increased fibrosis and elevated MMP activity in the lung after PAI-1 loss. Conclusions— We were able to demonstrate matrix degradation dependent on membrane-bound proteases in proinflammatory stimulated macrophages and a forced proteolytical quiescence in alternatively polarized macrophages by the expression of PAI-1. PMID:28818858

  5. Quality of milk and of Canestrato Pugliese cheese from ewes exposed to different ventilation regimens.

    PubMed

    Albenzio, Marzia; Marino, Rosaria; Caroprese, Mariangela; Santillo, Antonella; Annicchiarico, Giovanni; Sevi, Agostino

    2004-11-01

    Effects of ventilation regimen on the quality of ewes' milk and on proteolysis in Canestrato Pugliese cheese during ripening were studied. Cheeses were manufactured from the bulk milk of Comisana ewes subjected to three different ventilation regimens, which were designated low (LOV, 23 m3/h per ewe), moderate (MOV, 47 m3/h per ewe) and programmed ventilation regimen (PROV, 73 m3/h per ewe; fan set to maintain 70% relative humidity). Bulk milk was analysed for chemical and microbial composition, renneting parameters and plasmin-plasminogen activities. At 1, 15, 30 and 45 d of ripening, the cheeses were analysed for gross chemical composition, nitrogen fractions, and plasmin and plasminogen activities. The pH 4.6-insoluble nitrogen fractions were analysed by urea-PAGE. Free amino acid content was determined at the end of ripening. Lower concentrations of bulk milk somatic cell count (BMSCC) and of mesophilic bacteria were found in the MOV group than in the LOV and the PROV groups. A lower plasminogen (PG) to plasmin (PL) ratio (PG/PL) was observed in the MOV and PROV than in the LOV cheeses. Irrespective of treatment, PL activity in cheeses was higher at 15d of ripening, while a sudden decrease of PL and PG activities was observed at 30 d, which was associated with a marked increase in non-protein nitrogen. The peptide profile characterized in the urea-PAGE showed a greater intensity of alpha- and beta-CN hydrolysis in the MOV than in the PROV and LOV cheeses. The results provide evidence that a proper ventilation regimen is critical for optimizing the hygienic quality of milk and the proteolysis of Canestrato Pugliese cheese during ripening.

  6. SERPINE1: A Molecular Switch in the Proliferation-Migration Dichotomy in Wound-“Activated” Keratinocytes

    PubMed Central

    Simone, Tessa M.; Higgins, Craig E.; Czekay, Ralf-Peter; Law, Brian K.; Higgins, Stephen P.; Archambeault, Jaclyn; Kutz, Stacie M.; Higgins, Paul J.

    2014-01-01

    Significance: A highly interactive serine protease/plasmin/matrix metalloproteinase axis regulates stromal remodeling in the wound microenvironment. Current findings highlight the importance of stringent controls on protease expression and their topographic activities in cell proliferation, migration, and tissue homeostasis. Targeting elements in this cascading network may lead to novel therapeutic approaches for fibrotic diseases and chronic wounds. Recent Advances: Matrix-active proteases and their inhibitors orchestrate wound site tissue remodeling, cell migration, and proliferation. Indeed, the serine proteases urokinase plasminogen activator and tissue-type plasminogen activator (uPA/tPA) and their major phsyiological inhibitor, plasminogen activator inhibitor-1 (PAI-1; serine protease inhibitor clade E member 1 [SERPINE1]), are upregulated in several cell types during injury repair. Coordinate expression of proteolytic enzymes and their inhibitors in the wound bed provides a mechanism for fine control of focal proteolysis to facilitate matrix restructuring and cell motility in complex environments. Critical Issues: Cosmetic and tissue functional consequences of wound repair anomalies affect the quality of life of millions of patients in the United States alone. The development of novel therapeutics to manage individuals most affected by healing anomalies will likely derive from the identification of critical, translationally accessible, control elements in the wound site microenvironment. Future Directions: Activation of the PAI-1 gene early after wounding, its prominence in the repair transcriptome and varied functions suggest a key role in the global cutaneous injury response program. Targeting PAI-1 gene expression and/or PAI-1 function with molecular genetic constructs, neutralizing antibodies or small molecule inhibitors may provide a novel, therapeutically relevant approach, to manage the pathophysiology of wound healing disorders associated with deficient or excessive PAI-1 levels. PMID:24669362

  7. Ethnic Comparison of Clinical Characteristics and Ischemic Stroke Subtypes Among Young Adult Patients With Stroke in Hawaii.

    PubMed

    Nakagawa, Kazuma; Ito, Cherisse S; King, Sage L

    2017-01-01

    Native Hawaiians and other Pacific Islanders (NHOPI) with ischemic stroke have younger age of stroke onset compared with whites. However, ethnic differences in stroke subtypes in this population have been inadequately studied. Consecutive young adult patients (aged ≤55 years) who were hospitalized for ischemic stroke between 2006 and 2012 at a tertiary center in Honolulu were studied. Clinical characteristics and stroke subtypes based on pathophysiological TOAST classification (Trial of Org 10172) of NHOPI and Asians were compared with whites. A total of 427 consecutive young adult (mean age, 46.7±7.8 years) patients (NHOPI 45%, Asians 38%, and whites 17%) were studied. NHOPI had a higher prevalence of hypertension, diabetes mellitus, prosthetic valve, higher body mass index, hemoglobin A1c, and lower high-density lipoprotein than whites (all P<0.05). Stroke subtype distribution was not different between the ethnic groups. Specifically, the prevalence of small-vessel disease was similar between NHOPI (26.6%), whites (28.4%), and Asians (24.8%). In the univariate analyses, the use of intravenous tissue-type plasminogen activator was lower among NHOPI (4.7%; P=0.01) and Asians (3.1%; P=0.002) than among whites (12.5%). In the multivariable model, NHOPI (odds ratio, 0.35; 95% confidence interval, 0.12-0.98) and Asians (odds ratio, 0.23; 95% confidence interval, 0.07-0.74) were less likely to be treated with intravenous tissue-type plasminogen activator than whites. NHOPI have greater cardiovascular risk factors than whites, but there were no differences in stroke subtypes between the ethnic groups. Furthermore, NHOPI and Asians may be less likely to be treated with intravenous tissue-type plasminogen activator than whites. © 2016 American Heart Association, Inc.

  8. A Small Molecule Inhibitor of Plasminogen Activator Inhibitor-1 Reduces Brain Amyloid-β Load and Improves Memory in an Animal Model of Alzheimer's Disease.

    PubMed

    Akhter, Hasina; Huang, Wen-Tan; van Groen, Thomas; Kuo, Hui-Chien; Miyata, Toshio; Liu, Rui-Ming

    2018-01-01

    Alzheimer's disease (AD) is a major cause of dementia in the elderly with no effective treatment. Accumulation of amyloid-β peptide (Aβ) in the brain is a pathological hallmark of AD and is believed to be a central disease-causing and disease-promoting event. In a previous study, we showed that deletion of plasminogen activator inhibitor 1 (PAI-1), a primary inhibitor of tissue type and urokinase type plasminogen activators (tPA and uPA), significantly reduced brain Aβ load in APP/PS1 mice, an animal model of familial AD. In this study, we further show that oral administration of TM5275, a small molecule inhibitor of PAI-1, for a period of 6 weeks, inhibits the activity of PAI-1 and increases the activities of tPA and uPA as well as plasmin, which is associated with a reduction of Aβ load in the hippocampus and cortex and improvement of learning/memory function in APP/PS1 mice. Protein abundance of low density lipoprotein related protein-1 (LRP-1), a multi ligand endocytotic receptor involved in transporting Aβ out of the brain, as well as plasma Aβ42 are increased, whereas the expression and processing of full-length amyloid-β protein precursor is not affected by TM5275 treatment in APP/PS1 mice. In vitro studies further show that PAI-1 increases, whereas TM5275 reduces, Aβ40 level in the culture medium of SHSY5Y-APP neuroblastoma cells. Collectively, our data suggest that TM5275 improves memory function of APP/PS1 mice, probably by reducing brain Aβ accumulation through increasing plasmin-mediated degradation and LRP-1-mediated efflux of Aβ in the brain.

