Sample records for surface-subsurface modeling framework

  1. Interpretation of Ground Temperature Anomalies in Hydrothermal Discharge Areas

    NASA Astrophysics Data System (ADS)

    Price, A. N.; Lindsey, C.; Fairley, J. P., Jr.

    2017-12-01

    Researchers have long noted the potential for shallow hydrothermal fluids to perturb near-surface temperatures. Several investigators have made qualitative or semi-quantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, little effort has been expended to develop a quantitative framework connecting surface temperature observations with conditions in the subsurface. Here, we examine an area of shallow subsurface flow at Burgdorf Hot Springs, in the Payette National Forest, north of McCall, Idaho USA. We present a simple analytical model that uses easily-measured surface data to infer the temperatures of laterally-migrating shallow hydrothermal fluids. The model is calibrated using shallow ground temperature measurements and overburden thickness estimates from seismic refraction studies. The model predicts conditions in the shallow subsurface, and suggests that the Biot number may place a more important control on the expression of near-surface thermal perturbations than previously thought. In addition, our model may have application in inferring difficult-to-measure parameters, such as shallow subsurface discharge from hydrothermal springs.

  2. Surface and subsurface geologic risk factors to ground water affecting brownfield redevelopment potential.

    PubMed

    Kaufman, Martin M; Murray, Kent S; Rogers, Daniel T

    2003-01-01

    A model is created for assessing the redevelopment potential of brownfields. The model is derived from a space and time conceptual framework that identifies and measures the surface and subsurface risk factors present at brownfield sites. The model then combines these factors with a contamination extent multiplier at each site to create an index of redevelopment potential. Results from the application of the model within an urbanized watershed demonstrate clear differences between the redevelopment potential present within five different near-surface geologic units, with those units containing clay being less vulnerable to subsurface contamination. With and without the extent multiplier, the total risk present at the brownfield sites within all the geologic units is also strongly correlated to the actual costs of remediation. Thus, computing the total surface and subsurface risk within a watershed can help guide the remediation efforts at broad geographic scales, and prioritize the locations for redevelopment.

  3. The Effect of Subsurface Parameterizations on Modeled Flows in the Catchment Land Surface Model, Fortuna 2.5

    NASA Astrophysics Data System (ADS)

    Roningen, J. M.; Eylander, J. B.

    2014-12-01

    Groundwater use and management is subject to economic, legal, technical, and informational constraints and incentives at a variety of spatial and temporal scales. Planned and de facto management practices influenced by tax structures, legal frameworks, and agricultural and trade policies that vary at the country scale may have medium- and long-term effects on the ability of a region to support current and projected agricultural and industrial development. USACE is working to explore and develop global-scale, physically-based frameworks to serve as a baseline for hydrologic policy comparisons and consequence assessment, and such frameworks must include a reasonable representation of groundwater systems. To this end, we demonstrate the effects of different subsurface parameterizations, scaling, and meteorological forcings on surface and subsurface components of the Catchment Land Surface Model Fortuna v2.5 (Koster et al. 2000). We use the Land Information System 7 (Kumar et al. 2006) to process model runs using meteorological components of the Air Force Weather Agency's AGRMET forcing data from 2006 through 2011. Seasonal patterns and trends are examined in areas of the Upper Nile basin, northern China, and the Mississippi Valley. We also discuss the relevance of the model's representation of the catchment deficit with respect to local hydrogeologic structures.

  4. Three-dimensional hydrogeologic framework model of the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico

    USGS Publications Warehouse

    Sweetkind, Donald S.

    2017-09-08

    As part of a U.S. Geological Survey study in cooperation with the Bureau of Reclamation, a digital three-dimensional hydrogeologic framework model was constructed for the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico. This model was constructed to define the aquifer system geometry and subsurface lithologic characteristics and distribution for use in a regional numerical hydrologic model. The model includes five hydrostratigraphic units: river channel alluvium, three informal subdivisions of Santa Fe Group basin fill, and an undivided pre-Santa Fe Group bedrock unit. Model input data were compiled from published cross sections, well data, structure contour maps, selected geophysical data, and contiguous compilations of surficial geology and structural features in the study area. These data were used to construct faulted surfaces that represent the upper and lower subsurface hydrostratigraphic unit boundaries. The digital three-dimensional hydrogeologic framework model is constructed through combining faults, the elevation of the tops of each hydrostratigraphic unit, and boundary lines depicting the subsurface extent of each hydrostratigraphic unit. The framework also compiles a digital representation of the distribution of sedimentary facies within each hydrostratigraphic unit. The digital three-dimensional hydrogeologic model reproduces with reasonable accuracy the previously published subsurface hydrogeologic conceptualization of the aquifer system and represents the large-scale geometry of the subsurface aquifers. The model is at a scale and resolution appropriate for use as the foundation for a numerical hydrologic model of the study area.

  5. Characterizing the subsurface geology in and around the U.S. Army Camp Stanley Storage Activity, south-central Texas

    USGS Publications Warehouse

    Blome, Charles D.; Clark, Allan K.

    2018-02-15

    Several U.S. Geological Survey projects, supported by the National Cooperative Geologic Mapping Program, have used multi-disciplinary approaches over a 14-year period to reveal the surface and subsurface geologic frameworks of the Edwards and Trinity aquifers of central Texas and the Arbuckle-Simpson aquifer of south-central Oklahoma. Some of the project achievements include advancements in hydrostratigraphic mapping, three-dimensional subsurface framework modeling, and airborne geophysical surveys as well as new methodologies that link geologic and groundwater flow models. One area where some of these milestones were achieved was in and around the U.S. Army Camp Stanley Storage Activity, located in north­western Bexar County, Texas, about 19 miles north­west of downtown San Antonio.

  6. Key subsurface data help to refine Trinity aquifer hydrostratigraphic units, south-central Texas

    USGS Publications Warehouse

    Blome, Charles D.; Clark, Allan K.

    2014-01-01

    The geologic framework and hydrologic characteristics of aquifers are important components for studying the nation’s subsurface heterogeneity and predicting its hydraulic budgets. Detailed study of an aquifer’s subsurface hydrostratigraphy is needed to understand both its geologic and hydrologic frameworks. Surface hydrostratigraphic mapping can also help characterize the spatial distribution and hydraulic connectivity of an aquifer’s permeable zones. Advances in three-dimensional (3-D) mapping and modeling have also enabled geoscientists to visualize the spatial relations between the saturated and unsaturated lithologies. This detailed study of two borehole cores, collected in 2001 on the Camp Stanley Storage Activity (CSSA) area, provided the foundation for revising a number of hydrostratigraphic units representing the middle zone of the Trinity aquifer. The CSSA area is a restricted military facility that encompasses approximately 4,000 acres and is located in Boerne, Texas, northwest of the city of San Antonio. Studying both the surface and subsurface geology of the CSSA area are integral parts of a U.S. Geological Survey project funded through the National Cooperative Geologic Mapping Program. This modification of hydrostratigraphic units is being applied to all subsurface data used to construct a proposed 3-D EarthVision model of the CSSA area and areas to the south and west.

  7. Improving National Water Modeling: An Intercomparison of two High-Resolution, Continental Scale Models, CONUS-ParFlow and the National Water Model

    NASA Astrophysics Data System (ADS)

    Tijerina, D.; Gochis, D.; Condon, L. E.; Maxwell, R. M.

    2017-12-01

    Development of integrated hydrology modeling systems that couple atmospheric, land surface, and subsurface flow is growing trend in hydrologic modeling. Using an integrated modeling framework, subsurface hydrologic processes, such as lateral flow and soil moisture redistribution, are represented in a single cohesive framework with surface processes like overland flow and evapotranspiration. There is a need for these more intricate models in comprehensive hydrologic forecasting and water management over large spatial areas, specifically the Continental US (CONUS). Currently, two high-resolution, coupled hydrologic modeling applications have been developed for this domain: CONUS-ParFlow built using the integrated hydrologic model ParFlow and the National Water Model that uses the NCAR Weather Research and Forecasting hydrological extension package (WRF-Hydro). Both ParFlow and WRF-Hydro include land surface models, overland flow, and take advantage of parallelization and high-performance computing (HPC) capabilities; however, they have different approaches to overland subsurface flow and groundwater-surface water interactions. Accurately representing large domains remains a challenge considering the difficult task of representing complex hydrologic processes, computational expense, and extensive data needs; both models have accomplished this, but have differences in approach and continue to be difficult to validate. A further exploration of effective methodology to accurately represent large-scale hydrology with integrated models is needed to advance this growing field. Here we compare the outputs of CONUS-ParFlow and the National Water Model to each other and with observations to study the performance of hyper-resolution models over large domains. Models were compared over a range of scales for major watersheds within the CONUS with a specific focus on the Mississippi, Ohio, and Colorado River basins. We use a novel set of approaches and analysis for this comparison to better understand differences in process and bias. This intercomparison is a step toward better understanding how much water we have and interactions between surface and subsurface. Our goal is to advance our understanding and simulation of the hydrologic system and ultimately improve hydrologic forecasts.

  8. Modeling of Near-Surface Leakage and Seepage of CO2 for Risk Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, Curtis M.; Unger, Andre A.J.

    2004-02-18

    The injection of carbon dioxide (CO2) into deep geologic carbon sequestration sites entails risk that CO2 will leak away from the primary storage formation and migrate upwards to the unsaturated zone from which it can seep out of the ground. We have developed a coupled modeling framework called T2CA for simulating CO2 leakage and seepage in the subsurface and in the atmospheric surface layer. The results of model simulations can be used to calculate the two key health, safety, and environmental (HSE) risk drivers, namely CO2 seepage flux and nearsurface CO2 concentrations. Sensitivity studies for a subsurface system with amore » thick unsaturated zone show limited leakage attenuation resulting in correspondingly large CO2 concentrations in the shallow subsurface. Large CO2 concentrations in the shallow subsurface present a risk to plant and tree roots, and to humans and other animals in subsurface structures such as basements or utility vaults. Whereas CO2 concentrations in the subsurface can be high, surfacelayer winds reduce CO2 concentrations to low levels for the fluxes investigated. We recommend more verification and case studies be carried out with T2CA, along with the development of extensions to handle additional scenarios such as calm conditions, topographic effects, and catastrophic surface-layer discharge events.« less

  9. Blueprint for a coupled model of sedimentology, hydrology, and hydrogeology in streambeds

    NASA Astrophysics Data System (ADS)

    Partington, Daniel; Therrien, Rene; Simmons, Craig T.; Brunner, Philip

    2017-06-01

    The streambed constitutes the physical interface between the surface and the subsurface of a stream. Across all spatial scales, the physical properties of the streambed control surface water-groundwater interactions. Continuous alteration of streambed properties such as topography or hydraulic conductivity occurs through erosion and sedimentation processes. Recent studies from the fields of ecology, hydrogeology, and sedimentology provide field evidence that sedimentological processes themselves can be heavily influenced by surface water-groundwater interactions, giving rise to complex feedback mechanisms between sedimentology, hydrology, and hydrogeology. More explicitly, surface water-groundwater exchanges play a significant role in the deposition of fine sediments, which in turn modify the hydraulic properties of the streambed. We explore these feedback mechanisms and critically review the extent of current interaction between the different disciplines. We identify opportunities to improve current modeling practices. For example, hydrogeological models treat the streambed as a static rather than a dynamic entity, while sedimentological models do not account for critical catchment processes such as surface water-groundwater exchange. We propose a blueprint for a new modeling framework that bridges the conceptual gaps between sedimentology, hydrogeology, and hydrology. Specifically, this blueprint (1) fully integrates surface-subsurface flows with erosion, transport, and deposition of sediments and (2) accounts for the dynamic changes in surface elevation and hydraulic conductivity of the streambed. Finally, we discuss the opportunities for new research within the coupled framework.

  10. An Isopycnal Box Model with predictive deep-ocean structure for biogeochemical cycling applications

    NASA Astrophysics Data System (ADS)

    Goodwin, Philip

    2012-07-01

    To simulate global ocean biogeochemical tracer budgets a model must accurately determine both the volume and surface origins of each water-mass. Water-mass volumes are dynamically linked to the ocean circulation in General Circulation Models, but at the cost of high computational load. In computationally efficient Box Models the water-mass volumes are simply prescribed and do not vary when the circulation transport rates or water mass densities are perturbed. A new computationally efficient Isopycnal Box Model is presented in which the sub-surface box volumes are internally calculated from the prescribed circulation using a diffusive conceptual model of the thermocline, in which upwelling of cold dense water is balanced by a downward diffusion of heat. The volumes of the sub-surface boxes are set so that the density stratification satisfies an assumed link between diapycnal diffusivity, κd, and buoyancy frequency, N: κd = c/(Nα), where c and α are user prescribed parameters. In contrast to conventional Box Models, the volumes of the sub-surface ocean boxes in the Isopycnal Box Model are dynamically linked to circulation, and automatically respond to circulation perturbations. This dynamical link allows an important facet of ocean biogeochemical cycling to be simulated in a highly computationally efficient model framework.

  11. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    USGS Publications Warehouse

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  12. Interpretation of Ground Temperature Anomalies in Hydrothermal Discharge Areas

    NASA Astrophysics Data System (ADS)

    Price, Adam N.; Lindsey, Cary R.; Fairley, Jerry P.

    2017-12-01

    Researchers have long noted the potential for shallow hydrothermal fluids to perturb near-surface temperatures. Several investigators have made qualitative or semiquantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, a quantitative framework connecting surface temperature observations with conditions in the subsurface is currently lacking. Here, we model an area of shallow subsurface flow at Burgdorf Hot Springs, a rustic commercial resort in the Payette National Forest, north of McCall, ID, USA. We calibrate the model using shallow (0.2 m depth) ground temperature measurements and overburden thickness estimates from seismic refraction studies. The calibrated model predicts negligible loss of heat energy from the laterally migrating fluids at the Burgdorf site, in spite of the fact that thermal anomalies are observed in the unconsolidated near-surface alluvium. Although elevated near-surface ground temperatures are commonly assumed to result from locally high heat flux, this conflicts with the small apparent heat loss during lateral flow inferred at the Burgdorf site. We hypothesize an alternative explanation for near-surface temperature anomalies that is only weakly dependent on heat flux, and more strongly controlled by the Biot number, a dimensionless parameter that compares the rate at which convection carries heat away from the land surface to the rate at which it is supplied by conduction to the interface.

  13. Mind the Gaps: Expert and Non-Expert Differences in Conceptualising the Geological Subsurface.

    NASA Astrophysics Data System (ADS)

    Gibson, H.; Stewart, I. S.; Stokes, A.; Pahl, S.

    2017-12-01

    In communicating geoscience topics, emphasis is often given to approaches such as the use of narrative to make a message engaging and reducing the use of jargon to ensure that it is understood by as wide a group of people as possible. Whilst these are undeniably important techniques to promote effective communication, an aspect of geoscience communication that is often overlooked is the publics' conceptual frameworks about core geoscience concepts. The consideration of different conceptual frameworks fits with the need to ensure that the framing is appropriate for the message, but it extends beyond simple framing into more complicated issues of addressing and incorporating pre- and mis-conceptions in geoscience. In a study examining expert and non-expert cognitive (mental) models of the geological subsurface in south-west England, several gaps were found between the fundamental ways that experts and non-experts conceptualise this invisible realm. Of these, three gaps were considered to be particularly important and common to many participants: the use of spatial reasoning; the application of surface experiences to subsurface processes; and the connection between the surface and subsurface. This paper will examine the evidence for these three important conceptual gaps between specialists and non-specialists and will address how this type of cognitive study can help improve effective geoscience communication.

  14. Rapid modification of urban land surface temperature during rainfall

    NASA Astrophysics Data System (ADS)

    Omidvar, H.; Bou-Zeid, E.; Song, J.; Yang, J.; Arwatz, G.; Wang, Z.; Hultmark, M.; Kaloush, K.

    2017-12-01

    We study the runoff dynamics and heat transfer over urban pavements during rainfall. A kinematic wave approach is combined with heat storage and transfer schemes to develop a model for impervious (with runoff) and pervious (without runoff) pavements. The resulting framework is a numerical prognostic model that can simulate the temperature fields in the subsurface and runoff layers to capture the rapid cooling of the surface, as well as the thermal pollution advected in the runoff. Extensive field measurements were then conducted over experimental pavements in Arizona to probe the physics and better represent the relevant processes in the model, and then to validate the model. The experimental data and the model results were in very good agreements, and their joint analysis elucidated the physics of the rapid heat transfer from the subsurface to the runoff layer. Finally, we apply the developed model to investigate how the various hydrological and thermal properties of the pavements, as well as ambient environmental conditions, modulate the surface and runoff thermal dynamics, what is the relative importance of each of them, and how we can apply the model mitigate the adverse impacts of urbanization.

  15. Subsurface geological modeling using GIS and remote sensing data: a case study from Platanos landslide, Western Greece

    NASA Astrophysics Data System (ADS)

    Kavoura, K.; Kordouli, M.; Nikolakopoulos, K.; Elias, P.; Sykioti, O.; Tsagaris, V.; Drakatos, G.; Rondoyanni, Th.; Tsiambaos, G.; Sabatakakis, N.; Anastasopoulos, V.

    2014-08-01

    Landslide phenomena constitute a major geological hazard in Greece and especially in the western part of the country as a result of anthropogenic activities, growing urbanization and uncontrolled land - use. More frequent triggering events and increased susceptibility of the ground surface to instabilities as consequence of climate change impacts (continued deforestation mainly due to the devastating forest wildfires and extreme meteorological events) have also increased the landslide risk. The studied landslide occurrence named "Platanos" has been selected within the framework of "Landslide Vulnerability Model - LAVMO" project that aims at creating a persistently updated electronic platform assessing risks related with landslides. It is a coastal area situated between Korinthos and Patras at the northwestern part of the elongated graben of the Corinth Gulf. The paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes were digitized and implemented in a GIS platform with engineering geological maps for a three - dimensional subsurface model evaluation. This model is provided for being combined with inclinometer measurements for sliding surface location through the instability zone.

  16. An Open Source Framework for Coupled Hydro-Hydrogeo-Chemical Systems in Catchment Research

    NASA Astrophysics Data System (ADS)

    Delfs, J.; Sachse, A.; Gayler, S.; Grathwohl, P.; He, W.; Jang, E.; Kalbacher, T.; Klein, C.; Kolditz, O.; Maier, U.; Priesack, E.; Rink, K.; Selle, B.; Shao, H.; Singh, A. K.; Streck, T.; Sun, Y.; Wang, W.; Walther, M.

    2013-12-01

    This poster presents an open-source framework designed to assist water scientists in the study of catchment hydraulic functions with associated chemical processes, e.g. contaminant degradation, plant nutrient turnover. The model successfully calculates the feedbacks between surface water, subsurface water and air in standard benchmarks. In specific model applications to heterogeneous catchments, subsurface water is driven by density variations and runs through double porous media. Software codes of water science are tightly coupled by iteration, namely the Storm Water Management Model (SWMM) for urban runoff, Expert-N for simulating water fluxes and nutrient turnover in agricultural and forested soils, and OpenGeoSys (OGS) for groundwater. The coupled model calculates flow of hydrostatic shallow water over the land surface with finite volume and difference methods. The flow equations for water in the porous subsurface are discretized in space with finite elements. Chemical components are transferred through 1D, 2D or 3D watershed representations with advection-dispersion solvers or, as an alternative, random walk particle tracking. A transport solver can be in sequence with a chemical solver, e.g. PHREEQ-C, BRNS, additionally. Besides coupled partial differential equations, the concept of hydrological response units is employed in simulations at regional scale with scarce data availability. In this case, a conceptual hydrological model, specifically the Jena Adaptable Modeling System (JAMS), passes groundwater recharge through a software interface into OGS, which solves the partial differential equations of groundwater flow. Most components of the modeling framework are open source and can be modified for individual purposes. Applications range from temperate climate regions in Germany (Ammer catchment and Hessian Ried) to arid regions in the Middle East (Oman and Dead See). Some of the presented examples originate from intensively monitored research sites of the WESS research centre and the monitoring initiative TERENO. Other examples originate from the IWAS project on integrated water resources management. The model applications are primarily concerned with groundwater resources, which are endangered by overexploitation, intrusion of saltwater, and nitrate loads.

  17. Modeling spray drift and runoff-related inputs of pesticides to receiving water.

    PubMed

    Zhang, Xuyang; Luo, Yuzhou; Goh, Kean S

    2018-03-01

    Pesticides move to surface water via various pathways including surface runoff, spray drift and subsurface flow. Little is known about the relative contributions of surface runoff and spray drift in agricultural watersheds. This study develops a modeling framework to address the contribution of spray drift to the total loadings of pesticides in receiving water bodies. The modeling framework consists of a GIS module for identifying drift potential, the AgDRIFT model for simulating spray drift, and the Soil and Water Assessment Tool (SWAT) for simulating various hydrological and landscape processes including surface runoff and transport of pesticides. The modeling framework was applied on the Orestimba Creek Watershed, California. Monitoring data collected from daily samples were used for model evaluation. Pesticide mass deposition on the Orestimba Creek ranged from 0.08 to 6.09% of applied mass. Monitoring data suggests that surface runoff was the major pathway for pesticide entering water bodies, accounting for 76% of the annual loading; the rest 24% from spray drift. The results from the modeling framework showed 81 and 19%, respectively, for runoff and spray drift. Spray drift contributed over half of the mass loading during summer months. The slightly lower spray drift contribution as predicted by the modeling framework was mainly due to SWAT's under-prediction of pesticide mass loading during summer and over-prediction of the loading during winter. Although model simulations were associated with various sources of uncertainties, the overall performance of the modeling framework was satisfactory as evaluated by multiple statistics: for simulation of daily flow, the Nash-Sutcliffe Efficiency Coefficient (NSE) ranged from 0.61 to 0.74 and the percent bias (PBIAS) < 28%; for daily pesticide loading, NSE = 0.18 and PBIAS = -1.6%. This modeling framework will be useful for assessing the relative exposure from pesticides related to spray drift and runoff in receiving waters and the design of management practices for mitigating pesticide exposure within a watershed. Published by Elsevier Ltd.

  18. Your View or Mine: Spatially Quantifying CO2 Storage Risk from Various Stakeholder Perspectives

    NASA Astrophysics Data System (ADS)

    Bielicki, J. M.; Pollak, M.; Wilson, E.; Elliot, T. R.; Guo, B.; Nogues, J. P.; Peters, C. A.

    2011-12-01

    CO2 capture and storage involves injecting captured CO2 into geologic formations, such as deep saline aquifers. This injected CO2 is to be "stored" within the rock matrix for hundreds to thousands of years, but injected CO2, or the brine it displaces, may leak from the target reservoir. Such leakage could interfere with other subsurface activities-water production, energy production, energy storage, and waste disposal-or migrate to the surface. Each of these interferences will incur multiple costs to a variety of stakeholders. Even if injected or displaced fluids do not interfere with other subsurface activities or make their way to the surface, costs will be incurred to find and fix the leak. Consequently, the suitability of a site for CO2 storage must therefore include an assessment of the risk of leakage and interference with various other activities within a three-dimensional proximity of where CO2 is being injected. We present a spatial analysis of leakage and interference risk associated with injecting CO2 into a portion of the Mount Simon sandstone in the Michigan Basin. Risk is the probability of an outcome multiplied by the impact of that outcome (Ro=po*Io). An outcome is the result of the leakage (e.g., interference with oil production), and the impact is the cost associated with the outcome. Each outcome has costs that will vary by stakeholder. Our analysis presents CO2 storage risk for multiple outcomes in a spatially explicit manner that varies by stakeholder. We use the ELSA semi-analytical model for estimating CO2 and brine leakage from aquifers to determine plume and pressure front radii, and CO2 and brine leakage probabilities for the Mount Simon sandstone and multiple units above it. Results of ELSA simulations are incorporated into RISCS: the Risk Interference Subsurface CO2 Storage model. RISCS uses three-dimensional data on subsurface geology and the locations of wells and boreholes to spatially estimate risks associated with CO2 leakage from injection reservoirs. Where plumes probabilistically intersect subsurface activities, reach groundwater, or reach the surface, RISCS uses cost estimates from the Leakage Impact Valuation framework to estimate CO2 storage leakage and interference risk in monetary terms. This framework estimates costs that might be incurred if CO2 leaks from an injection reservoir. Such leakage could beget a variety of costs, depending on the nature and extent of the impacts. The framework identifies multiple costs under headings of: (a) finding and fixing the leak, (b) business disruption, and (c) cleaning up and paying for damages. The framework also enumerates the distribution of costs between ten different stakeholders, and allocates these costs along four leakage scenarios: 1) No interference, 2) interference with a subsurface activity, 3) interference with groundwater, and 4) migration to the surface. Our methodology facilitates research along two lines. First, it allows a probabilistic assessment of leakage costs to an injection operator, and thus what the effect of leakage might be on CCS market effectiveness. Second, it allows a broader inquiry about injection site prioritization from the point of view of various stakeholders.

  19. Simulating CO2 Leakage and Seepage From Geologic Carbon Sequestration Sites: Implications for Near-Surface Monitoring

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Lewicki, J. L.; Zhang, Y.

    2003-12-01

    The injection of CO2 into deep geologic formations for the purpose of carbon sequestration entails risk that CO2 will leak upward from the target formation and ultimately seep out of the ground surface. We have developed a coupled subsurface and atmospheric surface layer modeling capability based on TOUGH2 to simulate CO2 leakage and seepage. Simulation results for representative subsurface and surface layer conditions are used to specify the requirements of potential near-surface monitoring strategies relevant to both health, safety, and environmental risk assessment as well as sequestration verification. The coupled model makes use of the standard multicomponent and multiphase framework of TOUGH2 and extends the model domain to include an atmospheric surface layer. In the atmospheric surface layer, we assume a logarithmic velocity profile for the time-averaged wind and make use of Pasquill-Gifford and Smagorinski dispersion coefficients to model surface layer dispersion. Results for the unsaturated zone and surface layer show that the vadose zone pore space can become filled with pure CO2 even for small leakage fluxes, but that CO2 concentrations above the ground surface are very low due to the strong effects of dispersion caused by surface winds. Ecological processes such as plant photosynthesis and root respiration, as well as biodegradation in soils, strongly affect near-surface CO2 concentrations and fluxes. The challenge for geologic carbon sequestration verification is to discern the leakage and seepage signal from the ecological signal. Our simulations point to the importance of subsurface monitoring and the need for geochemical (e.g., isotopic) analyses to distinguish leaking injected fossil CO2 from natural ecological CO2. This work was supported by the Office of Science, U.S. Department of Energy under contract No. DE-AC03-76SF00098.

  20. Critical Watersheds: Climate Change, Tipping Points, and Energy-Water Impacts

    NASA Astrophysics Data System (ADS)

    Middleton, R. S.; Brown, M.; Coon, E.; Linn, R.; McDowell, N. G.; Painter, S. L.; Xu, C.

    2014-12-01

    Climate change, extreme climate events, and climate-induced disturbances will have a substantial and detrimental impact on terrestrial ecosystems. How ecosystems respond to these impacts will, in turn, have a significant effect on the quantity, quality, and timing of water supply for energy security, agriculture, industry, and municipal use. As a community, we lack sufficient quantitative and mechanistic understanding of the complex interplay between climate extremes (e.g., drought, floods), ecosystem dynamics (e.g., vegetation succession), and disruptive events (e.g., wildfire) to assess ecosystem vulnerabilities and to design mitigation strategies that minimize or prevent catastrophic ecosystem impacts. Through a combination of experimental and observational science and modeling, we are developing a unique multi-physics ecohydrologic framework for understanding and quantifying feedbacks between novel climate and extremes, surface and subsurface hydrology, ecosystem dynamics, and disruptive events in critical watersheds. The simulation capability integrates and advances coupled surface-subsurface hydrology from the Advanced Terrestrial Simulator (ATS), dynamic vegetation succession from the Ecosystem Demography (ED) model, and QUICFIRE, a novel wildfire behavior model developed from the FIRETEC platform. These advances are expected to make extensive contributions to the literature and to earth system modeling. The framework is designed to predict, quantify, and mitigate the impacts of climate change on vulnerable watersheds, with a focus on the US Mountain West and the energy-water nexus. This emerging capability is used to identify tipping points in watershed ecosystems, quantify impacts on downstream users, and formally evaluate mitigation efforts including forest (e.g., thinning, prescribed burns) and watershed (e.g., slope stabilization). The framework is being trained, validated, and demonstrated using field observations and remote data collections in the Valles Caldera National Preserve, including pre- and post-wildfire and infestation observations. Ultimately, the framework will be applied to the upper Colorado River basin. Here, we present an overview of the framework development strategy and latest field and modeling results.

  1. Quantifying structural uncertainty on fault networks using a marked point process within a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Aydin, Orhun; Caers, Jef Karel

    2017-08-01

    Faults are one of the building-blocks for subsurface modeling studies. Incomplete observations of subsurface fault networks lead to uncertainty pertaining to location, geometry and existence of faults. In practice, gaps in incomplete fault network observations are filled based on tectonic knowledge and interpreter's intuition pertaining to fault relationships. Modeling fault network uncertainty with realistic models that represent tectonic knowledge is still a challenge. Although methods that address specific sources of fault network uncertainty and complexities of fault modeling exists, a unifying framework is still lacking. In this paper, we propose a rigorous approach to quantify fault network uncertainty. Fault pattern and intensity information are expressed by means of a marked point process, marked Strauss point process. Fault network information is constrained to fault surface observations (complete or partial) within a Bayesian framework. A structural prior model is defined to quantitatively express fault patterns, geometries and relationships within the Bayesian framework. Structural relationships between faults, in particular fault abutting relations, are represented with a level-set based approach. A Markov Chain Monte Carlo sampler is used to sample posterior fault network realizations that reflect tectonic knowledge and honor fault observations. We apply the methodology to a field study from Nankai Trough & Kumano Basin. The target for uncertainty quantification is a deep site with attenuated seismic data with only partially visible faults and many faults missing from the survey or interpretation. A structural prior model is built from shallow analog sites that are believed to have undergone similar tectonics compared to the site of study. Fault network uncertainty for the field is quantified with fault network realizations that are conditioned to structural rules, tectonic information and partially observed fault surfaces. We show the proposed methodology generates realistic fault network models conditioned to data and a conceptual model of the underlying tectonics.

  2. Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data

    USGS Publications Warehouse

    Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.

    2012-01-01

    Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (HgT, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream HgT. We found that shallow subsurface flow is a potentially important transport mechanism of particulate HgT during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate HgT in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved HgT concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-HgT complexes from surface soils can also occur during this period, DOC-complexed HgT becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily HgT loadings, but shallow subsurface flow is important for HgT loads during high-flow events. Results suggest limited seasonal trends in HgT dynamics.

  3. Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data

    USGS Publications Warehouse

    Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.

    2012-01-01

    Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (Hg T, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream Hg T. We found that shallow subsurface flow is a potentially important transport mechanism of particulate Hg T during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate Hg T in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved Hg T concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-Hg T complexes from surface soils can also occur during this period, DOC-complexed Hg T becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily Hg T loadings, but shallow subsurface flow is important for Hg T loads during high-flow events. Results suggest limited seasonal trends in Hg T dynamics. Copyright 2012 by the American Geophysical Union.

  4. Quantifying Subsurface Water and Heat Distribution and its Linkage with Landscape Properties in Terrestrial Environment using Hydro-Thermal-Geophysical Monitoring and Coupled Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Tran, A. P.; Wainwright, H. M.; Hubbard, S. S.; Peterson, J.; Ulrich, C.; Williams, K. H.

    2015-12-01

    Quantifying water and heat fluxes in the subsurface is crucial for managing water resources and for understanding the terrestrial ecosystem where hydrological properties drive a variety of biogeochemical processes across a large range of spatial and temporal scales. Here, we present the development of an advanced monitoring strategy where hydro-thermal-geophysical datasets are continuously acquired and further involved in a novel inverse modeling framework to estimate the hydraulic and thermal parameter that control heat and water dynamics in the subsurface and further influence surface processes such as evapotranspiration and vegetation growth. The measured and estimated soil properties are also used to investigate co-interaction between subsurface and surface dynamics by using above-ground aerial imaging. The value of this approach is demonstrated at two different sites, one in the polygonal shaped Arctic tundra where water and heat dynamics have a strong impact on freeze-thaw processes, vegetation and biogeochemical processes, and one in a floodplain along the Colorado River where hydrological fluxes between compartments of the system (surface, vadose zone and groundwater) drive biogeochemical transformations. Results show that the developed strategy using geophysical, point-scale and aerial measurements is successful to delineate the spatial distribution of hydrostratigraphic units having distinct physicochemical properties, to monitor and quantify in high resolution water and heat distribution and its linkage with vegetation, geomorphology and weather conditions, and to estimate hydraulic and thermal parameters for enhanced predictions of water and heat fluxes as well as evapotranspiration. Further, in the Colorado floodplain, results document the potential presence of only periodic infiltration pulses as a key hot moment controlling soil hydro and biogeochemical functioning. In the arctic, results show the strong linkage between soil water content, thermal parameters, thaw layer thickness and vegetation distribution. Overall, results of these efforts demonstrate the value of coupling various datasets at high spatial and temporal resolution to improve predictive understanding of subsurface and surface dynamics.

  5. Land-Atmosphere Coupling in the Multi-Scale Modelling Framework

    NASA Astrophysics Data System (ADS)

    Kraus, P. M.; Denning, S.

    2015-12-01

    The Multi-Scale Modeling Framework (MMF), in which cloud-resolving models (CRMs) are embedded within general circulation model (GCM) gridcells to serve as the model's cloud parameterization, has offered a number of benefits to GCM simulations. The coupling of these cloud-resolving models directly to land surface model instances, rather than passing averaged atmospheric variables to a single instance of a land surface model, the logical next step in model development, has recently been accomplished. This new configuration offers conspicuous improvements to estimates of precipitation and canopy through-fall, but overall the model exhibits warm surface temperature biases and low productivity.This work presents modifications to a land-surface model that take advantage of the new multi-scale modeling framework, and accommodate the change in spatial scale from a typical GCM range of ~200 km to the CRM grid-scale of 4 km.A parameterization is introduced to apportion modeled surface radiation into direct-beam and diffuse components. The diffuse component is then distributed among the land-surface model instances within each GCM cell domain. This substantially reduces the number excessively low light values provided to the land-surface model when cloudy conditions are modeled in the CRM, associated with its 1-D radiation scheme. The small spatial scale of the CRM, ~4 km, as compared with the typical ~200 km GCM scale, provides much more realistic estimates of precipitation intensity, this permits the elimination of a model parameterization of canopy through-fall. However, runoff at such scales can no longer be considered as an immediate flow to the ocean. Allowing sub-surface water flow between land-surface instances within the GCM domain affords better realism and also reduces temperature and productivity biases.The MMF affords a number of opportunities to land-surface modelers, providing both the advantages of direct simulation at the 4 km scale and a much reduced conceptual gap between model resolution and parameterized processes.

  6. `Dhara': An Open Framework for Critical Zone Modeling

    NASA Astrophysics Data System (ADS)

    Le, P. V.; Kumar, P.

    2016-12-01

    Processes in the Critical Zone, which sustain terrestrial life, are tightly coupled across hydrological, physical, biological, chemical, pedological, geomorphological and ecological domains over both short and long timescales. Observations and quantification of the Earth's surface across these domains using emerging high resolution measurement technologies such as light detection and ranging (lidar) and hyperspectral remote sensing are enabling us to characterize fine scale landscape attributes over large spatial areas. This presents a unique opportunity to develop novel approaches to model the Critical Zone that can capture fine scale intricate dependencies across the different processes in 3D. The development of interdisciplinary tools that transcend individual disciplines and capture new levels of complexity and emergent properties is at the core of Critical Zone science. Here we introduce an open framework for high-performance computing model (`Dhara') for modeling complex processes in the Critical Zone. The framework is designed to be modular in structure with the aim to create uniform and efficient tools to facilitate and leverage process modeling. It also provides flexibility to maintain, collaborate, and co-develop additional components by the scientific community. We show the essential framework that simulates ecohydrologic dynamics, and surface - sub-surface coupling in 3D using hybrid parallel CPU-GPU. We demonstrate that the open framework in Dhara is feasible for detailed, multi-processes, and large-scale modeling of the Critical Zone, which opens up exciting possibilities. We will also present outcomes from a Modeling Summer Institute led by Intensively Managed Critical Zone Observatory (IMLCZO) with representation from several CZOs and international representatives.

  7. Integrated surface/subsurface permafrost thermal hydrology: Model formulation and proof-of-concept simulations

    DOE PAGES

    Painter, Scott L.; Coon, Ethan T.; Atchley, Adam L.; ...

    2016-08-11

    The need to understand potential climate impacts and feedbacks in Arctic regions has prompted recent interest in modeling of permafrost dynamics in a warming climate. A new fine-scale integrated surface/subsurface thermal hydrology modeling capability is described and demonstrated in proof-of-concept simulations. The new modeling capability combines a surface energy balance model with recently developed three-dimensional subsurface thermal hydrology models and new models for nonisothermal surface water flows and snow distribution in the microtopography. Surface water flows are modeled using the diffusion wave equation extended to include energy transport and phase change of ponded water. Variation of snow depth in themore » microtopography, physically the result of wind scour, is also modeled heuristically with a diffusion wave equation. The multiple surface and subsurface processes are implemented by leveraging highly parallel community software. Fully integrated thermal hydrology simulations on the tilted open book catchment, an important test case for integrated surface/subsurface flow modeling, are presented. Fine-scale 100-year projections of the integrated permafrost thermal hydrological system on an ice wedge polygon at Barrow Alaska in a warming climate are also presented. Finally, these simulations demonstrate the feasibility of microtopography-resolving, process-rich simulations as a tool to help understand possible future evolution of the carbon-rich Arctic tundra in a warming climate.« less

  8. Integration of the subsurface and the surface sectors for a more holistic approach for sustainable redevelopment of urban brownfields.

    PubMed

    Norrman, Jenny; Volchko, Yevheniya; Hooimeijer, Fransje; Maring, Linda; Kain, Jaan-Henrik; Bardos, Paul; Broekx, Steven; Beames, Alistair; Rosén, Lars

    2016-09-01

    This paper presents a holistic approach to sustainable urban brownfield redevelopment where specific focus is put on the integration of a multitude of subsurface qualities in the early phases of the urban redevelopment process, i.e. in the initiative and plan phases. Achieving sustainability in brownfield redevelopment projects may be constrained by a failure of engagement between two key expert constituencies: urban planners/designers and subsurface engineers, leading to missed opportunities and unintended outcomes in the plan realisation phase. A more integrated approach delivers greater benefits. Three case studies in the Netherlands, Belgium and Sweden were used to test different sustainability assessment instruments in terms of the possibility for knowledge exchange between the subsurface and the surface sectors and in terms of cooperative learning among experts and stakeholders. Based on the lessons learned from the case studies, a generic decision process framework is suggested that supports holistic decision making. The suggested framework focuses on stakeholder involvement, communication, knowledge exchange and learning and provides an inventory of instruments that can support these processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. iTOUGH2: A multiphysics simulation-optimization framework for analyzing subsurface systems

    NASA Astrophysics Data System (ADS)

    Finsterle, S.; Commer, M.; Edmiston, J. K.; Jung, Y.; Kowalsky, M. B.; Pau, G. S. H.; Wainwright, H. M.; Zhang, Y.

    2017-11-01

    iTOUGH2 is a simulation-optimization framework for the TOUGH suite of nonisothermal multiphase flow models and related simulators of geophysical, geochemical, and geomechanical processes. After appropriate parameterization of subsurface structures and their properties, iTOUGH2 runs simulations for multiple parameter sets and analyzes the resulting output for parameter estimation through automatic model calibration, local and global sensitivity analyses, data-worth analyses, and uncertainty propagation analyses. Development of iTOUGH2 is driven by scientific challenges and user needs, with new capabilities continually added to both the forward simulator and the optimization framework. This review article provides a summary description of methods and features implemented in iTOUGH2, and discusses the usefulness and limitations of an integrated simulation-optimization workflow in support of the characterization and analysis of complex multiphysics subsurface systems.

  10. A Cloud Based Framework For Monitoring And Predicting Subsurface System Behaviour

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Rodzianko, A.; Johnson, D. V.; Soltanian, M. R.; Dwivedi, D.; Dafflon, B.; Tran, A. P.; Versteeg, O. J.

    2015-12-01

    Subsurface system behavior is driven and controlled by the interplay of physical, chemical, and biological processes which occur at multiple temporal and spatial scales. Capabilities to monitor, understand and predict this behavior in an effective and timely manner are needed for both scientific purposes and for effective subsurface system management. Such capabilities require three elements: Models, Data and an enabling cyberinfrastructure, which allow users to use these models and data in an effective manner. Under a DOE Office of Science funded STTR award Subsurface Insights and LBNL have designed and implemented a cloud based predictive assimilation framework (PAF) which automatically ingests, controls quality and stores heterogeneous physical and chemical subsurface data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of subsurface systems. PAF is implemented as a modular cloud based software application with five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result delivery and (5) orchestration. Serverside PAF uses ZF2 (a PHP web application framework) and Python and both open source (ODM2) and in house developed data models. Clientside PAF uses CSS and JS to allow for interactive data visualization and analysis. Client side modularity (which allows for a responsive interface) of the system is achieved by implementing each core capability of PAF (such as data visualization, user configuration and control, electrical geophysical monitoring and email/SMS alerts on data streams) as a SPA (Single Page Application). One of the recent enhancements is the full integration of a number of flow and mass transport and parameter estimation codes (e.g., MODFLOW, MT3DMS, PHT3D, TOUGH, PFLOTRAN) in this framework. This integration allows for autonomous and user controlled modeling of hydrological and geochemical processes. In our presentation we will discuss our software architecture and present the results of using these codes and the overall developed performance of our framework using hydrological, geochemical and geophysical data from the LBNL SFA2 Rifle field site.

  11. Simulating hydrologic and hydraulic processes throughout the Amazon River Basin

    USGS Publications Warehouse

    Beighley, R.E.; Eggert, K.G.; Dunne, T.; He, Y.; Gummadi, V.; Verdin, K.L.

    2009-01-01

    Presented here is a model framework based on a land surface topography that can be represented with various degrees of resolution and capable of providing representative channel/floodplain hydraulic characteristics on a daily to hourly scale. The framework integrates two models: (1) a water balance model (WBM) for the vertical fluxes and stores of water in and through the canopy and soil layers based on the conservation of mass and energy, and (2) a routing model for the horizontal routing of surface and subsurface runoff and channel and floodplain waters based on kinematic and diffusion wave methodologies. The WBM is driven by satellite-derived precipitation (TRMM_3B42) and air temperature (MOD08_M3). The model's use of an irregular computational grid is intended to facilitate parallel processing for applications to continental and global scales. Results are presented for the Amazon Basin over the period Jan 2001 through Dec 2005. The model is shown to capture annual runoff totals, annual peaks, seasonal patterns, and daily fluctuations over a range of spatial scales (>1, 000 to < 4·7M km2). For the period of study, results suggest basin-wide total water storage changes in the Amazon vary by approximately + /− 5 to 10 cm, and the fractional components accounting for these changes are: root zone soil moisture (20%), subsurface water being routed laterally to channels (40%) and channel/floodplain discharge (40%). Annual variability in monthly water storage changes by + /− 2·5 cm is likely due to 0·5 to 1 month variability in the arrival of significant rainfall periods throughout the basin.

  12. Catchment Tomography - Joint Estimation of Surface Roughness and Hydraulic Conductivity with the EnKF

    NASA Astrophysics Data System (ADS)

    Baatz, D.; Kurtz, W.; Hendricks Franssen, H. J.; Vereecken, H.; Kollet, S. J.

    2017-12-01

    Parameter estimation for physically based, distributed hydrological models becomes increasingly challenging with increasing model complexity. The number of parameters is usually large and the number of observations relatively small, which results in large uncertainties. A moving transmitter - receiver concept to estimate spatially distributed hydrological parameters is presented by catchment tomography. In this concept, precipitation, highly variable in time and space, serves as a moving transmitter. As response to precipitation, runoff and stream discharge are generated along different paths and time scales, depending on surface and subsurface flow properties. Stream water levels are thus an integrated signal of upstream parameters, measured by stream gauges which serve as the receivers. These stream water level observations are assimilated into a distributed hydrological model, which is forced with high resolution, radar based precipitation estimates. Applying a joint state-parameter update with the Ensemble Kalman Filter, the spatially distributed Manning's roughness coefficient and saturated hydraulic conductivity are estimated jointly. The sequential data assimilation continuously integrates new information into the parameter estimation problem, especially during precipitation events. Every precipitation event constrains the possible parameter space. In the approach, forward simulations are performed with ParFlow, a variable saturated subsurface and overland flow model. ParFlow is coupled to the Parallel Data Assimilation Framework for the data assimilation and the joint state-parameter update. In synthetic, 3-dimensional experiments including surface and subsurface flow, hydraulic conductivity and the Manning's coefficient are efficiently estimated with the catchment tomography approach. A joint update of the Manning's coefficient and hydraulic conductivity tends to improve the parameter estimation compared to a single parameter update, especially in cases of biased initial parameter ensembles. The computational experiments additionally show to which degree of spatial heterogeneity and to which degree of uncertainty of subsurface flow parameters the Manning's coefficient and hydraulic conductivity can be estimated efficiently.

  13. Robust Representation of Integrated Surface-subsurface Hydrology at Watershed Scales

    NASA Astrophysics Data System (ADS)

    Painter, S. L.; Tang, G.; Collier, N.; Jan, A.; Karra, S.

    2015-12-01

    A representation of integrated surface-subsurface hydrology is the central component to process-rich watershed models that are emerging as alternatives to traditional reduced complexity models. These physically based systems are important for assessing potential impacts of climate change and human activities on groundwater-dependent ecosystems and water supply and quality. Integrated surface-subsurface models typically couple three-dimensional solutions for variably saturated flow in the subsurface with the kinematic- or diffusion-wave equation for surface flows. The computational scheme for coupling the surface and subsurface systems is key to the robustness, computational performance, and ease-of-implementation of the integrated system. A new, robust approach for coupling the subsurface and surface systems is developed from the assumption that the vertical gradient in head is negligible at the surface. This tight-coupling assumption allows the surface flow system to be incorporated directly into the subsurface system; effects of surface flow and surface water accumulation are represented as modifications to the subsurface flow and accumulation terms but are not triggered until the subsurface pressure reaches a threshold value corresponding to the appearance of water on the surface. The new approach has been implemented in the highly parallel PFLOTRAN (www.pflotran.org) code. Several synthetic examples and three-dimensional examples from the Walker Branch Watershed in Oak Ridge TN demonstrate the utility and robustness of the new approach using unstructured computational meshes. Representation of solute transport in the new approach is also discussed. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes.

  14. Modeling Phosphorus Losses through Surface Runoff and Subsurface Drainage Using ICECREAM.

    PubMed

    Qi, Hongkai; Qi, Zhiming; Zhang, T Q; Tan, C S; Sadhukhan, Debasis

    2018-03-01

    Modeling soil phosphorus (P) losses by surface and subsurface flow pathways is essential in developing successful strategies for P pollution control. We used the ICECREAM model to simultaneously simulate P losses in surface and subsurface flow, as well as to assess effectiveness of field practices in reducing P losses. Monitoring data from a mineral-P-fertilized clay loam field in southwestern Ontario, Canada, were used for calibration and validation. After careful adjustment of model parameters, ICECREAM was shown to satisfactorily simulate all major processes of surface and subsurface P losses. When the calibrated model was used to assess tillage and fertilizer management scenarios, results point to a 10% reduction in total P losses by shifting autumn tillage to spring, and a 25.4% reduction in total P losses by injecting fertilizer rather than broadcasting. Although the ICECREAM model was effective in simulating surface and subsurface P losses when thoroughly calibrated, further testing is needed to confirm these results with manure P application. As illustrated here, successful use of simulation models requires careful verification of model routines and comprehensive calibration to ensure that site-specific processes are accurately represented. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Understanding the Impacts of Climate Change and Land Use Dynamics Using a Fully Coupled Hydrologic Feedback Model between Surface and Subsurface Systems

    NASA Astrophysics Data System (ADS)

    Park, C.; Lee, J.; Koo, M.

    2011-12-01

    Climate is the most critical driving force of the hydrologic system of the Earth. Since the industrial revolution, the impacts of anthropogenic activities to the Earth environment have been expanded and accelerated. Especially, the global emission of carbon dioxide into the atmosphere is known to have significantly increased temperature and affected the hydrologic system. Many hydrologists have contributed to the studies regarding the climate change on the hydrologic system since the Intergovernmental Panel on Climate Change (IPCC) was created in 1988. Among many components in the hydrologic system groundwater and its response to the climate change and anthropogenic activities are not fully understood due to the complexity of subsurface conditions between the surface and the groundwater table. A new spatio-temporal hydrologic model has been developed to estimate the impacts of climate change and land use dynamics on the groundwater. The model consists of two sub-models: a surface model and a subsurface model. The surface model involves three surface processes: interception, runoff, and evapotranspiration, and the subsurface model does also three subsurface processes: soil moisture balance, recharge, and groundwater flow. The surface model requires various input data including land use, soil types, vegetation types, topographical elevations, and meteorological data. The surface model simulates daily hydrological processes for rainfall interception, surface runoff varied by land use change and crop growth, and evapotranspiration controlled by soil moisture balance. The daily soil moisture balance is a key element to link two sub-models as it calculates infiltration and groundwater recharge by considering a time delay routing through a vadose zone down to the groundwater table. MODFLOW is adopted to simulate groundwater flow and interaction with surface water components as well. The model is technically flexible to add new model or modify existing model as it is developed with an object-oriented language - Python. The model also can easily be localized by simple modification of soil and crop properties. The actual application of the model after calibration was successful and results showed reliable water balance and interaction between the surface and subsurface hydrologic systems.

  16. Evolution of 3-D geologic framework modeling and its application to groundwater flow studies

    USGS Publications Warehouse

    Blome, Charles D.; Smith, David V.

    2012-01-01

    In this Fact Sheet, the authors discuss the evolution of project 3-D subsurface framework modeling, research in hydrostratigraphy and airborne geophysics, and methodologies used to link geologic and groundwater flow models.

  17. Statistics of chemical gradients in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Le Borgne, T.; Huck, P. D.; Dentz, M.; Villermaux, E.

    2017-12-01

    As they create chemical disequilibrium and drive mixing fluxes, spatial gradients in solute concentrations exert a strong control on mixing and biogeochemical reactions in the subsurface. Large concentration gradients may develop in particular at interfaces between surface water and groundwater bodies, such as hyporheic zones, sea water - surface water interfaces or recharge areas. They also develop around contaminant plumes and fluids injected in subsurface operations. While macrodispersion theories predict smooth gradients, decaying in time due to dispersive dissipation, we show that concentration gradients are sustained by flow heterogeneity and have broadly distributed values. We present a general theory predicting the statistics of concentration gradients from the flow heterogeneity (Le Borgne et al., 2017). Analytical predictions are validated from high resolution simulations of transport in heterogeneous Darcy fields ranging from low to high permeability variances and low to high Peclet numbers. This modelling framework hence opens new perspectives for quantifying the dynamics of chemical gradients and the kinetics of associated biogeochemical reactions in heterogeneous subsurface environments.Reference:Le Borgne T., P.D. Huck, M. Dentz and E. Villermaux (2017) Scalar gradients in stirred mixtures and the deconstruction of random fields, J. of Fluid Mech. vol. 812, pp. 578-610 doi:10.1017/jfm.2016.799

  18. Relations between Vegetation and Geologic Framework in Barrier Island

    NASA Astrophysics Data System (ADS)

    Smart, N. H.; Ferguson, J. B.; Lehner, J. D.; Taylor, D.; Tuttle, L. F., II; Wernette, P. A.

    2017-12-01

    Barrier islands provide valuable ecosystems and protective services to coastal communities. The longevity of barrier islands is threatened by sea-level rise, human impacts, and extreme storms. The purpose of this research is to evaluate how vegetation dynamics interact with the subsurface and offshore framework geology to influence the beach and dune morphology. Beach and dune morphology can be viewed as free and/or forced behavior, where free systems are stochastic and the morphology is dependent on variations in the storm surge run-up, aeolian sediment supply and transport potential, and vegetation dynamics and persistence. Forced systems are those where patterns in the coastal morphology are determined by some other structural control, such as the underlying and offshore framework geology. Previous studies have documented the effects of geologic framework or vegetation dynamics on the beach and dunes, although none have examined possible control by vegetation dynamics in context of the geologic framework (i.e. combined free and forced behavior). Padre Island National Seashore (PAIS) was used to examine the interaction of free and forced morphology because the subsurface framework geology and surface beach and dune morphology are variable along the island. Vegetation dynamics were assessed by classifying geographically referenced historical aerial imagery into areas with vegetation and areas without vegetation, as well as LiDAR data to verify this imagery. The subsurface geologic structure was assessed using a combination of geophysical surveys (i.e. electromagnetic induction, ground-penetrating radar, and offshore seismic surveys). Comparison of the observed vegetation patterns and geologic framework leads to a series of questions surrounding how mechanistically these two drivers of coastal morphology are related. Upcoming coring and geophysical surveys will enable us to validate new and existing geophysical data. Results of this paper will help us better understand how barrier islands have responded to environmental change in the past should be integrated into current models of barrier island evolution in order to more accurately predict how the island will change over time in response to continued climatic variability.

  19. Target-oriented retrieval of subsurface wave fields - Pushing the resolution limits in seismic imaging

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Ivan; Ozmen, Neslihan; van der Neut, Joost; Cui, Tianci

    2017-04-01

    Travelling wide-bandwidth seismic waves have long been used as a primary tool in exploration seismology because they can probe the subsurface over large distances, while retaining relatively high spatial resolution. The well-known Born resolution limit often seems to be the lower bound on spatial imaging resolution in real life examples. In practice, data acquisition cost, time constraints and other factors can worsen the resolution achieved by wavefield imaging. Could we obtain images whose resolution beats the Born limits? Would it be practical to achieve it, and what are we missing today to achieve this? In this talk, we will cover aspects of linear and nonlinear seismic imaging to understand elements that play a role in obtaining "super-resolved" seismic images. New redatuming techniques, such as the Marchenko method, enable the retrieval of subsurface fields that include multiple scattering interactions, while requiring relatively little knowledge of model parameters. Together with new concepts in imaging, such as Target-Enclosing Extended Images, these new redatuming methods enable new targeted imaging frameworks. We will make a case as to why target-oriented approaches to reconstructing subsurface-domain wavefields from surface data may help in increasing the resolving power of seismic imaging, and in pushing the limits on parameter estimation. We will illustrate this using a field data example. Finally, we will draw connections between seismic and other imaging modalities, and discuss how this framework could be put to use in other applications

  20. Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation

    NASA Astrophysics Data System (ADS)

    Ala-aho, Pertti; Soulsby, Chris; Wang, Hailong; Tetzlaff, Doerthe

    2017-04-01

    Understanding the role of groundwater for runoff generation in headwater catchments is a challenge in hydrology, particularly so in data-scarce areas. Fully-integrated surface-subsurface modelling has shown potential in increasing process understanding for runoff generation, but high data requirements and difficulties in model calibration are typically assumed to preclude their use in catchment-scale studies. We used a fully integrated surface-subsurface hydrological simulator to enhance groundwater-related process understanding in a headwater catchment with a rich background in empirical data. To set up the model we used minimal data that could be reasonably expected to exist for any experimental catchment. A novel aspect of our approach was in using simplified model parameterisation and including parameters from all model domains (surface, subsurface, evapotranspiration) in automated model calibration. Calibration aimed not only to improve model fit, but also to test the information content of the observations (streamflow, remotely sensed evapotranspiration, median groundwater level) used in calibration objective functions. We identified sensitive parameters in all model domains (subsurface, surface, evapotranspiration), demonstrating that model calibration should be inclusive of parameters from these different model domains. Incorporating groundwater data in calibration objectives improved the model fit for groundwater levels, but simulations did not reproduce well the remotely sensed evapotranspiration time series even after calibration. Spatially explicit model output improved our understanding of how groundwater functions in maintaining streamflow generation primarily via saturation excess overland flow. Steady groundwater inputs created saturated conditions in the valley bottom riparian peatlands, leading to overland flow even during dry periods. Groundwater on the hillslopes was more dynamic in its response to rainfall, acting to expand the saturated area extent and thereby promoting saturation excess overland flow during rainstorms. Our work shows the potential of using integrated surface-subsurface modelling alongside with rigorous model calibration to better understand and visualise the role of groundwater in runoff generation even with limited datasets.

  1. Challenging dyke ascent models using novel laboratory experiments: Implications for reinterpreting evidence of magma ascent and volcanism

    NASA Astrophysics Data System (ADS)

    Kavanagh, Janine L.; Burns, Alec J.; Hilmi Hazim, Suraya; Wood, Elliot P.; Martin, Simon A.; Hignett, Sam; Dennis, David J. C.

    2018-04-01

    Volcanic eruptions are fed by plumbing systems that transport magma from its source to the surface, mostly fed by dykes. Here we present laboratory experiments that model dyke ascent to eruption using a tank filled with a crust analogue (gelatine, which is transparent and elastic) that is injected from below by a magma analogue (dyed water). This novel experimental setup allows, for the first time, the simultaneous measurement of fluid flow, sub-surface and surface deformation during dyke ascent. During injection, a penny-shaped fluid-filled crack is formed, intrudes, and traverses the gelatine slab vertically to then erupt at the surface. Polarised light shows the internal stress evolution as the dyke ascends, and an overhead laser scanner measures the surface elevation change in the lead-up to dyke eruption. Fluorescent passive-tracer particles that are illuminated by a laser sheet are monitored, and the intruding fluid's flow dynamics and gelatine's sub-surface strain evolution is measured using particle image velocimetry and digital image correlation, respectively. We identify 4 previously undescribed stages of dyke ascent. Stage 1, early dyke growth: the initial dyke grows from the source, and two fluid jets circulate as the penny-shaped crack is formed. Stage 2, pseudo-steady dyke growth: characterised by the development of a rapidly uprising, central, single pseudo-steady fluid jet, as the dyke grows equally in length and width, and the fluid down-wells at the dyke margin. Sub-surface host strain is localised at the head region and the tail of the dyke is largely static. Stage 3, pre-eruption unsteady dyke growth: an instability in the fluid flow appears as the central fluid jet meanders, the dyke tip accelerates towards the surface and the tail thins. Surface deformation is only detected in the immediate lead-up to eruption and is characterised by an overall topographic increase, with axis-symmetric topographic highs developed above the dyke tip. Stage 4 is the onset of eruption, when fluid flow is projected outwards and focused towards the erupting fissure as the dyke closes. A simultaneous and abrupt decrease in sub-surface strain occurs as the fluid pressure is released. Our results provide a comprehensive physical framework upon which to interpret evidence of dyke ascent in nature, and suggest dyke ascent models need to be re-evaluated to account for coupled intrusive and extrusive processes and improve the recognition of monitoring signals that lead to volcanic eruptions in nature.

  2. Distributed Application of the Unified Noah LSM with Hydrologic Flow Routing on an Appalachian Headwater Basin

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Kumar, S.; Gochis, D.; Yates, D.; McHenry, J.; Burnet, T.; Coats, C.; Condrey, J.

    2006-05-01

    Collaboration between scientists at UMBC-GEST and NASA-GSFC, the NCAR Research Applications Laboratory (RAL), and Baron Advanced Meteorological Services (BAMS), has produced a modeling framework for the application of traditional land surface models (LSMs) in a distributed hydrologic system which can be used for diagnosis and prediction of routed stream discharge hydrographs. This collaboration is oriented on near-term system implementation across Romania for flood and flash-flood analyses and forecasting as part of the World Bank-funded Destructive Waters Abatement (DESWAT) program. Meteorological forcing from surface observations, model analyses and numerical forecasts are employed in the NASA-GSFC Land Information System (LIS) to drive the Unified Noah LSM with Noah-Distributed components, stream network delineation and routing schemes original to this work. The Unified Noah LSM is the outgrowth of a joint modeling effort between several research partners including NCAR, the NOAA National Center for Environmental Prediction (NCEP), and the Air Force Weather Agency (AFWA). At NCAR, hydrologically-oriented extensions to the Noah LSM have been developed for LSM applications in a distributed domain in order to address the lateral redistribution of soil moisture by surface and subsurface flow processes. These advancements have been integrated into the NASA-GSFC Land Information System (LIS) and coupled with an original framework for hydraulic channel network definition and specification, linkages with the Noah-Distributed overland and subsurface flow framework, and distributed cell- to-cell (or link-node) hydraulic routing. This poster presents an overview of the system components and their organization, as well as results of the first U.S. case study performed with this system under various configurations. The case study simulated precipitation events over a headwater basin in the southern Appalachian Mountains in October 2005 following the landfall of Tropical Storm Tammy in South Carolina. These events followed on a long dry period in the region, lending to the demonstration of watershed response to strong precipitation forcing under nearly ideal and easily-specified initial conditions. The results presented here will compare simulated versus observed streamflow conditions at various locations in the test watershed using a selection of routing methods.

  3. Development and Implementation of the DTOPLATS-MP land surface model over the Continental US at 30 meters

    NASA Astrophysics Data System (ADS)

    Chaney, N.; Wood, E. F.

    2014-12-01

    The increasing accessibility of high-resolution land data (< 100 m) and high performance computing allows improved parameterizations of subgrid hydrologic processes in macroscale land surface models. Continental scale fully distributed modeling at these spatial scales is possible; however, its practicality for operational use is still unknown due to uncertainties in input data, model parameters, and storage requirements. To address these concerns, we propose a modeling framework that provides the spatial detail of a fully distributed model yet maintains the benefits of a semi-distributed model. In this presentation we will introduce DTOPLATS-MP, a coupling between the NOAH-MP land surface model and the Dynamic TOPMODEL hydrologic model. This new model captures a catchment's spatial heterogeneity by clustering high-resolution land datasets (soil, topography, and land cover) into hundreds of hydrologic similar units (HSUs). A prior DEM analysis defines the connections between each HSU. At each time step, the 1D land surface model updates each HSU; the HSUs then interact laterally via the subsurface and surface. When compared to the fully distributed form of the model, this framework allows a significant decrease in computation and storage while providing most of the same information and enabling parameter transferability. As a proof of concept, we will show how this new modeling framework can be run over CONUS at a 30-meter spatial resolution. For each catchment in the WBD HUC-12 dataset, the model is run between 2002 and 2012 using available high-resolution continental scale land and meteorological datasets over CONUS (dSSURGO, NLCD, NED, and NCEP Stage IV). For each catchment, the model is run with 1000 model parameter sets obtained from a Latin hypercube sample. This exercise will illustrate the feasibility of running the model operationally at continental scales while accounting for model parameter uncertainty.

  4. Physically-Based Models for the Reflection, Transmission and Subsurface Scattering of Light by Smooth and Rough Surfaces, with Applications to Realistic Image Synthesis

    NASA Astrophysics Data System (ADS)

    He, Xiao Dong

    This thesis studies light scattering processes off rough surfaces. Analytic models for reflection, transmission and subsurface scattering of light are developed. The results are applicable to realistic image generation in computer graphics. The investigation focuses on the basic issue of how light is scattered locally by general surfaces which are neither diffuse nor specular; Physical optics is employed to account for diffraction and interference which play a crucial role in the scattering of light for most surfaces. The thesis presents: (1) A new reflectance model; (2) A new transmittance model; (3) A new subsurface scattering model. All of these models are physically-based, depend on only physical parameters, apply to a wide range of materials and surface finishes and more importantly, provide a smooth transition from diffuse-like to specular reflection as the wavelength and incidence angle are increased or the surface roughness is decreased. The reflectance and transmittance models are based on the Kirchhoff Theory and the subsurface scattering model is based on Energy Transport Theory. They are valid only for surfaces with shallow slopes. The thesis shows that predicted reflectance distributions given by the reflectance model compare favorably with experiment. The thesis also investigates and implements fast ways of computing the reflectance and transmittance models. Furthermore, the thesis demonstrates that a high level of realistic image generation can be achieved due to the physically -correct treatment of the scattering processes by the reflectance model.

  5. Forcing and Responses of the Surface Energy Budget at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Miller, Nathaniel B.

    Energy exchange at the Greenland Ice Sheet surface governs surface temperature variability, a factor critical for representing increasing surface melt extent, which portends a rise in global sea level. A comprehensive set of cloud, tropospheric, near-surface and sub-surface measurements at Summit Station is utilized to determine the driving forces and subsequent responses of the surface energy budget (SEB). This budget includes radiative, turbulent, and ground heat fluxes, and ultimately controls the evolution of surface temperature. At Summit Station, clouds radiatively warm the surface in all months with an annual average cloud radiative forcing value of 33 W m -2, largely driven by the occurrence of liquid-bearing clouds. The magnitude of the surface temperature response is dependent on how turbulent and ground heat fluxes modulate changes to radiative forcing. Relationships between forcing terms and responding surface fluxes show that changes in the upwelling longwave radiation compensate for 65-85% (50- 60%) of the total change in radiative forcing in the winter (summer). The ground heat flux is the second largest response term (16% annually), especially during winter. Throughout the annual cycle, the sensible heat flux response is comparatively constant (9%) and latent heat flux response is only 1.5%, becoming more of a factor in modulating surface temperature responses during the summer. Combining annual cycles of these responses with cloud radiative forcing results, clouds warm the surface by an estimated 7.8°C annually. A reanalysis product (ERA-I), operational model (CFSv2), and climate model (CESM) are evaluated utilizing the comprehensive set of SEB observations and process-based relationships. Annually, surface temperatures in each model are warmer than observed with overall poor representation of the coldest surface temperatures. Process-based relationships between different SEB flux terms offer insight into how well a modeling framework represents physical processes and the ability to distinguish errors in forcing versus those in physical representation. Such relationships convey that all three models underestimate the response of surface temperatures to changes in radiative forcing. These results provide a method to expose model deficiencies and indicate the importance of representing surface, sub-surface and boundary-layer processes when portraying cloud impacts on surface temperature variability.

  6. Comprehensive, Process-based Identification of Hydrologic Models using Satellite and In-situ Water Storage Data: A Multi-objective calibration Approach

    NASA Astrophysics Data System (ADS)

    Abdo Yassin, Fuad; Wheater, Howard; Razavi, Saman; Sapriza, Gonzalo; Davison, Bruce; Pietroniro, Alain

    2015-04-01

    The credible identification of vertical and horizontal hydrological components and their associated parameters is very challenging (if not impossible) by only constraining the model to streamflow data, especially in regions where the vertical processes significantly dominate the horizontal processes. The prairie areas of the Saskatchewan River basin, a major water system in Canada, demonstrate such behavior, where the hydrologic connectivity and vertical fluxes are mainly controlled by the amount of surface and sub-surface water storages. In this study, we develop a framework for distributed hydrologic model identification and calibration that jointly constrains the model response (i.e., streamflows) as well as a set of model state variables (i.e., water storages) to observations. This framework is set up in the form of multi-objective optimization, where multiple performance criteria are defined and used to simultaneously evaluate the fidelity of the model to streamflow observations and observed (estimated) changes of water storage in the gridded landscape over daily and monthly time scales. The time series of estimated changes in total water storage (including soil, canopy, snow and pond storages) used in this study were derived from an experimental study enhanced by the information obtained from the GRACE satellite. We test this framework on the calibration of a Land Surface Scheme-Hydrology model, called MESH (Modélisation Environmentale Communautaire - Surface and Hydrology), for the Saskatchewan River basin. Pareto Archived Dynamically Dimensioned Search (PA-DDS) is used as the multi-objective optimization engine. The significance of using the developed framework is demonstrated in comparison with the results obtained through a conventional calibration approach to streamflow observations. The approach of incorporating water storage data into the model identification process can more potentially constrain the posterior parameter space, more comprehensively evaluate the model fidelity, and yield more credible predictions.

  7. Representing spatial and temporal complexity in ecohydrological models: a meta-analysis focusing on groundwater - surface water interactions

    NASA Astrophysics Data System (ADS)

    McDonald, Karlie; Mika, Sarah; Kolbe, Tamara; Abbott, Ben; Ciocca, Francesco; Marruedo, Amaia; Hannah, David; Schmidt, Christian; Fleckenstein, Jan; Karuse, Stefan

    2016-04-01

    Sub-surface hydrologic processes are highly dynamic, varying spatially and temporally with strong links to the geomorphology and hydrogeologic properties of an area. This spatial and temporal complexity is a critical regulator of biogeochemical and ecological processes within the interface groundwater - surface water (GW-SW) ecohydrological interface and adjacent ecosystems. Many GW-SW models have attempted to capture this spatial and temporal complexity with varying degrees of success. The incorporation of spatial and temporal complexity within GW-SW model configuration is important to investigate interactions with transient storage and subsurface geology, infiltration and recharge, and mass balance of exchange fluxes at the GW-SW ecohydrological interface. Additionally, characterising spatial and temporal complexity in GW-SW models is essential to derive predictions using realistic environmental conditions. In this paper we conduct a systematic Web of Science meta-analysis of conceptual, hydrodynamic, and reactive and heat transport models of the GW-SW ecohydrological interface since 2004 to explore how these models handled spatial and temporal complexity. The freshwater - groundwater ecohydrological interface was the most commonly represented in publications between 2004 and 2014 with 91% of papers followed by marine 6% and estuarine systems with 3% of papers. Of the GW-SW models published since 2004, the 52% have focused on hydrodynamic processes and <15% covered more than one process (e.g. heat and reactive transport). Within the hydrodynamic subset, 25% of models focused on a vertical depth of <5m. The primary scientific and technological limitations of incorporating spatial and temporal variability into GW-SW models are identified as the inclusion of woody debris, carbon sources, subsurface geological structures and bioclogging into model parameterization. The technological limitations influence the types of models applied, such as hydrostatic coupled models and fully intrinsic saturated and unsaturated models, and the assumptions or simplifications scientists apply to investigate the GW-SW ecohydrological interface. We investigated the type of modelling approaches applied across different scales (site, reach, catchment, nested catchments) and assessed the simplifications in environmental conditions and complexity that are commonly made in model configuration. Understanding the theoretical concepts that underpin these current modelling approaches is critical for scientists to develop measures to derive predictions from realistic environmental conditions at management relevant scales and establish best-practice modelling approaches for improving the scientific understanding and management of the GW-SW interface. Additionally, the assessment of current modelling approaches informs our proposed framework for the progress of GW-SW models in the future. The framework presented aims to increase future scientific, technological and management integration and the identification of research priorities to allow spatial and temporal complexity to be better incorporated into GW-SW models.

  8. Integrated Coupling of Surface and Subsurface Flow with HYDRUS-2D

    NASA Astrophysics Data System (ADS)

    Hartmann, Anne; Šimůnek, Jirka; Wöhling, Thomas; Schütze, Niels

    2016-04-01

    Describing interactions between surface and subsurface flow processes is important to adequately define water flow in natural systems. Since overland flow generation is highly influenced by rainfall and infiltration, both highly spatially heterogeneous processes, overland flow is unsteady and varies spatially. The prediction of overland flow needs to include an appropriate description of the interactions between the surface and subsurface flow. Coupling surface and subsurface water flow is a challenging task. Different approaches have been developed during the last few years, each having its own advantages and disadvantages. A new approach by Weill et al. (2009) to couple overland flow and subsurface flow based on a generalized Richards equation was implemented into the well-known subsurface flow model HYDRUS-2D (Šimůnek et al., 2011). This approach utilizes the one-dimensional diffusion wave equation to model overland flow. The diffusion wave model is integrated in HYDRUS-2D by replacing the terms of the Richards equation in a pre-defined runoff layer by terms defining the diffusion wave equation. Using this approach, pressure and flux continuity along the interface between both flow domains is provided. This direct coupling approach provides a strong coupling of both systems based on the definition of a single global system matrix to numerically solve the coupled flow problem. The advantage of the direct coupling approach, compared to the loosely coupled approach, is supposed to be a higher robustness, when many convergence problems can be avoided (Takizawa et al., 2014). The HYDRUS-2D implementation was verified using a) different test cases, including a direct comparison with the results of Weill et al. (2009), b) an analytical solution of the kinematic wave equation, and c) the results of a benchmark test of Maxwell et al. (2014), that included several known coupled surface subsurface flow models. Additionally, a sensitivity analysis evaluating the effects of various model parameters on simulated overland flow (while considering or neglecting the effects of subsurface flow) was carried out to verify the applicability of the model to different problems. The model produced reasonable results in describing the diffusion wave approximation and its interactions with subsurface flow processes. The model could handle coupled surface-subsurface processes for conditions involving runoff generated by infiltration excess, saturation excess, or run-on, as well as a combination of these runoff generating processes. Several standard features of the HYDRUS 2D model, such as root water uptake and evaporation from the soil surface, as well as evaporation from runoff layer, can still be considered by the new model. The code required relatively small time steps when overland flow was active, resulting in long simulation times, and sometimes produced poor mass balance. The model nevertheless showed potential to be a useful tool for addressing various issues related to irrigation research and to natural generation of overland flow at the hillslope scale. Maxwell, R., Putti, M., Meyerhoff, S., Delf, J., Ferguson, I., Ivanov, V., Kim, J., Kolditz, O., Kollet, S., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M., Shen, C., Sudicky, E., and Sulis, M. (2014). Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resourc. Res., 50:1531-1549. Šimůnek, J., van Genuchten, M. T., and Šejna, M. (2011). The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Technical Manual, Version 2.0, PC Progress, Prague, Czech Republic. Takizawa, K., Bazilevs Y., Tezduyar, T. E., Long, C.C., Marsden, A. L. and Schjodt.K., Patient-Specific Cardiovascular Fluid Mechanics Analysis with the ST and ALE-VMS Method in Idelsohn, S. R. (2014). Numerical Simulations of Coupled Problems in Engineering. Springer. Weill, S., Mouche, E., and Patin, J. (2009). A generalized Richards equation for surface/subsurface flow modelling. Journal of Hydrology, 366:9-20.

  9. Discharge-nitrate data clustering for characterizing surface-subsurface flow interaction and calibration of a hydrologic model

    NASA Astrophysics Data System (ADS)

    Shrestha, R. R.; Rode, M.

    2008-12-01

    Concentration of reactive chemicals has different chemical signatures in baseflow and surface runoff. Previous studies on nitrate export from a catchment indicate that the transport processes are driven by subsurface flow. Therefore nitrate signature can be used for understanding the event and pre-event contributions to streamflow and surface-subsurface flow interactions. The study uses flow and nitrate concentration time series data for understanding the relationship between these two variables. Unsupervised artificial neural network based learning method called self organizing map is used for the identification of clusters in the datasets. Based on the cluster results, five different pattern in the datasets are identified which correspond to (i) baseflow, (ii) subsurface flow increase, (iii) surface runoff increase, (iv) surface runoff recession, and (v) subsurface flow decrease regions. The cluster results in combination with a hydrologic model are used for discharge separation. For this purpose, a multi-objective optimization tool NSGA-II is used, where violation of cluster results is used as one of the objective functions. The results show that the use of cluster results as supplementary information for the calibration of a hydrologic model gives a plausible simulation of subsurface flow as well total runoff at the catchment outlet. The study is undertaken using data from the Weida catchment in the North-Eastern Germany, which is a sub-catchment of the Weisse Elster river in the Elbe river basin.

  10. Gypsies in the palace: Experimentalist's view on the use of 3-D physics-based simulation of hillslope hydrological response

    USGS Publications Warehouse

    James, A.L.; McDonnell, Jeffery J.; Tromp-Van Meerveld, I.; Peters, N.E.

    2010-01-01

    As a fundamental unit of the landscape, hillslopes are studied for their retention and release of water and nutrients across a wide range of ecosystems. The understanding of these near-surface processes is relevant to issues of runoff generation, groundwater-surface water interactions, catchment export of nutrients, dissolved organic carbon, contaminants (e.g. mercury) and ultimately surface water health. We develop a 3-D physics-based representation of the Panola Mountain Research Watershed experimental hillslope using the TOUGH2 sub-surface flow and transport simulator. A recent investigation of sub-surface flow within this experimental hillslope has generated important knowledge of threshold rainfall-runoff response and its relation to patterns of transient water table development. This work has identified components of the 3-D sub-surface, such as bedrock topography, that contribute to changing connectivity in saturated zones and the generation of sub-surface stormflow. Here, we test the ability of a 3-D hillslope model (both calibrated and uncalibrated) to simulate forested hillslope rainfall-runoff response and internal transient sub-surface stormflow dynamics. We also provide a transparent illustration of physics-based model development, issues of parameterization, examples of model rejection and usefulness of data types (e.g. runoff, mean soil moisture and transient water table depth) to the model enterprise. Our simulations show the inability of an uncalibrated model based on laboratory and field characterization of soil properties and topography to successfully simulate the integrated hydrological response or the distributed water table within the soil profile. Although not an uncommon result, the failure of the field-based characterized model to represent system behaviour is an important challenge that continues to vex scientists at many scales. We focus our attention particularly on examining the influence of bedrock permeability, soil anisotropy and drainable porosity on the development of patterns of transient groundwater and sub-surface flow. Internal dynamics of transient water table development prove to be essential in determining appropriate model parameterization. ?? 2010 John Wiley & Sons, Ltd.

  11. INLAND DISSOLVED SALT CHEMISTRY: STATISTICAL EVALUATION OF BIVARIATE AND TERNARY DIAGRAM MODELS FOR SURFACE AND SUBSURFACE WATERS

    EPA Science Inventory

    We compared the use of ternary and bivariate diagrams to distinguish the effects of atmospheric precipitation, rock weathering, and evaporation on inland surface and subsurface water chemistry. The three processes could not be statistically differentiated using bivariate models e...

  12. Mesh infrastructure for coupled multiprocess geophysical simulations

    DOE PAGES

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; ...

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about themore » mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.« less

  13. Investigation of lunar maria structure from cross-analysis of GRAIL gravity and Kaguya radar data

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.; Ermakov, A.; Smith, D. E.; Mastroguiseppe, M.; Raguso, M.

    2016-12-01

    The Lunar Radar Sounder (LRS) on JAXA's Kaguya spacecraft investigated the subsurface structure of the Moon to a depth of a few km. GRAIL gravity models are potentially sensitive to subsurface structure at such depths. GRAIL gravity and LRS radar data are complementary since both are sensitive to density/compositional heterogeneities. Cross-correlation of GRAIL and LRS data has the potential to produce new constraints on the structure and evolution of the lunar maria. Originally, subsurface reflections within the lunar maria were detected with Lunar Sounder Experiment aboard Apollo 17. Subsurface layering was attributed to multiple episodes of volcanism. Later, Kaguya's LRS produced similar measurements but with global-scale coverage. Laboratory measurements show that density variations among mare basalts can be up to 200 kg m-3 or 7%. The LRS measurements have detected subsurface reflection in the upper 1 km of the crust. Combining these two estimates and using the Bouguer slab approximation, we estimate that anomalies of order 1-10 mGal are expected due to potentially varying density of surface and/or subsurface horizons. This accuracy is achievable with the latest GRAIL gravity models. The LRS surface backscattering power is indicative of surface and near sub-surface dielectric properties, which are sensitive to target density and roughness. We investigate the northwestern part of the Procellarum basin because it is the region with the strongest signal-to-noise ratios in gravity models within maria. To examine shallow subsurface structure, we map the surface received power by tracking the first return of radar echoes and compare it with gravity gradients, which are particularly sensitive to small-scale structures.

  14. Airborne electromagnetic mapping of the base of aquifer in areas of western Nebraska

    USGS Publications Warehouse

    Abraham, Jared D.; Cannia, James C.; Bedrosian, Paul A.; Johnson, Michaela R.; Ball, Lyndsay B.; Sibray, Steven S.

    2012-01-01

    Airborne geophysical surveys of selected areas of the North and South Platte River valleys of Nebraska, including Lodgepole Creek valley, collected data to map aquifers and bedrock topography and thus improve the understanding of groundwater - surface-water relationships to be used in water-management decisions. Frequency-domain helicopter electromagnetic surveys, using a unique survey flight-line design, collected resistivity data that can be related to lithologic information for refinement of groundwater model inputs. To make the geophysical data useful to multidimensional groundwater models, numerical inversion converted measured data into a depth-dependent subsurface resistivity model. The inverted resistivity model, along with sensitivity analyses and test-hole information, is used to identify hydrogeologic features such as bedrock highs and paleochannels, to improve estimates of groundwater storage. The two- and three-dimensional interpretations provide the groundwater modeler with a high-resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. The new hydrogeologic frameworks improve understanding of the flow-path orientation by refining the location of paleochannels and associated base of aquifer highs. These interpretations provide resource managers high-resolution hydrogeologic frameworks and quantitative estimates of framework uncertainty. The improved base of aquifer configuration represents the hydrogeology at a level of detail not achievable with previously available data.

  15. Developing a trend prediction model of subsurface damage for fixed-abrasive grinding of optics by cup wheels.

    PubMed

    Dong, Zhichao; Cheng, Haobo

    2016-11-10

    Fixed-abrasive grinding by cup wheels plays an important role in the production of precision optics. During cup wheel grinding, we strive for a large removal rate while maintaining fine integrity on the surface and subsurface layers (academically recognized as surface roughness and subsurface damage, respectively). This study develops a theoretical model used to predict the trend of subsurface damage of optics (with respect to various grinding parameters) in fixed-abrasive grinding by cup wheels. It is derived from the maximum undeformed chip thickness model, and it successfully correlates the pivotal parameters of cup wheel grinding with the subsurface damage depth. The efficiency of this model is then demonstrated by a set of experiments performed on a cup wheel grinding machine. In these experiments, the characteristics of subsurface damage are inspected by a wedge-polishing plus microscopic inspection method, revealing that the subsurface damage induced in cup wheel grinding is composed of craterlike morphologies and slender cracks, with depth ranging from ∼6.2 to ∼13.2  μm under the specified grinding parameters. With the help of the proposed model, an optimized grinding strategy is suggested for realizing fine subsurface integrity as well as high removal rate, which can alleviate the workload of subsequent lapping and polishing.

