Science.gov

Sample records for surfactants estudos dos

  1. DOS.

    ERIC Educational Resources Information Center

    Traven, Bill

    1988-01-01

    Discusses using the DOS PATH command (for MS-DOS) to enable the microcomputer user to move from directory to directory on a hard drive. Lists the commands to be programed, gives examples, and explains the use of each. (MVL)

  2. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  3. Surfactant compositions

    SciTech Connect

    Novakovic, M.; Abend, P.G.

    1987-09-29

    A surfactant composition is described for subsequent addition to a soap slurring comprising an acyloxy alkane sulfonate salt. The sulfonate salt is present in an amount by weight of about 44 percent of about 56 percent. The polyol is present in an amount by weight of about 2 percent to about 6 percent, and water is present in an amount by weight of 26 to 36 percent. The composition constituting a solid reversible solution at ambient temperature and having a solids content of about 58 to 72 percent, whereby subsequent addition of the surfactant composition to a soap slurry results in formation of a soap/detergent bar having a smooth texture, uniform wear properties and a lack of grittiness.

  4. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  5. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  6. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  7. DOS basics

    SciTech Connect

    O`Connor, P.

    1994-09-01

    DOS is an acronym for Disk Operating System. It is actually a set of programs that allows you to control your personal computer. DOS offers the capabilities to create and manage files; organize and maintain information placed on disks; use application programs such as WordPerfect, Lotus 123, Excel, Windows, etc. In addition, DOS provides the basic utilities needed to copy files from one area to another, delete files and list files. The latest version of DOS also offers more advanced features that include hard disk compression and memory management. Basic DOS commands are discussed.

  8. Dendrimer-surfactant interactions.

    PubMed

    Cheng, Yiyun; Zhao, Libo; Li, Tianfu

    2014-04-28

    In this article, we reviewed the interactions between dendrimers and surfactants with particular focus on the interaction mechanisms and physicochemical properties of the yielding dendrimer-surfactant aggregates. In order to provide insight into the behavior of dendrimers in biological systems, the interactions of dendrimers with bio-surfactants such as phospholipids in bulk solutions, in solid-supported bilayers and at the interface of phases or solid-states were discussed. Applications of the dendrimer-surfactant aggregates as templates to guide the synthesis of nanoparticles and in drug or gene delivery were also mentioned.

  9. Surfactant phospholipid metabolism

    PubMed Central

    Agassandian, Marianna; Mallampalli, Rama K.

    2012-01-01

    Pulmonary surfactant is essential for life and is comprised of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. PMID:23026158

  10. Genetics Home Reference: surfactant dysfunction

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions surfactant dysfunction surfactant dysfunction Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Surfactant dysfunction is a lung disorder that causes breathing ...

  11. Surfactant waterflood oil recovery process

    SciTech Connect

    Kudchadker, M.V.; Whittington, L.E.

    1982-03-16

    Disclosed is a surfactant waterflooding oil recovery process for use in high salinity water-containing formations employing two separate surfactant-containing slugs or a single slug in which the composition is changed from the first to the last portion of the slug injected into the formation. The first portion of the surfactant fluid contains a surfactant combination which exhibits optimum low surface tension characteristics, and the second or latter portion of the surfactant slug contains a blend of surfactants which produces a high viscosity fluid. Use of hydrophilic viscosity-increasing polymer is thus avoided, eliminating the interaction between polymer and surfactant which causes a reduction in surfactant effectiveness.

  12. Mechanisms to explain surfactant responses.

    PubMed

    Jobe, Alan H

    2006-01-01

    Surfactant is now standard of care for infants with respiratory distress syndrome. Surfactant treatments are effective because of complex metabolic interactions between surfactant and the preterm lung. The large treatment dose functions as substrate; it is taken up by the preterm lung and is reprocessed and secreted with improved function. The components of the treatment surfactant remain in the preterm lung for days. If lung injury is avoided, then surfactant inhibition is minimized. Prenatal corticosteroids complement surfactant to further enhance lung function. The magic of surfactant therapy results from the multiple interactions between surfactant and the preterm lung.

  13. SURFACTANTS AND SUBSURFACE REMEDIATION

    EPA Science Inventory

    Because of the limitations of pump-and-trat technology, attention is now focused on the feasibility of surfactant use to increase its efficiency. Surfactants have been studied for use in soil washing and enhanced oil recovery. Although similarities exist between the application...

  14. Metathesis depolymerizable surfactants

    DOEpatents

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  15. Phosphine oxide surfactants revisited.

    PubMed

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties. PMID:26869216

  16. Surfactant-Amino Acid and Surfactant-Surfactant Interactions in Aqueous Medium: a Review.

    PubMed

    Malik, Nisar Ahmad

    2015-08-01

    An overview of surfactant-amino acid interactions mainly in aqueous medium has been discussed. Main emphasis has been on the solution thermodynamics and solute-solvent interactions. Almost all available data on the topic has been presented in a lucid and simple way. Conventional surfactants have been discussed as amphiphiles forming micelles and amino acids as additives and their effect on the various physicochemical properties of these conventional surfactants. Surfactant-surfactant interactions in aqueous medium, various mixed surfactant models, are also highlighted to assess their interactions in aqueous medium. Finally, their applied part has been taken into consideration to interpret their possible uses.

  17. Surfactant mixing rules applied to surfactant enhanced alkaline flooding

    SciTech Connect

    Taylor, K.C. )

    1992-01-01

    This paper discusses surfactant mixing rules which have been used to describe crude oil/alkali/surfactant phase behavior, using David Lloydminster crude oil and the surfactant Neodol 25-3S. It was found that at a fixed salinity and alkali concentration, a specific mole fraction of synthetic surfactant to petroleum soap was required to produce optimal phase behavior as the water-to-oil ratio varied. This methodology is useful in understanding the relationship between the variables of water-to-oil ratio and synthetic surfactant concentration in phase behavior systems that produce a petroleum soap.

  18. Sizing up surfactant synthesis.

    PubMed

    Han, SeungHye; Mallampalli, Rama K

    2014-08-01

    Phosphatidylcholine is generated through de novo synthesis and remodeling involving a lysophospholipid. In this issue of Cell Metabolism, research from the Shimizu lab (Harayama et al., 2014) demonstrates the highly selective enzymatic behavior of lysophospholipid acyltransferases. The authors present an enzymatic model for phosphatidylcholine molecular species diversification that impacts surfactant formation.

  19. Surfactant-enhanced bioremediation

    SciTech Connect

    Churchill, P.F.; Dudley, R.J.; Churchill, S.A.

    1995-12-31

    This study was undertaken to examine the effect of three structurally related, non-ionic surfactants, Triton X-45, Triton X-100 and Triton X-165, as well as the oleophilic fertilizer, Inipol EAP 22, on the rate of biodegradation of phenanthrene by pure bacterial cultures. Each surfactant dramatically increased the apparent aqueous solubility of phenanthrene. Model studies were conducted to investigate the ability of these surfactants to enhance the rate of transport and uptake of polycyclic aromatic hydrocarbons into bacterial cells, and to assess the impact that increasing the aqueous solubility of hydrocarbons has on their rate of biodegradation. The results indicate that increasing the apparent aqueous solubility of hydrocarbons can lead to enhanced biodegradation rates by two Pseudomonas saccharophila strains. However, the experiments also suggest that some surfactants can inhibit aromatic hydrocarbon biodegradation by certain bacteria. The data also support the hypothesis that surface-active components present in the oleophilic fertilizer formulation, Inipol EAP 22, may have significantly contributed to the positive results reported in tests of remedial agent impact on bioremediation, which was used as a supplemental clean-up technology on Exxon Valdez crude oil-contaminated Alaskan beaches.

  20. Surfactant treatments alter endogenous surfactant metabolism in rabbit lungs

    SciTech Connect

    Oetomo, S.B.; Lewis, J.; Ikegami, M.; Jobe, A.H. )

    1990-04-01

    The effect of exogenous surfactant on endogenous surfactant metabolism was evaluated using a single-lobe treatment strategy to compare effects of treated with untreated lung within the same rabbit. Natural rabbit surfactant, Survanta, or 0.45% NaCl was injected into the left main stem bronchus by use of a Swan-Ganz catheter. Radiolabeled palmitic acid was then given by intravascular injection at two times after surfactant treatment, and the ratios of label incorporation and secretion in the left lower lobe to label incorporation and secretion in the right lung were compared. The treatment procedure resulted in a reasonably uniform surfactant distribution and did not disrupt lobar pulmonary blood flow. Natural rabbit surfactant increased incorporation of palmitate into saturated phosphatidylcholine (Sat PC) approximately 2-fold (P less than 0.01), and secretion of labeled Sat PC increased approximately 2.5-fold in the surfactant-treated left lower lobe relative to the right lung (P less than 0.01). Although Survanta did not alter incorporation, it did increase secretion but not to the same extent as rabbit surfactant (P less than 0.01). Alteration of endogenous surfactant Sat PC metabolism in vivo by surfactant treatments was different from that which would have been predicted by previous in vitro studies.

  1. Mixed surfactant systems for enhanced oil recovery

    SciTech Connect

    Llave, F.M.; Gall, B.L.; Noll, L.A.

    1990-12-01

    The results of an evaluation of mixed surfactant systems for enhanced oil recovery are described. Several surfactant combinations have been studied. These include alkyl aryl sulfonates as primary surfactants and carboxymethylated ethoxylated (CME) surfactants and ethoxylated sulfonates (ES) as secondary surfactants. The ethoxylated surfactants increase the salinity tolerance of the primary surfactants and, in theory, allow tailoring of the surfactant system to match selected reservoir conditions. The experiments conducted included interfacial tension (IFT) measurements, phase behavior measurements, adsorption and/or chromatographic separation of mixed surfactant systems, measurements of solution properties such as the critical micelle concentration (CMC) of surfactant mixtures, and crude oil displacement experiments. The effects of temperature, surfactant concentration, salinity, presence of divalent ions, hydrocarbon type, and component proportions in the mixed surfactant combinations, and injection strategies on the performance potential of the targeted surfactant/hydrocarbon systems were studied. 40 refs., 37 figs., 8 tabs.

  2. Clouding behaviour in surfactant systems.

    PubMed

    Mukherjee, Partha; Padhan, Susanta K; Dash, Sukalyan; Patel, Sabita; Mishra, Bijay K

    2011-02-17

    A study on the phenomenon of clouding and the applications of cloud point technology has been thoroughly discussed. The phase behaviour of clouding and various methods adopted for the determination of cloud point of various surfactant systems have been elucidated. The systems containing anionic, cationic, nonionic surfactants as well as microemulsions have been reviewed with respect to their clouding phenomena and the effects of structural variation in the surfactant systems have been incorporated. Additives of various natures control the clouding of surfactants. Electrolytes, nonelectrolytes, organic substances as well as ionic surfactants, when present in the surfactant solutions, play a major role in the clouding phenomena. The review includes the morphological study of clouds and their applications in the extraction of trace inorganic, organic materials as well as pesticides and protein substrates from different sources.

  3. Clouding behaviour in surfactant systems.

    PubMed

    Mukherjee, Partha; Padhan, Susanta K; Dash, Sukalyan; Patel, Sabita; Mishra, Bijay K

    2011-02-17

    A study on the phenomenon of clouding and the applications of cloud point technology has been thoroughly discussed. The phase behaviour of clouding and various methods adopted for the determination of cloud point of various surfactant systems have been elucidated. The systems containing anionic, cationic, nonionic surfactants as well as microemulsions have been reviewed with respect to their clouding phenomena and the effects of structural variation in the surfactant systems have been incorporated. Additives of various natures control the clouding of surfactants. Electrolytes, nonelectrolytes, organic substances as well as ionic surfactants, when present in the surfactant solutions, play a major role in the clouding phenomena. The review includes the morphological study of clouds and their applications in the extraction of trace inorganic, organic materials as well as pesticides and protein substrates from different sources. PMID:21296314

  4. Surfactants at the Design Limit.

    PubMed

    Czajka, Adam; Hazell, Gavin; Eastoe, Julian

    2015-08-01

    This article analyzes how the individual structural elements of surfactant molecules affect surface properties, in particular, the point of reference defined by the limiting surface tension at the aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the hydrophobic tails influence γcmc. By comparing the three different classes of surfactants, fluorocarbon, silicone, and hydrocarbon, a generalized surface packing index is introduced which is independent of the chemical nature of the surfactants. This parameter ϕcmc represents the volume fraction of surfactant chain fragments in a surface film at the aqueous cmc. It is shown that ϕcmc is a useful index for understanding the limiting surface tension of surfactants and can be useful for designing new superefficient surfactants.

  5. Surfactant waterflooding oil recovery method

    SciTech Connect

    Schievelbein, V.H.

    1981-12-29

    Oil is recovered from an underground petroleum reservoir which contains a brine having a salinity of from 50 to 220 kg/m3 total dissolved solids by injecting an alkylarylpolyalkoxy sulfate or alkylpolyalkoxy sulfate surfactant that exhibits phase stability in the brine or diluted brine. The surfactant is injected in an aqueous solution which is prepared with diluted brine which has a salinity slightly less than that required to cause partitioning of the surfactant out of the aqueous phase into the oil-water interface or oil phase. The injection of surfactant is followed by the injecting of a driving slug comprised of either diluted brine or thickened diluted brine.

  6. Surfactant and process for enhanced oil recovery

    SciTech Connect

    Stapp, P. R.

    1984-12-11

    A novel surfactant is formed by reacting maleic anhydride with either a petroleum sulfonate or an alkaryl sulfonate. A surfactant system containing the above surfactant useful in enhanced oil recovery processes is also provided.

  7. Surfactant phosphatidylcholine metabolism and surfactant function in preterm, ventilated lambs

    SciTech Connect

    Jobe, A.H.; Ikegami, M.; Seidner, S.R.; Pettenazzo, A.; Ruffini, L.