  9. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    PubMed

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-02-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A)+ RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the lambda PL promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated Mr of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 (3 amino acid differences) and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). Like ovalbumin, mPAI-2 appears to have no typical amino-terminal signal sequence. The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators.

  10. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    PubMed Central

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-01-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A)+ RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the lambda PL promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated Mr of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 (3 amino acid differences) and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). Like ovalbumin, mPAI-2 appears to have no typical amino-terminal signal sequence. The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators. Images PMID:3257578

  11. Improving door-to-needle times: a single center validation of the target stroke hypothesis.

    PubMed

    Ruff, Ilana M; Ali, Syed F; Goldstein, Joshua N; Lev, Michael; Copen, William A; McIntyre, Joyce; Rost, Natalia S; Schwamm, Lee H

    2014-02-01

    National guidelines recommend imaging within 25 minutes of emergency department arrival and intravenous tissue-type plasminogen activator within 60 minutes of emergency department arrival for patients with acute stroke. In 2007, we implemented a new institutional acute stroke care model to include 10 best practices and evaluated the effect of this intervention on improving door-to-computed tomography (CT) and door-to-needle (DTN) times at our hospital. We compared patients who presented directly to our hospital with acute ischemic stroke in the preintervention (2003-2006) and postintervention (2008-2011) periods. We did not include 2007, the year that the new protocol was established. Predictors of DTN ≤60 minutes before and after the intervention were assessed using χ(2) for categorical variables, and t test and Wilcoxon signed-rank test for continuous variables. Among 2595 patients with acute stroke, 284 (11%) received intravenous tissue-type plasminogen activator. For patients arriving within an intravenous tissue-type plasminogen activator window, door-to-CT <25 improved from 26.7% pre intervention to 52.3% post intervention (P<0.001). Similarly, the percentage of patients with DTN <60 doubled from 32.4% to 70.3% (P<0.001). Patients with DTN ≤60 did not differ significantly with respect to demographics, comorbidities, or National Institutes of Health Stroke Scale score in comparison with those treated after 60 minutes. Door-to-CT and DTN times improved dramatically after applying 10 best practices, all of which were later incorporated into the Target Stroke Guidelines created by the American Heart Association. The only factor that significantly affected DTN60 was the intervention itself, indicating that these best practices can result in improved DTN times.

  12. Lectin binding profiles of SSEA-4 enriched, pluripotent human embryonic stem cell surfaces

    PubMed Central

    Venable, Alison; Mitalipova, Maisam; Lyons, Ian; Jones, Karen; Shin, Soojung; Pierce, Michael; Stice, Steven

    2005-01-01

    Background Pluripotent human embryonic stem cells (hESCs) have the potential to form every cell type in the body. These cells must be appropriately characterized prior to differentiation studies or when defining characteristics of the pluripotent state. Some developmentally regulated cell surface antigens identified by monoclonal antibodies in a variety of species and stem cell types have proven to be side chains of membrane glycolipids and glycoproteins. Therefore, to examine hESC surfaces for other potential pluripotent markers, we used a panel of 14 lectins, which were chosen based on their specificity for a variety of carbohydrates and carbohydrate linkages, along with stage specific embryonic antigen-4 (SSEA-4), to determine binding quantitation by flow cytometry and binding localization in adherent colonies by immunocytochemistry. Results Enriching cells for SSEA-4 expression increased the percentage of SSEA-4 positive cells to 98–99%. Using enriched high SSEA-4-expressing hESCs, we then analyzed the binding percentages of selected lectins and found a large variation in binding percentages ranging from 4% to 99% binding. Lycopersicon (tomato)esculetum lectin (TL), Ricinus communis agglutinin (RCA), and Concanavalin A (Con A) bound to SSEA-4 positive regions of hESCs and with similar binding percentages as SSEA-4. In contrast, we found Dolichos biflorus agglutinin (DBA) and Lotus tetragonolobus lectin (LTL) did not bind to hESCs while Phaseolus vulgaris leuco-agglutinin (PHA-L), Vicia villosa agglutinin (VVA), Ulex europaeus agglutinin (UEA), Phaseolus vulgaris erythro-agglutinin (PHA-E), and Maackia amurensis agglutinin (MAA) bound partially to hESCs. These binding percentages correlated well with immunocytochemistry results. Conclusion Our results provide information about types of carbohydrates and carbohydrate linkages found on pluripotent hESC surfaces. We propose that TL, RCA and Con A may be used as markers that are associated with the pluripotent state of hESCs because binding percentages and binding localization of these lectins are similar to those of SSEA-4. Non-binding lectins, DBA and LTL, may identify differentiated cell types; however, we did not find these lectins to bind to pluripotent SSEA-4 positive hESCs. This work represents a fundamental base to systematically classify pluripotent hESCs, and in future studies these lectins may be used to distinguish differentiated hESC types based on glycan presentation that accompanies differentiation. PMID:16033656

  13. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo.

    PubMed

    Hwang, Geelsu; Liu, Yuan; Kim, Dongyeop; Li, Yong; Krysan, Damian J; Koo, Hyun

    2017-06-01

    Candida albicans is frequently detected with heavy infection by Streptococcus mutans in plaque-biofilms from children with early-childhood caries (ECC). This cross-kingdom biofilm contains an extensive matrix of extracellular α-glucans that is produced by an exoenzyme (GtfB) secreted by S. mutans. Here, we report that mannans located on the outer surface of C. albicans cell-wall mediates GtfB binding, enhancing glucan-matrix production and modulating bacterial-fungal association within biofilms formed in vivo. Using single-molecule atomic force microscopy, we determined that GtfB binds with remarkable affinity to mannans and to the C. albicans surface, forming a highly stable and strong bond (1-2 nN). However, GtfB binding properties to C. albicans was compromised in strains defective in O-mannan (pmt4ΔΔ) or N-mannan outer chain (och1ΔΔ). In particular, the binding strength of GtfB on och1ΔΔ strain was severely disrupted (>3-fold reduction vs. parental strain). In turn, the GtfB amount on the fungal surface was significantly reduced, and the ability of C. albicans mutant strains to develop mixed-species biofilms with S. mutans was impaired. This phenotype was independent of hyphae or established fungal-biofilm regulators (EFG1, BCR1). Notably, the mechanical stability of the defective biofilms was weakened, resulting in near complete biomass removal by shear forces. In addition, these in vitro findings were confirmed in vivo using a rodent biofilm model. Specifically, we observed that C. albicans och1ΔΔ was unable to form cross-kingdom biofilms on the tooth surface of rats co-infected with S. mutans. Likewise, co-infection with S. mutans defective in GtfB was also incapable of forming mixed-species biofilms. Taken together, the data support a mechanism whereby S. mutans-secreted GtfB binds to the mannan layer of C. albicans to promote extracellular matrix formation and their co-existence within biofilms. Enhanced understanding of GtfB-Candida interactions may provide new perspectives for devising effective therapies to disrupt this cross-kingdom relationship associated with an important childhood oral disease.