  16. Stepwise sensitivity analysis from qualitative to quantitative: Application to the terrestrial hydrological modeling of a Conjunctive Surface-Subsurface Process (CSSP) land surface model

    NASA Astrophysics Data System (ADS)

    Gan, Yanjun; Liang, Xin-Zhong; Duan, Qingyun; Choi, Hyun Il; Dai, Yongjiu; Wu, Huan

    2015-06-01

    An uncertainty quantification framework was employed to examine the sensitivities of 24 model parameters from a newly developed Conjunctive Surface-Subsurface Process (CSSP) land surface model (LSM). The sensitivity analysis (SA) was performed over 18 representative watersheds in the contiguous United States to examine the influence of model parameters in the simulation of terrestrial hydrological processes. Two normalized metrics, relative bias (RB) and Nash-Sutcliffe efficiency (NSE), were adopted to assess the fit between simulated and observed streamflow discharge (SD) and evapotranspiration (ET) for a 14 year period. SA was conducted using a multiobjective two-stage approach, in which the first stage was a qualitative SA using the Latin Hypercube-based One-At-a-Time (LH-OAT) screening, and the second stage was a quantitative SA using the Multivariate Adaptive Regression Splines (MARS)-based Sobol' sensitivity indices. This approach combines the merits of qualitative and quantitative global SA methods, and is effective and efficient for understanding and simplifying large, complex system models. Ten of the 24 parameters were identified as important across different watersheds. The contribution of each parameter to the total response variance was then quantified by Sobol' sensitivity indices. Generally, parameter interactions contribute the most to the response variance of the CSSP, and only 5 out of 24 parameters dominate model behavior. Four photosynthetic and respiratory parameters are shown to be influential to ET, whereas reference depth for saturated hydraulic conductivity is the most influential parameter for SD in most watersheds. Parameter sensitivity patterns mainly depend on hydroclimatic regime, as well as vegetation type and soil texture. This article was corrected on 26 JUN 2015. See the end of the full text for details.

  17. Estimating Surface and Subsurface Ice Abundance on Mercury Using a Thermophysical Model

    NASA Astrophysics Data System (ADS)

    Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.

    2016-12-01

    The small obliquity of the Moon and Mercury causes some topographic features near their poles to cast permanent shadows for geologic time periods. In the past, these permanently shadowed regions (PSRs) were found to have low enough temperatures to trap surface and subsurface water ice. On Mercury, high normal albedo is correlated with maximum temperatures <100 m and high radar backscatter, possibly indicating the presence of surface ice. Areas with slightly higher maximum temperatures were measured to have a decreased albedo, postulated to contain of organic materials overlaying buried ice. We evaluate this theory by employing a thermophysical model that considers insolation, scattering, thermal emissions and subsurface conduction. We model the area fraction of surface and subsurface cold-traps on realistic topography at scales of ˜500 m , recorded by the Mercury Laster Altimeter (MLA) on board the MErcury Surface, Space ENviroment, GEochemistry and Ranging (MESSENGER) spacecraft. At smaller scales, below the instrument threshold, we consider a statistical description of the surface assuming a Gaussian slope distribution. Using the modeled cold-trap area fraction we calculate the expected surface albedo and compare it to MESSENGER's near-infrared surface reflectance data. Last, we apply our model to other airless small-obliquity planetary bodies such as the Moon and Ceres in order to explain other correlations between the maximum temperature and normal albedo.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Bao, J; Huang, M

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheicmore » exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y + wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results suggest that the thickness of riverbed alluvium layer is the dominant factor for reach-scale hyporheic exchanges, followed by the alluvium permeability, the depth of the underlying impermeable layer, and the assumption of hydrostatic pressure.« less

  19. A 3D object-based model to simulate highly-heterogeneous, coarse, braided river deposits

    NASA Astrophysics Data System (ADS)

    Huber, E.; Huggenberger, P.; Caers, J.

    2016-12-01

    There is a critical need in hydrogeological modeling for geologically more realistic representation of the subsurface. Indeed, widely-used representations of the subsurface heterogeneity based on smooth basis functions such as cokriging or the pilot-point approach fail at reproducing the connectivity of high permeable geological structures that control subsurface solute transport. To realistically model the connectivity of high permeable structures of coarse, braided river deposits, multiple-point statistics and object-based models are promising alternatives. We therefore propose a new object-based model that, according to a sedimentological model, mimics the dominant processes of floodplain dynamics. Contrarily to existing models, this object-based model possesses the following properties: (1) it is consistent with field observations (outcrops, ground-penetrating radar data, etc.), (2) it allows different sedimentological dynamics to be modeled that result in different subsurface heterogeneity patterns, (3) it is light in memory and computationally fast, and (4) it can be conditioned to geophysical data. In this model, the main sedimentological elements (scour fills with open-framework-bimodal gravel cross-beds, gravel sheet deposits, open-framework and sand lenses) and their internal structures are described by geometrical objects. Several spatial distributions are proposed that allow to simulate the horizontal position of the objects on the floodplain as well as the net rate of sediment deposition. The model is grid-independent and any vertical section can be computed algebraically. Furthermore, model realizations can serve as training images for multiple-point statistics. The significance of this model is shown by its impact on the subsurface flow distribution that strongly depends on the sedimentological dynamics modeled. The code will be provided as a free and open-source R-package.

  20. Understanding heterogeneity and data assimilation in karst groundwater surface water interactions: The role of geophysics and hydrologic models in a semi-confined aquifer

    NASA Astrophysics Data System (ADS)

    Meyerhoff, Steven B.

    Groundwater and surface water historically have been treated as different entities. Due to this, planning and development of groundwater and surface water resources, both quantity and quality are often also treated separately. Recently, there has been work to characterize groundwater and surface water as a single system. Karstic systems are widely influenced by these interactions due to varying permeability, fracture geometry and porosity. Here, three different approaches are used to characterize groundwater surface water interactions in karstic environments. 1) A hydrologic model, ParFlow, is conditioned with known subsurface data to determine whether a reduction in subsurface uncertainty will enhance the prediction of surface water variables. A reduction in subsurface uncertainty resulted in substantial reductions in uncertainty in Hortonian runoff and less reductions in Dunne runoff. 2) Geophysical data is collected at a field site in O'leno State Park, Florida to visualize groundwater and surface water interactions in karstic environments. Significant changes in resistivity are seen through time at two locations. It is hypothesized that these changes are related to changing fluid source waters (e.g groundwater or surface water). 3). To confirm these observations an ensemble of synthetic forward models are simulated, inverted and compared directly with field observations and End-Member-Mixing-Analysis (EMMA). Field observations and synthetic models have comparable resistivity anomalies patterns and mixing fractions. This allows us to characterize and quantify subsurface mixing of groundwater and surface in karst environments. These three approaches (hydrologic models, field data and forward model experiments), (1) show the complexity and dynamics of groundwater and surface mixing in karstic environments in varying flow conditions, (2) showcase a novel geophysical technique to visualize groundwater and surface water interactions and (3) confirm hypothesis of flow and mixing in subsurface karst environments.

  1. Three-dimensional geologic model of the Arbuckle-Simpson aquifer, south-central Oklahoma

    USGS Publications Warehouse

    Faith, Jason R.; Blome, Charles D.; Pantea, Michael P.; Puckette, James O.; Halihan, Todd; Osborn, Noel; Christenson, Scott; Pack, Skip

    2010-01-01

    The Arbuckle-Simpson aquifer of south-central Oklahoma encompasses more than 850 square kilometers and is the principal water resource for south-central Oklahoma. Rock units comprising the aquifer are characterized by limestone, dolomite, and sandstones assigned to two lower Paleozoic units: the Arbuckle and Simpson Groups. Also considered to be part of the aquifer is the underlying Cambrian-age Timbered Hills Group that contains limestone and sandstone. The highly faulted and fractured nature of the Arbuckle-Simpson units and the variable thickness (600 to 2,750 meters) increases the complexity in determining the subsurface geologic framework of this aquifer. A three-dimensional EarthVision (Trademark) geologic framework model was constructed to quantify the geometric relationships of the rock units of the Arbuckle-Simpson aquifer in the Hunton anticline area. This 3-D EarthVision (Trademark) geologic framework model incorporates 54 faults and four modeled units: basement, Arbuckle-Timbered Hills Group, Simpson Group, and post-Simpson. Primary data used to define the model's 54 faults and four modeled surfaces were obtained from geophysical logs, cores, and cuttings from 126 water and petroleum wells. The 3-D framework model both depicts the volumetric extent of the aquifer and provides the stratigraphic layer thickness and elevation data used to construct a MODFLOW version 2000 regional groundwater-flow model.

  2. Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values

    NASA Astrophysics Data System (ADS)

    Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.

    2018-04-01

    Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.

  3. Development of a Multicenter Density Functional Tight Binding Model for Plutonium Surface Hydriding.

    PubMed

    Goldman, Nir; Aradi, Bálint; Lindsey, Rebecca K; Fried, Laurence E

    2018-05-08

    We detail the creation of a multicenter density functional tight binding (DFTB) model for hydrogen on δ-plutonium, using a framework of new Slater-Koster interaction parameters and a repulsive energy based on the Chebyshev Interaction Model for Efficient Simulation (ChIMES), where two- and three-center atomic interactions are represented by linear combinations of Chebyshev polynomials. We find that our DFTB/ChIMES model yields a total electron density of states for bulk δ-Pu that compares well to that from Density Functional Theory, as well as to a grid of energy calculations representing approximate H 2 dissociation paths on the δ-Pu (100) surface. We then perform molecular dynamics simulations and minimum energy pathway calculations to determine the energetics of surface dissociation and subsurface diffusion on the (100) and (111) surfaces. Our approach allows for the efficient creation of multicenter repulsive energies with a relatively small investment in initial DFT calculations. Our efforts are particularly pertinent to studies that rely on quantum calculations for interpretation and validation, such as experimental determination of chemical reactivity both on surfaces and in condensed phases.

  4. Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations

    NASA Technical Reports Server (NTRS)

    Reichle, R. H.

    2010-01-01

    Root zone soil moisture controls the land-atmosphere exchange of water and energy and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments we assimilate synthetic surface soil moisture observations into four different models (Catchment, Mosaic, Noah and CLM) using the Ensemble Kalman Filter. We demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Our experiments also suggest that (faced with unknown true subsurface physics) overestimating surface to root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Finally, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types.

  5. Hydrologic connectivity of geographically isolated wetlands to surface water systems

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Ameli, A.

    2016-12-01

    Hydrologic connectivity of wetlands is poorly characterized and understood. Our inability to quantify this connectivity compromises our understanding of the potential impacts of land use (e.g., wetland drainage) and climate changes on watershed structure, function and water supplies. We develop a computationally efficient physically-based subsurface-surface hydrological model to map both the subsurface and surface hydrologic connectivity of geographically isolated wetlands (i.e., wetlands without surface outlets) and explore the time and length variations in these connections to a river within the Prairie Pothole Region of North America. Despite a high density of geographically isolated wetlands, modeled connections show that these wetlands are not hydrologically isolated. Hydrologic subsurface connectivity differs significantly from surface connectivity in terms of timing and length of connections. Slow subsurface connections between wetlands and the downstream river originate from wetlands throughout the watershed, whereas fast surface connections were limited to large events and originate from wetlands located near the river. Results also suggest that prioritization of protection of wetlands that relies on shortest distance of wetland to the river or surface connections alone can lead to unintended consequences in terms of loss of attending wetland ecosystem functions, services and their benefits to society. This modeling approach provides first ever insight on the nature of geographically isolated wetland subsurface and surface hydrological connections to rivers, and can provide guidance on the development of watershed management and conservation plans (e.g., wetlands drainage/restoration) under different climate and land management scenarios.

  6. Evaluation of SCS-CN method using a fully distributed physically based coupled surface-subsurface flow model

    NASA Astrophysics Data System (ADS)

    Shokri, Ali

    2017-04-01

    The hydrological cycle contains a wide range of linked surface and subsurface flow processes. In spite of natural connections between surface water and groundwater, historically, these processes have been studied separately. The current trend in hydrological distributed physically based model development is to combine distributed surface water models with distributed subsurface flow models. This combination results in a better estimation of the temporal and spatial variability of the interaction between surface and subsurface flow. On the other hand, simple lumped models such as the Soil Conservation Service Curve Number (SCS-CN) are still quite common because of their simplicity. In spite of the popularity of the SCS-CN method, there have always been concerns about the ambiguity of the SCS-CN method in explaining physical mechanism of rainfall-runoff processes. The aim of this study is to minimize these ambiguity by establishing a method to find an equivalence of the SCS-CN solution to the DrainFlow model, which is a fully distributed physically based coupled surface-subsurface flow model. In this paper, two hypothetical v-catchment tests are designed and the direct runoff from a storm event are calculated by both SCS-CN and DrainFlow models. To find a comparable solution to runoff prediction through the SCS-CN and DrainFlow, the variance between runoff predictions by the two models are minimized by changing Curve Number (CN) and initial abstraction (Ia) values. Results of this study have led to a set of lumped model parameters (CN and Ia) for each catchment that is comparable to a set of physically based parameters including hydraulic conductivity, Manning roughness coefficient, ground surface slope, and specific storage. Considering the lack of physical interpretation in CN and Ia is often argued as a weakness of SCS-CN method, the novel method in this paper gives a physical explanation to CN and Ia.

  7. Modeling interactions of agriculture and groundwater nitrate contaminants: application of The STICS-Eau-Dyssée coupled models over the Seine River Basin

    NASA Astrophysics Data System (ADS)

    Tavakoly, A. A.; Habets, F.; Saleh, F.; Yang, Z. L.

    2017-12-01

    Human activities such as the cultivation of N-fixing crops, burning of fossil fuels, discharging of industrial and domestic effluents, and extensive usage of fertilizers have recently accelerated the nitrogen loading to watersheds worldwide. Increasing nitrate concentration in surface water and groundwater is a major concern in watersheds with extensive agricultural activities. Nutrient enrichment is one of the major environmental problems in the French coastal zone. To understand and predict interactions between agriculture, surface water and groundwater nitrate contaminants, this study presents a modeling framework that couples the agronomic STICS model with Eau-Dyssée, a distributed hydrologic modeling system to simulate groundwater-surface water interaction. The coupled system is implemented on the Seine River Basin with an area of 88,000 km2 to compute daily nitrate contaminants. Representing a sophisticated hydrosystem with several aquifers and including the megalopolis of Paris, the Seine River Basin is well-known as one of the most productive agricultural areas in France. The STICS-EauDyssée framework is evaluated for a long-term simulation covering 39 years (1971-2010). Model results show that the simulated nitrate highly depends on the inflow produced by surface and subsurface waters. Daily simulation shows that the model captures the seasonal variation of observations and that the overall long-term simulation of nitrate contaminant is satisfactory at the regional scale.

  8. The Role of Different Plant Soil-Water Feedbacks in Models of Dryland Vegetation Patterns

    NASA Astrophysics Data System (ADS)

    Silber, M.; Bonetti, S.; Gandhi, P.; Gowda, K.; Iams, S.; Porporato, A. M.

    2017-12-01

    Understanding the processes underlying the formation of regular vegetation patterns in arid and semi-arid regions is important to assessing desertification risk under increasing anthropogenic pressure. Various modeling frameworks have been proposed, which are all capable of generating similar patterns through self-organizing mechanisms that stem from assumptions about plant feedbacks on surface/subsurface water transport. We critically discuss a hierarchy of hydrology-vegetation models for the coupled dynamics of surface water, soil moisture, and vegetation biomass on a hillslope. We identify distinguishing features and trends for the periodic traveling wave solutions when there is an imposed idealized topography and make some comparisons to satellite images of large-scale banded vegetation patterns in drylands of Africa, Australia and North America. This work highlights the potential for constraining models by considerations of where the patterns may lie on a landscape, such as whether on a ridge or in a valley.

  9. Thermal Imaging of Subsurface Coal Fires by means of an Unmanned Aerial Vehicle (UAV) in the Autonomous Province Xinjiang, PRC

    NASA Astrophysics Data System (ADS)

    Vasterling, Margarete; Schloemer, Stefan; Fischer, Christian; Ehrler, Christoph

    2010-05-01

    Spontaneous combustion of coal and resulting coal fires lead to very high temperatures in the subsurface. To a large amount the heat is transferred to the surface by convective and conductive transport inducing a more or less pronounced thermal anomaly. During the past decade satellite-based infrared-imaging (ASTER, MODIS) was the method of choice for coal fire detection on a local and regional scale. However, the resolution is by far too low for a detailed analysis of single coal fires which is essential prerequisite for corrective measures (i.e. fire fighting) and calculation of carbon dioxide emission based on a complex correlation between energy release and CO2 generation. Consequently, within the framework of the Sino-German research project "Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in Northern China", a new concept was developed and successfully tested. An unmanned aerial vehicle (UAV) was equipped with a lightweight camera for thermografic (resolution 160 by 120 pixel, dynamic range -20 to 250°C) and for visual imaging. The UAV designed as an octocopter is able to hover at GPS controlled waypoints during predefined flight missions. The application of a UAV has several advantages. Compared to point measurements on the ground the thermal imagery quickly provides the spatial distribution of the temperature anomaly with a much better resolution. Areas otherwise not accessible (due to topography, fire induced cracks, etc.) can easily be investigated. The results of areal surveys on two coal fires in Xinjiang are presented. Georeferenced thermal and visual images were mosaicked together and analyzed. UAV-born data do well compared to temperatures measured directly on the ground and cover large areas in detail. However, measuring surface temperature alone is not sufficient. Simultaneous measurements made at the surface and in roughly 15cm depth proved substantial temperature gradients in the upper soil. Thus the temperature measured at the surface underestimates the energy emitted by the subsurface coal fire. In addition, surface temperature is strongly influenced by solar radiation and the prevailing ambient conditions (wind, temperature, humidity). As a consequence there is no simple correlation between surface and subsurface soil temperature. Efforts have been made to set up a coupled energy transport and energy balance model for the near surface considering thermal conduction, solar irradiation, thermal radiative energy and ambient temperature so far. The model can help to validate space-born and UAV-born thermal imagery and link surface to subsurface temperature but depends on in-situ measurements for input parameter determination and calibration. Results obtained so far strongly necessitate the integration of different data sources (in-situ / remote; point / area; local / medium scale) to obtain a reliable energy release estimation which is then used for coal fire characterization.

  10. Importance of solar subsurface heating in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Rochford, Peter A.; Kara, A. Birol; Wallcraft, Alan J.; Arnone, Robert A.

    2001-12-01

    The importance of subsurface heating on surface mixed layer properties in an ocean general circulation model (OGCM) is examined using attenuation of solar irradiance with depth below the ocean surface. The depth-dependent attenuation of subsurface heating is given by global monthly mean fields for the attenuation of photosynthetically available radiation (PAR), kPAR. These global fields of kPAR are derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data on the spectral diffuse attenuation coefficient at 490 nm (k490), and have been processed to have the smoothly varying and continuous coverage necessary for use in OGCM applications. These monthly fields provide the first complete global data sets of subsurface optical fields that can be used for OGCM applications of subsurface heating and bio-optical processes. The effect on global OGCM prediction of sea surface temperature (SST) and surface mixed layer depth (MLD) is examined when solar heating, as given by monthly mean kPAR and PAR fields, is included in the model. It is found that subsurface heating yields a marked increase in the SST predictive skill of the OGCM at low latitudes. No significant improvement in MLD predictive skill is obtained when including subsurface heating. Use of the monthly mean kPAR produces an SST decrease of up to 0.8°C and a MLD increase of up to only 4-5 m for climatological surface forcing, with this primarily confined to the equatorial regions. Remarkably, a constant kPAR value of 0.06 m-1, which is indicative of optically clear open ocean conditions, is found to serve very well for OGCM prediction of SST and MLD over most of the global ocean.

  11. Application of a GIS-/remote sensing-based approach for predicting groundwater potential zones using a multi-criteria data mining methodology.

    PubMed

    Mogaji, Kehinde Anthony; Lim, Hwee San

    2017-07-01

    This study integrates the application of Dempster-Shafer-driven evidential belief function (DS-EBF) methodology with remote sensing and geographic information system techniques to analyze surface and subsurface data sets for the spatial prediction of groundwater potential in Perak Province, Malaysia. The study used additional data obtained from the records of the groundwater yield rate of approximately 28 bore well locations. The processed surface and subsurface data produced sets of groundwater potential conditioning factors (GPCFs) from which multiple surface hydrologic and subsurface hydrogeologic parameter thematic maps were generated. The bore well location inventories were partitioned randomly into a ratio of 70% (19 wells) for model training to 30% (9 wells) for model testing. Application results of the DS-EBF relationship model algorithms of the surface- and subsurface-based GPCF thematic maps and the bore well locations produced two groundwater potential prediction (GPP) maps based on surface hydrologic and subsurface hydrogeologic characteristics which established that more than 60% of the study area falling within the moderate-high groundwater potential zones and less than 35% falling within the low potential zones. The estimated uncertainty values within the range of 0 to 17% for the predicted potential zones were quantified using the uncertainty algorithm of the model. The validation results of the GPP maps using relative operating characteristic curve method yielded 80 and 68% success rates and 89 and 53% prediction rates for the subsurface hydrogeologic factor (SUHF)- and surface hydrologic factor (SHF)-based GPP maps, respectively. The study results revealed that the SUHF-based GPP map accurately delineated groundwater potential zones better than the SHF-based GPP map. However, significant information on the low degree of uncertainty of the predicted potential zones established the suitability of the two GPP maps for future development of groundwater resources in the area. The overall results proved the efficacy of the data mining model and the geospatial technology in groundwater potential mapping.

  12. A 3-step framework for understanding the added value of surface soil moisture measurements for large-scale runoff prediction via data assimilation - a synthetic study in the Arkansas-Red River basin

    NASA Astrophysics Data System (ADS)

    Mao, Y.; Crow, W. T.; Nijssen, B.

    2017-12-01

    Soil moisture (SM) plays an important role in runoff generation both by partitioning infiltration and surface runoff during rainfall events and by controlling the rate of subsurface flow during inter-storm periods. Therefore, more accurate SM state estimation in hydrologic models is potentially beneficial for streamflow prediction. Various previous studies have explored the potential of assimilating SM data into hydrologic models for streamflow improvement. These studies have drawn inconsistent conclusions, ranging from significantly improved runoff via SM data assimilation (DA) to limited or degraded runoff. These studies commonly treat the whole assimilation procedure as a black box without separating the contribution of each step in the procedure, making it difficult to attribute the underlying causes of runoff improvement (or the lack thereof). In this study, we decompose the overall DA process into three steps by answering the following questions (3-step framework): 1) how much can assimilation of surface SM measurements improve surface SM state in a hydrologic model? 2) how much does surface SM improvement propagate to deeper layers? 3) How much does (surface and deeper-layer) SM improvement propagate into runoff improvement? A synthetic twin experiment is carried out in the Arkansas-Red River basin ( 600,000 km2) where a synthetic "truth" run, an open-loop run (without DA) and a DA run (where synthetic surface SM measurements are assimilated) are generated. All model runs are performed at 1/8 degree resolution and over a 10-year period using the Variable Infiltration Capacity (VIC) hydrologic model at a 3-hourly time step. For the DA run, the ensemble Kalman filter (EnKF) method is applied. The updated surface and deeper-layer SM states with DA are compared to the open-loop SM to quantitatively evaluate the first two steps in the framework. To quantify the third step, a set of perfect-state runs are generated where the "true" SM states are directly inserted in the model to assess the maximum possible runoff improvement that can be achieved by improving SM states alone. Our results show that the 3-step framework is able to effectively identify the potential as well as bottleneck of runoff improvement and point out the cases where runoff improvement via assimilation of surface SM is prone to failure.

  13. Untangling the biological contributions to soil stability in semiarid shrublands

    USGS Publications Warehouse

    Chaudhary, V. Bala; Bowker, Matthew A.; O'Dell, Thomas E.; Grace, James B.; Redman, Andrea E.; Rillig, Matthias C.; Johnson, Nancy C.

    2009-01-01

    Communities of plants, biological soil crusts (BSCs), and arbuscular mycorrhizal (AM) fungi are known to influence soil stability individually, but their relative contributions, interactions, and combined effects are not well understood, particularly in arid and semiarid ecosystems. In a landscape-scale field study we quantified plant, BSC, and AM fungal communities at 216 locations along a gradient of soil stability levels in southern Utah, USA. We used multivariate modeling to examine the relative influences of plants, BSCs, and AM fungi on surface and subsurface stability in a semiarid shrubland landscape. Models were found to be congruent with the data and explained 35% of the variation in surface stability and 54% of the variation in subsurface stability. The results support several tentative conclusions. While BSCs, plants, and AM fungi all contribute to surface stability, only plants and AM fungi contribute to subsurface stability. In both surface and subsurface models, the strongest contributions to soil stability are made by biological components of the system. Biological soil crust cover was found to have the strongest direct effect on surface soil stability (0.60; controlling for other factors). Surprisingly, AM fungi appeared to influence surface soil stability (0.37), even though they are not generally considered to exist in the top few millimeters of the soil. In the subsurface model, plant cover appeared to have the strongest direct influence on soil stability (0.42); in both models, results indicate that plant cover influences soil stability both directly (controlling for other factors) and indirectly through influences on other organisms. Soil organic matter was not found to have a direct contribution to surface or subsurface stability in this system. The relative influence of AM fungi on soil stability in these semiarid shrublands was similar to that reported for a mesic tallgrass prairie. Estimates of effects that BSCs, plants, and AM fungi have on soil stability in these models are used to suggest the relative amounts of resources that erosion control practitioners should devote to promoting these communities. This study highlights the need for system approaches in combating erosion, soil degradation, and arid-land desertification.

  14. Integrated Instrument Simulator Suites for Earth Science

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  15. Working Smarter Not Harder - Developing a Virtual Subsurface Data Framework for U.S. Energy R&D

    NASA Astrophysics Data System (ADS)

    Rose, K.; Baker, D.; Bauer, J.; Dehlin, M.; Jones, T. J.; Rowan, C.

    2017-12-01

    The data revolution has resulted in a proliferation of resources that span beyond commercial and social networking domains. Research, scientific, and engineering data resources, including subsurface characterization, modeling, and analytical datasets, are increasingly available through online portals, warehouses, and systems. Data for subsurface systems is still challenging to access, discontinuous, and varies in resolution. However, with the proliferation of online data there are significant opportunities to advance access and knowledge of subsurface systems. The Energy Data eXchange (EDX) is an online platform designed to address research data needs by improving access to energy R&D products through advanced search capabilities. In addition, EDX hosts private, virtualized computational workspaces in support of multi-organizational R&D. These collaborative workspaces allow teams to share working data resources and connect to a growing number of analytical tools to support research efforts. One recent application, a team digital data notebook tool, called DataBook, was introduced within EDX workspaces to allow teams to capture contextual and structured data resources. Starting with DOE's subsurface R&D community, the EDX team has been developing DataBook to support scientists and engineers working on subsurface energy research, allowing them to contribute and curate both structured and unstructured data and knowledge about subsurface systems. These resources span petrophysical, geologic, engineering, geophysical, interpretations, models, and analyses associated with carbon storage, water, oil, gas, geothermal, induced seismicity and other subsurface systems to support the development of a virtual subsurface data framework. The integration of EDX and DataBook allows for these systems to leverage each other's best features, such as the ability to interact with other systems (Earthcube, OpenEI.net, NGDS, etc.) and leverage custom machine learning algorithms and capabilities to enhance user experience, make access and connection to relevant subsurface data resources more efficient for research teams to use, analyze and draw insights. Ultimately, the public and private resources in EDX seek to make subsurface energy research more efficient, reduce redundancy, and drive innovation.

  16. The influence of subsurface hydrodynamics on convective precipitation

    NASA Astrophysics Data System (ADS)

    Rahman, A. S. M. M.; Sulis, M.; Kollet, S. J.

    2014-12-01

    The terrestrial hydrological cycle comprises complex processes in the subsurface, land surface, and atmosphere, which are connected via complex non-linear feedback mechanisms. The influence of subsurface hydrodynamics on land surface mass and energy fluxes has been the subject of previous studies. Several studies have also investigated the soil moisture-precipitation feedback, neglecting however the connection with groundwater dynamics. The objective of this study is to examine the impact of subsurface hydrodynamics on convective precipitation events via shallow soil moisture and land surface processes. A scale-consistent Terrestrial System Modeling Platform (TerrSysMP) that consists of an atmospheric model (COSMO), a land surface model (CLM), and a three-dimensional variably saturated groundwater-surface water flow model (ParFlow), is used to simulate hourly mass and energy fluxes over days with convective rainfall events over the Rur catchment, Germany. In order to isolate the effect of groundwater dynamics on convective precipitation, two different model configurations with identical initial conditions are considered. The first configuration allows the groundwater table to evolve through time, while a spatially distributed, temporally constant groundwater table is prescribed as a lower boundary condition in the second configuration. The simulation results suggest that groundwater dynamics influence land surface soil moisture, which in turn affects the atmospheric boundary layer (ABL) height by modifying atmospheric thermals. It is demonstrated that because of this sensitivity of ABL height to soil moisture-temperature feedback, the onset and magnitude of convective precipitation is influenced by subsurface hydrodynamics. Thus, the results provide insight into the soil moisture-precipitation feedback including groundwater dynamics in a physically consistent manner by closing the water cycle from aquifers to the atmosphere.

  17. An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes

    DOE PAGES

    Jan, Ahmad; Coon, Ethan T.; Painter, Scott L.; ...

    2017-07-10

    Integrated surface/subsurface models for simulating the thermal hydrology of permafrost-affected regions in a warming climate have recently become available, but computational demands of those new process-rich simu- lation tools have thus far limited their applications to one-dimensional or small two-dimensional simulations. We present a mixed-dimensional model structure for efficiently simulating surface/subsurface thermal hydrology in low-relief permafrost regions at watershed scales. The approach replaces a full three-dimensional system with a two-dimensional overland thermal hydrology system and a family of one-dimensional vertical columns, where each column represents a fully coupled surface/subsurface thermal hydrology system without lateral flow. The system is then operatormore » split, sequentially updating the overland flow system without sources and the one-dimensional columns without lateral flows. We show that the app- roach is highly scalable, supports subcycling of different processes, and compares well with the corresponding fully three-dimensional representation at significantly less computational cost. Those advances enable recently developed representations of freezing soil physics to be coupled with thermal overland flow and surface energy balance at scales of 100s of meters. Furthermore developed and demonstrated for permafrost thermal hydrology, the mixed-dimensional model structure is applicable to integrated surface/subsurface thermal hydrology in general.« less

  18. A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America

    NASA Astrophysics Data System (ADS)

    Govind, Ajit; Chen, Jing Ming; Margolis, Hank; Ju, Weimin; Sonnentag, Oliver; Giasson, Marc-André

    2009-04-01

    SummaryA spatially explicit, process-based hydro-ecological model, BEPS-TerrainLab V2.0, was developed to improve the representation of ecophysiological, hydro-ecological and biogeochemical processes of boreal ecosystems in a tightly coupled manner. Several processes unique to boreal ecosystems were implemented including the sub-surface lateral water fluxes, stratification of vegetation into distinct layers for explicit ecophysiological representation, inclusion of novel spatial upscaling strategies and biogeochemical processes. To account for preferential water fluxes common in humid boreal ecosystems, a novel scheme was introduced based on laboratory analyses. Leaf-scale ecophysiological processes were upscaled to canopy-scale by explicitly considering leaf physiological conditions as affected by light and water stress. The modified model was tested with 2 years of continuous measurements taken at the Eastern Old Black Spruce Site of the Fluxnet-Canada Research Network located in a humid boreal watershed in eastern Canada. Comparison of the simulated and measured ET, water-table depth (WTD), volumetric soil water content (VSWC) and gross primary productivity (GPP) revealed that BEPS-TerrainLab V2.0 simulates hydro-ecological processes with reasonable accuracy. The model was able to explain 83% of the ET, 92% of the GPP variability and 72% of the WTD dynamics. The model suggests that in humid ecosystems such as eastern North American boreal watersheds, topographically driven sub-surface baseflow is the main mechanism of soil water partitioning which significantly affects the local-scale hydrological conditions.

  19. Theoretical analysis of optical properties of dielectric coatings dependence on substrate subsurface defects

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Liu, Shouhua; Shen, Zicai; Shao, Jianda; Fan, Zhengxiu

    2006-03-01

    A model for refractive index of stratified dielectric substrate was put forward according to theories of inhomogeneous coatings. The substrate was divided into surface layer, subsurface layer and bulk layer along the normal direction of its surface. Both the surface layer (separated into N1 sublayers of uniform thickness) and subsurface layer (separated into N2 sublayers of uniform thickness), whose refractive indices have different statistical distributions, are equivalent to inhomogeneous coatings, respectively. And theoretical deduction was carried out by employing characteristic matrix method of optical coatings. An example of mathematical calculation for optical properties of dielectric coatings had been presented. The computing results indicate that substrate subsurface defects can bring about additional bulk scattering and change propagation characteristic in thin film and substrate. Therefore, reflectance, reflective phase shift and phase difference of an assembly of coatings and substrate deviate from ideal conditions. The model will provide some beneficial theory directions for improving optical properties of dielectric coatings via substrate surface modification.

  20. Hydrological modelling in sandstone rocks watershed

    NASA Astrophysics Data System (ADS)

    Ponížilová, Iva; Unucka, Jan

    2015-04-01

    The contribution is focused on the modelling of surface and subsurface runoff in the Ploučnice basin. The used rainfall-runoff model is HEC-HMS comprising of the method of SCS CN curves and a recession method. The geological subsurface consisting of sandstone is characterised by reduced surface runoff and, on the contrary, it contributes to subsurface runoff. The aim of this paper is comparison of the rate of influence of sandstone on reducing surface runoff. The recession method for subsurface runoff was used to determine the subsurface runoff. The HEC-HMS model allows semi- and fully distributed approaches to schematisation of the watershed and rainfall situations. To determine the volume of runoff the method of SCS CN curves is used, which results depend on hydrological conditions of the soils. The rainfall-runoff model assuming selection of so-called methods of event of the SCS-CN type is used to determine the hydrograph and peak flow rate based on simulation of surface runoff in precipitation exceeding the infiltration capacity of the soil. The recession method is used to solve the baseflow (subsurface) runoff. The method is based on the separation of hydrograph to direct runoff and subsurface or baseflow runoff. The study area for the simulation of runoff using the method of SCS CN curves to determine the hydrological transformation is the Ploučnice basin. The Ploučnice is a hydrologically significant river in the northern part of the Czech Republic, it is a right tributary of the Elbe river with a total basin area of 1.194 km2. The average value of CN curves for the Ploučnice basin is 72. The geological structure of the Ploučnice basin is predominantly formed by Mesozoic sandstone. Despite significant initial loss of rainfall the basin response to the causal rainfall was demonstrated by a rapid rise of the surface runoff from the watershed and reached culmination flow. Basically, only surface runoff occures in the catchment during the initial phase of this extreme event. The increase of the baseflow runoff is slower and remains constant after reaching a certain level. The rise of the baseflow runoff is showed in a descending part of the hydrograph. The recession method in this case shows almost 20 hours delay. Results from the HEC-HMS prove availability of both methods for the runoff modeling in this type of catchment. When simulating extreme short-term rainfall-runoff episodes, the influence of geological subsurface is not significant, but it is manifested. Using more relevant rainfall events would bring more satisfactory results.

  1. Cometary activity and nucleus modelling: a new approach

    NASA Astrophysics Data System (ADS)

    Möhlmann, D.

    1996-06-01

    The phenomena of comet splittings with an average frequency of about one splitting per 100 years and comet (Chen and Jewitt, Icarus108, 265-271, 1994), and the restriction of cometary activity to well-defined small areas at the almost passive and mantle covered surface (Keller et al., ESA SP-250, Vol. II, pp. 363-364, 1986) are at present driving challenges to models of structure and evolution of comet nuclei. Extending the presently discussed models by incorporating lateral subsurface transport of sublimed volatiles, there appears the possibility that the places of sublimation are different from those of activity (the so-called active areas). Then, there is no necessity to distinguish between different surface properties at active and passive areas, assuming, e.g. an uncovered icy surface at active areas. Active areas are simply the very local "source sites" where the accumulated subsurface flows from distant regions reach the surface. The pressure driven subsurface flows of volatiles may not only leave the comet at its surface, they may penetrate via cracks, etc. also deeply into the nucleus. There they can cause a further growth of cracks and also new cracks. This can be a cause for the observed regular splittings. Furthermore, actual models (Kührt and Keller, Icarus109, 121-132, 1994; Skorov and Rickman, Planet. Space Sci.43, 1587-1594, 1995) of the gas transport through porous comet surface crusts can be interpreted as to give first indications for thermodynamical parameters in heat conducting and porous cometary crusts which are appropriate for 1 AU conditions to permit the temporary existence of a layer with fluid subsurface water within these crusts. This exciting result of the possible temporary existence of subsurface warm water in comets which approach the Sun within about 1 AU makes a cometary subsurface chemistry much more efficient than expected hitherto.

  2. Lessons Learned from Assimilating Altimeter Data into a Coupled General Circulation Model with the GMAO Augmented Ensemble Kalman Filter

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian; Vernieres, Guillaume; Rienecker, Michele; Jacob, Jossy; Kovach, Robin

    2011-01-01

    Satellite altimetry measurements have provided global, evenly distributed observations of the ocean surface since 1993. However, the difficulties introduced by the presence of model biases and the requirement that data assimilation systems extrapolate the sea surface height (SSH) information to the subsurface in order to estimate the temperature, salinity and currents make it difficult to optimally exploit these measurements. This talk investigates the potential of the altimetry data assimilation once the biases are accounted for with an ad hoc bias estimation scheme. Either steady-state or state-dependent multivariate background-error covariances from an ensemble of model integrations are used to address the problem of extrapolating the information to the sub-surface. The GMAO ocean data assimilation system applied to an ensemble of coupled model instances using the GEOS-5 AGCM coupled to MOM4 is used in the investigation. To model the background error covariances, the system relies on a hybrid ensemble approach in which a small number of dynamically evolved model trajectories is augmented on the one hand with past instances of the state vector along each trajectory and, on the other, with a steady state ensemble of error estimates from a time series of short-term model forecasts. A state-dependent adaptive error-covariance localization and inflation algorithm controls how the SSH information is extrapolated to the sub-surface. A two-step predictor corrector approach is used to assimilate future information. Independent (not-assimilated) temperature and salinity observations from Argo floats are used to validate the assimilation. A two-step projection method in which the system first calculates a SSH increment and then projects this increment vertically onto the temperature, salt and current fields is found to be most effective in reconstructing the sub-surface information. The performance of the system in reconstructing the sub-surface fields is particularly impressive for temperature, but not as satisfactory for salt.

  3. Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes

    DOE PAGES

    Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.; ...

    2016-07-18

    The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less

  4. Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.

    The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less

  5. Predictive assimilation framework to support contaminated site understanding and remediation

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Bianchi, M.; Hubbard, S. S.

    2014-12-01

    Subsurface system behavior at contaminated sites is driven and controlled by the interplay of physical, chemical, and biological processes occurring at multiple temporal and spatial scales. Effective remediation and monitoring planning requires an understanding of this complexity that is current, predictive (with some level of confidence) and actionable. We present and demonstrate a predictive assimilation framework (PAF). This framework automatically ingests, quality controls and stores near real-time environmental data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of the subsurface system. PAF is implemented as a cloud based software application which has five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result deliver and (5) orchestration. Access to and interaction with PAF is done through a standard browser. PAF is designed to be modular so that it can ingest and process different data streams dependent on the site. We will present an implementation of PAF which uses data from a highly instrumented site (the DOE Rifle Subsurface Biogeochemistry Field Observatory in Rifle, Colorado) for which PAF automatically ingests hydrological data and forward models groundwater flow in the saturated zone.

  6. Probabilistic inversion of AVO seismic data for reservoir properties and related uncertainty estimation

    NASA Astrophysics Data System (ADS)

    Zunino, Andrea; Mosegaard, Klaus

    2017-04-01

    Sought-after reservoir properties of interest are linked only indirectly to the observable geophysical data which are recorded at the earth's surface. In this framework, seismic data represent one of the most reliable tool to study the structure and properties of the subsurface for natural resources. Nonetheless, seismic analysis is not an end in itself, as physical properties such as porosity are often of more interest for reservoir characterization. As such, inference of those properties implies taking into account also rock physics models linking porosity and other physical properties to elastic parameters. In the framework of seismic reflection data, we address this challenge for a reservoir target zone employing a probabilistic method characterized by a multi-step complex nonlinear forward modeling that combines: 1) a rock physics model with 2) the solution of full Zoeppritz equations and 3) a convolutional seismic forward modeling. The target property of this work is porosity, which is inferred using a Monte Carlo approach where porosity models, i.e., solutions to the inverse problem, are directly sampled from the posterior distribution. From a theoretical point of view, the Monte Carlo strategy can be particularly useful in the presence of nonlinear forward models, which is often the case when employing sophisticated rock physics models and full Zoeppritz equations and to estimate related uncertainty. However, the resulting computational challenge is huge. We propose to alleviate this computational burden by assuming some smoothness of the subsurface parameters and consequently parameterizing the model in terms of spline bases. This allows us a certain flexibility in that the number of spline bases and hence the resolution in each spatial direction can be controlled. The method is tested on a 3-D synthetic case and on a 2-D real data set.

  7. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream-aquifer-land interactions (CP v1.0)

    NASA Astrophysics Data System (ADS)

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian; Chen, Xingyuan; Dai, Heng; Hammond, Glenn E.; Riley, William J.; Downs, Janelle L.; Liu, Ying; Zachara, John M.

    2017-12-01

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year period to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater-river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater-river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater-river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.

  8. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)

    DOE PAGES

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian; ...

    2017-12-12

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year periodmore » to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.« less

  9. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year period to evaluate themore » impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.« less

  10. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)

    DOE PAGES

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian; ...

    2017-01-01

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year period to evaluate themore » impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.« less

  11. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year periodmore » to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.« less

  12. Application of a fully integrated surface-subsurface physically based flow model for evaluating groundwater recharge from a flash flood event

    NASA Astrophysics Data System (ADS)

    Pino, Cristian; Herrera, Paulo; Therrien, René

    2017-04-01

    In many arid regions around the world groundwater recharge occurs during flash floods. This transient spatially and temporally concentrated flood-recharge process takes place through the variably saturated zone between surface and usually the deep groundwater table. These flood events are characterized by rapid and extreme changes in surface flow depth and velocity and soil moisture conditions. Infiltration rates change over time controlled by the hydraulic gradients and the unsaturated hydraulic conductivity at the surface-subsurface interface. Today is a challenge to assess the spatial and temporal distribution of groundwater recharge from flash flood events under real field conditions at different scales in arid areas. We apply an integrated surface-subsurface variably saturated physically-based flow model at the watershed scale to assess the recharge process during and after a flash flood event registered in an arid fluvial valley in Northern Chile. We are able to reproduce reasonably well observed groundwater levels and surface flow discharges during and after the flood with a calibrated model. We also investigate the magnitude and spatio-temporal distribution of recharge and the response of the system to variations of different surface and subsurface parameters, initial soil moisture content and groundwater table depths and surface flow conditions. We demonstrate how an integrated physically based model allows the exploration of different spatial and temporal system states, and that the analysis of the results of the simulations help us to improve our understanding of the recharge processes in similar type of systems that are common to many arid areas around the world.

  13. Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO 2 on Copper?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza, Alejandro J.; Bell, Alexis T.; Head-Gordon, Martin

    It has recently been proposed that subsurface oxygen is crucial for the adsorption and subsequent electroreduction of CO 2 on copper. Using density functional theory, we have studied the stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets. Oxygen is at least 1.5 eV more stable on the surface than beneath it for both crystal orientations; interstitial sites are too small to accommodate oxygen. Here, the rate of atomic oxygen diffusion from one layer below a Cu(111) surface to the surface is 5 × 10 3 s –1. Oxygen can survive longer inmore » deeper layers, but it does not promote CO 2 adsorption there. Diffusion of subsurface oxygen is easier to the less-dense Cu(100) surface, even from lower layers (rate ≈ 1 × 107 s–1). Finally, once the applied voltage and dispersion forces are properly modeled, we find that subsurface oxygen is unnecessary for CO 2 adsorption on copper.« less

  14. Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO 2 on Copper?

    DOE PAGES

    Garza, Alejandro J.; Bell, Alexis T.; Head-Gordon, Martin

    2018-01-17

    It has recently been proposed that subsurface oxygen is crucial for the adsorption and subsequent electroreduction of CO 2 on copper. Using density functional theory, we have studied the stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets. Oxygen is at least 1.5 eV more stable on the surface than beneath it for both crystal orientations; interstitial sites are too small to accommodate oxygen. Here, the rate of atomic oxygen diffusion from one layer below a Cu(111) surface to the surface is 5 × 10 3 s –1. Oxygen can survive longer inmore » deeper layers, but it does not promote CO 2 adsorption there. Diffusion of subsurface oxygen is easier to the less-dense Cu(100) surface, even from lower layers (rate ≈ 1 × 107 s–1). Finally, once the applied voltage and dispersion forces are properly modeled, we find that subsurface oxygen is unnecessary for CO 2 adsorption on copper.« less

  15. Anatomy of a local-scale drought: Application of assimilated remote sensing products, crop model, and statistical methods to an agricultural drought study

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok K.; Ines, Amor V. M.; Das, Narendra N.; Prakash Khedun, C.; Singh, Vijay P.; Sivakumar, Bellie; Hansen, James W.

    2015-07-01

    Drought is of global concern for society but it originates as a local problem. It has a significant impact on water quantity and quality and influences food, water, and energy security. The consequences of drought vary in space and time, from the local scale (e.g. county level) to regional scale (e.g. state or country level) to global scale. Within the regional scale, there are multiple socio-economic impacts (i.e., agriculture, drinking water supply, and stream health) occurring individually or in combination at local scales, either in clusters or scattered. Even though the application of aggregated drought information at the regional level has been useful in drought management, the latter can be further improved by evaluating the structure and evolution of a drought at the local scale. This study addresses a local-scale agricultural drought anatomy in Story County in Iowa, USA. This complex problem was evaluated using assimilated AMSR-E soil moisture and MODIS-LAI data into a crop model to generate surface and sub-surface drought indices to explore the anatomy of an agricultural drought. Quantification of moisture supply in the root zone remains a gray area in research community, this challenge can be partly overcome by incorporating assimilation of soil moisture and leaf area index into crop modeling framework for agricultural drought quantification, as it performs better in simulating crop yield. It was noted that the persistence of subsurface droughts is in general higher than surface droughts, which can potentially improve forecast accuracy. It was found that both surface and subsurface droughts have an impact on crop yields, albeit with different magnitudes, however, the total water available in the soil profile seemed to have a greater impact on the yield. Further, agricultural drought should not be treated equal for all crops, and it should be calculated based on the root zone depth rather than a fixed soil layer depth. We envisaged that the results of this study will enhance our understanding of agricultural droughts in different parts of the world.

  16. 3D Geospatial Models for Visualization and Analysis of Groundwater Contamination at a Nuclear Materials Processing Facility

    NASA Astrophysics Data System (ADS)

    Stirewalt, G. L.; Shepherd, J. C.

    2003-12-01

    Analysis of hydrostratigraphy and uranium and nitrate contamination in groundwater at a former nuclear materials processing facility in Oklahoma were undertaken employing 3-dimensional (3D) geospatial modeling software. Models constructed played an important role in the regulatory decision process of the U.S. Nuclear Regulatory Commission (NRC) because they enabled visualization of temporal variations in contaminant concentrations and plume geometry. Three aquifer systems occur at the site, comprised of water-bearing fractured shales separated by indurated sandstone aquitards. The uppermost terrace groundwater system (TGWS) aquifer is composed of terrace and alluvial deposits and a basal shale. The shallow groundwater system (SGWS) aquifer is made up of three shale units and two sandstones. It is separated from the overlying TGWS and underlying deep groundwater system (DGWS) aquifer by sandstone aquitards. Spills of nitric acid solutions containing uranium and radioactive decay products around the main processing building (MPB), leakage from storage ponds west of the MPB, and leaching of radioactive materials from discarded equipment and waste containers contaminated both the TGWS and SGWS aquifers during facility operation between 1970 and 1993. Constructing 3D geospatial property models for analysis of groundwater contamination at the site involved use of EarthVision (EV), a 3D geospatial modeling software developed by Dynamic Graphics, Inc. of Alameda, CA. A viable 3D geohydrologic framework model was initially constructed so property data could be spatially located relative to subsurface geohydrologic units. The framework model contained three hydrostratigraphic zones equivalent to the TGWS, SGWS, and DGWS aquifers in which groundwater samples were collected, separated by two sandstone aquitards. Groundwater data collected in the three aquifer systems since 1991 indicated high concentrations of uranium (>10,000 micrograms/liter) and nitrate (> 500 milligrams/liter) around the MPB and elevated nitrate (> 2000 milligrams/ liter) around storage ponds. Vertical connectivity was suggested between the TGWS and SGWS, while the DGWS appeared relatively isolated from the overlying aquifers. Lateral movement of uranium was also suggested over time. For example, lateral migration in the TGWS is suggested along a shallow depression in the bedrock surface trending south-southwest from the southwest corner of the MPB. Another pathway atop the buried bedrock surface, trending west-northwest from the MPB and partially reflected by current surface topography, suggested lateral migration of nitrate in the SGWS. Lateral movement of nitrate in the SGWS was also indicated north, south, and west of the largest storage pond. Definition of contaminant plume movement over time is particularly important for assessing direction and rate of migration and the potential need for preventive measures to control contamination of groundwater outside facility property lines. The 3D geospatial property models proved invaluable for visualizing and analyzing variations in subsurface uranium and nitrate contamination in space and time within and between the three aquifers at the site. The models were an exceptional visualization tool for illustrating extent, volume, and quantitative amounts of uranium and nitrate contamination in the subsurface to regulatory decision-makers in regard to site decommissioning issues, including remediation concerns, providing a perspective not possible to achieve with traditional 2D maps. The geohydrologic framework model provides a conceptual model for consideration in flow and transport analyses.

  17. High frequency acoustic propagation under variable sea surfaces

    NASA Astrophysics Data System (ADS)

    Senne, Joseph

    This dissertation examines the effects of rough sea surfaces and sub-surface bubbles on high frequency acoustic transmissions. Owing to the strong attenuation of electromagnetic waves in seawater, acoustic waves are used in the underwater realm much in the same way that electromagnetic waves are used in the atmosphere. The transmission and reception of acoustic waves in the underwater environment is important for a variety of fields including navigation, ocean observation, and real-time communications. Rough sea surfaces and sub-surface bubbles alter the acoustic signals that are received not only in the near-surface water column, but also at depth. This dissertation demonstrates that surface roughness and sub-surface bubbles notably affect acoustic transmissions with frequency ranges typical of underwater communications systems (10-50 kHz). The influence of rough surfaces on acoustic transmissions is determined by modeling forward propagation subject to sea surface dynamics that vary with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Linear surface waves are generated from surface wave spectra, and evolved in time using a Runge-Kutta integration technique. This evolving, range-dependent surface information is combined with other environmental parameters and fed into the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. The influence of sub-surface bubbles on acoustic transmissions is determined by modeling the population of bubbles near the surface and using those populations to approximate the effective changes in sound speed and attenuation. Both range-dependent and range-independent bubble models are considered, with the range-dependent model varying over the same time scales as the sea surface model and the range-independent model invariant over time. The bubble-induced sound speed and attenuation fluctuations are read in by the parabolic equation model, which allows for the effects of surface roughness and sub-surface bubbles to be computed separately or together. These merged acoustic models are validated using concurrently-collected acoustic and environmental information, including surface wave spectra. Data to model comparisons demonstrate that the models are able to approximate the ensemble-averaged acoustic intensity at ranges of at least a kilometer for acoustic signals of 10-20 kHz. The rough surface model is shown to capture variations due to surface fluctuations occurring over time scales of less than a second to tens of seconds. The separate bubble models demonstrate the abilities to account for the intermittency of bubble plumes and to determine overall effect of bubbly layers, respectively. The models are shown to capture variations in the acoustic field occurring over time scales of less than a second to tens of seconds. Comparisons against data demonstrate the ability of the model to track acoustic transmissions under evolving sea surfaces. The effects of the evolving bubble field are demonstrated through the use of idealized test cases. For frequency ranges important to communications, surface roughness is shown to have the more dominant effect, with bubbles having an ancillary effect.

  18. Hydrogeologic framework of the middle San Pedro watershed, southeastern Arizona

    USGS Publications Warehouse

    Dickinson, Jesse; Kennedy, Jeffrey R.; Pool, D.R.; Cordova, Jeffrey T.; Parker, John T.; Macy, J.P.; Thomas, Blakemore

    2010-01-01

    Water managers in rural Arizona are under increasing pressure to provide sustainable supplies of water despite rapid population growth and demands for environmental protection. This report describes the results of a study of the hydrogeologic framework of the middle San Pedro watershed. The components of this report include: (1) a description of the geologic setting and depositional history of basin fill sediments that form the primary aquifer system, (2) updated bedrock altitudes underlying basin fill sediments calculated using a subsurface density model of gravity data, (3) delineation of hydrogeologic units in the basin fill using lithologic descriptions in driller's logs and models of airborne electrical resistivity data, (4) a digital three-dimensional (3D) hydrogeologic framework model (HFM) that represents spatial extents and thicknesses of the hydrogeologic units (HGUs), and (5) description of the hydrologic properties of the HGUs. The lithologic interpretations based on geophysical data and unit thickness and extent of the HGUs included in the HFM define potential configurations of hydraulic zones and parameters that can be incorporated in groundwater-flow models. The hydrogeologic framework comprises permeable and impermeable stratigraphic units: (1) bedrock, (2) sedimentary rocks predating basin-and-range deformation, (3) lower basin fill, (4) upper basin fill, and (5) stream alluvium. The bedrock unit includes Proterozoic to Cretaceous crystalline rocks, sedimentary rocks, and limestone that are relatively impermeable and poor aquifers, except for saturated portions of limestone. The pre-basin-and-range sediments underlie the lower basin fill but are relatively impermeable owing to cementation. However, they may be an important water-bearing unit where fractured. Alluvium of the lower basin fill, the main water-bearing unit, was deposited in the structural trough between the uplifted ridges of bedrock and (or) pre-basin-and-range sediments. Alluvium of the upper basin fill may be more permeable than the lower basin fill, but it is generally unsaturated in the study area. The lower basin fill stratigraphic unit was delineated into three HGUs on the basis of lithologic descriptions in driller?s logs and one-dimensional (1D) electrical models of airborne transient electromagnetic (TEM) surveys. The interbedded lower basin fill (ILBF) HGU represents an upper sequence having resistivity values between 5 and 40 ohm-m identified as interbedded sand, gravel, and clay in driller?s logs. Below this upper sequence, fine-grained lower basin fill (FLBF) HGU represents a thick silt and clay sequence having resistivity values between 5 and 20 ohm-m. Within the coarse-grained lower basin fill (CLBF) HGU, which underlies the silt and clay of the FLBF, the resistivity values on logs and 1D models increase to several hundred ohm-m and are highly variable within sand and gravel layers. These sequences match distinct resistivity and lithologic layers identified by geophysical logs in the adjacent Sierra Vista subwatershed, suggesting that these sequences are laterally continuous within both the Benson and Sierra Vista subwatersheds in the Upper San Pedro Basin. A subsurface density model based on gravity data was constructed to identify the top of bedrock and structures that may affect regional groundwater flow. The subsurface density model contains six layers having uniform density values, which are assigned on the basis of geophysical logs. The density values for the layers range between 1.65 g/cm3 for unsaturated sediments near the land surface and 2.67 g/cm3 for bedrock. Major features include three subbasins within the study area, the Huachuca City subbasin, the Tombstone subbasin, and the Benson subbasin, which have no expression in surface topography or lithology. Bedrock altitudes from the subsurface density model defined top altitudes of the bedrock HGU. The HFM includes the following HGUs in ascending stratigr

  19. Modifying WEPP to improve streamflow simulation in a Pacific Northwest watershed

    Treesearch

    A. Srivastava; M. Dobre; J. Q. Wu; W. J. Elliot; E. A. Bruner; S. Dun; E. S. Brooks; I. S. Miller

    2013-01-01

    The assessment of water yield from hillslopes into streams is critical in managing water supply and aquatic habitat. Streamflow is typically composed of surface runoff, subsurface lateral flow, and groundwater baseflow; baseflow sustains the stream during the dry season. The Water Erosion Prediction Project (WEPP) model simulates surface runoff, subsurface lateral flow...

  20. Modelling deuterium release from tungsten after high flux high temperature deuterium plasma exposure

    NASA Astrophysics Data System (ADS)

    Grigorev, Petr; Matveev, Dmitry; Bakaeva, Anastasiia; Terentyev, Dmitry; Zhurkin, Evgeny E.; Van Oost, Guido; Noterdaeme, Jean-Marie

    2016-12-01

    Tungsten is a primary candidate for plasma facing materials for future fusion devices. An important safety concern in the design of plasma facing components is the retention of hydrogen isotopes. Available experimental data is vast and scattered, and a consistent physical model of retention of hydrogen isotopes in tungsten is still missing. In this work we propose a model of non-equilibrium hydrogen isotopes trapping under fusion relevant plasma exposure conditions. The model is coupled to a diffusion-trapping simulation tool and is used to interpret recent experiments involving high plasma flux exposures. From the computational analysis performed, it is concluded that high flux high temperature exposures (T = 1000 K, flux = 1024 D/m2/s and fluence of 1026 D/m2) result in generation of sub-surface damage and bulk diffusion, so that the retention is driven by both sub-surface plasma-induced defects (bubbles) and trapping at natural defects. On the basis of the non-equilibrium trapping model we have estimated the amount of H stored in the sub-surface region to be ∼10-5 at-1, while the bulk retention is about 4 × 10-7 at-1, calculated by assuming the sub-surface layer thickness of about 10 μm and adjusting the trap concentration to comply with the experimental results for the integral retention.

  1. A reference data set of hillslope rainfall-runoff response, Panola Mountain Research Watershed, United States

    USGS Publications Warehouse

    Tromp-van, Meerveld; James, A.L.; McDonnell, Jeffery J.; Peters, N.E.

    2008-01-01

    Although many hillslope hydrologic investigations have been conducted in different climate, topographic, and geologic settings, subsurface stormflow remains a poorly characterized runoff process. Few, if any, of the existing data sets from these hillslope investigations are available for use by the scientific community for model development and validation or conceptualization of subsurface stormflow. We present a high-resolution spatial and temporal rainfall-runoff data set generated from the Panola Mountain Research Watershed trenched experimental hillslope. The data set includes surface and subsurface (bedrock surface) topographic information and time series of lateral subsurface flow at the trench, rainfall, and subsurface moisture content (distributed soil moisture content and groundwater levels) from January to June 2002. Copyright 2008 by the American Geophysical Union.

  2. Using airborne geophysical surveys to improve groundwater resource management models

    USGS Publications Warehouse

    Abraham, Jared D.; Cannia, James C.; Peterson, Steven M.; Smith, Bruce D.; Minsley, Burke J.; Bedrosian, Paul A.

    2010-01-01

    Increasingly, groundwater management requires more accurate hydrogeologic frameworks for groundwater models. These complex issues have created the demand for innovative approaches to data collection. In complicated terrains, groundwater modelers benefit from continuous high‐resolution geologic maps and their related hydrogeologic‐parameter estimates. The USGS and its partners have collaborated to use airborne geophysical surveys for near‐continuous coverage of areas of the North Platte River valley in western Nebraska. The survey objectives were to map the aquifers and bedrock topography of the area to help improve the understanding of groundwater‐surface‐water relationships, leading to improved water management decisions. Frequency‐domain heliborne electromagnetic surveys were completed, using a unique survey design to collect resistivity data that can be related to lithologic information to refine groundwater model inputs. To render the geophysical data useful to multidimensional groundwater models, numerical inversion is necessary to convert the measured data into a depth‐dependent subsurface resistivity model. This inverted model, in conjunction with sensitivity analysis, geological ground truth (boreholes and surface geology maps), and geological interpretation, is used to characterize hydrogeologic features. Interpreted two‐ and three‐dimensional data coverage provides the groundwater modeler with a high‐resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. This method of creating hydrogeologic frameworks improved the understanding of flow path orientation by redefining the location of the paleochannels and associated bedrock highs. The improved models reflect actual hydrogeology at a level of accuracy not achievable using previous data sets.

  3. Quantitative Subsurface Atomic Structure Fingerprint for 2D Materials and Heterostructures by First-Principles-Calibrated Contact-Resonance Atomic Force Microscopy.

    PubMed

    Tu, Qing; Lange, Björn; Parlak, Zehra; Lopes, Joao Marcelo J; Blum, Volker; Zauscher, Stefan

    2016-07-26

    Interfaces and subsurface layers are critical for the performance of devices made of 2D materials and heterostructures. Facile, nondestructive, and quantitative ways to characterize the structure of atomically thin, layered materials are thus essential to ensure control of the resultant properties. Here, we show that contact-resonance atomic force microscopy-which is exquisitely sensitive to stiffness changes that arise from even a single atomic layer of a van der Waals-adhered material-is a powerful experimental tool to address this challenge. A combined density functional theory and continuum modeling approach is introduced that yields sub-surface-sensitive, nanomechanical fingerprints associated with specific, well-defined structure models of individual surface domains. Where such models are known, this information can be correlated with experimentally obtained contact-resonance frequency maps to reveal the (sub)surface structure of different domains on the sample.

  4. Geohydrologic Framework of the Edwards and Trinity Aquifers, South-Central Texas

    USGS Publications Warehouse

    Blome, Charles D.; Faith, Jason R.; Ozuna, George B.

    2007-01-01

    This five-year USGS project, funded by the National Cooperative Geologic Mapping Program, is using multidisciplinary approaches to reveal the surface and subsurface geologic architecture of two important Texas aquifers: (1) the Edwards aquifer that extends from south of Austin to west of San Antonio and (2) the southern part of the Trinity aquifer in the Texas Hill Country west and south of Austin. The project's principal areas of research include: Geologic Mapping, Geophysical Surveys, Geochronology, Three-dimensional Modeling, and Noble Gas Geochemistry. The Edwards aquifer is one of the most productive carbonate aquifers in the United States. It also has been designated a sole source aquifer by the U.S. Environmental Protection Agency and is the primary source of water for San Antonio, America's eighth largest city. The Trinity aquifer forms the catchment area for the Edwards aquifer and it intercepts some surface flow above the Edwards recharge zone. The Trinity may also contribute to the Edwards water budget by subsurface flow across formation boundaries at considerable depths. Dissolution, karst development, and faulting and fracturing in both aquifers directly control aquifer geometry by compartmentalizing the aquifer and creating unique ground-water flow paths.

  5. Debates - Stochastic subsurface hydrology from theory to practice: Introduction

    NASA Astrophysics Data System (ADS)

    Rajaram, Harihar

    2016-12-01

    This paper introduces the papers in the "Debates - Stochastic Subsurface Hydrology from Theory to Practice" series. Beginning in the 1970s, the field of stochastic subsurface hydrology has been an active field of research, with over 3500 journal publications, of which over 850 have appeared in Water Resources Research. We are fortunate to have insightful contributions from four groups of distinguished authors who discuss the reasons why the advanced research framework established in stochastic subsurface hydrology has not impacted the practice of groundwater flow and transport modeling and design significantly. There is reasonable consensus that a community effort aimed at developing "toolboxes" for applications of stochastic methods will make them more accessible and encourage practical applications.

  6. Aminostratigraphy of surface and subsurface Quaternary sediments, North Carolina coastal plain, USA

    USGS Publications Warehouse

    Wehmiller, John F.; Thieler, E. Robert; Miller, D.; Pellerito, V.; Bakeman, Keeney V.; Riggs, S.R.; Culver, S.; Mallinson, D.; Farrell, K.M.; York, L.L.; Pierson, J.; Parham, P.R.

    2010-01-01

    The Quaternary stratigraphy and geochronology of the Albemarle Embayment of the North Carolina (NC) Coastal Plain is examined using amino acid racemization (AAR) in marine mollusks, in combination with geophysical, lithologic, and biostratigraphic analysis of 28 rotasonic cores drilled between 2002 and 2006. The Albemarle Embayment is bounded by structural highs to the north and south, and Quaternary strata thin westward toward the Suffolk paleoshoreline, frequently referred to as the Suffolk Scarp. The Quaternary section is up to ∼90 m thick, consists of a variety of estuarine, shelf, back-barrier, and lagoonal deposits, and has been influenced by multiple sea-level cycles. The temporal resolution of the amino acid racemization method is tested statistically and with the stratigraphic control provided by this geologic framework, and it is then applied to the correlation and age estimation of subsurface units throughout the region. Over 500 specimens (primarily Mercenaria and Mulinia) from the subsurface section have been analyzed using either gas chromatographic (GC) or reverse-phase liquid chromatographic (RPLC) techniques. The subsurface stratigraphic data are compared with AAR results from numerous natural or excavated exposures from the surrounding region, as well as results from NC beach collections, to develop a comprehensive aminostratigraphic database for the entire Quaternary record within the NC coastal system. Age mixing, recognized in the beach collections, is also seen in subsurface sections, usually where major seismic reflections or core lithology indicate the presence of stratigraphic discontinuities. Kinetic models for racemization are tested within the regional stratigraphic framework, using either radiocarbon or U-series calibrations or comparison with regional biostratigraphy. Three major Pleistocene aminozones [AZ2, AZ3, and AZ4] are found throughout the region, all being found in superposition in several cores. Each can be subdivided, yielding a total of at least eight stratigraphically and statistically distinct aminozones. Kinetic modeling, supplemented with local calibration, indicates that these aminozones represent depositional events ranging from ∼80 ka to nearly 2 Ma. Three prominent seismic reflections are interpreted to represent the base of the early, middle, and late Pleistocene, respectively, roughly 2 Ma, 800 ka, and 130 ka. The large number of samples and the available stratigraphic control provide new insights into the capabilities and limitations of aminostratigraphic methods in assessing relative and numerical ages of Atlantic Coastal Plain Quaternary deposits.

  7. Integrating surrogate models into subsurface simulation framework allows computation of complex reactive transport scenarios

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Kempka, Thomas; Jatnieks, Janis; Kühn, Michael

    2017-04-01

    Reactive transport simulations - where geochemical reactions are coupled with hydrodynamic transport of reactants - are extremely time consuming and suffer from significant numerical issues. Given the high uncertainties inherently associated with the geochemical models, which also constitute the major computational bottleneck, such requirements may seem inappropriate and probably constitute the main limitation for their wide application. A promising way to ease and speed-up such coupled simulations is achievable employing statistical surrogates instead of "full-physics" geochemical models [1]. Data-driven surrogates are reduced models obtained on a set of pre-calculated "full physics" simulations, capturing their principal features while being extremely fast to compute. Model reduction of course comes at price of a precision loss; however, this appears justified in presence of large uncertainties regarding the parametrization of geochemical processes. This contribution illustrates the integration of surrogates into the flexible simulation framework currently being developed by the authors' research group [2]. The high level language of choice for obtaining and dealing with surrogate models is R, which profits from state-of-the-art methods for statistical analysis of large simulations ensembles. A stand-alone advective mass transport module was furthermore developed in order to add such capability to any multiphase finite volume hydrodynamic simulator within the simulation framework. We present 2D and 3D case studies benchmarking the performance of surrogates and "full physics" chemistry in scenarios pertaining the assessment of geological subsurface utilization. [1] Jatnieks, J., De Lucia, M., Dransch, D., Sips, M.: "Data-driven surrogate model approach for improving the performance of reactive transport simulations.", Energy Procedia 97, 2016, p. 447-453. [2] Kempka, T., Nakaten, B., De Lucia, M., Nakaten, N., Otto, C., Pohl, M., Chabab [Tillner], E., Kühn, M.: "Flexible Simulation Framework to Couple Processes in Complex 3D Models for Subsurface Utilization Assessment.", Energy Procedia, 97, 2016 p. 494-501.

  8. Improving Permafrost Hydrology Prediction Through Data-Model Integration

    NASA Astrophysics Data System (ADS)

    Wilson, C. J.; Andresen, C. G.; Atchley, A. L.; Bolton, W. R.; Busey, R.; Coon, E.; Charsley-Groffman, L.

    2017-12-01

    The CMIP5 Earth System Models were unable to adequately predict the fate of the 16GT of permafrost carbon in a warming climate due to poor representation of Arctic ecosystem processes. The DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic project aims to reduce uncertainty in the Arctic carbon cycle and its impact on the Earth's climate system by improved representation of the coupled physical, chemical and biological processes that drive how much buried carbon will be converted to CO2 and CH4, how fast this will happen, which form will dominate, and the degree to which increased plant productivity will offset increased soil carbon emissions. These processes fundamentally depend on permafrost thaw rate and its influence on surface and subsurface hydrology through thermal erosion, land subsidence and changes to groundwater flow pathways as soil, bedrock and alluvial pore ice and massive ground ice melts. LANL and its NGEE colleagues are co-developing data and models to better understand controls on permafrost degradation and improve prediction of the evolution of permafrost and its impact on Arctic hydrology. The LANL Advanced Terrestrial Simulator was built using a state of the art HPC software framework to enable the first fully coupled 3-dimensional surface-subsurface thermal-hydrology and land surface deformation simulations to simulate the evolution of the physical Arctic environment. Here we show how field data including hydrology, snow, vegetation, geochemistry and soil properties, are informing the development and application of the ATS to improve understanding of controls on permafrost stability and permafrost hydrology. The ATS is being used to inform parameterizations of complex coupled physical, ecological and biogeochemical processes for implementation in the DOE ACME land model, to better predict the role of changing Arctic hydrology on the global climate system. LA-UR-17-26566.

  9. Fuzzy Logic Modelling and Hidden Geodynamic Parameters of Earth: What is the role of Fluid Pathaways and Hydrothermal Stages on the Mineralization Variations of Kozbudaklar Pluton over Southern Uludag

    NASA Astrophysics Data System (ADS)

    Kocaturk, Huseyin; Kumral, Mustafa

    2016-04-01

    Plate tectonics is one of the most illustrated theory and biggest geo-dynamic incident on earth surface and sub-surface for the earth science. Tectonic settlement, rock forming minerals, form of stratigraphy, ore genesis processes, crystal structures and even rock textures are all related with plate tectonic. One of the most known region of Turkey is Southern part of Uludaǧ and has been defined with three main lithological union. Region is formed with metamorphics, ophiolites and magmatic intrusions which are generally I-type granodiorites. Also these intrusion related rocks has formed and altered by high grade hydrothermal activity. This study approaches to understand bigger to smaller frameworks of these processes which between plate tectonics and fluid pathways. Geodynamic related fuzzy logic modelling is present us compact conclusion report about structural associations for the economic generations. Deformation structures and fluid pathways which related with plate tectonics progressed on our forearc system and each steps of dynamic movements of subducting mechanism has been seemed affect both hydrothermal stages and mineral variations together. Types of each deformation structure and mineral assemblages has characterized for flux estimations which can be useful for subsurface mapping. Geoanalytical results showed us clear characteristic stories for mutual processes. Determined compression and release directions on our map explains not only hydrothermal stages but also how succesion of intrusions changes. Our fuzzy logic models intersect sections of physical and chemical interactions of study field. Researched parameters like mafic minerals and enclave ratios on different deformation structures, cross sections of structures and relative existing sequence are all changes with different time periods like geochemical environment and each vein. With the combined informations in one scene we can transact mineralization processes about region which occurs in different stages such as subducting slabs, arc volcanism, subsurface flux estimates related orogenic processes, and other geochemical effects of plate movements. Keywords: Hydrothermal Stages, Flux Estimate, Southern Region of Uludaǧ, Subsurface Mapping

  10. A Generalized Subsurface Flow Parameterization Considering Subgrid Spatial Variability of Recharge and Topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Maoyi; Liang, Xu; Leung, Lai R.

    2008-12-05

    Subsurface flow is an important hydrologic process and a key component of the water budget, especially in humid regions. In this study, a new subsurface flow formulation is developed that incorporates spatial variability of both topography and recharge. It is shown through theoretical derivation and case studies that the power law and exponential subsurface flow parameterizations and the parameterization proposed by Woods et al.[1997] are all special cases of the new formulation. The subsurface flows calculated using the new formulation compare well with values derived from observations at the Tulpehocken Creek and Walnut Creek watersheds. Sensitivity studies show that whenmore » the spatial variability of topography or recharge, or both is increased, the subsurface flows increase at the two aforementioned sites and the Maimai hillslope. This is likely due to enhancement of interactions between the groundwater table and the land surface that reduce the flow path. An important conclusion of this study is that the spatial variability of recharge alone, and/or in combination with the spatial variability of topography can substantially alter the behaviors of subsurface flows. This suggests that in macroscale hydrologic models or land surface models, subgrid variations of recharge and topography can make significant contributions to the grid mean subsurface flow and must be accounted for in regions with large surface heterogeneity. This is particularly true for regions with humid climate and relatively shallow groundwater table where the combined impacts of spatial variability of recharge and topography are shown to be more important. For regions with arid climate and relatively deep groundwater table, simpler formulations, especially the power law, for subsurface flow can work well, and the impacts of subgrid variations of recharge and topography may be ignored.« less

  11. Model for the prediction of subsurface strata movement due to underground mining

    NASA Astrophysics Data System (ADS)

    Cheng, Jianwei; Liu, Fangyuan; Li, Siyuan

    2017-12-01

    The problem of ground control stability due to large underground mining operations is often associated with large movements and deformations of strata. It is a complicated problem, and can induce severe safety or environmental hazards either at the surface or in strata. Hence, knowing the subsurface strata movement characteristics, and making any subsidence predictions in advance, are desirable for mining engineers to estimate any damage likely to affect the ground surface or subsurface strata. Based on previous research findings, this paper broadly applies a surface subsidence prediction model based on the influence function method to subsurface strata, in order to predict subsurface stratum movement. A step-wise prediction model is proposed, to investigate the movement of underground strata. The model involves a dynamic iteration calculation process to derive the movements and deformations for each stratum layer; modifications to the influence method function are also made for more precise calculations. The critical subsidence parameters, incorporating stratum mechanical properties and the spatial relationship of interest at the mining level, are thoroughly considered, with the purpose of improving the reliability of input parameters. Such research efforts can be very helpful to mining engineers’ understanding of the moving behavior of all strata over underground excavations, and assist in making any damage mitigation plan. In order to check the reliability of the model, two methods are carried out and cross-validation applied. One is to use a borehole TV monitor recording to identify the progress of subsurface stratum bedding and caving in a coal mine, the other is to conduct physical modelling of the subsidence in underground strata. The results of these two methods are used to compare with theoretical results calculated by the proposed mathematical model. The testing results agree well with each other, and the acceptable accuracy and reliability of the proposed prediction model are thus validated.

  12. Three-Dimensional Geologic Framework Model for a Karst Aquifer System, Hasty and Western Grove Quadrangles, Northern Arkansas

    USGS Publications Warehouse

    Turner, Kenzie J.; Hudson, Mark R.; Murray, Kyle E.; Mott, David N.

    2007-01-01

    Understanding ground-water flow in a karst aquifer benefits from a detailed conception of the three-dimensional (3D) geologic framework. Traditional two-dimensional products, such as geologic maps, cross-sections, and structure contour maps, convey a mental picture of the area but a stronger conceptualization can be achieved by constructing a digital 3D representation of the stratigraphic and structural geologic features. In this study, a 3D geologic model was created to better understand a karst aquifer system in the Buffalo National River watershed in northern Arkansas. The model was constructed based on data obtained from recent, detailed geologic mapping for the Hasty and Western Grove 7.5-minute quadrangles. The resulting model represents 11 stratigraphic zones of Ordovician, Mississippian, and Pennsylvanian age. As a result of the highly dissected topography, stratigraphic and structural control from geologic contacts and interpreted structure contours were sufficient for effectively modeling the faults and folds in the model area. Combined with recent dye-tracing studies, the 3D framework model is useful for visualizing the various geologic features and for analyzing the potential control they exert on the ground-water flow regime. Evaluation of the model, by comparison to published maps and cross-sections, indicates that the model accurately reproduces both the surface geology and subsurface geologic features of the area.

  13. Advancing Knowledge on Fugitive Natural Gas from Energy Resource Development at a Controlled Release Field Observatory

    NASA Astrophysics Data System (ADS)

    Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.

    2017-12-01

    Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted to plan methane release experiments in 2018 and onwards. This research will create knowledge which informs strategies to detect and monitor fugitive gas fluxes at the surface and in groundwater; as well as guide associated regulatory and technical policies.

  14. Uncertainty Analysis of Runoff Simulations and Parameter Identifiability in the Community Land Model – Evidence from MOPEX Basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Maoyi; Hou, Zhangshuan; Leung, Lai-Yung R.

    2013-12-01

    With the emergence of earth system models as important tools for understanding and predicting climate change and implications to mitigation and adaptation, it has become increasingly important to assess the fidelity of the land component within earth system models to capture realistic hydrological processes and their response to the changing climate and quantify the associated uncertainties. This study investigates the sensitivity of runoff simulations to major hydrologic parameters in version 4 of the Community Land Model (CLM4) by integrating CLM4 with a stochastic exploratory sensitivity analysis framework at 20 selected watersheds from the Model Parameter Estimation Experiment (MOPEX) spanning amore » wide range of climate and site conditions. We found that for runoff simulations, the most significant parameters are those related to the subsurface runoff parameterizations. Soil texture related parameters and surface runoff parameters are of secondary significance. Moreover, climate and soil conditions play important roles in the parameter sensitivity. In general, site conditions within water-limited hydrologic regimes and with finer soil texture result in stronger sensitivity of output variables, such as runoff and its surface and subsurface components, to the input parameters in CLM4. This study demonstrated the feasibility of parameter inversion for CLM4 using streamflow observations to improve runoff simulations. By ranking the significance of the input parameters, we showed that the parameter set dimensionality could be reduced for CLM4 parameter calibration under different hydrologic and climatic regimes so that the inverse problem is less ill posed.« less

  15. Subsurface flow pathway dynamics in the active layer of coupled permafrost-hydrogeological systems under seasonal and annual temperature variability.

    NASA Astrophysics Data System (ADS)

    Frampton, Andrew

    2017-04-01

    There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic carbon releases. Further model development challenges are also highlighted and discussed, including coupling between subsurface and surface runoff, soil deformations, as well as site applications and larger system scales.

  16. Experimental validation of a sub-surface model of solar power for distributed marine sensor systems

    NASA Astrophysics Data System (ADS)

    Hahn, Gregory G.; Cantin, Heather P.; Shafer, Michael W.

    2016-04-01

    The capabilities of distributed sensor systems such as marine wildlife telemetry tags could be significantly enhanced through the integration of photovoltaic modules. Photovoltaic cells could be used to supplement the primary batteries for wildlife telemetry tags to allow for extended tag deployments, wherein larger amounts of data could be collected and transmitted in near real time. In this article, we present experimental results used to validate and improve key aspects of our original model for sub-surface solar power. We discuss the test methods and results, comparing analytic predictions to experimental results. In a previous work, we introduced a model for sub-surface solar power that used analytic models and empirical data to predict the solar irradiance available for harvest at any depth under the ocean's surface over the course of a year. This model presented underwater photovoltaic transduction as a viable means of supplementing energy for marine wildlife telemetry tags. The additional data provided by improvements in daily energy budgets would enhance the temporal and spatial comprehension of the host's activities and/or environments. Photovoltaic transduction is one method that has not been widely deployed in the sub-surface marine environments despite widespread use on terrestrial and avian species wildlife tag systems. Until now, the use of photovoltaic cells for underwater energy harvesting has generally been disregarded as a viable energy source in this arena. In addition to marine telemetry systems, photovoltaic energy harvesting systems could also serve as a means of energy supply for autonomous underwater vehicles (AUVs), as well as submersible buoys for oceanographic data collection.

  17. Linking Surface and Subsurface Processes: Implications for Seismic Hazards in Southern California

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Moon, S.; Yong, A.; Meng, L.; Martin, A. J.; Davis, P. M.

    2017-12-01

    Earth's surface and subsurface processes such as bedrock weathering, soil production, and river incision can influence and be influenced by spatial variations in the mechanical strength of surface material. Mechanically weakened rocks tend to have reduced seismic velocity, which can result in larger ground-motion amplification and greater potential for earthquake-induced damages. However, the influence and extent of surface and subsurface processes on the mechanical strength of surface material and seismic site conditions in southern California remain unclear. In this study, we examine whether physics-based models of surface and subsurface processes can explain the spatial variability and non-linearity of near-surface seismic velocity in southern California. We use geophysical measurements (Yong et al., 2013; Ancheta et al., 2014), consisting of shear-wave velocity (Vs) tomography data, Vs profiles, and the time-averaged Vs in the upper 30 m of the crust (Vs30) to infer lateral and vertical variations of surface material properties. Then, we compare Vs30 values with geologic and topographic attributes such as rock type, slope, elevation, and local relief, as well as metrics for surface processes such as soil production and bedrock weathering from topographic stress, frost cracking, chemical reactions, and vegetation presence. Results from this study will improve our understanding of physical processes that control subsurface material properties and their influences on local variability in seismic site conditions.

  18. Spatially based management of agricultural phosphorus pollution from diffuse sources: the SCIMAP risk based approach

    NASA Astrophysics Data System (ADS)

    Reaney, S. M.; Heathwaite, L.; Lane, S. N.; Buckley, C.

    2007-12-01

    Pollution of rivers from agricultural phosphorus is recognised as a significant global problem and is a major management challenge as it involves processes that are small in magnitude, distributed over large areas, operating at fine spatial scales and associated with certain land use types when they are well connected to the receiving waters. Whilst some of these processes have been addressed in terms of water quality forecasting models and field measurements, we lack effective tools to prioritise where action should be taken to remediate the diffuse pollution problem. From a management perspective, the required information is on 'what to do where' rather than absolute values. This change in focus opens up the problem to be considered in a probabilistic / relative framework rather than concentrating on absolute values. The SCIMAP risk management framework is based on the critical source area concept whereby a risk and a connection are required to generate a problem. Treatments of both surface and subsurface hydrological connectivity have been developed. The approach is based on the philosophy that for a point to be considered connected there needs to be a continuous flow path to the receiving water. This information is calculated by simulating the possible flow paths from the source cell to the receiving water and recording the required catchment wetness to allow flow along that route. This algorithm gives information on the ease at which each point in the landscape can export risk along surface and subsurface pathways to the receiving waters. To understand the annual dynamics of the locational diffuse P risk, a temporal risk framework has been developed. This risk framework accounts for land management activies within the agricultural calendar. These events include the application of fertiliser, the P additions from livestock and the offtake of P in crops. Changes to these risks can be made to investigate management options. The SCIMAP risk mapping framework has been applied to 12 catchments in England as part of the DEFRA / Environment Agency's Catchment Sensitive Farming programme. Result from these catchments will be presented.

  19. Quantum dots as contrast agents for endoscopy: mathematical modeling and experimental validation of the optimal excitation wavelength

    NASA Astrophysics Data System (ADS)

    Roy, Mathieu; DaCosta, Ralph S.; Weersink, Robert; Netchev, George; Davidson, Sean R. H.; Chan, Warren; Wilson, Brian C.