    1989-02-01

    Preterm lambs were delivered at 138 days gestational age and ventilated for periods up to 24 h in order to study surfactant metabolism and surfactant function. The surfactant-saturated phosphatidylcholine pool in the alveolar wash was 13 +/- 4 mumol/kg and did not change from 10 min to 24 h after birth. Trace amounts of labeled natural sheep surfactant were mixed with fetal lung fluid at birth. By 24 h, 80% of the label had become lung-tissue-associated, yet there was no loss of label from phosphatidylcholine in the lungs when calculated as the sum of the lung tissue plus alveolar wash. De novo synthesized phosphatidylcholine was labeled with choline given by intravascular injection at 1 h of age. Labeled phosphatidylcholine accumulated in the lung tissue linearly to 24 h, and the labeled phosphatidylcholine moved through lamellar body to alveolar pools. The turnover time for alveolar phosphatidylcholine was estimated to be about 13 h, indicating an active metabolic pool. A less surface-active surfactant fraction recovered as a supernatant after centrifugation of the alveolar washes at 40,000 x g increased from birth to 10 min of ventilation, but no subsequent changes in the distribution of surfactant phosphatidylcholine in surfactant fractions occurred. The results were consistent with recycling pathway(s) that maintained surface-active surfactant pools in preterm ventilated lambs.

  8. Surfactant adsorption kinetics in microfluidics

    PubMed Central

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore–surfactant interactions. PMID:27688765

  9. Surfactant-assisted coal liquefaction

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1977-01-01

    Improved process of coal liquefaction utilizing nonaqueous surfactant has increased oil yield from 50 to about 80%. Asphaltene molecule formation of colloid particles is prevented by surfactant. Separated molecules present more surface area for hydrogenation reaction. Lower requirements for temperature, pressure, and hydrogen lead to reduction in capital and operation costs.

  10. Novel Approaches to Surfactant Administration

    PubMed Central

    Gupta, Samir; Donn, Steven M.

    2012-01-01

    Surfactant replacement therapy has been the mainstay of treatment for preterm infants with respiratory distress syndrome for more than twenty years. For the most part, surfactant is administered intratracheally, followed by mechanical ventilation. In recent years, the growing interest in noninvasive ventilation has led to novel approaches of administration. This paper will review these techniques and the associated clinical evidence. PMID:23243504

  11. ADSORPTION OF SURFACTANT ON CLAYS

    EPA Science Inventory

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  12. Surfactant monitoring by foam generation

    DOEpatents

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  13. On-line surfactant monitoring

    SciTech Connect

    Mullen, K.I.; Neal, E.E.; Soran, P.D.; Smith, B.

    1995-04-01

    This group has developed a process to extract metal ions from dilute aqueous solutions. The process uses water soluble polymers to complex metal ions. The metal/polymer complex is concentrated by ultrafiltration and the metals are recovered by a pH adjustment that frees the metal ions. The metal ions pass through the ultrafiltration membrane and are recovered in a concentrated form suitable for reuse. Surfactants are present in one of the target waste streams. Surfactants foul the costly ultrafiltration membranes. It was necessary to remove the surfactants before processing the waste stream. This paper discusses an on-line device the authors fabricated to monitor the process stream to assure that all the surfactant had been removed. The device is inexpensive and sensitive to very low levels of surfactants.

  14. Innovation in surfactant therapy II: surfactant administration by aerosolization.

    PubMed

    Pillow, J Jane; Minocchieri, S

    2012-01-01

    Instilled bolus surfactant is the only approved surfactant treatment for neonatal respiratory distress syndrome. However, recent trends towards increased utilization of noninvasive respiratory support for preterm infants with surfactant deficiency have created a demand for a similarly noninvasive means of administering exogenous surfactant. Past approaches to surfactant nebulization met with varying success due to inefficient aerosol devices resulting in low intrapulmonary delivery doses of surfactant with variable clinical effectiveness. The recent development of vibrating membrane nebulizers, coupled with appropriate positioning of the interface device, indicates that efficient delivery of aerosolized surfactant is now a realistic goal in infants. Evidence of clinical effect despite low total administered dose in pilot studies, together with suggestions of enhanced homogeneity of pulmonary distribution indicate that this therapy may be applied in a cost-effective manner, with minimal patient handling and disruption. These studies need to be subjected to appropriately designed randomized controlled trials. Further work is also required to determine the optimum delivery route (mask, intranasal prong, nasopharyngeal or laryngeal), dosing amount and redosing interval.

  15. Surfactant and process for enhanced oil recovery

    SciTech Connect

    Stapp, P. R.

    1985-03-12

    A novel surfactant is formed by reacting maleic anhydride with a polynuclear aromatic compound having a molecular weight of at least 155. A novel surfactant system useful in enhanced oil recovery containing the above surfactant is also provided. In addition, an improved process for the enhanced recovery of oil is provided utilizing the novel surfactant system.

  16. Surfactant waterflooding enhanced oil recovery process

    SciTech Connect

    Schievelbein, V.H.

    1984-07-17

    Disclosed is a surfactant waterflooding enhanced oil recovery process and surfactant fluid suitable for use in an enhanced oil recovery process which accomplishes an increase in the amount of oil recovered over prior art methods. The surfactant fluid contains an alkylpolyalkoxy sulfate or alkylarylpolyalkoxy sulfate, or an alkylpolyalkoxyalkylene sulfonate or alkylarylpolyalkoxyalkylene sulfonate, either alone or in combination with an organic sulfonate anionic surfactant, such as petroleum sulfonate. The optimum average degree of ethoxylation of the alkoxy sulfate or alkoxy sulfonate surfactant is identified, and the surfactant fluid is formulated with a mixture of ethoxylated and sulfated or ethoxylated and sulfonated surfactants, having a broad even range of degree of ethoxylation.

  17. Pulmonary surfactant for neonatal respiratory disorders.

    PubMed

    Merrill, Jeffrey D; Ballard, Roberta A

    2003-04-01

    Surfactant therapy has revolutionized neonatal care and is used routinely for preterm infants with respiratory distress syndrome. Recent investigation has further elucidated the function of surfactant-associated proteins and their contribution toward surfactant and lung immune defense functions. As the field of neonatology moves away from intubation and mechanical ventilation of preterm infants at birth toward more aggressive use of nasal continuous positive airway pressure, the optimal timing of exogenous surfactant therapy remains unclear. Evidence suggests that preterm neonates with bronchopulmonary dysplasia and prolonged mechanical ventilation also experience surfactant dysfunction; however, exogenous surfactant therapy beyond the first week of life has not been well studied. Surfactant replacement therapy has been studied for use in other respiratory disorders, including meconium aspiration syndrome and pneumonia. Commercial surfactant preparations currently available are not optimal, given the variability of surfactant protein content and their susceptibility to inhibition. Further progress in the treatment of neonatal respiratory disorders may include the development of "designer" surfactant preparations.

  18. Structural Studies of Protein-Surfactant Complexes

    SciTech Connect

    Chodankar, S. N.; Aswal, V. K.; Wagh, A. G.

    2008-03-17

    The structure of protein-surfactant complexes of two proteins bovine serum albumin (BSA) and lysozyme in presence of anionic surfactant sodium dodecyl sulfate (SDS) has been studied using small-angle neutron scattering (SANS). It is observed that these two proteins form different complex structures with the surfactant. While BSA protein undergoes unfolding on addition of surfactant, lysozyme does not show any unfolding even up to very high surfactant concentrations. The unfolding of BSA protein is caused by micelle-like aggregation of surfactant molecules in the complex. On the other hand, for lysozyme protein there is only binding of individual surfactant molecules to protein. Lysozyme in presence of higher surfactant concentrations has protein-surfactant complex structure coexisting with pure surfactant micelles.

  19. Pulmonary surfactant for neonatal respiratory disorders.

    PubMed

    Merrill, Jeffrey D; Ballard, Roberta A

    2003-04-01

    Surfactant therapy has revolutionized neonatal care and is used routinely for preterm infants with respiratory distress syndrome. Recent investigation has further elucidated the function of surfactant-associated proteins and their contribution toward surfactant and lung immune defense functions. As the field of neonatology moves away from intubation and mechanical ventilation of preterm infants at birth toward more aggressive use of nasal continuous positive airway pressure, the optimal timing of exogenous surfactant therapy remains unclear. Evidence suggests that preterm neonates with bronchopulmonary dysplasia and prolonged mechanical ventilation also experience surfactant dysfunction; however, exogenous surfactant therapy beyond the first week of life has not been well studied. Surfactant replacement therapy has been studied for use in other respiratory disorders, including meconium aspiration syndrome and pneumonia. Commercial surfactant preparations currently available are not optimal, given the variability of surfactant protein content and their susceptibility to inhibition. Further progress in the treatment of neonatal respiratory disorders may include the development of "designer" surfactant preparations. PMID:12640270

  20. Demulsification of emulsions produced from surfactant recovery operations and recovery of surfactants therefrom

    SciTech Connect

    Allison, J.B.; Kudchadker, M.V.; Whittington, L.E.

    1981-07-07

    Treatment of emulsions of oil and water produced from surfactant recovery operations whereby the produced emulsions containing surfactants are demulsified and the surfactants are recovered in the water phase.

  1. Interactions between polymers and surfactants

    SciTech Connect

    de Gennes, P.G. )

    1990-11-01

    A surfactant film (at the water/air interface, or in a bilayer) is exposed to a solution of a neutral, flexible, polymer. Depending on the interactions, and on the Langmuir pressure II of the pure surfactant film, the authors expected to find three types of behavior: (I) the polymer does not absorb; (II) the polymer absorbs and mixes with the surfactant; (III) the polymer absorbs but segregates from the surfactant. Their interest here is in case II. They predict that (a) bilayers become rigid; (b) bilayers, exposed to polymer on one side only, tend to bend strongly; (c) the surface viscosity of monolayers or bilayers is considerably increased; soap films or foams, which usually drain by turbulent (two-dimensional) flows, may be stabilized in case II.

  2. Biomimicry of surfactant protein C.

    PubMed

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  3. Surfactant for pediatric acute lung injury.

    PubMed

    Willson, Douglas F; Chess, Patricia R; Notter, Robert H

    2008-06-01

    This article reviews exogenous surfactant therapy and its use in mitigating acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) in infants, children, and adults. Biophysical and animal research documenting surfactant dysfunction in ALI/ARDS is described, and the scientific rationale for treatment with exogenous surfactant is discussed. Major emphasis is placed on reviewing clinical studies of surfactant therapy in pediatric and adult patients who have ALI/ARDS. Particular advantages from surfactant therapy in direct pulmonary forms of these syndromes are described. Also discussed are additional factors affecting the efficacy of exogenous surfactants in ALI/ARDS.

  4. Waterflooding employing mixtures of sulfonate surfactants

    SciTech Connect

    Savins, J.G.; Waite, J.M.; Burdyn, R.F.

    1980-11-04

    A new waterflooding process is described in which at least a portion of the injected fluid comprises a viscous aqueous liquid having a monovalent salt salinity within the range of 1.5 to 4.0% by wt and containing first and second sulfonate surfactants. The first surfactant is a petroleum sulfonate having a relatively broad molecular weight distribution and the second surfactant is a synthetic alkyl or alkylaryl sulfonate having a molecular weight distribution narrower than that of the first surfactant. The first and second surfactants are present in the aqueous liquid in relative amounts such that the ratio of the concentration of the first surfactant to the concentration of the second surfactant is within the range of 1:3 to 1:1. The thickened aqueous liquid containing the above described multicomponent surfactant system also contains a water-soluble C3-C6 aliphatic alcohol. 11 claims.

  5. Biofoams and natural protein surfactants

    PubMed Central

    Cooper, Alan; Kennedy, Malcolm W.

    2010-01-01

    Naturally occurring foam constituent and surfactant proteins with intriguing structures and functions are now being identified from a variety of biological sources. The ranaspumins from tropical frog foam nests comprise a range of proteins with a mixture of surfactant, carbohydrate binding and antimicrobial activities that together provide a stable, biocompatible, protective foam environment for developing eggs and embryos. Ranasmurfin, a blue protein from a different species of frog, displays a novel structure with a unique chromophoric crosslink. Latherin, primarily from horse sweat, but with similarities to salivary, oral and upper respiratory tract proteins, illustrates several potential roles for surfactant proteins in mammalian systems. These proteins, together with the previously discovered hydrophobins of fungi, throw new light on biomolecular processes at air–water and other interfaces. This review provides a perspective on these recent findings, focussing on structure and biophysical properties. PMID:20615601

  6. SURFACTANT ENHANCED AQUIFER REMEDIATION WITH SURFACTANT REGENERATION/REUSE

    EPA Science Inventory

    A demonstration of surfactant-enhanced aquifer remediation was conducted during the spring of 1999 at Marine Corps Base, Camp LeJeune, NC. A PCE-DNAPL zone was identified and delineated by extensive soil sampling in 1997, and was further characteized by a partitioning interwell t...

  7. Aerosol delivery of synthetic lung surfactant

    PubMed Central

    Hernández-Juviel, José M.; Waring, Alan J.

    2014-01-01

    Background. Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in premature infants with respiratory distress syndrome due to lack of lung surfactant. If this approach fails, the next step is often intubation, mechanical ventilation (MV) and intratracheal instillation of clinical lung surfactant. Objective. To investigate whether aerosol delivery of advanced synthetic lung surfactant, consisting of peptide mimics of surfactant proteins B and C (SP-B and SP-C) and synthetic lipids, during nCPAP improves lung function in surfactant-deficient rabbits. Methods. Experimental synthetic lung surfactants were produced by formulating 3% Super Mini-B peptide (SMB surfactant), a highly surface active SP-B mimic, and a combination of 1.5% SMB and 1.5% of the SP-C mimic SP-Css ion-lock 1 (BC surfactant), with a synthetic lipid mixture. After testing aerosol generation using a vibrating membrane nebulizer and aerosol conditioning (particle size, surfactant composition and surface activity), we investigated the effects of aerosol delivery of synthetic SMB and BC surfactant preparations on oxygenation and lung compliance in saline-lavaged, surfactant-deficient rabbits, supported with either nCPAP or MV. Results. Particle size distribution of the surfactant aerosols was within the 1–3 µm distribution range and surfactant activity was not affected by aerosolization. At a dose equivalent to clinical surfactant therapy in premature infants (100 mg/kg), aerosol delivery of both synthetic surfactant preparations led to a quick and clinically relevant improvement in oxygenation and lung compliance in the rabbits. Lung function recovered to a greater extent in rabbits supported with MV than with nCPAP. BC surfactant outperformed SMB surfactant in improving lung function and was associated with higher phospholipid values in bronchoalveolar lavage fluid; these findings were irrespective of the type of ventilatory support

  8. Surfactant flooding oil recovery process

    SciTech Connect

    Carlin, J.; Mills, M.; Tyler, T.; Ware, J.