  14. Atypical binding of the Swa2p UBA domain to ubiquitin.

    PubMed

    Matta-Camacho, Edna; Kozlov, Guennadi; Trempe, Jean-François; Gehring, Kalle

    2009-02-20

    Swa2p is an auxilin-like yeast protein that is involved in vesicular transport and required for uncoating of clathrin-coated vesicles. Swa2p contains a ubiquitin-associated (UBA) domain, which is present in a variety of proteins involved in ubiquitin (Ub)-mediated processes. We have determined a structural model of the Swa2p UBA domain in complex with Ub using NMR spectroscopy and molecular docking. Ub recognition occurs predominantly through an atypical interaction in which UBA helix alpha1 and the N-terminal part of helix alpha2 bind to Ub. Mutation of Ala148, a key residue in helix alpha1, to polar residues greatly reduced the affinity of the UBA domain for Ub and revealed a second low-affinity Ub-binding site located on the surface formed by helices alpha1 and alpha3. Surface plasmon resonance showed that the Swa2p UBA domain binds K48- and K63-linked di-Ub in a non-linkage-specific manner. These results reveal convergent evolution of a Ub-binding site on helix alpha1 of UBA domains involved in membrane protein trafficking.

  15. Complex coacervation in charge complementary biopolymers: Electrostatic versus surface patch binding.

    PubMed

    Pathak, Jyotsana; Priyadarshini, Eepsita; Rawat, Kamla; Bohidar, H B

    2017-12-01

    In this review, a number of systems are described to demonstrate the effect of polyelectrolyte chain stiffness (persistence length) on the coacervation phenomena, after we briefly review the field. We consider two specific types of complexation/coacervation: in the first type, DNA is used as a fixed substrate binding to flexible polyions such as gelatin A, bovine serum albumin and chitosan (large persistence length polyelectrolyte binding to low persistence length biopolymer), and in the second case, different substrates such as gelatin A, bovine serum albumin, and chitosan were made to bind to a polyion gelatin B (low persistence length substrate binding to comparable persistence length polyion). Polyelectrolyte chain flexibility was found to have remarkable effect on the polyelectrolyte-protein complex coacervation. The competitive interplay of electrostatic versus surface patch binding (SPB) leading to associative interaction followed by complex coacervation between these biopolymers is elucidated. We modelled the SPB interaction in terms of linear combination of attractive and repulsive Coulombic forces with respect to the solution ionic strength. The aforesaid interactions were established via a universal phase diagram, considering the persistence length of polyion as the sole independent variable. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Lipoprotein lipase-dependent binding and uptake of low density lipoproteins by THP-1 monocytes and macrophages: possible involvement of lipid rafts.

    PubMed

    Makoveichuk, Elena; Castel, Susanna; Vilaró, Senen; Olivecrona, Gunilla

    2004-11-08

    Lipoprotein lipase (LPL) is produced by cells in the artery wall and can mediate binding of lipoproteins to cell surface heparan sulfate proteoglycans (HSPG), resulting in endocytosis (the bridging function). Active, dimeric LPL may dissociate to inactive monomers, the main form found in plasma. We have studied binding/internalization of human low density lipoprotein (LDL), mediated by bovine LPL, using THP-1 monocytes and macrophages. Uptake of (125)I-LDL was similar in monocytes and macrophages and was not affected by the LDL-receptor family antagonist receptor-associated protein (RAP) or by the phagocytosis inhibitor cytochalasin D. In contrast, uptake depended on HSPG and on membrane cholesterol. Incubation in the presence of dexamethasone increased the endogenous production of LPL by the cells and also increased LPL-mediated binding of LDL to the cell surfaces. Monomeric LPL was bound to the cells mostly in a heparin-resistant fashion. We conclude that the uptake of LDL mediated by LPL dimers is receptor-independent and involves cholesterol-enriched membrane areas (lipid rafts). Dimeric and monomeric LPL differ in their ability to mediate binding/uptake of LDL, probably due to different mechanisms for binding/internalization.

  17. The -675 4G/5G polymorphism in plasminogen activator inhibitor-1 gene is associated with risk of asthma: a meta-analysis.

    PubMed

    Nie, Wei; Li, Bing; Xiu, Qing-Yu

    2012-01-01

    A number of studies assessed the association of -675 4G/5G polymorphism in the promoter region of plasminogen activator inhibitor (PAI)-1 gene with asthma in different populations. However, most studies reported inconclusive results. A meta-analysis was conducted to investigate the association between polymorphism in the PAI-1 gene and asthma susceptibility. Databases including Pubmed, EMBASE, HuGE Literature Finder, Wanfang Database, China National Knowledge Infrastructure (CNKI) and Weipu Database were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association in the dominant model, recessive model, codominant model, and additive model. Eight studies involving 1817 cases and 2327 controls were included. Overall, significant association between 4G/5G polymorphism and asthma susceptibility was observed for 4G4G+4G5G vs. 5G5G (OR = 1.56, 95% CI 1.12-2.18, P = 0.008), 4G/4G vs. 4G/5G+5G/5G (OR = 1.38, 95% CI 1.06-1.80, P = 0.02), 4G/4G vs. 5G/5G (OR = 1.80, 95% CI 1.17-2.76, P = 0.007), 4G/5G vs. 5G/5G (OR = 1.40, 95% CI 1.07-1.84, P = 0.02), and 4G vs. 5G (OR = 1.35, 95% CI 1.08-1.68, P = 0.008). This meta-analysis suggested that the -675 4G/5G polymorphism of PAI-1 gene was a risk factor of asthma.

  18. The association between plasminogen activator inhibitor type 1 (PAI-1) levels, PAI-1 4G/5G polymorphism, and myocardial infarction: a Mendelian randomization meta-analysis.

    PubMed

    Nikolopoulos, Georgios K; Bagos, Pantelis G; Tsangaris, Iraklis; Tsiara, Chrissa G; Kopterides, Petros; Vaiopoulos, Aristides; Kapsimali, Violetta; Bonovas, Stefanos; Tsantes, Argirios E

    2014-07-01

    The circulating levels of plasminogen activator inhibitor type 1 (PAI-1) are increased in individuals carrying the 4G allele at position -675 of the PAI-1 gene. In turn, overexpression of PAI-1 has been found to affect both atheroma and thrombosis. However, the association between PAI-1 levels and the incidence of myocardial infarction (MI) is complicated by the potentially confounding effects of well-known cardiovascular risk factors. The current study tried to investigate in parallel the association of PAI-1 activity with the PAI-1 4G/5G polymorphism, with MI, and some components of metabolic syndrome (MetS). Using meta-analytical Mendelian randomization approaches, genotype-disease and genotype-phenotype associations were modeled simultaneously. According to an additive model of inheritance and the Mendelian randomization approach, the MI-related odd ratio for individuals carrying the 4G allele was 1.088 with 95% confidence interval (CI) 1.007, 1.175. Moreover, the 4G carriers had, on average, higher PAI-1 activity than 5G carriers by 1.136 units (95% CI 0.738, 1.533). The meta-regression analyses showed that the levels of triglycerides (p=0.005), cholesterol (p=0.037) and PAI-1 (p=0.021) in controls were associated with the MI risk conferred by the 4G carriers. The Mendelian randomization meta-analysis confirmed previous knowledge that the PAI-1 4G allele slightly increases the risk for MI. In addition, it supports the notion that PAI-1 activity and established cardiovascular determinants, such as cholesterol and triglyceride levels, could lie in the etiological pathway from PAI-1 4G allele to the occurrence of MI. Further research is warranted to elucidate these interactions.