    2007-02-01

    Our group is investigating the use of ZnS-capped CdSe quantum dot (QD) bioconjugates combined with fluorescence endoscopy for improved early cancer detection in the esophagus, colon and lung. A major challenge in using fluorescent contrast agents in vivo is to extract the relevant signal from the tissue autofluorescence (AF). Our studies are aimed at maximizing the QD signal to AF background ratio (SBR) to facilitate detection. This work quantitatively evaluates the effect of the excitation wavelength on the SBR, using both experimental measurements and mathematical modeling. Experimental SBR measurements were done by imaging QD solutions placed onto (surface) or embedded in (sub-surface) ex vivo murine tissue samples (brain, kidney, liver, lung), using a polymethylmethacrylate (PMMA) microchannel phantom. The results suggest that the maximum contrast is reached when the excitation wavelength is set at 400+/-20 μm for the surface configuration. For the sub-surface configuration, the optimal excitation wavelength varies with the tissue type and QD emission wavelengths. Our mathematical model, based on an approximation to the diffusion equation, successfully predicts the optimal excitation wavelength for the surface configuration, but needs further modifications to be accurate in the sub-surface configuration.

  20. Interaction Between Ecohydrologic Dynamics and Microtopographic Variability Under Climate Change

    NASA Astrophysics Data System (ADS)

    Le, Phong V. V.; Kumar, Praveen

    2017-10-01

    Vegetation acclimation resulting from elevated atmospheric CO2 concentration, along with response to increased temperature and altered rainfall pattern, is expected to result in emergent behavior in ecologic and hydrologic functions. We hypothesize that microtopographic variability, which are landscape features typically of the length scale of the order of meters, such as topographic depressions, will play an important role in determining this dynamics by altering the persistence and variability of moisture. To investigate these emergent ecohydrologic dynamics, we develop a modeling framework, Dhara, which explicitly incorporates the control of microtopographic variability on vegetation, moisture, and energy dynamics. The intensive computational demand from such a modeling framework that allows coupling of multilayer modeling of the soil-vegetation continuum with 3-D surface-subsurface flow processes is addressed using hybrid CPU-GPU parallel computing framework. The study is performed for different climate change scenarios for an intensively managed agricultural landscape in central Illinois, USA, which is dominated by row-crop agriculture, primarily soybean (Glycine max) and maize (Zea mays). We show that rising CO2 concentration will decrease evapotranspiration, thus increasing soil moisture and surface water ponding in topographic depressions. However, increased atmospheric demand from higher air temperature overcomes this conservative behavior resulting in a net increase of evapotranspiration, leading to reduction in both soil moisture storage and persistence of ponding. These results shed light on the linkage between vegetation acclimation under climate change and microtopography variability controls on ecohydrologic processes.

  1. Development of a hybrid 3-D hydrological model to simulate hillslopes and the regional unconfined aquifer system in Earth system models

    NASA Astrophysics Data System (ADS)

    Hazenberg, P.; Broxton, P. D.; Brunke, M.; Gochis, D.; Niu, G. Y.; Pelletier, J. D.; Troch, P. A. A.; Zeng, X.

    2015-12-01

    The terrestrial hydrological system, including surface and subsurface water, is an essential component of the Earth's climate system. Over the past few decades, land surface modelers have built one-dimensional (1D) models resolving the vertical flow of water through the soil column for use in Earth system models (ESMs). These models generally have a relatively coarse model grid size (~25-100 km) and only account for sub-grid lateral hydrological variations using simple parameterization schemes. At the same time, hydrologists have developed detailed high-resolution (~0.1-10 km grid size) three dimensional (3D) models and showed the importance of accounting for the vertical and lateral redistribution of surface and subsurface water on soil moisture, the surface energy balance and ecosystem dynamics on these smaller scales. However, computational constraints have limited the implementation of the high-resolution models for continental and global scale applications. The current work presents a hybrid-3D hydrological approach is presented, where the 1D vertical soil column model (available in many ESMs) is coupled with a high-resolution lateral flow model (h2D) to simulate subsurface flow and overland flow. H2D accounts for both local-scale hillslope and regional-scale unconfined aquifer responses (i.e. riparian zone and wetlands). This approach was shown to give comparable results as those obtained by an explicit 3D Richards model for the subsurface, but improves runtime efficiency considerably. The h3D approach is implemented for the Delaware river basin, where Noah-MP land surface model (LSM) is used to calculated vertical energy and water exchanges with the atmosphere using a 10km grid resolution. Noah-MP was coupled within the WRF-Hydro infrastructure with the lateral 1km grid resolution h2D model, for which the average depth-to-bedrock, hillslope width function and soil parameters were estimated from digital datasets. The ability of this h3D approach to simulate the hydrological dynamics of the Delaware River basin will be assessed by comparing the model results (both hydrological performance and numerical efficiency) with the standard setup of the NOAH-MP model and a high-resolution (1km) version of NOAH-MP, which also explicitly accounts for lateral subsurface and overland flow.

  2. A new solar cycle model including meridional circulation

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Sheeley, N. R., Jr.; Nash, A. G.

    1991-01-01

    A kinematic model is presented for the solar cycle which includes not only the transport of magnetic flux by supergranular diffusion and a poleward bulk flow at the sun's surface, but also the effects of turbulent diffusion and an equatorward 'return flow' beneath the surface. As in the earlier models of Babcock and Leighton, the rotational shearing of a subsurface poloidal field generates toroidal flux that erupts at the surface in the form of bipolar magnetic regions. However, such eruptions do not result in any net loss of toroidal flux from the sun (as assumed by Babcock and Leighton); instead, the large-scale toroidal field is destroyed both by 'unwinding' as the local poloidal field reverses its polarity, and by diffusion as the toroidal flux is transported equatorward by the subsurface flow and merged with its opposite hemisphere counterpart. The inclusion of meridional circulation allows stable oscillations of the magnetic field, accompanied by the equatorward progression of flux eruptions, to be achieved even in the absence of a radial gradient in the angular velocity. An illustrative case in which a subsurface flow speed of order 1 m/s and subsurface diffusion rate of order 10 sq km/s yield 22-yr oscillations in qualitative agreement with observations.

  3. From terrestrial to aquatic fluxes: Integrating stream dynamics within a dynamic global vegetation modeling framework

    NASA Astrophysics Data System (ADS)

    Hoy, Jerad; Poulter, Benjamin; Emmett, Kristen; Cross, Molly; Al-Chokhachy, Robert; Maneta, Marco

    2016-04-01

    Integrated terrestrial ecosystem models simulate the dynamics and feedbacks between climate, vegetation, disturbance, and hydrology and are used to better understand biogeography and biogeochemical cycles. Extending dynamic vegetation models to the aquatic interface requires coupling surface and sub-surface runoff to catchment routing schemes and has the potential to enhance how researchers and managers investigate how changes in the environment might impact the availability of water resources for human and natural systems. In an effort towards creating such a coupled model, we developed catchment-based hydrologic routing and stream temperature model to pair with LPJ-GUESS, a dynamic global vegetation model. LPJ-GUESS simulates detailed stand-level vegetation dynamics such as growth, carbon allocation, and mortality, as well as various physical and hydrologic processes such as canopy interception and through-fall, and can be applied at small spatial scales, i.e., 1 km. We demonstrate how the coupled model can be used to investigate the effects of transient vegetation dynamics and CO2 on seasonal and annual stream discharge and temperature regimes. As a direct management application, we extend the modeling framework to predict habitat suitability for fish habitat within the Greater Yellowstone Ecosystem, a 200,000 km2 region that provides critical habitat for a range of aquatic species. The model is used to evaluate, quantitatively, the effects of management practices aimed to enhance hydrologic resilience to climate change, and benefits for water storage and fish habitat in the coming century.

  4. Untangling the effects of urban development on subsurface storage in Baltimore

    NASA Astrophysics Data System (ADS)

    Bhaskar, Aditi S.; Welty, Claire; Maxwell, Reed M.; Miller, Andrew J.

    2015-02-01

    The impact of urban development on surface flow has been studied extensively over the last half century, but effects on groundwater systems are still poorly understood. Previous studies of the influence of urban development on subsurface storage have not revealed any consistent pattern, with results showing increases, decreases, and negligible change in groundwater levels. In this paper, we investigated the effects of four key features that impact subsurface storage in urban landscapes. These include reduced vegetative cover, impervious surface cover, infiltration and inflow (I&I) of groundwater and storm water into wastewater pipes, and other anthropogenic recharge and discharge fluxes including water supply pipe leakage and well and reservoir withdrawals. We applied the integrated groundwater-surface water-land surface model ParFlow.CLM to the Baltimore metropolitan area. We compared the base case (all four features) to simulations in which an individual urban feature was removed. For the Baltimore region, the effect of infiltration of groundwater into wastewater pipes had the greatest effect on subsurface storage (I&I decreased subsurface storage 11.1% relative to precipitation minus evapotranspiration after 1 year), followed by the impact of water supply pipe leakage and lawn irrigation (combined anthropogenic discharges and recharges led to a 7.4% decrease) and reduced vegetation (1.9% increase). Impervious surface cover led to a small increase in subsurface storage (0.56% increase) associated with decreased groundwater discharge as base flow. The change in subsurface storage due to infiltration of groundwater into wastewater pipes was largest despite the smaller spatial extent of surface flux modifications, compared to other features.

  5. Sub-surface structure of La Soufrière of Guadeloupe lava dome deduced from a ground-based magnetic survey

    NASA Astrophysics Data System (ADS)

    Bouligand, Claire; Coutant, Olivier; Glen, Jonathan M. G.

    2016-07-01

    In this study, we present the analysis and interpretation of a new ground magnetic survey acquired at the Soufrière volcano on Guadeloupe Island. Observed short-wavelength magnetic anomalies are compared to those predicted assuming a constant magnetization within the sub-surface. The good correlation between modeled and observed data over the summit of the dome indicates that the shallow sub-surface displays relatively constant and high magnetization intensity. In contrast, the poor correlation at the base of the dome suggests that the underlying material is non- to weakly-magnetic, consistent with what is expected for a talus comprised of randomly oriented and highly altered and weathered boulders. The new survey also reveals a dipole anomaly that is not accounted for by a constant magnetization in the sub-surface and suggests the existence of material with decreased magnetization beneath the Soufrière lava dome. We construct simple models to constrain its dimensions and propose that this body corresponds to hydrothermally altered material within and below the dome. The very large inferred volume for such material may have implications on the stability of the dome.

  6. Paleomagnetic correlation of basalt flows in selected coreholes near the Advanced Test Reactor Complex, the Idaho Nuclear Technology and Engineering Center, and along the southern boundary, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Hodges, Mary K.V.; Champion, Duane E.

    2016-10-03

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, used paleomagnetic data from 18 coreholes to construct three cross sections of subsurface basalt flows in the southern part of the Idaho National Laboratory (INL). These cross sections, containing descriptions of the subsurface horizontal and vertical distribution of basalt flows and sediment layers, will be used in geological studies, and to construct numerical models of groundwater flow and contaminant transport.Subsurface cross sections were used to correlate surface vents to their subsurface flows intersected by coreholes, to correlate subsurface flows between coreholes, and to identify possible subsurface vent locations of subsurface flows. Correlations were identified by average paleomagnetic inclinations of flows, and depth from land surface in coreholes, normalized to the North American Datum of 1927. Paleomagnetic data were combined, in some cases, with other data, such as radiometric ages of flows. Possible vent locations of buried basalt flows were identified by determining the location of the maximum thickness of flows penetrated by more than one corehole.Flows from the surface volcanic vents Quaking Aspen Butte, Vent 5206, Mid Butte, Lavatoo Butte, Crater Butte, Pond Butte, Vent 5350, Vent 5252, Tin Cup Butte, Vent 4959, Vent 5119, and AEC Butte are found in coreholes, and were correlated to the surface vents by matching their paleomagnetic inclinations, and in some cases, their stratigraphic positions.Some subsurface basalt flows that do not correlate to surface vents, do correlate over several coreholes, and may correlate to buried vents. Subsurface flows which correlate across several coreholes, but not to a surface vent include the D3 flow, the Big Lost flow, the CFA buried vent flow, the Early, Middle, and Late Basal Brunhes flows, the South Late Matuyama flow, the Matuyama flow, and the Jaramillo flow. The location of vents buried in the subsurface by younger basalt flows can be inferred if their flows are penetrated by several coreholes, by tracing the flows in the subsurface, and determining where the greatest thickness occurs.

  7. Adaptive management for subsurface pressure and plume control in application to geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Gonzalez-Nicolas, A.; Cihan, A.; Birkholzer, J. T.; Petrusak, R.; Zhou, Q.; Riestenberg, D. E.; Trautz, R. C.; Godec, M.

    2016-12-01

    Industrial-scale injection of CO2 into the subsurface can cause reservoir pressure increases that must be properly controlled to prevent any potential environmental impact. Excessive pressure buildup in reservoir may result in ground water contamination stemming from leakage through conductive pathways, such as improperly plugged abandoned wells or distant faults, and the potential for fault reactivation and possibly seal breaching. Brine extraction is a viable approach for managing formation pressure, effective stress, and plume movement during industrial-scale CO2 injection projects. The main objectives of this study are to investigate suitable different pressure management strategies involving active brine extraction and passive pressure relief wells. Adaptive optimized management of CO2 storage projects utilizes the advanced automated optimization algorithms and suitable process models. The adaptive management integrates monitoring, forward modeling, inversion modeling and optimization through an iterative process. In this study, we employ an adaptive framework to understand primarily the effects of initial site characterization and frequency of the model update (calibration) and optimization calculations for controlling extraction rates based on the monitoring data on the accuracy and the success of the management without violating pressure buildup constraints in the subsurface reservoir system. We will present results of applying the adaptive framework to test appropriateness of different management strategies for a realistic field injection project.

  8. Spatially Explicit Simulation of Mesotopographic Controls on Peatland Hydrology and Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Chen, J. M.; Roulet, N. T.

    2006-12-01

    A number of field carbon flux measurements, paleoecological records, and model simulations have acknowledged the importance of northern peatlands in terrestrial carbon cycling and methane emissions. An important parameter in peatlands that influences both net primary productivity, the net gain of carbon through photosynthesis, and decomposition under aerobic and anaerobic conditions, is the position of the water table. Biological and physical processes involved in peatland carbon dynamics and their hydrological controls operate at different spatial scales. The highly variable hydraulic characteristics of the peat profile and the overall shape of the peat body as defined by its surface topography at the mesoscale (104 m2) are of major importance for peatland water table dynamics. Common types of peatlands include bogs with a slightly domed centre. As a result of the convex profile, their water supply is restricted to atmospheric inputs, and water is mainly shed by shallow subsurface flow. From a modelling perspective the influence of mesotopographic controls on peatland hydrology and thus carbon balance requires that process-oriented models that examine the links between peatland hydrology, ecosystem functioning, and climate must incorporate some form of lateral subsurface flow consideration. Most hydrological and ecological modelling studies in complex terrain explicitly account for the topographic controls on lateral subsurface flow through digital elevation models. However, modelling studies in peatlands often employ simple empirical parameterizations of lateral subsurface flow, neglecting the influence of peatlands low relief mesoscale topography. Our objective is to explicitly simulate the mesotopographic controls on peatland hydrology and carbon fluxes using the Boreal Ecosystem Productivity Simulator (BEPS) adapted to northern peatlands. BEPS is a process-oriented ecosystem model in a remote sensing framework that takes into account peatlands multi-layer canopy through vertically stratified mapped leaf area index. Model outputs are validated against multi-year measurements taken at an eddy-covariance flux tower located within Mer Bleue bog, a typical raised bog near Ottawa, Ontario, Canada. Model results for seasonal water table dynamics and evapotranspiration at daily time steps in 2003 are in good agreement with measurements with R2=0.74 and R2=0.79, respectively, and indicate the suitability of our pursued approach.

  9. Reducing Risk in CO2 Sequestration: A Framework for Integrated Monitoring of Basin Scale Injection

    NASA Astrophysics Data System (ADS)

    Seto, C. J.; Haidari, A. S.; McRae, G. J.

    2009-12-01

    Geological sequestration of CO2 is an option for stabilization of atmospheric CO2 concentrations. Technical ability to safely store CO2 in the subsurface has been demonstrated through pilot projects and a long history of enhanced oil recovery and acid gas disposal operations. To address climate change, current injection operations must be scaled up by a factor of 100, raising issues of safety and security. Monitoring and verification is an essential component in ensuring safe operations and managing risk. Monitoring provides assurance that CO2 is securely stored in the subsurface, and the mechanisms governing transport and storage are well understood. It also provides an early warning mechanism for identification of anomalies in performance, and a means for intervention and remediation through the ability to locate the CO2. Through theoretical studies, bench scale experiments and pilot tests, a number of technologies have demonstrated their ability to monitor CO2 in the surface and subsurface. Because the focus of these studies has been to demonstrate feasibility, individual techniques have not been integrated to provide a more robust method for monitoring. Considering the large volumes required for injection, size of the potential footprint, length of time a project must be monitored and uncertainty, operational considerations of cost and risk must balance safety and security. Integration of multiple monitoring techniques will reduce uncertainty in monitoring injected CO2, thereby reducing risk. We present a framework for risk management of large scale injection through model based monitoring network design. This framework is applied to monitoring CO2 in a synthetic reservoir where there is uncertainty in the underlying permeability field controlling fluid migration. Deformation and seismic data are used to track plume migration. A modified Ensemble Kalman filter approach is used to estimate flow properties by jointly assimilating flow and geomechanical observations. Issues of risk, cost and uncertainty are considered.

  10. Anthropogenic modifications to drainage conditions on streamflow variability in the Wabash River basin, Indiana

    NASA Astrophysics Data System (ADS)

    Chiu, C.; Bowling, L. C.

    2011-12-01

    The Wabash River watershed is the largest watershed in Indiana and includes the longest undammed river reach east of the Mississippi River. The land use of the Wabash River basin began to significantly change from mixed woodland dominated by small lakes and wetlands to agriculture in the mid-1800s and agriculture is now the predominant land use. Over 80% of natural wetland areas were drained to facilitate better crop production through both surface and subsurface drainage applications. Quantifying the change in hydrologic response in this intensively managed landscape requires a hydrologic model that can represent wetlands, crop growth, and impervious area as well as subsurface and surface drainage enhancements, coupled with high resolution soil and topographic inputs. The Variable Infiltration Capacity (VIC) model wetland algorithm has been previously modified to incorporate spatially-varying estimates of water table distribution using a topographic index approach, as well as a simple urban representation. Now, the soil water characteristics curve and a derived drained to equilibrium moisture profile are used to improve the model's estimation of the water table. In order to represent subsurface (tile) drainage, the tile drainage component of subsurface flow is calculated when the simulated water table rises above a specified drain depth. A map of the current estimated extent of subsurface tile drainage for the Wabash River based on a decision tree classifier of soil drainage class, soil slope and agricultural land use is used to activate the new tile drainage feature in the VIC model, while wetland depressional storage capacity is extracted from digital elevation and soil information. This modified VIC model is used to evaluate the performance of model physical variations in the intensively managed hydrologic regime of the Wabash River system and to understand the role of surface and subsurface storage, and land use and land cover change on hydrologic change.

  11. Analysis of continuous multi-seasonal in-situ subsurface temperature measurements on Mars

    NASA Astrophysics Data System (ADS)

    Paton, M. D.; Harri, A.-M.; Mäkinen, T.; Savijärvi, H.; Kemppinen, O.; Hagermann, A.

    2015-10-01

    Our investigations reveal the local thermal properties on the Martian surface at the Viking Lander 1 (VL-1) site. We achieved this by using the VL-1 footpad temperature sensor which was buried, and due to its location, was under shadow for extensive periods of time during each sol. Reconstruction of the surface and subsurface temperature history of the regolith in the vicinity of the temperature sensor was made using a 1-D atmospheric column model (UH-FMI) together with a thermal model of the lander. The results have implications for the interpretation of subsurface thermal measurements made close to a spacecraft or rock, interpretation of remote sensing measurements of thermal inertia and understanding the micro-scale behavior of the Martian atmosphere.

  12. Estimating and mapping ecological processes influencing microbial community assembly

    PubMed Central

    Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; Konopka, Allan E.

    2015-01-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth. PMID:25983725

  13. Deriving Scaling Factors Using a Global Hydrological Model to Restore GRACE Total Water Storage Changes for China's Yangtze River Basin

    NASA Technical Reports Server (NTRS)

    Long, Di; Yang, Yuting; Yoshihide, Wada; Hong, Yang; Liang, Wei; Chen, Yaning; Yong, Bin; Hou, Aizhong; Wei, Jiangfeng; Chen, Lu

    2015-01-01

    This study used a global hydrological model (GHM), PCR-GLOBWB, which simulates surface water storage changes, natural and human induced groundwater storage changes, and the interactions between surface water and subsurface water, to generate scaling factors by mimicking low-pass filtering of GRACE signals. Signal losses in GRACE data were subsequently restored by the scaling factors from PCR-GLOBWB. Results indicate greater spatial heterogeneity in scaling factor from PCR-GLOBWB and CLM4.0 than that from GLDAS-1 Noah due to comprehensive simulation of surface and subsurface water storage changes for PCR-GLOBWB and CLM4.0. Filtered GRACE total water storage (TWS) changes applied with PCR-GLOBWB scaling factors show closer agreement with water budget estimates of TWS changes than those with scaling factors from other land surface models (LSMs) in China's Yangtze River basin. Results of this study develop a further understanding of the behavior of scaling factors from different LSMs or GHMs over hydrologically complex basins, and could be valuable in providing more accurate TWS changes for hydrological applications (e.g., monitoring drought and groundwater storage depletion) over regions where human-induced interactions between surface water and subsurface water are intensive.

  14. Surface manifestations of internal waves investigated by a subsurface buoyant jet: 3. Surface manifestations of internal waves

    NASA Astrophysics Data System (ADS)

    Bondur, V. G.; Grebenyuk, Yu. V.; Ezhova, E. V.; Kazakov, V. I.; Sergeev, D. A.; Soustova, I. A.; Troitskaya, Yu. I.

    2010-08-01

    In a large test reservoir at the Institute of Applied Physics, Russian Academy of Sciences, a series of experiments were performed to investigate the surface manifestations of internal waves radiated by a subsurface buoyant jet. The field of currents on the water surface of the reservoir was studied through the distribution of temperature with shallow thermocline. Using Particle Tracking Velocimetry (PTV), the velocity field of surface currents was measured. A theoretical model was developed to calculate the rates of disturbances on the surface. A comparison with experimental data indicated that the calculated data of the surface rate value are overestimated. This discrepancy was explained by the presence of a film of surface-active substances (SASs) with experimentally obtained parameters. Using scale modeling coefficients, we estimated the parameters of internal waves radiated by the subsurface wastewater system and the values of their surface manifestations in field conditions. We estimated the hydrodynamic contrasts in the field of surface waves, which can be caused by these inhomogeneous currents on the surface. For a wind velocity of 5 m/s, the magnitude of the contrast in the field of short waves can reach up to 10-25%, which is detected with confidence by remote-sensing methods.

  15. Surface assessment of CaF2 deep-ultraviolet and vacuum-ultraviolet optical components by the quasi-Brewster angle technique.

    PubMed

    Wang, Jue; Maier, Robert L

    2006-08-01

    The requirements for optical components have drastically increased for the deep-ultraviolet and vacuum-ultraviolet spectral regions. Low optical loss, high laser damage threshold, and long lifetime fluoride optics are required for microlithographic applications. A nondestructive quasi-Brewster angle technique (qBAT) has been developed for evaluating the quality of optical surfaces including both top surface and subsurface information. By using effective medium approximation, the negative quasi-Brewster angle shift at wavelengths longer than 200 nm has been used to model the distribution of subsurface damage, whereas the positive quasi-Brewster angle shift for wavelengths shorter than 200 nm has been explained by subsurface contamination. The top surface roughness depicted by the qBAT is consistent with atomic force microscopy measurements. The depth and the microporous structure of the subsurface damage measured by the qBAT has been confirmed by magnetorheological finishing. The technique has been extended to evaluate both polished and antireflection-coated CaF(2) components.

  16. Sensitivity Analysis of the Agricultural Policy/Environmental eXtender (APEX) for Phosphorus Loads in Tile-Drained Landscapes.

    PubMed

    Ford, W; King, K; Williams, M; Williams, J; Fausey, N

    2015-07-01

    Numerical modeling is an economical and feasible approach for quantifying the effects of best management practices on dissolved reactive phosphorus (DRP) loadings from agricultural fields. However, tools that simulate both surface and subsurface DRP pathways are limited and have not been robustly evaluated in tile-drained landscapes. The objectives of this study were to test the ability of the Agricultural Policy/Environmental eXtender (APEX), a widely used field-scale model, to simulate surface and tile P loadings over management, hydrologic, biologic, tile, and soil gradients and to better understand the behavior of P delivery at the edge-of-field in tile-drained midwestern landscapes. To do this, a global, variance-based sensitivity analysis was performed, and model outputs were compared with measured P loads obtained from 14 surface and subsurface edge-of-field sites across central and northwestern Ohio. Results of the sensitivity analysis showed that response variables for DRP were highly sensitive to coupled interactions between presumed important parameters, suggesting nonlinearity of DRP delivery at the edge-of-field. Comparison of model results to edge-of-field data showcased the ability of APEX to simulate surface and subsurface runoff and the associated DRP loading at monthly to annual timescales; however, some high DRP concentrations and fluxes were not reflected in the model, suggesting the presence of preferential flow. Results from this study provide new insights into baseline tile DRP loadings that exceed thresholds for algal proliferation. Further, negative feedbacks between surface and subsurface DRP delivery suggest caution is needed when implementing DRP-based best management practices designed for a specific flow pathway. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms

    NASA Astrophysics Data System (ADS)

    Simmer, C.

    2015-12-01

    An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.

  18. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  19. 3D subsurface geological modeling using GIS, remote sensing, and boreholes data

    NASA Astrophysics Data System (ADS)

    Kavoura, Katerina; Konstantopoulou, Maria; Kyriou, Aggeliki; Nikolakopoulos, Konstantinos G.; Sabatakakis, Nikolaos; Depountis, Nikolaos

    2016-08-01

    The current paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes and the 1:5000 engineering geological maps were digitized and implemented in a GIS platform for a three - dimensional subsurface model evaluation. The study is located at the North part of Peloponnese along the new national road.

  20. A field study of colloid transport in surface and subsurface flows

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Tang, Xiang-Yu; Xian, Qing-Song; Weisbrod, Noam; Yang, Jae E.; Wang, Hong-Lan

    2016-11-01

    Colloids have been recognized to enhance the migration of strongly-sorbing contaminants. However, few field investigations have examined combined colloid transport via surface runoff and subsurface flows. In a headwater catchment of the upper Yangtze River, a 6 m (L) by 4 m (W) sloping (6°) farmland plot was built by cement walls to form no-flow side boundaries. The plot was monitored in the summer of 2014 for the release and transport of natural colloids via surface runoff and subsurface flows (i.e., the interflow from the soil-mudrock interface and fracture flow from the mudrock-sandstone interface) in response to rain events. The water sources of the subsurface flows were apportioned to individual rain events using a two end-member model (i.e., mobile pre-event soil water extracted by a suction-cup sampler vs. rainwater (event water)) based on δ18O measurements. For rain events with high preceding soil moisture, mobile pre-event soil water was the main contributor (generally >60%) to the fracture flow. The colloid concentration in the surface runoff was 1-2 orders of magnitude higher than that in the subsurface flows. The lowest colloid concentration was found in the subsurface interflow, which was probably the result of pore-scale colloid straining mechanisms. The rainfall intensity and its temporal variation govern the dynamics of the colloid concentrations in both surface runoff and subsurface flows. The duration of the antecedent dry period affected not only the relative contributions of the rainwater and the mobile pre-event soil water to the subsurface flows but also the peak colloid concentration, particularly in the fracture flow. The <10 μm fine colloid size fraction accounted for more than 80% of the total suspended particles in the surface runoff, while the colloid size distributions of both the interflow and the fracture flow shifted towards larger diameters. These results highlight the need to avoid the application of strongly-sorbing agrochemicals (e.g., pesticides, phosphorus fertilizers) immediately before rainfall following a long no-rain period because their transport in association with colloids may occur rapidly over long distances via both surface runoff and subsurface flows with rainfall.

  1. Raman spectroscopy method for subsurface detection of food powders through plastic layers

    NASA Astrophysics Data System (ADS)

    Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Schmidt, Walter F.; Kim, Moon S.; Chan, Diane E.; Bae, Abigail

    2017-05-01

    Proper chemical analyses of materials in sealed containers are important for quality control purpose. Although it is feasible to detect chemicals at top surface layer, it is relatively challenging to detect objects beneath obscuring surface. This study used spatially offset Raman spectroscopy (SORS) method to detect urea, ibuprofen and acetaminophen powders contained within one or more (up to eight) layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785 nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. With increasing offset distance, the fraction of information from the deeper subsurface material increased compared to that from the top surface material. The series of measurements was analyzed to differentiate and identify the top surface and subsurface materials. Containing mixed contributions from the powder and capsule, the SORS of each sample was decomposed using self modeling mixture analysis (SMA) to obtain pure component spectra of each component and corresponding components were identified using spectral information divergence values. Results show that SORS technique together with SMA method has a potential for non-invasive detection of chemicals at deep subsurface layer.

  2. Monitoring Subsurface Fluid Flow Using Perfluorocarbon Tracers: Another Tool Potentially Available for Subsurface Fluid Flow Assessments

    EPA Pesticide Factsheets

    Perfluorocarbon Tracers (PFTs) Complement stable Isotopes and Geochemistry for Verifying, Assessing or Modeling Fluid Flow. Geochemistry, Isotopes and PFT’s complement Geophysics to monitor and verify plume movement, leakage to shallow aquifers or surface

  3. Heinrich events modeled in transient glacial simulations

    NASA Astrophysics Data System (ADS)

    Ziemen, Florian; Kapsch, Marie; Mikolajewicz, Uwe

    2017-04-01

    Heinrich events are among the most prominent events of climate variability recorded in proxies across the northern hemisphere. They are the archetype of ice sheet — climate interactions on millennial time scales. Nevertheless, the exact mechanisms that cause Heinrich events are still under debate, and their climatic consequences are far from being fully understood. We address open questions by studying Heinrich events in a coupled ice sheet model (ISM) atmosphere-ocean-vegetation general circulation model (AOVGCM) framework, where this variability occurs as part of the model generated internal variability. The framework consists of a northern hemisphere setup of the modified Parallel Ice Sheet Model (mPISM) coupled to the global AOVGCM ECHAM5/MPIOM/LPJ. The simulations were performed fully coupled and with transient orbital and greenhouse gas forcing. They span from several millennia before the last glacial maximum into the deglaciation. To make these long simulations feasible, the atmosphere is accelerated by a factor of 10 relative to the other model components using a periodical-synchronous coupling technique. To disentangle effects of the Heinrich events and the deglaciation, we focus on the events occurring before the deglaciation. The modeled Heinrich events show a peak ice discharge of about 0.05 Sv and raise the sea level by 2.3 m on average. The resulting surface water freshening reduces the Atlantic meridional overturning circulation and ocean heat release. The reduction in ocean heat release causes a sub-surface warming and decreases the air temperature and precipitation regionally and downstream into Eurasia. The surface elevation decrease of the ice sheet enhances moisture transport onto the ice sheet and thus increases precipitation over the Hudson Bay area, thereby accelerating the recovery after an event.

  4. Geodesy - the key for constraining rates of magma supply, storage, and eruption

    NASA Astrophysics Data System (ADS)

    Poland, Michael; Anderson, Kyle

    2016-04-01

    Volcanology is an inherently interdisciplinary science that requires joint analysis of diverse physical and chemical datasets to infer subsurface processes from surface observations. Among the diversity of data that can be collected, however, geodetic data are critical for elucidating the main elements of a magmatic plumbing system because of their sensitivity to subsurface changes in volume and mass. In particular, geodesy plays a key role in determining rates of magma supply, storage, and eruption. For example, surface displacements are critical for estimating the volume changes and locations of subsurface magma storage zones, and remotely sensed radar data make it possible to place significant bounds on eruptive volumes. Combining these measurements with geochemical indicators of magma composition and volatile content enables modeling of magma fluxes throughout a volcano's plumbing system, from source to surface. We combined geodetic data (particularly InSAR) with prior geochemical constraints and measured gas emissions from Kīlauea Volcano, Hawai`i, to develop a probabilistic model that relates magma supply, storage, and eruption over time. We found that the magma supply rate to Kīlauea during 2006 was 35-100% greater than during 2000-2001, with coincident increased rates of subsurface magma storage and eruption at the surface. By 2012, this surge in supply had ended, and supply rates were below those of 2000-2001; magma storage and eruption rates were similarly reduced. These results demonstrate the connection between magma supply, storage, and eruption, and the overall importance of magma supply with respect to volcanic hazards at Kīlauea and similar volcanoes. Our model also confirms the importance of geodetic data in modeling these parameters - rates of storage and eruption are, in some cases, almost uniquely constrained by geodesy. Future modeling efforts along these lines should also seek to incorporate gravity data, to better determine magma compressibility and subsurface mass change.

  5. Structural analyses of a rigid pavement overlaying a sub-surface void

    NASA Astrophysics Data System (ADS)

    Adam, Fatih Alperen

    Pavement failures are very hazardous for public safety and serviceability. These failures in pavements are mainly caused by subsurface voids, cracks, and undulation at the slab-base interface. On the other hand, current structural analysis procedures for rigid pavement assume that the slab-base interface is perfectly planar and no imperfections exist in the sub-surface soil. This assumption would be violated if severe erosion were to occur due to inadequate drainage, thermal movements, and/or mechanical loading. Until now, the effect of erosion was only considered in the faulting performance model, but not with regards to transverse cracking at the mid-slab edge. In this research, the bottom up fatigue cracking potential, caused by the combined effects of wheel loading and a localized imperfection in the form of a void below the mid-slab edge, is studied. A robust stress and surface deflection analysis was also conducted to evaluate the influence of a sub-surface void on layer moduli back-calculation. Rehabilitative measures were considered, which included a study on overlay and fill remediation. A series regression of equations was proposed that provides a relationship between void size, layer moduli stiffness, and the overlay thickness required to reduce the stress to its original pre-void level. The effect of the void on 3D pavement crack propagation was also studied under a single axle load. The amplifications to the stress intensity was shown to be high but could be mitigated substantially if stiff material is used to fill the void and impede crack growth. The pavement system was modeled using the commercial finite element modeling program Abaqus RTM. More than 10,000 runs were executed to do the following analysis: stress analysis of subsurface voids, E-moduli back-calculation of base layer, pavement damage calculations of Beaumont, TX, overlay thickness estimations, and mode I crack analysis. The results indicate that the stress and stress intensity are, on average, amplified considerably: 80% and 150%, respectively, by the presence of the void and more severe in a bonded pavement system compared to an un-bonded system. The sub-surface void also significantly affects the layer moduli back-calculation. The equivalent moduli of the layers are reduced considerably when a sub-surface void is present. However, the results indicate the back-calculated moduli derived using surface deflection, and longitudinal stress basins did not yield equivalent layer moduli under mechanical loading; the back-calculated deflection-based moduli were larger than the stress-based moduli, leading to stress calculations that were lower than those found in the real system.

  6. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-04-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  7. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-06-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  8. Isolated molecular dopants in pentacene observed by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Kahn, Antoine

    2009-11-01

    Doping is essential to the control of electronic structure and conductivity of semiconductor materials. Whereas doping of inorganic semiconductors is well established, doping of organic molecular semiconductors is still relatively poorly understood. Using scanning tunneling microscopy, we investigate, at the molecular scale, surface and subsurface tetrafluoro-tetracyanoquinodimethane p -dopants in the prototypical molecular semiconductor pentacene. Surface dopants diffuse to pentacene vacancies and appear as negatively charged centers, consistent with the standard picture of an ionized acceptor. Subsurface dopants, however, have the effect of a positive charge, evidence that the donated hole is localized by the parent acceptor counterion, in contrast to the model of doping in inorganic semiconductors. Scanning tunneling spectroscopy shows that the electron potential energy is locally lowered near a subsurface dopant feature, in agreement with the localized hole model.

  9. Insights in time dependent cross compartment sensitivities from ensemble simulations with the fully coupled subsurface-land surface-atmosphere model TerrSysMP

    NASA Astrophysics Data System (ADS)

    Schalge, Bernd; Rihani, Jehan; Haese, Barbara; Baroni, Gabriele; Erdal, Daniel; Haefliger, Vincent; Lange, Natascha; Neuweiler, Insa; Hendricks-Franssen, Harrie-Jan; Geppert, Gernot; Ament, Felix; Kollet, Stefan; Cirpka, Olaf; Saavedra, Pablo; Han, Xujun; Attinger, Sabine; Kunstmann, Harald; Vereecken, Harry; Simmer, Clemens

    2017-04-01

    Currently, an integrated approach to simulating the earth system is evolving where several compartment models are coupled to achieve the best possible physically consistent representation. We used the model TerrSysMP, which fully couples subsurface, land surface and atmosphere, in a synthetic study that mimicked the Neckar catchment in Southern Germany. A virtual reality run at a high resolution of 400m for the land surface and subsurface and 1.1km for the atmosphere was made. Ensemble runs at a lower resolution (800m for the land surface and subsurface) were also made. The ensemble was generated by varying soil and vegetation parameters and lateral atmospheric forcing among the different ensemble members in a systematic way. It was found that the ensemble runs deviated for some variables and some time periods largely from the virtual reality reference run (the reference run was not covered by the ensemble), which could be related to the different model resolutions. This was for example the case for river discharge in the summer. We also analyzed the spread of model states as function of time and found clear relations between the spread and the time of the year and weather conditions. For example, the ensemble spread of latent heat flux related to uncertain soil parameters was larger under dry soil conditions than under wet soil conditions. Another example is that the ensemble spread of atmospheric states was more influenced by uncertain soil and vegetation parameters under conditions of low air pressure gradients (in summer) than under conditions with larger air pressure gradients in winter. The analysis of the ensemble of fully coupled model simulations provided valuable insights in the dynamics of land-atmosphere feedbacks which we will further highlight in the presentation.

  10. Coupling a three-dimensional subsurface flow model with a land surface model to simulate stream-aquifer-land interactions

    NASA Astrophysics Data System (ADS)

    Huang, M.; Bisht, G.; Zhou, T.; Chen, X.; Dai, H.; Hammond, G. E.; Riley, W. J.; Downs, J.; Liu, Y.; Zachara, J. M.

    2016-12-01

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively-parallel multi-physics reactive tranport model (PFLOTRAN). The coupled model (CLM-PFLOTRAN) is applied to a 400m×400m study domain instrumented with groundwater monitoring wells in the Hanford 300 Area along the Columbia River. CLM-PFLOTRAN simulations are performed at three different spatial resolutions over the period 2011-2015 to evaluate the impact of spatial resolution on simulated variables. To demonstrate the difference in model simulations with and without lateral subsurface flow, a vertical-only CLM-PFLOTRAN simulation is also conducted for comparison. Results show that the coupled model is skillful in simulating stream-aquifer interactions, and the land-surface energy partitioning can be strongly modulated by groundwater-river water interactions in high water years due to increased soil moisture availability caused by elevated groundwater table. In addition, spatial resolution does not seem to impact the land surface energy flux simulations, although it is a key factor for accurately estimating the mass exchange rates at the boundaries and associated biogeochemical reactions in the aquifer. The coupled model developed in this study establishes a solid foundation for understanding co-evolution of hydrology and biogeochemistry along the river corridors under historical and future hydro-climate changes.

  11. Linking Chaotic Advection with Subsurface Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Mays, D. C.; Freedman, V. L.; White, S. K.; Fang, Y.; Neupauer, R.

    2017-12-01

    This work investigates the extent to which groundwater flow kinematics drive subsurface biogeochemical processes. In terms of groundwater flow kinematics, we consider chaotic advection, whose essential ingredient is stretching and folding of plumes. Chaotic advection is appealing within the context of groundwater remediation because it has been shown to optimize plume spreading in the laminar flows characteristic of aquifers. In terms of subsurface biogeochemical processes, we consider an existing model for microbially-mediated reduction of relatively mobile uranium(VI) to relatively immobile uranium(IV) following injection of acetate into a floodplain aquifer beneath a former uranium mill in Rifle, Colorado. This model has been implemented in the reactive transport code eSTOMP, the massively parallel version of STOMP (Subsurface Transport Over Multiple Phases). This presentation will report preliminary numerical simulations in which the hydraulic boundary conditions in the eSTOMP model are manipulated to simulate chaotic advection resulting from engineered injection and extraction of water through a manifold of wells surrounding the plume of injected acetate. This approach provides an avenue to simulate the impact of chaotic advection within the existing framework of the eSTOMP code.

  12. Influence of deep vortices on the ocean surface

    NASA Astrophysics Data System (ADS)

    Ciani, Daniele; Carton, Xavier; Bashmachnikov, Igor; Chapron, Bertrand

    2015-04-01

    The oceanic motion at mesoscale (20-200 km) and submesoscale (0.5-20 km) is highly populated by vortices. These recirculating structures are more energetic than the mean flow, they trap water masses from their origination areas and advect them across the ocean, with consequent impact on the 3D distribution of heat and tracers. Mesoscale and submesoscale structures characterize the ocean dynamics both at the sea-surface and at intrathermocline depths (0-1500 m), and are presently investigated by means of model outputs and satellite (surface) data, the latest being the only way to get high resolution and synoptic observations at planetary scale (e.g., thermal-band observations, future altimetric observations given by the SWOT mission). The scientific question arising from this context is related to the role of the ocean surface for inferring informations on mesoscale and submesoscale vortices at depth. This study has also been motivated by the recent detection of subsurface eddies east of the Arabian Peninsula (PHYSINDIEN experiment - 2011). Using analytical models in the frame of the quasi-geostrophic (QG) theory, we could describe the theoretical altimetric signature of non-drifting and of drifting subsurface eddies. Numerical experiments, using both QG and primitive equations models, allowed us to investigate the surface expression of intrathermocline eddies interacting with baroclinic currents or evolving under planetary beta-effect. The eddies' characteristics (radius, depth, thickness, velocity) were varied in order to represent various oceanic examples (Meddies, Swoddies, Reddies, Peddies, Leddies). Idealized simulations with the ROMS model, confirming theoretical estimates, showed that drifting subsurface-intensified vortices can induce dipolar sea level anomalies, up to 3 cm. This result, compatibly with future SWOT measurement accuracies (about 2 cm), represents a contribution for systematic and synoptic detection of subsurface vortices.

  13. Surface and subsurface continuous gravimetric monitoring of groundwater recharge processes through the karst vadose zone at Rochefort Cave (Belgium)

    NASA Astrophysics Data System (ADS)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Triantafyllou, A.; Delforge, D.; Quinif, Y.; Van Ruymbeke, M.; Kaufmann, O.

    2017-12-01

    Ground-based gravimetry is a non-invasive and integrated tool to characterize hydrological processes in complex environments such as karsts or volcanoes. A problem in ground-based gravity measurements however concerns the lack of sensitivity in the first meters below the topographical surface, added to limited infiltration below the gravimeter building (umbrella effect). Such limitations disappear when measuring underground. Coupling surface and subsurface gravity measurements therefore allow isolating hydrological signals occurring in the zone between the two gravimeters. We present a coupled surface/subsurface continuous gravimetric monitoring of 2 years at the Rochefort Cave Laboratory (Belgium). The gravity record includes surface measurements of a GWR superconducting gravimeter and subsurface measurements of a Micro-g LaCoste gPhone gravimeter, installed in a cave 35 m below the surface station. The recharge of karstic aquifers is extremely complex to model, mostly because karst hydrological systems are composed of strongly heterogeneous flows. Most of the problem comes from the inadequacy of conventional measuring tools to correctly sample such heterogeneous media, and particularly the existence of a duality of flow types infiltrating the vadose zone: from rapid flows via open conduits to slow seepage through porous matrix. Using the surface/subsurface gravity difference, we were able to identify a significant seasonal groundwater recharge within the karst vadose zone. Seasonal or perennial perched reservoirs have already been proven to exist in several karst areas due to the heterogeneity of the porosity and permeability gradient in karstified carbonated rocks. Our gravimetric experiment allows assessing more precisely the recharge processes of such reservoirs. The gravity variations were also compared with surface and in-cave hydrogeological monitoring (i.e. soil moisture, in-cave percolating water discharges, water levels of the saturated zone). Combined with additional geological information, modeling of the gravity signal based on the vertical component of the gravitational attraction was particularly useful to estimate the seasonal recharge leading to temporary groundwater storage in the vadose zone.

  14. Impacts of microtopographic snow-redistribution and lateral subsurface processeson hydrologic and thermal states in an Arctic polygonal ground ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.

    Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. We analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the ACME Earth System Model (ESM) to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ALMv0-3D). Three 10-years long simulations were performed for a transect across polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model results show a better agreement (higher R 2 with lower bias and RMSE) for the observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~10 cm shallower and ~5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on active layer depths was modest with mean absolute difference of ~3 cm. Finally, our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the ACME land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less

  15. Impacts of microtopographic snow-redistribution and lateral subsurface processeson hydrologic and thermal states in an Arctic polygonal ground ecosystem

    DOE PAGES

    Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; ...

    2018-01-08

    Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. We analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the ACME Earth System Model (ESM) to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ALMv0-3D). Three 10-years long simulations were performed for a transect across polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model results show a better agreement (higher R 2 with lower bias and RMSE) for the observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~10 cm shallower and ~5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on active layer depths was modest with mean absolute difference of ~3 cm. Finally, our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the ACME land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less

  16. A simple model for remineralization of subsurface lesions in tooth enamel

    NASA Astrophysics Data System (ADS)

    Christoffersen, J.; Christoffersen, M. R.; Arends, J.

    1982-12-01

    A model for remineralization of subsurface lesions in tooth enamel is presented. The important assumption on which the model is based is that the rate-controlling process is the crystal surface process by which ions are incorporated in the crystallites; that is, the transport of ions through small holes in the so-called intact surface layer does not influence the rate of mineral uptake at the crystal surface. Further, the density of mineral in the lesion is assumed to increase down the lesion, when the remineralization process is started. It is shown that the dimension of the initial holes in the enamel surface layer must be larger than the dimension of the individual crystallites in order to prevent the formation of arrested lesions. Theoretical expressions for the progress of remineralization are given. The suggested model emphasizes the need for measurements of mineral densities in the lesion, prior to, and during the lesion repair.

  17. Search for life on Mars.

    PubMed

    Brack, A; Clancy, P; Fitton, B; Hoffmann, B; Horneck, G; Kurat, G; Maxwell, J; Ori, G; Pillinger, C; Raulin, F; Thomas, N; Westall, F

    1998-06-01

    A multi-user integrated suite of instruments designed to optimize the search for evidence of life on Mars is described. The package includes: -Surface inspection and surface environment analysis to identify the potential Mars landing sites, to inspect the surface geology and mineralogy, to search for visible surficial microbial macrofossils, to study the surface radiation budget and surface oxidation processes, to search for niches for extant life. -Subsurface sample acquisition by core drilling -Analysis of surface and subsurface minerals and organics to characterize the surface mineralogy, to analyse the surface and subsurface oxidants, to analyse the mineralogy of subsurface aliquots, to analyse the organics present in the subsurface aliquots (elemental and molecular composition, isotopes, chirality). -Macroscopic and microscopic inspection of subsurface aliquots to search for life's indicators (paleontological, biological, mineralogical) and to characterize the mineralogy of the subsurface aliquots. The study is led by ESA Manned Spaceflight and Microgravity Directorate.

  18. ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS

    NASA Astrophysics Data System (ADS)

    Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.

    2009-12-01

    Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.

  19. Using SWAT-MODFLOW to simulate groundwater flow and groundwater-surface water interactions in an intensively irrigated stream-aquifer system

    NASA Astrophysics Data System (ADS)

    Wei, X.; Bailey, R. T.

    2017-12-01

    Agricultural irrigated watersheds in semi-arid regions face challenges such as waterlogging, high soil salinity, reduced crop yield, and leaching of chemical species due to extreme shallow water tables resulting from long-term intensive irrigation. Hydrologic models can be used to evaluate the impact of land management practices on water yields and groundwater-surface water interactions in such regions. In this study, the newly developed SWAT-MODFLOW, a coupled surface/subsurface hydrologic model, is applied to a 950 km2 watershed in the Lower Arkansas River Valley (southeastern Colorado). The model accounts for the influence of canal diversions, irrigation applications, groundwater pumping, and earth canal seepage losses. The model provides a detailed description of surface and subsurface flow processes, thereby enabling detailed description of watershed processes such as runoff, infiltration, in-streamflow, three-dimensional groundwater flow in a heterogeneous aquifer system with sources and sinks (e.g. pumping, seepage to subsurface drains), and spatially-variable surface and groundwater exchange. The model was calibrated and tested against stream discharge from 5 stream gauges in the Arkansas River and its tributaries, groundwater levels from 70 observation wells, and evapotranspiration (ET) data estimated from satellite (ReSET) data during the 1999 to 2007 period. Since the water-use patterns within the study area are typical of many other irrigated river valleys in the United States and elsewhere, this modeling approach is transferable to other regions.

  20. Relating sub-surface ice features to physiological stress in a climate sensitive mammal, the American pika (Ochotona princeps).

    PubMed

    Wilkening, Jennifer L; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.

  1. Characterizing near-surface elemental layering on Mars using gamma-ray spectroscopy: A proof-of-principle experiment

    NASA Astrophysics Data System (ADS)

    Peplowski, Patrick N.; Wilson, Jack T.; Beck, Andrew W.; Burks, Morgan; Goldsten, John O.; Lawrence, David J.

    2018-01-01

    Gamma-ray spectroscopy investigations characterize the chemical composition of planetary surfaces by measuring element-characteristic gamma rays with energies of ∼100 keV to ∼9 MeV. Over this energy range, the mean free path of a gamma ray varies from about 1 to 25 cm, therefore gamma-ray measurements sample subsurface composition. Many elements emit gamma rays at multiple, often widely spaced energies, so gamma-ray measurements can in principle also be used to identify depth-dependent variations in subsurface composition. We report results from laboratory measurements and radiation transport modeling designed to demonstrate this capability. The laboratory measurements verified the presence of depth-dependent gamma-ray signatures, and were then used to benchmark radiation transport simulations that were used to model realistic Mars-like scenarios. The models indicate that compositionally distinct subsurface deposits, buried to depths of ∼80 cm (125 g/cm2), can be identified using gamma-ray measurements. Going beyond identification to characterization (burial depth, relative composition of the layers) of the deposits requires knowledge of the vertical and horizontal variability in the water content of the near-surface surface materials, the local Galactic Cosmic Ray environment (magnitude and energy distribution), the depth-dependent neutron flux, gamma-ray production cross sections, and knowledge of the composition and column density of the atmosphere. The results of our experiments and models provided a basis for examining the utility of using orbiter- and lander-based gamma-ray measurements to identify subsurface deposits on Mars.

  2. Estimating and mapping ecological processes influencing microbial community assembly

    DOE PAGES

    Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; ...

    2015-05-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recentlymore » developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.« less

  3. Potential effects of alpha-recoil on uranium-series dating of calcrete

    USGS Publications Warehouse

    Neymark, L.A.

    2011-01-01

    Evaluation of paleosol ages in the vicinity of Yucca Mountain, Nevada, at the time the site of a proposed high-level nuclear waste repository, is important for fault-displacement hazard assessment. Uranium-series isotope data were obtained for surface and subsurface calcrete samples from trenches and boreholes in Midway Valley, Nevada, adjacent to Yucca Mountain. 230Th/U ages of 33 surface samples range from 1.3 to 423 thousand years (ka) and the back-calculated 234U/238U initial activity ratios (AR) are relatively constant with a mean value of 1.54 ± 0.15 (1σ), which is consistent with the closed-system behavior. Subsurface calcrete samples are too old to be dated by the 230Th/U method. U-Pb data for post-pedogenic botryoidal opal from a subsurface calcrete sample show that these subsurface calcrete samples are older than ~ 1.65 million years (Ma), old enough to have attained secular equilibrium had their U-Th systems remained closed. However, subsurface calcrete samples show U-series disequilibrium indicating open-system behavior of 238U daughter isotopes, in contrast with the surface calcrete, where open-system behavior is not evident. Data for 21 subsurface calcrete samples yielded calculable 234U/238U model ages ranging from 130 to 1875 ka (assuming an initial AR of 1.54 ± 0.15, the mean value calculated for the surface calcrete samples). A simple model describing continuous α-recoil loss predicts that the 234U/238U and 230Th/238U ARs reach steady-state values ~ 2 Ma after calcrete formation. Potential effects of open-system behavior on 230Th/U ages and initial 234U/238U ARs for younger surface calcrete were estimated using data for old subsurface calcrete samples with the 234U loss and assuming that the total time of water-rock interaction is the only difference between these soils. The difference between the conventional closed-system and open-system ages may exceed errors of the calculated conventional ages for samples older than ~ 250 ka, but is negligible for younger soils.

  4. Great differences in the critical erosion threshold between surface and subsurface sediments: A field investigation of an intertidal mudflat, Jiangsu, China

    NASA Astrophysics Data System (ADS)

    Shi, Benwei; Wang, Ya Ping; Wang, Li Hua; Li, Peng; Gao, Jianhua; Xing, Fei; Chen, Jing Dong

    2018-06-01

    Understanding of bottom sediment erodibility is necessary for the sustainable management and protection of coastlines, and is of great importance for numerical models of sediment dynamics and transport. To investigate the dependence of sediment erodibility on degree of consolidation, we measured turbidity, waves, tidal currents, intratidal bed-level changes, and sediment properties on an exposed macrotidal mudflat during a series of tidal cycles. We estimated the water content of surface sediments (in the uppermost 2 cm of sediment) and sub-surface sediments (at 2 cm below the sediment surface). Bed shear stress values due to currents (τc), waves (τw), and combined current-wave action (τcw) were calculated using a hydrodynamic model. In this study, we estimate the critical shear stress for erosion using two approaches and both of them give similar results. We found that the critical shear stress for erosion (τce) was 0.17-0.18 N/m2 in the uppermost 0-2 cm of sediment and 0.29 N/m2 in sub-surface sediment layers (depth, 2 cm), as determined by time series of τcw values and intratidal bed-level changes, and values of τce, obtained using the water content of bottom sediments, were 0.16 N/m2 in the uppermost 2 cm and 0.28 N/m2 in the sub-surface (depth, 2 cm) sediment. These results indicate that the value of τce for sub-surface sediments (depth, 2 cm) is much greater than that for the uppermost sediments (depth, 0-2 cm), and that the τce value is mainly related to the water content, which is determined by the extent of consolidation. Our results have implications for improving the predictive accuracy of models of sediment transport and morphological evolution, by introducing variable τce values for corresponding sediment layers, and can also provide a mechanistic understanding of bottom sediment erodibility at different sediment depths on intertidal mudflats, as related to differences in the consolidation time.

  5. The Role of Subsurface Properties on Transport of Water and Trace Gases: 1D Simulations at Selected Mars Landing Sites.

    NASA Astrophysics Data System (ADS)

    Karatekin, O.; Gloesener, E.; Dehant, V. M. A.

    2017-12-01

    In this work, water ice stability and water vapour transport through porous martian subsurface are studied using a 1D diffusive model. The role of adsorption on water transfer in martian conditions is investigated as well as the range of parameters that have the largest effect on gas transport. In addition, adsorption kinetics is considered to examine its influence on the water vapor exchange between the subsurface and the atmosphere. As methane has been detected in the martian atmosphere, the subsurface model is then used to study methane diffusion in the CH4/CO2/H2O system from variable depths under the surface. The results of subsurface gas transport at selected locations/landing sites are shown and implications for present/future observations are discussed.

  6. Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting.

    PubMed

    Lai, Min; Zhang, Xiaodong; Fang, Fengzhou

    2017-12-01

    Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordination number distribution and radial distribution function (RDF) show that the machined surface presents the similar amorphous state. The anisotropic subsurface deformation is studied by nanometric cutting on the (010), (101), and (111) crystal planes of germanium, respectively. The deformed structures are prone to extend along the 110 slip system, which leads to the difference in the shape and thickness of the deformed layer on various directions and crystal planes. On machined surface, the greater thickness of subsurface deformed layer induces the greater surface recovery height. In order to get the critical thickness limit of deformed layer on machined surface of germanium, the optimized cutting direction on each crystal plane is suggested according to the relevance of the nanometric cutting to the nanoindentation.

  7. Potential role of resurfacing Subtropical Underwater in ENSO evolution

    NASA Astrophysics Data System (ADS)

    Qu, T.; Chi, J.

    2017-12-01

    Results from a model of the Estimating the Circulation and Climate of the Ocean (ECCO) have shown that the resurfacing of high salinity Subtropical Underwater contributes to the sea surface salinity variability in the equatorial Pacific. On interannual time scale, this contribution can account for as much as 25% of the surface freshwater flux anomalies and is believed to play a role in ENSO evolution. Having these results in mind, this study investigates the surface salinity budget and its primary controls in the equatorial Pacific using ECCO output for the period 1993-2016. Particular attention is paid to 2014/2015 and 2015/2016. Preliminary analyses of the model results suggest that enhanced subsurface processes and in particular enhanced entrainment of Subtropical Underwater are primarily responsible for the positive sea surface salinity anomalies in the central equatorial Pacific during 2014/2015, which represents an opposite phase of El Niño. These subsurface processes weakened during 2015/2016, diretly contributing to the development of the 2015/2016 El Niño. The mechanisms controlling these subsurface processes are discussed.

  8. Determining the 3D Subsurface Density Structure of Taurus Littrow Valley Using Apollo 17 Gravity Data

    NASA Technical Reports Server (NTRS)

    Urbancic, N.; Ghent, R.; Stanley, S,; Johnson, C. L.; Carroll, K. A.; Hatch, D.; Williamson, M. C.; Garry, W. B.; Talwani, M.

    2016-01-01

    Surface gravity surveys can detect subsurface density variations that can reveal subsurface geologic features. In 1972, the Apollo 17 (A17) mission conducted the Traverse Gravimeter Experiment (TGE) using a gravimeter that measured the local gravity field near Taurus Littrow Valley (TLV), located on the south-eastern rim of the Serenitatis basin. TLV is hypothesized to be a basaltfilled radial graben resulting from the impact that formed Mare Serenitatis. It is bounded by both the North and South Massifs (NM and SM) as well as other smaller mountains to the East that are thought to be mainly composed of brecciated highland material. The TGE is the first and only successful gravity survey on the surface of the Moon. Other more recent satellite surveys, such as NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission (2011- 2012), have produced the best global gravity field to date (approx. 13km resolution). However, these satellite surveys are not sensitive enough to detect fine-scale (<1km) lunar subsurface structures. This underscores the value of the data collected at the surface by A17. In the original analysis of the data a 2D forward-modelling approach was used to derive a thickness of the subsurface basalt layer of 1.0 km by assuming a simple flat-faced rectangular geometry and using densities derived from Apollo lunar samples. We are investigating whether modern 3D modelling techniques in combination with high-resolution topographical and image datasets can reveal additional fine-scale subsurface structure in TLV.

  9. Modeling the Hydrologic Response to Changes in Groundcover Conditions Caused by Fire Disturbances

    NASA Astrophysics Data System (ADS)

    Kikinzon, E.; Atchley, A. L.; Coon, E.; Middleton, R. S.

    2016-12-01

    Climate change and fire suppression increase wildfire activity, which alters ecosystem functions and can significantly impact hydrological response. Both wildfire and prescribed burns reduce groundcover, affect top layers of subsurface, and change the structure of overland flow pathways. To understand respective effects on surface and subsurface hydrology, it is imperative to accurately represent surface-subsurface interface pre and post-fire, and to model physical processes in groundcover components. We show mechanistic models used to describe physics in two key types of groundcover, litter and duff, in Advanced Terrestrial Simulator (ATS). Litter is considered to be a part of vegetative canopy covering the surface. It has associated water storage capacity, which allows simulating interception and drainage, and its thickness is used to evaluate surface roughness with potential effect of slowing overland flow compared to bare soil. Duff on the other hand is incorporated into the subsurface, thus requiring meshing and discretization capability to support complex geometries including pinchouts, which is necessary both for achieving desired mesh resolution and portraying bare soil patches without adversely affecting the time scale. As part of the subsurface, duff has its own hydrologic and water retention properties used to resolve infiltration and saturation limited runoff generation, run on, and infiltration processes. This enables the use of ATS for fine scale modeling of integrated hydrology with adequate representation of groundcover influence. To isolate the impact of changing groundcover, we consider a simple hill slope and study the hydrological response to varying amount and geometries of groundcover. To cover landscape characteristics produced by a wide variety of fire conditions, from high intensity to low intensity fire impacts, we simulate hydrologic response to precipitation events over a number of typical geometries and with fine control over amounts of two described types of groundcover. We then analyze hydrological sensitivity to presence or absence of particular groundcover types, their respective patchiness, and possible changes in overland flow pathways.

  10. The effects of spatial heterogeneity and subsurface lateral transfer on evapotranspiration estimates in large scale Earth system models

    NASA Astrophysics Data System (ADS)

    Rouholahnejad, E.; Fan, Y.; Kirchner, J. W.; Miralles, D. G.

    2017-12-01

    Most Earth system models (ESM) average over considerable sub-grid heterogeneity in land surface properties, and overlook subsurface lateral flow. This could potentially bias evapotranspiration (ET) estimates and has implications for future temperature predictions, since overestimations in ET imply greater latent heat fluxes and potential underestimation of dry and warm conditions in the context of climate change. Here we quantify the bias in evaporation estimates that may arise from the fact that ESMs average over considerable heterogeneity in surface properties, and also neglect lateral transfer of water across the heterogeneous landscapes at global scale. We use a Budyko framework to express ET as a function of P and PET to derive simple sub-grid closure relations that quantify how spatial heterogeneity and lateral transfer could affect average ET as seen from the atmosphere. We show that averaging over sub-grid heterogeneity in P and PET, as typical Earth system models do, leads to overestimation of average ET. Our analysis at global scale shows that the effects of sub-grid heterogeneity will be most pronounced in steep mountainous areas where the topographic gradient is high and where P is inversely correlated with PET across the landscape. In addition, we use the Total Water Storage (TWS) anomaly estimates from the Gravity Recovery and Climate Experiment (GRACE) remote sensing product and assimilate it into the Global Land Evaporation Amsterdam Model (GLEAM) to correct for existing free drainage lower boundary condition in GLEAM and quantify whether, and how much, accounting for changes in terrestrial storage can improve the simulation of soil moisture and regional ET fluxes at global scale.

  11. A Physically Based Distributed Hydrologic Model with a no-conventional terrain analysis

    NASA Astrophysics Data System (ADS)

    Rulli, M.; Menduni, G.; Rosso, R.

    2003-12-01

    A physically based distributed hydrological model is presented. Starting from a contour-based terrain analysis, the model makes a no-conventional discretization of the terrain. From the maximum slope lines, obtained using the principles of minimum distance and orthogonality, the models obtains a stream tubes structure. The implemented model automatically can find the terrain morphological characteristics, e.g. peaks and saddles, and deal with them respecting the stream flow. Using this type of discretization, the model divides the elements in which the water flows in two classes; the cells, that are mixtilinear polygons where the overland flow is modelled as a sheet flow and channels, obtained by the interception of two or more stream tubes and whenever surface runoff occurs, the surface runoff is channelised. The permanent drainage paths can are calculated using one of the most common methods: threshold area, variable threshold area or curvature. The subsurface flow is modelled using the Simplified Bucket Model. The model considers three type of overland flow, depending on how it is produced:infiltration excess;saturation of superficial layer of the soil and exfiltration of sub-surface flow from upstream. The surface flow and the subsurface flow across a element are routed according with the mono-dimensional equation of the kinematic wave. The also model considers the spatial variability of the channels geometry with the flow. The channels have a rectangular section with length of the base decreasing with the distance from the outlet and depending on a power of the flow. The model was tested on the Rio Gallina and Missiaga catchments and the results showed model good performances.

  12. Relating Sub-Surface Ice Features to Physiological Stress in a Climate Sensitive Mammal, the American Pika (Ochotona princeps)

    PubMed Central

    Wilkening, Jennifer L.; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features. PMID:25803587

  13. A field evaluation of subsurface and surface runoff. II. Runoff processes

    USGS Publications Warehouse

    Pilgrim, D.H.; Huff, D.D.; Steele, T.D.

    1978-01-01

    Combined use of radioisotope tracer, flow rate, specific conductance and suspended-sediment measurements on a large field plot near Stanford, California, has provided more detailed information on surface and subsurface storm runoff processes than would be possible from any single approach used in isolation. Although the plot was surficially uniform, the runoff processes were shown to be grossly nonuniform, both spatially over the plot, and laterally and vertically within the soil. The three types of processes that have been suggested as sources of storm runoff (Horton-type surface runoff, saturated overland flow, and rapid subsurface throughflow) all occurred on the plot. The nonuniformity of the processes supports the partial- and variable-source area concepts. Subsurface storm runoff occurred in a saturated layer above the subsoil horizon, and short travel times resulted from flow through macropores rather than the soil matrix. Consideration of these observations would be necessary for physically realistic modeling of the storm runoff process. ?? 1978.

  14. Long-Term Hydrologic Impacts of Controlled Drainage Using DRAINMOD

    NASA Astrophysics Data System (ADS)

    Saadat, S.; Bowling, L. C.; Frankenberger, J.

    2017-12-01

    Controlled drainage is a management strategy designed to mitigate water quality issues caused by subsurface drainage but it may increase surface ponding and runoff. To improve controlled drainage system management, a long-term and broader study is needed that goes beyond the experimental studies. Therefore, the goal of this study was to parametrize the DRAINMOD field-scale, hydrologic model for the Davis Purdue Agricultural Center located in Eastern Indiana and to predict the subsurface drain flow and surface runoff and ponding at this research site. The Green-Ampt equation was used to characterize the infiltration, and digital elevation models (DEMs) were used to estimate the maximum depressional storage as the surface ponding parameter inputs to DRAINMOD. Hydraulic conductivity was estimated using the Hooghoudt equation and the measured drain flow and water table depths. Other model inputs were either estimated or taken from the measurements. The DRAINMOD model was calibrated and validated by comparing model predictions of subsurface drainage and water table depths with field observations from 2012 to 2016. Simulations based on the DRAINMOD model can increase understanding of the environmental and hydrological effects over a broader temporal and spatial scale than is possible using field-scale data and this is useful for developing management recommendations for water resources at field and watershed scales.

  15. LIRAS mission for lunar exploration by microwave interferometric radiometer: Moon's subsurface characterization, emission model and numerical simulator

    NASA Astrophysics Data System (ADS)

    Pompili, Sara; Silvio Marzano, Frank; Di Carlofelice, Alessandro; Montopoli, Mario; Talone, Marco; Crapolicchio, Raffaele; L'Abbate, Michelangelo; Varchetta, Silvio; Tognolatti, Piero

    2013-04-01

    The "Lunar Interferometric Radiometer by Aperture Synthesis" (LIRAS) mission is promoted by the Italian Space Agency and is currently in feasibility phase. LIRAS' satellite will orbit around the Moon at a height of 100 km, with a revisiting time period lower than 1 lunar month and will be equipped with: a synthetic aperture radiometer for subsurface sounding purposes, working at 1 and 3 GHz, and a real aperture radiometer for near-surface probing, working at 12 and 24 GHz. The L-band payload, representing a novel concept for lunar exploration, is designed as a Y-shaped thinned array with three arms less than 2.5 m long. The main LIRAS objectives are high-resolution mapping and vertical sounding of the Moon subsurface by applying the advantages of the antenna aperture synthesis technique to a multi-frequency microwave passive payload. The mission is specifically designed to achieve spatial resolutions less than 10 km at surface and to retrieve thermo-morphological properties of the Moon subsurface within 5 m of depth. Among LIRAS products are: lunar near-surface brightness temperature, subsurface brightness temperature gross profile, subsurface regolith thickness, density and average thermal conductivity, detection index of possible subsurface discontinuities (e.g. ice presence). The following study involves the preliminary design of the LIRAS payload and the electromagnetic and thermal characterization of the lunar subsoil through the implementation of a simulator for reproducing the LIRAS measurements in response to observations of the Moon surface and subsurface layers. Lunar physical data, collected after the Apollo missions, and LIRAS instrument parameters are taken as input for the abovementioned simulator, called "LIRAS End-to-end Performance Simulator" (LEPS) and obtained by adapting the SMOS End-to-end Performance Simulator to the different instrumental, orbital, and geophysical LIRAS characteristics. LEPS completely simulates the behavior of the satellite when it becomes operational providing the extrapolation of lunar brightness temperature maps in both Antenna frame (the cosine domain) and on the Moon surface and allowing an accurate analysis of the instrument performance. The Moon stratigraphy is reproduced in LEPS environment through three scenarios: a macro-layer of regolith; two subsequent macro-layers of regolith and rock; three subsequent macro-layers of regolith, ice and rock, respectively. These scenarios are studied using an incoherent approach, taking into account the interaction between the upwelling and downwelling radiation contributions from each layer to model the resulting brightness temperature at the surface level. It has been considered that the radiative behavior of the Moon varies over time, depending on solar illumination conditions, and it is also function of the material properties, layer thickness and specific position on the lunar crust; moreover it has been examined its variation with frequency, observation angle, and polarization. Using the proposed emission model it has been possible to derive a digital thermal model in the microwave frequency of the Moon, allowing in-depth analysis of the lunar soil consistency; this collected information could be related with a lunar digital elevation model in order to achieve global coverage information on topological aspects. The main results of the study will be presented at the conference.

  16. Application of the Quadrupole Method for Simulation of Passive Thermography

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Gregory, Elizabeth D.

    2017-01-01

    Passive thermography has been shown to be an effective method for in-situ and real time nondestructive evaluation (NDE) to measure damage growth in a composite structure during cyclic loading. The heat generation by subsurface flaw results in a measurable thermal profile at the surface. This paper models the heat generation as a planar subsurface source and calculates the resultant temperature profile at the surface using a three dimensional quadrupole. The results of the model are compared to finite element simulations of the same planar sources and experimental data acquired during cyclic loading of composite specimens.

  17. Multisource data assimilation in a Richards equation-based integrated hydrological model: a real-world application to an experimental hillslope

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Botto, A.

    2017-12-01

    Data assimilation is becoming increasingly popular in hydrological and earth system modeling, as it allows for direct integration of multisource observation data in modeling predictions and uncertainty reduction. For this reason, data assimilation has been recently the focus of much attention also for integrated surface-subsurface hydrological models, whereby multiple terrestrial compartments (e.g., snow cover, surface water, groundwater) are solved simultaneously, in an attempt to tackle environmental problems in a holistic approach. Recent examples include the joint assimilation of water table, soil moisture, and river discharge measurements in catchment models of coupled surface-subsurface flow using the ensemble Kalman filter (EnKF). Although the EnKF has been specifically developed to deal with nonlinear models, integrated hydrological models based on the Richards equation still represent a challenge, due to strong nonlinearities that may significantly affect the filter performance. Thus, more studies are needed to investigate the capabilities of EnKF to correct the system state and identify parameters in cases where the unsaturated zone dynamics are dominant. Here, the model CATHY (CATchment HYdrology) is applied to reproduce the hydrological dynamics observed in an experimental hillslope, equipped with tensiometers, water content reflectometer probes, and tipping bucket flow gages to monitor the hillslope response to a series of artificial rainfall events. We assimilate pressure head, soil moisture, and subsurface outflow with EnKF in a number of assimilation scenarios and discuss the challenges, issues, and tradeoffs arising from the assimilation of multisource data in a real-world test case, with particular focus on the capability of DA to update the subsurface parameters.

  18. Simulating land-atmosphere feedbacks and response to widespread forest disturbance: The role of lower boundary configuration and dynamic water table in meteorological modeling

    NASA Astrophysics Data System (ADS)

    Forrester, M.; Maxwell, R. M.; Bearup, L. A.; Gochis, D.

    2017-12-01

    Numerical meteorological models are frequently used to diagnose land-atmosphere interactions and predict large-scale response to extreme or hazardous events, including widespread land disturbance or perturbations to near-surface moisture. However, few atmospheric modeling platforms consider the impact that dynamic groundwater storage, specifically 3D subsurface flow, has on land-atmosphere interactions. In this study, we use the Weather Research and Forecasting (WRF) mesoscale meteorological model to identify ecohydrologic and land-atmosphere feedbacks to disturbance by the mountain pine beetle (MPB) over the Colorado Headwaters region. Disturbance simulations are applied to WRF with various lower boundary configurations: Including default Noah land surface model soil moisture representation; a version of WRF coupled to ParFlow (PF), an integrated groundwater-surface water model that resolves variably saturated flow in the subsurface; and WRF coupled to PF in a static water table version, simulating only vertical and no lateral subsurface flow. Our results agree with previous literature showing MPB-induced reductions in canopy transpiration in all lower boundary scenarios, as well as energy repartitioning, higher water tables, and higher planetary boundary layer over infested regions. Simulations show that expanding from local to watershed scale results in significant damping of MPB signal as unforested and unimpacted regions are added; and, while deforestation appears to have secondary feedbacks to planetary boundary layer and convection, these slight perturbations to cumulative summer precipitation are insignificant in the context of ensemble methodologies. Notably, the results suggest that groundwater representation in atmospheric modeling affects the response intensity of a land disturbance event. In the WRF-PF case, energy and atmospheric processes are more sensitive to disturbance in regions with higher water tables. Also, when dynamic subsurface hydrology is removed, WRF simulates a greater response to MPB at the land-atmosphere interface, including greater changes to daytime skin temperature, Bowen ratio and near-surface humidity. These findings highlight lower boundary representations in computational meteorology and numerical land-atmosphere modeling.

  19. Uncertainty of climate change impact on groundwater reserves - Application to a chalk aquifer

    NASA Astrophysics Data System (ADS)

    Goderniaux, Pascal; Brouyère, Serge; Wildemeersch, Samuel; Therrien, René; Dassargues, Alain

    2015-09-01

    Recent studies have evaluated the impact of climate change on groundwater resources for different geographical and climatic contexts. However, most studies have either not estimated the uncertainty around projected impacts or have limited the analysis to the uncertainty related to climate models. In this study, the uncertainties around impact projections from several sources (climate models, natural variability of the weather, hydrological model calibration) are calculated and compared for the Geer catchment (465 km2) in Belgium. We use a surface-subsurface integrated model implemented using the finite element code HydroGeoSphere, coupled with climate change scenarios (2010-2085) and the UCODE_2005 inverse model, to assess the uncertainty related to the calibration of the hydrological model. This integrated model provides a more realistic representation of the water exchanges between surface and subsurface domains and constrains more the calibration with the use of both surface and subsurface observed data. Sensitivity and uncertainty analyses were performed on predictions. The linear uncertainty analysis is approximate for this nonlinear system, but it provides some measure of uncertainty for computationally demanding models. Results show that, for the Geer catchment, the most important uncertainty is related to calibration of the hydrological model. The total uncertainty associated with the prediction of groundwater levels remains large. By the end of the century, however, the uncertainty becomes smaller than the predicted decline in groundwater levels.

  20. Simulating the evolution of non-point source pollutants in a shallow water environment.

    PubMed

    Yan, Min; Kahawita, Rene

    2007-03-01

    Non-point source pollution originating from surface applied chemicals in either liquid or solid form as part of agricultural activities, appears in the surface runoff caused by rainfall. The infiltration and transport of these pollutants has a significant impact on subsurface and riverine water quality. The present paper describes the development of a unified 2-D mathematical model incorporating individual models for infiltration, adsorption, solubility rate, advection and diffusion, which significantly improve the current practice on mathematical modeling of pollutant evolution in shallow water. The governing equations have been solved numerically using cubic spline integration. Experiments were conducted at the Hydrodynamics Laboratory of the Ecole Polytechnique de Montreal to validate the mathematical model. Good correspondence between the computed results and experimental data has been obtained. The model may be used to predict the ultimate fate of surface applied chemicals by evaluating the proportions that are dissolved, infiltrated into the subsurface or are washed off.

  1. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China

    PubMed Central

    Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun

    2017-01-01

    Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507

  2. Let's Go Off the Grid: Subsurface Flow Modeling With Analytic Elements

    NASA Astrophysics Data System (ADS)

    Bakker, M.

    2017-12-01

    Subsurface flow modeling with analytic elements has the major advantage that no grid or time stepping are needed. Analytic element formulations exist for steady state and transient flow in layered aquifers and unsaturated flow in the vadose zone. Analytic element models are vector-based and consist of points, lines and curves that represent specific features in the subsurface. Recent advances allow for the simulation of partially penetrating wells and multi-aquifer wells, including skin effect and wellbore storage, horizontal wells of poly-line shape including skin effect, sharp changes in subsurface properties, and surface water features with leaky beds. Input files for analytic element models are simple, short and readable, and can easily be generated from, for example, GIS databases. Future plans include the incorporation of analytic element in parts of grid-based models where additional detail is needed. This presentation will give an overview of advanced flow features that can be modeled, many of which are implemented in free and open-source software.

  3. Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.

    Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. In this study, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model predictions better agreed (higher R 2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~ 10 cm shallower and ~ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ~ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less

  4. Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0

    DOE PAGES

    Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; ...

    2018-01-08

    Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. In this study, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model predictions better agreed (higher R 2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~ 10 cm shallower and ~ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ~ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less

  5. Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0

    NASA Astrophysics Data System (ADS)

    Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; Dafflon, Baptiste; Yuan, Fengming; Romanovsky, Vladimir E.

    2018-01-01

    Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. Here, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SR and subsurface process representation. When SR was included, model predictions better agreed (higher R2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R2 of 0.59 °C, 1.82 °C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ˜ 10 cm shallower and ˜ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ˜ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.

  6. Subsurface conditions in hydrothermal vents inferred from diffuse flow composition, and models of reaction and transport

    NASA Astrophysics Data System (ADS)

    Larson, B. I.; Houghton, J. L.; Lowell, R. P.; Farough, A.; Meile, C. D.

    2015-08-01

    Chemical gradients in the subsurface of mid-ocean ridge hydrothermal systems create an environment where minerals precipitate and dissolve and where chemosynthetic organisms thrive. However, owing to the lack of easy access to the subsurface, robust knowledge of the nature and extent of chemical transformations remains elusive. Here, we combine measurements of vent fluid chemistry with geochemical and transport modeling to give new insights into the under-sampled subsurface. Temperature-composition relationships from a geochemical mixing model are superimposed on the subsurface temperature distribution determined using a heat flow model to estimate the spatial distribution of fluid composition. We then estimate the distribution of Gibb's free energies of reaction beneath mid oceanic ridges and by combining flow simulations with speciation calculations estimate anhydrite deposition rates. Applied to vent endmembers observed at the fast spreading ridge at the East Pacific Rise, our results suggest that sealing times due to anhydrite formation are longer than the typical time between tectonic and magmatic events. The chemical composition of the neighboring low temperature flow indicates relatively uniform energetically favorable conditions for commonly inferred microbial processes such as methanogenesis, sulfate reduction and numerous oxidation reactions, suggesting that factors other than energy availability may control subsurface microbial biomass distribution. Thus, these model simulations complement fluid-sample datasets from surface venting and help infer the chemical distribution and transformations in subsurface flow.

  7. Dielectric properties of Jovian satellite ice analogs for subsurface radar exploration: A review

    NASA Astrophysics Data System (ADS)

    Pettinelli, Elena; Cosciotti, Barbara; Di Paolo, Federico; Lauro, Sebastian Emanuel; Mattei, Elisabetta; Orosei, Roberto; Vannaroni, Giuliano

    2015-09-01

    The first European mission dedicated to the exploration of Jupiter and its icy moons (JUpiter ICy moons Explorer—JUICE) will be launched in 2022 and will reach its final destination in 2030. The main goals of this mission are to understand the internal structure of the icy crusts of three Galilean satellites (Europa, Ganymede, and Callisto) and, ultimately, to detect Europa's subsurface ocean, which is believed to be the closest to the surface among those hypothesized to exist on these moons. JUICE will be equipped with the 9 MHz subsurface-penetrating radar RIME (Radar for Icy Moon Exploration), which is designed to image the ice down to a depth of 9 km. Moreover, a parallel mission to Europa, which will host onboard REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface) equipped with 9MHz and 60MHz antennas, has been recently approved by NASA. The success of these experiments strongly relies on the accurate prediction of the radar performance and on the optimal processing and interpretation of radar echoes that, in turn, depend on the dielectric properties of the materials composing the icy satellite crusts. In the present review we report a complete range of potential ice types that may occur on these icy satellites to understand how they may affect the results of the proposed missions. First, we discuss the experimental results on pure and doped water ice in the framework of the Jaccard theory, highlighting the critical aspects in terms of a lack of standard laboratory procedures and inconsistency in data interpretation. We then describe the dielectric behavior of extraterrestrial ice analogs like hydrates and icy mixtures, carbon dioxide ice and ammonia ice. Building on this review, we have selected the most suitable data to compute dielectric attenuation, velocity, vertical resolution, and reflection coefficients for such icy moon environments, with the final goal being to estimate the potential capabilities of the radar missions as a function of the frequency and temperature ranges of interest for the subsurface sounders. We present the different subsurface scenarios and associated radar signal attenuation models that have been proposed so far to simulate the structure of the crust of Europa and discuss the physical and geological nature of various dielectric targets potentially detectable with RIME. Finally, we briefly highlight several unresolved issues that should be addressed, in near future, to improve our capability to produce realistic electromagnetic models of icy moon crusts. The present review is of interest for the geophysical exploration of all solar system bodies, including the Earth, where ice can be present at the surface or at relatively shallow depths.

  8. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming.

    PubMed

    Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui

    2015-05-18

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.

  9. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

    PubMed Central

    Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui

    2015-01-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028

  10. Estimation of subsurface thermal structure using sea surface height and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)

    2012-01-01

    A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.