    1980-07-29

    A method of recovering petroleum from a subterranean petroleum-containing formation penrated by at least one injection well and by at least one spaced apart production well is described. The wells being in fluid communication with the formation, comprising: (A) injecting into the formation via the injection well an aqueous, saline fluid having a salinity greater than 20,000 ppM total dissolved solids and containing a surfactant comprising petroleum sulfonates whose average equivalent weight is from 350 to 400, from 15 to 35 percent of said pertroleum sulfonates having equilvent weights of 350 or less, from 30 to 50 percent of said petroleum sulfonates having equivalent weights greater than 350 and less than 500, and from 10 to 40 percent of said petroleum sulfonates having equivalent weights of 500 and above and a solubilizing co-surfactant selected from the group consisting of ethoxylated alkanols, ethoxylated alkylphenols, alkyl or alkylaryl polyethoxy sulfates, alkyl or alkylaryl polyalkoxyalkyl sulfonates, and mixtures thereof, said surfactant fluid displacing petroleum toward the production well; and (B) recovering petroleum displaced by the surfactant fluids from the formation and via the production well.

  9. Cationic surfactants based on ferrocene

    SciTech Connect

    Pankratov, V.A.; Kucherova, N.L.; Abramzon, A.A.

    1988-07-20

    Quaternary ammonium salts based on ferrocene were synthesized and their surface active properties were studied as potential cationic surfactants and for uses including antiknock compounds. The salts were halide and nitrate derivatives of dimethylferrocenylmethylammonium and were prepared by aminomethylation of ferrocene. Chemical reaction yields, melting points, surface tension isotherms, and other characteristics were assessed.

  10. New Lyotropic Liquid Crystals Based on Surfactants

    NASA Astrophysics Data System (ADS)

    Honciuc, Maria; Borlescu, C.; Popa, Carmen

    We presented here the phase diagrams and the influence of the external electric field on the lyotropic liquid crystal phase (LLC) for some binary and pseudoternary systems based on surfactants. Binary systems are of the type surfactant/water (S/W) and the pseudoternary systems are of the type surfactant/oil/water (S/O/W). Two surfactants have been used: the lauryl alcohol ethoxilated with 11 molecules of ethylene oxide (LA11EO), which is a nonionic compound, and a mixture of LA11EO with the cationic surfactant named alkyl C12-C14-dimethyl-benzyl ammonium chloride. Based on these two types of surfactants, pseudoternary systems were prepared. Pine oil has been used as the oil. The region where the LLC phase appears depends on the concentration of the surfactant and that of the pine oil, respectively. It is strongly influenced by the nature of the surfactant and by the presence of the pine oil for the same type of surfactant. The influence of the external electric field, investigated by measuring the electric current appearing in the samples for different concentrations of surfactant and pine oil was found to be more important in the case of the systems based on the nonionic-cationic mixture of surfactants. The results are discussed in terms of a theoretical model based on the local thermal equilibrium approach for systems running nonstatic processes.

  11. Double tapered surfactant waterflood oil recovery process

    SciTech Connect

    Carlin, J.T.; Tyler, T.N.

    1980-11-11

    Disclosed is an oil recovery process for recovering oil from subterranean formations containing relatively high salinity water , said process employing an aqueous surfactant fluid containing at least two surfactants, one primary anionic surfactant such as petroleum sulfonate and a solubilizing cosurfactant such as an alkyl or alkylaryl, polyethoxy sulfate or sulfonate. The process comprises injecting a plurality of slugs of surfactant fluids followed by a low salinity fluid containing a viscosifying amount of a hydrophilic polymer. The salinity and concentration of solubilizing cosurfactant of each surfactant slug are both decreased from the maximum level in the first slug of the surfactant fluid and in successive slugs to a minimum level at the last slug of the surfactant fluid.

  12. Surfactants in the management of rhinopathologies

    PubMed Central

    Rosen, Philip L.; Palmer, James N.; O'Malley, Bert W.

    2013-01-01

    Background: Surfactants are a class of amphiphilic surface active compounds that show several unique physical properties at liquid–liquid or liquid–solid surface interfaces including the ability to increase the solubility of substances, lower the surface tension of a liquid, and decrease friction between two mediums. Because of these unique physical properties several in vitro, ex vivo, and human trials have examined the role of surfactants as stand-alone or adjunct therapy in recalcitrant chronic rhinosinusitis (CRS). Methods: A review of the literature was performed. Results: The data from three different surfactants have been examined in this review: citric acid zwitterionic surfactant (CAZS; Medtronic ENT, Jacksonville FL), Johnson's Baby Shampoo (Johnson & Johnson, New Brunswick NJ), and SinuSurf (NeilMed Pharmaceuticals, Santa Rosa, CA). Dilute surfactant therapy shows in vitro antimicrobial effects with modest inhibition of bacterial biofilm formation. In patients with CRS, surfactants may improve symptoms, most likely through its mucolytic effects. In addition, surfactants have several distinct potential benefits including their ability to improve an irrigant's penetration of the nonoperated sinus and their synergistic effects with antibiotics. However, surfactants potential for nasal irritation and possible transient ciliotoxicity may limit their use. Conclusion: Recent data suggest a possible therapeutic role of surfactants in treating rhinopathologies associated with mucostasis. Further investigation, including a standardization of surfactant formulations, is warranted to further elucidate the potential benefits and drawbacks of this therapy. PMID:23710951

  13. Micellar-enhanced ultrafiltration and air stripping for surfactant-contaminant separation and surfactant reuse

    SciTech Connect

    Lipe, K.M.; Sabatini, D.A.; Hasegawa, M.A.; Harwell, J.H.

    1996-05-01

    Micellar-enhanced ultrafiltration (MEUF) and air stripping were evaluated for surfactant-contaminant separation and surfactant recovery. Two linear alkyl diphenyloxide disulfonate (DPDS) surfactants were evaluated with the contaminants naphthalene and trichloroethylene. A separation model developed from micellar partitioning principles showed a good correlation to batch MEUF studies, whereas flux analysis highlighted concentration polarization effects in relation to hydrophobe length. MEUF effectively concentrated the surfactant-contaminant system (93 to 99% retention); however, this did not result in surfactant-contaminant separation. Batch and continuous flow air stripping models were developed based upon air/water ratio, surfactant concentration, and micellar partitioning; model predictions were validated by experimental data. Sensitivity analyses illustrated the decline in contaminant-surfactant separation with increasing surfactant concentration (e.g., TCE removal efficiency declines from 83% to 37% as C-16 DPDS concentration increases from 0 to 55 mM). This effect is greater for more hydrophobic contaminants (naphthalene vs. TCE) and surfactants with greater solubilization potential (C16-DPDS vs. C-12 DPDS). The resulting design equations can account for this effect and thus properly size air strippers to achieve the desired removal efficiency in the presence of surfactant micelles. Proper selection and design of surfactant-contaminant separation and surfactant recovery systems are integral to optimizing surfactant-enhanced subsurface remediation.

  14. Hydrodynamic size of DNA/cationic gemini surfactant complex as a function of surfactant structure.

    PubMed

    Devínsky, Ferdinand; Pisárcik, Martin; Lacko, Ivan

    2009-06-01

    The present study deals with the determination of hydrodynamic size of DNA/cationic gemini surfactant complex in sodium bromide solution using the dynamic light scattering method. Cationic gemini surfactants with polymethylene spacer of variable length were used for the interaction with DNA. The scattering experiments were performed at constant DNA and sodium bromide concentrations and variable surfactant concentration in the premicellar and micellar regions as a function of surfactant spacer length. It was found that the DNA conformation strongly depends on the polymethylene spacer length as well as on the surfactant concentration relative to the surfactant critical micelle concentration. Gemini surfactant molecules with 4 methylene groups in the spacer were found to be the least efficient DNA compacting agent in the region above the surfactant cmc. Gemini molecules with the shortest spacer length (2 methylene groups) and the longest spacer length (8 methylene groups) investigated showed the most efficient DNA compaction ability. PMID:19592712

  15. Enhancing Dopant Solubility via Epitaxial Surfactant Growth

    SciTech Connect

    Zhang, L.; Yan, Y.; Wei, S.-H.

    2009-01-01

    A general concept for enhancing dopant solubility via epitaxial surfactant growth is proposed. The key of the concept is to find the appropriate surfactants that generate high (low) levels that can transfer electrons (holes) to dopant acceptor (donor) levels in p-type (n-type) doping, thus significantly lowering the formation energy of dopants. Using first-principles density-functional calculations, our concept explains excellently the recently discovered dual-surfactant effect of Sb and H on enhancing Zn doping in epitaxially grown GaP(100) thin film and suggests that sole surfactant Te can also induce enhancement of N solubility in ZnSe(100) film. We also proposed the surfactants for enhancing p-type doing of ZnO with epitaxial growth with (000{bar 1}) surface. General rules for selecting surfactants for enhancing both p-type and n-type dopings are provided.

  16. Cationic versus anionic surfactant in tuning the structure and interaction of nanoparticle, protein, and surfactant complexes.

    PubMed

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim

    2014-08-26

    The structure and interaction in complexes of anionic Ludox HS40 silica nanoparticle, anionic bovine serum albumin (BSA) protein, and cationic dodecyl trimethylammonium bromide (DTAB) surfactant have been studied using small-angle neutron scattering (SANS). The results are compared with similar complexes having anionic sodium dodecyl sulfate (SDS) surfactant (Mehan, S; Chinchalikar, A. J.; Kumar, S.; Aswal, V. K.; Schweins, R. Langmuir 2013, 29, 11290). In both cases (DTAB and SDS), the structure in nanoparticle-protein-surfactant complexes is predominantly determined by the interactions of the individual two-component systems. The nanoparticle-surfactant (mediated through protein-surfactant complex) and protein-surfactant interactions for DTAB, but nanoparticle-protein (mediated through protein-surfactant complex) and protein-surfactant interactions for SDS, are found to be responsible for the resultant structure of nanoparticle-protein-surfactant complexes. Irrespective of the charge on the surfactant, the cooperative binding of surfactant with protein leads to micellelike clusters of surfactant formed along the unfolded protein chain. The adsorption of these protein-surfactant complexes for DTAB on oppositely charged nanoparticles gives rise to the protein-surfactant complex-mediated aggregation of nanoparticles (similar to that of DTAB surfactant). It is unlike that of depletion-induced aggregation of nanoparticles with nonadsorption of protein-surfactant complexes for SDS in similarly charged nanoparticle systems (similar to that of protein alone). The modifications in nanoparticle aggregation as well as unfolding of protein in these systems as compared to the corresponding two-component systems have also been examined by selectively contrast matching the constituents.

  17. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.

    PubMed

    Hu, Zhen; Ballinger, Sarah; Pelton, Robert; Cranston, Emily D

    2015-02-01

    The effect of surfactants on the properties of Pickering emulsions stabilized by cellulose nanocrystals (CNCs) was investigated. Electrophoretic mobility, interfacial tension, confocal microscopy and three-phase contact angle measurements were used to elucidate the interactions between anionic CNCs and cationic alkyl ammonium surfactants didecyldimethylammonium bromide (DMAB) and cetyltrimethylammonium bromide (CTAB). Both surfactants were found to adsorb onto CNCs with concentration-dependent morphology. At low concentrations, individual surfactant molecules adsorbed with alkyl tails pointing outward leading to hydrophobic CNCs. At higher concentrations, above the surfactant's apparent critical micelle concentration, surfactant aggregate morphologies on CNCs were inferred and the hydrophobicity of CNCs decreased. DMAB, which has two alkyl tails, rendered the CNCs more hydrophobic than CTAB which has only a single alkyl tail, at all surfactant concentrations. The change in CNC wettability from surfactant adsorption was directly linked to emulsion properties; adding surfactant increased the emulsion stability, decreased the droplet size, and controlled the internal phase of CNC Pickering emulsions. More specifically, a double transitional phase inversion, from oil-in-water to water-in-oil and back to oil-in-water, was observed for emulsions with CNCs and increasing amounts of DMAB (the more hydrophobic surfactant). With CNCs and CTAB, no phase inversion was induced. This work represents the first report of CNC Pickering emulsions with surfactants as well as the first CNC Pickering emulsions that can be phase inverted. The ability to surface modify CNCs in situ and tailor emulsions by adding surfactants may extend the potential of CNCs to new liquid formulations and extruded/spray-dried materials.

  18. Surfactant adsorption to soil components and soils.

    PubMed

    Ishiguro, Munehide; Koopal, Luuk K

    2016-05-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on water/air interfaces, the latter gives an impression of surfactant adsorption to a hydrophobic surface and illustrates the importance of the CMC for the adsorption process. Then attention is paid to the most important types of soil particles: humic and fulvic acids, silica, metal oxides and layered aluminosilicates. Information is provided on their structure, surface properties and primary (proton) charge characteristics, which are all important for surfactant binding. Subsequently, the adsorption of different types of surfactants on these individual soil components is discussed in detail, based on mainly experimental results and considering the specific (chemical) and electrostatic interactions, with hydrophobic attraction as an important component of the specific interactions. Adsorption models that can describe the features semi-quantitatively are briefly discussed. In the last part of the paper some trends of surfactant adsorption on soils are briefly discussed together with some complications that may occur and finally the consequences of surfactant adsorption for soil colloidal stability and permeability are considered. When we seek to understand the fate of surfactants in soil and aqueous environments, the hydrophobicity and charge density of the soil or soil particles, must be considered together with the structure, hydrophobicity and charge of the surfactants, because these factors affect the adsorption. The pH and ionic strength are important parameters with respect to the charge density of the particles. As surfactant adsorption influences soil structure and permeability, insight in surfactant adsorption to soil particles is useful for good soil management. PMID

  19. Biophysical inhibition of pulmonary surfactant function by polymeric nanoparticles: role of surfactant protein B and C.

    PubMed

    Beck-Broichsitter, Moritz; Ruppert, Clemens; Schmehl, Thomas; Günther, Andreas; Seeger, Werner

    2014-11-01

    The current study investigated the mechanisms involved in the process of biophysical inhibition of pulmonary surfactant by polymeric nanoparticles (NP). The minimal surface tension of diverse synthetic surfactants was monitored in the presence of bare and surface-decorated (i.e. poloxamer 407) sub-100 nm poly(lactide) NP. Moreover, the influence of NP on surfactant composition (i.e. surfactant protein (SP) content) was studied. Dose-elevations of SP advanced the biophysical activity of the tested surfactant preparation. Surfactant-associated protein C supplemented phospholipid mixtures (PLM-C) were shown to be more susceptible to biophysical inactivation by bare NP than phospholipid mixture supplemented with surfactant protein B (PLM-B) and PLM-B/C. Surfactant function was hindered owing to a drastic depletion of the SP content upon contact with bare NP. By contrast, surface-modified NP were capable of circumventing unwanted surfactant inhibition. Surfactant constitution influences the extent of biophysical inhibition by polymeric NP. Steric shielding of the NP surface minimizes unwanted NP-surfactant interactions, which represents an option for the development of surfactant-compatible nanomedicines.