  19. Identification of Reversible Disruption of the Human Blood-Brain Barrier Following Acute Ischemia.

    PubMed

    Simpkins, Alexis N; Dias, Christian; Leigh, Richard

    2016-09-01

    Animal models of acute cerebral ischemia have demonstrated that diffuse blood-brain barrier (BBB) disruption can be reversible after early reperfusion. However, irreversible, focal BBB disruption in humans is associated with hemorrhagic transformation in patients receiving intravenous thrombolytic therapy. The goal of this study was to use a magnetic resonance imaging biomarker of BBB permeability to differentiate these 2 forms of BBB disruption. Acute stroke patients imaged with magnetic resonance imaging before, 2 hours after, and 24 hours after treatment with intravenous tissue-type plasminogen activator were included. The average BBB permeability of the acute ischemic region before and 2 hours after treatment was calculated using a T2* perfusion-weighted source images. Change in average permeability was compared with percent reperfusion using linear regression. Focal regions of maximal BBB permeability from the pretreatment magnetic resonance imaging were compared with the occurrence of parenchymal hematoma (PH) formation on the 24-hour magnetic resonance imaging scan using logistic regression. Signals indicating reversible BBB permeability were detected in 18/36 patients. Change in average BBB permeability correlated inversely with percent reperfusion (P=0.006), indicating that early reperfusion is associated with decreased BBB permeability, whereas sustained ischemia is associated with increased BBB disruption. Focal regions of maximal BBB permeability were significantly associated with subsequent formation of PH (P=0.013). This study demonstrates that diffuse, mild BBB disruption in the acutely ischemic human brain is reversible with reperfusion. This study also confirms prior findings that focal severe BBB disruption confers an increased risk of hemorrhagic transformation in patients treated with intravenous tissue-type plasminogen activator. © 2016 American Heart Association, Inc.

  20. Need for tissue plasminogen activator for central venous catheter dysfunction is significantly associated with thrombosis in pediatric cancer patients.

    PubMed

    MacLean, Jessica; MacDonald, Tamara; Digout, Carol; Smith, Nadine; Rigby, Krista; Kulkarni, Ketan

    2018-06-01

    Central venous catheter (CVC) dysfunction is a common complication among pediatric cancer patients. Tissue plasminogen activator (tPA) is administered to resolve CVC dysfunction. The present study was designed to determine risk factors associated with requirement of tPA for CVC dysfunction and to assess the clinical impact of CVC dysfunction in terms of CVC loss and venous thrombotic events (VTE). Case records of all pediatric patients with cancer from the Maritimes, Canada were reviewed following ethics approval. Data regarding demographics, clinical diagnosis, CVC dysfunction, characteristics of CVCs, and VTE were pooled from multiple data sources. Seven hundred and forty-one patients required ≥1 CVC. 26.3% of patients required tPA for ≥1 episodes of CVC dysfunction. Requirement of one or more doses of tPA for episodes of CVC dysfunction increased the odds of VTE by two times (95% confidence interval, 1.1-3.6). Patients that required ≥1 doses of tPA required significantly more CVCs (2.05 ± 1.29 per individual patient, 55% of the patients needed >1 CVCs) as compared to the remainder (1.52 ± 0.95 per individual patient, 32% needed >1 CVCs) (P = 0.0001). Multivariate analysis revealed age > 10 years, diagnosis of sarcoma, and tunneled line were independently associated with tPA requirement. We determined independent risk factors associated with requirement of tPA for CVC dysfunction. Requirement of tPA for CVC dysfunction was associated with significantly increased risk of VTE and requirement of more CVCs. These observations can assist in identification of patients at increased risk of CVC dysfunction and inform approaches to reduce CVC loss and VTE. © 2018 Wiley Periodicals, Inc.

  1. The −675 4G/5G Polymorphism in Plasminogen Activator Inhibitor-1 Gene Is Associated with Risk of Asthma: A Meta-Analysis

    PubMed Central

    Xiu, Qing-yu

    2012-01-01

    Background A number of studies assessed the association of −675 4G/5G polymorphism in the promoter region of plasminogen activator inhibitor (PAI)-1 gene with asthma in different populations. However, most studies reported inconclusive results. A meta-analysis was conducted to investigate the association between polymorphism in the PAI-1 gene and asthma susceptibility. Methods Databases including Pubmed, EMBASE, HuGE Literature Finder, Wanfang Database, China National Knowledge Infrastructure (CNKI) and Weipu Database were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association in the dominant model, recessive model, codominant model, and additive model. Results Eight studies involving 1817 cases and 2327 controls were included. Overall, significant association between 4G/5G polymorphism and asthma susceptibility was observed for 4G4G+4G5G vs. 5G5G (OR = 1.56, 95% CI 1.12–2.18, P = 0.008), 4G/4G vs. 4G/5G+5G/5G (OR = 1.38, 95% CI 1.06–1.80, P = 0.02), 4G/4G vs. 5G/5G (OR = 1.80, 95% CI 1.17–2.76, P = 0.007), 4G/5G vs. 5G/5G (OR = 1.40, 95% CI 1.07–1.84, P = 0.02), and 4G vs. 5G (OR = 1.35, 95% CI 1.08–1.68, P = 0.008). Conclusions This meta-analysis suggested that the −675 4G/5G polymorphism of PAI-1 gene was a risk factor of asthma. PMID:22479620

  2. Elevated Plasma Levels of sRAGE Are Associated With Nonfocal CT-Based Lung Imaging in Patients With ARDS: A Prospective Multicenter Study.

    PubMed

    Mrozek, Segolene; Jabaudon, Matthieu; Jaber, Samir; Paugam-Burtz, Catherine; Lefrant, Jean-Yves; Rouby, Jean-Jacques; Asehnoune, Karim; Allaouchiche, Bernard; Baldesi, Olivier; Leone, Marc; Lu, Qin; Bazin, Jean-Etienne; Roszyk, Laurence; Sapin, Vincent; Futier, Emmanuel; Pereira, Bruno; Constantin, Jean-Michel

    2016-11-01

    During ARDS, CT can reveal two distinct lung imaging patterns, focal or nonfocal, with different responses to positive end-expiratory pressure, recruitment maneuvers, and prone position. Nevertheless, their association with plasma biomarkers and their distinct functional/pathobiological mechanisms are unknown. The objective of this study was to characterize focal and nonfocal patterns of lung CT-based imaging with plasma markers of lung injury. A prospective multicenter cohort study involving 119 consecutive patients with ARDS. Plasma biomarkers (soluble form of the receptor for advanced glycation end product [sRAGE], plasminogen activator inhibitor-1, soluble intercellular adhesion molecule-1, and surfactant protein-D) were measured within 24 h of ARDS onset. Lung CT scan was performed within the first 48 h to assess lung morphology. Thirty-two (27%) and 87 (73%) patients had focal and nonfocal ARDS, respectively. Plasma levels of sRAGE were significantly higher in nonfocal ARDS, compared with focal ARDS. A cut-off of 1,188 pg/mL differentiated focal from nonfocal ARDS with a sensitivity of 94% and a specificity of 84%. Nonfocal patterns were associated with higher 28- and 90-day mortality than focal patterns (31% vs 12%, P = .038 and 46% vs 21%, P = .026, respectively). Plasma levels of plasminogen activator inhibitor-1 were significantly higher in nonfocal ARDS. There was no difference in other biomarkers. Plasma sRAGE is associated with a nonfocal ARDS. Such novel findings may suggest a role for RAGE pathway in an underlying endotype of impaired alveolar fluid clearance and stimulate future research on the association between ARDS phenotypes and therapeutic responses. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  3. Interhospital Transfer Before Thrombectomy Is Associated With Delayed Treatment and Worse Outcome in the STRATIS Registry (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke)