  11. The geothermal energy potential in Denmark - updating the database and new structural and thermal models

    NASA Astrophysics Data System (ADS)

    Nielsen, Lars Henrik; Sparre Andersen, Morten; Balling, Niels; Boldreel, Lars Ole; Fuchs, Sven; Leth Hjuler, Morten; Kristensen, Lars; Mathiesen, Anders; Olivarius, Mette; Weibel, Rikke

    2017-04-01

    Knowledge of structural, hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. In the framework of a project under the Danish Research program 'Sustainable Energy and Environment' funded by the 'Danish Agency for Science, Technology and Innovation', fundamental geological and geophysical information of importance for the utilization of geothermal energy in Denmark was compiled, analyzed and re-interpreted. A 3D geological model was constructed and used as structural basis for the development of a national subsurface temperature model. In that frame, all available reflection seismic data were interpreted, quality controlled and integrated to improve the regional structural understanding. The analyses and interpretation of available relevant data (i.e. old and new seismic profiles, core and well-log data, literature data) and a new time-depth conversion allowed a consistent correlation of seismic surfaces for whole Denmark and across tectonic features. On this basis, new topologically consistent depth and thickness maps for 16 geological units from the top pre-Zechstein to the surface were drawn. A new 3D structural geological model was developed with special emphasis on potential geothermal reservoirs. The interpretation of petrophysical data (core data and well-logs) allows to evaluate the hydraulic and thermal properties of potential geothermal reservoirs and to develop a parameterized numerical 3D conductive subsurface temperature model. Reservoir properties and quality were estimated by integrating petrography and diagenesis studies with porosity-permeability data. Detailed interpretation of the reservoir quality of the geological formations was made by estimating net reservoir sandstone thickness based on well-log analysis, determination of mineralogy including sediment provenance analysis, and burial history data. New local surface heat-flow values (range: 64-84 mW/m2) were determined for the Danish Basin and predicted temperatures were calibrated and validated by borehole temperature observations. Finally, new temperature maps for major geological reservoir formations (Frederikshavn, Haldager Sand, Gassum and Bunter Sandstone/Skagerrak formations) and selected constant depth intervals (1 km, 2 km, etc.) were compiled. In the future, geothermal energy is likely to be a key component in Denmark's supply of energy and integrated into the district heating infrastructures. A new 3-year project (GEOTHERM) under the Innovation Fund Denmark will focus on addressing and removing remaining geological, technical and commercial obstacles. The presented 3D geothermal model will be an important component in more precise assessments of the geothermal resource, production capacity and thermal lifecycle.

  12. Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations

    NASA Astrophysics Data System (ADS)

    Su, Hua; Li, Wene; Yan, Xiao-Hai

    2018-01-01

    Retrieving the subsurface and deeper ocean (SDO) dynamic parameters from satellite observations is crucial for effectively understanding ocean interior anomalies and dynamic processes, but it is challenging to accurately estimate the subsurface thermal structure over the global scale from sea surface parameters. This study proposes a new approach based on Random Forest (RF) machine learning to retrieve subsurface temperature anomaly (STA) in the global ocean from multisource satellite observations including sea surface height anomaly (SSHA), sea surface temperature anomaly (SSTA), sea surface salinity anomaly (SSSA), and sea surface wind anomaly (SSWA) via in situ Argo data for RF training and testing. RF machine-learning approach can accurately retrieve the STA in the global ocean from satellite observations of sea surface parameters (SSHA, SSTA, SSSA, SSWA). The Argo STA data were used to validate the accuracy and reliability of the results from the RF model. The results indicated that SSHA, SSTA, SSSA, and SSWA together are useful parameters for detecting SDO thermal information and obtaining accurate STA estimations. The proposed method also outperformed support vector regression (SVR) in global STA estimation. It will be a useful technique for studying SDO thermal variability and its role in global climate system from global-scale satellite observations.

  13. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures

    PubMed Central

    Schmidt, Matthew W.; Chang, Ping; Hertzberg, Jennifer E.; Them, Theodore R.; Ji, Link; Otto-Bliesner, Bette L.

    2012-01-01

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition. PMID:22908256

  14. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.

    PubMed

    Schmidt, Matthew W; Chang, Ping; Hertzberg, Jennifer E; Them, Theodore R; Ji, Link; J, Link; Otto-Bliesner, Bette L

    2012-09-04

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition.

  15. Effects of leaf area index on the coupling between water table, land surface energy fluxes, and planetary boundary layer at the regional scale

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Rihani, J.; Langensiepen, M.; Simmer, C.

    2013-12-01

    Vegetation plays an important role in the exchange of moisture and energy at the land surface. Previous studies indicate that vegetation increases the complexity of the feedbacks between the atmosphere and subsurface through processes such as interception, root water uptake, leaf surface evaporation, and transpiration. Vegetation cover can affect not only the interaction between water table depth and energy fluxes, but also the development of the planetary boundary layer. Leaf Area Index (LAI) is shown to be a major factor influencing these interactions. In this work, we investigate the sensitivity of water table, surface energy fluxes, and atmospheric boundary layer interactions to LAI as a model input. We particularly focus on the role LAI plays on the location and extent of transition zones of strongest coupling and how this role changes over seasonal timescales for a real catchment. The Terrestrial System Modelling Platform (TerrSysMP), developed within the Transregional Collaborative Research Centre 32 (TR32), is used in this study. TerrSysMP consists of the variably saturated groundwater model ParFlow, the land surface model Community Land Model (CLM), and the regional climate and weather forecast model COSMO (COnsortium for Small-scale Modeling). The sensitivity analysis is performed over a range of LAI values for different vegetation types as extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset for the Rur catchment in Germany. In the first part of this work, effects of vegetation structure on land surface energy fluxes and their connection to water table dynamics are studied using the stand-alone CLM and the coupled subsurface-surface components of TerrSysMP (ParFlow-CLM), respectively. The interconnection between LAI and transition zones of strongest coupling are investigated and analyzed through a subsequent set of subsurface-surface-atmosphere coupled simulations implementing the full TerrSysMP model system.

  16. Shallow subsurface storm flow in a forested headwater catchment: Observations and modeling using a modified TOPMODEL

    USGS Publications Warehouse

    Scanlon, Todd M.; Raffensperger, Jeff P.; Hornberger, George M.; Clapp, Roger B.

    2000-01-01

    Transient, perched water tables in the shallow subsurface are observed at the South Fork Brokenback Run catchment in Shenandoah National Park, Virginia. Crest piezometers installed along a hillslope transect show that the development of saturated conditions in the upper 1.5 m of the subsurface is controlled by total precipitation and antecedent conditions, not precipitation intensity, although soil heterogeneities strongly influence local response. The macroporous subsurface storm flow zone provides a hydrological pathway for rapid runoff generation apart from the underlying groundwater zone, a conceptualization supported by the two‐storage system exhibited by hydrograph recession analysis. A modified version of TOPMODEL is used to simulate the observed catchment dynamics. In this model, generalized topographic index theory is applied to the subsurface storm flow zone to account for logarithmic storm flow recessions, indicative of linearly decreasing transmissivity with depth. Vertical drainage to the groundwater zone is required, and both subsurface reservoirs are considered to contribute to surface saturation.

  17. Optimal Environmental Conditions and Anomalous Ecosystem Responses: Constraining Bottom-up Controls of Phytoplankton Biomass in the California Current System

    PubMed Central

    Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.

    2016-01-01

    In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998–1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change. PMID:27278260

  18. Modeling Coupled Movement of Water, Vapor, and Energy in Soils and at the Soil-Atmosphere Interface Using HYDRUS

    NASA Astrophysics Data System (ADS)

    Simunek, Jiri; Brunetti, Giuseppe; Saito, Hirotaka; Bristow, Keith

    2017-04-01

    Mass and energy fluxes in the subsurface are closely coupled and cannot be evaluated without considering their mutual interactions. However, only a few numerical models consider coupled water, vapor and energy transport in both the subsurface and at the soil-atmosphere interface. While hydrological and thermal processes in the subsurface are commonly implemented in existing models, which often consider both isothermally and thermally induced water and vapor flow, the interactions at the soil-atmosphere interface are often simplified, and the effects of slope inclination, slope azimuth, variable surface albedo and plant shading on incoming radiation and spatially variable surface mass and energy balance, and consequently on soil moisture and temperature distributions, are rarely considered. In this presentation we discuss these missing elements and our attempts to implement them into the HYDRUS model. We demonstrate implications of some of these interactions and their impact on the spatial distributions of soil temperature and water content, and their effect on soil evaporation. Additionally, we will demonstrate the use of the HYDRUS model to simulate processes relevant to the ground source heat pump systems.

  19. Evaluation of the first simulation tool to quantitatively interpret the measurements of the ExoMars mission's Wisdom GPR

    NASA Astrophysics Data System (ADS)

    Dorizon, Sophie; Ciarletti, Valérie

    2013-04-01

    The Water Ice Sub-surface Deposits Observation on Mars (WISDOM) (500MHz - 3GHz) GPR is one of the instruments that have been selected as part of the Pasteur payload of ESA's 2018 ExoMars Rover mission. One of the main scientific objectives of the mission is to characterize the nature of the shallow sub-surface on Mars and WISDOM has been designed to explore the first 3 meters of the sub-surface with a vertical resolution of a few centimetres. Laboratory and field tests using the prototype developed for the ExoMars mission by LATMOS (Laboratoire Atmosphère, Milieux, Observations Spatiales) in collaboration with the AOB (Bordeaux) and the university of Dresden (Germany) are regularly performed to assess and improve the radar performances. In order to quantitatively interpret the experimental data obtained, we developed a simulation tool based on ray-tracing. This code proves to be a fast practical way even if simplified to help radargrams interpretation. The WISDOM GPR, unlike most traditional GPRs, is operated approximately 30 centimetres above the surface. This configuration implies that the propagation between the antenna and the surface cannot be neglected especially because the instrument's aim is to characterise the very shallow subsurface. As a consequence, while we can draw advantage of this specific configuration by using the surface echo's amplitude to retrieve information about the top layer's roughness and permittivity value, precise location of buried reflector becomes more complicated. Indeed, the signature distinctive of individual reflectors buried in the sub-surface is not more an exact mathematical hyperbola. When the individual reflector is buried deep enough in the subsurface, the adjustment by an hyperbolic function still allows the retrieval of the reflector's location and the permittivity value of the surrounding medium. But in case of a reflector closer to the surface, the approximation is no longer valid. We propose a robust model adjustment that can be used for any reflector's depth. The physical assumptions taken into account are presented. Finally, results for different configurations and the validation of the limit conditions for which this adjustment method is reliable are shown. Preliminary analyzes on real data show the good performance of the method developed. Other modelling techniques will be considered to complete a full data interpretation taking the best from the instrument capacities

  20. Surface/subsurface observation and removal mechanisms of ground reaction bonded silicon carbide

    NASA Astrophysics Data System (ADS)

    Yao, Wang; Zhang, Yu-Min; Han, Jie-cai; Zhang, Yun-long; Zhang, Jian-han; Zhou, Yu-feng; Han, Yuan-yuan

    2006-01-01

    Reaction Bonded Silicon Carbide (RBSiC) has long been recognized as a promising material for optical applications because of its unique combination of favorable properties and low-cost fabrication. Grinding of silicon carbide is difficult because of its high hardness and brittleness. Grinding often induces surface and subsurface damage, residual stress and other types of damage, which have great influence on the ceramic components for optical application. In this paper, surface integrity, subsurface damage and material removal mechanisms of RBSiC ground using diamond grinding wheel on creep-feed surface grinding machine are investigated. The surface and subsurface are studied with scanning electron microscopy (SEM) and optical microscopy. The effects of grinding conditions on surface and subsurface damage are discussed. This research links the surface roughness, surface and subsurface cracks to grinding parameters and provides valuable insights into the material removal mechanism and the dependence of grind induced damage on grinding conditions.

  1. A Dynamic Hydrology-Critical Zone Framework for Rainfall-triggered Landslide Hazard Prediction

    NASA Astrophysics Data System (ADS)

    Dialynas, Y. G.; Foufoula-Georgiou, E.; Dietrich, W. E.; Bras, R. L.

    2017-12-01

    Watershed-scale coupled hydrologic-stability models are still in their early stages, and are characterized by important limitations: (a) either they assume steady-state or quasi-dynamic watershed hydrology, or (b) they simulate landslide occurrence based on a simple one-dimensional stability criterion. Here we develop a three-dimensional landslide prediction framework, based on a coupled hydrologic-slope stability model and incorporation of the influence of deep critical zone processes (i.e., flow through weathered bedrock and exfiltration to the colluvium) for more accurate prediction of the timing, location, and extent of landslides. Specifically, a watershed-scale slope stability model that systematically accounts for the contribution of driving and resisting forces in three-dimensional hillslope segments was coupled with a spatially-explicit and physically-based hydrologic model. The landslide prediction framework considers critical zone processes and structure, and explicitly accounts for the spatial heterogeneity of surface and subsurface properties that control slope stability, including soil and weathered bedrock hydrological and mechanical characteristics, vegetation, and slope morphology. To test performance, the model was applied in landslide-prone sites in the US, the hydrology of which has been extensively studied. Results showed that both rainfall infiltration in the soil and groundwater exfiltration exert a strong control on the timing and magnitude of landslide occurrence. We demonstrate the extent to which three-dimensional slope destabilizing factors, which are modulated by dynamic hydrologic conditions in the soil-bedrock column, control landslide initiation at the watershed scale.

  2. Constraining the JULES land-surface model for different land-use types using citizen-science generated hydrological data

    NASA Astrophysics Data System (ADS)

    Chou, H. K.; Ochoa-Tocachi, B. F.; Buytaert, W.

    2017-12-01

    Community land surface models such as JULES are increasingly used for hydrological assessment because of their state-of-the-art representation of land-surface processes. However, a major weakness of JULES and other land surface models is the limited number of land surface parameterizations that is available. Therefore, this study explores the use of data from a network of catchments under homogeneous land-use to generate parameter "libraries" to extent the land surface parameterizations of JULES. The network (called iMHEA) is part of a grassroots initiative to characterise the hydrological response of different Andean ecosystems, and collects data on streamflow, precipitation, and several weather variables at a high temporal resolution. The tropical Andes are a useful case study because of the complexity of meteorological and geographical conditions combined with extremely heterogeneous land-use that result in a wide range of hydrological responses. We then calibrated JULES for each land-use represented in the iMHEA dataset. For the individual land-use types, the results show improved simulations of streamflow when using the calibrated parameters with respect to default values. In particular, the partitioning between surface and subsurface flows can be improved. But also, on a regional scale, hydrological modelling was greatly benefitted from constraining parameters using such distributed citizen-science generated streamflow data. This study demonstrates the modelling and prediction on regional hydrology by integrating citizen science and land surface model. In the context of hydrological study, the limitation of data scarcity could be solved indeed by using this framework. Improved predictions of such impacts could be leveraged by catchment managers to guide watershed interventions, to evaluate their effectiveness, and to minimize risks.

  3. Sequence stratigraphy of the Monterey Formation, Santa Barbara County: Integration of physical, chemical, and biofacies data from outcrop and subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohacs, K.M.

    1990-05-01

    Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, facies stacking patterns, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level change and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed by typingmore » the outcrop sections to an integrated well-log/seismic grid through outcrop gamma-ray-spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies, evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary, Downlap surfaces exhibited increased proportions of pelagic facies around the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or no significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to the rock properties to genetic processes for construction of predictive models.« less

  4. Scuffing of aluminum/steel contacts under dry sliding conditions

    NASA Astrophysics Data System (ADS)

    Sheiretov, Todor Konstantinov

    Some typical applications where scuffing may occur are gear teeth, piston rings and cylinder pairs, cams and followers, splines, sleeve bearings, and parts of swash and wobble plate compressors. Unlike other tribology-related failures, scuffing occurs very fast, without any warning, and usually leads to the complete destruction of the sliding pair. Practical experience with steel has helped to outline safe ranges of operation for some components. Very little, however, is known about aluminum, which is the second most commonly used engineering metal. The aim of this study is to obtain a better understanding scuffing and seizure of aluminum/steel contacts. The research includes an experimental study of scuffing of aluminum/steel contacts under dry sliding conditions, a study of the physics of the scuffing process, evaluation of various hypotheses for scuffing, and modeling of scuffing. The experiments are conducted in a custom-designed tribometer, which provides accurate control of the environmental conditions. Special instrumentation, experimental procedures and software are developed as a part of the experimental program. These provide a reliable reproduction and identification of scuffing under laboratory conditions. The scuffing characteristics of five materials are obtained in air and refrigerant (R134a) environments. The effects of load, sliding velocity, mechanical strength, environmental temperature, specimen geometry, time, loading history, and type of environment are evaluated. The mechanisms leading to scuffing are studied by examination of surfaces, subsurfaces and wear debris of specimens in the process of scuffing. Quantitative measurements of subsurface plastic strain are also obtained. The theoretical part of the study includes the development of a finite element model for the contact of runned-in rough surfaces and several other models for subsurface stresses, temperatures, and strains. These models provide information about the local conditions in the subsurface. Based on the experimental observations and the scuffing models a new hypothesis for scuffing is proposed. According to this hypothesis, scuffing involves initiation of cracks due to subsurface plastic deformation, propagation of these cracks leading to the removal of the existing protective surface layers, and finally cold welding due to adhesion between bare metal surfaces.

  5. Kinetics of conjugative gene transfer on surfaces in granular porous media

    NASA Astrophysics Data System (ADS)

    Massoudieh, A.; Crain, C.; Lambertini, E.; Nelson, K. E.; Barkouki, T.; L'Amoreaux, P.; Loge, F. J.; Ginn, T. R.

    2010-03-01

    The transfer of genetic material among bacteria in the environment can occur both in the planktonic and attached state. Given the propensity of organisms to exist in sessile microbial communities in oligotrophic subsurface conditions, and that such conditions typify the subsurface, this study focuses on exploratory modeling of horizontal gene transfer among surface-associated Escherichiacoli in the subsurface. The mathematics so far used to describe the kinetics of conjugation in biofilms are developed largely from experimental observations of planktonic gene transfer, and are absent of lags or plasmid stability that appear experimentally. We develop a model and experimental system to quantify bacterial filtration and gene transfer in the attached state, on granular porous media. We include attachment kinetics described in Nelson et al. (2007) using the filtration theory approach of Nelson and Ginn (2001, 2005) with motility of E. coli described according to Biondi et al. (1998).

  6. Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining

    NASA Astrophysics Data System (ADS)

    Qiusheng, Y.; Senkai, C.; Jisheng, P.

    2015-03-01

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.

  7. The influence of open fracture anisotropy on CO2 movement within geological storage complexes

    NASA Astrophysics Data System (ADS)

    Bond, C. E.; Wightman, R.; Ringrose, P. S.

    2012-12-01

    Carbon mitigation through the geological storage of carbon dioxide is dependent on the ability of geological formations to store CO2 trapping it within a geological storage complex. Secure long-term containment needs to be demonstrated, due to both political and social drivers, meaning that this containment must be verifiable over periods of 100-105 years. The effectiveness of sub-surface geological storage systems is dependent on trapping CO2 within a volume of rock and is reliant on the integrity of the surrounding rocks, including their chemical and physical properties, to inhibit migration to the surface. Oil and gas reservoir production data, and field evidence show that fracture networks have the potential to act as focused pathways for fluid movement. Fracture networks can allow large volumes of fluid to migrate to the surface within the time scales of interest. In this paper we demonstrate the importance of predicting the effects of fracture networks in storage, using a case study from the In Salah CO2 storage site, and show how the fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our workflow combines well data of imaged fractures, with a discrete fracture network (DFN) model of tectonically induced fractures, within the horizon of interest. The modelled and observed fractures have been compared and combined with present day stress data to predict the open fracture network and its implications for anisotropic movement of CO2 in the sub-surface. The created fracture network model has been used to calculate the 2D permeability tensor for the reservoir for two scenarios: 1) a model in which all fractures are permeable, based on the whole DFN model and 2) those fractures determined to be in dilatational failure under the present day stress regime, a sub-set of the DFN. The resulting permeability anisotropy tensors show distinct anisotropies for the predicted CO2 movement within the reservoir. These predictions have been compared with InSAR imagery of surface uplift, used as an indicator of fluid pressure and movement in the sub-surface, around the CO2 injection wells. The analysis shows that the permeability tensor with the greatest anisotropy, that for the DFN sub-set of open fractures, matches well with the anisotropy in surface uplift imaged by InSAR. We demonstrate that predicting fracture networks alone does not predict fluid movement in the sub-surface, and that fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our results show that a workflow of fracture network prediction combined with present day stress analysis can be used to successfully predict CO2 movement in the sub-surface at an active injection site.

  8. Predicting drought propagation within peat layers using a three dimensionally explicit voxel based model

    NASA Astrophysics Data System (ADS)

    Condro, A. A.; Pawitan, H.; Risdiyanto, I.

    2018-05-01

    Peatlands are very vulnerable to widespread fires during dry seasons, due to availability of aboveground fuel biomass on the surface and belowground fuel biomass on the sub-surface. Hence, understanding drought propagation occurring within peat layers is crucial with regards to disaster mitigation activities on peatlands. Using a three dimensionally explicit voxel-based model of peatland hydrology, this study predicted drought propagation time lags into sub-surface peat layers after drought events occurrence on the surface of about 1 month during La-Nina and 2.5 months during El-Nino. The study was carried out on a high-conservation-value area of oil palm plantation in West Kalimantan. Validity of the model was evaluated and its applicability for disaster mitigation was discussed. The animations of simulated voxels are available at: goo.gl/HDRMYN (El-Nino 2015 episode) and goo.gl/g1sXPl (La-Nina 2016 episode). The model is available at: goo.gl/RiuMQz.

  9. A real-time photo-realistic rendering algorithm of ocean color based on bio-optical model

    NASA Astrophysics Data System (ADS)

    Ma, Chunyong; Xu, Shu; Wang, Hongsong; Tian, Fenglin; Chen, Ge

    2016-12-01

    A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributions to absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We establish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the reflection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.

  10. Physics-based subsurface visualization of human tissue.

    PubMed

    Sharp, Richard; Adams, Jacob; Machiraju, Raghu; Lee, Robert; Crane, Robert

    2007-01-01

    In this paper, we present a framework for simulating light transport in three-dimensional tissue with inhomogeneous scattering properties. Our approach employs a computational model to simulate light scattering in tissue through the finite element solution of the diffusion equation. Although our model handles both visible and nonvisible wavelengths, we especially focus on the interaction of near infrared (NIR) light with tissue. Since most human tissue is permeable to NIR light, tools to noninvasively image tumors, blood vasculature, and monitor blood oxygenation levels are being constructed. We apply this model to a numerical phantom to visually reproduce the images generated by these real-world tools. Therefore, in addition to enabling inverse design of detector instruments, our computational tools produce physically-accurate visualizations of subsurface structures.

  11. Detection of Subsurface Material Separation in Shuttle Orbiter Slip-Side Joggle Region of the Wing Leading Edge using Infrared Imaging Data from Arc Jet Tests

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Walker, Sandra P.

    2009-01-01

    The objective of the present study was to determine whether infrared imaging (IR) surface temperature data obtained during arc-jet tests of Space Shuttle Orbiter s reinforced carbon-carbon (RCC) wing leading edge panel slip-side joggle region could be used to detect presence of subsurface material separation, and if so, to determine when separation occurs during the simulated entry profile. Recent thermostructural studies have indicated thermally induced interlaminar normal stress concentrations at the substrate/coating interface in the curved joggle region can result in local subsurface material separation, with the separation predicted to occur during approach to peak heating during reentry. The present study was an attempt to determine experimentally when subsurface material separations occur. A simplified thermal model of a flat RCC panel with subsurface material separation was developed and used to infer general surface temperature trends due to the presence of subsurface material separation. IR data from previously conducted arc-jet tests on three test specimens were analyzed: one without subsurface material separation either pre or post test, one with pre test separation, and one with separation developing during test. The simplified thermal model trend predictions along with comparison of experimental IR data of the three test specimens were used to successfully infer material separation from the arc-jet test data. Furthermore, for the test specimen that had developed subsurface material separation during the arc-jet tests, the initiation of separation appeared to occur during the ramp up to the peak heating condition, where test specimen temperature went from 2500 to 2800 F.

  12. Revised Subsurface Stratigraphic Framework of the Fort Union and Wasatch Formations, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Flores, Romeo M.; Spear, Brianne D.; Purchase, Peter A.; Gallagher, Craig M.

    2010-01-01

    Described in this report is an updated subsurface stratigraphic framework of the Paleocene Fort Union Formation and Eocene Wasatch Formation in the Powder River Basin (PRB) in Wyoming and Montana. This framework is graphically presented in 17 intersecting west-east and north-south cross sections across the basin. Also included are: (1) the dataset and all associated digital files and (2) digital files for all figures and table 1 suitable for large-format printing. The purpose of this U.S. Geological Survey (USGS) Open-File Report is to provide rapid dissemination and accessibility of the stratigraphic cross sections and related digital data to USGS customers, especially the U.S. Bureau of Land Management (BLM), to facilitate their modeling of the hydrostratigraphy of the PRB. This report contains a brief summary of the coal-bed correlations and database, and is part of a larger ongoing study that will be available in the near future.

  13. Nutrient loss in leachate and surface runoff from surface-broadcast and subsurface-banded broiler litter

    USDA-ARS?s Scientific Manuscript database

    Subsurface band application of poultry litter has been shown to reduce the transport of nutrients from fields in surface runoff, compared to the conventional surface broadcast application. Little in situ research has been conducted to determine effects of surface broadcast application and subsurfac...

  14. Integration of geological remote-sensing techniques in subsurface analysis

    USGS Publications Warehouse

    Taranik, James V.; Trautwein, Charles M.

    1976-01-01

    Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.

  15. SURFACE FISSURE FORMATION ABOVE UNDERGROUND COALSEAM FIRES: DIMENSIONLESS RELATIONSHIPS BETWEEN SURFACE FISSURES AND SUBSURFACE SUBSIDENCE

    NASA Astrophysics Data System (ADS)

    Ide, T. S.; Pollard, D. D.; Orr, F. M.

    2009-12-01

    Coalbed fires are uncontrolled subsurface fires that occur around the world. These fires are believed to be significant contributors to annual CO2 emissions. Although many of these fires have been burning for decades, researchers have only recently begun to investigate physical mechanisms that control fire behavior. One aspect that is poorly characterized is the relationship between subsurface combustion and surface fissures. At the surface above many fires, long, wide fissures are observed. At a coalbed fire near Durango, Colorado, these fissures form systematic orthogonal patterns that align with regional joints in the Upper Cretaceous Fruitland Formation. Understanding the mechanisms that form and widen these fissures is important, as the fissures are believed to play vital roles in sustaining the combustion in the subsurface by acting as chimneys for the escaping gases and conduits for incoming oxygen. In some of the coalbed fire simulation models available today, these fissures are treated as fixed boundary conditions, but we argue, using field observations and simulation results, that there exists a relationship between the location and magnitude of subsidence caused by the fire and the opening of fissures. Four distinct types of fissures are observed over the coalbed fire near Durango, CO. These fissures are termed ‘molehill’, ‘plateau’, ‘gaping’, and ‘narrow’ based on their surface appearances. Molehill fissures are marked by surface depressions on either side, causing the strata around the opening to form an apex towards the center of the fissure. Plateau fissures show a steep vertical offset on only one side with minimal horizontal displacement. Gaping fissures and narrow fissures are predominantly opening with little evidence for vertical displacements. Gaping fissures are defined as fissures with wide apertures (0.3 ~ 1.5m), while narrow fissures have apertures on the order of centimeters. A boundary element method code was used to show that relationships exist between the surface displacement magnitudes and directions, and the subsurface subsidence due to coal combustion. Subsidence variables include the length, magnitude, depth and location of subsidence, as well as the weight of the overburden. Each of the four types of surface features was related to these subsurface subsidence variables using a set of dimensionless curves. The simulation results were validated with field measurements from a nearby outcrop and borehole drilling. The possibility of using InSAR data to further constrain these model results is being investigated. The simulated dimensionless curves establish a useful rules of thumb to aid the interpretation and mitigation of coal fires, since these curves can be used to relate a surface fissures aperture, an easily measurable parameter, to variables such as the magnitude of subsurface subsidence that are harder to observe

  16. Reconstruction of sub-surface archaeological remains from magnetic data using neural computing.

    NASA Astrophysics Data System (ADS)

    Bescoby, D. J.; Cawley, G. C.; Chroston, P. N.

    2003-04-01

    The remains of a former Roman colonial settlement, once part of the classical city of Butrint in southern Albania have been the subject of a high resolution magnetic survey using a caesium-vapour magnetometer. The survey revealed the surviving remains of an extensive planned settlement and a number of outlying buildings, today buried beneath over 0.5 m of alluvial deposits. The aim of the current research is to derive a sub-surface model from the magnetic survey measurements, allowing an enhanced archaeological interpretation of the data. Neural computing techniques are used to perform the non-linear mapping between magnetic data and corresponding sub-surface model parameters. The adoption of neural computing paradigms potentially holds several advantages over other modelling techniques, allowing fast solutions for complex data, while having a high tolerance to noise. A multi-layer perceptron network with a feed-forward architecture is trained to estimate the shape and burial depth of wall foundations using a series of representative models as training data. Parameters used to forward model the training data sets are derived from a number of trial trench excavations targeted over features identified by the magnetic survey. The training of the network was optimized by first applying it to synthetic test data of known source parameters. Pre-processing of the network input data, including the use of a rotationally invariant transform, enhanced network performance and the efficiency of the training data. The approach provides good results when applied to real magnetic data, accurately predicting the depths and layout of wall foundations within the former settlement, verified by subsequent excavation. The resulting sub-surface model is derived from the averaged outputs of a ‘committee’ of five networks, trained with individualized training sets. Fuzzy logic inference has also been used to combine individual network outputs through correlation with data from a second geophysical technique, allowing the integration of data from a separate series of measurements.

  17. Analytical prediction of sub-surface thermal history in translucent tissue phantoms during plasmonic photo-thermotherapy (PPTT).

    PubMed

    Dhar, Purbarun; Paul, Anup; Narasimhan, Arunn; Das, Sarit K

    2016-12-01

    Knowledge of thermal history and/or distribution in biological tissues during laser based hyperthermia is essential to achieve necrosis of tumour/carcinoma cells. A semi-analytical model to predict sub-surface thermal distribution in translucent, soft, tissue mimics has been proposed. The model can accurately predict the spatio-temporal temperature variations along depth and the anomalous thermal behaviour in such media, viz. occurrence of sub-surface temperature peaks. Based on optical and thermal properties, the augmented temperature and shift of the peak positions in case of gold nanostructure mediated tissue phantom hyperthermia can be predicted. Employing inverse approach, the absorption coefficient of nano-graphene infused tissue mimics is determined from the peak temperature and found to provide appreciably accurate predictions along depth. Furthermore, a simplistic, dimensionally consistent correlation to theoretically determine the position of the peak in such media is proposed and found to be consistent with experiments and computations. The model shows promise in predicting thermal distribution induced by lasers in tissues and deduction of therapeutic hyperthermia parameters, thereby assisting clinical procedures by providing a priori estimates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Detection of subsurface-intensified eddies from observations of the sea-surface: a case study for Mediterranean Water Eddies in a long-term high-resolution simulation

    NASA Astrophysics Data System (ADS)

    Ciani, Daniele; Carton, Xavier; Barbosa Aguiar, Ana Claudia; Peliz, Alvaro; Bashmachnikov, Igor; Ienna, Federico; Chapron, Bertrand

    2017-04-01

    Subsurface-intensified eddies are ubiquitous in the world ocean. They can be generated by exchanges of water masses between semi-enclosed evaporation basins and the open ocean or by deep convection. Past and recent studies have shown that these eddies are carriers of large amounts of heat and salt, that they are coherent over inter-annual timescales and that they can migrate for several thousands of miles from their origination areas towards the open ocean. Hence, subsurface-intensified eddies can influence the three-dimensional distribution of oceanic tracers at global scale. The synoptic knowledge of the eddies positions and mean pathways is then crucial for evaluating temperature and salinity budgets in the world ocean. At present day, satellite sensors constitute the ideal tool for the synoptic and global scale observations of the ocean. Since they only provide informations on the oceanic surface, we characterized the signatures that subsurface eddies generate at the sea-surface, to determine the extent to which they can be isolated from the surrounding surface turbulence and be considered as a trace of an underlying eddy. We studied the surface signature of subsurface-intensified anticyclones (Mediterranean Water Eddies - Meddies) in a realistic, long-term (20 years) and high resolution simulation (dx = 3 km) based on the ROMS model. The novelty and advantage of this approach is given by the simultaneous availability of the full 3D eddies characteristics, the ones of the background ocean and of the sea-surface (in terms of sea-surface height, temperature and salinity). This also allowed us to speculate on a synergy between different satellite observations for the automatic detection of subsurface eddies from space. The along trajectory properties and surface signatures of more than 90 long-lived Meddies were analyzed. We showed that the Meddies constantly generate positive anomalies in sea-surface height and that these anomalies are principally related to the Meddy potential vorticity structure at depth (around 1000 m below the sea-surface). Such anomalies were long-lived, mostly migrated exhibiting southwestward trajectories, their intensities were O(10 cm) and extended horizontally up to more than 300 km (around 1.5 times the Meddy diameter). On the other hand, the Meddies thermohaline surface signatures proved to be mostly dominated by the local surface conditions and their structure poorly correlated to the Meddy structure at depth (e.g. the Meddy volume-integrated salt and temperature content). These results point out that satellite altimetry is the most suitable approach to track subsurface-intensified eddies from observations of the sea-surface, also encouraging the use of future high-resolution altimetric observations (e.g. SWOT) to detect subsurface oceanic motions from satellite sensors.

  19. Design and routing of storm flows in an urbanized watershed without surface streams

    NASA Astrophysics Data System (ADS)

    Schaad, David E.; Farley, Jon; Haynes, Criss

    2009-09-01

    SummaryIn the karst geologic setting of Greenbrier County, West Virginia, USA, the drainage network in the watersheds do not support surface streams, but depend entirely on sinkholes, solution cavities, or injection wells as discharge points for accumulated storm water. By providing a systematic framework for designing and routing storms in this geologic setting, functioning retention and attenuation structures have been developed which are protective of water quality while still safely discharging storm water in a controlled manner to the subsurface. This article provides a rationale for the design methodology and then examines the successful implementation of an attenuation and storm water retention design to manage the surface discharges for an entire watershed. By examining the pre-development flows and evaluating future land use patterns (i.e., installation of impermeable surfaces over large areas), as well as sinkhole conveyance capabilities, it was necessary to examine alternative disposal options for collected storm water as well as devise a basin-wide management strategy to coordinate future development of the watershed. Additionally, innovative water quality measures were implemented to help prevent contamination from preferentially infiltrating into the subsurface as a result of these land development activities.

  20. Final technical report for project titled Quantitative Characterization of Cell Aggregation/Adhesion as Predictor for Distribution and Transport of Microorganisms in Subsurface Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, April Z.; Wan, Kai-tak

    This project aims to explore and develop enabling methodology and techniques for nano-scale characterization of microbe cell surface contact mechanics, interactions and adhesion quantities that allow for identification and quantification of indicative properties related to microorganism migration and transport behavior in porous media and in subsurface environments. Microbe transport has wide impact and therefore is of great interest in various environmental applications such as in situ or enhanced subsurface bioremediation,filtration processes for water and wastewater treatments and protection of drinking water supplies. Although great progress has been made towards understanding the identities and activities of these microorganisms in the subsurface,more » to date, little is known of the mechanisms that govern the mobility and transport of microorganisms in DOE’s contaminated sites, making the outcomes of in situ natural attenuation or contaminant stability enhancement unpredictable. Conventionally, movement of microorganisms was believed to follows the rules governing solute (particle) transport. However, recent studies revealed that cell surface properties, especially those pertaining to cell attachment/adhesion and aggregation behavior, can cause the microbe behavior to deviate from non-viable particles and hence greatly influence the mobility and distribution of microorganisms in porous media.This complexity highlights the need to obtain detailed information of cell-cell and cell-surface interactions in order to improve and refine the conceptual and quantitative model development for fate and transport of microorganisms and contaminant in subsurface. Traditional cell surface characterization methods are not sufficient to fully predict the deposition rates and transport behaviors of microorganism observed. A breakthrough of methodology that would allow for quantitative and molecular-level description of intrinsic cell surface properties indicative for cell-surface interactions is essential for the field. To tackle this, we have developed a number of new Bio-nanomechanical techniques, including reflection interference contrast microscopy (RICM) and bio-AFM (Atomic Force Microscopy), for cell adhesion-detachment measurement of the long-range surface interactions, in combination with mathematical modeling, which would allow us to characterize the mechanical behavior from single cell to multi-cell aggregate, critical thresholds for large scale coaggregation and transportation of cells and aggregates in the presence of long range inter-surface forces etc. Although some technical and mathematical challenges remain, the preliminary results promise great breakthrough potential. In this study, we investigated the cellular surface characteristics of representative bio-remediating microorganisms relevant to DOE IFRC (Integrated Field-Scale Subsurface Research Challenges) sites and their transport behaviors in porous media, aiming to draw a groundbreaking correlation between the micro-scale genetic and biological origin-based cell surface properties, the consequent mechanical adhesion and aggregation behaviors, and the macro-scale microbial mobility and retention in porous media, which are unavailable in the literature. The long-term goal is to significantly improve the mechanistic and quantitative understanding of microbial mobility, sorption, and transport within reactive transport models as needed to manipulate subsurface contaminant fate and transport predictions.« less

  1. Nutrient loss in leachate and surface runoff from surface-broadcast and subsurface-banded broiler litter.

    PubMed

    Lamba, Jasmeet; Srivastava, Puneet; Way, Thomas R; Sen, Sumit; Wood, C Wesley; Yoo, Kyung H

    2013-09-01

    Subsurface band application of poultry litter has been shown to reduce the transport of nutrients from fields in surface runoff compared with conventional surface broadcast application. Little research has been conducted to determine the effects of surface broadcast application and subsurface banding of litter on nutrients in leachate. Therefore, a field experiment was conducted to determine the effects of subsurface band application and surface broadcast application of poultry litter on nutrient losses in leachate. Zero-tension pan and passive capillary fiberglass wick lysimeters were installed in situ 50 cm beneath the soil surface of an established tall fescue ( Schreb.) pasture on a sandy loam soil. The treatments were surface broadcast and subsurface-banded poultry litter at 5 Mg ha and an unfertilized control. Results of the rainfall simulations showed that the concentrations of PO-P and total phosphorus (TP) in leachate were reduced by 96 and 37%, respectively, in subsurface-banded litter treatment compared with the surface-applied litter treatment. There was no significant difference in PO-P concentration between control and subsurface-banded litter treatment in leachate. The trend in the loading of nutrients in leachate was similar to the trend in concentration. Concentration and loading of the nutrients (TP, PO-P, NH-N, and NO-N) in runoff from the subsurface-banded treatment were significantly less than for the surface-applied treatment and were similar to those from control plots. These results show that, compared with conventional surface broadcast application of litter, subsurface band application of litter can greatly reduce loss of P in surface runoff and leachate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Enceladus and Europa: How Does Hydrothermal Activity Begin at the Surface?

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    The question of how the surface hydrothermal activity (e.g., eruptive plumes and heat flow) is initiated can be addressed within the frame-work of our "Perrier Ocean" model. This model delivers the necessary heat and chemicals to support the heat flow and plumes observed by Cassini in Enceladus' South Polar Region. The model employs closed-loop circulation of water from a sub-surface ocean. The ocean is the main reservoir of heat and chemicals, including dissolved gases. As ocean water moves up toward the surface, pressure is re-duced and gases exsolve forming bubbles. This bub-bly mixture is less dense than the icy crust and the buoyant ocean-water mixture rises toward the surface. Near the surface, heat and chemicals, including some volatiles, are delivered to the chambers in which plumes form and also to shallow reservoirs that keep the surface ice "warm". (Plume operations, per se, are as described by Schmidt et al. and Postberg et al. and are adopted by us.) After transferring heat, the water cools, bubbles contract and dissolve, and the mixture is now relatively dense. It descends through cracks in the crust and returns to the ocean. Once the closed-loop circulation has started it is self-sustaining. Loss of water via the erupting plumes is relatively negligible compared to the amount needed to maintain the heat flow.We note that the activity described herein for the the "Perrier-Ocean" model could, a priori, apply to all small icy bodies that sheltered an interior ocean at some point in their history.

  3. Fathoms Below: Propagation of Deep Water-driven Fractures and Implications for Surface Expression and Temporally-varying Activity at Europa

    NASA Astrophysics Data System (ADS)

    Walker, C. C.; Craft, K.; Schmidt, B. E.

    2015-12-01

    The fracture and failure of Europa's icy shell are not only observable scars of variable stress and activity throughout its evolution, they also serve key as mechanisms in the interaction of surface and subsurface material, and thus crucial aspects of the study of crustal overturn and ice shell habitability. Galileo images, our best and only reasonable-resolution views of Europa until the Europa Multiple Flyby Mission arrives in the coming decades, illustrates a single snapshot in time in Europa's history from which we deduce many temporally-based hypotheses. One of those hypotheses, which we investigate here, is that sub-surface water-both in the form of Great Lake-sized perched water pockets in the near-surface and the larger global ocean below-drives the deformation, fracture, and failure of the surface. Using Galileo's snapshot in time, we use a 2D/3D hydraulic fracturing model to investigate the propagation of vertical fractures upward into the ice shell, motion of water within and between fractures, and the subsequent break-up of ice over shallow water, forming the chaos regions and other smaller surface features. We will present results from a cohesive fragmentation model to determine the time over which chaos formation occurs, and use a fracking model to determine the time interval required to allow water to escape from basal fractures in the ice shell. In determining the style, energy, and timescale of these processes, we constrain temporal variability in observable activity and topography at the surface. Finally, we compare these results to similar settings on Earth-Antarctica-where we have much higher resolution imagery and observations to better understand how sub-surface water can affect ice surface morphology, which most certainly have implications for future flyby and surface lander exploration.

  4. Coupled surface and subsurface flow modeling of natural hillslopes in the Aburrá Valley (Medellín, Colombia)

    NASA Astrophysics Data System (ADS)

    Blessent, Daniela; Barco, Janet; Temgoua, André Guy Tranquille; Echeverrri-Ramirez, Oscar

    2017-03-01

    Numerical results are presented of surface-subsurface water modeling of a natural hillslope located in the Aburrá Valley, in the city of Medellín (Antioquia, Colombia). The integrated finite-element hydrogeological simulator HydroGeoSphere is used to conduct transient variably saturated simulations. The objective is to analyze pore-water pressure and saturation variation at shallow depths, as well as volumes of water infiltrated in the porous medium. These aspects are important in the region of study, which is highly affected by soil movements, especially during the high-rain seasons that occur twice a year. The modeling exercise considers rainfall events that occurred between October and December 2014 and a hillslope that is currently monitored because of soil instability problems. Simulation results show that rainfall temporal variability, mesh resolution, coupling length, and the conceptual model chosen to represent the heterogeneous soil, have a noticeable influence on results, particularly for high rainfall intensities. Results also indicate that surface-subsurface coupled modeling is required to avoid unrealistic increase in hydraulic heads when high rainfall intensities cause top-down saturation of soil. This work is a first effort towards fostering hydrogeological modeling expertise that may support the development of monitoring systems and early landslide warning in a country where the rainy season is often the cause of hydrogeological tragedies associated with landslides, mud flow or debris flow.

  5. Socially optimal drainage system and agricultural biodiversity: a case study for Finnish landscape.

    PubMed

    Saikkonen, Liisa; Herzon, Irina; Ollikainen, Markku; Lankoski, Jussi

    2014-12-15

    This paper examines the socially optimal drainage choice (surface/subsurface) for agricultural crop cultivation in a landscape with different land qualities (fertilities) when private profits and nutrient runoff damages are taken into account. We also study the measurable social costs to increase biodiversity by surface drainage when the locations of the surface-drained areas in a landscape affect the provided biodiversity. We develop a general theoretical model and apply it to empirical data from Finnish agriculture. We find that for low land qualities the measurable social returns are higher to surface drainage than to subsurface drainage, and that the profitability of subsurface drainage increases along with land quality. The measurable social costs to increase biodiversity by surface drainage under low land qualities are negative. For higher land qualities, these costs depend on the land quality and on the biodiversity impacts. Biodiversity conservation plans for agricultural landscapes should focus on supporting surface drainage systems in areas where the measurable social costs to increase biodiversity are negative or lowest. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Geologic and climatic controls on streamflow generation processes in a complex eogenetic karst basin

    NASA Astrophysics Data System (ADS)

    Vibhava, F.; Graham, W. D.; Maxwell, R. M.

    2012-12-01

    Streamflow at any given location and time is representative of surface and subsurface contributions from various sources. The ability to fully identify the factors controlling these contributions is key to successfully understanding the transport of contaminants through the system. In this study we developed a fully integrated 3D surface water-groundwater-land surface model, PARFLOW, to evaluate geologic and climatic controls on streamflow generation processes in a complex eogenetic karst basin in North Central Florida. In addition to traditional model evaluation criterion, such as comparing field observations to model simulated streamflow and groundwater elevations, we quantitatively evaluated the model's predictions of surface-groundwater interactions over space and time using a suite of binary end-member mixing models that were developed using observed specific conductivity differences among surface and groundwater sources throughout the domain. Analysis of model predictions showed that geologic heterogeneity exerts a strong control on both streamflow generation processes and land atmospheric fluxes in this watershed. In the upper basin, where the karst aquifer is overlain by a thick confining layer, approximately 92% of streamflow is "young" event flow, produced by near stream rainfall. Throughout the upper basin the confining layer produces a persistent high surficial water table which results in high evapotranspiration, low groundwater recharge and thus negligible "inter-event" streamflow. In the lower basin, where the karst aquifer is unconfined, deeper water tables result in less evapotranspiration. Thus, over 80% of the streamflow is "old" subsurface flow produced by diffuse infiltration through the epikarst throughout the lower basin, and all surface contributions to streamflow originate in the upper confined basin. Climatic variability provides a secondary control on surface-subsurface and land-atmosphere fluxes, producing significant seasonal and interannual variability in these processes. Spatial and temporal patterns of evapotranspiration, groundwater recharge and streamflow generation processes reveal potential hot spots and hot moments for surface and groundwater contamination in this basin.

  7. Subsurface soil carbon losses offset surface carbon accumulation in abandoned agricultural fields

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Knops, J. M. H.

    2017-12-01

    Soil carbon is widely understood to accumulate after agricultural abandonment. However, most of the studies have been focused on shallow depths (10 to 30 cm), and there is a lack of deeper soil carbon data. It was reported that in temperate grasslands, 58% of the soil organic carbon in the first meter was stored between 20 and 100 cm, and organic matter in deeper soil might also be susceptible to agricultural disturbance. We used repeated sampling in 2001 and 2014 to directly measure rates of soil carbon change in both surface and subsurface soil in 21 abandoned agricultural fields at Cedar Creek Ecosystem Science Reserve, MN. Congruent with many other studies, we found carbon accumulated 384.2 C g/m2 in surface soil (0 - 20 cm) over the 13 years. However, we also found carbon pool declined 688.1 C g/m2 in the subsurface soil (40-100 cm), which resulted in a net total loss of soil carbon. We investigated the ecosystem carbon pools and fluxes to explore the mechanisms of the observed soil carbon changes. We found root carbon was not significantly correlated with soil carbon in any of the depth. In situ soil incubation showed nitrogen mineralization rates in subsurface soil are lower than that of surface soil. However, the estimated nitrogen and carbon output through decomposition is higher than inputs from roots, therefore leading to carbon loss in subsurface soil. These results suggest that the decomposition of soil organic matter by microorganisms in subsurface soil is significant, and should be incorporated in ecosystem carbon budget models.

  8. Remineralisation of enamel white spot lesions pre-treated with chitosan in the presence of salivary pellicle.

    PubMed

    Zhang, Jing; Lynch, Richard J M; Watson, Timothy F; Banerjee, Avijit

    2018-05-01

    To investigate the remineralisation of chitosan pre-treated enamel white spot lesions (WSLs) by bioglass in the presence of the pellicle layer. 50 artificial enamel white spot lesions were created by acidic gel. Two lesions were used to investigate the formation of the pellicle layer by treating with human whole saliva for 3 min. 48 lesions were assigned to 6 experimental groups (n = 8): (1) bioactive glass slurry, (2) bioactive glass containing polyacrylic acid (BG + PAA) slurry, (3) chitosan pre-treated WSLs with BG slurry (CS-BG), (4) chitosan pre-treated WSLs with BG + PAA slurry (CS-BG + PAA), (5) "standard" remineralisation solution (RS) and (6) de-ionised water (negative control, NC). Remineralisation was carried out using a pH-cycling model for 7 days. Before each treatment using remineralising agents, 3-min pellicle was formed on lesions' surfaces. Mineral content changes, surface and subsurface microhardness and ultrastructure were evaluated by Raman intensity mapping, Knoop microhardness and scanning electron microscopy, respectively. Data were statistically analysed using one-way ANOVA with Tukey's test (p < 0.05 is considered as significant). Despite the heterogeneously formed pellicle layer, all groups showed an increase in surface mineral content after pH-cycling. Chitosan pre-treatment enhanced the subsurface remineralisation of WSLs using bioglass as both pre-treated groups showed greater surface and subsurface microhardness compared to NC. CS-BG exhibited denser subsurface structure than BG, while in CS-BG + PAA the crystals were bigger in size but resemble more enamel-like compared to BG + PAA as shown in SEM observations. Remineralisation of RS was limited to the surface as no significant subsurface changes of mechanical properties and structure were found. Chitosan pre-treatment can enhance WSL remineralisation with bioglass biomaterials when a short-term salivary pellicle is present. A further investigation using a long-term pH-cycling model with mature pellicle is suggested with regards to clinical application. Chitosan pre-treatment has the potential in clinical application to remineralise subsurface lesions to achieve lesion consolidation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Wave energy focusing to subsurface poroelastic formations to promote oil mobilization

    NASA Astrophysics Data System (ADS)

    Karve, Pranav M.; Kallivokas, Loukas F.

    2015-07-01

    We discuss an inverse source formulation aimed at focusing wave energy produced by ground surface sources to target subsurface poroelastic formations. The intent of the focusing is to facilitate or enhance the mobility of oil entrapped within the target formation. The underlying forward wave propagation problem is cast in two spatial dimensions for a heterogeneous poroelastic target embedded within a heterogeneous elastic semi-infinite host. The semi-infiniteness of the elastic host is simulated by augmenting the (finite) computational domain with a buffer of perfectly matched layers. The inverse source algorithm is based on a systematic framework of partial-differential-equation-constrained optimization. It is demonstrated, via numerical experiments, that the algorithm is capable of converging to the spatial and temporal characteristics of surface loads that maximize energy delivery to the target formation. Consequently, the methodology is well-suited for designing field implementations that could meet a desired oil mobility threshold. Even though the methodology, and the results presented herein are in two dimensions, extensions to three dimensions are straightforward.

  10. Vegetation function and non-uniqueness of the hydrological response

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Fatichi, S.; Kampf, S. K.; Caporali, E.

    2012-04-01

    Through local moisture uptake vegetation exerts seasonal and longer-term impacts on the watershed hydrological response. However, the role of vegetation may go beyond the conventionally implied and well-understood "sink" function in the basin soil moisture storage equation. We argue that vegetation function imposes a "homogenizing" effect on pre-event soil moisture spatial storage, decreasing the likelihood that a rainfall event will result in a topographically-driven redistribution of soil water and the consequent formation of variable source areas. In combination with vegetation temporal dynamics, this may lead to the non-uniqueness of the hydrological response with respect to the mean basin wetness. This study designs a set of relevant numerical experiments carried out with two physically-based models; one of the models, HYDRUS, resolves variably saturated subsurface flow using a fully three-dimensional formulation, while the other model, tRIBS+VEGGIE, uses a one-dimensional formulation applied in a quasi-three-dimensional framework in combination with the model of vegetation dynamics. We demonstrate that (1) vegetation function modifies spatial heterogeneity in moisture spatial storage by imposing different degrees of subsurface flow connectivity; explore mechanistically (2) how and why a basin with the same mean soil moisture can have distinctly different spatial soil moisture distributions; and demonstrate (2) how these distinct moisture distributions result in a hysteretic runoff response to precipitation. Furthermore, the study argues that near-surface soil moisture is an insufficient indicator of the initial moisture state of a catchment with the implication of its limited effect on hydrological predictability.

  11. Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications

    USGS Publications Warehouse

    Grauch, V.J.; Sawyer, David A.; Fridrich, Chris J.; Hudson, Mark R.

    1999-01-01

    Gravity and magnetic data, when integrated with other geophysical, geological, and rock-property data, provide a regional framework to view the subsurface geology in the southwestern Nevada volcanic field. The region has been loosely divided into six domains based on structural style and overall geophysical character. For each domain, the subsurface tectonic and magmatic features that have been inferred or interpreted from previous geophysical work has been reviewed. Where possible, abrupt changes in geophysical fields as evidence for potential structural lithologic control on ground-water flow has been noted. Inferred lithology is used to suggest associated hydrogeologic units in the subsurface. The resulting framework provides a basis for investigators to develop hypotheses from regional ground-water pathways where no drill-hole information exists.

  12. Organic and Inorganic Carbon in the Rio Tinto (Spain) Deep Subsurface System: a Possible Model for Subsurface Carbon and Lithoautotrophs on Mars.

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, R.; Stoker, C. R.; MARTE Science Team

    2007-12-01

    The subsurface is the key environment for searching for life on planets lacking surface life. Subsurface ecosystems are of great relevance to astrobiology including the search for past/present life on Mars. Conditions on the Martian surface do not support biological activity but the subsurface might preserve organics and host subsurface life [1]. A key requirement for the analysis of subsurface samples on Mars is the ability to characterize organic vs. inorganic carbon pools. This information is needed to determine if the sample contains organic material of biological origin and/ or to establish if pools of inorganic carbon can support subsurface biospheres. The Mars Analog Rio Tinto Experiment (MARTE) performed deep drilling of cores i.e., down to 165-m depth, in a volcanically-hosted-massive-sulfide deposit at Rio Tinto, Spain, which is considered an important analog of the Sinus Meridiani site on Mars. Results from MARTE suggest the existence of a relatively complex subsurface life including aerobic and anaerobic chemoautotrophs, and strict anaerobic methanogens sustained by Fe and S minerals in anoxic conditions, which is an ideal model analog for a deep subsurface Martian environment. We report here on the distribution of organic (C-org: 0.01-0.3Wt% and inorganic carbon (IC = 0.01-7.0 Wt%) in a subsurface rock system including weathered/oxidized i.e., gossan, and unaltered pyrite stockwork. Cores were analyzed from 3 boreholes (BH-4, BH-7, and BH-8) that penetrated down to a depth of ~165 m into massive sulfide. Nearsurface phyllosilicate rich-pockets contain the highest amounts of organics (0.3Wt%) [2], while the deeper rocks contain the highest amount of carbonates. Assessing the amount of C pools available throughout the RT subsurface brings key insight on the type of trophic system sustaining its microbial ecosystem (i.e., heterotrophs vs. autotrophs) and the biogeochemical relationships that characterize a new type of subsurface biosphere at RT. This potentially novel biosphere on Earth could be used as a model to test for extant and extinct life on Mars. Furthermore, having found carbonates in an hyperacidic system (pH ~2.3) brings new insights on the possible occurrence of deep carbonates deposits under low-pH condition on Mars. [1] Boston, P.J., et al., 1992. Icarus 95,300-308; Bonaccorsi, Stoker and Sutter, 2007 Accepted with review in Astrobiology.

  13. Impact of Land Model Depth on Long Term Climate Variability and Change.

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rouco, J. F.; García-Bustamante, E.; Hagemann, S.; Lorentz, S.; Jungclaus, J.; de Vrese, P.; Melo, C.; Navarro, J.; Steinert, N.

    2017-12-01

    The available evidence indicates that the simulation of subsurface thermodynamics in current General Circulation Models (GCMs) is not accurate enough due to the land-surface model imposing a zero heat flux boundary condition that is too close to the surface. Shallow land model components distort the amplitude and phase of the heat propagation in the subsurface with implications for energy storage and land-air interactions. Off line land surface model experiments forced with GCM climate change simulations and comparison with borehole temperature profiles indicate there is a large reduction of the energy storage of the soil using the typical shallow land models included in most GCMs. However, the impact of increasing the depth of the soil model in `on-line' GCM simulations of climate variability or climate change has not yet been systematically explored. The JSBACH land surface model has been used in stand alone mode, driven by outputs of the MPIESM to assess the impacts of progressively increasing the depth of the soil model. In a first stage, preindustrial control simulations are developed increasing the lower depth of the zero flux bottom boundary condition placed for temperature at the base of the fifth model layer (9.83 m) down to 294.6 m (layer 9), thus allowing for the bottom layers to reach equilibrium. Starting from piControl conditions, historical and scenario simulations have been performed since 1850 yr. The impact of increasing depths on the subsurface layer temperatures is analysed as well as the amounts of energy involved. This is done also considering permafrost processes (freezing and thawing). An evaluation on the influence of deepening the bottom boundary on the simulation of low frequency variability and temperature trends is provided.

  14. Active Serpentinization and the Potential for a Diverse Subsurface Biosphere

    NASA Astrophysics Data System (ADS)

    Canovas, P. A.; Shock, E.

    2013-12-01

    The ubiquitous nature of serpentinization and the unique fluids it generates have major consequences for habitat generation, abiotic organic synthesis, and biosynthesis. The production of hydrogen from the anaerobic hydrolysis of ultramafic minerals sets the redox state of serpentinizing fluids to be thermodynamically favorable for these processes. Consequently, a host of specialized microbial populations and metabolisms can be sustained. Active low-temperature serpentinizing systems, such as the Samail ophiolite in Oman, offer an ideal opportunity to investigate biogeochemical processes during the alteration of ultramafic minerals. At the Samail ophiolite in particular, serpentinization may provide the potential for an active subsurface microbial community shielded from potentially unfavorable surface conditions. Support for this assertion comes from geochemical data including Mg, Ca, CH4 (aq), and H2 (aq) abundances indicating that methane is a product of serpentinization. To further investigate viable metabolic strategies, affinity calculations were performed on both the surface waters and the hyperalkaline springs, which may be considered as messengers of processes occurring in the subsurface. Almost all sites yield positive affinities (i.e., are thermodynamically favorable) for a diverse suite of serpentinization metabolisms including methanogenesis, anammox, and carbon monoxide, nitrate, and sulfate reduction with hydrogen, as well as anaerobic methanotrophy coupled to nitrate, nitrite, and sulfate reduction. Reaction path modeling was performed to ascertain the extent to which serpentinization and mixing of surface waters with hyperalkaline spring waters in the subsurface can generate suitable habitats. The serpentinization model simulates the reaction of pristine Oman harzburgite with surface water to quantify the redox state and generation of hyperalkaline spring water. Preliminary results show that water-rock ratios as high as 100 could effectively reduce the system and create a thermodynamic drive sufficient to convert all of the dissolved inorganic carbon into methane. This indicates that the system is poised to create the reducing conditions necessary to support a subsurface biosphere very early in the serpentinizing process, and that the subsurface biosphere could extend upwards to very near the surface. The mixing model simulates the percolation of surface water into the active serpentinization zone. During the mixing process, methane is calculated to be more stable than carbonate species until approximately 100g of surface water have been added to 1 kg of the serpentinizing fluid. These results suggest that unreacted surface water flowing directly into the serpentinizing zone can create the disequilibria necessary for methanogenesis, and possibly other metabolisms, to proceed while still maintaining the low redox state of the system. As long as the recharge to the hyperalkaline reservoir does not exceed ten percent of the reservoir, methanogenesis and other serpentinization metabolisms can thrive off the disequilibria generated through mixing.

  15. Lunar Polar Cold Traps: Spatial Distribution and Temperatures

    NASA Astrophysics Data System (ADS)

    Paige, David A.; Siegler, M.; Lawrence, D. J.

    2006-09-01

    We have developed a ray-tracing and radiosity model that can accurately calculate lunar surface and subsurface temperatures for arbitrary topography. Using available digital elevation models for the lunar north and south polar regions derived from Clementine laser altimeter and image data, as well as ground-based radar data, we have calculated lunar surface and subsurface temperatures at 2 km resolution that include full effects of indirect solar and infrared radiation due to topography. We compare our thermal model results with maps of epithermal neutron flux measured by Lunar Prospector. When we use the ray tracing and thermal model to account for the effects of temperature and topography on the neutron measurements, our results show that the majority of the moon's polar cold traps are not filled with water ice.

  16. Sequence stratigraphy of the Monterey Formation, Santa Barbara County: Integration of physical, chemical, and biofacies data from outcrop and subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohacs, K.M.

    1991-02-01

    Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, stacking patterns of facies, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level changes and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities, nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed bymore » typing the outcrop sections to an integrated will-log/seismic grid through outcrop gamma-ray spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies and evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary. Downlap surfaces exhibited increased proportions of pelagic facies around the surface, a secular change in the dominant lithology across the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or not significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to tie rock properties to genetic processes for construction of predictive models.« less

  17. Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy.

    PubMed

    Yao, Atsushi; Kobayashi, Kei; Nosaka, Shunta; Kimura, Kuniko; Yamada, Hirofumi

    2017-02-17

    Several researchers have recently demonstrated visualization of subsurface features with a nanometer-scale resolution using various imaging schemes based on atomic force microscopy. Since all these subsurface imaging techniques require excitation of the oscillation of the cantilever and/or sample surface, it has been difficult to identify a key imaging mechanism. Here we demonstrate visualization of Au nanoparticles buried 300 nm into a polymer matrix by measurement of the thermal noise spectrum of a microcantilever with a tip in contact to the polymer surface. We show that the subsurface Au nanoparticles are detected as the variation in the contact stiffness and damping reflecting the viscoelastic properties of the polymer surface. The variation in the contact stiffness well agrees with the effective stiffness of a simple one-dimensional model, which is consistent with the fact that the maximum depth range of the technique is far beyond the extent of the contact stress field.

  18. Impact of atmospheric forcing on heat content variability in the sub-surface layer in the Japan/East Sea, 1948-2009

    NASA Astrophysics Data System (ADS)

    Stepanov, Dmitry; Gusev, Anatoly; Diansky, Nikolay

    2016-04-01

    Based on numerical simulations the study investigates impact of atmospheric forcing on heat content variability of the sub-surface layer in Japan/East Sea (JES), 1948-2009. We developed a model configuration based on a INMOM model and atmospheric forcing extracted from the CORE phase II experiment dataset 1948-2009, which enables to assess impact of only atmospheric forcing on heat content variability of the sub-surface layer of the JES. An analysis of kinetic energy (KE) and total heat content (THC) in the JES obtained from our numerical simulations showed that the simulated circulation of the JES is being quasi-steady state. It was found that the year-mean KE variations obtained from our numerical simulations are similar those extracted from the SODA reanalysis. Comparison of the simulated THC and that extracted from the SODA reanalysis showed significant consistence between them. An analysis of numerical simulations showed that the simulated circulation structure is very similar that obtained from the PALACE floats in the intermediate and abyssal layers in the JES. Using empirical orthogonal function analysis we studied spatial-temporal variability of the heat content of the sub-surface layer in the JES. Based on comparison of the simulated heat content variations with those obtained from natural observations an assessment of the atmospheric forcing impact on the heat content variability was obtained. Using singular value decomposition analysis we considered relationships between the heat content variability and wind stress curl as well as sensible heat flux in winter. It was established the major role of sensible heat flux in decadal variability of the heat content of the sub-surface layer in the JES. The research was supported by the Russian Foundation for Basic Research (grant N 14-05-00255) and the Council on the Russian Federation President Grants (grant N MK-3241.2015.5)

  19. Geothermal prospection in the Greater Geneva Basin (Switzerland and France): Integration of geological data in the new Information System

    NASA Astrophysics Data System (ADS)

    Brentini, Maud; Favre, Stéphanie; Rusillon, Elme; Moscariello, Andrea

    2017-04-01

    Piloted by the State of Geneva and implemented by the SIG (Services Industriels de Genève), the GEothermie2020 program aims to develop geothermal energy resources in the Greater Geneva Basin (GGB) (Moscariello A., 2016). Since 2014, many existing data have been examined (Rusillon et al., 2017, Clerc et al., 2016) and new ones have been collected. Nevertheless, to date the actual IT infrastructure of the State of Geneva is neither designed to centralize these data, nor to respond efficiently to operational demands. In this context, we are developing a new Information System adapted to this specific situation (Favre et al., 2017). In order to establish a solid base line for future exploration and exploitation of underground natural resources, the centralization of the geological surface/subsurface knowledge is the real challenge. Finding the balance between comprehensiveness and relevance of the data to integrate into this future complete database system is key. Geological data are numerous, of various nature, and often very heterogeneous. Incorporating and relating all individual data is therefore a difficult and challenging task. As a result, a large work has to be done on the understanding and the harmonization of the stratigraphy of the Geneva Basin, to appreciate the data and spatial geological heterogneity. The first step consisted in consulting all data from MSc and PhD work of the University of Geneva (about 50) and from literature concerning the regional geology. In parallel, an overview concerning the subsurface geological data management in Europe carried out to learn from the experience of other geological surveys. Heterogeneities and discrepancies of the data are the main issue. Over several years (since late 30s) individual authors collected different type of data and made different interpretations leading a variety of stratigraphic facies definitions, associations and environmental reconstructions. Cross checking these data with national programs, such as HARMOS (official Swiss stratigraphic framework; Morard, 2014, Strasser et al., 2016) is essential to evaluate this type of harmonization system. The current work is establishing composite logs and a stratigraphic catalog where clear stratigraphic framework for the GGB is defined. This will provide a better understanding of the subsurface and a general framework for the new State database. The GEothermie 2020 Program has raised the importance of harmonizing and correlating data in order to understand better the GGB subsurface geology. The future database will be based on a clear and accurate geological and stratigraphic framework where relevant data will be integrated. It will offer a valuable tool to the State of Geneva and external users to find data easily, generate correlations, subsurface models and extract information with specific inquiries. The development of this intelligent and interactive data management system is pivotal to offer an easier and smart management of subsurface resources to the State. REFERENCES Clerc, N., Rusillon, E., Cardello, L., Moscariello, A. and Renard, P., 2016. Structural Modeling of the Geneva Basin for Geothermal Ressource Assessment. Abstract, 14th Swiss Geoscience Meeting, Geneva, Switzerland. Favre, S., Brentini, M., Giuliani, G. and Lehmann, A., 2017. Geothermal prospection in the Greater Geneva Basin (Switzerland and France): Architecture of the new Information System. Abstract, EGU General Assembly 2017, Vienna, Austria. Morard, A., 2014. Correlations beyond HARMOS: how, where, why? Swiss Geoscience Meeting 2014. Platform Geosciences, Swiss Academy of Science, SCNAT. Conference paper. Moscariello A. 2016: Geothermal exploration in SW Switzerland, Proceeding of the European Geotermal Congress, Strasbourg 19-23 september 2016, 9 pp. Rusillon, E., Clerc, N., Makhloufi, Y., Brentini and M., Moscariello, A., 2017. Geothermal prospection in the Greater Geneva Basin (Switzerland and France): Structural and reservoir quality assessment. Abstract, EGU General Assembly 2017, Vienna, Austria. Strasser, A., Charollais, J., Conrad, M. A., Clavel, B., Pictet, A. and Mastrangelo, B., 2016. The Cretaceous of the Swiss Jura Mountains : an improved lithostratigraphic scheme. Swiss Journal of Geosciences, 1-20.

  20. Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Tweed, Sarah O.; Leblanc, Marc; Webb, John A.; Lubczynski, Maciek W.

    2007-02-01

    Identifying groundwater recharge and discharge areas across catchments is critical for implementing effective strategies for salinity mitigation, surface-water and groundwater resource management, and ecosystem protection. In this study, a synergistic approach has been developed, which applies a combination of remote sensing and geographic information system (GIS) techniques to map groundwater recharge and discharge areas. This approach is applied to an unconfined basalt aquifer, in a salinity and drought prone region of southeastern Australia. The basalt aquifer covers ~11,500 km2 in an agriculturally intensive region. A review of local hydrogeological processes allowed a series of surface and subsurface indicators of groundwater recharge and discharge areas to be established. Various remote sensing and GIS techniques were then used to map these surface indicators including: terrain analysis, monitoring of vegetation activity, and mapping of infiltration capacity. All regions where groundwater is not discharging to the surface were considered potential recharge areas. This approach, applied systematically across a catchment, provides a framework for mapping recharge and discharge areas. A key component in assigning surface and subsurface indicators is the relevance to the dominant recharge and discharge processes occurring and the use of appropriate remote sensing and GIS techniques with the capacity to identify these processes.

  1. Boise Hydrogeophysical Research Site: Control Volume/Test Cell and Community Research Asset

    NASA Astrophysics Data System (ADS)

    Barrash, W.; Bradford, J.; Malama, B.

    2008-12-01

    The Boise Hydrogeophysical Research Site (BHRS) is a research wellfield or field-scale test facility developed in a shallow, coarse, fluvial aquifer with the objectives of supporting: (a) development of cost- effective, non- or minimally-invasive quantitative characterization and imaging methods in heterogeneous aquifers using hydrologic and geophysical techniques; (b) examination of fundamental relationships and processes at multiple scales; (c) testing theories and models for groundwater flow and solute transport; and (d) educating and training of students in multidisciplinary subsurface science and engineering. The design of the wells and the wellfield support modular use and reoccupation of wells for a wide range of single-well, cross-hole, multiwell and multilevel hydrologic, geophysical, and combined hydrologic-geophysical experiments. Efforts to date by Boise State researchers and collaborators have been largely focused on: (a) establishing the 3D distributions of geologic, hydrologic, and geophysical parameters which can then be used as the basis for jointly inverting hard and soft data to return the 3D K distribution and (b) developing subsurface measurement and imaging methods including tomographic characterization and imaging methods. At this point the hydrostratigraphic framework of the BHRS is known to be a hierarchical multi-scale system which includes layers and lenses that are recognized with geologic, hydrologic, radar, seismic, and EM methods; details are now emerging which may allow 3D deterministic characterization of zones and/or material variations at the meter scale in the central wellfield. Also the site design and subsurface framework have supported a variety of testing configurations for joint hydrologic and geophysical experiments. Going forward we recognize the opportunity to increase the R&D returns from use of the BHRS with additional infrastructure (especially for monitoring the vadose zone and surface water-groundwater interactions), more collaborative activity, and greater access to site data. Our broader goal of becoming more available as a research asset for the scientific community also supports the long-term business plan of increasing funding opportunities to maintain and operate the site.

  2. Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2014-04-10

    We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter ofmore » anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.« less

  3. HIS Design: Big Data that Supports Hydrologic Modeling from Continental to Hillslope Scales

    NASA Astrophysics Data System (ADS)

    Rasmussen, T. C.; Deemy, J. B.; Younger, S. E.; Kirk, S. E.; Brockman, L. E.

    2016-12-01

    Analogous to Google Maps, hydrologic data, information, and knowledge resolve differently depending upon the spatial and temporal scales of interest. We show how a multi-scale hydrologic information system (HIS) can be designed and populated for a broad range of spatial (e.g., hillslope, local, regional, continental) and temporal (e.g., current, recent, historic, geologic) scales. Surface and subsurface hydrologic and transport processes are assumed to be scale-dependent, requiring unique governing equations and parameters at each scale. This robust and flexible framework is designed to meet the inventory, monitoring, and management needs of multiple federal agencies (i.e., Forest Service, National Park Service, Fish and Wildlife Service, National Wildlife Reserves). Multi-scale HIS examples are provided using Geographic Information Systems (GIS) for the Southeastern US.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiusheng, Y., E-mail: qsyan@gdut.edu.cn; Senkai, C., E-mail: senkite@sina.com; Jisheng, P., E-mail: panjisheng@gdut.edu.cn

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller,more » the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.« less

  5. High spatial-temporal resolution and integrated surface and subsurface precipitation-runoff modelling for a small stormwater catchment

    NASA Astrophysics Data System (ADS)

    Hailegeorgis, Teklu T.; Alfredsen, Knut

    2018-02-01

    Reliable runoff estimation is important for design of water infrastructure and flood risk management in urban catchments. We developed a spatially distributed Precipitation-Runoff (P-R) model that explicitly represents the land cover information, performs integrated modelling of surface and subsurface components of the urban precipitation water cycle and flow routing. We conducted parameter calibration and validation for a small (21.255 ha) stormwater catchment in Trondheim City during Summer-Autumn events and season, and snow-influenced Winter-Spring seasons at high spatial and temporal resolutions of respectively 5 m × 5 m grid size and 2 min. The calibration resulted in good performance measures (Nash-Sutcliffe efficiency, NSE = 0.65-0.94) and acceptable validation NSE for the seasonal and snow-influenced periods. The infiltration excess surface runoff dominates the peak flows while the contribution of subsurface flow to the sewer pipes also augments the peak flows. Based on the total volumes of simulated flow in sewer pipes (Qsim) and precipitation (P) during the calibration periods, the Qsim/P ranges from 21.44% for an event to 56.50% for the Winter-Spring season, which are in close agreement with the observed volumes (Qobs/P). The lowest percentage of precipitation volume that is transformed to the total simulated runoff in the catchment (QT) is 79.77%. Computation of evapotranspiration (ET) indicated that the ET/P is less than 3% for the events and snow-influenced seasons while it is about 18% for the Summer-Autumn season. The subsurface flow contribution to the sewer pipes are markedly higher than the total surface runoff volume for some events and the Summer-Autumn season. The peakiest flow rates correspond to the Winter-Spring season. Therefore, urban runoff simulation for design and management purposes should include two-way interactions between the subsurface runoff and flow in sewer pipes, and snow-influenced seasons. The developed urban P-R model is useful for better computation of runoff generated from different land cover, for assessments of stormwater management techniques (e.g. the Low Impact Development or LID) and the impacts of land cover and climate change. There are some simplifications or limitations such as the runoff routing does not involve detailed sewer hydraulics, effects of leakages from water supply systems and faulty/illegal connections from sanitary sewer are not considered, the model cannot identify actual locations of the interactions between the subsurface runoff and sewer pipes and lacks parsimony.

  6. Subsurface damage in precision ground ULE(R) and Zerodur(R) surfaces.

    PubMed

    Tonnellier, X; Morantz, P; Shore, P; Baldwin, A; Evans, R; Walker, D D

    2007-09-17

    The total process cycle time for large ULE((R)) and Zerodur((R))optics can be improved using a precise and rapid grinding process, with low levels of surface waviness and subsurface damage. In this paper, the amounts of defects beneath ULE((R)) and Zerodur((R) )surfaces ground using a selected grinding mode were compared. The grinding response was characterised by measuring: surface roughness, surface profile and subsurface damage. The observed subsurface damage can be separated into two distinct depth zones, which are: 'process' and 'machine dynamics' related.

  7. Iterative refinement of implicit boundary models for improved geological feature reproduction

    NASA Astrophysics Data System (ADS)

    Martin, Ryan; Boisvert, Jeff B.

    2017-12-01

    Geological domains contain non-stationary features that cannot be described by a single direction of continuity. Non-stationary estimation frameworks generate more realistic curvilinear interpretations of subsurface geometries. A radial basis function (RBF) based implicit modeling framework using domain decomposition is developed that permits introduction of locally varying orientations and magnitudes of anisotropy for boundary models to better account for the local variability of complex geological deposits. The interpolation framework is paired with a method to automatically infer the locally predominant orientations, which results in a rapid and robust iterative non-stationary boundary modeling technique that can refine locally anisotropic geological shapes automatically from the sample data. The method also permits quantification of the volumetric uncertainty associated with the boundary modeling. The methodology is demonstrated on a porphyry dataset and shows improved local geological features.

  8. Fiber Optic Thermographic Detection of Flaws in Composites

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.

    2009-01-01

    Optical fibers with multiple Bragg gratings bonded to surfaces of structures were used for thermographic detection of subsurface defects in structures. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The obtained data were analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with the simulation results.

  9. Sediment transport simulation in an armoured stream

    USGS Publications Warehouse

    Milhous, Robert T.; Bradley, Jeffrey B.; Loeffler, Cindy L.

    1986-01-01

    Improved methods of calculating bed material stability and transport must be developed for a gravel bed stream having an armoured surface in order to use the HEC-6 model to examine channel change. Good possibilities exist for use of a two layer model based on the Schoklitsch and the Einstein-Brown transport equations. In Einstein-Brown the D35 of the armour is used for stabilities and the D50 of the bed (sub-surface) is used for transport. Data on the armour and sub-surface size distribution needs to be obtained as part of a bed material study in a gravel bed river; a "shovel" sample is not adequate. The Meyer-Peter, Muller equation should not be applied to a gravel bed stream with an armoured surface to estimate the initiation of transport or for calculation of transport at low effective bed shear stress.

  10. Characterizing the deformation of reservoirs using interferometry, gravity, and seismic analyses

    NASA Astrophysics Data System (ADS)

    Schiek, Cara Gina

    In this dissertation, I characterize how reservoirs deform using surface and subsurface techniques. The surface technique I employ is radar interferometry, also known as InSAR (Interferometric Synthetic Aperture Radar). The subsurface analyses I explore include gravity modeling and seismic techniques consisting of determining earthquake locations from a small-temporary seismic network of six seismometers. These techniques were used in two different projects to determine how reservoirs deform in the subsurface and how this deformation relates to its remotely sensed surface deformation. The first project uses InSAR to determine land subsidence in the Mimbres basin near Deming, NM. The land subsidence measurements are visually compared to gravity models in order to determine the influence of near surface faults on the subsidence and the physical properties of the aquifers in these basins. Elastic storage coefficients were calculated for the Mimbres basin to aid in determining the stress regime of the aquifers. In the Mimbres basin, I determine that it is experiencing elastic deformation at differing compaction rates. The west side of the Mimbres basin is deforming faster, 17 mm/yr, while the east side of the basin is compacting at a rate of 11 mm/yr. The second project focuses on San Miguel volcano, El Salvador. Here, I integrate InSAR with earthquake locations using surface deformation forward modeling to investigate the explosive volcanism in this region. This investigation determined the areas around the volcano that are undergoing deformation, and that could lead to volcanic hazards such as slope failure from a fractured volcano interior. I use the earthquake epicenters with field data to define the subsurface geometry of the deformation source, which I forward model to produce synthetic interferograms. Residuals between the synthetic and observed interferograms demonstrate that the observed deformation is a direct result of the seismic activity along the San Miguel Fracture Zone. Based on the large number of earthquakes concentrated in this region and the fracturing suggested by the earthquake location results, I conclude that the southwestern slope of San Miguel is the most susceptible to volcanic hazards such as landsliding and flank lava flows. Together these projects explore the dynamics of reservoir systems, both hydrologic and magmatic. They show the utility of geodetic remote sensing to constrain the relative importance of various, complex, subsurface processes, including faulting, fluid migration, and compaction.

  11. A HIERARCHICAL MODELING FRAMEWORK FOR GEOLOGICAL STORAGE OF CARBON DIOXIDE

    EPA Science Inventory

    Carbon Capture and Storage, or CCS, is likely to be an important technology in a carbonconstrained world. CCS will involve subsurface injection of massive amounts of captured CO2, on a scale that has not previously been approached. The unprecedented scale of t...

  12. Registration of liver images to minimally invasive intraoperative surface and subsurface data

    NASA Astrophysics Data System (ADS)

    Wu, Yifei; Rucker, D. C.; Conley, Rebekah H.; Pheiffer, Thomas S.; Simpson, Amber L.; Geevarghese, Sunil K.; Miga, Michael I.

    2014-03-01

    Laparoscopic liver resection is increasingly being performed with results comparable to open cases while incurring less trauma and reducing recovery time. The tradeoff is increased difficulty due to limited visibility and restricted freedom of movement. Image-guided surgical navigation systems have the potential to help localize anatomical features to improve procedural safety and achieve better surgical resection outcome. Previous research has demonstrated that intraoperative surface data can be used to drive a finite element tissue mechanics organ model such that high resolution preoperative scans are registered and visualized in the context of the current surgical pose. In this paper we present an investigation of using sparse data as imposed by laparoscopic limitations to drive a registration model. Non-contact laparoscopicallyacquired surface swabbing and mock-ultrasound subsurface data were used within the context of a nonrigid registration methodology to align mock deformed intraoperative surface data to the corresponding preoperative liver model as derived from pre-operative image segmentations. The mock testing setup to validate the potential of this approach used a tissue-mimicking liver phantom with a realistic abdomen-port patient configuration. Experimental results demonstrates a range of target registration errors (TRE) on the order of 5mm were achieving using only surface swab data, while use of only subsurface data yielded errors on the order of 6mm. Registrations using a combination of both datasets achieved TRE on the order of 2.5mm and represent a sizeable improvement over either dataset alone.

  13. 3D numerical modeling of hyporheic exchange processes in fractal riverbed

    NASA Astrophysics Data System (ADS)

    Lee, A.; Aubeneau, A.

    2017-12-01

    The subsurface region receiving stream water is known as the hyporheic zone and the flow of water in and out of this zone is called hyporheic exchange. The hyporheic zone is populated by biofilms and is a hotspot for nutrient uptake and contaminant transformation. Traditionally, pumping models predicting the head distribution over the riverbed boundary are used to obtain the velocity field in the subsurface. However, past research has largely overlooked the nonlinearity of the turbulent flow above the bumpy riverbed. The main objective of this research is to investigate the effect of spatial and temporal heterogeneity created by turbulent flow on hyporheic exchange and residence time distribution in fractal channel beds. The 3-D fractal riverbed is created from the power spectrum. Large-Eddy Simulation is used to provide the pressure field over the benthic boundary. Finally, Darcian fluxes in the sub-surface are calculated and hyporheic travel times computed using random walks. Surface and subsurface transport processes are represented explicitly and can be studied in detail. Our results suggest that (1) Eddies and wakes around the dunes force the exchange (2) The bigger the dunes, the greater the influence of turbulence (3) Turbulence induces more exchange than pumping predicts.

  14. Methane clathrate stability zone variations and gas transport in the Martian subsurface

    NASA Astrophysics Data System (ADS)

    Karatekin, O.; Gloesener, E.; Dehant, V. M. A.; Temel, O.

    2016-12-01

    During the last years, several detections of methane in the atmosphere of Mars were reported from Earth-based and Mars orbit instruments with abundances ranging to tens of parts-per-billion by volume (ppbv). Recently, the Curiosity rover detected methane with background levels of 0.7 ppbv and episodic releases of 7 ppbv. Although the methane sources are still unknown, this gas may have been stored in reservoirs of clathrate hydrate in the Martian subsurface where thermodynamics conditions are favourable to their presence. Clathrate hydrates are crystalline compounds constituted by cages formed by hydrogen-bonded water molecules inside of which guest gas molecules are trapped. In this study, methane clathrate stability in the Martian subsurface are investigated and their temporal and spatial variations are studied. Present-day maps of methane clathrate stability zone are produced by coupling the stability conditions of methane clathrate with a subsurface model using the available observations such as the the thermal inertia derived from TES MGS data. Then, a gas transport model has been used to study the methane flux at the surface due to the diffusion of different plausible methane volumes released by clathrate hydrates at variable depths under the Martian surface.

  15. Homology between genes for aromatic hydrocarbon degradation in surface and deep-subsurface sphingomonas strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, E.; Aversano, P.J.; Zylstra, G.J.