  20. Crystalline surfactant dispersions by radio frequency absorption

    SciTech Connect

    Tedder, S.H.

    1986-03-01

    Recently interest has increased in the use of liquid crystalline surfactant dispersions for enhanced oil recovery. The object of the work described in the report was to develop a method of measuring the electrical properties of colloidal surfactant particles, which control the structure and stability of the surfactant dispersion. A further object was to find how these electrical properties are affected by the method used to mix the components of the dispersion. The results may be useful in solving several practical problems, including the identification of optimally performing liquid crystalline surfactant formulations for oil recovery use. Another possible use is to identify and categorize effects of the method of mixing surfactants on the final product. This information would provide guidelines for field handling of chemical recovery agents. The absorption of radio frequency energy, a process which is mediated by the surface electrical properties of the surfactant particles, was used to measure several electrical parameters of the surfactant mixtures. Two commercial petroleum sulfonate surfactants were tested by the radio frequency absorption method, and a model of their electrical properties was developed and used to fit the data. The strength of the layer of electric charges surrounding the surfactant particles was found to be related to the stability of the solution. 10 refs., 4 figs., 3 tabs.

  1. Immiscible displacement of oil with surfactant system

    SciTech Connect

    Shaw, J. E.

    1985-12-03

    In accordance with the present invention it has been found that improved recovery of oil from a subsurface earth formation can be attained by injecting into the formation a surfactant system comprising a carboxylate surfactant, a cosurfactant and an electrolyte in concentrations and proportions to form an immiscible three-phase system with the reservoir oil comprising a predominantly oil phase, a microemulsion phase and an aqueous phase. The carboxylate surfactant is preferably selected from the group consisting of branched aliphatic carboxylates and mononuclear aromatic carboxylates. Where aliphatic carboxylates are utilized as a surfactant, it is preferred that the polar organic material utilized as a cosurfactant have a solubility in water less than about ten grams per hundred grams of water ost about 20/sup 0/ C. and, when an aromatic carboxylate is utilized as a surfactant, it is preferred that the polar organic material utilized as a cosurfactant have a water solubility greater than about ten grams per hundred grams of water at about 20/sup 0/ C. In accordance with another aspect of the present invention, it has been found that surfactant systems containing carboxylate surfactants will recover optimum amounts of oil when a base is added to the surfactant system to adjust the pH to a value at which the surfactant system results nin optimum oil recovery.

  2. Hemolysis by surfactants--A review.

    PubMed

    Manaargadoo-Catin, Magalie; Ali-Cherif, Anaïs; Pougnas, Jean-Luc; Perrin, Catherine

    2016-02-01

    An overview of the use of surfactants for erythrocyte lysis and their cell membrane action mechanisms is given. Erythrocyte membrane characteristics and its association with the cell cytoskeleton are presented in order to complete understanding of the erythrocyte membrane distortion. Cell homeostasis disturbances caused by surfactants might induce changes starting from shape modification to cell lysis. Two main mechanisms are hypothesized in literature which are osmotic lysis and lysis by solubilization even if the boundary between them is not clearly defined. Another specific mechanism based on the formation of membrane pores is suggested in the particular case of saponins. The lytic potency of a surfactant is related to its affinity for the membrane and the modification of the lipid membrane curvature. This is to be related to the surfactant shape defined by its hydrophobic and hydrophilic moieties but also by experimental conditions. As a consequence, prediction of the hemolytic potency of a given surfactant is challenging. Several studies are focused on the relation between surfactant erythrolytic potency and their physico-chemical parameters such as the critical micellar concentration (CMC), the hydrophile-lipophile balance (HLB), the surfactant membrane/water partition coefficient (K) or the packing parameter (P). The CMC is one of the most important factors considered even if a lytic activity cut-off effect points out that the only consideration of CMC not enough predictive. The relation K.CMC must be considered in addition to the CMC to predict the surfactant lytic capacity within the same family of non ionic surfactant. Those surfactant structure/lytic activity studies demonstrate the requirement to take into account a combination of physico-chemical parameters to understand and foresee surfactant lytic potency.

  3. Adsorption of surfactants on mineral oxide surfaces from aqueous solutions. Part 1. Isomerically pure anionic surfactants

    SciTech Connect

    Scamehorn, J.F.; Schechter, R.S.; Wade, W.H.

    1982-02-01

    The adsorption of surfactants on minerals is detrimental to surfactant-enhanced oil recovery. To minimize adsorption, the forces tending to cause it must be understood. This requires the study of relatively simple, well-defined systems. The majority of surfactant adsorption studies on mineral oxides has been made with surfactant mixtures and not with monoisomerically pure species. Some of the observed results may be due to complex surfactant intercomponent interactions. In this study, the adsorption of 3 isomerically pure alkylbenzene sulfonates was measured on alumina and kaolinite from very low concentrations to well above the critical micelle concentration and a thermodynamic model was developed, which describes the observed isotherms. 59 references.

  4. Surfactant and pulmonary blood flow distributions following treatment of premature lambs with natural surfactant.

    PubMed Central

    Jobe, A; Ikegami, M; Jacobs, H; Jones, S

    1984-01-01

    Prematurely delivered lambs were treated with radiolabeled natural surfactant by either tracheal instillation at birth and before the onset of mechanical ventilation, or after 23 +/- 1 (+/- SE) min of mechanical ventilation. Right ventricular blood flow distributions, left ventricular outputs, and left-to-right ductal shunts were measured with radiolabeled microspheres. After sacrifice, the lungs of lambs receiving surfactant at birth inflated uniformly with constant distending pressure while the lungs of lambs treated after a period of ventilation had aerated, partially aerated, and atelectatic areas. All lungs were divided into pieces which were weighed and catalogued as to location. The amount of radiolabeled surfactant and microsphere-associated radioactivity in each piece of lung was quantified. Surfactant was relatively homogenously distributed to pieces of lung from lambs that were treated with surfactant at birth; 48% of lung pieces received amounts of surfactant within +/- 25% of the mean value. Surfactant was preferentially recovered from the aerated pieces of lungs of lambs treated after a period of mechanical ventilation, and the distribution of surfactant to these lungs was very nonhomogeneous. Right ventricular blood flow distributions to the lungs were quite homogeneous in both groups of lambs. However, in 8 of 12 lambs, pulmonary blood flow was preferentially directed away from those pieces of lung that received relatively large amounts of surfactant and toward pieces of lung that received less surfactant. This acute redirection of pulmonary blood flow distribution may result from the local changes in compliances within the lung following surfactant instillation. PMID:6546766

  5. Innovation in surfactant therapy I: surfactant lavage and surfactant administration by fluid bolus using minimally invasive techniques.

    PubMed

    Dargaville, Peter A

    2012-01-01

    Innovation in the field of exogenous surfactant therapy continues more than two decades after the drug became commercially available. One such innovation, lung lavage using dilute surfactant, has been investigated in both laboratory and clinical settings as a treatment for meconium aspiration syndrome (MAS). Studies in animal models of MAS have affirmed that dilute surfactant lavage can remove meconium from the lung, with resultant improvement in lung function. In human infants both non-randomised studies and two randomised controlled trials have demonstrated a potential benefit of dilute surfactant lavage over standard care. The largest clinical trial, performed by our research group in infants with severe MAS, found that lung lavage using two 15-ml/kg aliquots of dilute surfactant did not reduce the duration of respiratory support, but did appear to reduce the composite outcome of death or need for extracorporeal membrane oxygenation. A further trial of lavage therapy is planned to more precisely define the effect on survival. Innovative approaches to surfactant therapy have also extended to the preterm infant, for whom the more widespread use of continuous positive airway pressure (CPAP) has meant delaying or avoiding administration of surfactant. In an effort to circumvent this problem, less invasive techniques of bolus surfactant therapy have been trialled, including instillation directly into the pharynx, via laryngeal mask and via brief tracheal catheterisation. In a recent clinical trial, instillation of surfactant into the trachea using a flexible feeding tube was found to reduce the need for subsequent intubation. We have developed an alternative method of brief tracheal catheterisation in which surfactant is delivered via a semi-rigid vascular catheter inserted through the vocal cords under direct vision. In studies to date, this technique has been relatively easy to perform, and resulted in rapid improvement in lung function and reduced need for

  6. Cosurfactant in preflush for surfactant flood system

    SciTech Connect

    Glinsmann, G.R.; Hedges, J.H.

    1981-06-23

    In a post-primary oil recovery process involving the sequential addition of a saline preflush, a surfactant system comprising of a surfactant, a cosurfactant and brine when added to the preflush improves recovery. If desired, cosurfactant can also be added to a subsequent injected mobility buffer. The resulting system gives extraordinarily high recovery of oil.

  7. Hyaluronan decreases surfactant inactivation in vitro.

    PubMed

    Lu, Karen W; Goerke, Jon; Clements, John A; Taeusch, H William

    2005-02-01

    Hyaluronan (HA) is an anionic polymer and a constituent of alveolar fluid that can bind proteins, phospholipids, and water. Previous studies have established that nonionic polymers improve the surface activity of pulmonary surfactants by decreasing inactivation of surfactant. In this work, we investigate whether HA can also have beneficial effects when added to surfactants. We used a modified pulsating bubble surfactometer to measure mixtures of several commercially available pulmonary surfactants or native calf surfactant with and without serum inactivation. Surface properties such as equilibrium surface tension, minimum and maximum surface tensions on compression and expansion of a surface film, and degree of surface area reduction required to reach a surface tension of 10 mN/m were measured. In the presence of serum, addition of HA dramatically improved the surface activities of all four surfactants and in some cases in the absence of serum as well. These results indicate that HA reduces inactivation of surfactants caused by serum and add evidence that endogenous HAs may interact with alveolar surfactant under normal and abnormal conditions.

  8. Surfactant Adsorption: A Revised Physical Chemistry Lab

    ERIC Educational Resources Information Center

    Bresler, Marc R.; Hagen, John P.

    2008-01-01

    Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…

  9. Measuring surfactant concentration in plating solutions

    DOEpatents

    Bonivert, William D.; Farmer, Joseph C.; Hachman, John T.

    1989-01-01

    An arrangement for measuring the concentration of surfactants in a electrolyte containing metal ions includes applying a DC bias voltage and a modulated voltage to a counter electrode. The phase angle between the modulated voltage and the current response to the modulated voltage at a working electrode is correlated to the surfactant concentration.

  10. Kinetics of spreading of surfactant solutions

    NASA Astrophysics Data System (ADS)

    Starov, Victor; Kovalchuk, Nina; Trybala, Anna; Matar, Omar

    2014-11-01

    Wetting properties of surfactant solutions are determined by adsorption of surfactant at all interfaces involved. Adsorption on liquid/air and liquid/solid interface depends on surfactant chemistry. That is why the lower surface tension does not result automatically in better wetting properties. Spreading of surfactant solutions causes redistribution of surfactant at the interface and in the bulk. As a result surface concentration gradients appear and spreading kinetics is influenced by solutal Marangoni effect. Disjoining pressure, being the driving force of spreading also depends on the local surfactant concentration. Therefore spreading kinetics of surfactant solutions differ considerably from those of pure liquids. The results of experimental study on spreading kinetics of synergetic surfactant mixtures on hydrophobic substrates such as polyethylene and sylanised glass are presented for the two different regimes: complete and partial wetting and compared with the spreading kinetics of a pure liquid in those regimes. EPSRC Grant Numbers EP/J010502/1, EP/D077869/1, EU Marie Curie CoWet Grant, by ESA under Grants FASES and PASTA, and COST MP1106 Project.

  11. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2003-07-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior, interfacial tension (IFT) and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases IFT with a minimum at about 0.2 M. Addition of surfactant decreases IFT further. In the absence of surfactant the minerals are oil-wet after aging with crude oil. Addition of surfactant solution decreases the contact angle to intermediate-wet for many surfactants and water-wet for one surfactant. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Plans for the next quarter include conducting core adsorption, phase behavior, wettability and mobilization studies.

  12. Oil recovery by fluorochemical surfactant waterflooding

    SciTech Connect

    Cooke, T.W.

    1984-07-17

    The instant invention relates to the recovery of oil from subterranean oil reservoirs involving the injection of an aqueous based liquid containing a fluorochemical surfactant possessing an oleophobic-hydrophobic fluoroaliphatic group, a hydrophilic group and an oleophilic group, optionally in conjugation with a conventional enhanced oil recovery surfactant.

  13. Interaction of Surfactants with Block Polyelectrolyte Gels

    NASA Astrophysics Data System (ADS)

    Crichton, Mark; Bhatia, Surita

    2002-03-01

    We present SANS and rheology for poly(styrene)-poly(acrylic acid) polymers in aqueous solutions. These polymers self-assemble to form spherical micelles in aqueous solutions, and the micelles associate to create elastic, transparent gels at moderate polymer concentrations. The addition of cationic and anionic surfactants (DTAB and SDS) can be used to modify the associative interactions and solution rheology. Addition of an anionic surfactant acts to screen attractive interactions and causes a monotonic decrease in the elastic modulus. However, the addition of a cationic surfactant appears to initially induce a stronger intermicellar attraction, leading to gels with a higher elastic modulus. At higher surfactant concentrations, the cationic surfactant begins to screen intermicellar association, leading to a decrease in the strength of the gel.

  14. Surfactant screening of diesel-contaminated soil

    SciTech Connect

    Peters, R.W.; Montemagno, C.D.; Shem, L. ); Lewis, B.A. . Dept. of Civil Engineering)

    1990-01-01

    At one installation, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of the research program in which twenty-one surfactants were screened for possible use to mobilize the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on actual contaminated soil samples obtained from the site. 18 refs., 16 figs., 1 tab.

  15. Fibrinogen stability under surfactant interaction.

    PubMed

    Hassan, Natalia; Barbosa, Leandro R S; Itri, Rosangela; Ruso, Juan M

    2011-10-01

    Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen's secondary structure is affected by all three studied surfactants (decrease in α-helix and an increase in β-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction.