    PubMed Central

    Saver, Jeffrey L.; Zaidat, Osama O.; Jahan, Reza; Aziz-Sultan, Mohammad Ali; Klucznik, Richard P.; Haussen, Diogo C.; Hellinger, Frank R.; Yavagal, Dileep R.; Yao, Tom L.; Liebeskind, David S.; Jadhav, Ashutosh P.; Gupta, Rishi; Hassan, Ameer E.; Martin, Coleman O.; Bozorgchami, Hormozd; Kaushal, Ritesh; Nogueira, Raul G.; Gandhi, Ravi H.; Peterson, Eric C.; Dashti, Shervin R.; Given, Curtis A.; Mehta, Brijesh P.; Deshmukh, Vivek; Starkman, Sidney; Linfante, Italo; McPherson, Scott H.; Kvamme, Peter; Grobelny, Thomas J.; Hussain, Muhammad S.; Thacker, Ike; Vora, Nirav; Chen, Peng Roc; Monteith, Stephen J.; Ecker, Robert D.; Schirmer, Clemens M.; Sauvageau, Eric; Abou-Chebl, Alex; Derdeyn, Colin P.; Maidan, Lucian; Badruddin, Aamir; Siddiqui, Adnan H.; Dumont, Travis M.; Alhajeri, Abdulnasser; Taqi, M. Asif; Asi, Khaled; Carpenter, Jeffrey; Boulos, Alan; Jindal, Gaurav; Puri, Ajit S.; Chitale, Rohan; Deshaies, Eric M.; Robinson, David H.; Kallmes, David F.; Baxter, Blaise W.; Jumaa, Mouhammad A.; Sunenshine, Peter; Majjhoo, Aniel; English, Joey D.; Suzuki, Shuichi; Fessler, Richard D.; Delgado Almandoz, Josser E.; Martin, Jerry C.; Mueller-Kronast, Nils H.

    2017-01-01

    Background: Endovascular treatment with mechanical thrombectomy (MT) is beneficial for patients with acute stroke suffering a large-vessel occlusion, although treatment efficacy is highly time-dependent. We hypothesized that interhospital transfer to endovascular-capable centers would result in treatment delays and worse clinical outcomes compared with direct presentation. Methods: STRATIS (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke) was a prospective, multicenter, observational, single-arm study of real-world MT for acute stroke because of anterior-circulation large-vessel occlusion performed at 55 sites over 2 years, including 1000 patients with severe stroke and treated within 8 hours. Patients underwent MT with or without intravenous tissue plasminogen activator and were admitted to endovascular-capable centers via either interhospital transfer or direct presentation. The primary clinical outcome was functional independence (modified Rankin Score 0–2) at 90 days. We assessed (1) real-world time metrics of stroke care delivery, (2) outcome differences between direct and transfer patients undergoing MT, and (3) the potential impact of local hospital bypass. Results: A total of 984 patients were analyzed. Median onset-to-revascularization time was 202.0 minutes for direct versus 311.5 minutes for transfer patients (P<0.001). Clinical outcomes were better in the direct group, with 60.0% (299/498) achieving functional independence compared with 52.2% (213/408) in the transfer group (odds ratio, 1.38; 95% confidence interval, 1.06–1.79; P=0.02). Likewise, excellent outcome (modified Rankin Score 0–1) was achieved in 47.4% (236/498) of direct patients versus 38.0% (155/408) of transfer patients (odds ratio, 1.47; 95% confidence interval, 1.13–1.92; P=0.005). Mortality did not differ between the 2 groups (15.1% for direct, 13.7% for transfer; P=0.55). Intravenous tissue plasminogen activator did not impact outcomes. Hypothetical bypass modeling for all transferred patients suggested that intravenous tissue plasminogen activator would be delayed by 12 minutes, but MT would be performed 91 minutes sooner if patients were routed directly to endovascular-capable centers. If bypass is limited to a 20-mile radius from onset, then intravenous tissue plasminogen activator would be delayed by 7 minutes and MT performed 94 minutes earlier. Conclusions: In this large, real-world study, interhospital transfer was associated with significant treatment delays and lower chance of good outcome. Strategies to facilitate more rapid identification of large-vessel occlusion and direct routing to endovascular-capable centers for patients with severe stroke may improve outcomes. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02239640. PMID:28943516

  4. Interhospital Transfer Before Thrombectomy Is Associated With Delayed Treatment and Worse Outcome in the STRATIS Registry (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke).

    PubMed

    Froehler, Michael T; Saver, Jeffrey L; Zaidat, Osama O; Jahan, Reza; Aziz-Sultan, Mohammad Ali; Klucznik, Richard P; Haussen, Diogo C; Hellinger, Frank R; Yavagal, Dileep R; Yao, Tom L; Liebeskind, David S; Jadhav, Ashutosh P; Gupta, Rishi; Hassan, Ameer E; Martin, Coleman O; Bozorgchami, Hormozd; Kaushal, Ritesh; Nogueira, Raul G; Gandhi, Ravi H; Peterson, Eric C; Dashti, Shervin R; Given, Curtis A; Mehta, Brijesh P; Deshmukh, Vivek; Starkman, Sidney; Linfante, Italo; McPherson, Scott H; Kvamme, Peter; Grobelny, Thomas J; Hussain, Muhammad S; Thacker, Ike; Vora, Nirav; Chen, Peng Roc; Monteith, Stephen J; Ecker, Robert D; Schirmer, Clemens M; Sauvageau, Eric; Abou-Chebl, Alex; Derdeyn, Colin P; Maidan, Lucian; Badruddin, Aamir; Siddiqui, Adnan H; Dumont, Travis M; Alhajeri, Abdulnasser; Taqi, M Asif; Asi, Khaled; Carpenter, Jeffrey; Boulos, Alan; Jindal, Gaurav; Puri, Ajit S; Chitale, Rohan; Deshaies, Eric M; Robinson, David H; Kallmes, David F; Baxter, Blaise W; Jumaa, Mouhammad A; Sunenshine, Peter; Majjhoo, Aniel; English, Joey D; Suzuki, Shuichi; Fessler, Richard D; Delgado Almandoz, Josser E; Martin, Jerry C; Mueller-Kronast, Nils H