    The cloned genes for aromatic hydrocarbon degradation from Sphingomonas yanoikuyae B1 were utilized in Southern hybridization experiments with Sphingomonas strains from the surface and deep-subsurface environments. One hybridization pattern was obtained with BamHI-digested genomic DNAs for two surface strains, while a differing pattern was seen for five deep-subsurface strains. The cross-hybridizing genes were located in the chromosomes of the surface strains and on plasmids in the deep-subsurface strains. 31 refs., 3 figs., 1 tab.

  16. The impact of runoff and surface hydrology on Titan's climate

    NASA Astrophysics Data System (ADS)

    Faulk, Sean; Lora, Juan; Mitchell, Jonathan

    2017-10-01

    Titan’s surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane “wetlands” reservoirs realistically produce many observed features of Titan’s atmosphere, whereas “aquaplanet” simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan’s surface. The wetlands configuration is, in part, motivated by Titan’s large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. To isolate the singular impact of surface runoff on Titan’s climatology, we run simulations without parameterizations of subsurface flow and topography-atmosphere interactions. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan’s hydrology provides new insight into the complex interaction between Titan’s atmosphere and surface, demonstrates the influence of surface runoff on Titan’s global climate, and lays the groundwork for further surface hydrology developments in Titan GCMs.

  17. Phosphorus Release to Floodwater from Calcareous Surface Soils and Their Corresponding Subsurface Soils under Anaerobic Conditions.

    PubMed

    Jayarathne, P D K D; Kumaragamage, D; Indraratne, S; Flaten, D; Goltz, D

    2016-07-01

    Enhanced phosphorus (P) release from soils to overlying water under flooded, anaerobic conditions has been well documented for noncalcareous and surface soils, but little information is available for calcareous and subsurface soils. We compared the magnitude of P released from 12 calcareous surface soils and corresponding subsurface soils to overlying water under flooded, anaerobic conditions and examined the reasons for the differences. Surface (0-15 cm) and subsurface (15-30 cm) soils were packed into vessels and flooded for 8 wk. Soil redox potential and concentrations of dissolved reactive phosphorus (DRP) and total dissolved Ca, Mg, Fe, and Mn in floodwater and pore water were measured weekly. Soil test P was significantly smaller in subsurface soils than in corresponding surface soils; thus, the P release to floodwater from subsurface soils was significantly less than from corresponding surface soils. Under anaerobic conditions, floodwater DRP concentration significantly increased in >80% of calcareous surface soils and in about 40% of subsurface soils. The increase in floodwater DRP concentration was 2- to 17-fold in surface soils but only 4- to 7-fold in subsurface soils. With time of flooding, molar ratios of Ca/P and Mg/P in floodwater increased, whereas Fe/P and Mn/P decreased, suggesting that resorption and/or reprecipitation of P took place involving Fe and Mn. Results indicate that P release to floodwater under anaerobic conditions was enhanced in most calcareous soils. Surface and subsurface calcareous soils in general behaved similarly in releasing P under flooded, anaerobic conditions, with concentrations released mainly governed by initial soil P concentrations. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Conceptual Model Evaluation using Advanced Parameter Estimation Techniques with Heat as a Tracer

    NASA Astrophysics Data System (ADS)

    Naranjo, R. C.; Morway, E. D.; Healy, R. W.

    2016-12-01

    Temperature measurements made at multiple depths beneath the sediment-water interface has proven useful for estimating seepage rates from surface-water channels and corresponding subsurface flow direction. Commonly, parsimonious zonal representations of the subsurface structure are defined a priori by interpretation of temperature envelopes, slug tests or analysis of soil cores. However, combining multiple observations into a single zone may limit the inverse model solution and does not take full advantage of the information content within the measured data. Further, simulating the correct thermal gradient, flow paths, and transient behavior of solutes may be biased by inadequacies in the spatial description of subsurface hydraulic properties. The use of pilot points in PEST offers a more sophisticated approach to estimate the structure of subsurface heterogeneity. This presentation evaluates seepage estimation in a cross-sectional model of a trapezoidal canal with intermittent flow representing four typical sedimentary environments. The recent improvements in heat as a tracer measurement techniques (i.e. multi-depth temperature probe) along with use of modern calibration techniques (i.e., pilot points) provides opportunities for improved calibration of flow models, and, subsequently, improved model predictions.

  19. Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior.

    PubMed

    Gasperikova, Erika; Hubbard, Susan S; Watson, David B; Baker, Gregory S; Peterson, John E; Kowalsky, Michael B; Smith, Meagan; Brooks, Scott

    2012-11-01

    Geophysical measurements, and electrical resistivity tomography (ERT) data in particular, are sensitive to properties that are related (directly or indirectly) to hydrological processes. The challenge is in extracting information from geophysical data at a relevant scale that can be used to gain insight about subsurface behavior and to parameterize or validate flow and transport models. Here, we consider the use of ERT data for examining the impact of recharge on subsurface contamination at the S-3 ponds of the Oak Ridge Integrated Field Research Challenge (IFRC) site in Tennessee. A large dataset of time-lapse cross-well and surface ERT data, collected at the site over a period of 12 months, is used to study time variations in resistivity due to changes in total dissolved solids (primarily nitrate). The electrical resistivity distributions recovered from cross-well and surface ERT data agrees well, and both of these datasets can be used to interpret spatiotemporal variations in subsurface nitrate concentrations due to rainfall, although the sensitivity of the electrical resistivity response to dilution varies with nitrate concentration. Using the time-lapse surface ERT data interpreted in terms of nitrate concentrations, we find that the subsurface nitrate concentration at this site varies as a function of spatial position, episodic heavy rainstorms (versus seasonal and annual fluctuations), and antecedent rainfall history. These results suggest that the surface ERT monitoring approach is potentially useful for examining subsurface plume responses to recharge over field-relevant scales. Published by Elsevier B.V.

  20. The Influence of Runoff and Surface Hydrology on Titan's Weather and Climate

    NASA Astrophysics Data System (ADS)

    Faulk, S.; Lora, J. M.; Mitchell, J.; Moon, S.

    2017-12-01

    Titan's surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle, producing characteristic weather and seasonal climate patterns. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane "wetlands" reservoirs realistically produce observed cloud features and temperature profiles of Titan's atmosphere, whereas "aquaplanet" simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan's surface. The wetlands configuration is, in part, motivated by Titan's large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow of a global or regional methane table. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan's hydrology provides new insight into the complex interaction between Titan's atmosphere and surface, demonstrates the influence of surface runoff on Titan's global climate, and lays the groundwork for further surface hydrology developments in Titan GCMs, including infiltration and subsurface flow.

  1. On the value of surface saturated area dynamics mapped with thermal infrared imagery for modeling the hillslope-riparian-stream continuum

    NASA Astrophysics Data System (ADS)

    Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa

    2016-10-01

    The highly dynamic processes within a hillslope-riparian-stream (HRS) continuum are known to affect streamflow generation, but are yet not fully understood. Within this study, we simulated a headwater HRS continuum in western Luxembourg with an integrated hydrologic surface subsurface model (HydroGeoSphere). The model was setup with thorough consideration of catchment-specific attributes and we performed a multicriteria model evaluation (4 years) with special focus on the temporally varying spatial patterns of surface saturation. We used a portable thermal infrared (TIR) camera to map surface saturation with a high spatial resolution and collected 20 panoramic snapshots of the riparian zone (approx. 10 m × 20 m) under different hydrologic conditions. Qualitative and quantitative comparison of the processed TIR panoramas and the corresponding model output panoramas revealed a good agreement between spatiotemporal dynamic model and field surface saturation patterns. A double logarithmic linear relationship between surface saturation extent and discharge was similar for modeled and observed data. This provided confidence in the capability of an integrated hydrologic surface subsurface model to represent temporal and spatial water flux dynamics at small (HRS continuum) scales. However, model scenarios with different parameterizations of the riparian zone showed that discharge and surface saturation were controlled by different parameters and hardly influenced each other. Surface saturation only affected very fast runoff responses with a small volumetric contribution to stream discharge, indicating that the dynamic surface saturation in the riparian zone does not necessarily imply a major control on runoff generation.

  2. Gas Transport through Fractured Rock near the U20az Borehole, Pahute Mesa, Nevada.

    NASA Astrophysics Data System (ADS)

    Rockhold, M.; Lowrey, J. D.; Kirkham, R.; Olsen, K.; Waichler, S.; White, M. D.; Wurstner White, S.

    2017-12-01

    Field experiments were performed in 2012-13 and 2016-17 at the U-20az testbed at the Nevada National Security Site to develop and evaluate capabilities for monitoring and modeling noble gas transport associated with underground nuclear explosions (UNE). Experiments were performed by injecting both chemical (CF2BR2, SF6) and radioactive (37Ar, 127Xe) gas species into the deep subsurface at this legacy UNE site and monitoring the breakthrough of the gases at different locations on or near the ground surface. Gas pressures were also monitored in both the chimney and at ground surface. Field experiments were modeled using the parallel, non-isothermal, two-phase flow and transport simulator, STOMP-GT. A site conceptual-numerical model was developed from a geologic framework model, and using a dual-porosity/permeability model for the constitutive relative permeability-saturation-capillary pressure relations of the fractured rock units. Comparisons of observed and simulated gas species concentrations show that diffusion is a highly effective transport mechanism under ambient conditions in the water-unsaturated fractured rock. Over-pressurization of the cavity during one of the field campaigns, and barometric pressure fluctuations are shown to result in enhanced gas transport by advection through fractures.

  3. Modelling of EISS GPR's electrical and magnetic antennas for ExoMars mission

    NASA Astrophysics Data System (ADS)

    Biancheri-Astier, M.; Ciarletti, V.; Reineix, A.; Corbel, C.; Dolon, F.; Simon, Y.; Caudoux, C.; Lapauw, L.; Berthelier, Jj.; Ney, R.

    2009-04-01

    Despite several past and present missions to Mars, very little information is available on its subsurface. One of the scientific objectives of the European ExoMars mission (ESA) is to characterize the water / geochemical environment as a function of depth and investigate the planet subsurface to better understand the evolution and habitability of the planet. The electromagnetic survey of subsurface will provide a nondestructive way to probe the subsurface and look for potential deep liquid water reservoirs. The LATMOS (ex CETP) is currently developing a ground penetrating radar (GPR) called EISS "Electromagnetic Investigation of the Sub Surface", which is a enhanced version of the TAPIR "Terrestrial and Planetary Imaging Radar", developed in the frame of the Netlander mission cancelled in 2004. The GPR main objective is to perform sounding of the sub-surface down to kilometric depth. EISS is an impulse GPR operating, from the Martian surface, at HF frequencies (~ 2-4MHz) with a wide bandwidth (100kHz-5MHz). EISS can operate in four modes: impedance measurement, mono and bi-static survey, passive mode. The EISS innovative concept is based on the use of the fixed station (Lander) and mobile rover to conduct subsurface surveys of the area visited by the Rover. The work at HF frequencies, EISS uses a half-wave resistively loaded dipole electrical antenna i.e. two monopoles 35 meters long each to transmit (and also receive in mono-static mode) the signal. The resistive profile of the antenna follows a Wu-King profile which is optimized to transmit the pulse without noticeable distortion and avoid ringing. The two monopoles will be deployed in roughly opposite directions on the surface of Mars. The exact value of the direction of deployment for each monopole will be chosen in order to minimize the contact with the Lander structure, avoid obstacles and the solar panels still ensuring a good coverage of the whole area. In bi-static mode, the signal is received with a small magnetic sensor accommodated on the Rover. As a consequence, since the direction that the rover will follow after its egress will not be know until the Lander is on Mars, it is essential to chose a configuration that will result in a radiation pattern compatible with bi-static measurements whatever the direction of the rover is (within a distance of 1 kilometer). Studies based on electromagnetic simulations have been performed to check the impact of the angle between the two monopoles on the radiation pattern. Study of EISS performances is ongoing using numerical modeling and experimental verifications. We use numerical simulation (FDTD code), analytical models and data processing algorithms to determine the performances of each operating mode and to prepare data interpretation. The subsurface survey requires knowledge of the permittivity of the studied sub-surface layers to convert the measured propagation delay into distance. Access to electrical characteristics of ground without return samples and in situ analysis is unusual in space missions and aroused great interest. Results will be presented about different ways EISS can provide estimation of the electrical properties of the shallow subsurface. Simulations that highlight the impact of the chosen resistive profile and of the angle between the two deployed monopoles will be shown. The presentation will mainly be focused on the bi-static mode that greatly improves the 3D representation of subsurface structure and on the associated instrumental requirements such as the perfect synchronization of the two part of the instrument. A method to retrieve the direction of arrival for each detected echo will be presented that allows a more accurate sub-surface mapping. Only the three magnetic field components are required to implement it, which makes the EISS configuration particularly interesting. This method is based on the orthogonality between the propagation vector and the polarization plane.

  4. The Hydrological Evolution of Mars as Recorded at Gale Crater

    NASA Astrophysics Data System (ADS)

    Andrews-Hanna, J. C.; Horvath, D. G.

    2017-12-01

    The sedimentary deposits making up the Aeolis Mons sedimentary mound within Gale Crater preserve a record of the evolving hydrology and climate of Mars during the Late Noachian and Hesperian epochs. Aqueous sedimentary deposits including mudstones, deltaic deposits, and sulfate-cemented sediments indicate the past presence of liquid water on the surface. However, these observations alone do not strictly constrain the nature of the hydrology and climate at the time of deposition. We use models of the subsurface and surface hydrology to shed light on the conditions required to reproduce the observed deposits. Changes in the nature and composition of the deposits reflect changes in the balance between the surface and subsurface components of the hydrological cycle, driven by climate changes. Mudstones observed by the MSL rover at the base of the crater reflect lacustrine deposition under semi-arid conditions, with substantial fluid supply from both the surface (overland flow and direct precipitation) and subsurface. A transition at higher stratigraphic levels to sulfate-cemented sandstones required a change to a more arid climate, with the hydrology dominated by long-distance subsurface transport. Near the top of the mound, unaltered deposits indicate deposition under dry conditions, though this transition coincides with the natural limit on the rise of the water table imposed by the surrounding topography and does not require a change in climate. Erosion of the crater-filling sedimentary deposits to their present mound shape required a dramatic drop in the water table under hyper-arid conditions. Evidence for later lake stands in the Hesperian indicates transient returns to semi-arid conditions similar to those that prevailed during the Late Noachian. By coupling surface and orbital observations with hydrological modeling, we are able to make more specific constraints on the evolving climate and aridity of early Mars.

  5. Uncertainty of simulated groundwater levels arising from stochastic transient climate change scenarios

    NASA Astrophysics Data System (ADS)

    Goderniaux, Pascal; Brouyère, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley; Dassargues, Alain

    2010-05-01

    The evaluation of climate change impact on groundwater reserves represents a difficult task because both hydrological and climatic processes are complex and difficult to model. In this study, we present an innovative methodology that combines the use of integrated surface - subsurface hydrological models with advanced stochastic transient climate change scenarios. This methodology is applied to the Geer basin (480 km²) in Belgium, which is intensively exploited to supply the city of Liège (Belgium) with drinking water. The physically-based, spatially-distributed, surface-subsurface flow model has been developed with the finite element model HydroGeoSphere . The simultaneous solution of surface and subsurface flow equations in HydroGeoSphere, as well as the internal calculation of the actual evapotranspiration as a function of the soil moisture at each node of the evaporative zone, enables a better representation of interconnected processes in all domains of the catchment (fully saturated zone, partially saturated zone, surface). Additionally, the use of both surface and subsurface observed data to calibrate the model better constrains the calibration of the different water balance terms. Crucially, in the context of climate change impacts on groundwater resources, the evaluation of groundwater recharge is improved. . This surface-subsurface flow model is combined with advanced climate change scenarios for the Geer basin. Climate change simulations were obtained from six regional climate model (RCM) scenarios assuming the SRES A2 greenhouse gases emission (medium-high) scenario. These RCM scenarios were statistically downscaled using a transient stochastic weather generator technique, combining 'RainSim' and the 'CRU weather generator' for temperature and evapotranspiration time series. This downscaling technique exhibits three advantages compared with the 'delta change' method usually used in groundwater impact studies. (1) Corrections to climate model output are applied not only to the mean of climatic variables, but also across the statistical distributions of these variables. This is important as these distributions are expected to change in the future, with more extreme rainfall events, separated by longer dry periods. (2) The novel approach used in this study can simulate transient climate change from 2010 to 2085, rather than time series representative of a stationary climate for the period 2071-2100. (3) The weather generator is used to generate a large number of equiprobable climate change scenarios for each RCM, representative of the natural variability of the weather. All of these scenarios are applied as input to the Geer basin model to assess the projected impact of climate change on groundwater levels, the uncertainty arising for different RCM projections and the uncertainty linked to natural climatic variability. Using the output results from all scenarios, 95% confidence intervals are calculated for each year and month between 2010 and 2085. The climate change scenarios for the Geer basin model predict hotter and drier summers and warmer and wetter winters. Considering the results of this study, it is very likely that groundwater levels and surface flow rates in the Geer basin will decrease by the end of the century. This is of concern because it also means that groundwater quantities available for abstraction will also decrease. However, this study also shows that the uncertainty of these projections is relatively large compared to the projected changes so that it remains difficult to confidently determine the magnitude of the decrease. The use and combination of an integrated surface - subsurface model and stochastic climate change scenarios has never been used in previous climate change impact studies on groundwater resources. It constitutes an innovation and is an important tool for helping water managers to take decisions.

  6. Investigating the Energy-Water Usage Efficiency of the Reuse of Treated Municipal Wastewater for Artificial Groundwater Recharge.

    PubMed

    Fournier, Eric D; Keller, Arturo A; Geyer, Roland; Frew, James

    2016-02-16

    This project investigates the energy-water usage efficiency of large scale civil infrastructure projects involving the artificial recharge of subsurface groundwater aquifers via the reuse of treated municipal wastewater. A modeling framework is introduced which explores the various ways in which spatially heterogeneous variables such as topography, landuse, and subsurface infiltration capacity combine to determine the physical layout of proposed reuse system components and their associated process energy-water demands. This framework is applied to the planning and evaluation of the energy-water usage efficiency of hypothetical reuse systems in five case study regions within the State of California. Findings from these case study analyses suggest that, in certain geographic contexts, the water requirements attributable to the process energy consumption of a reuse system can exceed the volume of water that it is able to recover by as much as an order of magnitude.

  7. Thermal conductivity of lunar regolith simulant JSC-1A under vacuum

    NASA Astrophysics Data System (ADS)

    Sakatani, Naoya; Ogawa, Kazunori; Arakawa, Masahiko; Tanaka, Satoshi

    2018-07-01

    Many air-less planetary bodies, including the Moon, asteroids, and comets, are covered by regolith. The thermal conductivity of the regolith is an essential parameter controlling the surface temperature variation. A thermal conductivity model applicable to natural soils as well as planetary surface regolith is required to analyze infrared remote sensing data. In this study, we investigated the temperature and compressional stress dependence of the thermal conductivity of the lunar regolith simulant JSC-1A, and the temperature dependence of sieved JSC-1A samples under vacuum conditions. We confirmed that a series of the experimental data for JSC-1A are fitted well by our analytical model of the thermal conductivity (Sakatani et al., 2017). Comparison with the calibration data of the sieved samples with those for original JSC-1A indicates that the thermal conductivity of natural samples with a wide grain size distribution can be modeled as mono-sized grains with a volumetric median size. The calibrated model can be used to estimate the volumetric median grain size from infrared remote sensing data. Our experiments and the calibrated model indicates that uncompressed JSC-1A has similar thermal conductivity to lunar top-surface materials, but the lunar subsurface thermal conductivity cannot be explained only by the effects of the density and self-weighted compressional stress. We infer that the nature of the lunar subsurface regolith grains is much different from JSC-1A and lunar top-surface regolith, and/or the lunar subsurface regolith is over-consolidated and the compressional stress higher than the hydrostatic pressure is stored in the lunar regolith layer.

  8. A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics

    NASA Astrophysics Data System (ADS)

    Franceschini, Andrea; Ferronato, Massimiliano; Janna, Carlo; Teatini, Pietro

    2016-06-01

    The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion according to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions.

  9. Evaluating post-wildfire hydrologic recovery using ParFlow in southern California

    NASA Astrophysics Data System (ADS)

    Lopez, S. R.; Kinoshita, A. M.; Atchley, A. L.

    2016-12-01

    Wildfires are naturally occurring hazards that can have catastrophic impacts. They can alter the natural processes within a watershed, such as surface runoff and subsurface water storage. Generally, post-fire hydrologic models are either one-dimensional, empirically-based models, or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful in providing runoff measurements at the watershed outlet; however, do not provide distributed hydrologic simulation at each point within the watershed. This research demonstrates how ParFlow, a three-dimensional, distributed hydrologic model can simulate post-fire hydrologic processes by representing soil burn severity (via hydrophobicity) and vegetation recovery as they vary both spatially and temporally. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This model is initially developed for a hillslope in Devil Canyon, burned in 2003 by the Old Fire in southern California (USA). The domain uses a 2m-cell size resolution over a 25 m by 25 m lateral extent. The subsurface reaches 2 m and is assigned a variable cell thickness, allowing an explicit consideration of the soil burn severity throughout the stages of recovery and vegetation regrowth. Vegetation regrowth is incorporated represented by satellite-based Enhanced Vegetation Index (EVI) products. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated and will be used as a basis for developing a watershed-scale model. Long-term continuous simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management.

  10. A study of surface and subsurface ground motions at Calico Hills, Nevada Test Site

    USGS Publications Warehouse

    King, Kenneth W.

    1982-01-01

    A study of earthquake ground motions recorded at depth in a drill hole and at the ground surface has derived the surface to subsurface transfer functions such as might be expected at a potential nuclear waste repository in a similar setting. The site under investigation has small seismic velocity contrasts in the layers of rock between the surface and the subsurface seismometer location. The subsurface seismic motions were similar in spectral characteristics to the surface motions and were lower in amplitude across the recorded band-width by a factor of 1.5.

  11. 3d-modelling workflows for trans-nationally shared geological models - first approaches from the project GeoMol

    NASA Astrophysics Data System (ADS)

    Rupf, Isabel

    2013-04-01

    To meet the EU's ambitious targets for carbon emission reduction, renewable energy production has to be strongly upgraded and made more efficient for grid energy storage. Alpine Foreland Basins feature a unique geological inventory which can contribute substantially to tackle these challenges. They offer a geothermal potential and storage capacity for compressed air, as well as space for underground storage of CO2. Exploiting these natural subsurface resources will strongly compete with existing oil and gas claims and groundwater issues. The project GeoMol will provide consistent 3-dimensional subsurface information about the Alpine Foreland Basins based on a holistic and transnational approach. Core of the project GeoMol is a geological framework model for the entire Northern Molasse Basin, complemented by five detailed models in pilot areas, also in the Po Basin, which are dedicated to specific questions of subsurface use. The models will consist of up to 13 litho-stratigraphic horizons ranging from the Cenozoic basin fill down to Mesozoic and late Paleozoic sedimentary rocks and the crystalline basement. More than 5000 wells and 28 000 km seismic lines serve as input data sets for the geological subsurface model. The data have multiple sources and various acquisition dates, and their interpretations have gone through several paradigm changes. Therefore, it is necessary to standardize the data with regards to technical parameters and content prior to further analysis (cf. Capar et al. 2013, EGU2013-5349). Each partner will build its own geological subsurface model with different software solutions for seismic interpretation and 3d-modelling. Therefore, 3d-modelling follows different software- and partner-specific workflows. One of the main challenges of the project is to ensure a seamlessly fitting framework model. It is necessary to define several milestones for cross border checks during the whole modelling process. Hence, the main input data set of the framework model are interpreted seismic lines, 3d-models can be generated either in time or in depth domain. Some partners will build their 3d-model in time domain and convert it after finishing to depth. Other participants will transform seismic information first and will model directly in depth domain. To ensure comparability between the different parts transnational velocity models for time-depth conversion are required at an early stage of the project. The exchange of model geometries, topology, and geo-scientific content will be achieved applying an appropriate cyberinfrastructure called GST. It provides functionalities to ensure semantic and technical interoperability. Within the project GeoMol a web server for the dissemination of 3d geological models will be implemented including an administrative interface for the role-based access, real-time transformation of country-specific coordinate systems and a web visualisation features. The project GeoMol is co-funded by the Alpine Space Program as part of the European Territorial Cooperation 2007-2013. The project integrates partners from Austria, France, Germany, Italy, Slovenia and Switzerland and runs from September 2012 to June 2015. Further information on www.geomol.eu. The GeoMol 3D-modelling team: Roland Baumberger (swisstopo), Magdalena Bottig (GBA), Alessandro Cagnoni (RLB), Laure Capar (BRGM), Renaud Couëffé (BRGM), Chiara D'Ambrogi (ISPRA), Chrystel Dezayes (BRGM), Gerold Diepolder (LfU BY), Charlotte Fehn (LGRB), Sunseare Gabalda (BRGM), Gregor Götzl (GBA), Andrej Lapanje (GeoZS), Fabio Carlo Molinari (RER-SGSS), Edgar Nitsch (LGRB), Robert Pamer (LfU BY), Sebastian Pfleiderer (GBA), Marco Pantaloni (ISPRA), Uta Schulz (LfU BY), Günter Sokol (LGRB), Gunther Wirsing (LGRB), Heiko Zumsprekel (LGRB)

  12. Modeling post-wildfire hydrological processes with ParFlow

    NASA Astrophysics Data System (ADS)

    Escobar, I. S.; Lopez, S. R.; Kinoshita, A. M.

    2017-12-01

    Wildfires alter the natural processes within a watershed, such as surface runoff, evapotranspiration rates, and subsurface water storage. Post-fire hydrologic models are typically one-dimensional, empirically-based models or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful for modeling and predictions at the watershed outlet; however, do not provide detailed, distributed hydrologic processes at the point scale within the watershed. This research uses ParFlow, a three-dimensional, distributed hydrologic model to simulate post-fire hydrologic processes by representing the spatial and temporal variability of soil burn severity (via hydrophobicity) and vegetation recovery. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This work builds upon previous field and remote sensing analysis conducted for the 2003 Old Fire Burn in Devil Canyon, located in southern California (USA). This model is initially developed for a hillslope defined by a 500 m by 1000 m lateral extent. The subsurface reaches 12.4 m and is assigned a variable cell thickness to explicitly consider soil burn severity throughout the stages of recovery and vegetation regrowth. We consider four slope and eight hydrophobic layer configurations. Evapotranspiration is used as a proxy for vegetation regrowth and is represented by the satellite-based Simplified Surface Energy Balance (SSEBOP) product. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated at the point scale. Results will be used as a basis for developing and fine-tuning a watershed-scale model. Long-term simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management. In reference to the presenter, Isabel Escobar: Research is funded by the NASA-DIRECT STEM Program. Travel expenses for this presentation is funded by CSU-LSAMP. CSU-LSAMP is supported by the National Science Foundation under Grant # HRD-1302873 and the CSU Office of Chancellor.

  13. A coupled subsurface-boundary layer model of water on Mars

    NASA Astrophysics Data System (ADS)

    Zent, A. P.; Haberle, R. M.; Houben, H. C.; Jakosky, B. M.

    1993-02-01

    A 1D numerical model of the exchange of H2O between the atmosphere and subsurface of Mars through the PBL is employed to explore the mechanisms of H2O exchange and to elucidate the role played by the regolith in the local H2O budget. The atmospheric model includes effects of Coriolis, pressure gradient, and frictional forces for momentum: radiation, sensible heat flux, and advection for heat. It is suggested that in most cases, the flux through the Martian surface reverses twice in the course of each sol. The effects of surface albedo, thermal inertia, solar declination, atmospheric optical depth, and regolith pore structure are explored. It is proposed that higher thermal inertia forces more H2O into the atmosphere because the regolith is warmer at depth.

  14. A Method for Partitioning Surface and Subsurface Flow Using Rainfall Simulaton and Two-Dimensional Surface Electrical Resistivity Imaging

    NASA Astrophysics Data System (ADS)

    Carey, A. M.; Paige, G. B.; Miller, S. N.; Carr, B. J.; Holbrook, W. S.

    2014-12-01

    In semi-arid rangeland environments understanding how surface and subsurface flow processes and their interactions are influenced by watershed and rainfall characteristics is critical. However, it is difficult to resolve the temporal variations between mechanisms controlling these processes and challenging to obtain field measurements that document their interactions. Better insight into how these complex systems respond hydrologically is necessary in order to refine hydrologic models and decision support tools. We are conducting field studies integrating high resolution, two-dimensional surface electrical resistivity imaging (ERI) with variable intensity rainfall simulation, to quantify real-time partitioning of rainfall into surface and subsurface response. These studies are being conducted at the hillslope scale on long-term runoff plots on four different ecological sites in the Upper Crow Creek Watershed in southeastern Wyoming. Variable intensity rainfall rates were applied using the Walnut Gulch Rainfall Simulator in which intensities were increased incrementally from 49 to 180 mm hr-1 and steady-state runoff rates for each intensity were measured. Two 13.5 m electrode arrays at 0.5 m spacing were positioned on the surface perpendicular to each plot and potentials were measured at given time intervals prior to, during and following simulations using a dipole-dipole array configuration. The configuration allows for a 2.47 m depth of investigation in which magnitude and direction of subsurface flux can be determined. We used the calculated steady state infiltration rates to quantify the variability in the partial area runoff response on the ecological sites. Coupling this information with time-lapse difference inversions of ERI data, we are able to track areas of increasing and decreasing resistivity in the subsurface related to localized areas of infiltration during and following rainfall events. We anticipate implementing this method across a variety of ecological sites in the Upper Crow Creek in order to characterize the variable hydrologic response of this complex rangeland watershed. This information is being used to refine current physically based hydrologic models and watershed assessment tools.

  15. Evaluating permafrost thaw vulnerabilities and hydrologic impacts in boreal Alaska (USA) watersheds using field data and cryohydrogeologic modeling

    NASA Astrophysics Data System (ADS)

    Walvoord, M. A.; Voss, C.; Ebel, B. A.; Minsley, B. J.

    2017-12-01

    Permafrost environments undergo changes in hydraulic, thermal, chemical, and mechanical subsurface properties upon thaw. These property changes must be considered in addition to alterations in hydrologic, thermal, and topographic boundary conditions when evaluating shifts in the movement and storage of water in arctic and sub-arctic boreal regions. Advances have been made in the last several years with respect to multiscale geophysical characterization of the subsurface and coupled fluid and energy transport modeling of permafrost systems. Ongoing efforts are presented that integrate field data with cryohydrogeologic modeling to better understand and anticipate changes in subsurface water resources, fluxes, and flowpaths caused by climate warming and permafrost thawing. Analyses are based on field data from several sites in interior Alaska (USA) that span a broad north-south transition from continuous to discontinuous permafrost. These data include soil hydraulic and thermal properties and shallow permafrost distribution. The data guide coupled fluid and energy flow simulations that incorporate porewater liquid/ice phase change and the accompanying modifications in hydraulic and thermal subsurface properties. Simulations are designed to assess conditions conducive to active layer thickening and talik development, both of which are expected to affect groundwater storage and flow. Model results provide a framework for identifying factors that control the rates of permafrost thaw and associated hydrologic responses, which in turn influence the fate and transport of carbon.

  16. 3-D Reconstructions of Subsurface Pleistocene Basalt Flows from Paleomagnetic Inclination Data and 40Ar/39Ar Ages in the Southern Part of the Idaho National Laboratory (INL), Idaho (USA)

    NASA Astrophysics Data System (ADS)

    Hodges, M. K.; Champion, D. E.; Turrin, B. D.; Swisher, C. C.

    2012-12-01

    The U. S. Geological Survey, in cooperation with the U.S. Department of Energy, is mapping the distribution of basalt flows and sedimentary interbeds at the Idaho National Laboratory in three dimensions to provide data for refining numerical models of groundwater flow and contaminant transport in the eastern Snake River Plain aquifer. Paleomagnetic inclination and polarity data from basalt samples from 47 coreholes are being used to create a three-dimensional (3-D) model of the subsurface of the southern part of the INL. Surface and sub-surface basalt flows can be identified in individual cores and traced in three dimensions on the surface and in the subsurface for distances of more than 20 km using a combination of paleomagnetic, stratigraphic, and 40Ar/39Ar data. Eastern Snake River Plain olivine tholeiite basalts have K2O contents of 0.2 to 1.0 weight per cent. In spite of the low-K content, high-precision 40Ar/39Ar ages were obtained by applying a protocol that employs short irradiation times (minimizing interferences from Ca derived 36Ar), frequent measurement of various size atmospheric Ar pipettes to monitor and correct for temporal variation, and signal size dependent nonlinearity in spectrometer mass bias, resulting in age dates with resolution generally between 2 to 10% of the age. 3-D models of subsurface basalt flows are being used to: (1) Estimate eruption volumes; (2) locate the approximate vent areas and extent of sub-surface flows; and (3) Help locate high and low transmissivity zones. Results indicate that large basalt eruptions (>3 km3) occurred at and near the Central Facilities Area between 637 ka and 360 ka; at and near the Radioactive Waste Management Complex before 540 ka; and north of the Naval Reactors Facility at about 580 ka. Since about 360 ka, large basalt flows have erupted along the Arco-Big Southern Butte Volcanic Rift Zone and the Axial Volcanic Zone, and flowed northerly towards the Central Facilities Area. Basalt eruptions shifted the course of the Big Lost River from a more southerly course to its present one.

  17. 3-D reconstructions of subsurface Pleistocene basalt flows from paleomagnetic inclination data and 40Ar/39Ar ages in the southern part of the Idaho National Laboratory (INL), Idaho (USA)

    USGS Publications Warehouse

    Hodges, Mary K. V.; Champion, Duane E.; Turrin, B.D.; Swisher, C. C.

    2012-01-01

    The U. S. Geological Survey, in cooperation with the U.S. Department of Energy, is mapping the distribution of basalt flows and sedimentary interbeds at the Idaho National Laboratory in three dimensions to provide data for refining numerical models of groundwater flow and contaminant transport in the eastern Snake River Plain aquifer. Paleomagnetic inclination and polarity data from basalt samples from 47 coreholes are being used to create a three-dimensional (3-D) model of the subsurface of the southern part of the INL. Surface and sub-surface basalt flows can be identified in individual cores and traced in three dimensions on the surface and in the subsurface for distances of more than 20 km using a combination of paleomagnetic, stratigraphic, and 40Ar/39Ar data. Eastern Snake River Plain olivine tholeiite basalts have K2O contents of 0.2 to 1.0 weight per cent. In spite of the low-K content, high-precision 40Ar/39Ar ages were obtained by applying a protocol that employs short irradiation times (minimizing interferences from Ca derived 36Ar), frequent measurement of various size atmospheric Ar pipettes to monitor and correct for temporal variation, and signal size dependent nonlinearity in spectrometer mass bias, resulting in age dates with resolution generally between 2 to 10% of the age. 3-D models of subsurface basalt flows are being used to: (1) Estimate eruption volumes; (2) locate the approximate vent areas and extent of sub-surface flows; and (3) Help locate high and low transmissivity zones. Results indicate that large basalt eruptions (>3 km3) occurred at and near the Central Facilities Area between 637 ka and 360 ka; at and near the Radioactive Waste Management Complex before 540 ka; and north of the Naval Reactors Facility at about 580 ka. Since about 360 ka, large basalt flows have erupted along the Arco-Big Southern Butte Volcanic Rift Zone and the Axial Volcanic Zone, and flowed northerly towards the Central Facilities Area. Basalt eruptions shifted the course of the Big Lost River from a more southerly course to its present one.

  18. Magnetically-driven oceans on Jovian satellites

    NASA Astrophysics Data System (ADS)

    Gissinger, C.; Petitdemange, L.

    2017-12-01

    During the last decade, data from Galileo space missions have added strong support for the existence of subsurface liquid oceans on several moons of Jupiter. For instance, it is now commonly accepted that an electrically conducting fluid beneath the icy crust of Europa's surface may explain the variations of the induced field measured near the satellite. These observations have raised many questions regarding the size and the salinity of such subsurface ocean, or how and why the water remains liquid. In addition, the hydrodynamics of such oceans is mostly unknown. These questions are of primary importance since Europa is often considered as a good candidate for the presence of life beyond the Earth. Here, we present the first numerical modeling of the rapidly-rotating magnetohydrodynamic (MHD) flow generated in Europa's interior: due to Jupiter's rotation with respect to Europa, we show that the Lorentz force induced by the time-varying Jovian magnetic field is able to generate an oceanic flow of a few km/h. Our results are understood in the framework of a simple theoretical model and we obtain a scaling law for the prediction of the mean oceanic velocity and the total heating generated inside the ocean of Europa. Finally, by comparing our simulations to Galileo observations, we make predictions on both the thickness and the electrical conductivity of the ocean of different Jovian's satellites.

  19. Subsidence and collapse sinkholes in soluble rock: a numerical perspective

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg; Romanov, Douchko; Hiller, Thomas

    2016-04-01

    Soluble rocks such as limestone, gypsum, anhydrite, and salt are prone to subsidence and the sudden creation of collapse sinkholes. The reason for this behaviour stems from the solubility of the rock: Water percolating through fissures and bedding partings can remove material from the rock walls and thus increase the permeability of the host rock by orders of magnitudes. This process occurs on time scales of 1,000-100,000 years, resulting in enlarged fractures, voids and cavities, which then carry flow efficiently through the rock. The enlargement of sub-surface voids to the meter-size within such short times creates mechanical conditions prone to collapse. The collapse initiates at depth, but then propagates to the surface. By means of numerical modelling, we discuss the long-term evolution of secondary porosity in gypsum rocks, resulting in zones of sub-surface voids, which then become mechanically unstable and collapse. We study two real-world case scenarios, in which we can relate field observations to our numerical model: (i) A dam-site scenario, where flow around the dam caused widespread dissolution of gypsum and subsequent subsidence of the dam and a nearby highway. (ii) A natural collapse sinkhole forming as a result of freshwater inflow into a shallow anhydrite formation with rapid evolution of voids in the sub-surface.

  20. Dynamic coupling of subsurface and seepage flows solved within a regularized partition formulation

    NASA Astrophysics Data System (ADS)

    Marçais, J.; de Dreuzy, J.-R.; Erhel, J.

    2017-11-01

    Hillslope response to precipitations is characterized by sharp transitions from purely subsurface flow dynamics to simultaneous surface and subsurface flows. Locally, the transition between these two regimes is triggered by soil saturation. Here we develop an integrative approach to simultaneously solve the subsurface flow, locate the potential fully saturated areas and deduce the generated saturation excess overland flow. This approach combines the different dynamics and transitions in a single partition formulation using discontinuous functions. We propose to regularize the system of partial differential equations and to use classic spatial and temporal discretization schemes. We illustrate our methodology on the 1D hillslope storage Boussinesq equations (Troch et al., 2003). We first validate the numerical scheme on previous numerical experiments without saturation excess overland flow. Then we apply our model to a test case with dynamic transitions from purely subsurface flow dynamics to simultaneous surface and subsurface flows. Our results show that discretization respects mass balance both locally and globally, converges when the mesh or time step are refined. Moreover the regularization parameter can be taken small enough to ensure accuracy without suffering of numerical artefacts. Applied to some hundreds of realistic hillslope cases taken from Western side of France (Brittany), the developed method appears to be robust and efficient.

  1. Sensitivities in a game theoretic approach to analyze allocation of water resources in the Nagobo basin, Ghana

    NASA Astrophysics Data System (ADS)

    Hossler, T. H. H. H.; Caers, J.; Lakshmi, V.; Harris, J. M.

    2016-12-01

    Changing weather patterns, such as shorter duration of rainfall have made water sourcesunreliable for local farmers in the Nagbo basin located in Northern Ghana. Farmers are thereforestarting to use groundwater as a secondary source (and sometimes primary source) of water fortheir needs. Groundwater will therefore be most likely subject to considerable stress in the nearfuture with longer dry spells and increasing water demand from users with different interests.Strategies must be adopted to optimally allocate water between the various stakeholders in anuncertain environment. Game Theory (GT) provides a framework for analyzing watermanagement in the Nagobo Basin. GT has recently gained attention in analyzing the impact androle of stakeholders in water resources management but the hydrological and hydrogeologicalmodels fail to account for the numerous data sources and leading uncertainties of thehydrogeological cycle. In this work, we describe by means of a synthetic model a situation in theNagobo basin with a 2-players game, considering both cooperation and non-cooperation. Ahydrological model of the basin is built using the different data available (surface and subsurface).We are interested in quantifying the impact of the uncertainty of the model parameters on thegame, affecting both player's strategies and the equilibrium. In particular, the stochastic nature insupply (recharge of the aquifer) and the uncertain nature of the subsurface (externalities) are areaof focus. A sensitivity analysis has been carried out and these results will be presented as well asthe outcome of the different games.

  2. GIS prospectivity mapping and 3D modeling validation for potential uranium deposit targets in Shangnan district, China

    NASA Astrophysics Data System (ADS)

    Xie, Jiayu; Wang, Gongwen; Sha, Yazhou; Liu, Jiajun; Wen, Botao; Nie, Ming; Zhang, Shuai

    2017-04-01

    Integrating multi-source geoscience information (such as geology, geophysics, geochemistry, and remote sensing) using GIS mapping is one of the key topics and frontiers in quantitative geosciences for mineral exploration. GIS prospective mapping and three-dimensional (3D) modeling can be used not only to extract exploration criteria and delineate metallogenetic targets but also to provide important information for the quantitative assessment of mineral resources. This paper uses the Shangnan district of Shaanxi province (China) as a case study area. GIS mapping and potential granite-hydrothermal uranium targeting were conducted in the study area combining weights of evidence (WofE) and concentration-area (C-A) fractal methods with multi-source geoscience information. 3D deposit-scale modeling using GOCAD software was performed to validate the shapes and features of the potential targets at the subsurface. The research results show that: (1) the known deposits have potential zones at depth, and the 3D geological models can delineate surface or subsurface ore-forming features, which can be used to analyze the uncertainty of the shape and feature of prospectivity mapping at the subsurface; (2) single geochemistry anomalies or remote sensing anomalies at the surface require combining the depth exploration criteria of geophysics to identify potential targets; and (3) the single or sparse exploration criteria zone with few mineralization spots at the surface has high uncertainty in terms of the exploration target.

  3. Magnetorheological finishing for removing surface and subsurface defects of fused silica optics

    NASA Astrophysics Data System (ADS)

    Catrin, Rodolphe; Neauport, Jerome; Taroux, Daniel; Cormont, Philippe; Maunier, Cedric; Lambert, Sebastien

    2014-09-01

    We investigate the capacity of magnetorheological finishing (MRF) process to remove surface and subsurface defects of fused silica optics. Polished samples with engineered surface and subsurface defects were manufactured and characterized. Uniform material removals were performed with a QED Q22-XE machine using different MRF process parameters in order to remove these defects. We provide evidence that whatever the MRF process parameters are, MRF is able to remove surface and subsurface defects. Moreover, we show that MRF induces a pollution of the glass interface similar to conventional polishing processes.

  4. Potential Elevation Biases for Laser Altimeters from Subsurface Scattered Photons: Laboratory and Model Exploration of Green Light Scattering in Snow

    NASA Astrophysics Data System (ADS)

    Greeley, A.; Neumann, T.; Markus, T.; Kurtz, N. T.; Cook, W. B.

    2015-12-01

    Existing visible light laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographic Laser Altimeter System) on NASA's upcoming ICESat-2 mission - and ATM (Airborne Topographic Mapper) on NASA's Operation IceBridge mission provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters like sea ice freeboard and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons travelling into snow, ice, or water before scattering back to the altimeter receiving system (subsurface photons) travel farther and longer than photons scattering off the surface only, causing a bias in the measured elevation. We seek to identify subsurface photons in a laboratory setting using a flight-tested laser altimeter (MABEL) and to quantify their effect on surface elevation estimates for laser altimeter systems. We also compare these estimates with previous laboratory measurements of green laser light transmission through snow, as well as Monte Carlo simulations of backscattered photons from snow.

  5. Audiomagnetotelluric Data and Preliminary Two-Dimensional Models from Spring, Dry Lake, and Delamar Valleys, Nevada

    USGS Publications Warehouse

    McPhee, Darcy K.; Chuchel, Bruce A.; Pellerin, Louise

    2008-01-01

    This report presents audiomagnetotelluric (AMT) data along fourteen profiles in Spring, Delamar, and Dry Lake Valleys, and the corresponding preliminary two-dimensional (2-D) inverse models. The AMT method is a valuable tool for estimating the electrical resistivity of the Earth over depth ranges from a few meters to less than one kilometer, and it is important for revealing subsurface structure and stratigraphy within the Basin and Range province of eastern Nevada, which can be used to define the geohydrologic framework of the region. We collected AMT data by using the Geometrics StrataGem EH4 system. Profiles were 0.7 - 3.2 km in length with station spacing of 50-400 m. Data were recorded in a coordinate system parallel to and perpendicular to the regional geologic-strike direction with Z positive down. We show AMT station locations, sounding curves of apparent resistivity, phase, and coherency, and 2-D models of subsurface resistivity along the profiles. The 2-D inverse models are computed from the transverse electric (TE), transverse magnetic (TM), and TE+TM mode data by using a conjugate gradient, finite-difference method. Preliminary interpretation of the 2-D models defines the structural framework of the basins and the resistivity contrasts between alluvial basin-fill, volcanic units, and carbonate basement rocks.

  6. Coupled geophysical-hydrological modeling of controlled NAPL spill

    NASA Astrophysics Data System (ADS)

    Kowalsky, M. B.; Majer, E.; Peterson, J. E.; Finsterle, S.; Mazzella, A.

    2006-12-01

    Past studies have shown reasonable sensitivity of geophysical data for detecting or monitoring the movement of non-aqueous phase liquids (NAPLs) in the subsurface. However, heterogeneity in subsurface properties and in NAPL distribution commonly results in non-unique data interpretation. Combining multiple geophysical data types and incorporating constraints from hydrological models will potentially decrease the non-uniqueness in data interpretation and aid in site characterization. Large-scale laboratory experiments have been conducted over several years to evaluate the use of various geophysical methods, including ground-penetrating radar (GPR), seismic, and electrical methods, for monitoring controlled spills of tetrachloroethylene (PCE), a hazardous industrial solvent that is pervasive in the subsurface. In the current study, we consider an experiment in which PCE was introduced into a large tank containing a heterogeneous distribution of sand and clay mixtures, and allowed to migrate while time-lapse geophysical data were collected. We consider two approaches for interpreting the surface GPR and crosswell seismic data. The first approach involves (a) waveform inversion of the surface GPR data using a non-gradient based optimization algorithm to estimate the dielectric constant distributions and (b) conversion of crosswell seismic travel times to acoustic velocity distributions; the dielectric constant and acoustic velocity distributions are then related to NAPL saturation using appropriate petrophysical models. The second approach takes advantage of a recently developed framework for coupled hydrological-geophysical modeling, providing a hydrological constraint on interpretation of the geophysical data and additionally resulting in quantitative estimates of the most relevant hydrological parameters that determine NAPL behavior in the system. Specifically, we simulate NAPL migration using the multiphase multicomponent flow simulator TOUGH2 with a 2-D radial model that takes advantage of radial symmetry in the experimental setup. The flow model is coupled to forward models for simulating the GPR and seismic measurements, and joint inversion of the multiple data types results in images of time-varying NAPL saturation distributions. Comparison of the two approaches with results of the post-experiment excavation indicate that combining geophysical data types and incorporating hydrological constraints improves estimates of NAPL saturation relative to the conventional interpretation of the geophysical data sets. Notice: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect the official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation by EPA for use. This work was supported, in part, by the U.S. Dept. of Energy under Contract No. DE-AC02- 05CH11231.

  7. Robotic astrobiology - the need for sub-surface penetration of Mars

    NASA Astrophysics Data System (ADS)

    Ellery, A.; Ball, A.; Cockell, C.; Coste, P.; Dickensheets, D.; Edwards, H.; Hu, H.; Kolb, C.; Lammer, H.; Lorenz, R.; McKee, G.; Richter, L.; Winfield, A.; Welch, C.

    2002-11-01

    Recent interest in the astrobiological investigation of Mars has culminated in the only planned astrobiology-focussed robotic mission to Mars - the Beagle2 mission to be carried to Mars by the Mars Express spacecraft in 2003. Beagle2 will be primarily investigating the surface and near-surface environment of Mars. However, the results from the Viking Mars lander indicated that the Martian surface is saturated in peroxides and super-oxides which would rapidly degrade any organic material. Furthermore, recent models of gardening due to meteoritic impacts on the Martian surface suggest that the depth of this oxidising layer could extend to depths of 2-3m. Given that the discovery of organic fossilised residues will be the primary target for astrobiological investigation, this implies that future robotic astrobiology missions to Mars must penetrate to below these depths. The need to penetrate into the sub-surface of Mars has recently been given greater urgency with the discovery of extensive water ice-fields as little as 1m from the surface. We review the different technologies that make this penetration into the sub-surface a practical possibility on robotic missions. We further briefly present one such implementation of these technologies through the use of ground-penetrating moles - The Vanguard Mars mission proposal.

  8. From Sub-basin to Grid Scale Soil Moisture Disaggregation in SMART, A Semi-distributed Hydrologic Modeling Framework

    NASA Astrophysics Data System (ADS)

    Ajami, H.; Sharma, A.

    2016-12-01

    A computationally efficient, semi-distributed hydrologic modeling framework is developed to simulate water balance at a catchment scale. The Soil Moisture and Runoff simulation Toolkit (SMART) is based upon the delineation of contiguous and topologically connected Hydrologic Response Units (HRUs). In SMART, HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are distributed cross sections or equivalent cross sections (ECS) delineated in first order sub-basins. ECSs are formulated by aggregating topographic and physiographic properties of the part or entire first order sub-basins to further reduce computational time in SMART. Previous investigations using SMART have shown that temporal dynamics of soil moisture are well captured at a HRU level using the ECS delineation approach. However, spatial variability of soil moisture within a given HRU is ignored. Here, we examined a number of disaggregation schemes for soil moisture distribution in each HRU. The disaggregation schemes are either based on topographic based indices or a covariance matrix obtained from distributed soil moisture simulations. To assess the performance of the disaggregation schemes, soil moisture simulations from an integrated land surface-groundwater model, ParFlow.CLM in Baldry sub-catchment, Australia are used. ParFlow is a variably saturated sub-surface flow model that is coupled to the Common Land Model (CLM). Our results illustrate that the statistical disaggregation scheme performs better than the methods based on topographic data in approximating soil moisture distribution at a 60m scale. Moreover, the statistical disaggregation scheme maintains temporal correlation of simulated daily soil moisture while preserves the mean sub-basin soil moisture. Future work is focused on assessing the performance of this scheme in catchments with various topographic and climate settings.

  9. Influence of Si wafer thinning processes on (sub)surface defects

    NASA Astrophysics Data System (ADS)

    Inoue, Fumihiro; Jourdain, Anne; Peng, Lan; Phommahaxay, Alain; De Vos, Joeri; Rebibis, Kenneth June; Miller, Andy; Sleeckx, Erik; Beyne, Eric; Uedono, Akira

    2017-05-01

    Wafer-to-wafer three-dimensional (3D) integration with minimal Si thickness can produce interacting multiple devices with significantly scaled vertical interconnections. Realizing such a thin 3D structure, however, depends critically on the surface and subsurface of the remaining backside Si after the thinning processes. The Si (sub)surface after mechanical grinding has already been characterized fruitfully for a range of few dozen of μm. Here, we expand the characterization of Si (sub)surface to 5 μm thickness after thinning process on dielectric bonded wafers. The subsurface defects and damage layer were investigated after grinding, chemical mechanical polishing (CMP), wet etching and plasma dry etching. The (sub)surface defects were characterized using transmission microscopy, atomic force microscopy, and positron annihilation spectroscopy. Although grinding provides the fastest removal rate of Si, the surface roughness was not compatible with subsequent processing. Furthermore, mechanical damage such as dislocations and amorphous Si cannot be reduced regardless of Si thickness and thin wafer handling systems. The CMP after grinding showed excellent performance to remove this grinding damage, even though the removal amount is 1 μm. For the case of Si thinning towards 5 μm using grinding and CMP, the (sub)surface is atomic scale of roughness without vacancy. For the case of grinding + dry etch, vacancy defects were detected in subsurface around 0.5-2 μm. The finished surface after wet etch remains in the nm scale in the strain region. By inserting a CMP step in between grinding and dry etch it is possible to significantly reduce not only the roughness, but also the remaining vacancies at the subsurface. The surface of grinding + CMP + dry etching gives an equivalent mono vacancy result as to that of grinding + CMP. This combination of thinning processes allows development of extremely thin 3D integration devices with minimal roughness and vacancy surface.

  10. Effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds using a modified QSAR model.

    PubMed

    Lim, Seung Joo; Fox, Peter

    2014-02-01

    The effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds were investigated using a modified half life equation. The potential future pharmaceutical compounds investigated were approximately 2000 pharmaceutical drugs currently undergoing the United States Food and Drug Administration (US FDA) testing. EPI Suite (BIOWIN) model estimates the fates of compounds based on the biodegradability under aerobic conditions. While BIOWIN considered the biodegradability of a compound only, the half life equation used in this study was modified by biodegradability, sorption and cometabolic oxidation. It was possible that the potential future pharmaceutical compounds were more accurately estimated using the modified half life equation. The modified half life equation considered sorption and cometabolic oxidation of halogenated aromatic/aliphatics and nitrogen(N)-heterocyclic aromatics in the sub-surface, while EPI Suite (BIOWIN) did not. Halogenated aliphatics in chemicals were more persistent than halogenated aromatics in the sub-surface. In addition, in the sub-surface environment, the fates of organic chemicals were much more affected by halogenation in chemicals than by nitrogen(N)-heterocyclic aromatics. © 2013.

  11. Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model

    NASA Astrophysics Data System (ADS)

    Demaria, Eleonora M.; Nijssen, Bart; Wagener, Thorsten

    2007-06-01

    Current land surface models use increasingly complex descriptions of the processes that they represent. Increase in complexity is accompanied by an increase in the number of model parameters, many of which cannot be measured directly at large spatial scales. A Monte Carlo framework was used to evaluate the sensitivity and identifiability of ten parameters controlling surface and subsurface runoff generation in the Variable Infiltration Capacity model (VIC). Using the Monte Carlo Analysis Toolbox (MCAT), parameter sensitivities were studied for four U.S. watersheds along a hydroclimatic gradient, based on a 20-year data set developed for the Model Parameter Estimation Experiment (MOPEX). Results showed that simulated streamflows are sensitive to three parameters when evaluated with different objective functions. Sensitivity of the infiltration parameter (b) and the drainage parameter (exp) were strongly related to the hydroclimatic gradient. The placement of vegetation roots played an important role in the sensitivity of model simulations to the thickness of the second soil layer (thick2). Overparameterization was found in the base flow formulation indicating that a simplified version could be implemented. Parameter sensitivity was more strongly dictated by climatic gradients than by changes in soil properties. Results showed how a complex model can be reduced to a more parsimonious form, leading to a more identifiable model with an increased chance of successful regionalization to ungauged basins. Although parameter sensitivities are strictly valid for VIC, this model is representative of a wider class of macroscale hydrological models. Consequently, the results and methodology will have applicability to other hydrological models.

  12. Diffusing, side-firing, and radial delivery laser balloon catheters for creating subsurface thermal lesions in tissue

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Hung; Fried, Nathaniel M.

    2016-02-01

    Infrared lasers have been used in combination with applied cooling methods to preserve superficial skin layers during cosmetic surgery. Similarly, combined laser irradiation and tissue cooling may also allow development of minimally invasive laser therapies beyond dermatology. This study compares diffusing, side-firing, and radial delivery laser balloon catheter designs for creation of subsurface lesions in tissue, ex vivo, using a near-IR laser and applied contact cooling. An Ytterbium fiber laser with 1075 nm wavelength delivered energy through custom built 18 Fr (6-mm-OD) balloon catheters incorporating either 10-mm-long diffusing fiber tip, 90 degree side-firing fiber, or radial delivery cone mirror, through a central lumen. A chilled solution was flowed through a separate lumen into 9-mm-diameter balloon to keep probe cooled at 7°C. Porcine liver tissue samples were used as preliminary tissue model for immediate observation of thermal lesion creation. The diffusing fiber produced subsurface thermal lesions measuring 49.3 +/- 10.0 mm2 and preserved 0.8 +/- 0.1 mm of surface tissue. The side-firing fiber produced subsurface thermal lesions of 2.4 +/- 0.9 mm2 diameter and preserved 0.5 +/- 0.1 mm of surface tissue. The radial delivery probe assembly failed to produce subsurface thermal lesions, presumably due to the small effective spot diameter at the tissue surface, which limited optical penetration depth. Optimal laser power and irradiation time measured 15 W and 100 s for diffusing fiber and 1.4 W and 20 s, for side-firing fiber, respectively. Diffusing and side-firing laser balloon catheter designs provided subsurface thermal lesions in tissue. However, the divergent laser beam in both designs limited the ability to preserve a thicker layer of tissue surface. Further optimization of laser and cooling parameters may be necessary to preserve thicker surface tissue layers.

  13. Coupled three-layer model for turbulent flow over large-scale roughness: On the hydrodynamics of boulder-bed streams

    NASA Astrophysics Data System (ADS)

    Pan, Wen-hao; Liu, Shi-he; Huang, Li

    2018-02-01

    This study developed a three-layer velocity model for turbulent flow over large-scale roughness. Through theoretical analysis, this model coupled both surface and subsurface flow. Flume experiments with flat cobble bed were conducted to examine the theoretical model. Results show that both the turbulent flow field and the total flow characteristics are quite different from that in the low gradient flow over microscale roughness. The velocity profile in a shallow stream converges to the logarithmic law away from the bed, while inflecting over the roughness layer to the non-zero subsurface flow. The velocity fluctuations close to a cobble bed are different from that of a sand bed, and it indicates no sufficiently large peak velocity. The total flow energy loss deviates significantly from the 1/7 power law equation when the relative flow depth is shallow. Both the coupled model and experiments indicate non-negligible subsurface flow that accounts for a considerable proportion of the total flow. By including the subsurface flow, the coupled model is able to predict a wider range of velocity profiles and total flow energy loss coefficients when compared with existing equations.

  14. Using GNSS-R techniques to investigate the near sub-surface of Mars with the Deep Space Network

    NASA Astrophysics Data System (ADS)

    Elliott, H. M.; Bell, D. J.; Jin, C.; Decrossas, E.; Asmar, S.; Lazio, J.; Preston, R. A.; Ruf, C. S.; Renno, N. O.

    2017-12-01

    Global Navigation Satellite Systems Reflectometry (GNSS-R) has shown that passive measurements using separate active sources can infer the soil moisture, snow pack depth and other quantities of scientific interest. Here, we expand upon this method and propose that a passive measurement of the sub-surface dielectric profile of Mars can be made by using multipath interference between reflections off the surface and subsurface dielectric discontinuities. This measurement has the ability to reveal changes in the soil water content, the depth of a layer of sand, thickness of a layer of ice, and even identify centimeter-scale layering which may indicate the presence of a sedimentary bed. We have created a numerical ray tracing model to understand the potential of using multipath interference techniques to investigate the sub-surface dielectric properties and structure of Mars. We have further verified this model using layered beds of sand and concrete in laboratory experiments and then used the model to extrapolate how this technique may be applied to future Mars missions. We will present new results demonstrating how to characterize a multipath interference patterns as a function of frequency and/or incidence angle to measure the thickness of a dielectric layer of sand or ice. Our results demonstrate that dielectric discontinuities in the subsurface can be measured using this passive sensing technique and it could be used to effectively measure the thickness of a dielectric layer in the proximity of a landed spacecraft. In the case of an orbiter, we believe this technique would be effective at measuring the seasonal thickness of CO2 ice in the Polar Regions. This is exciting because our method can produce similar results to traditional ground penetrating radars without the need to have an active radar transmitter in-situ. Therefore, it is possible that future telecommunications systems can serve as both a radio and a scientific instrument when used in conjunction with the Deep Space Network, a huge potential cost-savings for interplanetary missions.

  15. Utility of a Two-source Energy Balance Approach for Daily Mapping of Landsat-scale Fluxes Over Irrigated Agriculture in a Desert Environment

    NASA Astrophysics Data System (ADS)

    Houborg, R.; McCabe, M. F.; Rosas Aguilar, J.; Anderson, M. C.; Hain, C.

    2014-12-01

    The Middle East and North Africa (MENA) region is an area characterized by limited fresh water resources, an often inefficient use of these, and relatively poor in-situ monitoring as a result of sparse meteorological observations. Enhanced satellite-based monitoring systems are needed for aiding local water resource and agricultural management activities in these data poor arid environments. A multi-sensor and multi-scale land-surface flux monitoring capacity is being implemented over parts of MENA in order to provide meaningful decision support at relevant spatiotemporal scales. The integrated modeling system uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI), and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in conjunction with model reanalysis data and remotely sensed data from polar orbiting (Landsat and MODIS; MODerate resolution Imaging Spectroradiometer) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate daily estimates of land surface fluxes down to sub-field scale (i.e. 30 m). Within this modeling system, thermal infrared satellite data provide information about the sub-surface moisture status and plant stress, obviating the need for precipitation input and error-prone soil surface characterizations. In this study, the integrated ALEXI-DisALEXI-STARFM framework is applied over an irrigated agricultural region in Saudi Arabia, and the daily estimates of Landsat scale water, energy and carbon fluxes are evaluated against available flux tower observations and other independent in-situ and satellite-based records. The study addresses the challenges associated with time-continuous sub-field scale mapping of land-surface fluxes in a harsh desert environment, and looks into the optimization of model descriptions and parameterizations and meteorological forcing and vegetation inputs for application over these regions.

  16. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S.

    DOE PAGES

    Sahoo, S.; Russo, T. A.; Elliott, J.; ...

    2017-05-13

    Climate, groundwater extraction, and surface water flows have complex nonlinear relationships with groundwater level in agricultural regions. To better understand the relative importance of each driver and predict groundwater level change, we develop a new ensemble modeling framework based on spectral analysis, machine learning, and uncertainty analysis, as an alternative to complex and computationally expensive physical models. We apply and evaluate this new approach in the context of two aquifer systems supporting agricultural production in the United States: the High Plains aquifer (HPA) and the Mississippi River Valley alluvial aquifer (MRVA). We select input data sets by using a combinationmore » of mutual information, genetic algorithms, and lag analysis, and then use the selected data sets in a Multilayer Perceptron network architecture to simulate seasonal groundwater level change. As expected, model results suggest that irrigation demand has the highest influence on groundwater level change for a majority of the wells. The subset of groundwater observations not used in model training or cross-validation correlates strongly (R > 0.8) with model results for 88 and 83% of the wells in the HPA and MRVA, respectively. In both aquifer systems, the error in the modeled cumulative groundwater level change during testing (2003-2012) was less than 2 m over a majority of the area. Here, we conclude that our modeling framework can serve as an alternative approach to simulating groundwater level change and water availability, especially in regions where subsurface properties are unknown.« less

  17. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, S.; Russo, T. A.; Elliott, J.

    Climate, groundwater extraction, and surface water flows have complex nonlinear relationships with groundwater level in agricultural regions. To better understand the relative importance of each driver and predict groundwater level change, we develop a new ensemble modeling framework based on spectral analysis, machine learning, and uncertainty analysis, as an alternative to complex and computationally expensive physical models. We apply and evaluate this new approach in the context of two aquifer systems supporting agricultural production in the United States: the High Plains aquifer (HPA) and the Mississippi River Valley alluvial aquifer (MRVA). We select input data sets by using a combinationmore » of mutual information, genetic algorithms, and lag analysis, and then use the selected data sets in a Multilayer Perceptron network architecture to simulate seasonal groundwater level change. As expected, model results suggest that irrigation demand has the highest influence on groundwater level change for a majority of the wells. The subset of groundwater observations not used in model training or cross-validation correlates strongly (R > 0.8) with model results for 88 and 83% of the wells in the HPA and MRVA, respectively. In both aquifer systems, the error in the modeled cumulative groundwater level change during testing (2003-2012) was less than 2 m over a majority of the area. Here, we conclude that our modeling framework can serve as an alternative approach to simulating groundwater level change and water availability, especially in regions where subsurface properties are unknown.« less

  18. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2007-01-01

    Surface-subsurface flow interactions are critical to a wide range of geochemical and ecological processes and to the fate of contaminants in freshwater environments. Fractal scaling relationships have been found in distributions of both land surface topography and solute efflux from watersheds, but the linkage between those observations has not been realized. We show that the fractal nature of the land surface in fluvial and glacial systems produces fractal distributions of recharge, discharge, and associated subsurface flow patterns. Interfacial flux tends to be dominated by small-scale features while the flux through deeper subsurface flow paths tends to be controlled by larger-scale features. This scaling behavior holds at all scales, from small fluvial bedforms (tens of centimeters) to the continental landscape (hundreds of kilometers). The fractal nature of surface-subsurface water fluxes yields a single scale-independent distribution of subsurface water residence times for both near-surface fluvial systems and deeper hydrogeological flows. Copyright 2007 by the American Geophysical Union.

  19. Development of a Carbon Sequestration Visualization Tool using Google Earth Pro

    NASA Astrophysics Data System (ADS)

    Keating, G. N.; Greene, M. K.

    2008-12-01

    The Big Sky Carbon Sequestration Partnership seeks to prepare organizations throughout the western United States for a possible carbon-constrained economy. Through the development of CO2 capture and subsurface sequestration technology, the Partnership is working to enable the region to cleanly utilize its abundant fossil energy resources. The intent of the Los Alamos National Laboratory Big Sky Visualization tool is to allow geochemists, geologists, geophysicists, project managers, and other project members to view, identify, and query the data collected from CO2 injection tests using a single data source platform, a mission to which Google Earth Pro is uniquely and ideally suited . The visualization framework enables fusion of data from disparate sources and allows investigators to fully explore spatial and temporal trends in CO2 fate and transport within a reservoir. 3-D subsurface wells are projected above ground in Google Earth as the KML anchor points for the presentation of various surface subsurface data. This solution is the most integrative and cost-effective possible for the variety of users in the Big Sky community.

  20. Geophysical characterization of the role of fault and fracture systems for recharging groundwater aquifers from surface water of Lake Nasser

    NASA Astrophysics Data System (ADS)

    Mansour, Khamis; Omar, Khaled; Ali, Kamal; Abdel Zaher, Mohamed

    2018-06-01

    The role of the fracture system is important for enhancing the recharge or discharge of fluids in the subsurface reservoir. The Lake Nasser is consider one of the largest artificial lakes all over the world and contains huge bulk of storage water. In this study, the influence of fracture zones on subsurface fluid flow in groundwater reservoirs is investigated using geophysical techniques including seismicity, geoelectric and gravity data. These data have been utilized for exploring structural structure in south west Lake Nasser, and subsurface discontinuities (joints or faults) notwithstanding its related fracture systems. Seismicity investigation gave us the comprehension of the dynamic geological structure sets and proposing the main recharging paths for the Nubian aquifer from Lake Nasser surface water. Processing and modelling of aerogravity data show that the greater thickness of sedimentary cover (700 m) is located eastward and northward while basement outcrops occur at Umm Shaghir and Al Asr areas. Sixty-nine vertical electrical soundings (VES's) were used to delineate the subsurface geoelectric layers along eight profiles that help to realize the subsurface geological structure behind the hydrogeological conditions of the studied area.

  1. Anticorrelation between Surface and Subsurface Point Defects and the Impact on the Redox Chemistry of TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Yeohoon; Du, Yingge; Garcia, Juan C.

    2015-02-02

    Using combination of STM, DFT and SIMS, we explored the interplay and relative impact of surface vs. subsurface defects on the surface chemistry of rutile TiO2. STM results show that surface O vacancies (VO’s) are virtually absent in the vicinity of positively-charged subsurface point-defects. This observation is consistent with DFT calculations of impact of subsurface defect proximity on VO formation energy. To monitor the influence of such lateral anticorrelation on surface redox chemistry, a test reaction of the dissociative adsorption of O2 is employed, which is observed to be suppressed around them. DFT results attribute this to a perceived absencemore » of the intrinsic (Ti) (and likely extrinsic) interstitials in the nearest subsurface layer beneath “inhibited” areas. We also postulate that the entire nearest subsurface region could be voided of any charged point-defects, whereas prevalent VO’s are largely responsible for mediation of the redox chemistry at reduced TiO2(110) surface.« less

  2. Airborne Geophysical Surveys Applied to Hydrocarbon Resource Development Environmental Studies

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; Ball, L. B.; Finn, C.; Kass, A.; Thamke, J.

    2014-12-01

    Application of airborne geophysical surveys ranges in scale from detailed site scale such as locating abandoned well casing and saline water plumes to landscape scale for mapping hydrogeologic frameworks pertinent to ground water and tectonic settings relevant to studies of induced seismicity. These topics are important in understanding possible effects of hydrocarbon development on the environment. In addition airborne geophysical surveys can be used in establishing baseline "snapshots", to provide information in beneficial uses of produced waters, and in mapping ground water resources for use in well development. The U.S. Geological Survey (USGS) has conducted airborne geophysical surveys over more than 20 years for applications in energy resource environmental studies. A majority of these surveys are airborne electromagnetic (AEM) surveys to map subsurface electrical conductivity related to plumes of saline waters and more recently to map hydrogeologic frameworks for ground water and plume migration. AEM surveys have been used in the Powder River Basin of Wyoming to characterize the near surface geologic framework for siting produced water disposal ponds and for beneficial utilization in subsurface drip irrigation. A recent AEM survey at the Fort Peck Reservation, Montana, was used to map both shallow plumes from brine pits and surface infrastructure sources and a deeper concealed saline water plume from a failed injection well. Other reported applications have been to map areas geologically favorable for shallow gas that could influence drilling location and design. Airborne magnetic methods have been used to image the location of undocumented abandoned well casings which can serve as conduits to the near surface for coproduced waters. They have also been used in conjunction with geologic framework studies to understand the possible relationships between tectonic features and induced earthquakes in the Raton Basin. Airborne gravity as well as developing deeper mapping AEM surveys could also be effectively used in mapping tectonic features. Airborne radiometric methods have not been routinely used in hydrocarbon environmental studies but might be useful in understanding the surficial distribution of deposits related to naturally occurring radioactive materials.

  3. Observation to Theory in Deep Subsurface Microbiology Research: Can We Piece It Together?

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Thurber, A. R.

    2016-12-01

    Three decades of observations of microbes in deep environments have led to startling discoveries of life in the subsurface. Now, a few theoretical frameworks exist that help to define Stygian life. Temperature, redox gradients, productivity (e.g., in the overlying ocean), and microbial power requirements are thought to determine the distribution of microbes in the subsurface. Still, we struggle to comprehend the spatial and temporal spectra of Earth processes that define how deep microbe communities survive. Stommel diagrams, originally used to guide oceanographic sampling, may be useful in depicting the subsurface where microbial communities are impacted by co-occurring spatial and temporal phenomena that range across exponential scales. Spatially, the geological settings that influence the activity and distribution of microbes range from individual molecules or minerals all the way up to the planetary-scale where geological formations, occupying up to 105 km3, dictate the bio- and functional geography of microbial communities. Temporally, life in the subsurface may respond in time units familiar to humans (e.g., seconds to days) or to events that unfold over hundred millennial time periods. While surface community dynamics are underpinned by solar and lunar cycles, these cycles only fractionally dictate survival underground where phenomena like tectonic activity, isostatic rebound, and radioactive decay are plausible drivers of microbial life. Geological or planetary processes that occur on thousand or million year cycles could be uniquely important to microbial viability in the subsurface. Such an approach aims at a holistic comprehension of the interaction of Earth system dynamics with microbial ecology.

  4. 3D Seismic Imaging using Marchenko Methods

    NASA Astrophysics Data System (ADS)

    Lomas, A.; Curtis, A.

    2017-12-01

    Marchenko methods are novel, data driven techniques that allow seismic wavefields from sources and receivers on the Earth's surface to be redatumed to construct wavefields with sources in the subsurface - including complex multiply-reflected waves, and without the need for a complex reference model. In turn, this allows subsurface images to be constructed at any such subsurface redatuming points (image or virtual receiver points). Such images are then free of artefacts from multiply-scattered waves that usually contaminate migrated seismic images. Marchenko algorithms require as input the same information as standard migration methods: the full reflection response from sources and receivers at the Earth's surface, and an estimate of the first arriving wave between the chosen image point and the surface. The latter can be calculated using a smooth velocity model estimated using standard methods. The algorithm iteratively calculates a signal that focuses at the image point to create a virtual source at that point, and this can be used to retrieve the signal between the virtual source and the surface. A feature of these methods is that the retrieved signals are naturally decomposed into up- and down-going components. That is, we obtain both the signal that initially propagated upwards from the virtual source and arrived at the surface, separated from the signal that initially propagated downwards. Figure (a) shows a 3D subsurface model with a variable density but a constant velocity (3000m/s). Along the surface of this model (z=0) in both the x and y directions are co-located sources and receivers at 20-meter intervals. The redatumed signal in figure (b) has been calculated using Marchenko methods from a virtual source (1200m, 500m and 400m) to the surface. For comparison the true solution is given in figure (c), and shows a good match when compared to figure (b). While these 2D redatuming and imaging methods are still in their infancy having first been developed in 2012, we have extended them to 3D media and wavefields. We show that while the wavefield effects may be more complex in 3D, Marchenko methods are still valid, and 3D images that are free of multiple-related artefacts, are a realistic possibility.

  5. A comparison between modeled and measured permafrost temperatures at Ritigraben borehole, Switzerland

    NASA Astrophysics Data System (ADS)

    Mitterer-Hoinkes, Susanna; Lehning, Michael; Phillips, Marcia; Sailer, Rudolf

    2013-04-01

    The area-wide distribution of permafrost is sparsely known in mountainous terrain (e.g. Alps). Permafrost monitoring can only be based on point or small scale measurements such as boreholes, active rock glaciers, BTS measurements or geophysical measurements. To get a better understanding of permafrost distribution, it is necessary to focus on modeling permafrost temperatures and permafrost distribution patterns. A lot of effort on these topics has been already expended using different kinds of models. In this study, the evolution of subsurface temperatures over successive years has been modeled at the location Ritigraben borehole (Mattertal, Switzerland) by using the one-dimensional snow cover model SNOWPACK. The model needs meteorological input and in our case information on subsurface properties. We used meteorological input variables of the automatic weather station Ritigraben (2630 m) in combination with the automatic weather station Saas Seetal (2480 m). Meteorological data between 2006 and 2011 on an hourly basis were used to drive the model. As former studies showed, the snow amount and the snow cover duration have a great influence on the thermal regime. Low snow heights allow for deeper penetration of low winter temperatures into the ground, strong winters with a high amount of snow attenuate this effect. In addition, variations in subsurface conditions highly influence the temperature regime. Therefore, we conducted sensitivity runs by defining a series of different subsurface properties. The modeled subsurface temperature profiles of Ritigraben were then compared to the measured temperatures in the Ritigraben borehole. This allows a validation of the influence of subsurface properties on the temperature regime. As expected, the influence of the snow cover is stronger than the influence of sub-surface material properties, which are significant, however. The validation presented here serves to prepare a larger spatial simulation with the complex hydro-meteorological 3-dimensional model Alpine 3D, which is based on a distributed application of SNOWPACK.

  6. Preliminary report on geophysical data in Yavapai County, Arizona

    USGS Publications Warehouse

    Langenheim, V.E.; Hoffmann, J.P.; Blasch, K.W.; DeWitt, Ed; Wirt, Laurie

    2002-01-01

    Recently acquired geophysical data provide information on the geologic framework and its effect of groundwater flow and on stream/aquifer interaction in Yavapai County, Arizona. High-resolution aeromagnetic data reflect diverse rock types at and below the topographic surface and have permitted a preliminary interpretation of faults and underlying rock types (in particular, volcanic) that will provide new insights on the geologic framework, critical input to future hydrologic investigations. Aeromagnetic data map the western end of the Bear Wallow Canyon fault into the sedimentary fill of Verde Valley. Regional gravity data indicate potentially significant accumulations of low-density basin fill in Big Chino, Verde, and Williamson Valleys. Electrical and seismic data were also collected and help evaluate the approximate depth and extent of recent alluvium overlying Tertiary and Paleozoic sediments. These data will be used to ascertain the potential contribution of shallow ground-water subflow that cannot be measured by gages or flow meters and whether stream flow in losing reaches is moving as subflow or is being lost to the subsurface. The geophysical data will help produce a more robust groundwater flow model of the region.

  7. Advancing Data assimilation for Baltic Monitoring and Forecasting Center: implementation and evaluation of HBP-PDAF system

    NASA Astrophysics Data System (ADS)

    Korabel, Vasily; She, Jun; Huess, Vibeke; Woge Nielsen, Jacob; Murawsky, Jens; Nerger, Lars

    2017-04-01

    The potential of an efficient data assimilation (DA) scheme to improve model forecast skill was successfully demonstrated by many operational centres around the world. The Baltic-North Sea region is one of the most heavily monitored seas. Ferryboxes, buoys, ADCP moorings, shallow water Argo floats, and research vessels are providing more and more near-real time observations. Coastal altimetry has now providing increasing amount of high resolution sea level observations, which will be significantly expanded by the launch of SWOT satellite in next years. This will turn operational DA into a valuable tool for improving forecast quality in the region. This motivated us to focus on advancing DA for the Baltic Monitoring and Forecasting Centre (BAL MFC) in order to create a common framework for operational data assimilation in the Baltic Sea. We have implemented HBM-PDAF system based on the Parallel Data Assimilation Framework (PDAF), a highly versatile and optimised parallel suit with a choice of sequential schemes originally developed at AWI, and a hydrodynamic HIROMB-BOOS Model (HBM). At initial phase, only the satellite Sea Surface Temperature (SST) Level 3 data has been assimilated. Several related aspects are discussed, including improvements of the forecast quality for both surface and subsurface fields, the estimation of ensemble-based forecast error covariance, as well as possibilities of assimilating new types of observations, such as in-situ salinity and temperature profiles, coastal altimetry, and ice concentration.

  8. Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy

    PubMed Central

    Yao, Atsushi; Kobayashi, Kei; Nosaka, Shunta; Kimura, Kuniko; Yamada, Hirofumi

    2017-01-01

    Several researchers have recently demonstrated visualization of subsurface features with a nanometer-scale resolution using various imaging schemes based on atomic force microscopy. Since all these subsurface imaging techniques require excitation of the oscillation of the cantilever and/or sample surface, it has been difficult to identify a key imaging mechanism. Here we demonstrate visualization of Au nanoparticles buried 300 nm into a polymer matrix by measurement of the thermal noise spectrum of a microcantilever with a tip in contact to the polymer surface. We show that the subsurface Au nanoparticles are detected as the variation in the contact stiffness and damping reflecting the viscoelastic properties of the polymer surface. The variation in the contact stiffness well agrees with the effective stiffness of a simple one-dimensional model, which is consistent with the fact that the maximum depth range of the technique is far beyond the extent of the contact stress field. PMID:28210001

  9. Effects of Mars Regolith Analogs, UVC radiation, Temperature, Pressure, and pH on the Growth and Survivability of Methanogenic Archaea and Stable Carbon Isotope Fractionation: Implications for Surface and Subsurface Life on Mars

    NASA Astrophysics Data System (ADS)

    Sinha, Navita

    Mars is one of the suitable bodies in our solar system that can accommodate extraterrestrial life. The detection of plumes of methane in the Martian atmosphere, geochemical evidence, indication of flow of intermittent liquid water on the Martian surface, and geomorphologies of Mars have bolstered the plausibility of finding extant or evidence of extinct life on its surface and/or subsurface. However, contemporary Mars has been considered as an inhospitable planet for several reasons, such as low atmospheric surface pressure, low surface temperature, and intense DNA damaging radiation. Despite the hostile conditions of Mars, a few strains of methanogenic archaea have shown survivability in limited surface and subsurface conditions of Mars. Methanogens, which are chemolithoautotrophic non-photosynthetic anaerobic archaea, have been considered ideal models for possible Martian life forms for a long time. The search for biosignatures in the Martian atmosphere and possibility of life on the Martian surface under UVC radiation and deep subsurface under high pressure, temperature, and various pHs are the motivations of this research. Analogous to Earth, Martian atmospheric methane could be biological in origin. Chapter 1 provides relevant information about Mars' habitability, methane on Mars, and different strains of methanogens used in this study. Chapter 2 describes the interpretation of the carbon isotopic data of biogenic methane produced by methanogens grown on various Mars analogs and the results provide clues to determine ambiguous sources of methane on Mars. Chapter 3 illustrates the sensitivity of hydrated and desiccated cultures of halophilic and non-halophilic methanogens to DNA-damaging ultraviolet radiations, and the results imply that UVC radiation may not be an enormous constraint for methanogenic life forms on the surface of Mars. Chapters 4, 5, and 6 discuss the data for the survivability, growth, and morphology of methanogens in presumed deep subsurface physicochemical conditions such as temperature, pressure, hydrogen concentration, and pH of Mars. Finally, chapter 7 provides conclusions, limitations of the experiments, and future perspective of the work. Overall, the quantitative measurements obtained in the various sections of this novel work provide insights to atmospheric biosignatures and survivability of methanogenic organisms on the surface and subsurface of Mars.

  10. High frequency thermal emission from the lunar surface and near surface temperature of the Moon from Chang’E-2 microwave radiometer

    NASA Astrophysics Data System (ADS)

    Fang, Tuo; Fa, Wenzhe

    2014-04-01

    Near surface temperature of the Moon and thermal behaviors of the lunar regolith can provide important information for constraining thermal and magmatic evolution models of the Moon and engineering constrains for in situ lunar exploration system. In this study, China’s Chang’E-2 (CE-2) microwave radiometer (MRM) data at high frequency channels are used to investigate near surface temperature of the Moon given the penetration ability of microwave into the desiccated and porous lunar regolith. Factors that affect high frequency brightness temperature (TB), such as surface slope, solar albedo and dielectric constant, are analyzed first using a revised Racca’s temperature model. Radiative transfer theory is then used to model thermal emission from a semi-infinite regolith medium, with considering dielectric constant and temperature profiles within the regolith layer. To decouple the effect of diurnal temperature variation in the uppermost lunar surface, diurnal averaged brightness temperatures at high frequency channels are used to invert mean diurnal surface and subsurface temperatures based on their bilinear profiles within the regolith layer. Our results show that, at the scale of the spatial resolution of CE-2 MRM, surface slope of crater wall varies typically from about 20° to 30°, and this causes a variation in TB about 10-15 K. Solar albedo can give rise to a TB difference of about 5-10 K between maria and highlands, whereas a ∼2-8 K difference can be compensated by the dielectric constant on the other hand. Inversion results indicate that latitude (ϕ) variations of the mean diurnal surface and subsurface temperatures follow simple rules as cos0.30ϕ and cos0.36ϕ, respectively. The inverted mean diurnal temperature profiles at the Apollo 15 and 17 landing sites are also compared with the Apollo heat flow experiment data, showing an inversion uncertainty <4 K for surface temperature and <1 K for subsurface temperature.