  16. Surfactant replacement therapy--economic impact.

    PubMed

    Pejaver, R K; al Hifzi, I; Aldussari, S

    2001-06-01

    Surfactant replacement is an effective treatment for neonatal respiratory distress syndrome. (RDS). As widespread use of surfactant is becoming a reality, it is important to assess the economic implications of this new form of therapy. A comparison study was carried out at the Neonatal Intensive Care Unit (NICU) of Northwest Armed Forces Hospital, Saudi Arabia. Among 75 infants who received surfactant for RDS and similar number who were managed during time period just before the surfactant was available, but by set criteria would have made them eligible for surfactant. All other management modalities except surfactant were the same for all these babies. Based on the intensity of monitoring and nursing care required by the baby, the level of care was divided as: Level IIIA, IIIB, Level II, Level I. The cost per day per bed for each level was calculated, taking into account the use of hospital immovable equipment, personal salaries of nursing, medical, ancillary staff, overheads and maintenance, depreciation and replacement costs. Medications used, procedures done, TPN, oxygen, were all added to individual patient's total expenditure. 75 infants in the Surfactant group had 62 survivors. They spent a total of 4300 days in hospital. (av 69.35) Out of which 970 d (av 15.65 per patient) were ventilated days. There were 56 survivors in the non-surfactant group of 75. They had spent a total of 5023 days in the hospital (av 89.69/patient) out of which 1490 were ventilated days (av 26.60 d). Including the cost of surfactant (two doses), cost of hospital stay for each infant taking the average figures of stay would be SR 118, 009.75 per surfactant treated baby and SR 164, 070.70 per non-surfactant treated baby. The difference of 46,061 SR is 39.03% more in non-surfactant group. One Saudi rial = 8 Rs (approx at the time study was carried out.) Medical care cost varies from place to place. However, it is definitely cost-effective where surfactant is concerned. Quality adjusted

  17. Different effects of surfactant proteins B and C - implications for development of synthetic surfactants.

    PubMed

    Curstedt, Tore; Johansson, Jan

    2010-06-01

    Treatment of premature newborn rabbits with synthetic surfactants containing a surfactant protein C analogue in a simple phospholipid mixture gives similar tidal volumes as treatment with poractant alfa (Curosurf(R)) but ventilation with a positive end-expiratory pressure (PEEP) is needed for this synthetic surfactant to stabilize the alveoli at end-expiration. The effect on lung gas volumes seems to depend on the structure of the peptide since treatment with a synthetic surfactant containing the 21-residue peptide (LysLeu(4))(4)Lys (KL(4)) gives low lung gas volumes in experiments also performed with PEEP. Surfactant preparations containing both surfactant proteins B and C or their analogues prevent alveolar collapse at end-expiration even if ventilated without PEEP. Treatment of premature newborn rabbits with different natural surfactants indicates that both the lipid composition and the proteins are important in order to stabilize the alveoli at end-expiration. Synthetic surfactants containing two peptides may be able to replace natural surfactants within the near future but more trials need to be performed before any conclusion can be drawn about the ideal composition of this new generation of synthetic surfactants.

  18. Preparation and characterization of zwitterionic surfactant-modified montmorillonites.

    PubMed

    Zhu, Jianxi; Qing, Yanhong; Wang, Tong; Zhu, Runliang; Wei, Jingming; Tao, Qi; Yuan, Peng; He, Hongping

    2011-08-15

    A series of zwitterionic surfactant-modified montmorillonites (ZSMMs) were synthesized using montmorillonite and three zwitterionic surfactants with different alkyl chain lengths at different concentrations [0.2-4.0 cation exchange capacity (CEC)]. These ZSMMs were characterized by X-ray diffraction (XRD), thermo-gravimetric analysis and differential thermo-gravimetric (TG/DTG) analyses. The zwitterionic surfactant could be intercalated into the interlayer spaces of montmorillonites and causing interlayer space-swelling. From XRD measurements, the amount of the surfactants loaded and the basal spacing increased with surfactant concentration and alkyl chain length. One endothermic DTG peak occurred at ~390 °C, which was assigned to the decomposition of the zwitterionic surfactant on the organo-montmorillonites from 0.2 to 0.6 CEC. When the surfactant loading was increased, a new endothermic peak appeared at ~340 °C. From the microstructures of these ZSMMs, the mechanism of zwitterionic surfactant adsorption was proposed. At relatively low loadings of the zwitterionic surfactant, most of surfactants enter the spacing by an ion-exchange mechanism and are adsorbed onto the interlayer cation sites. When the concentration of the zwitterionic surfactant exceeds the CEC of montmorillonite, the surfactant molecules then adhere to the surface-adsorbed surfactant. Some surfactants enter the interlayers, whereas the others are attached to the clay surface. When the concentration of surfactant increases further beyond 2.0 CEC, the surfactants may occupy the inter-particle space within the house-of-cards aggregate structure.

  19. DNA compaction by azobenzene-containing surfactant

    NASA Astrophysics Data System (ADS)

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Morozova, Elena; Lysyakova, Ludmila; Kasyanenko, Nina; Santer, Svetlana

    2011-08-01

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  20. DNA compaction by azobenzene-containing surfactant

    SciTech Connect

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana

    2011-08-15

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  1. Fluorescence emission of pyrene in surfactant solutions.

    PubMed

    Piñeiro, Lucas; Novo, Mercedes; Al-Soufi, Wajih

    2015-01-01

    The systematic description of the complex photophysical behaviour of pyrene in surfactant solutions in combination with a quantitative model for the surfactant concentrations reproduces with high accuracy the steady-state and the time resolved fluorescence intensity of pyrene in surfactant solutions near the cmc, both in the monomer and in the excimer emission bands. We present concise model equations that can be used for the analysis of the pyrene fluorescence intensity in order to estimate fundamental parameters of the pyrene-surfactant system, such as the binding equilibrium constant K of pyrene to a given surfactant micelle, the rate constant of excimer formation in micelles, and the equilibrium constant of pyrene-surfactant quenching. The values of the binding equilibrium constant K(TX100)=3300·10³ M⁻¹ and K(SDS)=190·10³ M⁻¹ for Triton X-100 (TX100) and SDS micelles, respectively, show that the partition of pyrene between bulk water and micelles cannot be ignored, even at relatively high surfactant concentrations above the cmc. We apply the model to the determination of the cmc from the pyrene fluorescence intensity, especially from the intensity ratio at two vibronic bands in the monomer emission or from the ratio of excimer to monomer emission intensity. We relate the finite width of the transition region below and above the cmc with the observed changes in the pyrene fluorescence in this region.

  2. Adsorption of dimeric surfactants in lamellar silicates

    NASA Astrophysics Data System (ADS)

    Balcerzak, Mateusz; Pietralik, Zuzanna; Domka, Ludwik; Skrzypczak, Andrzej; Kozak, Maciej

    2015-12-01

    The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay - hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1‧-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d001) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH2 and CH3 groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  3. Aqueous Foam Stabilized by Tricationic Amphiphilic Surfactants

    NASA Astrophysics Data System (ADS)

    Heerschap, Seth; Marafino, John; McKenna, Kristin; Caran, Kevin; Feitosa, Klebert; Kevin Caran's Research Group Collaboration

    2015-03-01

    The unique surface properties of amphiphilic molecules have made them widely used in applications where foaming, emulsifying or coating processes are needed. The development of novel architectures with multi-cephalic/tailed molecules have enhanced their anti-bacterial activity in connection with tail length and the nature of the head group. Here we report on the foamability of two triple head double, tail cationic surfactants (M-1,14,14, M-P, 14,14) and a triple head single tail cationic surfactant (M-1,1,14) and compare them with commercially available single headed, single tailed anionic and cationic surfactants (SDS,CTAB and DTAB). The results show that bubble rupture rate decrease with the length of the carbon chain irrespective of head structure. The growth rate of bubbles with short tailed surfactants (SDS) and longer, single tailed tricationic surfactants (M-1,1,14) was shown to be twice as high as those with longer tailed surfactants (CTAB, M-P,14,14, M-1,14,14). This fact was related to the size variation of bubbles, where the foams made with short tail surfactants exhibited higher polydispersivity than those with short tails. This suggests that foams with tricationic amphiphilics are closed linked to their tail length and generally insensitive to their head structure.

  4. Surfactants tailored by the class Actinobacteria

    PubMed Central

    Kügler, Johannes H.; Le Roes-Hill, Marilize; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application. PMID:25852670

  5. Tunable, antibacterial activity of silicone polyether surfactants.

    PubMed

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity.

  6. A study of surfactant-assisted waterflooding

    SciTech Connect

    Scamehorn, J F; Harwell, J H

    1990-09-01

    In surfactant-assisted waterflooding, a surfactant slug is injected into a reservoir, followed by a brine spacer, followed by second surfactant slug. The charge on the surfactant in the first slug has opposite sign to that in the second slug. When the two slugs mix in the reservoir, a precipitate or coacervate is formed which plugs the permeable region of the reservoir. Subsequently injected water or brine is forced through the low permeability region of the reservoir, increasing sweep efficiency of the waterflood, compared to a waterflood not using surfactants. In this part of the work, two major tasks are performed. First, core floods are performed with oil present to demonstrate the improvement in incremental oil production, as well as permeability modification. Second, a reservoir simulation model will be proposed to further delineate the optimum strategy for implementation of the surfactant-assisted waterflooding, as well as indicate the reservoir types for which it would be most effective. Surfactants utilized were sodium dodecyl sulfate and dodecyl pyridinium chloride. 44 refs., 17 figs., 3 tabs.

  7. Tunable, antibacterial activity of silicone polyether surfactants.

    PubMed

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. PMID:26057244

  8. Surfactant-Assisted Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    Obtaining liquid fuels from coal which are economically competitive with those obtained from petroleum based sources is a significant challenge for the researcher as well as the chemical industry. Presently, the economics of coal liquefaction are not favorable because of relatively intense processing conditions (temperatures of 430 degrees C and pressures of 2200 psig), use of a costly catalyst, and a low quality product slate of relatively high boiling fractions. The economics could be made more favorable by achieving adequate coal conversions at less intense processing conditions and improving the product slate. A study has been carried out to examine the effect of a surfactant in reducing particle agglomeration and improving hydrodynamics in the coal liquefaction reactor to increase coal conversions...

  9. Liquid-liquid extraction for surfactant-contaminant separation and surfactant reuse

    SciTech Connect

    Hasegawa, M.A.; Sabatini, D.A.; Harwell, J.H.

    1997-07-01

    Liquid-liquid extraction was investigated for use with surfactant enhanced subsurface remediation. A surfactant liquid-liquid extraction model (SLLEM) was developed for batch equilibrium conditions based on contaminant partitioning between micellar, water, and solvent phases. The accuracy of this fundamental model was corroborated with experimental results (using naphthalene and phenanthrene as contaminants and squalane as the extracting solvent). The SLLEM model was then expanded to nonequilibrium conditions. The effectiveness of this nonequilibrium model was corroborated with experimental results from continuous flow hollow fiber membrane systems. The validated models were used to conduct a sensitivity analysis evaluating the effects of surfactants on the removal of the contaminants in liquid-liquid extraction systems. In addition, liquid-liquid extraction is compared to air stripping for surfactant-contaminant separation. Finally, conclusions are drawn as to the impact of surfactants on liquid-liquid extraction processes, and the significance of these impacts on the optimization of surfactant-enhanced subsurface remediation.

  10. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    DOE PAGESBeta

    Luo, Hongmei; Lin, Qianglu; Baber, Stacy; Naalla, Mahesh

    2010-01-01

    We demore » monstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta 2 O 5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.« less

  11. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions.

    PubMed

    Ziani, Khalid; Chang, Yuhua; McLandsborough, Lynne; McClements, David Julian

    2011-06-01

    Thyme oil-in-water nanoemulsions stabilized by a nonionic surfactant (Tween 80, T80) were prepared as potential antimicrobial delivery systems (pH 4). The nanoemulsions were highly unstable to droplet growth and phase separation, which was attributed to Ostwald ripening due to the relatively high water solubility of thyme oil. Ostwald ripening could be inhibited by incorporating ≥75% of corn oil (a hydrophobic material with a low water solubility) into the nanoemulsion droplets. The electrical characteristics of the droplets in the nanoemulsions were varied by incorporating ionic surfactants with different charges after homogenization: a cationic surfactant (lauric arginate, LAE) or an anionic surfactant (sodium dodecyl sulfate, SDS). The antifungal activity of nanoemulsions containing positive, negative, or neutral thymol droplets was then conducted against four strains of acid-resistant spoilage yeasts: Zygosaccharomyces bailli, Saccharomyces cerevisiae, Brettanomyces bruxellensis, and Brettanomyces naardenensis. The antifungal properties of the three surfactants (T80, LAE, SDS) were also tested in the absence of thymol droplets. Both ionic surfactants showed strong antifungal activity in the absence of thymol droplets, but no antimicrobial activity in their presence. This effect was attributed to partitioning of the antimicrobial surfactant molecules between the oil droplet and microbial surfaces, thereby reducing the effective concentration of active surfactants available to act as antimicrobials. This study shows oil droplets may decrease the efficacy of surfactant-based antimicrobials, which has important consequences for formulating effective antimicrobial agents for utilization in emulsion-based food and beverage products. PMID:21520914

  12. The biophysical function of pulmonary surfactant.

    PubMed

    Rugonyi, Sandra; Biswas, Samares C; Hall, Stephen B

    2008-11-30

    Pulmonary surfactant lowers surface tension in the lungs. Physiological studies indicate two key aspects of this function: that the surfactant film forms rapidly; and that when compressed by the shrinking alveolar area during exhalation, the film reduces surface tension to very low values. These observations suggest that surfactant vesicles adsorb quickly, and that during compression, the adsorbed film resists the tendency to collapse from the interface to form a 3D bulk phase. Available evidence suggests that adsorption occurs by way of a rate-limiting structure that bridges the gap between the vesicle and the interface, and that the adsorbed film avoids collapse by undergoing a process of solidification. Current models, although incomplete, suggest mechanisms that would partially explain both rapid adsorption and resistance to collapse as well as how different constituents of pulmonary surfactant might affect its behavior. PMID:18632313

  13. Surfactant Activated Dip-Pen Nanolithography

    NASA Astrophysics Data System (ADS)

    Collier, C. Patrick

    2005-03-01

    Direct nanoscale patterning of maleimide-linked biotin on mercaptosilane-functionalized glass substrates using dip-pen nanolithography (DPN) is facilitated by the addition of a small amount of the biocompatible nonionic surfactant Tween-20. A correlation was found between activated ink transfer from the AFM tip when surfactant was included in the ink and an increase in the wettability of the partially hydrophobic silanized substrate. Surfactant concentration represents a new control variable for DPN that complements relative humidity, tip-substrate contact force, scan speed, and temperature. Using surfactants systematically as ink additives expands the possible ink-substrate combinations that can be used for patterning biotin and other molecules. For example, we are currently exploring the possibility of developing nickel/nitrilotriacetic acid (NTA)-maleimide based inks that will bind to mercaptosilanized glass surfaces for the reversible immobilization of biomolecules containing polyhistidine tags.