    2017-12-12

    Endovascular treatment with mechanical thrombectomy (MT) is beneficial for patients with acute stroke suffering a large-vessel occlusion, although treatment efficacy is highly time-dependent. We hypothesized that interhospital transfer to endovascular-capable centers would result in treatment delays and worse clinical outcomes compared with direct presentation. STRATIS (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke) was a prospective, multicenter, observational, single-arm study of real-world MT for acute stroke because of anterior-circulation large-vessel occlusion performed at 55 sites over 2 years, including 1000 patients with severe stroke and treated within 8 hours. Patients underwent MT with or without intravenous tissue plasminogen activator and were admitted to endovascular-capable centers via either interhospital transfer or direct presentation. The primary clinical outcome was functional independence (modified Rankin Score 0-2) at 90 days. We assessed (1) real-world time metrics of stroke care delivery, (2) outcome differences between direct and transfer patients undergoing MT, and (3) the potential impact of local hospital bypass. A total of 984 patients were analyzed. Median onset-to-revascularization time was 202.0 minutes for direct versus 311.5 minutes for transfer patients ( P <0.001). Clinical outcomes were better in the direct group, with 60.0% (299/498) achieving functional independence compared with 52.2% (213/408) in the transfer group (odds ratio, 1.38; 95% confidence interval, 1.06-1.79; P =0.02). Likewise, excellent outcome (modified Rankin Score 0-1) was achieved in 47.4% (236/498) of direct patients versus 38.0% (155/408) of transfer patients (odds ratio, 1.47; 95% confidence interval, 1.13-1.92; P =0.005). Mortality did not differ between the 2 groups (15.1% for direct, 13.7% for transfer; P =0.55). Intravenous tissue plasminogen activator did not impact outcomes. Hypothetical bypass modeling for all transferred patients suggested that intravenous tissue plasminogen activator would be delayed by 12 minutes, but MT would be performed 91 minutes sooner if patients were routed directly to endovascular-capable centers. If bypass is limited to a 20-mile radius from onset, then intravenous tissue plasminogen activator would be delayed by 7 minutes and MT performed 94 minutes earlier. In this large, real-world study, interhospital transfer was associated with significant treatment delays and lower chance of good outcome. Strategies to facilitate more rapid identification of large-vessel occlusion and direct routing to endovascular-capable centers for patients with severe stroke may improve outcomes. URL: https://www.clinicaltrials.gov. Unique identifier: NCT02239640. © 2017 The Authors.

  5. Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties.

    PubMed

    Doktorova, Milka; Heberle, Frederick A; Kingston, Richard L; Khelashvili, George; Cuendet, Michel A; Wen, Yi; Katsaras, John; Feigenson, Gerald W; Vogt, Volker M; Dick, Robert A

    2017-11-07

    Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein's matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here, using a broad set of in vitro and in silico techniques we addressed molecular mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Structural Basis for Interactions Between Contactin Family Members and Protein-tyrosine Phosphatase Receptor Type G in Neural Tissues.

    PubMed

    Nikolaienko, Roman M; Hammel, Michal; Dubreuil, Véronique; Zalmai, Rana; Hall, David R; Mehzabeen, Nurjahan; Karuppan, Sebastian J; Harroch, Sheila; Stella, Salvatore L; Bouyain, Samuel

    2016-10-07

    Protein-tyrosine phosphatase receptor type G (RPTPγ/PTPRG) interacts in vitro with contactin-3-6 (CNTN3-6), a group of glycophosphatidylinositol-anchored cell adhesion molecules involved in the wiring of the nervous system. In addition to PTPRG, CNTNs associate with multiple transmembrane proteins and signal inside the cell via cis-binding partners to alleviate the absence of an intracellular region. Here, we use comprehensive biochemical and structural analyses to demonstrate that PTPRG·CNTN3-6 complexes share similar binding affinities and a conserved arrangement. Furthermore, as a first step to identifying PTPRG·CNTN complexes in vivo, we found that PTPRG and CNTN3 associate in the outer segments of mouse rod photoreceptor cells. In particular, PTPRG and CNTN3 form cis-complexes at the surface of photoreceptors yet interact in trans when expressed on the surfaces of apposing cells. Further structural analyses suggest that all CNTN ectodomains adopt a bent conformation and might lie parallel to the cell surface to accommodate these cis and trans binding modes. Taken together, these studies identify a PTPRG·CNTN complex in vivo and provide novel insights into PTPRG- and CNTN-mediated signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Effect of solid surface charge on the binding behaviour of a metal-binding peptide

    PubMed Central

    Donatan, Senem; Sarikaya, Mehmet; Tamerler, Candan; Urgen, Mustafa

    2012-01-01

    Over the last decade, solid-binding peptides have been increasingly used as molecular building blocks coupling bio- and nanotechnology. Despite considerable research being invested in this field, the effects of many surface-related parameters that define the binding of peptide to solids are still unknown. In the quest to control biological molecules at solid interfaces and, thereby, tailoring the binding characteristics of the peptides, the use of surface charge of the solid surface may probably play an important role, which then can be used as a potential tuning parameter of peptide adsorption. Here, we report quantitative investigation on the viscoelastic properties and binding kinetics of an engineered gold-binding peptide, 3RGBP1, adsorbed onto the gold surface at different surface charge densities. The experiments were performed in aqueous solutions using an electrochemical dissipative quartz crystal microbalance system. Hydrodynamic mass, hydration state and surface coverage of the adsorbed peptide films were determined as a function of surface charge density of the gold metal substrate. Under each charged condition, binding of 3rGBP1 displayed quantitative differences in terms of adsorbed peptide amount, surface coverage ratio and hydration state. Based on the intrinsically disordered structure of the peptide, we propose a possible mechanism for binding of the peptide that can be used for tuning surface adsorption in further studies. Controlled alteration of peptide binding on solid surfaces, as shown here, may provide novel methods for surface functionalization used for bioenabled processing and fabrication of future micro- and nanodevices. PMID:22491974

  8. Small Molecules Engage Hot Spots through Cooperative Binding To Inhibit a Tight Protein-Protein Interaction.

    PubMed

    Liu, Degang; Xu, David; Liu, Min; Knabe, William Eric; Yuan, Cai; Zhou, Donghui; Huang, Mingdong; Meroueh, Samy O

    2017-03-28

    Protein-protein interactions drive every aspect of cell signaling, yet only a few small-molecule inhibitors of these interactions exist. Despite our ability to identify critical residues known as hot spots, little is known about how to effectively engage them to disrupt protein-protein interactions. Here, we take advantage of the ease of preparation and stability of pyrrolinone 1, a small-molecule inhibitor of the tight interaction between the urokinase receptor (uPAR) and its binding partner, the urokinase-type plasminogen activator uPA, to synthesize more than 40 derivatives and explore their effect on the protein-protein interaction. We report the crystal structure of uPAR bound to previously discovered pyrazole 3 and to pyrrolinone 12. While both 3 and 12 bind to uPAR and compete with a fluorescently labeled peptide probe, only 12 and its derivatives inhibit the full uPAR·uPA interaction. Compounds 3 and 12 mimic and engage different hot-spot residues on uPA and uPAR, respectively. Interestingly, 12 is involved in a π-cation interaction with Arg-53, which is not considered a hot spot. Explicit-solvent molecular dynamics simulations reveal that 3 and 12 exhibit dramatically different correlations of motion with residues on uPAR. Free energy calculations for the wild-type and mutant uPAR bound to uPA or 12 show that Arg-53 interacts with uPA or with 12 in a highly cooperative manner, thereby altering the contributions of hot spots to uPAR binding. The direct engagement of peripheral residues not considered hot spots through π-cation or salt-bridge interactions could provide new opportunities for enhanced small-molecule engagement of hot spots to disrupt challenging protein-protein interactions.

  9. Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites.

    PubMed

    Lopes, Jose L S; Beltramini, Leila M; Wallace, Bonnie A; Araujo, Ana P U

    2015-01-01

    Diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.