  11. The potential for improving remote primary productivity estimates through subsurface chlorophyll and irradiance measurement

    NASA Astrophysics Data System (ADS)

    Jacox, Michael G.; Edwards, Christopher A.; Kahru, Mati; Rudnick, Daniel L.; Kudela, Raphael M.

    2015-02-01

    A 26-year record of depth integrated primary productivity (PP) in the Southern California Current System (SCCS) is analyzed with the goal of improving satellite net primary productivity (PP) estimates. Modest improvements in PP model performance are achieved by tuning existing algorithms for the SCCS, particularly by parameterizing carbon fixation rate in the vertically generalized production model as a function of surface chlorophyll concentration and distance from shore. Much larger improvements are enabled by improving the accuracy of subsurface chlorophyll and light profiles. In a simple vertically resolved production model for the SCCS (VRPM-SC), substitution of in situ surface data for remote sensing estimates offers only marginal improvements in model r2 (from 0.54 to 0.56) and total log10 root mean squared difference (from 0.22 to 0.21), while inclusion of in situ chlorophyll and light profiles improves these metrics to 0.77 and 0.15, respectively. Autonomous underwater gliders, capable of measuring subsurface properties on long-term, long-range deployments, significantly improve PP model fidelity in the SCCS. We suggest their use (and that of other autonomous profilers such as Argo floats) in conjunction with satellites as a way forward for large-scale improvements in PP estimation.

  12. A Water Balance Model for Hill reservoir - Aquifer Exchange Water Flux Quantification and Uncertainty Analysis - Application to the Kamech catchment, Tunisia

    NASA Astrophysics Data System (ADS)

    Bouteffeha, Maroua; Dagès, Cécile; Bouhlila, Rachida; Raclot, Damien; Molénat, Jérôme

    2013-04-01

    In Mediterranean regions, food and water demand increase with population growth leading to considerable changes of the land use and agricultural practices. In North Africa, particularly in the Mediterranean zones, hill reservoirs are water harvesting infrastructures that have been increasingly adopted to mobilize runoff and create alternative water resource that can be used to develop agriculture. Hill reservoirs are also used to prevent from silting of downstream dams. Management of water resources collected in these infrastructures requires a good knowledge of their hydrological functioning. In particular, the rate of water exchanges between the reservoir and the underlying aquifer, called surface-subsurface exchange hereafter, is still an open question. The main purpose of the study is to better know the hydrological functioning of hill reservoirs in quantifying at the annual and intra-annual time scales the flux of surface-subsurface exchange and the uncertainty associated to the flux. The approach is based on the hydrological water balance of the hill reservoir. It was applied to the hill reservoir of the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). The dense monitoring of the observation catchment allowed quantifying the fluxes of all hydrological processes governing the reservoir hydrology, and their associated uncertainties. The water balance was established by considering water inputs (direct rainfall, waddy and hillslope runoff, surface-subsurface exchange), water outputs (evaporation, spillway discharge) and hill reservoir water volume changes. The surface-subsurface exchange component was deduced as the default closure term in the water balance. The results first demonstrate the ability of the proposed approach to estimate the net surface-subsurface exchange flux and its uncertainty at various time scales. Its application on the Kamech catchment for two hydrological years (09/2009-08/2010 and 09/2010-08/2011) shows that the net surface-subsurface exchange flux is positive, i.e. the infiltration from the hill reservoir to the aquifer predominates the discharge from the aquifer to the reservoir. Moreover the surface-subsurface exchange constitutes the main output component in the water balance. The annual surface-subsurface exchange flux appeared almost constant from one year to the other one whatever the hydrological conditions variability over the catchment. Moreover, the analysis of the intra-annual variability shows that the flux was nearly constant within every year. Reference: Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.

  13. Modeling of reservoir compaction and surface subsidence at South Belridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, K.S.; Chan, C.K.; Prats, M.

    1995-08-01

    Finite-element models of depletion-induced reservoir compaction and surface subsidence have been calibrated with observed subsidence, locations of surface fissures, and regions of subsurface casing damage at South Belridge and used predictively for the evaluation of alternative reservoir-development plans. Pressure maintenance through diatomite waterflooding appears to be a beneficial means of minimizing additional subsidence and fissuring as well as reducing axial-compressive-type casing damage.

  14. Application of multiphase modelling for vortex occurrence in vertical pump intake - a review

    NASA Astrophysics Data System (ADS)

    Samsudin, M. L.; Munisamy, K. M.; Thangaraju, S. K.

    2015-09-01

    Vortex formation within pump intake is one of common problems faced for power plant cooling water system. This phenomenon, categorised as surface and sub-surface vortices, can lead to several operational problems and increased maintenance costs. Physical model study was recommended from published guidelines but proved to be time and resource consuming. Hence, the use of Computational Fluid Dynamics (CFD) is an attractive alternative in managing the problem. At the early stage, flow analysis was conducted using single phase simulation and found to find good agreement with the observation from physical model study. With the development of computers, multiphase simulation found further enhancement in obtaining accurate results for representing air entrainment and sub-surface vortices which were earlier not well predicted from the single phase simulation. The purpose of this paper is to describe the application of multiphase modelling with CFD analysis for investigating vortex formation for a vertically inverted pump intake. In applying multiphase modelling, there ought to be a balance between the acceptable usage for computational time and resources and the degree of accuracy and realism in the results as expected from the analysis.

  15. Extrapolating subsurface geometry by surface expressions in transpressional strike slip fault, deduced from analogue experiments with settings of rheology and convergence angle

    NASA Astrophysics Data System (ADS)

    Hsieh, Shang Yu; Neubauer, Franz

    2015-04-01

    The internal structure of major strike-slip faults is still poorly understood, particularly how to extrapolate subsurface structures by surface expressions. Series of brittle analogue experiments by Leever et al., 2011 resulted the convergence angle is the most influential factor for surface structures. Further analogue models with different ductile settings allow a better understanding in extrapolating surface structures to the subsurface geometry of strike-slip faults. Fifteen analogue experiments were constructed to represent strike-slip faults in nature in different geological settings. As key parameters investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The experiments are aimed to explain first order structures along major transcurrent strike-slip faults such as the Altyn, Kunlun, San Andrea and Greendale (Darfield earthquake 2010) faults. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressional system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences, suggesting that the correlation of structures across a weak layer has to be supported by geophysical data, which help constraining the geometry of the deep part. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.

  16. Estimation of Global Subsurface Thermal Structure from Satellite Remote Sensing Observations Based on Machine Learning

    NASA Astrophysics Data System (ADS)

    Su, H.; Yan, X. H.

    2017-12-01

    Subsurface thermal structure of the global ocean is a key factor that reflects the impact of the global climate variability and change. Accurately determining and describing the global subsurface and deeper ocean thermal structure from satellite measurements is becoming even more important for understanding the ocean interior anomaly and dynamic processes during recent global warming and hiatus. It is essential but challenging to determine the extent to which such surface remote sensing observations can be used to develop information about the global ocean interior. This study proposed a Support Vector Regression (SVR) method to estimate Subsurface Temperature Anomaly (STA) in the global ocean. The SVR model can well estimate the global STA upper 1000 m through a suite of satellite remote sensing observations of sea surface parameters (including Sea Surface Height Anomaly (SSHA), Sea Surface Temperature Anomaly (SSTA), Sea Surface Salinity Anomaly (SSSA) and Sea Surface Wind Anomaly (SSWA)) with in situ Argo data for training and testing at different depth levels. Here, we employed the MSE and R2 to assess SVR performance on the STA estimation. The results from the SVR model were validated for the accuracy and reliability using the worldwide Argo STA data. The average MSE and R2 of the 15 levels are 0.0090 / 0.0086 / 0.0087 and 0.443 / 0.457 / 0.485 for 2-attributes (SSHA, SSTA) / 3-attributes (SSHA, SSTA, SSSA) / 4-attributes (SSHA, SSTA, SSSA, SSWA) SVR, respectively. The estimation accuracy was improved by including SSSA and SSWA for SVR input (MSE decreased by 0.4% / 0.3% and R2 increased by 1.4% / 4.2% on average). While, the estimation accuracy gradually decreased with the increase of the depth from 500 m. The results showed that SSSA and SSWA, in addition to SSTA and SSHA, are useful parameters that can help estimate the subsurface thermal structure, as well as improve the STA estimation accuracy. In future, we can figure out more potential and useful sea surface parameters from satellite remote sensing as input attributes so as to further improve the STA sensing accuracy from machine learning. This study can provide a helpful technique for studying thermal variability in the ocean interior which has played an important role in recent global warming and hiatus from satellite observations over global scale.

  17. Impact of glider data assimilation on the Monterey Bay model

    NASA Astrophysics Data System (ADS)

    Shulman, Igor; Rowley, Clark; Anderson, Stephanie; DeRada, Sergio; Kindle, John; Martin, Paul; Doyle, James; Cummings, James; Ramp, Steve; Chavez, Francisco; Fratantoni, David; Davis, Russ

    2009-02-01

    Glider observations were essential components of the observational program in the Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay area during summer of 2003. This paper is focused on the impact of the assimilation of glider temperature and salinity observations on the Navy Coastal Ocean Model (NCOM) predictions of surface and subsurface properties. The modeling system consists of an implementation of the NCOM model using a curvilinear, orthogonal grid with 1-4 km resolution, with finest resolution around the bay. The model receives open boundary conditions from a regional (9 km resolution) NCOM implementation for the California Current System, and surface fluxes from the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model at 3 km resolution. The data assimilation component of the system is a version of the Navy Coupled Ocean Data Assimilation (NCODA) system, which is used for assimilation of the glider data into the NCOM model of the Monterey Bay area. The NCODA is a fully 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity. Assimilation of glider data improves the surface temperature at the mooring locations for the NCOM model hindcast and nowcasts, and for the short-range (1-1.5 days) forecasts. It is shown that it is critical to have accurate atmospheric forcing for more extended forecasts. Assimilation of glider data provided better agreement with independent observations (for example, with aircraft measured SSTs) of the model-predicted and observed spatial distributions of surface temperature and salinity. Mooring observations of subsurface temperature and salinity show sharp changes in the thermocline and halocline depths during transitions from upwelling to relaxation and vice versa. The non-assimilative run also shows these transitions in subsurface temperature; but they are not as well defined. For salinity, the non-assimilative run significantly differs from the observations. However, the glider data assimilating run is able to show comparable results with observations of thermocline as well as halocline depths during upwelling and relaxation events in the Monterey Bay area. It is also shown that during the relaxation of wind, the data assimilative run has higher value of subsurface velocity complex correlation with observations than the non-assimilative run.

  18. Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Plachta, David W.; Yasan, Mohammad M.

    2008-01-01

    A transient thermal model of the lunar surface and regolith was developed along with analytical techniques which will be used to evaluate the storage of cryogenic fluids at equatorial and polar landing sites. The model can provide lunar surface and subsurface temperatures as a function of latitude and time throughout the lunar cycle and season. It also accounts for the presence of or lack of the undisturbed fluff layer on the lunar surface. The model was validated with Apollo 15 and Clementine data and shows good agreement with other analytical models.

  19. Studies on evaluating and removing subsurface damage on the ground surface of CLEARCERAM-Z HS

    NASA Astrophysics Data System (ADS)

    Akitaya, Hiroshi; Yamashita, Takuya; Ohshima, Norio; Iye, Masanori; Maihara, Toshinori; Tokoro, Hitoshi; Takahashi, Keisuke

    2010-07-01

    We evaluated depth of subsurface damage on a ground surface of the ultra low expansion glass-ceramics CLEARCERAMR®-Z HS (CC-Z HS) by Ohara Inc., which is one of the candidates for material for segmented mirrors of the Thirty Meter Telescope. We made polishing spots of Magnetorheological Finishing on the ground surface of CC-Z HS and measured exposed subsurface damage features on the spot surface. We also studied on hydrofluoric acid etching of the CC-Z HS ground surface, which is expected to be an effective method to remove a subsurface damage layer compared with time-consuming polishing. We etched small ground surfaces of CC-Z HS and evaluated its uniformity.

  20. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models

    USGS Publications Warehouse

    Spangler, L.H.; Dobeck, L.M.; Repasky, K.S.; Nehrir, A.R.; Humphries, S.D.; Keith, C.J.; Shaw, J.A.; Rouse, J.H.; Cunningham, A.B.; Benson, S.M.; Oldenburg, C.M.; Lewicki, J.L.; Wells, A.W.; Diehl, J.R.; Strazisar, B.R.; Fessenden, J.E.; Rahn, T.A.; Amonette, J.E.; Barr, J.L.; Pickles, W.L.; Jacobson, J.D.; Silver, E.A.; Male, E.J.; Rauch, H.W.; Gullickson, K.S.; Trautz, R.; Kharaka, Y.; Birkholzer, J.; Wielopolski, L.

    2010-01-01

    A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO2 transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO2 release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO2 transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO2 from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U.S. Geological Survey investigated movement of CO2 through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented. ?? 2009 The Author(s).

  1. Effect of spatial organisation behaviour on upscaling the overland flow formation in an arable land

    NASA Astrophysics Data System (ADS)

    Silasari, Rasmiaditya; Blöschl, Günter

    2014-05-01

    Overland flow during rainfall events on arable land is important to investigate as it affects the land erosion process and water quality in the river. The formation of overland flow may happen through different ways (i.e. Hortonian overland flow, saturation excess overland flow) which is influenced by the surface and subsurface soil characteristics (i.e. land cover, soil infiltration rate). As the soil characteristics vary throughout the entire catchment, it will form distinct spatial patterns with organised or random behaviour. During the upscaling of hydrological processes from plot to catchment scale, this behaviour will become substantial since organised patterns will result in higher spatial connectivity and thus higher conductivity. However, very few of the existing studies explicitly address this effect of spatial organisations of the patterns in upscaling the hydrological processes to the catchment scale. This study will assess the upscaling of overland flow formation with concerns of spatial organisation behaviour of the patterns by application of direct field observations under natural conditions using video camera and soil moisture sensors and investigation of the underlying processes using a physical-based hydrology model. The study area is a Hydrological Open Air Laboratory (HOAL) located at Petzenkirchen, Lower Austria. It is a 64 ha catchment with land use consisting of arable land (87%), forest (6%), pasture (5%) and paved surfaces (2%). A video camera is installed 7m above the ground on a weather station mast in the middle of the arable land to monitor the overland flow patterns during rainfall events in a 2m x 6m plot scale. Soil moisture sensors with continuous measurement at different depth (5, 10, 20 and 50cm) are installed at points where the field is monitored by the camera. The patterns of overland flow formation and subsurface flow state at the plot scale will be generated using a coupled surface-subsurface flow physical-based hydrology model. The observation data will be assimilated into the model to verify the corresponding processes between surface and subsurface flow during the rainfall events. The patterns of conductivity then will be analyzed at catchment scale using the spatial stochastic analysis based on the classification of soil characteristics of the entire catchment. These patterns of conductivity then will be applied in the model at catchment scale to see how the organisational behaviour can affect the spatial connectivity of the hydrological processes and the results of the catchment response. A detailed modelling of the underlying processes in the physical-based model will allow us to see the direct effect of the spatial connectivity to the occurring surface and subsurface flow. This will improve the analysis of the effect of spatial organisations of the patterns in upscaling the hydrological processes from plot to catchment scale.

  2. Eddy-induced transport of the Kuroshio warm water around the Ryukyu Islands in the East China Sea

    NASA Astrophysics Data System (ADS)

    Kamidaira, Yuki; Uchiyama, Yusuke; Mitarai, Satoshi

    2017-07-01

    In this study, an oceanic downscaling model in a double-nested configuration was used to investigate the role played by the Kuroshio warm current in preserving and maintaining biological diversity in the coral coasts around the Ryukyu Islands (Japan). A comparison of the modeled data demonstrated that the innermost submesoscale eddy-resolving model successfully reproduced the synoptic and mesoscale oceanic structures even without data assimilation. The Kuroshio flows on the shelf break of the East China Sea approximately 150-200 km from the islands; therefore, eddy-induced transient processes are essential to the lateral transport of material within the strip between the Kuroshio and the islands. The model indicated an evident predominance of submesoscale anticyclonic eddies over cyclonic eddies near the surface of this strip. An energy conversion analysis relevant to the eddy-generation mechanisms revealed that a combination of both the shear instability due to the Kuroshio and the topography and baroclinic instability around the Kuroshio front jointly provoke these near-surface anticyclonic eddies, as well as the subsurface cyclonic eddies that are shed around the shelf break. Both surface and subsurface eddies fit within the submesoscale, and they are energized more as the grid resolution of the model is increased. An eddy heat flux (EHF) analysis was performed with decomposition into the divergent (dEHF) and rotational (rEHF) components. The rEHF vectors appeared along the temperature variance contours by following the Kuroshio, whereas the dEHF properly measured the transverse transport normal to the Kuroshio's path. The diagnostic EHF analysis demonstrated that an asymmetric dEHF occurs within the surface mixed layer, which promotes eastward transport toward the islands. Conversely, below the mixed layer, a negative dEHF tongue is formed that promotes the subsurface westward warm water transport.

  3. A kinetic model for stress generation in thin films grown from energetic vapor fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chason, E.; Karlson, M.; Colin, J. J.

    We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced sub-surface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on themore » grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films.« less

  4. Tracer transport in soils and shallow groundwater: model abstraction with modern tools

    USDA-ARS?s Scientific Manuscript database

    Vadose zone controls contaminant transport from the surface to groundwater, and modeling transport in vadose zone has become a burgeoning field. Exceedingly complex models of subsurface contaminant transport are often inefficient. Model abstraction is the methodology for reducing the complexity of a...

  5. A wind comparison study using an ocean general circulation model for the 1997-1998 El Niño

    NASA Astrophysics Data System (ADS)

    Hackert, Eric C.; Busalacchi, Antonio J.; Murtugudde, Ragu

    2001-02-01

    Predictions of the 1997-1998 El Niño exhibited a wide range of forecast skill that were dependent, in part, on the wind-driven initial conditions for the ocean. In this study the results of a reduced gravity, primitive equation, sigma coordinate ocean general circulation model are compared and contrasted when forced by several different wind products for the 1997-1998 El Niño/La Niña. The different wind products include atmospheric model winds, satellite wind products, and a subjective analysis of ship and in situ winds. The model results are verified against fields of observed sea level anomalies from TOPEX/Poseidon data, sea surface temperature analyses, and subsurface temperature from the Tropical Atmosphere-Ocean buoy array. Depending on which validation data type one chooses, different wind products provide the best forcing fields for simulating the observed signal. In general, the model results forced by satellite winds provide the best simulations of the spatial and temporal signal of the observed sea level. This is due to the accuracy of the meridional gradient of the zonal wind stress component that these products provide. Differences in wind forcing also affect subsurface dynamics and thermodynamics. For example, the wind products with the weakest magnitude best reproduce the sea surface temperature (SST) signal in the eastern Pacific. For these products the mixed layer is shallower, and the thermocline is closer to the surface. For such simulations the subsurface thermocline variability influences the variation in SST more than in reality. The products with the greatest wind magnitude have a strong cold bias of >1.5°C in the eastern Pacific because of increased mixing. The satellite winds along with the analysis winds correctly reproduce the depth of the thermocline and the general subsurface temperature structure.

  6. Method for Implementing Subsurface Solid Derived Concentration Guideline Levels (DCGL) - 12331

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lively, J.W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) and other federal agencies currently approve the Multi-Agency Radiation Site Survey and Investigation Manual (MARSSIM) as guidance for licensees who are conducting final radiological status surveys in support of decommissioning. MARSSIM provides a method to demonstrate compliance with the applicable regulation by comparing residual radioactivity in surface soils with derived concentration guideline levels (DCGLs), but specifically discounts its applicability to subsurface soils. Many sites and facilities undergoing decommissioning contain subsurface soils that are potentially impacted by radiological constituents. In the absence of specific guidance designed to address the derivation of subsurface soil DCGLs andmore » compliance demonstration, decommissioning facilities have attempted to apply DCGLs and final status survey techniques designed specifically for surface soils to subsurface soils. The decision to apply surface soil limits and surface soil compliance metrics to subsurface soils typically results in significant over-excavation with associated cost escalation. MACTEC, Inc. has developed the overarching concepts and principles found in recent NRC decommissioning guidance in NUREG 1757 to establish a functional method to derive dose-based subsurface soil DCGLs. The subsurface soil method developed by MACTEC also establishes a rigorous set of criterion-based data evaluation metrics (with analogs to the MARSSIM methodology) that can be used to demonstrate compliance with the developed subsurface soil DCGLs. The method establishes a continuum of volume factors that relate the size and depth of a volume of subsurface soil having elevated concentrations of residual radioactivity with its ability to produce dose. The method integrates the subsurface soil sampling regime with the derivation of the subsurface soil DCGL such that a self-regulating optimization is naturally sought by both the responsible party and regulator. This paper describes the concepts and basis used by MACTEC to develop the dose-based subsurface soil DCGL method. The paper will show how MACTEC's method can be used to demonstrate that higher concentrations of residual radioactivity in subsurface soils (as compared with surface soils) can meet the NRC's dose-based regulations. MACTEC's method has been used successfully to obtain the NRC's radiological release at a site with known radiological impacts to subsurface soils exceeding the surface soil DCGL, saving both time and cost. Having considered the current NRC guidance for consideration of residual radioactivity in subsurface soils during decommissioning, MACTEC has developed a technically based approach to the derivation of and demonstration of compliance with subsurface soil DCGLs for radionuclides. In fact, the process uses the already accepted concepts and metrics approved for surface soils as the foundation for deriving scaling factors used to calculate subsurface soil DCGLs that are at least equally protective of the decommissioning annual dose standard. Each of the elements identified for consideration in the current NRC guidance is addressed in this proposed method. Additionally, there is considerable conservatism built into the assumptions and techniques used to arrive at subsurface soil scaling factors and DCGLs. The degree of conservatism embodied in the approach used is such that risk managers and decision makers approving and using subsurface soil DCGLs derived in accordance with this method can be confident that the future exposures will be well below permissible and safe levels. The technical basis for the method can be applied to a broad variety of sites with residual radioactivity in subsurface soils. Given the costly nature of soil surveys, excavation, and disposal of soils as low-level radioactive waste, MACTEC's method for deriving and demonstrating compliance with subsurface soil DCGLs offers the possibility of significant cost savings over the traditional approach of applying surface soil DCGLs to subsurface soils. Furthermore, while yet untested, MACTEC believes that the concepts and methods embodied in this approach could readily be applied to other types of contamination found in subsurface soils. (author)« less

  7. Climate reconstruction from borehole temperatures influenced by groundwater flow

    NASA Astrophysics Data System (ADS)

    Kurylyk, B.; Irvine, D. J.; Tang, W.; Carey, S. K.; Ferguson, G. A. G.; Beltrami, H.; Bense, V.; McKenzie, J. M.; Taniguchi, M.

    2017-12-01

    Borehole climatology offers advantages over other climate reconstruction methods because further calibration steps are not required and heat is a ubiquitous subsurface property that can be measured from terrestrial boreholes. The basic theory underlying borehole climatology is that past surface air temperature signals are reflected in the ground surface temperature history and archived in subsurface temperature-depth profiles. High frequency surface temperature signals are attenuated in the shallow subsurface, whereas low frequency signals can be propagated to great depths. A limitation of analytical techniques to reconstruct climate signals from temperature profiles is that they generally require that heat flow be limited to conduction. Advection due to groundwater flow can thermally `contaminate' boreholes and result in temperature profiles being rejected for regional climate reconstructions. Although groundwater flow and climate change can result in contrasting or superimposed thermal disturbances, groundwater flow will not typically remove climate change signals in a subsurface thermal profile. Thus, climate reconstruction is still possible in the presence of groundwater flow if heat advection is accommodated in the conceptual and mathematical models. In this study, we derive a new analytical solution for reconstructing surface temperature history from borehole thermal profiles influenced by vertical groundwater flow. The boundary condition for the solution is composed of any number of sequential `ramps', i.e. periods with linear warming or cooling rates, during the instrumented and pre-observational periods. The boundary condition generation and analytical temperature modeling is conducted in a simple computer program. The method is applied to reconstruct climate in Winnipeg, Canada and Tokyo, Japan using temperature profiles recorded in hydrogeologically active environments. The results demonstrate that thermal disturbances due to groundwater flow and climate change must be considered in a holistic manner as opposed to isolating either perturbation as was done in prior analytical studies.

  8. The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons

    NASA Astrophysics Data System (ADS)

    Baik, H.; Kim, J.

    2017-07-01

    The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.

  9. Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Lin, H. S.

    2009-08-01

    The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage and thus is a useful indicator of possible subsurface flow path over a large area; and (3) observable Mn distribution in soil profiles can be used as a simple indicator of water flow paths in soils and over the landscape; however, it does require sufficient soil sampling (by excavation or augering) to possibly infer landscape-scale subsurface flow paths. In areas where subsurface interface topography varies similarly with surface topography, surface DEM can be used to simulate potential subsurface lateral flow path reasonably so the cost associated with obtaining depth to subsurface water-restricting layer can be minimized.

  10. Shallow subsurface structure estimated from dense aftershock records and microtremor observations in Furukawa district, Miyagi, Japan

    NASA Astrophysics Data System (ADS)

    Goto, Hiroyuki; Mitsunaga, Hitoshi; Inatani, Masayuki; Iiyama, Kahori; Hada, Koji; Ikeda, Takaaki; Takaya, Toshiyasu; Kimura, Sayaka; Akiyama, Ryohei; Sawada, Sumio; Morikawa, Hitoshi

    2017-11-01

    We conducted single-site and array observations of microtremors in order to revise the shallow subsurface structure of the Furukawa district, Miyagi, Japan, where severe residential damage was reported during the Great Eastern Japan Earthquake of 2011, off the Pacific coast of Tohoku. The phase velocities of Rayleigh waves are estimated from array observations at three sites, and S-wave velocity models are established. The spatial distribution of predominant periods is estimated for the surface layer, on the basis of the spectral ratio of horizontal and vertical components (H/V) of microtremors obtained from single-site observations. We then compared ground motion records from a dense seismometer network with results of microtremor observations, and revised a model of the shallow (~100 m) subsurface structure in the Furukawa district. The model implies that slower near-surface S-wave velocity and deeper basement are to be found in the southern and eastern areas. It was found that the damage in residential structures was concentrated in an area where the average value for the transfer functions in the frequency range of 2 to 4 Hz was large.

  11. Linking Surface Topography Variations To Subsurface Mixing And Reaction Patterns

    NASA Astrophysics Data System (ADS)

    Le Borgne, T.; Bandopadhyay, A.; Davy, P.

    2017-12-01

    Fluctuations in surface topography generate nested streamline patterns in the subsurface over scales ranging from millimeters to kilometers. Because solute residence times can be very different for each streamlines, these patterns exert a strong control on biogeochemical reactions. While this effect has been quantified in reactive transport models, solute transfer across streamlines has been generally neglected. Yet, this process can lead to significant solute dilution and may trigger reactions by mixing water with different chemical compositions. Considering topography-driven subsurface flow cells of different sizes, we show that the resulting streamline structures act as shear flows, with shear rates that can vary over orders of magnitude depending on scale, permeability and hydraulic head gradient. This leads to the formation of localized layers of enhanced dilution and reaction, where mixing rates can be orders of magnitude larger than diffusion limited rates (Bandopadhyay et al. under review). We develop a theoretical model that predicts the depth and magnitude of these mixing hotspots and quantifies the resulting exports of conservative and reactive chemical species at discharge locations. We discuss consequences of these findings by applying this model at hyporheic zone, hillslope, and catchment scales.

  12. Impact of topography on groundwater salinization due to ocean surge inundation

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Yang, Jie; Graf, Thomas; Koneshloo, Mohammad; O'Neal, Michael A.; Michael, Holly A.

    2016-08-01

    Sea-level rise and increases in the frequency and intensity of ocean surges caused by climate change are likely to exacerbate adverse effects on low-lying coastal areas. The landward flow of water during ocean surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topographic features (e.g., ponds, dunes, barrier islands, and channels) likely have a strong impact on overwash and salinization processes, but are generally highly simplified in modeling studies. To understand topographic impacts on groundwater salinization, we modeled a theoretical overwash event and variable-density groundwater flow and salt transport in 3-D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density groundwater flow. To represent various coastal landscape types, we simulated both synthetic fields and real-world coastal topography from Delaware, USA. The groundwater salinization assessment suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, the amount of water that can be stored in surface depressions determines the amount of seawater that infiltrates the subsurface and the time for seawater to flush from the aquifer. Our study suggests that topography has a significant impact on groundwater salinization due to ocean surge overwash, with important implications for coastal land management and groundwater vulnerability assessment.

  13. Evolving hydrologic connectivity in discontinuous permafrost lowlands: what it means for lake systems

    NASA Astrophysics Data System (ADS)

    Walvoord, M. A.; Jepsen, S. M.; Rover, J.; Voss, C. I.; Briggs, M. A.

    2015-12-01

    Permafrost influence on the hydrologic connectivity of surface water bodies in high-latitude lowlands is complicated by subsurface heterogeneity and the propensity of the system to change over time. In general, permafrost limits the subsurface exchange of water, solute, and nutrients between lakes and rivers. It follows that permafrost thaw could enhance subsurface hydrologic connectivity among surface water bodies, but the impact of this process on lake distribution is not well known. Changes in the extent of lakes in interior Alaska have important ecological and societal impacts since lakes provide (1) critical habitat for migratory arctic shorebirds and waterfowl, fish, and wildlife, and (2) provisional, recreational, and cultural resources for local communities. We utilize electromagnetic imaging of the shallow subsurface and remote sensing of lake level dynamics in the Yukon Flats of interior Alaska, USA, together with water balance modeling, to gain insight into the influence of discontinuous permafrost on lowland lake systems. In the study region with relatively low precipitation, observations suggest that lakes that are hydrologically isolated during normal conditions are sustained by periodic river flooding events, including ice-jam floods that occur during river ice break-up. Climatically-influenced alterations in flooding frequency and intensity, as well as depth to permafrost, are quantitatively assessed in the context of lake maintenance. Scenario modeling is used to evaluate lake level evolution under plausible changing conditions. Model results demonstrate how permafrost degradation can reduce the dependence of typical lowland lakes on flooding events. Study results also suggest that river flooding may recharge a more spatially widespread zone of lakes and wetlands under future scenarios of permafrost table deepening and enhanced subsurface hydrologic connectivity.

  14. Not just fractal surfaces, but surface fractal aggregates: Derivation of the expression for the structure factor and its applications

    NASA Astrophysics Data System (ADS)

    Besselink, R.; Stawski, T. M.; Van Driessche, A. E. S.; Benning, L. G.

    2016-12-01

    Densely packed surface fractal aggregates form in systems with high local volume fractions of particles with very short diffusion lengths, which effectively means that particles have little space to move. However, there are no prior mathematical models, which would describe scattering from such surface fractal aggregates and which would allow the subdivision between inter- and intraparticle interferences of such aggregates. Here, we show that by including a form factor function of the primary particles building the aggregate, a finite size of the surface fractal interfacial sub-surfaces can be derived from a structure factor term. This formalism allows us to define both a finite specific surface area for fractal aggregates and the fraction of particle interfacial sub-surfaces at the perimeter of an aggregate. The derived surface fractal model is validated by comparing it with an ab initio approach that involves the generation of a "brick-in-a-wall" von Koch type contour fractals. Moreover, we show that this approach explains observed scattering intensities from in situ experiments that followed gypsum (CaSO4 ṡ 2H2O) precipitation from highly supersaturated solutions. Our model of densely packed "brick-in-a-wall" surface fractal aggregates may well be the key precursor step in the formation of several types of mosaic- and meso-crystals.

  15. Subsurface flow and vegetation patterns in tidal environments

    NASA Astrophysics Data System (ADS)

    Ursino, Nadia; Silvestri, Sonia; Marani, Marco

    2004-05-01

    Tidal environments are characterized by a complex interplay of hydrological, geomorphic, and biological processes, and their understanding and modeling thus require the explicit description of both their biotic and abiotic components. In particular, the presence and spatial distribution of salt marsh vegetation (a key factor in the stabilization of the surface soil) have been suggested to be related to topographic factors and to soil moisture patterns, but a general, process-based comprehension of this relationship has not yet been achieved. The present paper describes a finite element model of saturated-unsaturated subsurface flow in a schematic salt marsh, driven by tidal fluctuations and evapotranspiration. The conditions leading to the establishment of preferentially aerated subsurface zones are studied, and inferences regarding the development and spatial distribution of salt marsh vegetation are drawn, with important implications for the overall ecogeomorphological dynamics of tidal environments. Our results show that subsurface water flow in the marsh induces complex water table dynamics, even when the tidal forcing has a simple sinusoidal form. The definition of a space-dependent aeration time is then proposed to characterize root aeration. The model shows that salt marsh subsurface flow depends on the distance from the nearest creek or channel and that the subsurface water movement near tidal creeks is both vertical and horizontal, while farther from creeks, it is primarily vertical. Moreover, the study shows that if the soil saturated conductivity is relatively low (10-6 m s-1, values quite common in salt marsh areas), a persistently unsaturated zone is present below the soil surface even after the tide has flooded the marsh; this provides evidence of the presence of an aerated layer allowing a prolonged presence of oxygen for aerobic root respiration. The results further show that plant transpiration increases the extent and persistence of the aerated layer, thereby introducing a strong positive feedback: Pioneer plants on marsh edges have the effect of increasing soil oxygen availability, thus creating the conditions for the further development of other plant communities.

  16. Utilizing Gravity Methods for Regional Studies in Basin Delineation: Case Study at Jornada del Muerto basin, New Mexico

    NASA Astrophysics Data System (ADS)

    Villalobos, J. I.

    2005-12-01

    The modeling of basin structures is an important step in the development of plans and policies for ground water management. To facilitate in the analysis of large scale regional structures, gravity data is implemented to examine the overall structural trend of the region. The gravitational attraction of structures in the upper mantle and crust provide vital information about the possible structure and composition of a region. Improved availability of gravity data via internet has promoted extensive construction and interpretation of gravity maps in the analysis of sub-surface structural anomalies. The utilization of gravity data appears to be particularly worthwhile because it is a non-invasive and inexpensive means of addressing the subsurface tectonic framework of large scale regions. In this paper, the author intends to illustrate 1) acquisition of gravity data and its processing; 2) interpretation of gravity data; and 3) sources of uncertainty and errors by using a case study of the Jornada del Muerto basin in South-Central New Mexico where integrated gravity data inferred several faults, sub-basins and thickness variations within the basins structure. The author also explores the integration of gravity method with other geophysical methods to further refine the delineation of basins.

  17. Aseptically Sampled Organics in Subsurface Rocks From the Mars Analog Rio Tinto Experiment: An Analog For The Search for Deep Subsurface Life on Mars.}

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, R.; Stoker, C. R.

    2005-12-01

    The subsurface is the key environment for searching for life on planets lacking surface life. Subsurface ecosystems are of great relevance to astrobiology including the search for past/present life on Mars. The surface of Mars has conditions preventing current life but the subsurface might preserve organics and even host some life [1]. The Mars-Analog-Rio-Tinto-Experiment (MARTE) is performing a simulation of a Mars drilling experiment. This comprises conventional and robotic drilling of cores in a volcanically-hosted-massive-pyrite deposit [2] from the Iberian Pyritic Belt (IBP) and life detection experiments applying anti-contamination protocols (e.g., ATP Luminometry assay). The RT is considered an important analog of the Sinus Meridiani site on Mars and an ideal model analog for a deep subsurface Martian environment. Former results from MARTE suggest the existence of a relatively complex subsurface life including aerobic and anaerobic chemoautotrophs and strict anaerobic methanogens sustained by Fe and S minerals in anoxic conditions. A key requirement for the analysis of a subsurface sample on Mars is a set of simple tests that can help determine if the sample contains organic material of biological origin, and its potential for retaining definitive biosignatures. We report here on the presence of bulk organic matter Corg (0.03-0.05 Wt%), and Ntot (0.01-0.04 Wt%) and amount of measured ATP (Lightning MVP, Biocontrol) in weathered rocks (tuffs, gossan, pyrite stockwork from Borehole #8; >166m). This provides key insight on the type of trophic system sustaining the subsurface biosphere (i.e., heterotrophs vs. autotrophs) at RT. ATP data (Relative-Luminosity-Units, RLU) provide information on possible contamination and distribution of viable biomass with core depth (BH#8, and BH#7, ~3m). Avg. 153 RLU, i.e., surface vs. center of core, suggest that cleaness/sterility can be maintained when using a simple sterile protocol under field conditions. Results from this research will support future drilling mission planned on Mars. [1] Boston, P.J., et al., 1992. Icarus 95,300-308; [2] Leistel et al., 1998.

  18. Evidence for Surface and Subsurface Ice Inside Micro Cold-Traps on Mercury's North Pole

    NASA Technical Reports Server (NTRS)

    Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.

    2017-01-01

    The small obliquity of Mercury causes topographic depressions located near its poles to cast persistent shadows. Many [1, 9, 15] have shown these permanently shadowed regions (PSRs) may trap water ice for geologic time periods inside cold-traps. More recently, direct evidence for the presence of water ice deposits inside craters was remotely sensed in RADAR [5] and visible imagery [3]. Albedo measurements (reflectence at 1064 nm) obtained by the MErcury Space ENviroment GEochemistry and Ranging Laser Altimeter (MLA) found unusually bright and dark areas next to Mercury's north pole [7]. Using a thermal illumination model, Paige et al. [8] found the bright deposits are correlated with surface cold-traps, and the dark deposits are correlated with subsurface cold-traps. They suggested these anomalous deposits were brought to the surface by comets and were processed by the magnetospheric radiation flux, removing hydrogen and mixing C-N-O-S atoms to form a variety of molecules which will darken with time. Here we use a thermal illumination model to find the link between the cold-trap area fraction of a rough surface and its albedo. Using this link and the measurements obtained by MESSENGER we derive a surface and a subsurface ice distribution map on Mercury's north pole below the MESSENGER spatial resolution, approximately 500 m. We find a large fraction of the polar ice on Mercury resides inside micro cold-traps (of scales 10 - 100 m) distributed along the inter-crater terrain.

  19. Natural and anthropogenic land cover change and its impact on the regional climate and hydrological extremes over Sanjiangyuan region

    NASA Astrophysics Data System (ADS)

    Ji, P.; Yuan, X.

    2017-12-01

    Located in the northern Tibetan Plateau, Sanjiangyuan is the headwater region of the Yellow River, Yangtze River and Mekong River. Besides climate change, natural and human-induced land cover change (e.g., Graze for Grass Project) is also influencing the regional hydro-climate and hydrological extremes significantly. To quantify their impacts, a land surface model (LSM) with consideration of soil moisture-lateral surface flow interaction and quasi-three-dimensional subsurface flow, is used to conduct long-term high resolution simulations driven by China Meteorological Administration Land Data Assimilation System forcing data and different land cover scenarios. In particular, the role of surface and subsurface lateral flows is also analyzed by comparing with typical one-dimensional models. Lateral flows help to simulate soil moisture variability caused by topography at hyper-resolution (e.g., 100m), which is also essential for simulating hydrological extremes including soil moisture dryness/wetness and high/low flows. The LSM will also be coupled with a regional climate model to simulate the effect of natural and anthropogenic land cover change on regional climate, with particular focus on the land-atmosphere coupling at different resolutions with different configurations in modeling land surface hydrology.

  20. Time-domain electromagnetic soundings collected in Dawson County, Nebraska, 2007-09

    USGS Publications Warehouse

    Payne, Jason; Teeple, Andrew

    2011-01-01

    Between April 2007 and November 2009, the U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, collected time-domain electro-magnetic (TDEM) soundings at 14 locations in Dawson County, Nebraska. The TDEM soundings provide information pertaining to the hydrogeology at each of 23 sites at the 14 locations; 30 TDEM surface geophysical soundings were collected at the 14 locations to develop smooth and layered-earth resistivity models of the subsurface at each site. The soundings yield estimates of subsurface electrical resistivity; variations in subsurface electrical resistivity can be correlated with hydrogeologic and stratigraphic units. Results from each sounding were used to calculate resistivity to depths of approximately 90-130 meters (depending on loop size) below the land surface. Geonics Protem 47 and 57 systems, as well as the Alpha Geoscience TerraTEM, were used to collect the TDEM soundings (voltage data from which resistivity is calculated). For each sounding, voltage data were averaged and evaluated statistically before inversion (inverse modeling). Inverse modeling is the process of creating an estimate of the true distribution of subsurface resistivity from the mea-sured apparent resistivity obtained from TDEM soundings. Smooth and layered-earth models were generated for each sounding. A smooth model is a vertical delineation of calculated apparent resistivity that represents a non-unique estimate of the true resistivity. Ridge regression (Interpex Limited, 1996) was used by the inversion software in a series of iterations to create a smooth model consisting of 24-30 layers for each sounding site. Layered-earth models were then generated based on results of smooth modeling. The layered-earth models are simplified (generally 1 to 6 layers) to represent geologic units with depth. Throughout the area, the layered-earth models range from 2 to 4 layers, depending on observed inflections in the raw data and smooth model inversions. The TDEM data collected were considered good results on the basis of root mean square errors calculated after inversion modeling, comparisons with borehole geophysical logging, and repeatability.

  1. Subsurface Ocean Tides in Enceladus and Other Icy Moons

    NASA Astrophysics Data System (ADS)

    Beuthe, M.

    2016-12-01

    Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 meters deep. The model is general: it applies to all icy satellites with a thin crust and a shallow or stratified ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.

  2. Role of subsurface ocean in decadal climate predictability over the South Atlantic.

    PubMed

    Morioka, Yushi; Doi, Takeshi; Storto, Andrea; Masina, Simona; Behera, Swadhin K

    2018-06-04

    Decadal climate predictability in the South Atlantic is explored by performing reforecast experiments using a coupled general circulation model with two initialization schemes; one is assimilated with observed sea surface temperature (SST) only, and the other is additionally assimilated with observed subsurface ocean temperature and salinity. The South Atlantic is known to undergo decadal variability exhibiting a meridional dipole of SST anomalies through variations in the subtropical high and ocean heat transport. Decadal reforecast experiments in which only the model SST is initialized with the observation do not predict well the observed decadal SST variability in the South Atlantic, while the other experiments in which the model SST and subsurface ocean are initialized with the observation skillfully predict the observed decadal SST variability, particularly in the Southeast Atlantic. In-depth analysis of upper-ocean heat content reveals that a significant improvement of zonal heat transport in the Southeast Atlantic leads to skillful prediction of decadal SST variability there. These results demonstrate potential roles of subsurface ocean assimilation in the skillful prediction of decadal climate variability over the South Atlantic.

  3. Patterns in coupled water and energy cycle: Modeling, synthesis with observations, and assessing the subsurface-landsurface interactions

    NASA Astrophysics Data System (ADS)

    Rahman, A.; Kollet, S. J.; Sulis, M.

    2013-12-01

    In the terrestrial hydrological cycle, the atmosphere and the free groundwater table act as the upper and lower boundary condition, respectively, in the non-linear two-way exchange of mass and energy across the land surface. Identifying and quantifying the interactions among various atmospheric-subsurface-landsurface processes is complicated due to the diverse spatiotemporal scales associated with these processes. In this study, the coupled subsurface-landsurface model ParFlow.CLM was applied over a ~28,000 km2 model domain encompassing the Rur catchment, Germany, to simulate the fluxes of the coupled water and energy cycle. The model was forced by hourly atmospheric data from the COSMO-DE model (numerical weather prediction system of the German Weather Service) over one year. Following a spinup period, the model results were synthesized with observed river discharge, soil moisture, groundwater table depth, temperature, and landsurface energy flux data at different sites in the Rur catchment. It was shown that the model is able to reproduce reasonably the dynamics and also absolute values in observed fluxes and state variables without calibration. The spatiotemporal patterns in simulated water and energy fluxes as well as the interactions were studied using statistical, geostatistical and wavelet transform methods. While spatial patterns in the mass and energy fluxes can be predicted from atmospheric forcing and power law scaling in the transition and winter months, it appears that, in the summer months, the spatial patterns are determined by the spatially correlated variability in groundwater table depth. Continuous wavelet transform techniques were applied to study the variability of the catchment average mass and energy fluxes at varying time scales. From this analysis, the time scales associated with significant interactions among different mass and energy balance components were identified. The memory of precipitation variability in subsurface hydrodynamics acts at the 20-30 day time scale, while the groundwater contribution to sustain the long-term variability patterns in evapotranspiration acts at the 40-60 day scale. Diurnal patterns in connection with subsurface hydrodynamics were also detected. Thus, it appears that the subsurface hydrodynamics respond to the temporal patterns in land surface fluxes due to the variability in atmospheric forcing across multiple space and time scales.

  4. Use of Ocean Remote Sensing Data to Enhance Predictions with a Coupled General Circulation Model

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele M.

    1999-01-01

    Surface height, sea surface temperature and surface wind observations from satellites have given a detailed time sequence of the initiation and evolution of the 1997/98 El Nino. The data have beet complementary to the subsurface TAO moored data in their spatial resolution and extent. The impact of satellite observations on seasonal prediction in the tropical Pacific using a coupled ocean-atmosphere general circulation model will be presented.

  5. Modeling the effects of martian surface frost on ice table depth

    NASA Astrophysics Data System (ADS)

    Williams, K. E.; McKay, Christopher P.; Heldmann, J. L.

    2015-11-01

    Ground ice has been observed in small fresh craters in the vicinity of the Viking 2 lander site (48°N, 134°E). To explain these observations, current models for ground ice invoke levels of atmospheric water of 20 precipitable micrometers - higher than observations. However, surface frost has been observed at the Viking 2 site and surface water frost and snow have been shown to have a stabilizing effect on Antarctic subsurface ice. A snow or frost cover provides a source of humidity that should reduce the water vapor gradient and hence retard the sublimation loss from subsurface ice. We have modeled this effect for the Viking 2 landing site with combined ground ice and surface frost models. Our model is driven by atmospheric output fields from the NASA Ames Mars General Circulation Model (MGCM). Our modeling results show that the inclusion of a thin seasonal frost layer, present for a duration similar to that observed by the Viking Lander 2, produces ice table depths that are significantly shallower than a model that omits surface frost. When a maximum frost albedo of 0.35 was permitted, seasonal frost is present in our model from Ls = 182° to Ls = 16°, resulting in an ice table depth of 64 cm - which is 24 cm shallower than the frost-free scenario. The computed ice table depth is only slightly sensitive to the assumed maximum frost albedo or thickness in the model.

  6. Accelerated aging studies of UHMWPE. II. Virgin UHMWPE is not immune to oxidative degradation.

    PubMed

    Edidin, A A; Villarraga, M L; Herr, M P; Muth, J; Yau, S S; Kurtz, S M

    2002-08-01

    In Part I of this series, we showed that aging at elevated oxygen pressure is more successful at increasing the depth to which degradation occurs although it, too, generally causes greater degradation at the surface than at the subsurface. Therefore we hypothesized that thermal degradation alone, in the absence of free radicals, could be sufficient to artificially age UHMWPE in a manner analogous to natural aging. In the present study, virgin and air-irradiated UHMWPE (extruded GUR 1050 and compression-molded 1900) were aged up to 4 weeks at elevated oxygen pressure, and the mechanical behavior at the surface and subsurface was examined. All the materials were substantially degraded following 4 weeks of aging, but the spatial variations in the nonirradiated materials more closely mimicked the previously observed subsurface peak of degradation seen in naturally aged UHMWPE following irradiation in air. This aged material could provide a more realistic model for subsurface mechanical degradation, making it suitable for further mechanical testing in venues such as wear simulation. Copyright 2002 Wiley Periodicals, Inc.

  7. Numerical Modeling of Artificial Recharge: Determining Spatial/Temporal Sampling Resolution to Quantify Infiltration Rates and Effective Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Glose, T. J.; Hausner, M. B.; Lowry, C.

    2016-12-01

    The accurate, fine scale quantification of groundwater-surface water (GW-SW) interactions over large expanses in hydrologic systems is a fundamental need in order to accurately characterize critical zones of biogeochemical transformation and fluxes, as well as to provide insight into near-surface geologic heterogeneity. Paired fiber-optic distributed temperature sensing (FO-DTS) is a tool that is capable of synoptically sampling hydrologic systems, allowing GW-SW interactions to be examined at a fine scale over large distances. Within managed aquifer recharge (MAR) sites, differential recharge dynamics controlled by bed clogging and subsurface heterogeneity dictate the effectiveness of these sites at infiltrating water. Numerical modeling indicates that the use of paired FO-DTS in an MAR site can provide accurate quantification of flux at the GW-SW interface, as well as provide insight to the areal extent of geologic heterogeneity in the subsurface. However, the lateral and vertical separation of the fiber-optic cables is of vital importance. Here we present a 2-D, fully coupled groundwater flow and heat transport model with prescribed heterogeneity. Following a forward modeling approach, realizations simulating varying fiber-optic cable positioning, differential bed clogging, and hydraulic conductivity variability were analyzed over a suite of scenarios. The results from the model were then used as observations to calculate groundwater recharge rates and calibration targets for an inverse model to estimate subsurface heterogeneity.

  8. Preliminary Study of 2-D Time Domain Electromagnetic (TDEM) Modeling to Analyze Subsurface Resistivity Distribution and its Application to the Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Aji Hapsoro, Cahyo; Purqon, Acep; Srigutomo, Wahyu

    2017-07-01

    2-D Time Domain Electromagnetic (TDEM) has been successfully conducted to illustrate the value of Electric field distribution under the Earth surface. Electric field compared by magnetic field is used to analyze resistivity and resistivity is one of physical properties which very important to determine the reservoir potential area of geothermal systems as one of renewable energy. In this modeling we used Time Domain Electromagnetic method because it can solve EM field interaction problem with complex geometry and to analyze transient problems. TDEM methods used to model the value of electric and magnetic fields as a function of the time combined with the function of distance and depth. The result of this modeling is Electric field intensity value which is capable to describe the structure of the Earth’s subsurface. The result of this modeling can be applied to describe the Earths subsurface resistivity values to determine the reservoir potential of geothermal systems.

  9. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    NASA Astrophysics Data System (ADS)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  10. 4DVAR data Assimilation with the Regional Ocean Modeling System (ROMS): Impact on the Water Mass Distributions in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Lee, Joon-Ho; Kim, Taekyun; Pang, Ig-Chan; Moon, Jae-Hong

    2018-04-01

    In this study, we evaluate the performance of the recently developed incremental strong constraint 4-dimensional variational (4DVAR) data assimilation applied to the Yellow Sea (YS) using the Regional Ocean Modeling System (ROMS). Two assimilation experiments are compared: assimilating remote-sensed sea surface temperature (SST) and both the SST and in-situ profiles measured by shipboard CTD casts into a regional ocean modeling from January to December of 2011. By comparing the two assimilation experiments against a free-run without data assimilation, we investigate how the assimilation affects the hydrographic structures in the YS. Results indicate that the SST assimilation notably improves the model behavior at the surface when compared to the nonassimilative free-run. The SST assimilation also has an impact on the subsurface water structure in the eastern YS; however, the improvement is seasonally dependent, that is, the correction becomes more effective in winter than in summer. This is due to a strong stratification in summer that prevents the assimilation of SST from affecting the subsurface temperature. A significant improvement to the subsurface temperature is made when the in-situ profiles of temperature and salinity are assimilated, forming a tongue-shaped YS bottom cold water from the YS toward the southwestern seas of Jeju Island.

  11. Evaluating the spatial distribution of water balance in a small watershed, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Gburek, W. J.; Schwartz, F. W.

    2000-04-01

    A conceptual water-balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice.

  12. Workshop on Radar Investigations of Planetary and Terrestrial Environments

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Salt Kinematics and InSAR. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt. Modem Radar Techniques for Geophysical Applications: Two Examples. WISDOM Experiment on the EXOMARS ESA Mission. An Ice Thickness Study Utilizing Ground Penetrating Radar on the Lower Jamapa. Probing the Martian Subsurface with Synthetic Aperture Radar. Planetary Surface Properties from Radar Polarimetric Observations. Imaging the Sub-surface Reflectors : Results From the RANETA/NETLANDER Field Test on the Antarctic Ice Shelf. Strategy for Selection of Mars Geophysical Analogue Sites. Observations of Low Frequency Low Altitude Plasma Oscillations at Mars and Implications for Electromagnetic Sounding of the Subsurface. Ionospheric Transmission Losses Associated with Mars-orbiting Radar. A Polarimetric Scattering Model for the 2-Layer Problem. Radars for Imaging and Sounding of Polar Ice Sheets. Strata: Ground Penetrating Radar for Mars Rovers. Scattering Limits to Depth of Radar Investigation: Lessons from the Bishop Tuff.

  13. Generalized effective-mass theory of subsurface scanning tunneling microscopy: Application to cleaved quantum dots

    NASA Astrophysics Data System (ADS)

    Roy, M.; Maksym, P. A.; Bruls, D.; Offermans, P.; Koenraad, P. M.

    2010-11-01

    An effective-mass theory of subsurface scanning tunneling microscopy (STM) is developed. Subsurface structures such as quantum dots embedded into a semiconductor slab are considered. States localized around subsurface structures match on to a tail that decays into the vacuum above the surface. It is shown that the lateral variation in this tail may be found from a surface envelope function provided that the effects of the slab surfaces and the subsurface structure decouple approximately. The surface envelope function is given by a weighted integral of a bulk envelope function that satisfies boundary conditions appropriate to the slab. The weight function decays into the slab inversely with distance and this slow decay explains the subsurface sensitivity of STM. These results enable STM images to be computed simply and economically from the bulk envelope function. The method is used to compute wave-function images of cleaved quantum dots and the computed images agree very well with experiment.

  14. Cumulative effects of wetland drainage on watershed-scale subsurface hydrologic connectivity

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Ameli, A.

    2017-12-01

    Subsurface hydrologic connectivity influences hydrological, biogeochemical and ecological responses within watersheds. However, information about the location, duration, and frequency of subsurface hydrologic connections within wetlandscapes and between wetlandscapes and streams is often not available. This leads to a lack of understanding of the potential effects of human modifications of the landscape, including wetland degradation and removal, on subsurface hydrologic connectivity and therefore watershed responses. Herein, we develop a computationally efficient, physically-based subsurface hydrologic connectivity model that explicitly characterizes the effects of wetland degradation and removal on the distribution, length, and timing of subsurface hydrologic connectivity within a wetland-dominated watershed in the Prairie Pothole Region of North America. We run the model using a time series of wetland inventories that reflect incremental wetland loss from 1962, to 1993, and to 2009. We also consider a potential future wetland loss scenario based on removal of all wetlands outside of the protected areas of the watershed. Our findings suggest that wetland degradation and removal over this period increased the average length, transit time, and frequency of subsurface hydrologic connections to the regional surface waters, resulting in decreased baseflow in the major river network. This study provides important insights that can be used by wetland managers and policy makers to support watershed-scale wetland protection and restoration plans to improve water resource management.

  15. Orbital radar evidence for lunar subsurface layering in Maria Serenitatis and Crisium

    NASA Technical Reports Server (NTRS)

    Peeples, W. J.; Sill, W. R.; May, T. W.; Ward, S. H.; Phillips, R. J.; Jordan, R. L.; Abbott, E. A.; Killpack, T. J.

    1978-01-01

    Data from the lunar-orbiting Apollo 17 radar sounding experiment (60-m wavelength) have been examined in both digital and holographic formats, and it is concluded that there are two subsurface radar reflectors below the surface in Mare Serenitatis and one reflector below the surface in Mare Crisium. The mean apparent depths of the reflectors below the surface of the former Mare are 0.9 and 1.6 km, while the reflector below the surface of the latter Mare has a mean depth of 1.4 km. These reflectors represent basin-wide subsurface interfaces. Techniques for reducing surface backscatter (clutter) in the data are described, and reasons for thinking that the distinct alignments in radar returns represent subsurface reflecting horizons are explained

  16. Patterns and drivers of bacterial α- and β-diversity across vertical profiles from surface to subsurface sediments.

    PubMed

    Luna, Gian Marco; Corinaldesi, Cinzia; Rastelli, Eugenio; Danovaro, Roberto

    2013-10-01

    We investigated the patterns and drivers of bacterial α- and β-diversity, along with viral and prokaryotic abundance and the carbon production rates, in marine surface and subsurface sediments (down to 1 m depth) in two habitats: vegetated sediments (seagrass meadow) and non-vegetated sediments. Prokaryotic abundance and production decreased with depth in the sediment, but cell-specific production rates and the virus-to-prokaryote ratio increased, highlighting unexpectedly high activity in the subsurface. The highest diversity was observed in vegetated sediments. Bacterial β-diversity between sediment horizons was high, and only a minor number of taxa was shared between surface and subsurface layers. Viruses significantly contributed to explain α- and β-diversity patterns. Despite potential limitations due to the only use of fingerprinting techniques, this study indicates that the coastal subsurface host highly active and diversified bacterial assemblages, that subsurface cells are more active than expected and that viruses promote β-diversity and stimulate bacterial metabolism in subsurface layers. The limited number of taxa shared between habitats, and between surface and subsurface sediment horizons, suggests that future investigations of the shallow subsurface will provide insights into the census of bacterial diversity, and the comprehension of the patterns and drivers of prokaryotic diversity in marine ecosystems. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. Depositional systems and stratigraphy of Paleozoic and Lower Mesozoic rocks in outcrop, Tassili region, southwest Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertig, S.P.; Tye, R.S.; Coffield, D.Q.

    1991-08-01

    Paleozoic to Lower Mesozoic strata of the southeastern Algerian Tassili are traditionally subdivided by regionally extensive unconformities such as the Pan African, Taconic, Caledonian, and Hercynian. Using outcrop data from southeastern Algeria, this classic approach is modified by reinterpreting the genesis of these unconformities and rock sequences. Five prominent sequences, defined within the Paleozoic and lower Mesozoic section, usually consist of a succession of lowstand, transgressive, and highstand system tracts separated by sequence boundaries or transgressive surfaces. The Pan-African, Taconic, Caledonian, and Hercynian unconformities are sequence boundaries. Important sequence boundaries also occur within the Ordovician and Silurian sections. These sequencesmore » correlate with subsurface data in the Illizi basin and provide a framework for renewed exploration in the subsurface of the Algerian Sahara, where more than 30 billion bbl of recoverable oil and oil equivalent have been generated and trapped.« less

  18. Exchange of Groundwater and Surface-Water Mediated by Permafrost Response to Seasonal and Long Term Air Temperature Variation

    USGS Publications Warehouse

    Ge, Shemin; McKenzie, Jeffrey; Voss, Clifford; Wu, Qingbai

    2011-01-01

    Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3?C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment.

  19. Estimation of Mars radar backscatter from measured surface rock populations

    USGS Publications Warehouse

    Baron, J.E.; Simpson, R.A.; Tyler, G.L.; Moore, H.J.; Harmon, J.K.

    1998-01-01

    Reanalysis of rock population data at the Mars Viking Lander sites has yielded updated values of rock fractional surface coverage (about 0.16 at both sites, including outcrops) and new estimates of rock burial depths and axial ratios. These data are combined with a finite difference time domain (FDTD) numerical scattering model to estimate diffuse backscatter due to rocks at both the Lander l (VL1) and Lander 2 (VL2) sites. We consider single scattering from both surface and subsurface objects of various shapes, ranging from an ideal sphere to an accurate digitized model of a terrestrial rock. The FDTD cross-section calculations explicitly account for the size, shape, composition, orientation, and burial state of the scattering object, the incident wave angle and polarization, and the composition of the surface. We calculate depolarized specific cross sections at 12.6 cm wavelength due to lossless rock-like scatterers of about 0.014 at VL1 and 0.023 at VL2, which are comparable to the measured ranges of 0.019-0.032 and 0.012-0.018, respectively. We also discuss the variation of the diffuse cross section as the local angle of incidence, ??i, changes. Numerical calculations for a limited set of rock shapes indicate a marked difference between the angular backscattering behavior of wavelength-scale surface and subsurface rocks: while subsurface rocks scatter approximately as a cosine power law, surface rocks display a complex variation, often with peak backscattering at high incidence angles (??i = 70??-75??). Copyright 1998 by the American Geophysical Union.

  20. Validation of model-based deformation correction in image-guided liver surgery via tracked intraoperative ultrasound: preliminary method and results

    NASA Astrophysics Data System (ADS)

    Clements, Logan W.; Collins, Jarrod A.; Wu, Yifei; Simpson, Amber L.; Jarnagin, William R.; Miga, Michael I.

    2015-03-01

    Soft tissue deformation represents a significant error source in current surgical navigation systems used for open hepatic procedures. While numerous algorithms have been proposed to rectify the tissue deformation that is encountered during open liver surgery, clinical validation of the proposed methods has been limited to surface based metrics and sub-surface validation has largely been performed via phantom experiments. Tracked intraoperative ultrasound (iUS) provides a means to digitize sub-surface anatomical landmarks during clinical procedures. The proposed method involves the validation of a deformation correction algorithm for open hepatic image-guided surgery systems via sub-surface targets digitized with tracked iUS. Intraoperative surface digitizations were acquired via a laser range scanner and an optically tracked stylus for the purposes of computing the physical-to-image space registration within the guidance system and for use in retrospective deformation correction. Upon completion of surface digitization, the organ was interrogated with a tracked iUS transducer where the iUS images and corresponding tracked locations were recorded. After the procedure, the clinician reviewed the iUS images to delineate contours of anatomical target features for use in the validation procedure. Mean closest point distances between the feature contours delineated in the iUS images and corresponding 3-D anatomical model generated from the preoperative tomograms were computed to quantify the extent to which the deformation correction algorithm improved registration accuracy. The preliminary results for two patients indicate that the deformation correction method resulted in a reduction in target error of approximately 50%.

  1. Idaho National Laboratory Test Area North: Application of Endpoints to Guide Adaptive Remediation at a Complex Site: INL Test Area North: Application of Endpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M. Hope; Truex, Mike; Freshley, Mark

    Complex sites are defined as those with difficult subsurface access, deep and/or thick zones of contamination, large areal extent, subsurface heterogeneities that limit the effectiveness of remediation, or where long-term remedies are needed to address contamination (e.g., because of long-term sources or large extent). The Test Area North at the Idaho National Laboratory, developed for nuclear fuel operations and heavy metal manufacturing, is used as a case study. Liquid wastes and sludge from experimental facilities were disposed in an injection well, which contaminated the subsurface aquifer located deep within fractured basalt. The wastes included organic, inorganic, and low-level radioactive constituents,more » with the focus of this case study on trichloroethylene. The site is used as an example of a systems-based framework that provides a structured approach to regulatory processes established for remediation under existing regulations. The framework is intended to facilitate remedy decisions and implementation at complex sites where restoration may be uncertain, require long timeframes, or involve use of adaptive management approaches. The framework facilitates site, regulator, and stakeholder interactions during the remedial planning and implementation process by using a conceptual model description as a technical foundation for decisions, identifying endpoints, which are interim remediation targets or intermediate decision points on the path to an ultimate end, and maintaining protectiveness during the remediation process. At the Test Area North, using a structured approach to implementing concepts in the endpoint framework, a three-component remedy is largely functioning as intended and is projected to meet remedial action objectives by 2095 as required. The remedy approach is being adjusted as new data become available. The framework provides a structured process for evaluating and adjusting the remediation approach, allowing site owners, regulators, and stakeholders to manage contamination at complex sites where adaptive remedies are needed.« less

  2. The Penetration of Solar Radiation Into Carbon Dioxide Ice

    NASA Astrophysics Data System (ADS)

    Chinnery, H. E.; Hagermann, A.; Kaufmann, E.; Lewis, S. R.

    2018-04-01

    Icy surfaces behave differently to rocky or regolith-covered surfaces in response to irradiation. A key factor is the ability of visible light to penetrate partially into the subsurface. This results in the solid-state greenhouse effect, as ices can be transparent or translucent to visible and shorter wavelengths, while opaque in the infrared. This can lead to significant differences in shallow subsurface temperature profiles when compared to rocky surfaces. Of particular significance for modeling the solid-state greenhouse effect is the e-folding scale, otherwise known as the absorption scale length, or penetration depth, of the ice. While there have been measurements for water ice and snow, pure and with mixtures, to date, there have been no such measurements published for carbon dioxide ice. After an extensive series of measurements we are able to constrain the e-folding scale of CO2 ice for the cumulative wavelength range 300 to 1,100 nm, which is a vital parameter in heat transfer models for the Martian surface, enabling us to better understand surface-atmosphere interactions at Mars' polar caps.

  3. LEACHING MODELS FOR SUBSURFACE POLLUTION ASSESSMENT IN AGROECOSYSTEMS

    EPA Science Inventory

    Unrestricted use of pesticides in agriculture threatens ground-water resources and can have adverse ecological impact on the nation's receiving surface waters. In this paper, we develop mass fraction models for exposure assessment and the regulation of agricultural organic chemic...

  4. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    NASA Astrophysics Data System (ADS)

    Condon, Laura E.; Maxwell, Reed M.

    2014-03-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater-surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity.

  5. FATE AND TRANSPORT MODELING OF CONTAMINANTS OF CONCERN FROM A CAFO IN AN AGRICULTURAL WATERSHED

    EPA Science Inventory

    The groundwater flow and transport modeling effort will require hydrogeological site characterization and the development of a conceptual flow model for the site. Site characterization will involve an assessment of both the surface and subsurface and be accomplished through joint...

  6. Equilibrium and kinetic models for colloid release under transient solution chemistry conditions

    USDA-ARS?s Scientific Manuscript database

    We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and...

  7. Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs.

    PubMed

    Brazelton, William J; Morrill, Penny L; Szponar, Natalie; Schrenk, Matthew O

    2013-07-01

    Reactions associated with the geochemical process of serpentinization can generate copious quantities of hydrogen and low-molecular-weight organic carbon compounds, which may provide energy and nutrients to sustain subsurface microbial communities independently of the photosynthetically supported surface biosphere. Previous microbial ecology studies have tested this hypothesis in deep sea hydrothermal vents, such as the Lost City hydrothermal field. This study applied similar methods, including molecular fingerprinting and tag sequencing of the 16S rRNA gene, to ultrabasic continental springs emanating from serpentinizing ultramafic rocks. These molecular surveys were linked with geochemical measurements of the fluids in an interdisciplinary approach designed to distinguish potential subsurface organisms from those derived from surface habitats. The betaproteobacterial genus Hydrogenophaga was identified as a likely inhabitant of transition zones where hydrogen-enriched subsurface fluids mix with oxygenated surface water. The Firmicutes genus Erysipelothrix was most strongly correlated with geochemical factors indicative of subsurface fluids and was identified as the most likely inhabitant of a serpentinization-powered subsurface biosphere. Both of these taxa have been identified in multiple hydrogen-enriched subsurface habitats worldwide, and the results of this study contribute to an emerging biogeographic pattern in which Betaproteobacteria occur in near-surface mixing zones and Firmicutes are present in deeper, anoxic subsurface habitats.

  8. Bacterial Communities Associated with Subsurface Geochemical Processes in Continental Serpentinite Springs

    PubMed Central

    Morrill, Penny L.; Szponar, Natalie; Schrenk, Matthew O.

    2013-01-01

    Reactions associated with the geochemical process of serpentinization can generate copious quantities of hydrogen and low-molecular-weight organic carbon compounds, which may provide energy and nutrients to sustain subsurface microbial communities independently of the photosynthetically supported surface biosphere. Previous microbial ecology studies have tested this hypothesis in deep sea hydrothermal vents, such as the Lost City hydrothermal field. This study applied similar methods, including molecular fingerprinting and tag sequencing of the 16S rRNA gene, to ultrabasic continental springs emanating from serpentinizing ultramafic rocks. These molecular surveys were linked with geochemical measurements of the fluids in an interdisciplinary approach designed to distinguish potential subsurface organisms from those derived from surface habitats. The betaproteobacterial genus Hydrogenophaga was identified as a likely inhabitant of transition zones where hydrogen-enriched subsurface fluids mix with oxygenated surface water. The Firmicutes genus Erysipelothrix was most strongly correlated with geochemical factors indicative of subsurface fluids and was identified as the most likely inhabitant of a serpentinization-powered subsurface biosphere. Both of these taxa have been identified in multiple hydrogen-enriched subsurface habitats worldwide, and the results of this study contribute to an emerging biogeographic pattern in which Betaproteobacteria occur in near-surface mixing zones and Firmicutes are present in deeper, anoxic subsurface habitats. PMID:23584766

  9. FY07 LDRD Final Report A Fracture Mechanics and Tribology Approach to Understanding Subsurface Damage on Fused Silica during Grinding and Polishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala, T I; Miller, P E; Menapace, J A

    The objective of this work is to develop a solid scientific understanding of the creation and characteristics of surface fractures formed during the grinding and polishing of brittle materials, specifically glass. In this study, we have experimentally characterized the morphology, number density, and depth distribution of various surface cracks as a function of various grinding and polishing processes (blanchard, fixed abrasive grinding, loose abrasive, pitch polishing and pad polishing). Also, the effects of load, abrasive particle (size, distribution, foreign particles, geometry, velocity), and lap material (pitch, pad) were examined. The resulting data were evaluated in terms of indentation fracture mechanicsmore » and tribological interactions (science of interacting surfaces) leading to several models to explain crack distribution behavior of ground surfaces and to explain the characteristics of scratches formed during polishing. This project has greatly advanced the scientific knowledge of microscopic mechanical damage occurring during grinding and polishing and has been of general interest. This knowledge-base has also enabled the design and optimization of surface finishing processes to create optical surfaces with far superior laser damage resistance. There are five major areas of scientific progress as a result of this LDRD. They are listed in Figure 1 and described briefly in this summary below. The details of this work are summarized through a number of published manuscripts which are included this LDRD Final Report. In the first area of grinding, we developed a technique to quantitatively and statistically measure the depth distribution of surface fractures (i.e., subsurface damage) in fused silica as function of various grinding processes using mixtures of various abrasive particles size distributions. The observed crack distributions were explained using a model that extended known, single brittle indentation models to an ensemble of loaded, sliding particles. The model illustrates the importance of the particle size distribution of the abrasive and its influence on the resulting crack distribution. The results of these studies are summarized in references 1-7. In the second area of polishing, we conducted a series of experiments showing the influence of rogue particles (i.e., particles in the polishing slurry that are larger than base particles) on the creation of scratches on polished surfaces. Scratches can be thought of a as a specific type of sub-surface damage. The characteristics (width, length, type of fractures, concentration) were explained in terms of the rogue particle size, the rogue particle material, and the viscoelastic properties of the lap. The results of these studies are summarized in references 6-7. In the third area of etching, we conducted experiments aimed at understanding the effect of HF:NH{sub 4}F acid etching on surface fractures on fused silica. Etching can be used as a method: (a) to expose sub-surface mechanical damage, (b) to study the morphology of specific mechanical damage occurring by indentation, and (c) to convert a ground surface containing a high concentration of sub-surface mechanical damage into surface roughness. Supporting models have been developed to describe in detail the effect of etching on the morphology and evolution of surface cracks. The results of these studies are summarized in references 8-9. In the fourth area of scratch forensics or scratch fractography, a set of new scratch forensic rule-of-thumbs were developed in order to aid the optical fabricator and process engineer to interpret the cause of scratches and digs on surfaces. The details of how these rules were developed are described in each of the references included in this summary (1-9). Figure 2 provides as a summary of some of the more commonly used rules-of-thumbs that have been developed in this study. In the fifth and final area of laser damage, we demonstrated that the removal of such surface fractures from the surface during optical fabrication can dramatically improve the laser damage.« less

  10. On the importance of variable soil depth and process representation in the modeling of shallow landslide initiation

    NASA Astrophysics Data System (ADS)

    Fatichi, S.; Burlando, P.; Anagnostopoulos, G.

    2014-12-01

    Sub-surface hydrology has a dominant role on the initiation of rainfall-induced landslides, since changes in the soil water potential affect soil shear strength and thus apparent cohesion. Especially on steep slopes and shallow soils, loss of shear strength can lead to failure even in unsaturated conditions. A process based model, HYDROlisthisis, characterized by high resolution in space and, time is developed to investigate the interactions between surface and subsurface hydrology and shallow landslide initiation. Specifically, 3D variably saturated flow conditions, including soil hydraulic hysteresis and preferential flow, are simulated for the subsurface flow, coupled with a surface runoff routine. Evapotranspiration and specific root water uptake are taken into account for continuous simulations of soil water content during storm and inter-storm periods. The geotechnical component of the model is based on a multidimensional limit equilibrium analysis, which takes into account the basic principles of unsaturated soil mechanics. The model is applied to a small catchment in Switzerland historically prone to rainfall-triggered landslides. A series of numerical simulations were carried out with various boundary conditions (soil depths) and using hydrological and geotechnical components of different complexity. Specifically, the sensitivity to the inclusion of preferential flow and soil hydraulic hysteresis was tested together with the replacement of the infinite slope assumption with a multi-dimensional limit equilibrium analysis. The effect of the different model components on model performance was assessed using accuracy statistics and Receiver Operating Characteristic (ROC) curve. The results show that boundary conditions play a crucial role in the model performance and that the introduced hydrological (preferential flow and soil hydraulic hysteresis) and geotechnical components (multidimensional limit equilibrium analysis) considerably improve predictive capabilities in the presented case study.

  11. Regolith-atmosphere exchange of water in Mars' recent past

    NASA Astrophysics Data System (ADS)

    Steele, Liam J.; Balme, Matthew R.; Lewis, Stephen R.

    2017-03-01

    We investigate the exchange of water vapour between the regolith and atmosphere of Mars, and how it varies with different orbital parameters, atmospheric dust contents and surface water ice reservoirs. This is achieved through the coupling of a global circulation model (GCM) and a regolith diffusion model. GCM simulations are performed for hundreds of Mars years, with additional one-dimensional simulations performed for 50 kyr. At obliquities ɛ =15∘ and 30°, the thermal inertia and albedo of the regolith have more control on the subsurface water distribution than changes to the eccentricity or solar longitude of perihelion. At ɛ =45∘ , atmospheric water vapour abundances become much larger, allowing stable subsurface ice to form in the tropics and mid-latitudes. The circulation of the atmosphere is important in producing the subsurface water distribution, with increased water content in various locations due to vapour transport by topographically-steered flows and stationary waves. As these circulation patterns are due to topographic features, it is likely the same regions will also experience locally large amounts of subsurface water at different epochs. The dustiness of the atmosphere plays an important role in the distribution of subsurface water, with a dusty atmosphere resulting in a wetter water cycle and increased stability of subsurface ice deposits.

  12. Three-Dimensional Electromagnetic Scattering from Layered Media with Rough Interfaces for Subsurface Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Duan, Xueyang

    The objective of this dissertation is to develop forward scattering models for active microwave remote sensing of natural features represented by layered media with rough interfaces. In particular, soil profiles are considered, for which a model of electromagnetic scattering from multilayer rough surfaces with or without buried random media is constructed. Starting from a single rough surface, radar scattering is modeled using the stabilized extended boundary condition method (SEBCM). This method solves the long-standing instability issue of the classical EBCM, and gives three-dimensional full wave solutions over large ranges of surface roughnesses with higher computational efficiency than pure numerical solutions, e.g., method of moments (MoM). Based on this single surface solution, multilayer rough surface scattering is modeled using the scattering matrix approach and the model is used for a comprehensive sensitivity analysis of the total ground scattering as a function of layer separation, subsurface statistics, and sublayer dielectric properties. The buried inhomogeneities such as rocks and vegetation roots are considered for the first time in the forward scattering model. Radar scattering from buried random media is modeled by the aggregate transition matrix using either the recursive transition matrix approach for spherical or short-length cylindrical scatterers, or the generalized iterative extended boundary condition method we developed for long cylinders or root-like cylindrical clusters. These approaches take the field interactions among scatterers into account with high computational efficiency. The aggregate transition matrix is transformed to a scattering matrix for the full solution to the layered-medium problem. This step is based on the near-to-far field transformation of the numerical plane wave expansion of the spherical harmonics and the multipole expansion of plane waves. This transformation consolidates volume scattering from the buried random medium with the scattering from layered structure in general. Combined with scattering from multilayer rough surfaces, scattering contributions from subsurfaces and vegetation roots can be then simulated. Solutions of both the rough surface scattering and random media scattering are validated numerically, experimentally, or both. The experimental validations have been carried out using a laboratory-based transmit-receive system for scattering from random media and a new bistatic tower-mounted radar system for field-based surface scattering measurements.

  13. Mars Express radar collects first surface data

    NASA Astrophysics Data System (ADS)

    2005-08-01

    This radar started its science operations on 4 July, the same day as its first commissioning phase ended. Due to the late deployment of Marsis, it was decided to split the commissioning, originally planned to last four weeks, into two phases; the second will take place in December. It has thus been possible to begin scientific observations with the instrument earlier than initially planned, while it is still Martian night-time. This is the best environmental condition for subsurface sounding, as in daytime the ionosphere is more ‘energised’ and disturbs the radio signals used for subsurface observations. As from the start of commissioning, the two 20m-long antenna booms have been sending radio signals towards the Martian surface and receiving echoes back. “The commissioning procedure confirmed that the radar is working very well and that it can be operated at full power without interfering with any of the spacecraft systems,” says Roberto Seu, Instrument Manager for Marsis, of University of Rome ‘La Sapienza’, Italy. Marsis is a very complex instrument, capable of operating at different frequency bands. Lower frequencies are best suited to probing the subsurface, the highest frequencies are used to probe shallow subsurface depths, while all frequencies are suited to studying the surface and the upper atmospheric layer of Mars. “During commissioning we worked to test all transmission modes and optimise the radar's performance around Mars,” says Professor Giovanni Picardi, Principal Investigator for Marsis, of University of Rome ‘LaSapienza’. “The result is that since we started the scientific observations in early July, we have been receiving very clean surface echoes back, and first indications about the ionosphere.” The Marsis radar is designed to operate around the orbit ‘pericentre’, when the spacecraft is closer to the planet’s surface. In each orbit, the radar is switched on for 36minutes around this point, spending the middle 26minutes on subsurface observations and the first and last fiveminutes of the slot on active ionosphere sounding. Using the lower frequencies, Marsis has been mainly investigating the northern flat areas between the 30° and 70° latitudes, at all longitudes. “We are very satisfied with the way the radar is performing. In fact, the surface measurements taken so far match almost perfectly the existing models of the Mars topography,” said Prof. Picardi. Thus, these measurements have proved to be an excellent test. The scientific reason for concentrating on flat regions with the first data analysis is the fact that the subsurface layers are in principle easier to identify, though the task is still a tricky one. “As the radar appears to work so well for the surface, we have good reason to think the radio waves are also propagating correctly below the surface,” added Prof. Picardi. “The bulk of our work has just started, as we now have to be sure to clearly identify and isolate the echoes coming from the subsurface. To do this, we have to carefully screen all data and make sure that signals which could be interpreted as coming from different underground layers are not actually produced by surface irregularities. This will keep us occupied for a few more weeks at least.” The first ionospheric measurements performed by Marsis have also led to some interesting preliminary findings. The radar responds directly to the number of charged particles composing the ionosphere (plasma). This has at times been shown to be higher than expected.“We are now analysing the data to find out if such measurements may result from sudden increases in solar activity, such as the one observed on 14July, or if we have to put forward new hypotheses. Only further analysis of the data can tell us,” said Jeffrey Plaut, co-Principal Investigator, from the NASA Jet Propulsion Laboratory, Pasadena, USA. Marsis will carry on sending signals that hit the surface and penetrate the subsurface until the middle of August, when the night-time portion of the observations will have almost ended. After that, observation priority will be given to other Mars Express instruments that are best suited to operating in daytime, such as the HRSC camera and Omega mapping spectrometer. However, Marsis will continue its surface and ionospheric investigations in daytime, with ionospheric sounding being reserved for more than 20% of all Mars Express orbits, under all possible Sun illumination conditions. In December, the Mars Express orbit pericentre will enter night-time again. By then, the pericentre will have moved closer to the south pole, allowing Marsis to carry out optimal probing of the subsurface once again, this time in the southern hemisphere. Note to editors The first commissioning phase was given over to testing the Marsis electronics and software and the two 20m-long antennas (dipole). The second commissioning phase, lasting about ten days, will be spent calibrating the 7m ‘monopole’ antenna. This antenna is to be used in conjunction with the Marsis dipole to correct any surface roughness effects caused by the radio waves emitted by the dipole and reflected by an irregular surface. The monopole will find its best use during investigations of areas where surface roughness is greater. The Marsis instrument was developed within the framework of a Memorandum of Understanding between the Italian Space Agency (ASI) and NASA. It was developed by Alenia Spazio under ASI management and the scientific supervision of University of Rome ‘La Sapienza’, in partnership with the Jet Propulsion Laboratory (JPL) and the University of Iowa. JPL provided the antenna manufactured by Astro Aerospace. It is the first instrument designed to actually look below the surface of Mars. Its major goals are to characterise the subsurface layers of sediments and possibly detect underground water or ice, conduct large-scale altimetry mapping and provide data on the planet’s ionosphere. For subsurface probing, Marsis must operate between 300 km and 800 km from the Martian surface, while for ionospheric sounding, it has already provided satisfactory results from a distance of up to 3000 km. Radar vertical resolution is about 150m (in free space), while horizontal resolution, in the range of a few kilometres, depends on the spacecraft's altitude. The joint Italian and American Marsis team is also largely involved in the Sharad radar, a facility instrument provided by ASI for NASA’s Mars Reconnaissance Orbiter (MRO), due for launch in August. Marsis and Sharad are two radars designed to provide complementary information about the Martian subsurface. Marsis can penetrate to an average depth of 5km, while Sharad will concentrate on layers closer to the surface.

  14. Modeling the processing of interstellar ices by energetic particles

    NASA Astrophysics Data System (ADS)

    Kalvāns, J.; Shmeld, I.