  14. Process for making surfactant capped nanocrystals

    DOEpatents

    Alivisatos, A Paul; Rockenberger, Joerg

    2002-01-01

    Disclosed is a process for making surfactant capped nanocrystals of transition metal oxides. The process comprises reacting a metal cupferron complex of the formula M Cup, wherein M is a transition metal, and Cup is a cupferron, with a coordinating surfactant, the reaction being conducted at a temperature ranging from about 250 to about 300 C., for a period of time sufficient to complete the reaction.

  15. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2004-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Anionic surfactants (SS-6656, Alfoterra 35, 38, 63,65,68) have been identified which can change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil in the presence of Na{sub 2}CO{sub 3}. All the carbonate surfaces (Lithographic Limestone, Marble, Dolomite and Calcite) show similar behavior with respect to wettability alteration with surfactant 4-22. Anionic surfactants (5-166, Alfoterra-33 and Alfoterra-38 and Alfoterra-68), which lower the interfacial tension with a West Texas crude oil to very low values (<10{sup -2} nM/m), have also been identified. Plans for the next quarter include conducting wettability, mobilization, and imbibition studies.

  16. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2003-07-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases IFT with a minimum at about 0.2 M. Addition of surfactant decreases IFT further. In the absence of surfactant the minerals are oil wet after aging with crude oil. Addition of surfactant solution decreases the contact angle to intermediate wettability. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Plans for the next quarter include conducting adsorption, phase behavior and wettability studies.

  17. New synthetic surfactant - how and when?

    PubMed

    Curstedt, Tore; Johansson, Jan

    2006-01-01

    Animal-derived surfactant preparations are very effective in the treatment of premature infants with respiratory distress syndrome but they are expensive to produce and supplies are limited. In order to widen the indications for surfactant treatment there is a need for synthetic preparations, which can be produced in large quantities and at a reasonable cost. However, development of clinically active synthetic surfactants has turned out to be more complicated than initially anticipated. The hydrophobic surfactant proteins, SP-B and SP-C, which are involved in the adsorption of surface-active lipids to the air-liquid interface of the alveoli and increase alveolar stability, are either too big to synthesize, structurally complex or unstable in pure form. A new generation of synthetic surfactants containing simplified phospholipid mixtures and small amounts of peptides replacing the hydrophobic proteins is currently under development and will in the near future be introduced into the market. However, more trials need to be performed before any conclusions can be drawn about the effectiveness of these synthetic surfactants in relation to natural animal-derived preparations.

  18. Turbulent drag reduction in nonionic surfactant solutions

    NASA Astrophysics Data System (ADS)

    Tamano, Shinji; Itoh, Motoyuki; Kato, Katsuo; Yokota, Kazuhiko

    2010-05-01

    There are only a few studies on the drag-reducing effect of nonionic surfactant solutions which are nontoxic and biodegradable, while many investigations of cationic surfactant solutions have been performed so far. First, the drag-reducing effects of a nonionic surfactant (AROMOX), which mainly consisted of oleyldimethylamineoxide, was investigated by measuring the pressure drop in the pipe flow at solvent Reynolds numbers Re between 1000 and 60 000. Second, we investigated the drag-reducing effect of a nonionic surfactant on the turbulent boundary layer at momentum-thickness Reynolds numbers Reθ from 443 to 814 using two-component laser-Doppler velocimetry and particle image velocimetry systems. At the temperature of nonionic surfactant solutions, T =25 °C, the maximum drag reduction ratio for AROMOX 500 ppm was about 50%, in the boundary layer flow, although the drag reduction ratio was larger than 60% in pipe flow. Turbulence statistics and structures for AROMOX 500 ppm showed the behavior of typical drag-reducing flow such as suppression of turbulence and modification of near-wall vortices, but they were different from those of drag-reducing cationic surfactant solutions, in which bilayered structures of the fluctuating velocity vectors were observed in high activity.

  19. Surfactant mediated polyelectrolyte self-assembly

    DOE PAGESBeta

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; Sumpter, Bobby G.

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less

  20. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    Unknown

    1998-10-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system have been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.

  1. Surfactant mediated polyelectrolyte self-assembly

    SciTech Connect

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; Sumpter, Bobby G.

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain and surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.

  2. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2005-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Imbibition in an originally oil-wet 2D capillary is the fastest in the case of Alf-38 and slowest in the case of DTAB (among the surfactants studied). Force of adhesion studies and contact angle measurements show that greater wettability alteration is possible with these anionic surfactants than the cationic surfactant studied. The water imbibition rate does not increase monotonically with an increase in the surfactant concentration. A numerical model has been developed that fits the rate of imbibition. Plans for the next quarter include conducting simulation and imbibition studies.

  3. Surfactant toxicity identification with a municipal wastewater

    SciTech Connect

    Amato, J.R.; Wayment, D.D.

    1998-12-31

    An acute toxicity identification evaluation following US EPA guidelines was performed with a municipal wastewater to identify effluent components responsible for lethality of larval fathead minnows (Pimephales promelas) and Ceriodaphnia dubia. Ammonia toxicity, also present in the effluent, was not the object of this study. The study was designed to characterize effluent toxicity not due to ammonia. To minimize ammonia toxicity interferences, all Phase 1 testing was performed at pH`s where ammonia toxicity would be negligible. Phase 1 toxicity characterization results indicated surfactants as the class of compounds causing acute non-ammonia toxicity for both test species. A distinct toxicant characteristic, specifically sublation at alkaline pH, was employed to track suspect surfactant loadings in the collection system. Concurrently, effluent surfactant residue testing determined nonionic surfactants were at adequate concentrations and were sufficiently toxic to cause the measured adverse effects. Influent surfactant toxicity was determined to be much less than in the final effluent indicating the treatment process was enhancing surfactant toxicity.

  4. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  5. Interactions of organic contaminants with mineral-adsorbed surfactants.

    PubMed

    Zhu, Lizhong; Chen, Baoliang; Tao, Shu; Chiou, Cary T

    2003-09-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insightto interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  6. Anionic surfactant - Biogenic amine interactions: The role of surfactant headgroup geometry.

    PubMed

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun

    2016-03-15

    Oligoamines and biogenic amines (naturally occurring oligoamines) are small flexible polycations. They interact strongly with anionic surfactants such as sodium dodecyl sulfate, SDS. This results in enhanced adsorption and the formation of layered structures and the formation of layered structures at the air-water interface which depends on surfactant concentration and solution pH. The effect of changing the surfactant headgroup geometry on that interaction and subsequent adsorption is reported here. Neutron reflectivity, NR, results for the surface adsorption of the anionic surfactant sodium diethylene glycol monododecyl ether sulfate, SLES, with the biogenic amine, spermine, are presented, and contrasted with previous data for SDS/spermine mixtures. The enhancement in the adsorption of the surfactant at the air-water interface where monolayer adsorption occurs is similar for both surfactants. However the regions of surfactant concentration and solution pH where surface multilayer adsorption occurs is less extensive for the SLES/spermine mixtures, and occurs only at low pH. The results show how changing the headgroup geometry by the introduction of the ethylene oxide linker group between the alkyl chain and sulfate headgroup modifies the polyamine - surfactant interaction. The increased steric constraint from the polyethylene oxide group disrupts the conditions for surface multilayer formation at the higher pH values. This has important consequences for applications where the modification or manipulation of the surface properties are required. PMID:26724704

  7. Structure and dynamics of polyelectrolyte surfactant mixtures under conditions of surfactant excess

    NASA Astrophysics Data System (ADS)

    Hoffmann, Ingo; Simon, Miriam; Farago, Bela; Schweins, Ralf; Falus, Peter; Holderer, Olaf; Gradzielski, Michael

    2016-09-01

    Oppositely charged polyelectrolyte (PE) surfactant mixtures can self-assemble into a large variety of mesoscopic structures, so-called polyelectrolyte surfactant complexes (PESCs). These structures directly affect the macroscopic behavior of such solutions. In this study, we investigated mixtures of the cationically charged PE JR 400 and the anionic surfactant SDS with the help of different neutron scattering and fluorescence methods. While an excess of PE charges in semi-dilute solutions causes an increase of viscosity, it has been observed that an excess of surfactant charges reduces the viscosity while precipitation is observed at charge equilibrium. The increase in viscosity had been investigated before and was attributed to the formation of cross links between PE chains. In this publication we focus our attention on the reduction of viscosity which is observed with an excess of surfactant charges. It is found that the PE chains form relatively large and densely packed clusters near the phase boundary on the surfactant rich side, thereby occupying less space and reducing the viscosity. For even higher surfactant concentrations, individual surfactant decorated PE chains are observed and their viscosity is found to be similar to that of the pure PE.

  8. Dilute Surfactant Methods for Carbonate Formations

    SciTech Connect

    Kishore K. Mohanty

    2006-02-01

    There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces

  9. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.

    PubMed

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2016-04-15

    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes.

  10. Reconstitution of surfactant activity by using the 6 kDa apoprotein associated with pulmonary surfactant.

    PubMed Central

    Yu, S H; Possmayer, F

    1986-01-01

    Lipid extracts of bovine pulmonary surfactant containing the 6 kDa apoprotein, but lacking the 35 kDa apoprotein, can mimic the essential characteristics of pulmonary surfactant on a pulsating-bubble surfactometer. Reconstituted surfactant can be produced by combining silicic acid fractions containing 6 kDa apoprotein and phosphatidylglycerol with phosphatidylcholine. Treatment of the protein-containing fraction with proteolytic enzymes abolishes its efficacy. These results indicate that the presence of the 6 kDa apoprotein can account for some of the essential physical and biological characteristics of pulmonary surfactant. Immunodiffusion studies indicate that, contrary to earlier suggestions, the 6 kDa apoprotein is not structurally related to the major surfactant apoprotein that has a molecular mass of 35 kDa. Images Fig. 2. Fig. 3. Fig. 4. PMID:3098235

  11. Selection of surfactant in remediation of DDT-contaminated soil by comparison of surfactant effectiveness.

    PubMed

    Guo, Ping; Chen, Weiwei; Li, Yueming; Chen, Tao; Li, Linhui; Wang, Guanzhu

    2014-01-01

    With an aim to select the most appropriate surfactant for remediation of DDT-contaminated soil, the performance of nonionic surfactants Tween80, TX-100, and Brij35 and one anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in enhancement of DDT water solubility and desorption of DDT from contaminated soil and their adsorption onto soil and ecotoxicities were investigated in this study. Tween80 had the highest solubilizing and soil-washing ability for DDT among the four experimental surfactants. The adsorption loss of surfactants onto soil followed the order of TX-100 > Tween80 > Brij35 > SDBS. The ecotoxicity of Tween80 to ryegrass (Lolium perenne L.) was lowest. The overall performance considering about the above four aspects suggested that Tween80 should be selected for the remediation of DDT-contaminated soil, because Tween80 had the greatest solubilizing and soil-washing ability for DDT, less adsorption loss onto soil, and the lowest ecotoxicity in this experiment.

  12. Perfluoroalklylated phospholipids as surfactants and co-surfactants forinjectable fluorocarbon emulsions.

    PubMed

    Santaella, C; Vierling, P; Riess, J G

    1992-01-01

    Highly fluorinated phospholipids were investigated as sole surfactant, and as co-surfactant with egg yolk phospholipids (EYP), in the formulation of 50% and 100% w/v perfluorodecalin emulsions. The surfactant's capability to stabilize such emulsions improves with the length of the perfluoroalklylated tail and with the increase of its relative weight in the hydrophobic chain. As sole surfactant, 2, which has the longest fluorinated tail has the highest efficacy. As co-surfactant with EYP, a strong stabilizing effect is found when the total hydrophobic chain length is adjusted to the EYP membrane's thickness, which is the case of 1. Dispersions of the F-phospholipids do not modify cell growth and viability and show no hemolytic activity on human red blood cells at concentrations in the 60-100g/L range. Acute toxicity tests in mice indicate - i.v. DL50 greater than 2.75 g/Kg body wt. PMID:1391518

  13. A Review on Progress in QSPR Studies for Surfactants

    PubMed Central

    Hu, Jiwei; Zhang, Xiaoyi; Wang, Zhengwu

    2010-01-01

    This paper presents a review on recent progress in quantitative structure-property relationship (QSPR) studies of surfactants and applications of various molecular descriptors. QSPR studies on critical micelle concentration (cmc) and surface tension (γ) of surfactants are introduced. Studies on charge distribution in ionic surfactants by quantum chemical calculations and its effects on the structures and properties of the colloids of surfactants are also reviewed. The trends of QSPR studies on cloud point (for nonionic surfactants), biodegradation potential and some other properties of surfactants are evaluated. PMID:20479997

  14. Growing Characteristics of Fine Ice Particles in Surfactant Solution

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi; Nakayama, Kosuke; Komoda, Yoshiyuki; Usui, Hiromoto; Okada, Kazuto; Fujisawa, Ryo

    Time variation characteristics of ice particles in a surfactant solution have been investigated. The effect of surfactants on corrosion characteristics was also studied. The results were compared with those treated with poly(vinyl alcohol). From the results, the present surfactant, cetyl dimethyl betaine was not found to be effective on preventing Ostward ripening of ice particles as poly(vinyl alcohol) showed. Then, it was concluded some effective technology has to be installed with surfactants when this surfactant treatment is realized. On the corrosion characteristics, it was found that the present surfactant shows the same level as tap water.

  15. Surfactant-enhanced low-pH alkaline flooding

    SciTech Connect

    Peru, D.A. and Co., Columbia, MD . Research Div.); Lorenz, P.B. )

    1990-08-01

    This paper reports sodium bicarbonate investigated as a potential alkaline agent in surfactant-enhanced alkaline flooding because it has very little tendency to dissolve silicate minerals. In experiments performed with Wilmington, CA, crude oil and three types of surfactants, the bicarbonate/surfactant combination caused a marked lowering of interfacial tension (IFT). Bicarbonate protected the surfactant against divalent cations and reduced adsorption of surfactant and polymer on various minerals. Coreflood test confirm that sodium bicarbonate plus surfactant can be an effective alternative to the high-pH flooding process.