  10. Delivery of tissue plasminogen activator and streptokinase magnetic nanoparticles to target vascular diseases.

    PubMed

    Tadayon, Ateke; Jamshidi, Reza; Esmaeili, Akbar

    2015-11-10

    Thrombolytic therapy for acute myocardial infarction standardly makes use of the medications streptokinase (SK) and tissue plasminogen activator (tPA). In this study, the potential of silica-coated magnetic nanoparticles (SiO2-MNPs) as nanocarriers clinical thrombolytic therapy was investigated. SiO2-MNPs for use in targeted therapeutic delivery of tPA and SK were prepared using a combined technique incorporating controlled precipitation and hydrothermal methods. Response surface methodology (RSM) was employed to evaluate the efficiency of the SiO2-MNPs. The production of SK secreted from Streptococcus equi was enhanced using random mutagenesis. The tPA and SK A were encapsulated by means of a silanizing agent with a surface rich in 3-aminopropyltrimethoxysilane layered around the SiO2-MNPs. Blood clot lysis assays and fibrin-containing agarose plates were used to carry out in vitro thrombolysis testing. The optimum conditions for producing MNPs were found to be at pH=13 and at a temperature of 75°C for 45 min. Culture conditions of 2.75% NaCl concentration at initial pH=7.5 for 90 s under UV resulted in maximum SK activity. The tPA/SK-conjugated SiO2-MNPs (SiO2-MNP-tPA-SK) increased operating stability in whole blood and storage stability in a buffer by 92%. More effective thrombolysis using magnetic targeting was indicated by a 38% reduction in blood clot lysis time achieved with SiO2-MNP-tPA-SK compared to administering the SiO2-MNPs without guidance. The silica-coated magnetic nanocarriers developed in this study show potential for improved clinical thrombolytic therapy. Copyright © 2015. Published by Elsevier B.V.

  11. Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the c-Src Kinase

    PubMed Central

    Morando, Maria Agnese; Saladino, Giorgio; D’Amelio, Nicola; Pucheta-Martinez, Encarna; Lovera, Silvia; Lelli, Moreno; López-Méndez, Blanca; Marenchino, Marco; Campos-Olivas, Ramón; Gervasio, Francesco Luigi

    2016-01-01

    Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called “DFG-flip” of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an “in to out” movement resulting in a particular inactive conformation to which “type II” kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed. PMID:27087366

  12. Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the c-Src Kinase

    NASA Astrophysics Data System (ADS)

    Morando, Maria Agnese; Saladino, Giorgio; D'Amelio, Nicola; Pucheta-Martinez, Encarna; Lovera, Silvia; Lelli, Moreno; López-Méndez, Blanca; Marenchino, Marco; Campos-Olivas, Ramón; Gervasio, Francesco Luigi

    2016-04-01

    Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called “DFG-flip” of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an “in to out” movement resulting in a particular inactive conformation to which “type II” kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed.

  13. Multivalent interaction based carbohydrate biosensors for signal amplification

    PubMed Central

    Wang, Yanyan; Chalagalla, Srinivas; Li, Tiehai; Sun, Xue-long; Zhao, Wei; Wang, Peng; Zeng, Xiangqun

    2010-01-01

    Multivalent interaction between boronic acids immobilized on Quartz Crystal Microbalance (QCM) sensor surface and the carbohydrates modified Au - nanoparticle (AuNP) has been demonstrated for the development of a sensitive carbohydrate biosensor. Briefly, a boronic acid - containing polymer (boropolymer) as multivalent carbohydrate receptor was oriented immobilized on the cysteamine coated electrode through isourea bond formation. Carbohydrates were conjugated to AuNPs to generate a multivalent carbohydrates moiety to amplify the response signal. Thus, the binding of the carbohydrate conjugated AuNPs to the boropolymer surface are multivalent which could simultaneously increase the binding affinity and specificity. We systematically studied the binding between five carbohydrate conjugated AuNPs and the boropolymer. Our studies show that the associate constant (Ka) was in the order of fucose < glucose < mannose < galactose < maltose. A linear response in the range from 23 µM to 3.83 mM was observed for mannose conjugated AuNPs and the boropolymer recognition elements, with the lower detection limit of 1.5 µM for the carbohydrate analytes. Furthermore, the multivalent binding between carbohydrates and boronic acids are reversible and allow the regeneration of boropolymer surface by using 1M acetic acid so as to sequentially capture and release the carbohydrate analytes. PMID:20863680

  14. Methyl-CpG-binding protein 2 mediates antifibrotic effects in scleroderma fibroblasts.

    PubMed

    He, Ye; Tsou, Pei-Suen; Khanna, Dinesh; Sawalha, Amr H

    2018-05-14

    Emerging evidence supports a role for epigenetic regulation in the pathogenesis of scleroderma (SSc). We aimed to assess the role of methyl-CpG-binding protein 2 (MeCP2), a key epigenetic regulator, in fibroblast activation and fibrosis in SSc. Dermal fibroblasts were isolated from patients with diffuse cutaneous SSc (dcSSc) and from healthy controls. MeCP2 expression was measured by qPCR and western blot. Myofibroblast differentiation was evaluated by gel contraction assay in vitro. Fibroblast proliferation was analysed by ki67 immunofluorescence staining. A wound healing assay in vitro was used to determine fibroblast migration rates. RNA-seq was performed with and without MeCP2 knockdown in dcSSc to identify MeCP2-regulated genes. The expression of MeCP2 and its targets were modulated by siRNA or plasmid. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) using anti-MeCP2 antibody was performed to assess MeCP2 binding sites within MeCP2-regulated genes. Elevated expression of MeCP2 was detected in dcSSc fibroblasts compared with normal fibroblasts. Overexpressing MeCP2 in normal fibroblasts suppressed myofibroblast differentiation, fibroblast proliferation and fibroblast migration. RNA-seq in MeCP2-deficient dcSSc fibroblasts identified MeCP2-regulated genes involved in fibrosis, including PLAU , NID2 and ADA . Plasminogen activator urokinase (PLAU) overexpression in dcSSc fibroblasts reduced myofibroblast differentiation and fibroblast migration, while nidogen-2 (NID2) knockdown promoted myofibroblast differentiation and fibroblast migration. Adenosine deaminase (ADA) depletion in dcSSc fibroblasts inhibited cell migration rates. Taken together, antifibrotic effects of MeCP2 were mediated, at least partly, through modulating PLAU, NID2 and ADA. ChIP-seq further showed that MeCP2 directly binds regulatory sequences in NID2 and PLAU gene loci. This study demonstrates a novel role for MeCP2 in skin fibrosis and identifies MeCP2-regulated genes associated with fibroblast migration, myofibroblast differentiation and extracellular matrix degradation, which can be potentially targeted for therapy in SSc. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Toxicity of hydrolyzed vicilins toward Callosobruchus maculatus and phytopathogenic fungi.

    PubMed

    Uchôa, Adriana Ferreira; de Miranda, Maria Raquel Alcântara; de Souza, Amanda Jardim; Gomes, Valdirene Moreira; Fernandes, Kátia Valevski Sales; Lemos, Francisco José Alves; Oliveira, Antonia Elenir Amancio; Xavier-Filho, José

    2009-09-09

    Studies have shown that vicilins (7S storage proteins) from seeds were able to bind to the surface of the Callosobruchus maculatus larval midgut and to the peritrophic matrices of the midguts of Diatraea saccharalis and Tenebrio molitor , inhibiting larval development. Vicilins were also shown to inhibit yeast growth and bind to yeast cells through the association with chitin-containing structures. The present work studies the association of peptides from vicilins of genotypes of Vigna unguiculata (susceptible and resistant to bruchid) with acetylated chitin and the toxicity of vicilin fragments and chitin-binding vicilin fragments to C. maculatus and phytopathogenic fungi. Hydrolysis of vicilins with alpha-chymotrypsin results in a complex mixture of fragments that were separated by chitin-affinity chromatography. Chitin-binding peptides from both genotypes were toxic to C. maculatus larvae, and alpha-chymotrypsin-hydrolyzed vicilins were deleterious to the above insect and to Fusarium oxysporum , Colletotrichum musae , and Saccharomyces cerevisiae fungi.