    2013-06-01

    Context. Interstellar ice is the main form of metal species in dark molecular clouds. Experiments and observations have shown that the ice is significantly processed after the freeze-out of molecules onto grains. The processing is caused by cosmic-ray particles and cosmic-ray-induced UV photons. These transformations are included in current astrochemical models only to a very limited degree. Aims: We aim to establish a model of the "cold" chemistry in interstellar ices and to evaluate its general impact on the composition of interstellar ices. Methods: The ice was treated as consisting of two layers - the surface and the mantle (or subsurface) layer. Subsurface chemical processes are described with photodissociation of ice species and binary reactions on the surfaces of cavities inside the mantle. Hydrogen atoms and molecules can diffuse between the layers. We also included deuterium chemistry. Results: The modeling results show that the content of chemically bound H is reduced in subsurface molecules by about 30% on average. This promotes the formation of more hydrogen-poor species in the ice. The enrichment of ice molecules with deuterium is significantly reduced by the subsurface processes. On average, it follows the gas-phase atomic D/H abundance ratio, with a delay. The delay produced by the model is on the order of several Myr. Conclusions: The processing of ice may place new constraints on the production of deuterated species on grains. In a mantle with a two-layer structure the upper layer (CO) should be processed substantially more intensively than the lower layer (H2O). Chemical explosions in interstellar ice might not be an important process. They destroy the structure of the mantle, which forms over long timescales. Besides, ices may lack the high radical content needed for the explosions.

  15. Physical controls and predictability of stream hyporheic flow evaluated with a multiscale model

    USGS Publications Warehouse

    Stonedahl, Susa H.; Harvey, Judson W.; Detty, Joel; Aubeneau, Antoine; Packman, Aaron I.

    2012-01-01

    Improved predictions of hyporheic exchange based on easily measured physical variables are needed to improve assessment of solute transport and reaction processes in watersheds. Here we compare physically based model predictions for an Indiana stream with stream tracer results interpreted using the Transient Storage Model (TSM). We parameterized the physically based, Multiscale Model (MSM) of stream-groundwater interactions with measured stream planform and discharge, stream velocity, streambed hydraulic conductivity and porosity, and topography of the streambed at distinct spatial scales (i.e., ripple, bar, and reach scales). We predicted hyporheic exchange fluxes and hyporheic residence times using the MSM. A Continuous Time Random Walk (CTRW) model was used to convert the MSM output into predictions of in stream solute transport, which we compared with field observations and TSM parameters obtained by fitting solute transport data. MSM simulations indicated that surface-subsurface exchange through smaller topographic features such as ripples was much faster than exchange through larger topographic features such as bars. However, hyporheic exchange varies nonlinearly with groundwater discharge owing to interactions between flows induced at different topographic scales. MSM simulations showed that groundwater discharge significantly decreased both the volume of water entering the subsurface and the time it spent in the subsurface. The MSM also characterized longer timescales of exchange than were observed by the tracer-injection approach. The tracer data, and corresponding TSM fits, were limited by tracer measurement sensitivity and uncertainty in estimates of background tracer concentrations. Our results indicate that rates and patterns of hyporheic exchange are strongly influenced by a continuum of surface-subsurface hydrologic interactions over a wide range of spatial and temporal scales rather than discrete processes.

  16. Microwave Soil Moisture Retrieval Under Trees Using a Modified Tau-Omega Model

    USDA-ARS?s Scientific Manuscript database

    IPAD is to provide timely and accurate estimates of global crop conditions for use in up-to-date commodity intelligence reports. A crucial requirement of these global crop yield forecasts is the regional characterization of surface and sub-surface soil moisture. However, due to the spatial heterogen...

  17. The global distribution of Martian permafrost

    NASA Technical Reports Server (NTRS)

    Paige, David A.

    1991-01-01

    Accurately determining the present global distribution of Martian ground ice will be an important step towards understanding the evolution of the Martian surface and atmosphere, and could greatly facilitate human and robotic exploration of the planet. The quantitative Mars permafrost studies demonstrated the potential importance of a number of factors determining the past and present distribution of subsurface ice on Mars, but have not considered the issue of regional variability. To consider the distribution of Mars permafrost in greater detail a new thermal model was developed that can calculate Martian surface and subsurface temperatures as a function of time-of-day and season. The results indicate that the distribution of Martian permafrost is highly sensitive to the bulk thermal properties of the overlying soil. Viking IRTM observations of diurnal surface temperature variations show that the bulk thermal properties of midlatitude surface materials exhibit a high degree of regional inhomogeneity. In general, the results show that the global distribution of permafrost is at least as sensitive to the thermal properties of the overlying surface material as it is to variations in surface isolation due to large scale variations in Mars' orbital and axial elements. In particular, they imply that subsurface ice may exist just a few centimeters below the surface in regions of low thermal inertia and high albedo, which are widespread at latitudes ranging from the equator to +60 degrees latitude.

  18. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment

    NASA Astrophysics Data System (ADS)

    Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie

    2017-06-01

    The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.

  19. ALMA Thermal Mapping of Ceres – Search for Subsurface Water Ice

    NASA Astrophysics Data System (ADS)

    Moullet, Arielle; Li, Jian-Yang; Titus, Timothy N.; Sykes, Mark V.; Hsieh, Henry H.

    2018-06-01

    Spectroscopic observations of the surface of Ceres by Dawn have demonstrated that hydrated minerals are ubiquitous, but only few smaller sites are enriched with water ice. This is somewhat surprising as Ceres is believed to host a large amount a water in its interior.The possibility of inhomogeneous subsurface water distribution can be investigated by tracing thermal inertia distribution. To that effect, we mapped the temperature of Ceres using 1.3mm maps of the whole surface obtained with the Atacama Large Millimeter Array (ALMA) over three different epochs during one Ceres’ year. Assessing the thermal conditions at the depths probed by sub millimeter observations (a few cm below the surface, within the annual thermal skin depth) is critical to constrain the effective thermal inertia, and hence the status of subsurface water ice. We will present preliminary results in terms of temperature features and the corresponding thermal inertia derived based on comparisons from the KRC thermal model which has been extensively used for Mars. Initial analysis is consistent with the presence of near-surface high thermal inertia layer, presumably water ice, in the north polar region.This work is supported by the NASA Solar System Observations Program NNX15AE02G.

  20. Framework and implementation of a continuous network-wide health monitoring system for roadways

    NASA Astrophysics Data System (ADS)

    Wang, Ming; Birken, Ralf; Shahini Shamsabadi, Salar

    2014-03-01

    According to the 2013 ASCE report card America's infrastructure scores only a D+. There are more than four million miles of roads (grade D) in the U.S. requiring a broad range of maintenance activities. The nation faces a monumental problem of infrastructure management in the scheduling and implementation of maintenance and repair operations, and in the prioritization of expenditures within budgetary constraints. The efficient and effective performance of these operations however is crucial to ensuring roadway safety, preventing catastrophic failures, and promoting economic growth. There is a critical need for technology that can cost-effectively monitor the condition of a network-wide road system and provide accurate, up-to-date information for maintenance activity prioritization. The Versatile Onboard Traffic Embedded Roaming Sensors (VOTERS) project provides a framework and the sensing capability to complement periodical localized inspections to continuous network-wide health monitoring. Research focused on the development of a cost-effective, lightweight package of multi-modal sensor systems compatible with this framework. An innovative software infrastructure is created that collects, processes, and evaluates these large time-lapse multi-modal data streams. A GIS-based control center manages multiple inspection vehicles and the data for further analysis, visualization, and decision making. VOTERS' technology can monitor road conditions at both the surface and sub-surface levels while the vehicle is navigating through daily traffic going about its normal business, thereby allowing for network-wide frequent assessment of roadways. This deterioration process monitoring at unprecedented time and spatial scales provides unique experimental data that can be used to improve life-cycle cost analysis models.

  1. Predictability of Subsurface Temperature and the AMOC

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Schubert, S. D.

    2013-12-01

    GEOS 5 coupled model is extensively used for experimental decadal climate prediction. Understanding the limits of decadal ocean predictability is critical for making progress in these efforts. Using this model, we study the subsurface temperature initial value predictability, the variability of the Atlantic meridional overturning circulation (AMOC) and its impacts on the global climate. Our approach is to utilize the idealized data assimilation technology developed at the GMAO. The technique 'replay' allows us to assess, for example, the impact of the surface wind stresses and/or precipitation on the ocean in a very well controlled environment. By running the coupled model in replay mode we can in fact constrain the model using any existing reanalysis data set. We replay the model constraining (nudging) it to the MERRA reanalysis in various fields from 1948-2012. The fields, u,v,T,q,ps, are adjusted towards the 6-hourly analyzed fields in atmosphere. The simulated AMOC variability is studied with a 400-year-long segment of replay integration. The 84 cases of 10-year hindcasts are initialized from 4 different replay cycles. Here, the variability and predictability are examined further by a measure to quantify how much the subsurface temperature and AMOC variability has been influenced by atmospheric forcing and by ocean internal variability. The simulated impact of the AMOC on the multi-decadal variability of the SST, sea surface height (SSH) and sea ice extent is also studied.

  2. Effect of Microstructural Evolution and Hardening in Subsurface on Wear Behavior of Mg-3Al-1Zn Alloy

    NASA Astrophysics Data System (ADS)

    Liang, C.; Li, C.; An, J.; Yu, M.; Hu, Y. C.; Lin, W. H.; Liu, F.; Ding, Y. H.

    2013-12-01

    Dry sliding tests were performed on as-cast AZ31 alloy using a pin-on-disc configuration. Coefficient of friction and wear rate were measured within a load range of 5-360 N at a sliding velocity of 0.785 m/s. Worn surface morphologies were examined using scanning electron microscopy. Five wear mechanisms, namely abrasion, oxidation, delamination, thermal softening, and melting, have been observed. Surface hardness, subsurface plastic strain, worn surface temperature, and cross-sectional optical microscopy were used to characterize hardness change, plastic deformation, and the microstructure evolution in subsurface. The results illustrate the correlation between the wear behavior and evolution of microstructure and hardness in subsurface, and reveal that in the load range of 5-120 N, surface oxidation and hardening originating from large plastic deformation play an important role in maintaining the mild wear, and softening originating from dynamic recrystallization in subsurface and surface melting are responsible for the severe wear in the load range of 120-360 N.

  3. Framework for the assessment of interaction between CO2 geological storage and other sedimentary basin resources.

    PubMed

    Michael, K; Whittaker, S; Varma, S; Bekele, E; Langhi, L; Hodgkinson, J; Harris, B

    2016-02-01

    Sedimentary basins around the world considered suitable for carbon storage usually contain other natural resources such as petroleum, coal, geothermal energy and groundwater. Storing carbon dioxide in geological formations in the basins adds to the competition for access to the subsurface and the use of pore space where other resource-based industries also operate. Managing potential impacts that industrial-scale injection of carbon dioxide may have on other resource development must be focused to prevent potential conflicts and enhance synergies where possible. Such a sustainable coexistence of various resource developments can be accomplished by implementing a Framework for Basin Resource Management strategy (FBRM). The FBRM strategy utilizes the concept of an Area of Review (AOR) for guiding development and regulation of CO2 geological storage projects and for assessing their potential impact on other resources. The AOR is determined by the expected physical distribution of the CO2 plume in the subsurface and the modelled extent of reservoir pressure increase resulting from the injection of the CO2. This information is used to define the region to be characterised and monitored for a CO2 injection project. The geological characterisation and risk- and performance-based monitoring will be most comprehensive within the region of the reservoir containing the carbon dioxide plume and should consider geological features and wells continuously above the plume through to its surface projection; this region defines where increases in reservoir pressure will be greatest and where potential for unplanned migration of carbon dioxide is highest. Beyond the expanse of the carbon dioxide plume, geological characterisation and monitoring should focus only on identified features that could be a potential migration conduit for either formation water or carbon dioxide.

  4. Influence of surface nudging on climatological mean and ENSO feedbacks in a coupled model

    NASA Astrophysics Data System (ADS)

    Zhu, Jieshun; Kumar, Arun

    2018-01-01

    Studies have suggested that surface nudging could be an efficient way to reconstruct the subsurface ocean variability, and thus a useful method for initializing climate predictions (e.g., seasonal and decadal predictions). Surface nudging is also the basis for climate models with flux adjustments. In this study, however, some negative aspects of surface nudging on climate simulations in a coupled model are identified. Specifically, a low-resolution version of the NCEP Climate Forecast System, version 2 (CFSv2L) is used to examine the influence of nudging on simulations of climatological mean and on the coupled feedbacks during ENSO. The effect on ENSO feedbacks is diagnosed following a heat budget analysis of mixed layer temperature anomalies. Diagnostics of the climatological mean state indicates that, even though SST biases in all ocean basins, as expected, are eliminated, the fidelity of climatological precipitation, surface winds and subsurface temperature (or the thermocline depth) could be highly ocean basin dependent. This is exemplified by improvements in the climatology of these variables in the tropical Atlantic, but degradations in the tropical Pacific. Furthermore, surface nudging also distorts the dynamical feedbacks during ENSO. For example, while the thermocline feedback played a critical role during the evolution of ENSO in a free simulation, it only played a minor role in the nudged simulation. These results imply that, even though the simulation of surface temperature could be improved in a climate model with surface nudging, the physics behind might be unrealistic.

  5. PROCEEDINGS OF THE CROSS DISCIPLINE ECOSYTEM MODELING AND ANALYSIS WORKSHOP

    EPA Science Inventory

    The complexity of environmental problems we face now and in the future is ever increasing. Process linkages among air, land, surface and subsurface water require interdisciplinary modeling approaches. The dynamics of land use change spurred by population and economic growth, ...

  6. Assessment of DInSAR Potential in Simulating Geological Subsurface Structure

    NASA Astrophysics Data System (ADS)

    Fouladi Moghaddam, N.; Rudiger, C.; Samsonov, S. V.; Hall, M.; Walker, J. P.; Camporese, M.

    2013-12-01

    High resolution geophysical surveys, including seismic, gravity, magnetic, etc., provide valuable information about subsurface structuring but they are very costly and time consuming with non-unique and sometimes conflicting interpretations. Several recent studies have examined the application of DInSAR to estimate surface deformation, monitor possible fault reactivation and constrain reservoir dynamic behaviour in geothermal and groundwater fields. The main focus of these studies was to generate an elevation map, which represents the reservoir extraction induced deformation. This research study, however, will focus on developing methods to simulate subsurface structuring and identify hidden faults/hydraulic barriers using DInSAR surface observations, as an innovative and cost-effective reconnaissance exploration tool for planning of seismic acquisition surveys in geothermal and Carbon Capture and Sequestration regions. By direct integration of various DInSAR datasets with overlapping temporal and spatial coverage we produce multi-temporal ground deformation maps with high resolution and precision to evaluate the potential of a new multidimensional MSBAS technique (Samsonov & d'Oreye, 2012). The technique is based on the Small Baseline Subset Algorithm (SBAS) that is modified to account for variation in sensor parameters. It allows integration of data from sensors with different wave-band, azimuth and incidence angles, different spatial and temporal sampling and resolutions. These deformation maps then will be used as an input for inverse modelling to simulate strain history and shallow depth structure. To achieve the main objective of our research, i.e. developing a method for coupled InSAR and geophysical observations and better understanding of subsurface structuring, comparing DInSAR inverse modelling results with previously provided static structural model will result in iteratively modified DInSAR structural model for adequate match with in situ observations. The newly developed and modified algorithm will then be applied in another part of the region where subsurface information is limited.

  7. A new model of equilibrium subsurface hydration on Mars

    NASA Astrophysics Data System (ADS)

    Hecht, M. H.

    2011-12-01

    One of the surprises of the Odyssey mission was the discovery by the Gamma Ray Spectrometer (GRS) suite of large concentrations of water-equivalent hydrogen (WEH) in the shallow subsurface at low latitudes, consistent with 5-7% regolith water content by weight (Mitrofanov et al. Science 297, p. 78, 2002; Feldman et al. Science 297, p. 75, 2002). Water at low latitudes on Mars is generally believed to be sequestered in the form of hydrated minerals. Numerous attempts have been made to relate the global map of WEH to specific mineralogy. For example Feldman et al. (Geophys. Res. Lett., 31, L16702, 2004) associated an estimated 10% sulfate content of the soil with epsomite (51% water), hexahydrite (46% water) and kieserite (13% water). In such studies, stability maps have been created by assuming equilibration of the subsurface water vapor density with a global mean annual column mass vapor density. Here it is argued that this value significantly understates the subsurface humidity. Results from the Phoenix mission are used to suggest that the midday vapor pressure measured just above the surface is a better proxy for the saturation vapor pressure of subsurface hydrous minerals. The measured frostpoint at the Phoenix site was found to be equal to the surface temperature by night and the modeled temperature at the top of the ice table by day (Zent et al. J. Geophys. Res., 115, E00E14, 2010). It was proposed by Hecht (41st LPSC abstract #1533, 2010) that this phenomenon results from water vapor trapping at the coldest nearby surface. At night, the surface is colder than the surface of the ice table; by day it is warmer. Thus, at night, the subsurface is bounded by a fully saturated layer of cold water frost or adsorbed water at the surface, not by the dry boundary layer itself. This argument is not strongly dependent on the particular saturation vapor pressure (SVP) of ice or other subsurface material, only on the thickness of the dry layer. Specifically, the diurnal thermal skin depth d = √(α τ) ~ 4cm, where α = k/(ρ*c) is the thermal diffusivity, τ is the period of oscillation, and α has been taken to be 0.00018 cm2/s. Since the sampling depth of GRS is >>4cm, midday humidity should provide a good guide to the SVP of material sampled by GRS. It is also suggested that regional differences in soil/rock ratios are the most likely source of the observed regional variation in WEH. This premise is consistent with the observation of Keller et al. (J. Geophys. Res., 111, E03S08, 2006) that the global GRS Cl map correlates with WEH and anti-correlates with both Si and thermal inertia. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA

  8. A Collaborative Extensible User Environment for Simulation and Knowledge Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Vicky L.; Lansing, Carina S.; Porter, Ellen A.

    2015-06-01

    In scientific simulation, scientists use measured data to create numerical models, execute simulations and analyze results from advanced simulators executing on high performance computing platforms. This process usually requires a team of scientists collaborating on data collection, model creation and analysis, and on authorship of publications and data. This paper shows that scientific teams can benefit from a user environment called Akuna that permits subsurface scientists in disparate locations to collaborate on numerical modeling and analysis projects. The Akuna user environment is built on the Velo framework that provides both a rich client environment for conducting and analyzing simulations andmore » a Web environment for data sharing and annotation. Akuna is an extensible toolset that integrates with Velo, and is designed to support any type of simulator. This is achieved through data-driven user interface generation, use of a customizable knowledge management platform, and an extensible framework for simulation execution, monitoring and analysis. This paper describes how the customized Velo content management system and the Akuna toolset are used to integrate and enhance an effective collaborative research and application environment. The extensible architecture of Akuna is also described and demonstrates its usage for creation and execution of a 3D subsurface simulation.« less

  9. THE HYDROCARBON SPILL SCREENING MODEL (HSSM), VOLUME 2: THEORETICAL BACKGROUND AND SOURCE CODES

    EPA Science Inventory

    A screening model for subsurface release of a nonaqueous phase liquid which is less dense than water (LNAPL) is presented. The model conceptualizes the release as consisting of 1) vertical transport from near the surface to the capillary fringe, 2) radial spreading of an LNAPL l...

  10. Characteristics of Nitrogen Loss through Surface-Subsurface Flow on Red Soil Slopes of Southeast China

    NASA Astrophysics Data System (ADS)

    Zheng, Haijin; Liu, Zhao; Zuo, Jichao; Wang, Lingyun; Nie, Xiaofei

    2017-12-01

    Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7-8.2 and 1.5-4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36-56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0-15, 2-9 and 76-96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83-86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.

  11. Percolation induced heat transfer in deep unsaturated zones

    USGS Publications Warehouse

    Lu, N.; LeCain, G.D.

    2003-01-01

    Subsurface temperature data from a borehole located in a desert wash were measured and used to delineate the conductive and advective heat transfer regimes, and to estimate the percolation quantity associated with the 1997-1998 El Ni??no precipitation. In an arid environment, conductive heat transfer dominates the variation of shallow subsurface temperature most of the time, except during sporadic precipitation periods. The subsurface time-varying temperature due to conductive heat transfer is highly correlated with the surface atmospheric temperature variation, whereas temperature variation due to advective heat transfer is strongly correlated with precipitation events. The advective heat transfer associated with precipitation and infiltration is the focus of this paper. Disruptions of the subsurface conductive temperature regime, associated with the 1997-1998 El Ni??no precipitation, were detected and used to quantify the percolation quantity. Modeling synthesis using a one-dimensional coupled heat and unsaturated flow model indicated that a percolation per unit area of 0.7 to 1.3 m height of water in two weeks during February 1998 was responsible for the observed temperature deviations down to a depth of 35.2 m. The reported study demonstrated quantitatively, for the first time, that the near surface temperature variation due to advective heat transfer can be significant at a depth greater than 10 m in unsaturated soils and can be used to infer the percolation amount in thick unsaturated soils.

  12. Parameter estimation in physically-based integrated hydrological models with the ensemble Kalman filter: a practical application.

    NASA Astrophysics Data System (ADS)

    Botto, Anna; Camporese, Matteo

    2017-04-01

    Hydrological models allow scientists to predict the response of water systems under varying forcing conditions. In particular, many physically-based integrated models were recently developed in order to understand the fundamental hydrological processes occurring at the catchment scale. However, the use of this class of hydrological models is still relatively limited, as their prediction skills heavily depend on reliable parameter estimation, an operation that is never trivial, being normally affected by large uncertainty and requiring huge computational effort. The objective of this work is to test the potential of data assimilation to be used as an inverse modeling procedure for the broad class of integrated hydrological models. To pursue this goal, a Bayesian data assimilation (DA) algorithm based on a Monte Carlo approach, namely the ensemble Kalman filter (EnKF), is combined with the CATchment HYdrology (CATHY) model. In this approach, input variables (atmospheric forcing, soil parameters, initial conditions) are statistically perturbed providing an ensemble of realizations aimed at taking into account the uncertainty involved in the process. Each realization is propagated forward by the CATHY hydrological model within a parallel R framework, developed to reduce the computational effort. When measurements are available, the EnKF is used to update both the system state and soil parameters. In particular, four different assimilation scenarios are applied to test the capability of the modeling framework: first only pressure head or water content are assimilated, then, the combination of both, and finally both pressure head and water content together with the subsurface outflow. To demonstrate the effectiveness of the approach in a real-world scenario, an artificial hillslope was designed and built to provide real measurements for the DA analyses. The experimental facility, located in the Department of Civil, Environmental and Architectural Engineering of the University of Padova (Italy), consists of a reinforced concrete box containing a soil prism with maximum height of 3.5 m, length of 6 m and width of 2 m. The hillslope is equipped with six pairs of tensiometers and water content reflectometers, to monitor the pressure head and soil moisture content, respectively. Moreover, two tipping bucket flow gages were used to measure the surface and subsurface discharges at the outlet. A 12-day long experiment was carried out, during which a series of four rainfall events with constant rainfall rate were generated, interspersed with phases of drainage. During the experiment, measurements were collected at a relatively high resolution of 0.5 Hz. We report here on the capability of the data assimilation framework to estimate sets of plausible parameters that are consistent with the experimental setup.

  13. Multiple geophysical surveys for old landfill monitoring in Singapore.

    PubMed

    Yin, Ke; Tong, Huanhuan; Giannis, Apostolos; Wang, Jing-Yuan; Chang, Victor W-C

    2017-01-01

    One-dimensional boring presents limitations on mapping the refuse profile in old landfills owning to waste heterogeneity. Electrical imaging (EI) and multiple-analysis of surface wave (MASW) were hereby deployed at an old dumping ground in Singapore to explore the subsurface in relation to geotechnical analysis. MASW estimated the refuse boundary with a higher precision as compared to EI, due to its endurance for moisture variation. EI and MASW transection profiles suggested spots of interest, e.g., refuse pockets and leachate mounds. 3D inversion of EI and MASW data further illustrated the transformation dynamics derived by natural attenuation, for instance the preferential infiltration pathway. Comparison of geophysical surveys at different years uncovered the subterranean landfill conditions, indicating strong impacts induced by aging, precipitation, and settlement. This study may shed light on a characterization framework of old landfills via combined geophysical models, thriving landfill knowledge with a higher creditability.

  14. Dry Sliding Wear Behavior and Subsurface Microstructure Evolution of Mg97Zn1Y2 Alloy in a Wide Sliding Speed Range

    NASA Astrophysics Data System (ADS)

    An, J.; Xuan, X. H.; Zhao, J.; Sun, W.; Liang, C.

    2016-12-01

    The wear properties of Mg97Zn1Y2 alloy were investigated using the pin-on-disk wear machine within a load range of 20-380 N and a sliding speed range of 0.2-4.0 m/s. Analysis of worn surfaces using scanning electron microscope and energy-dispersive x-ray spectrometer revealed that wear mechanisms including abrasion + oxidation, delamination accompanied by heavy surface oxidation and delamination operated in mild wear regime, while wear mechanisms such as severe plastic deformation, severe plastic deformation accompanied by spallation of oxidation layer and surface melting prevailed in severe wear regime. The microstructural evolution and hardness change in subsurfaces were examined by optical microscopy and hardness tester. The transformation of surface material from the deformed into dynamic recrystallization (DRX) microstructure was observed before and after mild-to-severe transition. The reason for mild-to-severe wear transition was identified as the transformation of strain hardening to DRX softening in subsurface. Mg97Zn1Y2 alloy has a superior mild-to-severe wear transition resistance to AZ alloys because of its higher recrystallization temperature. A novel model for evaluating the critical surface temperature of mild-to-severe wear transition was established using DRX kinetics.

  15. Mars Sulfate Formation Sourced in Sulfide-Enriched Subsurface Fluids: The Rio Tinto Model

    NASA Technical Reports Server (NTRS)

    Fernandez-Remolar, D. C.; Prieto-Ballesteros, O.; Osburn, M. R.; Gomez-Ortiz, D.; Arvidson, R. E.; Morris, R. V.; Ming, D.; Amils, R.; Friendlander, L. R.

    2007-01-01

    The extensive evidence for sulfate deposits on Mars provided by analyses of MER and Mars Express data shows that the sulfur played an essential role in the geochemical cycles of the planet, including reservoirs in the atmosphere, hydro-sphere and geosphere. Overall the data are consistent with a fluvial/lacustrine-evaporative origin of at least some of the sulfate deposits, with mineral precipitation through oversaturation of salty acidic fluids enriched in sulfates. This scenario requires reservoirs of sulfur and associated cations, as well as an acidic and oxidizing hydrochemistry which could be provided by surface and subsurface catching of meteoric waters resulting in the presence of sulfur-bearing gases and steam photochemistry. In this work we suggest a new scenario for the extensive generation of sulfates in Mars based on the observation of seasonal changes in the redox and pH of subsurface waters enriched in sulfur that supply the acidic Mars process analog of Rio Tinto. This model considers the long-term subsurface storage of sulfur during most of Noachian and its release from the late Noachian to Hesperian time through weathering by meteoric fluids that would acidify and oxidize the sulfur bearing compounds stored in the subsurface.

  16. Evaluate the Relative Importance of Subsurface Lateral Energy Exchange to Ground Heat Flux and Energy Balance over the Heterogeneous Surface of a Sub-tropical Wetland

    NASA Astrophysics Data System (ADS)

    CUI, W.; Chui, T. F. M.

    2016-12-01

    Subsurface lateral water and energy exchanges are often ignored in methods involving a surface energy balance under the homogeneity assumption, which may affect the estimation of evapotranspiration over a heterogeneous surface. Wetlands, however, are heterogeneous with vegetated areas and open water, making it difficult to accurately measure and estimate evapotranspiration. This study estimated the subsurface lateral energy exchange between the reed bed and shallow open water of a wetland within Mai Po Nature Reserve in Hong Kong, and further discussed its relative importance to the ground heat flux and energy balance over the wetland surface. An array of water level and temperature sensors were installed in the reed bed and the adjacent water, together with an eddy covariance system. The results suggested that the lateral energy exchange was over 30% of ground heat flux for half of the monitoring period, and should therefore be accounted for during the measurement of ground heat flux. However, the lateral energy exchange could not explain the energy balance disclosure at the site, as the variation was in phase with the residual of energy budget during the summer but was out of phase during the winter. Furthermore, this study developed a convolution model to estimate the lateral energy exchange based on air temperature which is readily available at many sites worldwide. This study overall enhanced our understanding of the subsurface lateral energy exchange, and possibly our estimation of evapotranspiration in heterogeneous environment.

  17. Kinetic roughening and porosity scaling in film growth with subsurface lateral aggregation.

    PubMed

    Reis, F D A Aarão

    2015-06-01

    We study surface and bulk properties of porous films produced by a model in which particles incide perpendicularly to a substrate, interact with deposited neighbors in its trajectory, and aggregate laterally with probability of order a at each position. The model generalizes ballisticlike models by allowing attachment to particles below the outer surface. For small values of a, a crossover from uncorrelated deposition (UD) to correlated growth is observed. Simulations are performed in 1+1 and 2+1 dimensions. Extrapolation of effective exponents and comparison of roughness distributions confirm Kardar-Parisi-Zhang roughening of the outer surface for a>0. A scaling approach for small a predicts crossover times as a(-2/3) and local height fluctuations as a(-1/3) at the crossover, independent of substrate dimension. These relations are different from all previously studied models with crossovers from UD to correlated growth due to subsurface aggregation, which reduces scaling exponents. The same approach predicts the porosity and average pore height scaling as a(1/3) and a(-1/3), respectively, in good agreement with simulation results in 1+1 and 2+1 dimensions. These results may be useful for modeling samples with desired porosity and long pores.

  18. Performance of a pilot showcase of different wetland systems in an urban setting in Singapore.

    PubMed

    Quek, B S; He, Q H; Sim, C H

    2015-01-01

    The Alexandra Wetlands, part of PUB's Active, Beautiful, Clean Waters (ABC Waters) Programme, showcase a surface flow wetland, an aquatic pond and a sub-surface flow wetland on a 200 m deck built over an urban drainage canal. Water from the canal is pumped to a sedimentation basin, before flowing in parallel to the three wetlands. Water quality monitoring was carried out monthly from April 2011 to December 2012. The order of removal efficiency is sub-surface flow (81.3%) >aquatic pond (58.5%) >surface flow (50.7%) for total suspended solids (TSS); sub-surface (44.9%) >surface flow (31.9%) >aquatic pond (22.0%) for total nitrogen (TN); and surface flow (56.7%) >aquatic pond (39.8%) >sub-surface flow (5.4%) for total phosphorus (TP). All three wetlands achieved the Singapore stormwater treatment objectives (STO) for TP removal, but only the sub-surface flow wetland met the STO for TSS, and none met the STO for TN. Challenges in achieving satisfactory performance include inconsistent feed water quality, undesirable behaviour such as fishing, release of pets and feeding of animals in the wetlands, and canal dredging during part of the monitoring period. As a pilot showcase, the Alexandra Wetlands provide useful lessons for implementing multi-objective wetlands in an urban setting.

  19. Oceanic response to tropical cyclone `Phailin' in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Pant, V.; Prakash, K. R.

    2016-02-01

    Vertical mixing largely explains surface cooling induced by Tropical Cyclones (TCs). However, TC-induced upwelling of deeper waters plays an important role as it partly balances the warming of subsurface waters induced by vertical mixing. Below 100 m, vertical advection results in cooling that persists for a few days after the storm. The present study investigates the integrated ocean response to tropical cyclone `Phaillin' (10-14 October 2013) in the Bay of Bengal (BoB) through both coupled and stand-alone ocean-atmosphere models. Two numerical experiments with different coupling configurations between Regional Ocean Modelling System (ROMS) and Weather Research and Forecasting (WRF) were performed to investigate the impact of Phailin cyclone on the surface and sub-surface oceanic parameters. In the first experiment, ocean circulation model ROMS observe surface wind forcing from a mesoscale atmospheric model (WRF with nested damin setup), while rest forcing parameters are supplied to ROMS from NCEP data. In the second experiment, all surface forcing data to ROMS directly comes from WRF. The modeling components and data fields exchanged between atmospheric and oceanic models are described. The coupled modeling system is used to identify model sensitivity by exchanging prognostic variable fields between the two model components during simulation of Phallin cyclone (10-14 October 2013) in the BoB.In general, the simulated Phailin cyclone track and intensities agree well with observations in WRF simulations. Further, the inter-comparison between stand-alone and coupled model simulations validated against observations highlights better performance of coupled modeling system in simulating the oceanic conditions during the Phailin cyclone event.

  20. A stochastic approach for model reduction and memory function design in hydrogeophysical inversion

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Kellogg, A.; Terry, N.

    2009-12-01

    Geophysical (e.g., seismic, electromagnetic, radar) techniques and statistical methods are essential for research related to subsurface characterization, including monitoring subsurface flow and transport processes, oil/gas reservoir identification, etc. For deep subsurface characterization such as reservoir petroleum exploration, seismic methods have been widely used. Recently, electromagnetic (EM) methods have drawn great attention in the area of reservoir characterization. However, considering the enormous computational demand corresponding to seismic and EM forward modeling, it is usually a big problem to have too many unknown parameters in the modeling domain. For shallow subsurface applications, the characterization can be very complicated considering the complexity and nonlinearity of flow and transport processes in the unsaturated zone. It is warranted to reduce the dimension of parameter space to a reasonable level. Another common concern is how to make the best use of time-lapse data with spatial-temporal correlations. This is even more critical when we try to monitor subsurface processes using geophysical data collected at different times. The normal practice is to get the inverse images individually. These images are not necessarily continuous or even reasonably related, because of the non-uniqueness of hydrogeophysical inversion. We propose to use a stochastic framework by integrating minimum-relative-entropy concept, quasi Monto Carlo sampling techniques, and statistical tests. The approach allows efficient and sufficient exploration of all possibilities of model parameters and evaluation of their significances to geophysical responses. The analyses enable us to reduce the parameter space significantly. The approach can be combined with Bayesian updating, allowing us to treat the updated ‘posterior’ pdf as a memory function, which stores all the information up to date about the distributions of soil/field attributes/properties, then consider the memory function as a new prior and generate samples from it for further updating when more geophysical data is available. We applied this approach for deep oil reservoir characterization and for shallow subsurface flow monitoring. The model reduction approach reliably helps reduce the joint seismic/EM/radar inversion computational time to reasonable levels. Continuous inversion images are obtained using time-lapse data with the “memory function” applied in the Bayesian inversion.

  1. A High Resolution, Integrated Approach to Modeling Climate Change Impacts to a Mountain Headwaters Catchment using ParFlow

    NASA Astrophysics Data System (ADS)

    Pribulick, C. E.; Maxwell, R. M.; Williams, K. H.; Carroll, R. W. H.

    2014-12-01

    Prediction of environmental response to global climate change is paramount for regions that rely upon snowpack for their dominant water supply. Temperature increases are anticipated to be greater at higher elevations perturbing hydrologic systems that provide water to millions of downstream users. In this study, the relationships between large-scale climatic change and the corresponding small-scale hydrologic processes of mountainous terrain are investigated in the East River headwaters catchment near Gothic, CO. This catchment is emblematic of many others within the upper Colorado River Basin and covers an area of 250 square kilometers, has a topographic relief of 1420 meters, an average elevation of 3266 meters and has varying stream characteristics. This site allows for the examination of the varying effect of climate-induced changes on the hydrologic response of three different characteristic components of the catchment: a steep high-energy mountain system, a medium-grade lower-energy system and a low-grade low-energy meandering floodplain. To capture the surface and subsurface heterogeneity of this headwaters system the basin has been modeled at a 10-meter resolution using ParFlow, a parallel, integrated hydrologic model. Driven by meteorological forcing, ParFlow is able to capture land surface processes and represents surface and subsurface interactions through saturated and variably saturated heterogeneous flow. Data from Digital Elevation Models (DEMs), land cover, permeability, geologic and soil maps, and on-site meteorological stations, were prepared, analyzed and input into ParFlow as layers with a grid size comprised of 1403 by 1685 cells to best represent the small-scale, high resolution model domain. Water table depth, soil moisture, soil temperature, snowpack, runoff and local energy budget values provide useful insight into the catchments response to the Intergovernmental Panel on Climate Change (IPCC) temperature projections. In the near term, coupling this watershed model with one describing a diverse suite of subsurface elemental cycling pathways, including carbon and nitrogen, will provide an improved understanding of the response of the subsurface ecosystems to hydrologic transitions induced as a result of global climate change.

  2. Fiber Optic Thermal Health Monitoring of Composites

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.

    2010-01-01

    A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.

  3. Full Coupling Between the Atmosphere, Surface, and Subsurface for Integrated Hydrologic Simulation

    NASA Astrophysics Data System (ADS)

    Davison, Jason Hamilton; Hwang, Hyoun-Tae; Sudicky, Edward A.; Mallia, Derek V.; Lin, John C.

    2018-01-01

    An ever increasing community of earth system modelers is incorporating new physical processes into numerical models. This trend is facilitated by advancements in computational resources, improvements in simulation skill, and the desire to build numerical simulators that represent the water cycle with greater fidelity. In this quest to develop a state-of-the-art water cycle model, we coupled HydroGeoSphere (HGS), a 3-D control-volume finite element surface and variably saturated subsurface flow model that includes evapotranspiration processes, to the Weather Research and Forecasting (WRF) Model, a 3-D finite difference nonhydrostatic mesoscale atmospheric model. The two-way coupled model, referred to as HGS-WRF, exchanges the actual evapotranspiration fluxes and soil saturations calculated by HGS to WRF; conversely, the potential evapotranspiration and precipitation fluxes from WRF are passed to HGS. The flexible HGS-WRF coupling method allows for unique meshes used by each model, while maintaining mass and energy conservation between the domains. Furthermore, the HGS-WRF coupling implements a subtime stepping algorithm to minimize computational expense. As a demonstration of HGS-WRF's capabilities, we applied it to the California Basin and found a strong connection between the depth to the groundwater table and the latent heat fluxes across the land surface.

  4. Conceptualizing Peatlands in a Physically-Based Spatially Distributed Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Downer, Charles; Wahl, Mark

    2017-04-01

    In as part of a research effort focused on climate change effects on permafrost near Fairbanks, Alaska, it became apparent that peat soils, overlain by thick sphagnum moss, had a considerable effect on the overall hydrology. Peatlands represent a confounding mixture of vegetation, soils, and water that present challenges for conceptualizing and parametrizing hydrologic models. We employed the Gridded Surface Subsurface Hydrologic Analysis Model (GSSHA) in our analysis of the Caribou Poker Creek Experimental Watershed (CPCRW). GSSHA is a physically-based, spatially distributed, watershed model developed by the U.S. Army to simulate important streamflow-generating processes (Downer and Ogden, 2004). The model enables simulation of surface water and groundwater interactions, as well as soil temperature and frozen ground effects on subsurface water movement. The test site is a 104 km2 basin located in the Yukon-Tanana Uplands of the Northern Plateaus Physiographic Province centered on 65˚10' N latitude and 147˚30' W longitude. The area lies above the Chattanika River floodplain and is characterized by rounded hilltops with gentle slopes and alluvium-floored valleys having minimal relief (Wahrhaftig, 1965) underlain by a mica shist of the Birch Creek formation (Rieger et al., 1972). The region has a cold continental climate characterized by short warm summers and long cold winters. Observed stream flows indicated significant groundwater contribution with sustained base flows even during dry periods. A site visit exposed the presence of surface water flows indicating a mixed basin that would require both surface and subsurface simulation capability to properly capture the response. Soils in the watershed are predominately silt loam underlain by shallow fractured bedrock. Throughout much of the basin, a thick layer of live sphagnum moss and fine peat covers the ground surface. A restrictive layer of permafrost is found on north facing slopes. The combination of thick moss and peat soils presented a conundrum in terms of conceptualizing the hydrology and identifying reasonable parameter ranges for physical properties. Various combinations of overland roughness, surface retention, and subsurface flow were used to represent the peatlands. The process resulted in some interesting results that may shed light on the dominant hydrologic processes associated with peatland, as well as what hydrologic conceptualizations, simulation tools, and approaches are applicable in modeling peatland hydrology. Downer, C.W., Ogden, F.L., 2004. GSSHA: Model to simulate diverse stream flow producing processes. J. Hydrol. Eng. 161-174. Rieger, S., Furbush, C.E., Schoephorster, D.B., Summerfield Jr., H., Geiger, L.C., 1972. Soils of the Caribou-Poker Creeks Research Watershed, Interior Alaska. Hanover, New Hampshire. Wahrhaftig, C., 1965. Physiographic Divisions of Alaska. Washington, DC.

  5. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M = 3d transition metals) alloy catalyst from first-principles.

    PubMed

    Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius; Ham, Hyung Chul

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  6. Constraining the Dynamical Formation and the Size of the Primordial Building Blocks for Comet 67P/Churyumov-Gerasimenko Using the CONSERT Observations

    NASA Astrophysics Data System (ADS)

    Heggy, E.; Palmer, E. M.; Kofman, W. W.; Herique, A.; El Maarry, M. R.

    2017-12-01

    Rosetta's two-year orbital mission at comet 67P/Churyumov-Gerasimenko significantly improved our understanding of the Radar properties of cometary bodies and how they can be used to constrain the ambiguities associated to the dynamical formation of 67P by setting an upper limit on the size of the comet's initial building blocks using the CONSERT, VIRTIS and OSIRIS observations. We present here in an updated post-rendezvous three-dimensional dielectric, textural and structural model of the comet's surface and subsurface at VHF-, X- and S-band radar frequencies. We assess the radar properties of potential structural heterogeneities observed in the upper meters of the shallow subsurface as well as deeper structures across the comet head. We use CONSERT's bistatic radar sounding measurements of the nucleus `head' interior to constrain the dielectric properties and structure of the interior; VIRTIS' multi-spectral observations to constrain the surface mineralogy and the distribution of water-ice on the surface and the implications of the above on the spatial variability of the surface and shallow subsurface dielectric properties. Surface and shallow subsurface structural elements are derived from the OSIRIS' images of exposed outcrops and pit walls. Our dielectric analysis showing the lack of sufficient dielectric contrast correlated with the lack of signal broadening in the 90-MHz radar echoes observed by CONSERT suggests that the the apparent meter-sized inhomogeneities in the walls of deep pits originally interpreted as cometesimals forming the comet's primordial blocks, could be localized evolutionary features of high centered polygons caused by seasonal modifications to the near-subsurface ice formed through thermal expansion and contraction and may not be continuous through the head. Considering the three-dimensional dielectric variability of 67P as derived from CONSERT, VIRTIS, Arecibo observations and laboratory measurement we set an upper limit on the size of the comet's initial building blocks.

  7. Clathrate hydrate stability models for Titan: implications for a global subsurface ocean

    NASA Astrophysics Data System (ADS)

    Basu Sarkar, D.; Elwood Madden, M.

    2013-12-01

    Titan is the only planetary body in the solar system, apart from the Earth, with liquid at its surface. Titan's changing rotational period suggests that a global subsurface ocean decouples the icy crust from the interior. Several studies predict the existence of such an internal ocean below an Ice I layer, ranging in depth between a few tens of kilometers to a few hundreds of kilometers, depending on the composition of the icy crust and liquid-ocean. While the overall density of Titan is well constrained, the degree of differentiation within the interior is unclear. These uncertainties lead to poor understanding of the volatile content of the moon. However, unlike other similar large icy moons like Ganymede and Callisto, Titan has a thick nitrogen atmosphere, with methane as the second most abundant constituent - 5% near the surface. Titan's atmosphere, surface, and interior are likely home to various compounds such as C2H6, CO2, Ar, N2 and CH4, capable of forming clathrate hydrates. In addition, the moon has low temperature and low-to-high pressure conditions required for clathrate formation. Therefore the occurrence of extensive multicomponent hydrates may effect the composition of near-surface materials, the subsurface ocean, as well as the atmosphere. This work uses models of hydrate stability for a number of plausible hydrate formers including CH4, C2H6, CH4 + C2H6 and CH4 + NH3, and equilibrium geothermal gradients for probable near-surface materials to delineate the lateral and vertical extent of clathrate hydrate stability zones for Titan. By comparing geothermal gradients with clathrate stability fields for these systems we investigate possible compositions of Titan's global subsurface ocean. Preliminary model results indicate that ethane hydrates or compound hydrates of ethane and methane could be destabilized within the proposed depth range of the internal ocean, while methane/ammonia or pure methane hydrates may not be affected. Therefore, ethane or ethane-methane clathrates may be a major component of Titan's icy shell. Modeled geothermal gradients and stability fields of possible clathrate formers with three different scenarios for an internal ocean from the recent literature. Geothermal gradients obtained from thermal conductivity and density representing water ice and pure CH4-C2H6 hydrate. Clathrate stability field determined using HYDOFF and recent publications of NH3 clathrate stability.

  8. Introduction of the 2nd Phase of the Integrated Hydrologic Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Kollet, Stefan; Maxwell, Reed; Dages, Cecile; Mouche, Emmanuel; Mugler, Claude; Paniconi, Claudio; Park, Young-Jin; Putti, Mario; Shen, Chaopeng; Stisen, Simon; Sudicky, Edward; Sulis, Mauro; Ji, Xinye

    2015-04-01

    The 2nd Phase of the Integrated Hydrologic Model Intercomparison Project commenced in June 2013 with a workshop at Bonn University funded by the German Science Foundation and US National Science Foundation. Three test cases were defined and compared that are available online at www.hpsc-terrsys.de including a tilted v-catchment case; a case called superslab based on multiple slab-heterogeneities in the hydraulic conductivity along a hillslope; and the Borden site case, based on a published field experiment. The goal of this phase is to further interrogate the coupling of surface-subsurface flow implemented in various integrated hydrologic models; and to understand and quantify the impact of differences in the conceptual and technical implementations on the simulation results, which may constitute an additional source of uncertainty. The focus has been broadened considerably including e.g. saturated and unsaturated subsurface storages, saturated surface area, ponded surface storage in addition to discharge, and pressure/saturation profiles and cross-sections. Here, first results are presented and discussed demonstrating the conceptual and technical challenges in implementing essentially the same governing equations describing highly non-linear moisture redistribution processes and surface-groundwater interactions.

  9. Surface-subsurface turbulent interaction at the interface of a permeable bed: influence of the wall permeability

    NASA Astrophysics Data System (ADS)

    Kim, T.; Blois, G.; Best, J.; Christensen, K. T.

    2017-12-01

    Coarse-gravel river beds possess a high degree of permeability. Flow interactions between surface and subsurface flow across the bed interface is key to a number of natural processes occurring in the hyporheic zone. In fact, it is increasingly recognized that these interactions drive mass, momentum and energy transport across the interface, and consequently control biochemical processes as well as stability of sediments. The current study explores the role of the wall permeability in surface and subsurface flow interaction under controlled experimental conditions on a physical model of a gravel bed. The present wall model was constructed by five layers of cubically arranged spheres (d=25.4mm, where d is a diameter) providing 48% of porosity. Surface topography was removed by cutting half of a diameter on the top layer of spheres to render the flow surface smooth and highlight the impact of the permeability on the overlying flow. An impermeable smooth wall was also considered as a baseline of comparison for the permeable wall flow. To obtain basic flow statistics, low-frame-rate high-resolution PIV measurements were performed first in the streamwise-wall-normal (x-y) plane and refractive-index matching was employed to optically access the flow within the permeable wall. Time-resolved PIV experiments in the same facility were followed to investigate the flow interaction across the wall interface in sptaio-temporal domain. In this paper, a detailed analysis of the first and second order velocity statistics as well as the amplitude modulation for the flow overlying the permeable smooth wall will be presented.

  10. Seasonal Variability in Vadose zone biodegradation at a crude oil pipeline rupture site

    USGS Publications Warehouse

    Sihota, Natasha J.; Trost, Jared J.; Bekins, Barbara; Berg, Andrew M.; Delin, Geoffrey N.; Mason, Brent E.; Warren, Ean; Mayer, K. Ulrich

    2016-01-01

    Understanding seasonal changes in natural attenuation processes is critical for evaluating source-zone longevity and informing management decisions. The seasonal variations of natural attenuation were investigated through measurements of surficial CO2 effluxes, shallow soil CO2 radiocarbon contents, subsurface gas concentrations, soil temperature, and volumetric water contents during a 2-yr period. Surficial CO2 effluxes varied seasonally, with peak values of total soil respiration (TSR) occurring in the late spring and summer. Efflux and radiocarbon data indicated that the fractional contributions of natural soil respiration (NSR) and contaminant soil respiration (CSR) to TSR varied seasonally. The NSR dominated in the spring and summer, and CSR dominated in the fall and winter. Subsurface gas concentrations also varied seasonally, with peak values of CO2 and CH4 occurring in the fall and winter. Vadose zone temperatures and subsurface CO2 concentrations revealed a correlation between contaminant respiration and temperature. A time lag of 5 to 7 mo between peak subsurface CO2 concentrations and peak surface efflux is consistent with travel-time estimates for subsurface gas migration. Periods of frozen soils coincided with depressed surface CO2 effluxes and elevated CO2 concentrations, pointing to the temporary presence of an ice layer that inhibited gas transport. Quantitative reactive transport simulations demonstrated aspects of the conceptual model developed from field measurements. Overall, results indicated that source-zone natural attenuation (SZNA) rates and gas transport processes varied seasonally and that the average annual SZNA rate estimated from periodic surface efflux measurements is 60% lower than rates determined from measurements during the summer.

  11. Effects of spatial and temporal resolution on simulated feedbacks from polygonal tundra.

    NASA Astrophysics Data System (ADS)

    Coon, E.; Atchley, A. L.; Painter, S. L.; Karra, S.; Moulton, J. D.; Wilson, C. J.; Liljedahl, A.

    2014-12-01

    Earth system land models typically resolve permafrost regions at spatial resolutions grossly larger than the scales of topographic variation. This observation leads to two critical questions: How much error is introduced by this lack of resolution, and what is the effect of this approximation on other coupled components of the Earth system, notably the energy balance and carbon cycle? Here we use the Arctic Terrestrial Simulator (ATS) to run micro-topography resolving simulations of polygonal ground, driven by meteorological data from Barrow, AK, to address these questions. ATS couples surface and subsurface processes, including thermal hydrology, surface energy balance, and a snow model. Comparisons are made between one-dimensional "column model" simulations (similar to, for instance, CLM or other land models typically used in Earth System models) and higher-dimensional simulations which resolve micro-topography, allowing for distributed surface runoff, horizontal flow in the subsurface, and uneven snow distribution. Additionally, we drive models with meteorological data averaged over different time scales from daily to weekly moving windows. In each case, we compare fluxes important to the surface energy balance including albedo, latent and sensible heat fluxes, and land-to-atmosphere long-wave radiation. Results indicate that spatial topography variation and temporal variability are important in several ways. Snow distribution greatly affects the surface energy balance, fundamentally changing the partitioning of incoming solar radiation between the subsurface and the atmosphere. This has significant effects on soil moisture and temperature, with implications for vegetation and decomposition. Resolving temporal variability is especially important in spring, when early warm days can alter the onset of snowmelt by days to weeks. We show that high-resolution simulations are valuable in evaluating current land models, especially in areas of polygonal ground. This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the The Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science. LA-UR-14-26227.

  12. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars

    NASA Astrophysics Data System (ADS)

    Bishop, Janice L.; Fairén, Alberto G.; Michalski, Joseph R.; Gago-Duport, Luis; Baker, Leslie L.; Velbel, Michael A.; Gross, Christoph; Rampe, Elizabeth B.

    2018-03-01

    The ancient rock record for Mars has long been at odds with climate modelling. The presence of valley networks, dendritic channels and deltas on ancient terrains points towards running water and fluvial erosion on early Mars1, but climate modelling indicates that long-term warm conditions were not sustainable2. Widespread phyllosilicates and other aqueous minerals on the Martian surface3-6 provide additional evidence that an early wet Martian climate resulted in surface weathering. Some of these phyllosilicates formed in subsurface crustal environments5, with no association with the Martian climate, while other phyllosilicate-rich outcrops exhibit layered morphologies and broad stratigraphies7 consistent with surface formation. Here, we develop a new geochemical model for early Mars to explain the formation of these clay-bearing rocks in warm and wet surface locations. We propose that sporadic, short-term warm and wet environments during a generally cold early Mars enabled phyllosilicate formation without requiring long-term warm and wet conditions. We conclude that Mg-rich clay-bearing rocks with lateral variations in mixed Fe/Mg smectite, chlorite, talc, serpentine and zeolite occurrences formed in subsurface hydrothermal environments, whereas dioctahedral (Al/Fe3+-rich) smectite and widespread vertical horizonation of Fe/Mg smectites, clay assemblages and sulphates formed in variable aqueous environments on the surface of Mars. Our model for aluminosilicate formation on Mars is consistent with the observed geological features, diversity of aqueous mineralogies in ancient surface rocks and state-of-the-art palaeoclimate scenarios.

  13. Ebullition, Plant-Mediated Transport, and Subsurface Horizontal Water Flow Dominate Methane Transport in an Arctic Sphagnum Bog

    NASA Astrophysics Data System (ADS)

    Wehr, R. A.; McCalley, C. K.; Logan, T. A.; Chanton, J.; Crill, P. M.; Rich, V. I.; Saleska, S. R.

    2017-12-01

    Emission of the greenhouse gas methane from wetlands is of prime concern in the prediction of climate change - especially emission associated with thawing permafrost, which may drive a positive feedback loop of emission and warming. In addition to the biochemistry of methane production and consumption, wetland methane emission depends critically on the transport mechanisms by which methane moves through and out of the ecosystem. We therefore developed a model of methane biochemistry and transport for a sphagnum bog representing an intermediate permafrost thaw stage in Stordalen Mire, Sweden. In order to simultaneously reproduce measured profiles of both the concentrations and isotopic compositions of both methane and carbon dioxide in the peat pore water (Fig. 1) - as well as the surface methane emission - it was necessary for the model to include ebullition, plant-mediated transport via aerenchyma, and subsurface horizontal water flow. Diffusion of gas through the pore water was relatively unimportant. As a result, 90% of the produced methane escaped the wetland rather than being consumed by methanotrophic organisms in the near-surface pore water. Our model provides a comprehensive picture of methane emission from this bog site by quantifying the vertical profiles of: acetoclastic methanogenesis, hydrogenotrophic methanogenesis, methane oxidation, aerobic respiration, ebullition, plant-mediated transport, subsurface horizontal water flow, and diffusion.

  14. Geophysical Characterization of Subsurface Properties Relevant to the Hydrology of the Standard Mine in Elk Basin, Colorado

    USGS Publications Warehouse

    Minsley, Burke J.; Ball, Lyndsay B.; Burton, Bethany L.; Caine, Jonathan S.; Curry-Elrod, Erika; Manning, Andrew H.

    2010-01-01

    Geophysical data were collected at the Standard Mine in Elk Basin near Crested Butte, Colorado, to help improve the U.S. Environmental Protection Agency's understanding of the hydrogeologic controls in the basin and how they affect surface and groundwater interactions with nearby mine workings. These data are discussed in the context of geologic observations at the site, the details of which are provided in a separate report. This integrated approach uses the geologic observations to help constrain subsurface information obtained from the analysis of surface geophysical measurements, which is a critical step toward using the geophysical data in a meaningful hydrogeologic framework. This approach combines the benefit of many direct but sparse field observations with spatially continuous but indirect measurements of physical properties through the use of geophysics. Surface geophysical data include: (1) electrical resistivity profiles aimed at imaging variability in subsurface structures and fluid content; (2) self-potentials, which are sensitive to mineralized zones at this site and, to a lesser extent, shallow-flow patterns; and (3) magnetic measurements, which provide information on lateral variability in near-surface geologic features, although there are few magnetic minerals in the rocks at this site. Results from the resistivity data indicate a general two-layer model in which an upper highly resistive unit, 3 to 10 meters thick, overlies a less resistive unit that is imaged to depths of 20 to 25 meters. The high resistivity of the upper unit likely is attributed to unsaturated conditions, meaning that the contact between the upper and lower units may correspond to the water table. Significant lateral heterogeneity is observed because of the presence of major features such as the Standard and Elk fault veins, as well as highly heterogeneous joint distributions. Very high resistivities (greater than 10 kiloohmmeters) are observed in locations that may correspond to more silicified, lower porosity rock. Several thin (2 to 3 meters deep and up to tens of meters wide) low-resistivity features in the very near surface coincide with observed surface-water drainage features at the site. These are limited to depths less than 3 meters and may indicate surface and very shallow groundwater flowing downhill on top of less permeable bedrock. The data do not clearly point to discrete zones of high infiltration, but these cannot be ruled out given the heterogeneous nature of joints in the shallow subsurface. Disseminated and localized electrically conductive mineralization do not appear to play a strong role in controlling the resistivity values, which generally are high throughout the site. The self-potential analysis highlights the Standard fault vein, the northwest (NW) Elk vein near the Elk portal, and several polymetallic quartz veins. These features contain sulfide minerals in the subsurface that form an electrochemical cell that produces their distinct self-potential signal. A smaller component of the self-potential signal is attributed to relatively moderate topographically driven shallow groundwater flow, which is most prevalent in the vicinity of Elk Creek and to a lesser extent in the area of surface-water drainage below the Level 5 portal. Given the anomalies associated with the electrochemical weathering near the Standard fault vein, it is not possible to completely rule out downward infiltration of surface water and shallow groundwater intersected by the fault, though this is an unlikely scenario given the available data. Magnetic data show little variation, consistent with the mostly nonmagnetic host rocks and mineralization at the site, which is verified by magnetic susceptibility measurements and X-ray diffraction mineralogy data on local rock samples. The contact between the Ohio Creek Member of the Mesaverde Formation and Wasatch Formation coincides with a change in character of the magnetic signature, though

  15. Phosphorus runoff losses from subsurface-applied poultry litter on coastal plain soils.

    PubMed

    Kibet, Leonard C; Allen, Arthur L; Kleinman, Peter J A; Feyereisen, Gary W; Church, Clinton; Saporito, Lou S; Way, Thomas R

    2011-01-01

    The application of poultry litter to soils is a water quality concern on the Delmarva Peninsula, as runoff contributes P to the eutrophic Chesapeake Bay. This study compared a new subsurface applicator for poultry litter with conventional surface application and tillage incorporation of litter on a Coastal Plain soil under no-till management. Monolith lysimeters (61 cm by 61 cm by 61 cm) were collected immediately after litter application and subjected to rainfall simulation (61 mm h(-1) 1 h) 15 and 42 d later. In the first rainfall event, subsurface application of litter significantly lowered total P losses in runoff (1.90 kg ha(-1)) compared with surface application (4.78 kg ha(-1)). Losses of P with subsurface application were not significantly different from disked litter or an unamended control. By the second event, total P losses did not differ significantly between surface and subsurface litter treatments but were at least twofold greater than losses from the disked and control treatments. A rising water table in the second event likely mobilized dissolved forms of P in subsurface-applied litter to the soil surface, enriching runoff water with P. Across both events, subsurface application of litter did not significantly decrease cumulative losses of P relative to surface-applied litter, whereas disking the litter into the soil did. Results confirm the short-term reduction of runoff P losses with subsurface litter application observed elsewhere but highlight the modifying effect of soil hydrology on this technology's ability to minimize P loss in runoff.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobb, M. A.; Dockter, R. E.

    The permeability of ground surfaces within the U.S. Department of Energy’s (DOE) Hanford Site strongly influences boundary conditions when simulating the movement of groundwater using the Subsurface Transport Over Multiple Phases model. To conduct site-wide modeling of cumulative impacts to groundwater from past, current, and future waste management activities, a site-wide assessment of the permeability of surface conditions is needed. The surface condition of the vast majority of the Hanford Site has been and continues to be native soils vegetated with dryland grasses and shrubs.

  17. Growth of microorganisms in Martian-like shallow subsurface conditions: laboratory modelling

    NASA Astrophysics Data System (ADS)

    Pavlov, A. K.; Shelegedin, V. N.; Vdovina, M. A.; Pavlov, A. A.

    2010-01-01

    Low atmospheric pressures on Mars and the lack of substantial amounts of liquid water were suggested to be among the major limiting factors for the potential Martian biosphere. However, large amounts of ice were detected in the relatively shallow subsurface layers of Mars by the Odyssey Mission and when ice sublimates the water vapour can diffuse through the porous surface layer of the soil. Here we studied the possibility for the active growth of microorganisms in such a vapour diffusion layer. Our results showed the possibility of metabolism and the reproduction of non-extremophile terrestrial microorganisms (Vibrio sp.) under very low (0.01-0.1 mbar) atmospheric pressures in a Martian-like shallow subsurface regolith.

  18. Uncertainty Propagation of Non-Parametric-Derived Precipitation Estimates into Multi-Hydrologic Model Simulations

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. A. E.; Nikolopoulos, E. I.; Anagnostou, E. N.

    2017-12-01

    Quantifying the uncertainty of global precipitation datasets is beneficial when using these precipitation products in hydrological applications, because precipitation uncertainty propagation through hydrologic modeling can significantly affect the accuracy of the simulated hydrologic variables. In this research the Iberian Peninsula has been used as the study area with a study period spanning eleven years (2000-2010). This study evaluates the performance of multiple hydrologic models forced with combined global rainfall estimates derived based on a Quantile Regression Forests (QRF) technique. In QRF technique three satellite precipitation products (CMORPH, PERSIANN, and 3B42 (V7)); an atmospheric reanalysis precipitation and air temperature dataset; satellite-derived near-surface daily soil moisture data; and a terrain elevation dataset are being utilized in this study. A high-resolution, ground-based observations driven precipitation dataset (named SAFRAN) available at 5 km/1 h resolution is used as reference. Through the QRF blending framework the stochastic error model produces error-adjusted ensemble precipitation realizations, which are used to force four global hydrological models (JULES (Joint UK Land Environment Simulator), WaterGAP3 (Water-Global Assessment and Prognosis), ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) and SURFEX (Stands for Surface Externalisée) ) to simulate three hydrologic variables (surface runoff, subsurface runoff and evapotranspiration). The models are forced with the reference precipitation to generate reference-based hydrologic simulations. This study presents a comparative analysis of multiple hydrologic model simulations for different hydrologic variables and the impact of the blending algorithm on the simulated hydrologic variables. Results show how precipitation uncertainty propagates through the different hydrologic model structures to manifest in reduction of error in hydrologic variables.

  19. Stability of ice on the Moon with rough topography

    NASA Astrophysics Data System (ADS)

    Rubanenko, Lior; Aharonson, Oded

    2017-11-01

    The heat flux incident upon the surface of an airless planetary body is dominated by solar radiation during the day, and by thermal emission from topography at night. Motivated by the close relationship between this heat flux, the surface temperatures, and the stability of volatiles, we consider the effect of the slope distribution on the temperature distribution and hence prevalence of cold-traps, where volatiles may accumulate over geologic time. We develop a thermophysical model accounting for insolation, reflected and emitted radiation, and subsurface conduction, and use it to examine several idealized representations of rough topography. We show how subsurface conduction alters the temperature distribution of bowl-shaped craters compared to predictions given by past analytic models. We model the dependence of cold-traps on crater geometry and quantify the effect that while deeper depressions cast more persistent shadows, they are often too warm to trap water ice due to the smaller sky fraction and increased reflected and reemitted radiation from the walls. In order to calculate the temperature distribution outside craters, we consider rough random surfaces with a Gaussian slope distribution. Using their derived temperatures and additional volatile stability models, we estimate the potential area fraction of stable water ice on Earth's Moon. For example, surfaces with slope RMS ∼15° (corresponding to length-scales ∼10 m on the lunar surface) located near the poles are found to have a ∼10% exposed cold-trap area fraction. In the subsurface, the diffusion barrier created by the overlaying regolith increases this area fraction to ∼40%. Additionally, some buried water ice is shown to remain stable even beneath temporarily illuminated slopes, making it more readily accessible to future lunar excavation missions. Finally, due to the exponential dependence of stability of ice on temperature, we are able to constrain the maximum thickness of the unstable layer to a few decimeters.

  20. State-of-stress in magmatic rift zones: Predicting the role of surface and subsurface topography

    NASA Astrophysics Data System (ADS)

    Oliva, S. J. C.; Ebinger, C.; Rivalta, E.; Williams, C. A.

    2017-12-01

    Continental rift zones are segmented along their length by large fault systems that form in response to extensional stresses. Volcanoes and crustal magma chambers cause fundamental changes to the density structure, load the plates, and alter the state-of-stress within the crust, which then dictates fracture orientation. In this study, we develop geodynamic models scaled to a < 7 My rift sector in the Eastern rift, East Africa where geophysical imaging provides tight constraints on subsurface structure, petrologic and thermodynamic studies constrain material densities, and seismicity and structural analyses constrain active and time-averaged kinematics. This area is an ideal test area because a 60º stress rotation is observed in time-averaged fault and magma intrusion, and in local seismicity, and because this was the site of a large volume dike intrusion and seismic sequence in 2007. We use physics-based 2D and 3D models (analytical and finite elements) constrained by data from active rift zones to quantify the effects of loading on state-of-stress. By modeling varying geometric arrangements, and density contrasts of topographic and subsurface loads, and with reasonable regional extensional forces, the resulting state-of-stress reveals the favored orientation for new intrusions. Although our models are generalized, they allow us to evaluate whether a magmatic system (surface and subsurface) can explain the observed stress rotation, and enable new intrusions, new faults, or fault reactivation with orientations oblique to the main border faults. Our results will improve our understanding of the different factors at play in these extensional regimes, as well as contribute to a better assessment of the hazards in the area.

  1. Simulating oil droplet dispersal from the Deepwater Horizon spill with a Lagrangian approach

    USGS Publications Warehouse

    North, Elizabeth W.; Schlag, Zachary; Adams, E. Eric; Sherwood, Christopher R.; He, Ruoying; Hyun, Hoon; Socolofsky, Scott A.

    2011-01-01

    An analytical multiphase plume model, combined with time-varying flow and hydrographic fields generated by the 3-D South Atlantic Bight and Gulf of Mexico model (SABGOM) hydrodynamic model, were used as input to a Lagrangian transport model (LTRANS), to simulate transport of oil droplets dispersed at depth from the recent Deepwater Horizon MC 252 oil spill. The plume model predicts a stratification-dominated near field, in which small oil droplets detrain from the central plume containing faster rising large oil droplets and gas bubbles and become trapped by density stratification. Simulated intrusion (trap) heights of ∼ 310–370 m agree well with the midrange of conductivity-temperature-depth observations, though the simulated variation in trap height was lower than observed, presumably in part due to unresolved variability in source composition (percentage oil versus gas) and location (multiple leaks during first half of spill). Simulated droplet trajectories by the SABGOM-LTRANS modeling system showed that droplets with diameters between 10 and 50 μm formed a distinct subsurface plume, which was transported horizontally and remained in the subsurface for >1 month. In contrast, droplets with diameters ≥90 μm rose rapidly to the surface. Simulated trajectories of droplets ≤50 μm in diameter were found to be consistent with field observations of a southwest-tending subsurface plume in late June 2010 reported by Camilli et al. [2010]. Model results suggest that the subsurface plume looped around to the east, with potential subsurface oil transport to the northeast and southeast. Ongoing work is focusing on adding degradation processes to the model to constrain droplet dispersal.

  2. Coupled land surface-subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra

    NASA Astrophysics Data System (ADS)

    Phuong Tran, Anh; Dafflon, Baptiste; Hubbard, Susan S.

    2017-09-01

    Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface-subsurface hydrological-thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon-climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological-thermal processes associated with annual freeze-thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets - including soil liquid water content, temperature and electrical resistivity tomography (ERT) data - to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological-thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface-subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice-liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological-thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the estimation of OC and other parameters. We also quantify the propagation of uncertainty from the estimated parameters to prediction of hydrological-thermal responses. We find that, compared to inversion of single dataset (temperature, liquid water content or apparent resistivity), joint inversion of these datasets significantly reduces parameter uncertainty. We find that the joint inversion approach is able to estimate OC and sand content within the shallow active layer (top 0.3 m of soil) with high reliability. Due to the small variations of temperature and moisture within the shallow permafrost (here at about 0.6 m depth), the approach is unable to estimate OC with confidence. However, if the soil porosity is functionally related to the OC and mineral content, which is often observed in organic-rich Arctic soil, the uncertainty of OC estimate at this depth remarkably decreases. Our study documents the value of the new surface-subsurface, deterministic-stochastic inversion approach, as well as the benefit of including multiple types of data to estimate OC and associated hydrological-thermal dynamics.

  3. Modeling the development of martian sublimation thermokarst landforms

    USGS Publications Warehouse

    Dundas, Colin M.; Byrne, Shane; McEwen, Alfred S.

    2015-01-01

    Sublimation-thermokarst landforms result from collapse of the surface when ice is lost from the subsurface. On Mars, scalloped landforms with scales of decameters to kilometers are observed in the mid-latitudes and considered likely thermokarst features. We describe a landscape evolution model that couples diffusive mass movement and subsurface ice loss due to sublimation. Over periods of tens of thousands of Mars years under conditions similar to the present, the model produces scallop-like features similar to those on the Martian surface, starting from much smaller initial disturbances. The model also indicates crater expansion when impacts occur in surfaces underlain by excess ice to some depth, with morphologies similar to observed landforms on the Martian northern plains. In order to produce these landforms by sublimation, substantial quantities of excess ice are required, at least comparable to the vertical extent of the landform, and such ice must remain in adjacent terrain to support the non-deflated surface. We suggest that Martian thermokarst features are consistent with formation by sublimation, without melting, and that significant thicknesses of very clean excess ice (up to many tens of meters, the depth of some scalloped depressions) are locally present in the Martian mid-latitudes. Climate conditions leading to melting at significant depth are not required.

  4. Holocene evolution of the North Atlantic subsurface transport

    NASA Astrophysics Data System (ADS)

    Repschläger, Janne; Garbe-Schönberg, Dieter; Weinelt, Mara; Schneider, Ralph

    2017-04-01

    Previous studies suggested that short-term freshening events in the subpolar gyre can be counterbalanced by advection of saline waters from the subtropical gyre and thus stabilize the Atlantic Meridional Overturning Circulation (AMOC). However, little is known about the inter-gyre transport pathways. Here, we infer changes in surface and subsurface transport between the subtropical and polar North Atlantic during the last 11 000 years, by combining new temperature and salinity reconstructions obtained from combined δ18O and Mg / Ca measurements on surface and subsurface dwelling foraminifera with published foraminiferal abundance data from the subtropical North Atlantic, and with salinity and temperature data from the tropical and subpolar North Atlantic. This compilation implies an overall stable subtropical warm surface water transport since 10 ka BP. In contrast, subsurface warm water transport started at about 8 ka but still with subsurface heat storage in the subtropical gyre. The full strength of intergyre exchange was probably reached only after the onset of northward transport of warm saline subsurface waters at about 7 ka BP, associated with the onset of the modern AMOC mode. A critical evaluation of different potential forcing mechanisms leads to the assumption that freshwater supply from the Laurentide Ice Sheet was the main control on subtropical to subpolar ocean transport at surface and subsurface levels.

  5. Radio-interferometric imaging of the subsurface emissions from the planet Mercury

    NASA Technical Reports Server (NTRS)

    Burns, J. O.; Zeilik, M.; Gisler, G. R.; Borovsky, J. E.; Baker, D. N.

    1987-01-01

    The distribution of total and polarized intensities from Mercury's subsurface layers have been mapped using VLA observations. The first detection of a hot pole along the Hermean equator is reported and modeled as black-body reradiation from preferential diurnal heating. These observations appear to rule out any internal sources of heat within Mercury. Polarized emission from the limb of the planet is also found, and is understood in terms of the dielectric properties of the Hermean surface.

  6. Can Surface Seeps Elucidate Carbon Cycling in Terrestrial Subsurface Ecosystems in Ophiolite-hosted Serpentinizing Fluids?

    NASA Astrophysics Data System (ADS)

    Meyer-Dombard, D. R.; Cardace, D.; Woycheese, K. M.; Vallalar, B.; Arcilla, C. A.

    2017-12-01

    Serpentinization in ophiolite-hosted regimes produces highly reduced, high pH fluids that are often characterized as having copious H2 and CH4 gas, little/no inorganic carbon, and limited electron acceptors. Subsurface microbial biomes shift as deeply-sourced fluids reach the oxygenated surface environment, where organisms capable of metabolizing O2 thrive (Woycheese et al., 2015). The relationship, connection, and communication between surface expressions (such as fluid seeps) and the subsurface biosphere is still largely unexplored. Our work in the Zambales and Palawan ophiolites (Philippines) defines surface habitats with geochemistry, targeted culturing efforts, and community analysis (Cardace et al., 2015; Woycheese et al., 2015). Fluids in the spring sources are largely `typical' and fall in the pH range of 9-11.5 with measurable gas escaping from the subsurface (H2 and CH4 > 10uM, CO2 > 1 mM; Cardace et al., 2015). Outflow channels extend from the source pools. These surface data encourage prediction of the subsurface metabolic landscape. To understand how carbon cycling in the subsurface and surface environments might be related, we focus on community analysis, culturing, and the geochemical context of the ecosystem. Shotgun metagenomic analyses indicate carbon cycling is reliant on methanogenesis, acetogenesis, sulfate reduction, and H2 and CH4 oxidation. Methyl coenzyme M reductase, and formylmethanofuran dehydrogenase were detected, and relative abundance increased near the near-anoxic spring source. In this tropical climate, cellulose is also a likely carbon source, possibly even in the subsurface. Enrichment cultures [pH 8-12] and strains [pH 8-10] from Zambales springs show degradation of cellulose and production of cellulase. DIC, DOC, and 13C of solid substrates show mixed autotrophic/heterotrophic activity. Results indicate a metabolically flexible surface community, and suggest details about carbon cycling in the subsurface.

  7. The Lusi eruption site: insights from surface and subsurface investigations

    NASA Astrophysics Data System (ADS)

    Mazzini, A.

    2017-12-01

    The Indonesian Lusi eruption has been spewing boiling water, gas, and sediments since the 29th of May 2006. Initially, numerous aligned eruptions sites appeared along the Watukosek fault system (WFS) that was reactivated after the Yogyakarta earthquake occurring the 27th of May in the Java Island. Within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. To date Lusi is still active and an area of 7 km2is covered by mud. Since its birth Lusi erupted with a pulsating behaviour. In the framework of the ERC grant "Lusi Lab" we conducted several years of monitoring and regional investigations coupling surface sampling and subsurface imaging in the region around Lusi. Ambient noise tomography studies, obtained with a local network of 31 stations, revealed for the first time subsurface images of the Lusi region and the adjacent Arjuno-Welirang (AW) volcanic complex. Results show that below the AW volcanic complex are present 5km deep magma chambers that are connected, through a defined corridor, with the roots of the Lusi eruption site. The Lusi subsurface shows the presence of a defined vertical hydrothermal plume that extends to at least 5km. Chemical analyses of the seeping fluids sampled from 1) the Lusi plume (using a specifically designed drone), 2) the region around Lusi, and 3) the fumaroles and the hydro thermal springs of AW, revealed striking similarities. More specifically a mantellic signature of the Lusi fluids confirms the scenario that Lusi represents a magmatic-driven hydrothermal system hosted in sedimentary basin. Seismic profiles interpretation, surface mapping, and fluid sampling show that the WFS, connecting AW and extending towards the NE of Java, acted as a preferential pathway for the igneous intrusion and fluids migration towards the subsurface. Petrography and dating of the clasts erupted at Lusi record high temperatures and indicate that the roots of the active conduit extend to at least 5km at depth, matching the observations and images obtained with geophysical investigations. Converging results support a scenario where igneous intrusions and hydrothermal fluid migrating from the AW complex moved towards the NE of Java. The triggered metamorphic reaction resulted in high overpressures that initiated the Lusi eruption site.

  8. Elastic Reverse Time Migration (RTM) From Surface Topography

    NASA Astrophysics Data System (ADS)

    Akram, Naveed; Chen, Xiaofei

    2017-04-01

    Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.

  9. Elastic Reverse Time Migration (RTM) From Surface Topography

    NASA Astrophysics Data System (ADS)

    Naveed, A.; Chen, X.

    2016-12-01

    Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.

  10. Characteristics and Future Changes of Great Mississippi Flood Events in a Global Coupled Climate Model

    NASA Astrophysics Data System (ADS)

    van der Wiel, K.; Kapnick, S. B.; Vecchi, G.; Smith, J. A.

    2017-12-01

    The Mississippi-Missouri river catchment houses millions of people and much of the U.S. national agricultural production. Severe flooding events can therefore have large negative societal, natural and economic impacts. GFDL FLOR, a global coupled climate model (atmosphere, ocean, land, sea ice with integrated river routing module) is used to investigate the characteristics of great Mississippi floods with an average return period of 100 years. Model experiments under pre-industrial greenhouse gas forcing were conducted for 3400 years, such that the most extreme flooding events were explicitly modeled and the land and/or atmospheric causes could be investigated. It is shown that melt of snow pack and frozen sub-surface water in the Missouri and Upper Mississippi basins prime the river system, subsequently sensitizing it to above average precipitation in the Ohio and Tennessee basins. The months preceding the greatest flooding events are above average wet, leading to moist sub-surface conditions. Anomalous melt depends on the availability of frozen water in the catchment, therefore anomalous amounts of sub-surface frozen water and anomalous large snow pack in winter (Nov-Feb) make the river system susceptible for these great flooding events in spring (Feb-Apr). An additional experiment of 1200 years under transient greenhouse gas forcing (RCP4.5, 5 members) was done to investigate potential future change in flood risk. Based on a peak-over-threshold method, it is found that the number of great flooding events decreases in a warmer future. This decrease coincides with decreasing occurrence of large melt events, but is despite increasing numbers of large precipitation events. Though the model results indicate a decreasing risk for the greatest flooding events, the predictability of events might decrease in a warmer future given the changing characters of melt and precipitation.

  11. Intelligent viewpoint selection for efficient CT to video registration in laparoscopic liver surgery.

    PubMed

    Robu, Maria R; Edwards, Philip; Ramalhinho, João; Thompson, Stephen; Davidson, Brian; Hawkes, David; Stoyanov, Danail; Clarkson, Matthew J

    2017-07-01

    Minimally invasive surgery offers advantages over open surgery due to a shorter recovery time, less pain and trauma for the patient. However, inherent challenges such as lack of tactile feedback and difficulty in controlling bleeding lower the percentage of suitable cases. Augmented reality can show a better visualisation of sub-surface structures and tumour locations by fusing pre-operative CT data with real-time laparoscopic video. Such augmented reality visualisation requires a fast and robust video to CT registration that minimises interruption to the surgical procedure. We propose to use view planning for efficient rigid registration. Given the trocar position, a set of camera positions are sampled and scored based on the corresponding liver surface properties. We implement a simulation framework to validate the proof of concept using a segmented CT model from a human patient. Furthermore, we apply the proposed method on clinical data acquired during a human liver resection. The first experiment motivates the viewpoint scoring strategy and investigates reliable liver regions for accurate registrations in an intuitive visualisation. The second experiment shows wider basins of convergence for higher scoring viewpoints. The third experiment shows that a comparable registration performance can be achieved by at least two merged high scoring views and four low scoring views. Hence, the focus could change from the acquisition of a large liver surface to a small number of distinctive patches, thereby giving a more explicit protocol for surface reconstruction. We discuss the application of the proposed method on clinical data and show initial results. The proposed simulation framework shows promising results to motivate more research into a comprehensive view planning method for efficient registration in laparoscopic liver surgery.

  12. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation

    USGS Publications Warehouse

    Ge, S.; McKenzie, J.; Voss, C.; Wu, Q.

    2011-01-01

    Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment. Copyright 2011 by the American Geophysical Union.

  13. Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics

    DOEpatents

    Ellingson, William A.; Brada, Mark P.

    1995-01-01

    A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser's wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known "feature masks" of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects.

  14. Subsurface transport of orthophosphate in five agricultural watersheds, USA

    USGS Publications Warehouse

    Domagalski, Joseph L.; Johnson, Henry M.

    2011-01-01

    Concentrations of dissolved orthophosphate (ortho P) in the unsaturated zone, groundwater, tile drains, and groundwater/stream water interfaces were assessed in five agricultural watersheds to determine the potential for subsurface transport. Concentrations of iron oxides were measured in the aquifer material and adsorption of ortho P on oxide surfaces was assessed by geochemical modeling. Attenuation of ortho P in these aquifers was attributed primarily to sorption onto iron oxides, and in one location onto clay minerals. Only one location showed a clear indication of phosphorus transport to a stream from groundwater discharge, although groundwater did contribute to the stream load elsewhere. Subsurface ortho P movement at a site in California resulted in a plume down gradient from orchards, which was attenuated by a 200 m thick riparian zone with natural vegetation. Iron oxides had an effect on phosphorus movement and concentrations at all locations, and groundwater chemistry, especially pH, exerted a major control on the amount of phosphorus adsorbed. Groundwater pH at a site in Maryland was below 5 and that resulted in complete sequestration of phosphorus and no movement toward the stream. Geochemical modeling indicated that as the surfaces approached saturation, groundwater concentrations of ortho P rise rapidly.

  15. Dynamics of nonreactive solute transport in the permafrost environment

    NASA Astrophysics Data System (ADS)

    Svyatskiy, D.; Coon, E. T.; Moulton, J. D.

    2017-12-01

    As part of the DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic, researchers are developing process-rich models to understand and predict the evolution of water sources and hydrologic flow pathways resulting from degrading permafrost. The sources and interaction of surface and subsurface water and flow paths are complex in space and time due to strong interplay between heterogeneous subsurface parameters, the seasonal to decadal evolution of the flow domain, climate driven melting and release of permafrost ice as a liquid water source, evolving surface topography and highly variable meteorological data. In this study, we seek to characterize the magnitude of vertical and lateral subsurface flows in a cold, wet tundra, polygonal landscape characteristic of the Barrow Peninsula, AK. To better understand the factors controlling water flux partitioning in these low gradient landscapes, NGEE researchers developed and are applying the Advanced Terrestrial Simulator (ATS), which fully couples surface and subsurface flow and energy processes, snow distribution and atmospheric forcing. Here we demonstrate the integration of a new solute transport model within the ATS, which enables the interpretation of applied and natural tracer experiments and observations aimed at quantifying water sources and flux partitioning. We examine the role of ice wedge polygon structure, freeze-thaw processes and soil properties on the seasonal transport of water within and through polygons features, and compare results to tracer experiments on 2D low-centered and high-centered transects corresponding to artificial as well as realistic topographical data from sites in polygonal tundra. These simulations demonstrate significant difference between flow patterns between permafrost and non-permafrost environments due to active layer freeze-thaw processes.