  16. Oil recovery performances of surfactant solutions by capillary imbibition.

    PubMed

    Babadagli, Tayfun; Boluk, Yaman

    2005-02-01

    Critical parameters playing a role in oil recovery by capillary imbibition of surfactant solutions were studied. Experiments conducted on sandstone and carbonate samples using different oil and surfactant types were evaluated for surfactant selection. In this evaluation interfacial tension (IFT), surfactant type, solubility characteristics of surfactants, rock type, initial water (pre-wet rock), and surfactant concentration were considered. In addition to these, a new technique was adopted to facilitate the surfactant screening process. This technique is based on assigning inorganic and organic property values and plotting organic conception diagrams (OCD) for surfactants. OCD defines the property of a compound in terms of physical chemistry in such a way that the property that depends much on the van der Waals force is called "organic" and the one that depends much on electric affinity is called "inorganic." Correlations between the capillary imbibition recovery performance and the properties of surfactant and oil (organic value (OV), inorganic value (IV), and IFT of surfactant solutions, oil viscosity, and surfactant type) were obtained. These correlations are expected to be useful in selecting the proper surfactant for improved oil recovery as well as identifying the effects of surfactant properties on the capillary imbibition performance. PMID:15576095

  17. Electrical surface potential of pulmonary surfactant.

    PubMed

    Leonenko, Zoya; Rodenstein, Mathias; Döhner, Jana; Eng, Lukas M; Amrein, Matthias

    2006-11-21

    Pulmonary surfactant is a mixed lipid protein substance of defined composition that self-assembles at the air-lung interface into a molecular film and thus reduces the interfacial tension to close to zero. A very low surface tension is required for maintaining the alveolar structure. The pulmonary surfactant film is also the first barrier for airborne particles entering the lung upon breathing. We explored by frequency modulation Kelvin probe force microscopy (FM-KPFM) the structure and local electrical surface potential of bovine lipid extract surfactant (BLES) films. BLES is a clinically used surfactant replacement and here served as a realistic model surfactant system. The films were distinguished by a pattern of molecular monolayer areas, separated by patches of lipid bilayer stacks. The stacks were at positive electrical potential with respect to the surrounding monolayer areas. We propose a particular molecular arrangement of the lipids and proteins in the film to explain the topographic and surface potential maps. We also discuss how this locally variable surface potential may influence the retention of charged or polar airborne particles in the lung.

  18. 2-DE using hemi-fluorinated surfactants.

    PubMed

    Starita-Geribaldi, Mireille; Thebault, Pascal; Taffin de Givenchy, Elisabeth; Guittard, Frederic; Geribaldi, Serge

    2007-07-01

    The synthesis of hemi-fluorinated zwitterionic surfactants was realized and assessed for 2-DE, a powerful separation method for proteomic analysis. These new fluorinated amidosulfobetaine (FASB-p,m) were compared to their hydrocarbon counterparts amidosulfobetaine (ASB-n) characterized by a hydrophilic polar head, a hydrophobic and lipophilic tail, and an amido group as connector. The tail of these FASB surfactants was in part fluorinated resulting in the modulation of its lipophilicity (or oleophobicity). Their effect on the red blood cell (RBC) membrane showed a specific solubilization depending on the length of the hydrophobic part. A large number of polypeptide spots appeared in the 2-DE patterns by using FASB-p,m. The oleophobic character of these surfactants was confirmed by the fact that Band 3, a highly hydrophobic transmembrane protein, was not solubilized by these fluorinated structures. The corresponding pellet was very rich in Band 3 and could then be solubilized by using a strong detergent such as amidosulfobetaine with an alkyl tail containing 14 carbon atoms (ASB-14). Thus, these hemi-fluorinated surfactants appeared as powerful tools when used at the first step of a two-step solubilization strategy using a hydrocarbon homologous surfactant in the second step. PMID:17577887

  19. Poly(ethylene oxide) surfactant polymers

    PubMed Central

    VACHEETHASANEE, KATANCHALEE; WANG, SHUWU; QIU, YONGXING; MARCHANT, ROGER E.

    2005-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly (ethyleneoxide) (PEO) were simultaneously attached to PVAm via reductive amination. Surfactant polymers with different PEO : hexanal ratios and hydrophilic/hydrophobic balances were prepared, and characterized by FT-IR, 1H-NMR and XPS spectroscopies. Surface active properties at the air/water interface were determined by surface tension measurements. Surface activity at a solid surface/water interface was demonstrated by atomic force microscopy, showing epitaxially molecular alignment for surfactant polymers adsorbed on highly oriented pyrolytic graphite. The surfactant polymers described in this report can be adapted for simple non-covalent surface modification of biomaterials and hydrophobic surfaces to provide highly hydrated interfaces. PMID:15027845

  20. Self-Assembly of Gemini Surfactants

    NASA Astrophysics Data System (ADS)

    Yethiraj, Arun; Mondal, Jagannath; Mahanthappa, Mahesh

    2013-03-01

    The self-assembly behavior of Gemini (dimeric or twin-tail) dicarboxylate disodium surfactants is studied using molecular dynamics simulations. This gemini architecture, in which two single tailed surfactants are joined through a flexible hydrophobic linker, has been shown to exhibit concentration-dependent aqueous self-assembly into lyotropic phases including hexagonal, gyroid, and lamellar morphologies. Our simulations reproduce the experimentally observed phases at similar amphiphile concentrations in water, including the unusual ability of these surfactants to form gyroid phases over unprecedentedly large amphiphile concentration windows. We demonstrate quanitative agreement between the predicted and experimentally observed domain spacings of these nanostructured materials. Through careful conformation analyses of the surfactant molecules, we show that the gyroid phase is electrostatically stabilized related to the lamellar phase. By starting with a lamellar phase, we show that decreasing the charge on the surfactant headgroups by carboxylate protonation or use of a bulkier tetramethyl ammonium counterion in place of sodium drives the formation of a gyroid phase.

  1. Dilute Surfactant Methods for Carbonate Formations

    SciTech Connect

    Kishore K. Mohanty

    2004-03-31

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Anionic surfactants (Alfoterra 35, 38) recover more than 40% of the oil in about 50 days by imbibition driven by wettability alteration in the core-scale. Anionic surfactant, Alfoterra-68, recovers about 28% of the oil by lower tension aided gravity-driven imbibition in the core-scale. Residual oil saturation showed little capillary number dependence between 10{sup -5} and 10{sup -2}. Wettability alteration increases as the number of ethoxy groups increases in ethoxy sulfate surfactants. Plans for the next quarter include conducting mobilization, and imbibition studies.

  2. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2004-10-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Simulation studies indicate that both wettability alteration and gravity-driven flow play significant role in oil recovery from fractured carbonates. Anionic surfactants (Alfoterra 35, 38) recover about 55% of the oil in about 150 days by imbibition driven by wettability alteration and low tension in the core-scale. Anionic surfactant, Alfoterra-68, recovers about 40% of the oil by lower tension aided gravity-driven imbibition in the core-scale. Cationic surfactant, DTAB recovers about 35% of the oil. Plans for the next quarter include conducting simulation and imbibition studies.

  3. Surfactant treatment for acute respiratory distress syndrome

    PubMed Central

    Lopez-Herce, J.; de Lucas, N.; Carrillo, A.; Bustinza, A.; Moral, R.

    1999-01-01

    OBJECTIVE—To determine prospectively the efficacy of surfactant in acute respiratory distress syndrome.
STUDY DESIGN—Twenty patients, 1 month to 16 years of age, diagnosed with an acute pulmonary disease with severe hypoxaemia (PaO2/FiO2 < 100) (13 with systemic or pulmonary disease and seven with cardiac disease) were treated with one to six doses of 50-200 mg/kg of porcine surfactant administered directly into the trachea. The surfactant was considered to be effective when the PaO2/FiO2 improved by > 20%.
RESULTS—After initial surfactant administration the PaO2/FiO2 increased significantly in patients with systemic or pulmonary disease from 68 to 111, and the oxygenation index (OI) diminished significantly from 36.9 to 27.1. The PaO2/FiO2 and OI did not improve in children with cardiac disease. The improvement of the patients who survived was greater than that of those who died.
CONCLUSIONS—Surfactant moderately improves oxygenation in some children with severe acute respiratory distress syndrome secondary to pulmonary or systemic disease.

 PMID:10325705

  4. History of surfactant up to 1980.

    PubMed

    Obladen, Michael

    2005-01-01

    Remarkable insight into disturbed lung mechanics of preterm infants was gained in the 18th and 19th century by the founders of obstetrics and neonatology who not only observed respiratory failure but also designed devices to treat it. Surfactant research followed a splendid and largely logical growth curve. Pathological changes in the immature lung were characterized in Germany by Virchow in 1854 and by Hochheim in 1903. The Swiss physiologist von Neergard fully understood surfactant function in 1929, but his paper was ignored for 25 years. The physical properties of surfactant were recognized in the early 1950s from research on warfare chemicals by Pattle in Britain and by Radford and Clements in the United States. The causal relationship of respiratory distress syndrome (RDS) and surfactant deficiency was established in the USA by Avery and Mead in 1959. The Australian obstetrician Liggins induced lung maturity with glucocorticoids in 1972, but his discovery was not fully believed for another 20 years. A century of basic research was rewarded when Fujiwara introduced surfactant substitution in Japan in 1980 for treatment and prevention of RDS.

  5. Analysis of supercooling activities of surfactants.

    PubMed

    Kuwabara, Chikako; Terauchi, Ryuji; Tochigi, Hiroshi; Takaoka, Hisao; Arakawa, Keita; Fujikawa, Seizo

    2014-08-01

    Supercooling-promoting activities (SCAs) of 25 kinds of surfactants including non-ionic, anionic, cationic and amphoteric types were examined in solutions (buffered Milli-Q water, BMQW) containing the ice nucleation bacterium (INB) Erwinia ananas, silver iodide (AgI) or BMQW alone, which unintentionally contained unidentified ice nucleators, by a droplet freezing assay. Most of the surfactants exhibited SCA in solutions containing AgI but not in solutions containing the INB E. ananas or BMQW alone. SCAs of many surfactants in solutions containing AgI were very high compared with those of previously reported supercooling-promoting substances. Cationic surfactants, hexadecyltrimethylammonium bromide (C16TAB) and hexadecyltrimethylammonium chloride (C16TAC), at concentrations of 0.01% (w/v) exhibited SCA of 11.8 °C, which is the highest SCA so far reported. These surfactants also showed high SCAs at very low concentrations in solutions containing AgI. C16TAB exhibited SCA of 5.7 °C at a concentration of 0.0005% (w/v). PMID:24792543

  6. Surfactant effects on SF6 hydrate formation.

    PubMed

    Lee, Bo Ram; Lee, Ju Dong; Lee, Hyun Ju; Ryu, Young Bok; Lee, Man Sig; Kim, Young Seok; Englezos, Peter; Kim, Myung Hyun; Kim, Yang Do

    2009-03-01

    Sulfur hexafluoride (SF(6)) has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate or collect it from waste gas streams. One separation method is through hydrate crystal formation. In this study, SF(6) hydrate was formed in aqueous surfactant solutions of 0.00, 0.01, 0.05, 0.15 and 0.20 wt% to investigate the effects of surfactants on the hydrate formation rates. Three surfactants, Tween 20 (Tween), sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LABS), were tested in a semi-batch stirred vessel at the constant temperature and pressures of 276.2 K and 0.78 MPa, respectively. All surfactants showed kinetic promoter behavior for SF(6) hydrate formation. It was also found that SF(6) hydrate formation proceeded in two stages with the second stage being the most rapid. In situ Raman spectroscopy analysis revealed that the increased gas consumption rate with the addition of surfactant was possibly due to the increased gas filling rate in the hydrate cavity.

  7. 2-DE using hemi-fluorinated surfactants.

    PubMed

    Starita-Geribaldi, Mireille; Thebault, Pascal; Taffin de Givenchy, Elisabeth; Guittard, Frederic; Geribaldi, Serge

    2007-07-01

    The synthesis of hemi-fluorinated zwitterionic surfactants was realized and assessed for 2-DE, a powerful separation method for proteomic analysis. These new fluorinated amidosulfobetaine (FASB-p,m) were compared to their hydrocarbon counterparts amidosulfobetaine (ASB-n) characterized by a hydrophilic polar head, a hydrophobic and lipophilic tail, and an amido group as connector. The tail of these FASB surfactants was in part fluorinated resulting in the modulation of its lipophilicity (or oleophobicity). Their effect on the red blood cell (RBC) membrane showed a specific solubilization depending on the length of the hydrophobic part. A large number of polypeptide spots appeared in the 2-DE patterns by using FASB-p,m. The oleophobic character of these surfactants was confirmed by the fact that Band 3, a highly hydrophobic transmembrane protein, was not solubilized by these fluorinated structures. The corresponding pellet was very rich in Band 3 and could then be solubilized by using a strong detergent such as amidosulfobetaine with an alkyl tail containing 14 carbon atoms (ASB-14). Thus, these hemi-fluorinated surfactants appeared as powerful tools when used at the first step of a two-step solubilization strategy using a hydrocarbon homologous surfactant in the second step.

  8. Analysis of supercooling activities of surfactants.

    PubMed

    Kuwabara, Chikako; Terauchi, Ryuji; Tochigi, Hiroshi; Takaoka, Hisao; Arakawa, Keita; Fujikawa, Seizo

    2014-08-01

    Supercooling-promoting activities (SCAs) of 25 kinds of surfactants including non-ionic, anionic, cationic and amphoteric types were examined in solutions (buffered Milli-Q water, BMQW) containing the ice nucleation bacterium (INB) Erwinia ananas, silver iodide (AgI) or BMQW alone, which unintentionally contained unidentified ice nucleators, by a droplet freezing assay. Most of the surfactants exhibited SCA in solutions containing AgI but not in solutions containing the INB E. ananas or BMQW alone. SCAs of many surfactants in solutions containing AgI were very high compared with those of previously reported supercooling-promoting substances. Cationic surfactants, hexadecyltrimethylammonium bromide (C16TAB) and hexadecyltrimethylammonium chloride (C16TAC), at concentrations of 0.01% (w/v) exhibited SCA of 11.8 °C, which is the highest SCA so far reported. These surfactants also showed high SCAs at very low concentrations in solutions containing AgI. C16TAB exhibited SCA of 5.7 °C at a concentration of 0.0005% (w/v).