  16. Nonlinear Analyte Concentration Gradients for One-Step Kinetic Analysis Employing Optical Microring Resonators

    PubMed Central

    Marty, Michael T.; Kuhnline Sloan, Courtney D.; Bailey, Ryan C.; Sligar, Stephen G.

    2012-01-01

    Conventional methods to probe the binding kinetics of macromolecules at biosensor surfaces employ a stepwise titration of analyte concentrations and measure the association and dissociation to the immobilized ligand at each concentration level. It has previously been shown that kinetic rates can be measured in a single step by monitoring binding as the analyte concentration increases over time in a linear gradient. We report here the application of nonlinear analyte concentration gradients for determining kinetic rates and equilibrium binding affinities in a single experiment. A versatile nonlinear gradient maker is presented, which is easily applied to microfluidic systems. Simulations validate that accurate kinetic rates can be extracted for a wide range of association and dissociation rates, gradient slopes and curvatures, and with models for mass transport. The nonlinear analyte gradient method is demonstrated with a silicon photonic microring resonator platform to measure prostate specific antigen-antibody binding kinetics. PMID:22686186

  17. Nonlinear analyte concentration gradients for one-step kinetic analysis employing optical microring resonators.

    PubMed

    Marty, Michael T; Sloan, Courtney D Kuhnline; Bailey, Ryan C; Sligar, Stephen G

    2012-07-03

    Conventional methods to probe the binding kinetics of macromolecules at biosensor surfaces employ a stepwise titration of analyte concentrations and measure the association and dissociation to the immobilized ligand at each concentration level. It has previously been shown that kinetic rates can be measured in a single step by monitoring binding as the analyte concentration increases over time in a linear gradient. We report here the application of nonlinear analyte concentration gradients for determining kinetic rates and equilibrium binding affinities in a single experiment. A versatile nonlinear gradient maker is presented, which is easily applied to microfluidic systems. Simulations validate that accurate kinetic rates can be extracted for a wide range of association and dissociation rates, gradient slopes, and curvatures, and with models for mass transport. The nonlinear analyte gradient method is demonstrated with a silicon photonic microring resonator platform to measure prostate specific antigen-antibody binding kinetics.

  18. Activation mechanism of erythrocyte cathepsin E. evidence for the occurrence of the membrane-associated active enzyme.

    PubMed

    Ueno, E; Sakai, H; Kato, Y; Yamamoto, K

    1989-06-01

    Activation of the erythrocyte cathepsin E located on the cytoplasmic surface of the membrane in a latent form was studied in stripped inside-out membrane vesicles prepared from human erythrocyte membranes. Incubation of the vesicles at 40 degrees C at pH 4 resulted in increased degradation of the membrane proteins, especially band 3. This proteolysis was selectively inhibited by the inclusion of pepstatin (isovaleryl-Val-Val-statyl-Ala-statine) or H 297 [Pro-Thr-Glu-Phe(CH2-NH)Nle-Arg-Leu] in the incubation mixtures, indicating that cathepsin E, as the only aspartic proteinase in erythrocytes, is responsible for the proteolysis. Two potential active-site-directed inhibitors of aspartic proteinases, pepstatin and H 297, were used to prove the occurrence of the membrane-associated active enzyme. To minimize potential errors arising from non-specific binding, the concentrations of the inhibitors used in the binding assay (pepstatin, 5 x 10(-8) M; H 297, 1 x 10(-5) M) were determined by calibration for purified and membrane-associated cathepsin E. The inhibition of the membrane-associated cathepsin E by each inhibitor, which showed the binding of the inhibitor to the activated enzyme, was temperature- and time-dependent. The binding of each inhibitor to the enzyme on the exposed surface of the membrane at pH 4 was highly specific, saturable, and reversible. The present study thus provides the first evidence that cathepsin E tightly bound to the membrane is converted to the active enzyme in the membrane-associated form, and suggests that this enzyme may be responsible for the degradation of band 3.

  19. Phosphorylation of actin-binding protein (ABP-280; filamin) by tyrosine kinase p56lck modulates actin filament cross-linking.

    PubMed

    Pal Sharma, C; Goldmann, Wolfgang H

    2004-01-01

    Actin-binding protein (ABP-280; filamin) is a phosphoprotein present in the periphery of the cytoplasm where it can cross-link actin filaments, associate with lipid membranes, and bind to membrane surface receptors. Given its function and localization in the cell, we decided to investigate the possibility of whether it serves as substrate for p56lck, a lymphocyte-specific member of the src family of protein tyrosine kinases associated with cell surface glycoproteins. The interaction of p56lck with membrane glycoproteins is important for cell development and functional activation. Here, we show that purified p56lck interacts and catalyzes in vitro kinase reactions. Tyrosine phosphorylation by p56lck is restricted to a single peptide of labeled ABP-280 shown by protease digest. The addition of phorbol ester to cells results in the inhibition of phosphorylation of ABP-280 by p56lck. These results show a decrease in phosphorylation suggesting conformationally induced regulation. Dynamic light scattering confirmed increased actin filament cross-linking due to phosphorylation of ABP-280 by p56lck.

  20. X-ray crystal structure of plasmin with tranexamic acid-derived active site inhibitors.

    PubMed

    Law, Ruby H P; Wu, Guojie; Leung, Eleanor W W; Hidaka, Koushi; Quek, Adam J; Caradoc-Davies, Tom T; Jeevarajah, Devadharshini; Conroy, Paul J; Kirby, Nigel M; Norton, Raymond S; Tsuda, Yuko; Whisstock, James C

    2017-05-09

    The zymogen protease plasminogen and its active form plasmin perform key roles in blood clot dissolution, tissue remodeling, cell migration, and bacterial pathogenesis. Dysregulation of the plasminogen/plasmin system results in life-threatening hemorrhagic disorders or thrombotic vascular occlusion. Accordingly, inhibitors of this system are clinically important. Currently, tranexamic acid (TXA), a molecule that prevents plasminogen activation through blocking recruitment to target substrates, is the most widely used inhibitor for the plasminogen/plasmin system in therapeutics. However, TXA lacks efficacy on the active form of plasmin. Thus, there is a need to develop specific inhibitors that target the protease active site. Here we report the crystal structures of plasmin in complex with the novel YO ( trans -4-aminomethylcyclohexanecarbonyl-l-tyrosine- n -octylamide) class of small molecule inhibitors. We found that these inhibitors form key interactions with the S1 and S3' subsites of the catalytic cleft. Here, the TXA moiety of the YO compounds inserts into the primary (S1) specificity pocket, suggesting that TXA itself may function as a weak plasmin inhibitor, a hypothesis supported by subsequent biochemical and biophysical analyses. Mutational studies reveal that F587 of the S' subsite plays a key role in mediating the inhibitor interaction. Taken together, these data provide a foundation for the future development of small molecule inhibitors to specifically regulate plasmin function in a range of diseases and disorders.

Top