  16. Electronic damping of anharmonic adsorbate vibrations at metallic surfaces

    NASA Astrophysics Data System (ADS)

    Tremblay, Jean Christophe; Monturet, Serge; Saalfrank, Peter

    2010-03-01

    The nonadiabatic coupling of an adsorbate close to a metallic surface leads to electronic damping of adsorbate vibrations and line broadening in vibrational spectroscopy. Here, a perturbative treatment of the electronic contribution to the lifetime broadening serves as a building block for a new approach, in which anharmonic vibrational transition rates are calculated from a position-dependent coupling function. Different models for the coupling function will be tested, all related to embedding theory. The first two are models based on a scattering approach with (i) a jellium-type and (ii) a density functional theory based embedding density, respectively. In a third variant a further refined model is used for the embedding density, and a semiempirical approach is taken in which a scaling factor is chosen to match harmonic, single-site, first-principles transition rates, obtained from periodic density functional theory. For the example of hydrogen atoms on (adsorption) and below (subsurface absorption) a Pd(111) surface, lifetimes of and transition rates between vibrational levels are computed. The transition rates emerging from different models serve as input for the selective subsurface adsorption of hydrogen in palladium starting from an adsorption site, by using sequences of infrared laser pulses in a laser distillation scheme.

  17. Monitoring of olive oil mills' wastes using electrical resistivity tomography techniques

    NASA Astrophysics Data System (ADS)

    Simyrdanis, Kleanthis; Papadopoulos, Nikos; Kirkou, Stella; Sarris, Apostolos; Tsourlos, Panagiotis

    2014-08-01

    Olive oil mills' wastes (OOMW) are one of the byproducts of the oil production that can lead to serious environmental pollution when they are deposited in ponds dug on the ground surface. Electrical Resistivity Tomography (ERT) method can provide a valuable tool in order to monitor through time the physical flow of the wastes into the subsurface. ERT could potentially locate the electrical signature due to lower resistivity values resulting from the leakage of OOMW to the subsurface. For this purpose, two vertical boreholes were installed (12m depth, 9 m apart) in the vicinity of an existing pond which is filled with OOMW during the oil production period. The test site is situated in Saint Andreas village about 15km south of the city of Rethymno (Crete, Greece). Surface ERT measurements were collected along multiple lines in order to reconstruct the subsurface resistivity models. Data acquisition was performed with standard and optimized electrode configuration protocols. The monitoring survey includes the ERT data collection for a period of time. The study was initiated before the OOMW were deposited in the pond, so resistivity fluctuations are expected due to the flow of OOMW in the porous subsurface media through time. Preliminary results show the good correlation of the ERT images with the drilled geological formations and the identification of low resistivity subsurface zone that could be attributed to the flow of the wastes within the porous layers.

  18. Direct thermal effects of the Hadean bombardment did not limit early subsurface habitability

    NASA Astrophysics Data System (ADS)

    Grimm, R. E.; Marchi, S.

    2018-03-01

    Intense bombardment is considered characteristic of the Hadean and early Archean eons, yet some detrital zircons indicate that near-surface water was present and thus at least intervals of clement conditions may have existed. We investigate the habitability of the top few kilometers of the subsurface by updating a prior approach to thermal evolution of the crust due to impact heating, using a revised bombardment history, a more accurate thermal model, and treatment of melt sheets from large projectiles (>100 km diameter). We find that subsurface habitable volume grows nearly continuously throughout the Hadean and early Archean (4.5-3.5 Ga) because impact heat is dissipated rapidly compared to the total duration and waning strength of the bombardment. Global sterilization was only achieved using an order of magnitude more projectiles in 1/10 the time. Melt sheets from large projectiles can completely resurface the Earth several times prior to ∼4.2 Ga but at most once since then. Even in the Hadean, melt sheets have little effect on habitability because cooling times are short compared to resurfacing intervals, allowing subsurface biospheres to be locally re-established by groundwater infiltration between major impacts. Therefore the subsurface is always habitable somewhere, and production of global steam or silicate-vapor atmospheres are the only remaining avenues to early surface sterilization by bombardment.

  19. Quantifying Arctic Terrestrial Environment Behaviors Using Geophysical, Point-Scale and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Hubbard, S. S.; Ulrich, C.; Peterson, J. E.; Wu, Y.; Wainwright, H. M.; Gangodagamage, C.; Kholodov, A. L.; Kneafsey, T. J.

    2013-12-01

    Improvement in parameterizing Arctic process-rich terrestrial models to simulate feedbacks to a changing climate requires advances in estimating the spatiotemporal variations in active layer and permafrost properties - in sufficiently high resolution yet over modeling-relevant scales. As part of the DOE Next-Generation Ecosystem Experiments (NGEE-Arctic), we are developing advanced strategies for imaging the subsurface and for investigating land and subsurface co-variability and dynamics. Our studies include acquisition and integration of various measurements, including point-based, surface-based geophysical, and remote sensing datasets These data have been collected during a series of campaigns at the NGEE Barrow, AK site along transects that traverse a range of hydrological and geomorphological conditions, including low- to high- centered polygons and drained thaw lake basins. In this study, we describe the use of galvanic-coupled electrical resistance tomography (ERT), capacitively-coupled resistivity (CCR) , permafrost cores, above-ground orthophotography, and digital elevation model (DEM) to (1) explore complementary nature and trade-offs between characterization resolution, spatial extent and accuracy of different datasets; (2) develop inversion approaches to quantify permafrost characteristics (such as ice content, ice wedge frequency, and presence of unfrozen deep layer) and (3) identify correspondences between permafrost and land surface properties (such as water inundation, topography, and vegetation). In terms of methods, we developed a 1D-based direct search approach to estimate electrical conductivity distribution while allowing exploration of multiple solutions and prior information in a flexible way. Application of the method to the Barrow datasets reveals the relative information content of each dataset for characterizing permafrost properties, which shows features variability from below one meter length scales to large trends over more than a kilometer. Further, we used Pole- and Kite-based low-altitude aerial photography with inferred DEM, as well as DEM from LiDAR dataset, to quantify land-surface properties and their co-variability with the subsurface properties. Comparison of the above- and below-ground characterization information indicate that while some permafrost characteristics correspond with changes in hydrogeomorphological expressions, others features show more complex linkages with landscape properties. Overall, our results indicate that remote sensing data, point-scale measurements and surface geophysical measurements enable the identification of regional zones having similar relations between subsurface and land surface properties. Identification of such zonation and associated permafrost-land surface properties can be used to guide investigations of carbon cycling processes and for model parameterization.

  20. Nitrous Oxide Emissions From Northern Forested and Harvested Ecosystems

    NASA Astrophysics Data System (ADS)

    Kavanaugh, K. M.; Kellman, L. M.

    2005-12-01

    Very little is known about how deforestation alters the soil subsurface production and surface emissions of N2O from northern forest soils. Soil N2O surface fluxes and subsurface concentrations from two 3 year old harvested and intact forest pairs of contrasting soil texture were monitored during the 2004 and 2005 growing seasons in the Acadian forest of Atlantic Canada in order to: 1) quantify N2O emissions associated with each land-use type, 2) examine spatial and temporal variations in subsurface concentrations and surface fluxes at each site, and 3) determine the suitability of a photoacoustic gas monitor (PGM) for in- situ field measurements vs. field sample collection and laboratory analysis on a gas chromatograph. Each site was instrumented with 11 permanent collars for surface flux measurements designed to capture the microsite variability at the sites. Subsurface soil gas samplers, designed to identify the important zones of N2O production in the vertical profile were installed at depths of 0, 10, 20 and 35 cm below the organic-mineral soil interface. Surface fluxes were measured with non-steady-state vented surface flux chambers with measurements of all surface flux and subsurface data made on a bi-weekly basis. Results suggest that spatial and temporal variability in surface emissions are very high and routinely close to zero. Subsurface profile concentration data shows vertical concentration profiles at intact forest sites with concentrations close to atmospheric, while harvested sites show a pattern of increasing N2O concentration with depth, reaching a maximum of approximately 27000ppb at 35cm.

  1. Microstructure-property relationships and constitutive response of plastically graded case hardened steels

    NASA Astrophysics Data System (ADS)

    Klecka, Michael A.

    Case hardened materials, popularly used in many demanding engineering applications such as bearings, gears, and wear/impact surfaces, have high surface hardness and a gradient in material properties (hardness, yield strength, etc.) as a function of depth; therefore, they behave as plastically graded materials. In the current study, two different commercially available case carburized steels along with two through hardened steels are characterized to obtain relationships among the volume fraction of subsurface carbides, indentation hardness, elastic modulus, and yield strength as a function of depth. A variety of methods including microindentation, nanoindentation, ultrasonic measurements, compression testing, rule of mixtures, and upper and lower bound models are used to determine the relationships for elastic modulus and compare the experimental results with model predictions. In addition, the morphology, composition, and properties of the carbide particles are also determined. The gradient in hardness with depth in graded materials is commonly determined using microindentation on the cross-section of the material which contains the gradation in microstructure or composition. In the current study, a novel method is proposed to predict the hardness gradient profile using solely surface indentations at a range of loads. The method does not require the graded material to be sectioned, and has practical utility in the surface heat-treatment industry. For a material with a decreasing gradient in hardness, higher indent loads result in a lower measured hardness due to the influence of the softer subsurface layers. A power-law model is presented which relates the measured surface indentation hardness under increasing load to the subsurface gradient in hardness. A coordinated experimental and numerical study is presented to extract the constitutive response of graded materials, utilizing relationships between hardness, plastic deformation, and strain hardening response. The average plastic strain induced by an indent is shown to be an effective measure of the representative plastic strain, which is used in order to relate hardness to yield strength in both virgin and plastically deformed materials. It is shown that the two carburized steels contain gradients in yield strength, but constant strain hardening exponent with depth. The resulting model of material behavior is used to characterize the influence of specific gradients in material properties on the surface indentation behavior under increasing indentation loads. It is also shown that the response of the material is not greatly influenced by strain hardening exponent, while a gradient in strain hardening ability only has minimal impact. Gradients in elastic properties are also shown to have negligible influence for a fixed gradient in hardness. The depth of subsurface plastic deformation is shown to increase with sharper gradients in hardness, but is not altered by gradients in elastic properties. The proposed approach is not specific to case hardened materials and can be used to determine the subsurface hardness gradient for any graded material.

  2. Using a spatially-distributed hydrologic biogeochemistry model to study the spatial variation of carbon processes in a Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Eissenstat, D. M.; Davis, K. J.; He, Y.

    2016-12-01

    Forest carbon processes are affected by, among other factors, soil moisture, soil temperature, soil nutrients and solar radiation. Most of the current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve the topographically driven hill-slope land surface heterogeneity or the spatial pattern of nutrient availability. A spatially distributed forest ecosystem model, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while soil nitrogen is transported among model grids via subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation information, while BBGC provides Flux-PIHM with leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). Model results suggest that the vegetation and soil carbon distribution is primarily constrained by nitorgen availability (affected by nitorgen transport via topographically driven subsurface flow), and also constrained by solar radiation and root zone soil moisture. The predicted vegetation and soil carbon distribution generally agrees with the macro pattern observed within the watershed. The coupled ecosystem-hydrologic model provides an important tool to study the impact of topography on watershed carbon processes, as well as the impact of climate change on water resources.

  3. Niobrara Discrete Fracture Network: From Outcrop Surveys to Subsurface Reservoir Models

    NASA Astrophysics Data System (ADS)

    Grechishnikova, Alena

    Heterogeneity of an unconventional reservoir is one of the main factors affecting production. Well performance depends on the size and efficiency of the interconnected fracture "plumbing system", as influenced by multistage hydraulic fracturing. A complex, interconnected natural fracture network can significantly increase the size of stimulated reservoir volume, provide additional surface area contact and enhance permeability. In 2013 the Reservoir Characterization Project (RCP) at the Colorado School of Mines began Phase XV to study Niobrara shale reservoir management. Anadarko Petroleum Corporation and RCP jointly acquired time-lapse multicomponent seismic data in Wattenberg Field, Denver Basin. Anadarko also provided RCP with a regional 3D seismic survey and a rich well dataset. The purpose of this study is to characterize the natural fracture patterns occurring in the unconventional Niobrara reservoir and to determine the drivers that influenced fracture trends and distributions. The findings are integrated into a reservoir model though DFN (Discrete Fracture Network) for further prediction of reservoir performance using reservoir simulations. Aiming to better understand the complexity of the natural fracture system I began my fracture analysis work at an active mine site that provides a Niobrara exposure. Access to a "fresh" outcrop surface created a perfect natural laboratory. Ground-based LIDAR and photogrammetry facilitated construction of a geological model and a DFN model for the mine site. The work was carried into subsurface where the information gained served to improve reservoir characterization at a sub-seismic scale and can be used in well planning. I then embarked on a challenging yet essential task of outcrop-to-subsurface data calibration and application to RCP's Wattenberg Field study site. In this research the surface data was proven to be valid for comparative use in the subsurface. The subsurface fracture information was derived from image logs run within the horizontal wellbores and augmented with microseismic data. Limitations of these datasets included the potential to induce biased interpretations; but the data collected during the outcrop study aided in removing the bias. All four fracture sets observed at the quarry were also interpreted in the subsurface; however there was a limitation on statistical validity for one of the four sets due to a low frequency of observed occurrence potentially caused by wellbore orientation. Microseismic data was used for identification of one of the reactivated natural fracture sets. An interesting phenomenon observed in the microseismic data trends was the low frequency of event occurrence within dense populations of open natural fracture swarms suggesting that zones of higher natural fracture intensities are capable of absorbing and transmitting energy resulting in lower levels of microseismicity. Thus currently open natural fractures could be challenging to detect using microseismic. Through this study I identified a significant variability in fracture intensity at a localized scale due to lithological composition and structural features. The complex faulting styles observed at the outcrop were utilized as an analog and verified by horizontal well log data and seismic volume interpretations creating a high resolution structural model for the subsurface. A lithofacies model was developed based on the well log, core, and seismic inversion analysis. These models combined served to accurately distribute fracture intensity information within the geological model for further use in DFN. As a product of this study, a workflow was developed to aid in fracture network model creation allowing for more intelligent decisions to be made during well planning and completion optimization aiming to improve recovery. A high resolution integrated discrete fracture network model serves to advance dynamic reservoir characterization in the subsurface at a sub-seismic scale resulting in improved reservoir characterization.

  4. An analytical solution for predicting the transient seepage from a subsurface drainage system

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Dan, Han-Cheng; Zhou, Tingzhang; Lu, Chunhui; Kong, Jun; Li, Ling

    2016-05-01

    Subsurface drainage systems have been widely used to deal with soil salinization and waterlogging problems around the world. In this paper, a mathematical model was introduced to quantify the transient behavior of the groundwater table and the seepage from a subsurface drainage system. Based on the assumption of a hydrostatic pressure distribution, the model considered the pore-water flow in both the phreatic and vadose soil zones. An approximate analytical solution for the model was derived to quantify the drainage of soils which were initially water-saturated. The analytical solution was validated against laboratory experiments and a 2-D Richards equation-based model, and found to predict well the transient water seepage from the subsurface drainage system. A saturated flow-based model was also tested and found to over-predict the time required for drainage and the total water seepage by nearly one order of magnitude, in comparison with the experimental results and the present analytical solution. During drainage, a vadose zone with a significant water storage capacity developed above the phreatic surface. A considerable amount of water still remained in the vadose zone at the steady state with the water table situated at the drain bottom. Sensitivity analyses demonstrated that effects of the vadose zone were intensified with an increased thickness of capillary fringe, capillary rise and/or burying depth of drains, in terms of the required drainage time and total water seepage. The analytical solution provides guidance for assessing the capillary effects on the effectiveness and efficiency of subsurface drainage systems for combating soil salinization and waterlogging problems.

  5. The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment

    NASA Astrophysics Data System (ADS)

    Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman

    2017-10-01

    The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (>3 m depth) placement of the heat flow probe.

  6. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2006-01-01

    It has been long known that land surface topography governs both groundwater flow patterns at the regional-to-continental scale and on smaller scales such as in the hyporheic zone of streams. Here we show that the surface topography can be separated in a Fourier-series spectrum that provides an exact solution of the underlying three-dimensional groundwater flows. The new spectral solution offers a practical tool for fast calculation of subsurface flows in different hydrological applications and provides a theoretical platform for advancing conceptual understanding of the effect of landscape topography on subsurface flows. We also show how the spectrum of surface topography influences the residence time distribution for subsurface flows. The study indicates that the subsurface head variation decays exponentially with depth faster than it would with equivalent two-dimensional features, resulting in a shallower flow interaction. Copyright 2006 by the American Geophysical Union.

  7. Surface response of a fractional order viscoelastic halfspace to surface and subsurface sources

    PubMed Central

    Meral, F. Can; Royston, Thomas J.; Magin, Richard L.

    2009-01-01

    Previous studies by the second author published in this journal focused on low audible frequency (40–400 Hz) shear and surface wave motion in and on a viscoelastic material representative of biological tissue. Specific cases considered were that of surface wave motion on a halfspace caused by a finite rigid circular disk located on the surface and oscillating normal to it [Royston et al., J. Acoust. Soc. Am. 106, 3678–3686 (1999)] and compression, shear, and surface wave motion in a halfspace generated by a subsurface finite dipole [Royston et al., J. Acoust. Soc. Am. 113, 1109–1121 (2003)]. In both studies, a Voigt model of viscoelasticity was assumed in the theoretical treatment, which resulted in agreement between theoretical predictions and experimental measurements over a limited frequency range. In the present article, the linear viscoelastic assumption in these two prior works is revisited to consider a (still linear) fractional order Voigt model, where the rate-dependent damping component that is dependent on the first derivative of time is replaced with a component that is dependent on a fractional derivative of time. It is shown that in both excitation source configurations, the fractional order Voigt model assumption improves the match of theory to experiment over a wider frequency range (in some cases up to the measured range of 700 Hz). PMID:20000941

  8. Structural and stratigraphic framework and spatial distribution of permeability of the Atlantic coastal plain, North Carolina to New York

    USGS Publications Warehouse

    Brown, Philip Monroe; Miller, James A.; Swain, Frederick Morrill

    1972-01-01

    This report describes and interprets the results of a detailed subsurface mapping program undertaken in that part of the Atlantic Coastal Plain which extends from the South Carolina and North Carolina border through Long Island, N.Y. Data obtained from more than 2,200 wells are analyzed. Seventeen chronostratigraphic units are mapped in the subsurface. They range in age from Jurassic(?) to post-Miocene. The purpose of the mapping program was to determine the external and internal geometry of mappable chronostratigraphic units and to derive and construct a permeability-distribution network for each unit based upon contrasts in the textures and compositions of its contained sediments. The report contains a structure map and a combined isopach, lithofacies, and permeability-distribution map for each of the chronostratigraphic units delineated in the subsurface. In addition, it contains a map of the top of the basement surface. These maps, together with 36 stratigraphic cross sections, present a three-dimensional view of the regional subsurface hydrogeology. They provide focal points of reference for a discussion of regional tectonics, structure, stratigraphy, and permeability distribution. Taken together and in chronologic sequence, the maps constitute a detailed sedimentary model, the first such model to be constructed for the middle Atlantic Coastal Plain. The chronostratigraphic units mapped record a structural history dominated by lateral and vertical movement along a system of intersecting hinge zones. Taphrogeny, related to transcurrent faulting, is the dominant type of deformation that controlled the geometry of the sedimentary model. Twelve of the seventeen chronostratigraphic units mapped have depositional alinements and thickening trends that are independent of the present-day configuration of the underlying basement surface. These 12 units, classified as genetically unrooted units, are assigned to a first-order tectonic stage. A structural model is proposed whose alinements of positive and negative structural features are accordant with the depositional geometry of the chronostratigraphic units assigned to this tectonic stage. The dominant features of the structural model are northeast-plunging half grabens arranged en echelon and bordered by northeast-plunging fault-block anticlines. Tension-type hinge zones that strike north lie athwart the half grabens. Five of the seventeen chronostratigraphic units mapped have depositional alinements and thickening trends that are accordant with the present-day configuration of the underlying basement surface. These five units, classified as genetically rooted units, are assigned to a second-order tectonic stage. A structural model is proposed whose alinements of positive and negative features are accordant with the depositional geometry of the chronostratigraphic units assigned to this tectonic stage. The dominant feature of this model is a graben that stands tangential to southeast-plunging asymmetrical anticlines. Tension-type hinge zones that strike northeast lie athwart the graben. To account for the semiperiodic realinement of structural features that has characterized the history of the region and as a working hypothesis, we propose that the dominant tectonic element, which is present in the area between north Florida and Long Island, N.Y., is a unit-structural block, a ?basement? block, bounded by wrench-fault zones. We propose that forces derived principally from the rotation and precession of the earth act on the unit-structural block and deform it. Two tectonic models are proposed. One model is compatible with the structural and sedimentary geometries that are associated with chronostratigraphic units assigned to a first-order tectonic stage. It features tension-type hinge zones that strike north and shear-type hinge zones that strike northeast. The other model is compatible with the structural and sedimentary geometries associated with chronostratigraphi

  9. Geophysics of Martian Periglacial Processes

    NASA Technical Reports Server (NTRS)

    Mellon, Michael T.

    2004-01-01

    Through the examination of small-scale geologic features potentially related to water and ice in the martian subsurface (specifically small-scale polygonal ground and young gully-like features), determine the state, distribution and recent history of subsurface water and ice on Mars. To refine existing models and develop new models of near-surface water and ice, and develop new insights about the nature of water on Mars as manifested by these geologic features. Through an improved understanding of potentially water-related geologic features, utilize these features in addressing questions about where to best search for present day water and what space craft may encounter that might facilitate or inhibit the search for water.

  10. Improved simulation of river water and groundwater exchange in an alluvial plain using the SWAT model

    USDA-ARS?s Scientific Manuscript database

    Hydrological interaction between surface and subsurface water systems has a significant impact on water quality, ecosystems and biogeochemistry cycling of both systems. Distributed models have been developed to simulate this function, but they require detailed spatial inputs and extensive computati...

  11. Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple layer model

    USDA-ARS?s Scientific Manuscript database

    Selenite adsorption behavior was investigated on amorphous aluminum and iron oxides, clay minerals: kaolinite, montmorillonite, and illite, and 45 surface and subsurface soil samples from the Southwestern and Midwestern regions of the USA as a function of solution pH. Selenite adsorption decreased ...

  12. TESTING LINKAGES BETWEEN GROUNDWATER, WATERSHED, AND IN-STREAM MODELS IN THE CONTENTNEA CREEK BASIN, NORTH CAROLINA, USA

    EPA Science Inventory

    Computer modeling provides support for the development of TMDLs (total maximum daily loads) of impaired water bodies. Evaluations of TMDLs for nutrients, especially for nitrogen, benefits from a multi-media assessment (i.e., atmosphere, landscape, subsurface, surface water). In t...

  13. Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum - a model study

    NASA Astrophysics Data System (ADS)

    Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.

    2011-10-01

    Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.

  14. Corrigendum to "Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum - a model study" published in Clim. Past, 7, 1103-1122, 2011

    NASA Astrophysics Data System (ADS)

    Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.

    2011-11-01

    Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.

  15. 4-D Model of CO2 Deposition at North and South of Mars from HEND/Odyssey and MOLA/MGS

    NASA Technical Reports Server (NTRS)

    Litvak, M. L.; Mitrofanov, I. G.; Kozyrev, A. S.; Sanin, A. B.; Tretyakov, V.; Smith, D. E.; Zuber, M. T.; Boynton, W. V.; Hamara, D. K.; Shinohara, C.

    2003-01-01

    The first 1.5 year of neutron mapping measurements onboard Mars Odyssey spacecraft are presented based on High Energy Neutron Detector (HEND) observations. HEND instrument is a part of GRS suite responsible for registration of epithermal and fast neutrons originating in Mars subsurface layer. The scattering of fast neutrons in Mars surface caused by primary cosmic rays is strongly sensitive to presence of hydrogen atoms. Even several percents of subsurface water significantly depress epithermal and fast neutron flux. It turns orbit neutron spectroscopy into one of most efficient methods for finding distribution of subsurface water. The Mars Odyssey observations revealed huge water- ice regions above 60N and 60S latitudes. It was founded that distribution of subsurface water has layered structure at these regions. It is thought that more than 50% wt water ice covered by relatively dry layer with different thickness.

  16. Analysis of temperature time series to estimate direction and magnitude of water fluxes in near-surface sediments

    NASA Astrophysics Data System (ADS)

    Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian

    2017-04-01

    The application of heat as a hydrological tracer has become a standard method for quantifying water fluxes between groundwater and surface water. Typically, time series of temperatures in the surface water and in the sediment are observed and are subsequently evaluated by a vertical 1D representation of heat transport by advection and dispersion. Several analytical solutions as well as their implementation into user-friendly software exist in order to estimate water fluxes from the observed temperatures. The underlying assumption of a stationary, one-dimensional vertical flow field is frequently violated in natural systems. Here subsurface water flow often has a significant horizontal component. We developed a methodology for identifying the geometry of the subsurface flow field based on the variations of diurnal temperature amplitudes with depths. For instance: Purely vertical heat transport is characterized by an exponential decline of temperature amplitudes with increasing depth. Pure horizontal flow would be indicated by a constant, depth independent vertical amplitude profile. The decline of temperature amplitudes with depths could be fitted by polynomials of different order whereby the best fit was defined by the highest Akaike Information Criterion. The stepwise model optimization and selection, evaluating the shape of vertical amplitude ratio profiles was used to determine the predominant subsurface flow field, which could be systematically categorized in purely vertical and horizontal (hyporheic, parafluvial) components. Analytical solutions to estimate water fluxes from the observed temperatures are restricted to specific boundary conditions such as a sinusoidal upper temperature boundary. In contrast numerical solutions offer higher flexibility and can handle temperature data which is characterized by irregular variations such as storm-event induced temperature changes and thus cannot readily be incorporated in analytical solutions. There are several numerical models that simulate heat transport in porous media (e.g. VS2DH, HydroGeoSphere, FEFLOW) but there can be a steep learning curve to the modelling frameworks and may therefore not readily accessible to routinely infer water fluxes between groundwater and surface water. We developed a user-friendly, straightforeward to use software to estimate water FLUXes Based On Temperatures- FLUX-BOT. FLUX-BOT is a numerical code written in MATLAB that calculates time variable vertical water fluxes in saturated sediments based on the inversion of measured temperature time series observed at multiple depths. It applies a cell-centered Crank-Nicolson implicit finite difference scheme to solve the one-dimensional heat advection-conduction equation (FLUX-BOT can be downloaded from the following web site: https://bitbucket.org/flux-bot/flux-bot). We provide applications of FLUX-BOT to generic as well as to measured temperature data to demonstrate its performance. Both, the empirical analysis of temperature amplitudes as well as the numerical inversion of measured temperature time series to estimate the vertical magnitude of water fluxes extent the suite of current heat tracing methods and may provide insight into temperature data from an additional perspective.

  17. The potential of high-frequency profiling to assess vertical and seasonal patterns of phytoplankton dynamics in lakes: An extension of the Plankton Ecology Group (PEG) model

    USGS Publications Warehouse

    Brentrup, Jennifer A.; Williamson, Craig E.; Colom-Montero, William; Eckert, Werner; de Eyto, Elvira; Grossart, Hans-Peter; Huot, Yannick; Isles, Peter D. F.; Knoll, Lesley B.; Leach, Taylor H.; McBride, Christopher G.; Pierson, Don; Pomati, Francesco; Read, Jordan S.; Rose, Kevin C.; Samal, Nihar R.; Staehr, Peter A.; Winslow, Luke A.

    2016-01-01

    The use of high-frequency sensors on profiling buoys to investigate physical, chemical, and biological processes in lakes is increasing rapidly. Profiling buoys with automated winches and sensors that collect high-frequency chlorophyll fluorescence (ChlF) profiles in 11 lakes in the Global Lake Ecological Observatory Network (GLEON) allowed the study of the vertical and temporal distribution of ChlF, including the formation of subsurface chlorophyll maxima (SSCM). The effectiveness of 3 methods for sampling phytoplankton distributions in lakes, including (1) manual profiles, (2) single-depth buoys, and (3) profiling buoys were assessed. High-frequency ChlF surface data and profiles were compared to predictions from the Plankton Ecology Group (PEG) model. The depth-integrated ChlF dynamics measured by the profiling buoy data revealed a greater complexity that neither conventional sampling nor the generalized PEG model captured. Conventional sampling techniques would have missed SSCM in 7 of 11 study lakes. Although surface-only ChlF data underestimated average water column ChlF, at times by nearly 2-fold in 4 of the lakes, overall there was a remarkable similarity between surface and mean water column data. Contrary to the PEG model’s proposed negligible role for physical control of phytoplankton during the growing season, thermal structure and light availability were closely associated with ChlF seasonal depth distribution. Thus, an extension of the PEG model is proposed, with a new conceptual framework that explicitly includes physical metrics to better predict SSCM formation in lakes and highlight when profiling buoys are especially informative.

  18. Linking Metabolism, Elemental Cycles, and Environmental Conditions in the Deep Biosphere: Growth of a Model Extremophile, Archaeoglobus fulgidus, Under High-Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Oliver, G. C. M.; Cario, A.; Rogers, K. L.

    2015-12-01

    A majority of Earth's biosphere is hosted in subsurface environments where global-scale biogeochemical and energy cycles are driven by diverse microbial communities that operate on and are influenced by micro-scale environmental variables. While the subsurface hosts a variety of geochemical and geothermal conditions, elevated pressures are common to all subsurface ecosystems. Understanding how microbes adapt to and thrive in high-pressure environments is essential to linking microbial subsurface processes with global-scale cycles. Here we are using a model extremophile, Archaeoglobus fulgidus, to determine how elevated pressures affect the growth, metabolism, and physiology of subsurface microorganisms. A. fulgidus cycles carbon and sulfur via heterotrophic and autotrophic sulfate reduction in various high temperature and high-pressure niches including shallow marine vents, deep-sea hydrothermal vents, and deep oil reservoirs. Here we report the results of A. fulgidus growth experiments at optimum temperature, 83°C, and pressures up to 600 bars. Exponential growth was observed over the entire pressure range, though growth rates were diminished at 500 and 600 bars compared to ambient pressure experimental controls. At pressures up to 400 bars, cell density yields and growth rates were at least as high as ambient pressure controls. Elevated pressures and extended incubation times stimulated cell flocculation, a common stress response in this strain, and cellular morphology was affected at pressures exceeding 400 bars. These results suggest that A. fulgidus continues carbon, sulfur and energy cycling unaffected by elevated pressures up to 400 bars, representing a variety of subsurface environments. The ability of subsurface organisms to drive biogeochemical cycles at elevated pressures is a critical link between the surface and subsurface biospheres and understanding how species-scale processes operate under these conditions is a vital part of global-scale biogeochemical models.

  19. PHYSICS OF IMMISCIBLE FLOW IN POROUS MEDIA

    EPA Science Inventory

    Conceptual formulation, numerical implementation and experimental validation of a model for the movement of organic chemicals which are introduced into soils as nonaqueous phase liquids via surface spills or leakage from subsurface containment facilities were addressed. Relations...

  20. Local control on precipitation in a fully coupled climate-hydrology model.

    PubMed

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-03-10

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  1. Local control on precipitation in a fully coupled climate-hydrology model

    PubMed Central

    Larsen, Morten A. D.; Christensen, Jens H.; Drews, Martin; Butts, Michael B.; Refsgaard, Jens C.

    2016-01-01

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies. PMID:26960564

  2. Efforts to estimate pesticide degradation rates in subsurface ...

    EPA Pesticide Factsheets

    When pesticides are used in real-world settings, the objective is to be effective in pest eradication at the site of application, but also it is desired that the pesticide have minimal persistence and mobility as it migrates away from the application site. At the site of application, sorption on soil and surface-soil degradation rates both factor into the pesticides' persistence. But once it migrates to the subsurface vadose zone and/or aquifers, subsurface degradation rate is a factor as well. Unfortunately, numerous soil properties that might affect pesticide degradation rate vary by orders of magnitude in the subsurface environment, both spatially and temporally, e.g., organic-carbon concentration, oxygen concentration, redox conditions, pH and soil mineralogy. Consequently, estimation of subsurface pesticide degradation rates and, in tum, pesticide persistence and mobility in the environment, has remained a challenge. To address this intransigent uncertainty, we surveyed peer-reviewed literature to identify > 100 data pairs in which investigators reported pesticide degradation rates in both surface and subsurface soils, using internally consistent experimental methods. These > 100 data pairs represented >30 separate pesticides. When the > 100 subsurface half-lives were plotted against surface half-lives, a limiting line could be defined for which all subsurface half-lives but three fe ll below the line. Of the three data points plotting above the limiting li

  3. Kinetics of conjugative gene transfer on surfaces in granular porous media

    NASA Astrophysics Data System (ADS)

    Ginn, T.; Massoudieh, A.; Nelson, K.; Mathew, A.; Lambertini, E.

    2005-12-01

    The transfer of genetic material among bacteria in the environment can occur both in the planktonic and attached state. Given the propensity of organisms to exist in sessile microbial communities in oligotrophic conditions, and that such conditions typify the subsurface, this study focuses on exploratory modeling of horizontal gene transfer among surface-associated E. coli in the subsurface. The mathematics so far used to describe the kinetics of conjugation in biofilms are developed largely from experimental observations of planktonic gene transfer, and are absent of lags or plasmid stability that appear experimentally. We develop a model for bacterial filtration and gene transfer in the attached state, for the early stages of biofilm formation using a recently revised filtration theory approach (Nelson and Ginn, 2005) with motility of E. coli described as a continuous time random walk according to data from microflow chamber experiments (Biondi et al., 2002).

  4. The 3-D geological model around Chang'E-3 landing site based on lunar penetrating radar Channel 1 data

    NASA Astrophysics Data System (ADS)

    Yuan, Yuefeng; Zhu, Peimin; Zhao, Na; Xiao, Long; Garnero, Edward; Xiao, Zhiyong; Zhao, Jiannan; Qiao, Le

    2017-07-01

    High-frequency lunar penetrating radar (LPR) data from an instrument on the lunar rover Yutu, from the Chang'E-3 (CE-3) robotic lander, were used to build a three-dimensional (3-D) geological model of the lunar subsurface structure. The CE-3 landing site is in the northern Mare Imbrium. More than five significant reflection horizons are evident in the LPR profile, which we interpret as different period lava flow sequences deposited on the lunar surface. The most probable directions of these flows were inferred from layer depths, thicknesses, and other geological information. Moreover, the apparent Imbrian paleoregolith homogeneity in the profile supports the suggestion of a quiescent period of lunar surface evolution. Similar subsurface structures are found at the NASA Apollo landing sites, indicating that the cause and time of formation of the imaged phenomena may be similar between the two distant regions.

  5. Seasonal re-emergence of North Atlantic subsurface ocean temperature anomalies and Northern hemisphere climate

    NASA Astrophysics Data System (ADS)

    Sinha, Bablu; Blaker, Adam; Duchez, Aurelie; Grist, Jeremy; Hewitt, Helene; Hirschi, Joel; Hyder, Patrick; Josey, Simon; Maclachlan, Craig; New, Adrian

    2017-04-01

    A high-resolution coupled ocean atmosphere model is used to study the effects of seasonal re-emergence of North Atlantic subsurface ocean temperature anomalies on northern hemisphere winter climate. A 50-member control simulation is integrated from September 1 to 28 February and compared with a similar ensemble with perturbed ocean initial conditions. The perturbation consists of a density-compensated subsurface (deeper than 180m) temperature anomaly corresponding to the observed subsurface temperature anomaly for September 2010, which is known to have re-emerged at the ocean surface in subsequent months. The perturbation is confined to the North Atlantic Ocean between the Equator and 65 degrees North. The model has 1/4 degree horizontal resolution in the ocean and the experiment is repeated for two atmosphere horizontal resolutions ( 60km and 25km) in order to determine whether the sensitivity of the atmosphere to re-emerging temperature anomalies is dependent on resolution. The ensembles display a wide range of reemergence behaviour, in some cases re-emergence occurs by November, in others it is delayed or does not occur at all. A wide range of amplitudes of the re-emergent temperature anomalies is observed. In cases where re-emergence occurs, there is a marked effect on both the regional (North Atlantic and Europe) and hemispheric surface pressure and temperature patterns. The results highlight a potentially important process whereby ocean memory of conditions up to a year earlier can significantly enhance seasonal forecast skill.

  6. On the Representation of Subgrid Microtopography Effects in Process-based Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Jan, A.; Painter, S. L.; Coon, E. T.

    2017-12-01

    Increased availability of high-resolution digital elevation are enabling process-based hydrologic modeling on finer and finer scales. However, spatial variability in surface elevation (microtopography) exists below the scale of a typical hyper-resolution grid cell and has the potential to play a significant role in water retention, runoff, and surface/subsurface interactions. Though the concept of microtopographic features (depressions, obstructions) and the associated implications on flow and discharge are well established, representing those effects in watershed-scale integrated surface/subsurface hydrology models remains a challenge. Using the complex and coupled hydrologic environment of the Arctic polygonal tundra as an example, we study the effects of submeter topography and present a subgrid model parameterized by small-scale spatial heterogeneities for use in hyper-resolution models with polygons at a scale of 15-20 meters forming the surface cells. The subgrid model alters the flow and storage terms in the diffusion wave equation for surface flow. We compare our results against sub-meter scale simulations (acts as a benchmark for our simulations) and hyper-resolution models without the subgrid representation. The initiation of runoff in the fine-scale simulations is delayed and the recession curve is slowed relative to simulated runoff using the hyper-resolution model with no subgrid representation. Our subgrid modeling approach improves the representation of runoff and water retention relative to models that ignore subgrid topography. We evaluate different strategies for parameterizing subgrid model and present a classification-based method to efficiently move forward to larger landscapes. This work was supported by the Interoperable Design of Extreme-scale Application Software (IDEAS) project and the Next-Generation Ecosystem Experiments-Arctic (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science.

  7. Thermal etching of silver: Influence of rolling defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ollivier, M., E-mail: o.maelig@imperial.ac.uk

    2016-08-15

    Silver is well known to be thermally etched in an oxygen-rich atmosphere and has been extensively studied in the laboratory to understand thermal etching and to limit its effect when this material is used as a catalyst. Yet, in many industrial applications the surface of rolled silver sheets is used without particular surface preparation. Here, it is shown by combining FIB-tomography, FIB-SIMS and analytical SEM that the kinetics of thermal etch pitting are significantly faster on rolled Ag surfaces than on polished surfaces. This occurs due to range of interacting phenomena including (i) the reaction of subsurface carbon-contamination with dissolvedmore » oxygen to form pores that grow to intersect the surface, (ii) surface reconstruction around corrosion pits and surface scratches, and (iii) sublimation at low pressure and high temperature. A method to identify subsurface pores is developed to show that the pores have (111) and (100) internal facets and may be filled with a gas coming from the chemical reaction of oxygen and carbon contamination. - Highlights: Thermal etching of industrial silver sheets vs. polished silver sheets Effect of annealing atmosphere on the thermal etching of silver: surface and subsurface characterization Link between etch pitting and defects induced by rolling. FIB-tomography coupled with EBSD for determining crystal planes of the facets of subsurface pores. FIB-SIMS characterization to probe the gas confined inside subsurface pores.« less

  8. Direct Push supported geotechnical and hydrogeological characterisation of an active sinkhole area

    NASA Astrophysics Data System (ADS)

    Tippelt, Thomas; Vienken, Thomas; Kirsch, Reinhard; Dietrich, Peter; Werban, Ulrike

    2017-04-01

    Sinkholes represent a natural geologic hazard in areas where soluble layers are present in the subsurface. A detailed knowledge of the composition of the subsurface and its hydrogeological and geotechnical properties is essential for the understanding of sinkhole formation and propagation. This serves as base for risk evaluation and the development of an early warning system. However, site models often depend on data from drillings and surface geophysical surveys that in many cases cannot resolve the spatial distribution of relevant hydrogeological and geotechnical parameters sufficiently. Therefore, an active sinkhole area in Münsterdorf, Northern Germany, was investigated in detail using Direct Push technology, a minimally invasive sounding method. The obtained vertical high-resolution profiles of geotechnical and hydrogeological characteristics, in combination with Direct Push based sampling and surface geophysical measurements lead to a strong improvement of the geologic site model. The conceptual site model regarding sinkhole formation and propagation will then be tested based on the gathered data and, if necessary, adapted accordingly.

  9. Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys

    DOE PAGES

    Celik, Fuat E.; Mavrikakis, Manos

    2015-01-12

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While themore » metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.« less

  10. Stability of Surface and Subsurface Hydrogen on and in Au/Ni Near-Surface Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celik, Fuat E.; Mavrikakis, Manos

    2015-10-01

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While themore » metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.« less

  11. Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys

    NASA Astrophysics Data System (ADS)

    Celik, Fuat E.; Mavrikakis, Manos

    2015-10-01

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While the metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.

  12. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    PubMed

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Small County: Development of a Virtual Environment for Instruction in Geological Characterization of Petroleum Reservoirs

    NASA Astrophysics Data System (ADS)

    Banz, B.; Bohling, G.; Doveton, J.

    2008-12-01

    Traditional programs of geological education continue to be focused primarily on the evaluation of surface or near-surface geology accessed at outcrops and shallow boreholes. However, most students who graduate to careers in geology work almost entirely on subsurface problems, interpreting drilling records and petrophysical logs from exploration and production wells. Thus, college graduates commonly find themselves ill-prepared when they enter the petroleum industry and require specialized training in drilling and petrophysical log interpretation. To aid in this training process, we are developing an environment for interactive instruction in the geological aspects of petroleum reservoir characterization employing a virtual subsurface closely reflecting the geology of the US mid-continent, in the fictional setting of Small County, Kansas. Stochastic simulation techniques are used to generate the subsurface characteristics, including the overall geological structure, distributions of facies, porosity, and fluid saturations, and petrophysical logs. The student then explores this subsurface by siting exploratory wells and examining drilling and petrophysical log records obtained from those wells. We are developing the application using the Eclipse Rich Client Platform, which allows for the rapid development of a platform-agnostic application while providing an immersive graphical interface. The application provides an array of views to enable relevant data display and student interaction. One such view is an interactive map of the county allowing the student to view the locations of existing well bores and select pertinent data overlays such as a contour map of the elevation of an interesting interval. Additionally, from this view a student may choose the site of a new well. Another view emulates a drilling log, complete with drilling rate plot and iconic representation of examined drill cuttings. From here, students are directed to stipulate subsurface lithology and interval tops as they progress through the drilling operation. Once the interpretation process is complete, the student is guided through an exercise emulating a drill stem test and then is prompted to decide on perforation intervals. The application provides a graphical framework by which the student is guided through well site selection, drilling data interpretation, and well completion or dry-hole abandonment, creating a tight feedback loop by which the student gains an over-arching view of drilling logistics and the subsurface data evaluation process.

  14. The subsurface record for the Anthropocene based on the global analysis of deep wells

    NASA Astrophysics Data System (ADS)

    Rose, K.

    2016-12-01

    While challenges persist in the characterization of Earth's subsurface, over two centuries of exploration resulting in more than six million deep wellbores, offer insights into these systems. Characteristics of the subsurface vary and can be analyzed on a variety of spatial scales using geospatial tools and methods. Characterization and prediction of subsurface properties, such as depth, thickness, porosity, permeability, pressure and temperature, are important for models and interpretations of the subsurface. Subsurface studies contribute to insights and understanding of natural system but also enable predictions and assessments of subsurface resources and support environmental and geohazard assessments. As the geo-data science landscape shifts, becoming more open, there are increasing opportunities to fill knowledge gaps, mine large, interrelated datasets, and develop innovative methods to improve our understanding of the subsurface and the impacts of its exploration. In this study, a global dataset of more than 6,000,000 deep subsurface wells has been assembled using ArcGIS and Access, which reflects to a first order, the cumulative representation of over two centuries of drilling. Wellbore data, in general represent the only portal for direct measurement and characterization of deep subsurface properties. As human engineering of the subsurface evolves from a focus on hydrocarbon resource development to include subsurface waste product disposal (e.g. CO2, industrial waste, etc) and production of other deep subsurface resources, such as heat and water resources, there is the increasing need to improve characterization techniques and understand local and global ramifications of anthropogenic interaction with the subsurface. Data and geospatial analyses are reviewed to constrain the extent to which human interactions, not just with Earth's surface systems, atmospheric and geologic, but subsurface systems will result in an enduring signature of human influences on the planet. Specifically, the extent and enduring signature of subsurface interactions with the planet, utilizing the four-dimensional, spatial and temporal, record for known deep wellbores is utilized.

  15. Modeling and Crustal Structure in the Future Reservoir of Jequitaí, Brazil

    NASA Astrophysics Data System (ADS)

    Teixeira, C. D.; Von Huelsen, M. G.; Chemale, F., Jr.; Nascimento, A. V. D. S., Sr.; do Sacramento, V., Sr.; Garcia, V. B. P., Sr.

    2017-12-01

    Integrated geophysical and geological data analysis in the state of Minas Gerais, Brazil, allowed the modeling of the subsurface framework in a region where a reservoir - the Jequitaí reservoir - will be constructed. Studies of this nature during the previous stages of the construction of large hydroelectric projects are highly important, because the regional geology understanding associated with geophysical data interpretation can help to prevent damage in the physical structure of the dam, which will aid in its preservation. The use of gravity and magnetic data in a 2D crustal model provided information on a possible framework of the area and revealed features not mapped until now, which may be useful for further studies and can contribute to the understanding of this portion of the crust. The results show the presence of high gravity anomalies in the southern part of the study area, besides extensive lineaments that cross the whole area, interpreted as possible faults and dykes. Depth estimation techniques, such as Euler deconvolution and radially averaged power spectrum, allowed the identification of continuous structures up to 400 m depth, and showed differences in the basement depth in the northern and southern portions of the study area. Inversion of the gravity data along a profile crossing a gravity anomaly yielded to information about the depth, thickness and shape of a possible intrusive body. The geological-geophysical model was consistent with the interpretations based on surface geology and in the gravity and magnetic signal, because the section could be modeled respecting the geophysical data and the pre-existing structural proposals.

  16. A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franceschini, Andrea; Ferronato, Massimiliano, E-mail: massimiliano.ferronato@unipd.it; Janna, Carlo

    The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion accordingmore » to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions. - Highlights: • A numerical model is developed for the simulation of fault and fracture mechanics. • The model is implemented in the framework of the Finite Element method and with the aid of Lagrange multipliers. • The proposed formulation introduces a new contribution due to the frictional work on the portion of activated fault. • The resulting algorithm is highly non-linear as the portion of activated fault is itself unknown. • The numerical solution is validated against analytical results and proves to be stable also in realistic applications.« less

  17. Lateral and subsurface flows impact arctic coastal plain lake water budgets

    USGS Publications Warehouse

    Koch, Joshua C.

    2016-01-01

    Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post-snowmelt water budgets. A water budget focused only on post-snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid-summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra-permafrost subsurface inflows from basin-edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic.

  18. Competing feedbacks drive state transitions during initial catchment evolution: Examples from post-mining landscape and ecosystems evolution

    NASA Astrophysics Data System (ADS)

    Hinz, Christoph; Wolfgang, Schaaf; Werner, Gerwin

    2014-05-01

    Within the context of severely disturbed landscapes with little or no ecological memory, such as post-mining landscapes, we propose a simple framework that explains the catchment evolution as a result of competing feedbacks influenced by the initial conditions and the atmospheric drivers such as rainfall intermittency and intensity. The first stage of the evolution is dominated by abiotic feedbacks triggered by rainfall and subsequent fluid flow causing particle mobilisation on the surface and in the subsurface leading to flow concentration or in some instances to densification of surface and subsurface substrates. Subsequently, abiotic-biotic feedbacks start to compete in the sense that biological activity generally stabilizes substrate by preventing particle mobilisation and hence contribute to converting the substrate to a habitat. We suggest that these competing feedbacks may generate alternative stable states in particular under semi-arid and arid climatic conditions, while in temperate often energy limited environments biological process "outcompete" abiotic processes leading to a stable state, in particular from the water balance point of view for comparable geomorphic situations. To illustrate this framework, we provide examples from post-mining landscapes, in which soil, water and vegetation was monitored. In case of arid regions in Australia, we provide evidence that the initial conditions of a mine waste disposal "locked" the system into a state that was limited by water and nutrient storage capacity while at the same time it was stable from a geomorphic point of view for the observation period. The cause of the system to be locked in, is the very high hydraulic conductivity of the substrate, that has not undergone any changes during the first years. In contrast to this case study, we illustrate how this framework explains the evolution of an artificial catchment (Hühnerwasser Catchment) in Lusatia (150 km southeast of Berlin, Germany). During the initial phase of development the catchment changed very rapidly due to sediment transport, drainage network formation, and soil crusting very similar to geomorphic processes observed in arid and semi-arid landscapes void of dense vegetation. Hydraulic properties changed rapidly after few wet and dry cycles, indicative of particle mobilisation and trapping in the subsurface. Accordingly, the hydrological regime was controlled by rapid surface runoff enhanced through crust formation and at the same time a shallow ground water system developed. This surface runoff regime peeked about two years initialisation as shown by a maximum area of drainage channels. A major, fairly rapid transition occurred between three and five years after placement, in which the sediment transport ceased and vegetation coverage of the drainage channel exceeded 90%. The transition represents the onset of a transpiration dominated regime that is further enhanced by change of the plant composition of the vegetation with tree recruitment from the surrounding forming significant clusters in the catchment. This transition in the third year was also seen in a significant increase in soil fauna and plant diversity.

  19. Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity

    PubMed Central

    Hartmann, Andreas; Gleeson, Tom; Wagener, Thorsten

    2017-01-01

    Our environment is heterogeneous. In hydrological sciences, the heterogeneity of subsurface properties, such as hydraulic conductivities or porosities, exerts an important control on water balance. This notably includes groundwater recharge, which is an important variable for efficient and sustainable groundwater resources management. Current large-scale hydrological models do not adequately consider this subsurface heterogeneity. Here we show that regions with strong subsurface heterogeneity have enhanced present and future recharge rates due to a different sensitivity of recharge to climate variability compared with regions with homogeneous subsurface properties. Our study domain comprises the carbonate rock regions of Europe, Northern Africa, and the Middle East, which cover ∼25% of the total land area. We compare the simulations of two large-scale hydrological models, one of them accounting for subsurface heterogeneity. Carbonate rock regions strongly exhibit “karstification,” which is known to produce particularly strong subsurface heterogeneity. Aquifers from these regions contribute up to half of the drinking water supply for some European countries. Our results suggest that water management for these regions cannot rely on most of the presently available projections of groundwater recharge because spatially variable storages and spatial concentration of recharge result in actual recharge rates that are up to four times larger for present conditions and changes up to five times larger for potential future conditions than previously estimated. These differences in recharge rates for strongly heterogeneous regions suggest a need for groundwater management strategies that are adapted to the fast transit of water from the surface to the aquifers. PMID:28242703

  20. Enhanced Groundwater Recharge Rates and Altered Recharge Sensitivity to Climate Variability Through Subsurface Heterogeneity

    NASA Technical Reports Server (NTRS)

    Hartmann, Andreas; Gleeson, Tom; Wada, Yoshihide; Wagener, Thorsten

    2017-01-01

    Our environment is heterogeneous. In hydrological sciences, the heterogeneity of subsurface properties, such as hydraulic conductivities or porosities, exerts an important control on water balance. This notably includes groundwater recharge, which is an important variable for efficient and sustainable groundwater resources management. Current large-scale hydrological models do not adequately consider this subsurface heterogeneity. Here we show that regions with strong subsurface heterogeneity have enhanced present and future recharge rates due to a different sensitivity of recharge to climate variability compared with regions with homogeneous subsurface properties. Our study domain comprises the carbonate rock regions of Europe, Northern Africa, and the Middle East, which cover 25 of the total land area. We compare the simulations of two large-scale hydrological models, one of them accounting for subsurface heterogeneity. Carbonate rock regions strongly exhibit karstification, which is known to produce particularly strong subsurface heterogeneity. Aquifers from these regions contribute up to half of the drinking water supply for some European countries. Our results suggest that water management for these regions cannot rely on most of the presently available projections of groundwater recharge because spatially variable storages and spatial concentration of recharge result in actual recharge rates that are up to four times larger for present conditions and changes up to five times larger for potential future conditions than previously estimated. These differences in recharge rates for strongly heterogeneous regions suggest a need for groundwater management strategies that are adapted to the fast transit of water from the surface to the aquifers.

  1. Rapid Non-Gaussian Uncertainty Quantification of Seismic Velocity Models and Images

    NASA Astrophysics Data System (ADS)

    Ely, G.; Malcolm, A. E.; Poliannikov, O. V.

    2017-12-01

    Conventional seismic imaging typically provides a single estimate of the subsurface without any error bounds. Noise in the observed raw traces as well as the uncertainty of the velocity model directly impact the uncertainty of the final seismic image and its resulting interpretation. We present a Bayesian inference framework to quantify uncertainty in both the velocity model and seismic images, given noise statistics of the observed data.To estimate velocity model uncertainty, we combine the field expansion method, a fast frequency domain wave equation solver, with the adaptive Metropolis-Hastings algorithm. The speed of the field expansion method and its reduced parameterization allows us to perform the tens or hundreds of thousands of forward solves needed for non-parametric posterior estimations. We then migrate the observed data with the distribution of velocity models to generate uncertainty estimates of the resulting subsurface image. This procedure allows us to create both qualitative descriptions of seismic image uncertainty and put error bounds on quantities of interest such as the dip angle of a subduction slab or thickness of a stratigraphic layer.

  2. Web-based application for inverting one-dimensional magnetotelluric data using Python

    NASA Astrophysics Data System (ADS)

    Suryanto, Wiwit; Irnaka, Theodosius Marwan

    2016-11-01

    One-dimensional modeling of magnetotelluric (MT) data has been performed using an online application on a web-based virtual private server. The application was developed with the Python language using the Django framework with HTML and CSS components. The input data, including the apparent resistivity and phase as a function of period or frequency with standard deviation, can be entered through an interactive web page that can be freely accessed at https://komputasi.geofisika.ugm.ac.id. The subsurface models, represented by resistivity as a function of depth, are iteratively improved by changing the model parameters, such as the resistivity and the layer depth, based on the observed apparent resistivity and phase data. The output of the application displayed on the screen presents resistivity as a function of depth and includes the RMS error for each iteration. Synthetic and real data were used in comparative tests of the application's performance, and it is shown that the application developed accurate subsurface resistivity models. Hence, this application can be used for practical one-dimensional modeling of MT data.

  3. Potential Improvements to Remote Primary Productivity Estimation in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Jacox, M.; Edwards, C. A.; Kahru, M.; Rudnick, D. L.; Kudela, R. M.

    2012-12-01

    A 26-year record of depth integrated primary productivity (PP) in the Southern California Current System (SCCS) is analyzed with the goal of improving satellite net primary productivity (PP) estimates. The ratio of integrated primary productivity to surface chlorophyll correlates strongly to surface chlorophyll concentration (chl0). However, chl0 does not correlate to chlorophyll-specific productivity, and appears to be a proxy for vertical phytoplankton distribution rather than phytoplankton physiology. Modest improvements in PP model performance are achieved by tuning existing algorithms for the SCCS, particularly by empirical parameterization of photosynthetic efficiency in the Vertically Generalized Production Model. Much larger improvements are enabled by improving accuracy of subsurface chlorophyll and light profiles. In a simple vertically resolved production model, substitution of in situ surface data for remote sensing estimates offers only marginal improvements in model r2 and total log10 root mean squared difference, while inclusion of in situ chlorophyll and light profiles improves these metrics significantly. Autonomous underwater gliders, capable of measuring subsurface fluorescence on long-term, long-range deployments, significantly improve PP model fidelity in the SCCS. We suggest their use (and that of other autonomous profilers such as Argo floats) in conjunction with satellites as a way forward for improved PP estimation in coastal upwelling systems.

  4. Inverse Geochemical Reaction Path Modelling and the Impact of Climate Change on Hydrologic Structure in Snowmelt-Dominated Catchments in the Southwestern USA

    NASA Astrophysics Data System (ADS)

    Driscoll, J. M.; Meixner, T.; Molotch, N. P.; Sickman, J. O.; Williams, M. W.; McIntosh, J. C.; Brooks, P. D.

    2011-12-01

    Snowmelt from alpine catchments provides 70-80% of the American Southwest's water resources. Climate change threatens to alter the timing and duration of snowmelt in high elevation catchments, which may also impact the quantity and the quality of these water resources. Modelling of these systems provides a robust theoretical framework to process the information extracted from the sparse physical measurement available in these sites due to their remote locations. Mass-balance inverse geochemical models (via PHREEQC, developed by the USGS) were applied to two snowmelt-dominated catchments; Green Lake 4 (GL4) in the Rockies and Emerald Lake (EMD) in the Sierra Nevada. Both catchments primarily consist of granite and granodiorite with a similar bulk geochemistry. The inputs for the models were the initial (snowpack) and final (catchment output) hydrochemistry and a catchment-specific suite of mineral weathering reactions. Models were run for wet and dry snow years, for early and late time periods (defined hydrologically as 1/2 of the total volume for the year). Multiple model solutions were reduced to a representative suite of reactions by choosing the model solution with the fewest phases and least overall phase change. The dominant weathering reactions (those which contributed the most solutes) were plagioclase for GL4 and albite for EMD. Results for GL4 show overall more plagioclase weathering during the dry year (214.2g) than wet year (89.9g). Both wet and dry years show more weathering in the early time periods (63% and 56%, respectively). These results show that the snowpack and outlet are chemically more similar during wet years than dry years. A possible hypothesis to explain this difference is a change in contribution from subsurface storage; during the wet year the saturated catchment reduces contact with surface materials that would result in mineral weathering reactions by some combination of reduced infiltration and decreased subsurface transit time. By contrast, during the dry year infiltration and subsequent displacement of stored water that has had longer contact time with minerals and therefore has become more geochemically evolved to produce a greater difference between snowmelt and catchment outlet hydrochemistry. The results for EMD show little distinction between albite weathering for wet and dry years (55.9g and 66.0g, relatively). A hypothesis for this lack of difference in mineral phase changes may be due to less subsurface storage capacity in EMD relative to GL4. The spatial distribution of snowmelt has also been shown to influence the integrated watershed response, and future work includes using the Alpine Hydrochemical Model (AHM) to further investigate catchment response to these spatial data. The AHM will also provide further insight of surface-groundwater interactions through a more integrated model which includes hydrochemical, biological and physical processes to elucidate catchment response to changes in snowmelt dynamics.

  5. Shallow geology, sea-floor texture, and physiographic zones of Buzzards Bay, Massachusetts

    USGS Publications Warehouse

    Foster, David S.; Baldwin, Wayne E.; Barnhardt, Walter A.; Schwab, William C.; Ackerman, Seth D.; Andrews, Brian D.; Pendleton, Elizabeth A.

    2015-01-07

    Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.

  6. A reactive transport model for Marcellus shale weathering

    NASA Astrophysics Data System (ADS)

    Heidari, Peyman; Li, Li; Jin, Lixin; Williams, Jennifer Z.; Brantley, Susan L.

    2017-11-01

    Shale formations account for 25% of the land surface globally and contribute a large proportion of the natural gas used in the United States. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water in the surface or deep subsurface, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil and water chemistry data. The simulation was carried out for 10,000 years since deglaciation, assuming bedrock weathering and soil genesis began after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small if CO2 was not present in the soil gas. The field observations were only simulated successfully when the modeled specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals. Small surface areas could be consistent with the lack of accessibility of some fluids to mineral surfaces due to surface coatings. In addition, some mineral surface is likely interacting only with equilibrated pore fluids. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude from these observations that availability of reactive surface area and transport of H2O and gases are the most important factors affecting rates of Marcellus shale weathering of the in the shallow subsurface. This weathering study documents the utility of reactive transport modeling for complex subsurface processes. Such modelling could be extended to understand interactions between injected fluids and Marcellus shale gas reservoirs at higher temperature, pressure, and salinity conditions.

  7. Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics

    DOEpatents

    Ellingson, W.A.; Brada, M.P.

    1995-06-20

    A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser`s wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known ``feature masks`` of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects. 29 figs.

  8. Radio Sounding Techniques for the Galilean Icy Moons and their Jovian Magnetospheric Environment

    NASA Technical Reports Server (NTRS)

    Green, James L.; Markus, Thursten; Fung, Shing F.; Benson, Robert F.; Reinich, Bodo W.; Song, Paul; Gogineni, S. Prasad; Cooper, John F.; Taylor, William W. L.; Garcia, Leonard

    2004-01-01

    Radio sounding of the Earth's topside ionosphere and magnetosphere is a proven technique from geospace missions such as the International Satellites for Ionospheric Studies (ISIS) and the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). Application of this technique to Jupiter's icy moons and the surrounding Jovian magnetosphere will provide unique remote sensing observations of the plasma and magnetic field environments and the subsurface conductivities, of Europa, Ganymede, and Callisto. Spatial structures of ionospheric plasma above the surfaces of the moons vary in response to magnetic-field perturbations from (1) magnetospheric plasma flows, (2) ionospheric currents from ionization of sputtered surface material, and (3) induced electric currents in salty subsurface oceans and from the plasma flows and ionospheric currents themselves. Radio sounding from 3 kHz to 10 MHz can provide the global electron densities necessary for the extraction of the oceanic current signals and supplements in-situ plasma and magnetic field measurements. While radio sounding requires high transmitter power for subsurface sounding, little power is needed to probe the electron density and magnetic field intensity near the spacecraft. For subsurface sounding, reflections occur at changes in the dielectric index, e.g., at the interfaces between two different phases of water or between water and soil. Variations in sub-surface conductivity of the icy moons can be investigated by radio sounding in the frequency range from 10 MHz to 50 MHz, allowing the determination of the presence of density and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts. The detection of subsurface oceans underneath the icy crusts of the Jovian moons is one of the primary objectives of the Jupiter Icy Moons Orbiter (JIMO) mission. Preliminary modeling results show that return signals are clearly distinguishable be&een an ice crust with a thickness of 7 km on 1) an ocean and 2) a layer of bedrock. Knowledge of the ionospheric contributions to the time delay of the low-frequency subsurface radar is shown to be important in obtaining accurate depth information.

  9. Quantifying the surface subsurface biogeochemical coupling during the VERTIGO ALOHA and K2 studies

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.; Gall, Mark P.; Silver, Mary W.; Coale, Susan L.; Bidigare, Robert R.; Bishop, James L. K. B.

    2008-07-01

    A central question addressed by the VERtical Transport In the Global Ocean (VERTIGO) study was 'What controls the efficiency of particle export between the surface and subsurface ocean'? Here, we present data from sites at ALOHA (N Central Pacific Gyre) and K2 (NW subarctic Pacific) on phytoplankton processes, and relate them via a simple planktonic foodweb model, to subsurface particle export (150-500 m). Three key factors enable quantification of the surface-subsurface coupling: a sampling design to overcome the temporal lag and spatial displacement between surface and subsurface processes; data on the size partitioning of net primary production (NPP) and subsequent transformations prior to export; estimates of the ratio of algal- to faecal-mediated vertical export flux. At ALOHA, phytoplankton were characterized by low stocks, NPP, Fv/ Fm (N-limited), and were dominated by picoplankton. The HNLC waters at K2 were characterized by both two-fold changes in NPP and floristic shifts (high to low proportion of diatoms) between deployment 1 and 2. Prediction of export exiting the euphotic zone was based on size partitioning of NPP, a copepod-dominated foodweb and a ratio of 0.2 (ALOHA) and 0.1 (K2) for algal:faecal particle flux. Predicted export was 20-22 mg POC m -2 d -1 at ALOHA (i.e. 10-11% NPP (0-125 m); 1.1-1.2×export flux at 150 m ( E150). At K2, export was 111 mg C m -2 d -1 (21% NPP (0-50 m); 1.8× E150) and 33 mg POC m -2 d -1 (11% NPP, 0-55 m); 1.4× E150) for deployments 1 and 2, respectively. This decrease in predicted export at K2 matches the observed trend for E150. Also, the low attenuation of export flux from 60 to 150 m is consistent with that between 150 and 500 m. This strong surface-subsurface coupling suggests that phytoplankton productivity and floristics play a key role at K2 in setting export flux, and moreover that pelagic particle transformations by grazers strongly influence to what extent sinking particles are further broken down in the underlying waters of the Twilight Zone.

  10. An open, object-based modeling approach for simulating subsurface heterogeneity

    NASA Astrophysics Data System (ADS)

    Bennett, J.; Ross, M.; Haslauer, C. P.; Cirpka, O. A.

    2017-12-01

    Characterization of subsurface heterogeneity with respect to hydraulic and geochemical properties is critical in hydrogeology as their spatial distribution controls groundwater flow and solute transport. Many approaches of characterizing subsurface heterogeneity do not account for well-established geological concepts about the deposition of the aquifer materials; those that do (i.e. process-based methods) often require forcing parameters that are difficult to derive from site observations. We have developed a new method for simulating subsurface heterogeneity that honors concepts of sequence stratigraphy, resolves fine-scale heterogeneity and anisotropy of distributed parameters, and resembles observed sedimentary deposits. The method implements a multi-scale hierarchical facies modeling framework based on architectural element analysis, with larger features composed of smaller sub-units. The Hydrogeological Virtual Reality simulator (HYVR) simulates distributed parameter models using an object-based approach. Input parameters are derived from observations of stratigraphic morphology in sequence type-sections. Simulation outputs can be used for generic simulations of groundwater flow and solute transport, and for the generation of three-dimensional training images needed in applications of multiple-point geostatistics. The HYVR algorithm is flexible and easy to customize. The algorithm was written in the open-source programming language Python, and is intended to form a code base for hydrogeological researchers, as well as a platform that can be further developed to suit investigators' individual needs. This presentation will encompass the conceptual background and computational methods of the HYVR algorithm, the derivation of input parameters from site characterization, and the results of groundwater flow and solute transport simulations in different depositional settings.

  11. Subsurface temperature estimation from climatology and satellite SST for the sea around Korean Peninsula 1Bong-Guk, Kim, 1Yang-Ki, Cho, 1Bong-Gwan, Kim, 1Young-Gi, Kim, 1Ji-Hoon, Jung 1School of Earth and Environmental Sciences, Seoul National University

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Guk; Cho, Yang-Ki; Kim, Bong-Gwan; Kim, Young-Gi; Jung, Ji-Hoon

    2015-04-01

    Subsurface temperature plays an important role in determining heat contents in the upper ocean which are crucial in long-term and short-term weather systems. Furthermore, subsurface temperature affects significantly ocean ecology. In this study, a simple and practical algorithm has proposed. If we assume that subsurface temperature changes are proportional to surface heating or cooling, subsurface temperature at each depth (Sub_temp) can be estimated as follows PIC whereiis depth index, Clm_temp is temperature from climatology, dif0 is temperature difference between satellite and climatology in the surface, and ratio is ratio of temperature variability in each depth to surface temperature variability. Subsurface temperatures using this algorithm from climatology (WOA2013) and satellite SST (OSTIA) where calculated in the sea around Korean peninsula. Validation result with in-situ observation data show good agreement in the upper 50 m layer with RMSE (root mean square error) less than 2 K. The RMSE is smallest with less than 1 K in winter when surface mixed layer is thick, and largest with about 2~3 K in summer when surface mixed layer is shallow. The strong thermocline and large variability of the mixed layer depth might result in large RMSE in summer. Applying of mixed layer depth information for the algorithm may improve subsurface temperature estimation in summer. Spatial-temporal details on the improvement and its causes will be discussed.

  12. Stratigraphic framework and regional subsurface geology of upper Cretaceous through lower Eocene rocks in Wind River basin, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogle, D.G.; Jones, R.W.

    1989-03-01

    A detailed stratigraphic study of over 6000 m of Upper Cretaceous through lower Eocene sedimentary rocks in the Wind River basin. Wyoming, has refined and expanded previous work and conclusions. A much larger data base than previously available was assembled to include a correlation net of 325 geophysical well logs, 36 drill holes with palynological age dates, lithology logs of drill hoes, and limited surface exposures. The most significant results and conclusions from this study are summarized below. (1) The lower part of the Mesaverde Formation intertongues with marine sandstones and shales of the upper Cody Shale to the eastmore » and with marine sandstones of the lower Mesaverde Formation in the Big Horn basin to the north. (2) An unconformity between the Mesaverde and Fort Union Formations in the southwestern part of the basin can be traced into the subsurface. (3) During the latest Cretaceous and Paleocene, over 2100 m of Lance Formation and over 2700 m of Fort Union Formation were deposited in the northeastern part of the basin. Ponding during the Paleocene is demonstrated by correlation and subsurface mapping of over 900 m of shale and siltstone in the Waltman Shale Member of the Fort Union Formation. (4) The Lance and Fort Union Formations can be mapped in the subsurface throughout much of the basin. The Lance Formation pinches out in the western part of the basin. (5) Coal beds can be traced for short distances in the subsurface; coal bed occurrence is documented for the Mesaverde, lower Fort Union, and Meeteetse Formations in the southwestern, northern and central, and northwestern parts of the basin, respectively.« less

  13. A toolkit for determining historical eco-hydrological interactions

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Sargeant, C. I.; Evans, C. M.; Vallet-Coulomb, C.

    2016-12-01

    Contemporary climate change is predicted to result in perturbations to hydroclimatic regimes across the globe, with some regions forecast to become warmer and drier. Given that water is a primary determinant of vegetative health and productivity, we can expect shifts in the availability of this critical resource to have significant impacts on forested ecosystems. The subject is particularly complex in environments where multiple sources of water are potentially available to vegetation and which may also exhibit spatial and temporal variability. To anticipate how subsurface hydrological partitioning may evolve in the future and impact overlying vegetation, we require well constrained, historical data and a modelling framework for assessing the dynamics of subsurface hydrology. We outline a toolkit to retrospectively investigate dynamic water use by trees. We describe a synergistic approach, which combines isotope dendrochronology of tree ring cellulose with a biomechanical model, detailed climatic and isotopic data in endmember waters to assess the mean isotopic composition of source water used in annual tree rings. We identify the data requirements and suggest three versions of the toolkit based on data availability. We present sensitivity analyses in order to identify the key variables required to constrain model predictions and then develop empirical relationships for constraining these parameters based on climate records. We demonstrate our methodology within a Mediterranean riparian forest site and show how it can be used along with subsurface hydrological modelling to validate source water determinations, which are fundamental to understanding climatic fluctuations and trends in subsurface hydrology. We suggest that the utility of our toolkit is applicable in riparian zones and in a range of forest environments where distinct isotopic endmembers are present.

  14. 77 FR 14717 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... preclude future actions under Superfund. This partial deletion pertains to the surface soil, unsaturated subsurface soil, surface water and sediments of Operable Unit (OU) 1, the Gateway Lake Ash Study Area, and.... Surface soil, unsaturated subsurface soil, surface water, and sediments at OU-2, OU-3, OU-4, OU-5, OU-6...

  15. Effects of 6 months of aging in water on hardness and surface roughness of two microhybrid dental composites.

    PubMed

    de Moraes, Rafael Ratto; Marimon, José Laurindo Machado; Schneider, Luis Felipe; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço; Bueno, Márcia

    2008-06-01

    This study assessed the effect of 6 months of aging in water on surface roughness and surface/subsurface hardness of two microhybrid resin composites. Filtek Z250 and Charisma were tested. Cylindrical specimens were obtained and stored in distilled water for 24 hours or 6 months, at 37 degrees C. For Knoop hardness evaluation, the specimens were transversely wet-flattened, and indentations were made on surface and subsurface layers. Data were submitted to three-way ANOVA and Tukey's test (alpha < or = 0.05). Surface roughness baseline measurements were made at 24 hours and repeated after 6 months of storage. Data were submitted to repeated measures ANOVA and Tukey's test (alpha < or = 0.05). Surface hardness (KHN, kg/mm(2)) means (+/- standard deviation) ranged from 55 +/- 1 to 49 +/- 4 for Z250 and from 50 +/- 2 to 41 +/- 3 for Charisma, at 24 hours and 6 months, respectively. Subsurface means ranged from 58 +/- 2 to 61 +/- 3 for Z250 and from 50 +/- 1 to 54 +/- 2 for Charisma, at 24 hours and 6 months. For both composites, the aged specimens presented significantly softer surfaces (p < 0.01). For the subsurface hardness, alteration after storage was detected only for Charisma, which presented a significant rise in hardness (p < 0.01). Z250 presented significantly harder surface and subsurface layers in comparison with Charisma. Surface roughness (Ra, mum) means ranged from 0.07 +/- 0.00 to 0.07 +/- 0.01 for Z250 and from 0.06 +/- 0.01 to 0.07 +/- 0.01 for Charisma, at 24 hours and 6 months, respectively. For both composites, no significant roughness alteration was detected during the study (p= 0.386). The 6-month period of storage in water presented a significant softening effect on the surfaces of the composites, although no significant deleterious alteration was detected for the subsurface hardness. In addition, the storage period had no significant effect on the surface roughness of the materials.

  16. Reproducible Hydrogeophysical Inversions through the Open-Source Library pyGIMLi

    NASA Astrophysics Data System (ADS)

    Wagner, F. M.; Rücker, C.; Günther, T.

    2017-12-01

    Many tasks in applied geosciences cannot be solved by a single measurement method and require the integration of geophysical, geotechnical and hydrological methods. In the emerging field of hydrogeophysics, researchers strive to gain quantitative information on process-relevant subsurface parameters by means of multi-physical models, which simulate the dynamic process of interest as well as its geophysical response. However, such endeavors are associated with considerable technical challenges, since they require coupling of different numerical models. This represents an obstacle for many practitioners and students. Even technically versatile users tend to build individually tailored solutions by coupling different (and potentially proprietary) forward simulators at the cost of scientific reproducibility. We argue that the reproducibility of studies in computational hydrogeophysics, and therefore the advancement of the field itself, requires versatile open-source software. To this end, we present pyGIMLi - a flexible and computationally efficient framework for modeling and inversion in geophysics. The object-oriented library provides management for structured and unstructured meshes in 2D and 3D, finite-element and finite-volume solvers, various geophysical forward operators, as well as Gauss-Newton based frameworks for constrained, joint and fully-coupled inversions with flexible regularization. In a step-by-step demonstration, it is shown how the hydrogeophysical response of a saline tracer migration can be simulated. Tracer concentration data from boreholes and measured voltages at the surface are subsequently used to estimate the hydraulic conductivity distribution of the aquifer within a single reproducible Python script.

  17. Simulation of rainfall-runoff response in mined and unmined watersheds in coal areas of West Virginia

    USGS Publications Warehouse

    Puente, Celso; Atkins, John T.

    1989-01-01

    Meteorologic and hydrologic data from five small watersheds in the coal areas of West Virginia were used to calibrate and test the U.S. Geological Survey Precipitation-Runoff Modeling System for simulating streamflow under various climatic and land-use conditions. Three of the basins--Horsecamp Run, Gilmer Run, and Collison Creek--are primarily forested and relatively undisturbed. The remaining basins--Drawdy Creek and Brier Creek-are extensively mined, both surface and underground above stream drainage level. Low-flow measurements at numerous synoptic sites in the mined basins indicate that coal mining has substantially altered the hydrologic system of each basin. The effects of mining on streamflow that were identified are (1) reduced base flow in stream segments underlain by underground mines, (2) increased base flow in streams that are downdip and stratigraphically below the elevation of the mined coal beds, and (3) interbasin transfer of ground water through underground mines. These changes probably reflect increased permeability of surface rocks caused by subsidence fractures associated with collapsed underground mines in the basin. Such fractures would increase downward percolation of precipitation, surface and subsurface flow, and ground-water flow to deeper rocks or to underground mine workings. Model simulations of the water budgets for the unmined basins during the 1972-73 water years indicate that total annual runoff averaged 60 percent of average annual precipitation; annual evapotranspiration losses averaged 40 percent of average annual precipitation. Of the total annual runoff, approximately 91 percent was surface and subsurface runoff and 9 percent was groundwater discharge. Changes in storage in the soil zone and in the subsurface and ground-water reservoirs in the basins were negligible. In contrast, water-budget simulations for the mined basins indicate significant differences in annual recharge and in total annual runoff. Model simulations of the water budget for Drawdy Creek basin indicate that total annual runoff during 1972-73 averaged only 43 percent of average annual precipitation--the lowest of all study basins; annual evapotranspiration losses averaged 49 percent, and interbasin transfer of ground-water losses averaged about 8 percent. Of the total annual runoff, approximately 74 percent was surface and subsurface flow and 26 percent was ground-water discharge. The low total annual runoff at Drawdy Creek probably reflects increased recharge of precipitation and surface and subsurface flow losses to ground water. Most of the increase in ground-water storage is, in turn, lost to a ground-water sink--namely, interbasin transfer of ground water by gravity drainage and (or) mine pumpage from underground mines that extend to adjacent basins. Hypothetical mining situations were posed for model analysis to determine the effects of increased mining on streamflow in the mined basins. Results of model simulations indicate that streamflow characteristics, the water budget, and the seasonal distribution of streamflow would be significantly modified in response to an increase in mining in the basins. Simulations indicate that (1) total annual runoff in the basins would decrease because of increased surface- and subsurface-flow losses and increased recharge of precipitation to ground water (these losses would tend to reduce medium to high flows mainly during winter and spring when losses would be greatest), (2) extreme high flows in response to intense rainstorms would be negligibly affected, regardless of the magnitude of mining in the basins, (3) ground-water discharge also would decrease during winter and spring, but the amount and duration of low flows during summer and fall would substantially increase in response to increased ground-water storage in rocks and in underground mines, and (4) the increase in ground-water storage in the basins would be depleted, mostly by increased losses to a grou

  18. Composition and structure of the shallow subsurface of Ceres revealed by crater morphology

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; Raymond, Carol A.; Schenk, Paul M.; Fu, Roger R.; Kneissl, Thomas; Pasckert, Jan Hendrik; Hiesinger, Harry; Preusker, Frank; Park, Ryan S.; Marchi, Simone; King, Scott D.; Castillo-Rogez, Julie C.; Russell, Christopher T.

    2016-07-01

    Before NASA’s Dawn mission, the dwarf planet Ceres was widely believed to contain a substantial ice-rich layer below its rocky surface. The existence of such a layer has significant implications for Ceres’s formation, evolution, and astrobiological potential. Ceres is warmer than icy worlds in the outer Solar System and, if its shallow subsurface is ice-rich, large impact craters are expected to be erased by viscous flow on short geologic timescales. Here we use digital terrain models derived from Dawn Framing Camera images to show that most of Ceres’s largest craters are several kilometres deep, and are therefore inconsistent with the existence of an ice-rich subsurface. We further show from numerical simulations that the absence of viscous relaxation over billion-year timescales implies a subsurface viscosity that is at least one thousand times greater than that of pure water ice. We conclude that Ceres’s shallow subsurface is no more than 30% to 40% ice by volume, with a mixture of rock, salts and/or clathrates accounting for the other 60% to 70%. However, several anomalously shallow craters are consistent with limited viscous relaxation and may indicate spatial variations in subsurface ice content.

  19. Composition and structure of the shallow subsurface of Ceres revealed by crater morphology

    USGS Publications Warehouse

    Bland, Michael T.; Carol A. Raymond,; Schenk, Paul M.; Roger R. Fu,; Thomas Kneisl,; Hendrick Pasckert, Jan; Hiesinger, Harald; Frank Preusker,; Ryan S. Park,; Simone Marchi,; Scott King,; Castillo-Rogez, Julie C.; Christopher T. Russell,

    2016-01-01

    Before NASA’s Dawn mission, the dwarf planet Ceres was widely believed to contain a substantial ice-rich layer below its rocky surface. The existence of such a layer has significant implications for Ceres’s formation, evolution, and astrobiological potential. Ceres is warmer than icy worlds in the outer Solar System and, if its shallow subsurface is ice-rich, large impact craters are expected to be erased by viscous flow on short geologic timescales. Here we use digital terrain models derived from Dawn Framing Camera images to show that most of Ceres’s largest craters are several kilometres deep, and are therefore inconsistent with the existence of an ice-rich subsurface. We further show from numerical simulations that the absence of viscous relaxation over billion-year timescales implies a subsurface viscosity that is at least one thousand times greater than that of pure water ice. We conclude that Ceres’s shallow subsurface is no more than 30% to 40% ice by volume, with a mixture of rock, salts and/or clathrates accounting for the other 60% to 70%. However, several anomalously shallow craters are consistent with limited viscous relaxation and may indicate spatial variations in subsurface ice content.

  20. Geological maps and models: are we certain how uncertain they are?

    NASA Astrophysics Data System (ADS)

    Mathers, Steve; Waters, Colin; McEvoy, Fiona

    2014-05-01

    Geological maps and latterly 3D models provide the spatial framework for geology at diverse scales or resolutions. As demands continue to rise for sustainable use of the subsurface, use of these maps and models is informing decisions on management of natural resources, hazards and environmental change. Inaccuracies and uncertainties in geological maps and models can impact substantially on the perception, assessment and management of opportunities and the associated risks . Lithostratigraphical classification schemes predominate, and are used in most geological mapping and modelling. The definition of unit boundaries, as 2D lines or 3D surfaces is the prime objective. The intervening area or volume is rarely described other than by its bulk attributes, those relating to the whole unit. Where sufficient data exist on the spatial and/or statistical distribution of properties it can be gridded or voxelated with integrity. Here we only discuss the uncertainty involved in defining the boundary conditions. The primary uncertainty of any geological map or model is the accuracy of the geological boundaries, i.e. tops, bases, limits, fault intersections etc. Traditionally these have been depicted on BGS maps using three line styles that reflect the uncertainty of the boundary, e.g. observed, inferred, conjectural. Most geological maps tend to neglect the subsurface expression (subcrops etc). Models could also be built with subsurface geological boundaries (as digital node strings) tagged with levels of uncertainty; initial experience suggests three levels may again be practicable. Once tagged these values could be used to autogenerate uncertainty plots. Whilst maps are predominantly explicit and based upon evidence and the conceptual the understanding of the geologist, models of this type are less common and tend to be restricted to certain software methodologies. Many modelling packages are implicit, being driven by simple statistical interpolation or complex algorithms for building surfaces in ways that are invisible and so not controlled by the working geologist. Such models have the advantage of being replicable within a software package and so can discount some interpretational differences between modellers. They can however create geologically implausible results unless good geological rules and control are established prior to model calculation. Comparisons of results from varied software packages yield surprisingly diverse results. This is a significant and often overlooked source of uncertainty in models. Expert elicitation is commonly employed to establish values used in statistical treatments of model uncertainty. However this introduces another possible source of uncertainty created by the different judgements of the modellers. The pragmatic solution appears to be using panels of experienced geologists to elicit the values. Treatments of uncertainty in maps and models yield relative rather than absolute values even though many of these are expressed numerically. This makes it extremely difficult to devise standard methodologies to determine uncertainty or propose fixed numerical scales for expressing the results. Furthermore, these may give a misleading impression of greater certainty than actually exists. This contribution outlines general perceptions with regard to uncertainty in our maps and models and presents results from recent BGS studies

Top