  9. Fullerene surfactants and their use in polymer solar cells

    SciTech Connect

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  10. Probing nanoparticle effect in protein-surfactant complexes

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Aswal, V. K.; Kohlbrecher, J.

    2015-06-01

    SANS experiments have been carried to probe the role of anionic silica nanoparticles in the anionic BSA protein-cationic DTAB surfactant complexes. In protein-surfactant complex, surfactant molecules aggregate to form micelle-like clusters along the unfolded polypeptide chains of the protein. The nanoparticle aggregation mediated by oppositely charged protein-surfactant complex coexists with the free protein-surfactant complexes in the nanoparticle-protein-surfactant system. There is rearrangement of micelles in adsorbed protein-surfactant complex on nanoparticles in leading to their (nanoparticle) aggregation. On the other hand, the unfolding of protein in free protein-surfactant complex is found to be significantly enhanced in presence of nanoparticles.

  11. Synthesis of mesoporous nano-hydroxyapatite by using zwitterions surfactant

    EPA Science Inventory

    Mesoporous nano-hydroxyapatite (mn-HAP) was successfully synthesized via a novel micelle-templating method using lauryl dimethylaminoacetic acid as zwitterionic surfactant. The systematic use of such a surfactant in combination with microwave energy inputenables the precise contr...

  12. Monte Carlo simulation of binary surfactant/contaminant/water systems.

    PubMed

    Khodadadi, Zahra; Mousavi-Khoshdel, S Morteza; Gharibi, Hussein; Hashemianzadeh, Seyed Majid; Javadian, Sohaila

    2012-06-01

    Surfactant-enhanced remediation (SER) is an effective approach for the removal of absorbed hydrophobic organic compounds (HOCs) from contaminated soils. The solubilization of contaminants by mixed surfactants with attractive and repulsive head-head interactions was studied by measuring the micelle-water partition coefficient (K(C)) and molar solubilization ratio (MSR) using the lattice Monte Carlo method. The effect of surfactant mixing on the MSR and K(C) of contaminants displayed the following trend: C₄ > C₃ > C₂. Synergistic binary surfactant mixtures showed greater solubilization capacities for contaminants than the corresponding individual surfactants. Mixed micellization parameters, including the interaction parameter β, and activity coefficient f(i), were evaluated with Rubingh's approach. Synergistic mixed-surfactant systems can improve the performance of surfactant-enhanced remediation of soils and groundwater by decreasing the amount of applied surfactant and the cost of remediation.

  13. Natural surfactants used in cosmetics: glycolipids.

    PubMed

    Lourith, N; Kanlayavattanakul, M

    2009-08-01

    Cosmetic surfactant performs detergency, wetting, emulsifying, solubilizing, dispersing and foaming effects. Adverse reactions of chemical synthesis surfactant have an effect on environment and humans, particularly severe in long term. Biodegradability, low toxicity and ecological acceptability which are the benefits of naturally derived surfactant that promises cosmetic safety are, therefore, highly on demand. Biosurfactant producible from microorganisms exhibiting potential surface properties suitable for cosmetic applications especially incorporate with their biological activities. Sophorolipids, rhamnolipids and mannosylerythritol lipids are the most widely used glycolipids biosurfactant in cosmetics. Literatures and patents relevant to these three glycolipids reviewed were emphasizing on the cosmetic applications including personal care products presenting the cosmetic efficiency, efficacy and economy benefits of glycolipids biosurfactant. PMID:19496839

  14. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    A phase 2 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were: completion of coal liquefaction autoclave reactor runs with Illinois number 6 coal at processing temperatures of 300, 325, and 350 C, and pressures of 1800 psig; analysis of the filter cake and the filtrate obtained from the treated slurry in each run; and correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  15. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1992-01-01

    A phase 2 study was initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: the refurbishment of the high-pressure, high-temperature reactor autoclave, the completion of four coal liquefaction runs with Pittsburgh #8 coal, two each with and without sodium lignosulfonate surfactant, and the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the surfactant produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.

  16. Surfactant studies for bench-scale operation

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1993-01-15

    A phase II study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were (1) completion of coal liquefaction autoclave reactor runs with Illinois No. 6 coal at processing temperatures of 300, 325, and 350[degrees]C, and pressures of 1800 psig, (2) analysis of the filter cake and the filtrate obtained from the treated slurry in each run, and (3) correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  17. Surfactant studies for bench-scale operation

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1992-12-30

    A phase II study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: (1) the refurbishment of the high-pressure, high-temperature reactor autoclave, (2) the completion of four coal liquefaction runs with Pittsburgh [number sign]8 coal, two each with and without sodium lignosulfonate surfactant, and (3) the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the surfactant produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.

  18. Nanotube Dispersions Made With Charged Surfactant

    NASA Technical Reports Server (NTRS)

    Kuper, Cynthia; Kuzma, Mike

    2006-01-01

    Dispersions (including monodispersions) of nanotubes in water at relatively high concentrations have been formulated as prototypes of reagents for use in making fibers, films, and membranes based on single-walled carbon nanotubes (SWNTs). Other than water, the ingredients of a dispersion of this type include one or more charged surfactant(s) and carbon nanotubes derived from the HiPco(TradeMark) (or equivalent) process. Among reagents known to be made from HiPco(TradeMark)(or equivalent) SWNTs, these are the most concentrated and are expected to be usable in processing of bulk structures and materials. Test data indicate that small bundles of SWNTs and single SWNTs at concentrations up to 1.1 weight percent have been present in water plus surfactant. This development is expected to contribute to the growth of an industry based on applied carbon nanotechnology. There are expected to be commercial applications in aerospace, avionics, sporting goods, automotive products, biotechnology, and medicine.

  19. Radiation method for determining brine tolerant surfactants in complex mixtures

    SciTech Connect

    Schmitt, K. D.

    1984-12-11

    This invention provides a method for determining the concentration of a brine tolerant sulfonate surfactant in a complex mixture containing, in addition to said brine tolerant sulfonate surfactant, lignosulfonates, crude oil, salts, and water and, optionally, petroleum sulfonates and alcohols, that comprises incorporating into the brine tolerant sulfonate surfactant molecule a small amount of tritium prior to addition to the complex mixture and determining the concentration of the brine tolerant sulfonate surfactant by measuring its radioactivity.

  20. Surfactant fluid suitable for use in waterflood oil recovery method

    SciTech Connect

    Kalfoglou, G.

    1982-08-10

    Disclosed is a novel surfactant, a method for making the surfactant and an aqueous fluid containing the surfactant which is effective for recovering petroleum from a high temperature formation containing high salinity water. The surfactant fluid is an aqueous fluid containing an organic sulfonate such as petroleum sulfonate and a solubilizing cosurfactant which is a sulfated or sulfonated, polyethoxylated alkylthiol, or a sulfated or sulfonated, polyethoxylated alkylarylthiol.

  1. Surfactant-Polymer Interaction for Improved Oil Recovery

    SciTech Connect

    Gabitto, Jorge; Mohanty, Kishore K.

    2002-01-07

    The goal of this research was to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, oil solubility in the displacing fluid and mobility control. Surfactant-polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation and viscous/heterogeneity fingering.

  2. Surfactant titration of nanoparticle-protein corona.

    PubMed

    Maiolo, Daniele; Bergese, Paolo; Mahon, Eugene; Dawson, Kenneth A; Monopoli, Marco P

    2014-12-16

    Nanoparticles (NP), when exposed to biological fluids, are coated by specific proteins that form the so-called protein corona. While some adsorbing proteins exchange with the surroundings on a short time scale, described as a "dynamic" corona, others with higher affinity and long-lived interaction with the NP surface form a "hard" corona (HC), which is believed to mediate NP interaction with cellular machineries. In-depth NP protein corona characterization is therefore a necessary step in understanding the relationship between surface layer structure and biological outcomes. In the present work, we evaluate the protein composition and stability over time and we systematically challenge the formed complexes with surfactants. Each challenge is characterized through different physicochemical measurements (dynamic light scattering, ζ-potential, and differential centrifugal sedimentation) alongside proteomic evaluation in titration type experiments (surfactant titration). 100 nm silicon oxide (Si) and 100 nm carboxylated polystyrene (PS-COOH) NPs cloaked by human plasma HC were titrated with 3-[(3-Cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS, zwitterionic), Triton X-100 (nonionic), sodium dodecyl sulfate (SDS, anionic), and dodecyltrimethylammonium bromide (DTAB, cationic) surfactants. Composition and density of HC together with size and ζ-potential of NP-HC complexes were tracked at each step after surfactant titration. Results on Si NP-HC complexes showed that SDS removes most of the HC, while DTAB induces NP agglomeration. Analogous results were obtained for PS NP-HC complexes. Interestingly, CHAPS and Triton X-100, thanks to similar surface binding preferences, enable selective extraction of apolipoprotein AI (ApoAI) from Si NP hard coronas, leaving unaltered the dispersion physicochemical properties. These findings indicate that surfactant titration can enable the study of NP-HC stability through surfactant variation and also selective separation

  3. Adhesion of latex films. Influence of surfactants

    SciTech Connect

    Charmeau, J.Y.; Kientz, E.; Holl, Y.

    1996-12-31

    In the applications of film forming latexes in paint, paper, coating, adhesive, textile industries, one of the most important property of latex films is adhesion onto a support. From the point of view of adhesion, latex films have two specificities. The first one arises from the particular structure of the film which is usually not homogeneous but retains to a certain extent the memory of the particles it was made from. These structure effects are clearly apparent when one compares mechanical or adhesion properties of pure latex films and of films of the same polymers but prepared from a solution. Latex films show higher Young`s moduli and lower adhesion properties than solution films. The second specificity of latex films comes from the presence of the surfactant which was used in the synthesis and as stabilizer for the latex. Most industrial latexes contain low amounts of surfactant, typically in the range 0.1 to 2-3 wt%. However, being usually incompatible with the polymer, the surfactant is not homogeneously distributed in the film. It tends to segregate towards the film-air or film-support interfaces or to form domains in the bulk of the film. Distribution of surfactants in latex films has been studied by several authors. The influence of the surfactant on adhesion, as well as on other properties, is thus potentially very important. This article presents the results of the authors investigation of surfactant effects on adhesion properties of latex films. To the authors knowledge, there is no other example, in the open literature, of this kind of study.

  4. Macroporous silver monoliths using a simple surfactant

    NASA Astrophysics Data System (ADS)

    Khan, Farid; Eswaramoorthy, Muthusamy; Rao, C. N. R.

    2007-01-01

    An elegant method to synthesize porous silver monoliths using a simple surfactant cum reductant, Triton X-114, as the sacrificial template is described. The gel forming property of the surfactant with silver nitrate is utilized to make the porous framework. The monoliths obtained with a mixture of Triton X-114 and dextran have also been examined. A significant improvement in the pore structure was observed when Triton X-114 was used along with Ludox silica sol, followed by calcination and HF treatment. The presence of interparticle pores in the 20-25 nm range on the macroporous silver framework suggests the role of silica spheres in the nanopore formation.

  5. Two-dimensional photonic crystal surfactant detection.

    PubMed

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-01

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants. PMID:22720790

  6. Effects of selected surfactants on soil microbial activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants (surface-active agents) facilitate and accentuate the emulsifying, dispersing, spreading, and wetting properties of liquids. Surfactants are used in industry to reduce the surface tension of liquid and to solubilize compounds. For agricultural pest management, surfactants are an import...

  7. Surfactant Dynamics: Spreading and Wave Induced Dynamics of a Monolayer

    NASA Astrophysics Data System (ADS)

    Strickland, Stephen Lee

    Material adsorbed to the surface of a fluid - for instance crude oil in the ocean, biological surfactant on ocular or pulmonary mucous, or emulsions - can form a 2-dimensional mono-molecular layer. These materials, called surfactants, can behave like a compressible viscous 2-dimensional fluid, and can generate surface stresses that influence the sub-fluid's bulk flow. Additionally, the sub-fluid's flow can advect the surfactant and generate gradients in the surfactant distribution and thereby generate gradients in the interfacial properties. Due to the difficulty of non-invasive measurements of the spatial distribution of a molecular monolayer at the surface, little is known about the dynamics that couple the surface motion and the evolving density field. In this dissertation, I will present a novel method for measuring the spatiotemporal dynamics of the surfactant surface density through the fluorescence emission of NBD-tagged phosphatidylcholine, a lipid, and we will compare the surfactant dynamics to the dynamics of the surface morphology.With this method, we will consider the inward and outward spreading of a surfactant on a thin fluid film as well as the advection of a surfactant by linear and non-linear gravity-capillary waves. These two types of surfactant coupled fluid flows will allow us to probe well-accepted assumptions about the coupled fluid-surfactant dynamics. In chapter 1, we review the models used for understanding the spreading of a surfactant on a thin fluid film and the motion of surfactant on a linear gravity-capillary wave. In chapter 2, we will present the experimental methods used in this dissertation. In chapter 3, we will study the outward spreading of a localized region of surfactant and show that the spreading of a monolayer is considerably different from the spreading of thicker-layered surfactant. In chapter 4, we will investigate the inward spreading of a surfactant into a circular surfactant-free region and show that hole closure and

  8. Partitioning of complex surfactant mixtures between oil/water/microemulsion phases at high surfactant concentrations

    SciTech Connect

    Graciaa, A.; Lachaise, J.; Sayous, J.G.; Grenier, P.; Yiv, S.

    1983-06-01

    A model describing the partitioning of surfactant molecules between excess and microemulsion phases which are in equilibrium is proposed. The important parameters characterizing the individual molecules comprising the mixture are the critical micelle concentrations in water and the partition coefficients between oil and water phases. The model considers the existence of a separate surfactant phase which is the palisade layer of a micelle and leads to predictions for both fractionation and phase concentrations of surfactant. Predictions based on this model have been compared to experimentally determined quantities and the agreement is good for all cases tested. The model leads to a relatively simple mathematical formulation which can be used to study the effect of varying the overall system surfactant concentration and of changing the system water-to-oil ratio. 21 references.

  9. Structural study of surfactant-dependent interaction with protein

    SciTech Connect

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  10. Structural study of surfactant-dependent interaction with protein

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-06-01

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  11. Surfactant loss: Effects of temperature, salinity, and wettability

    SciTech Connect

    Noll, L.A.; Gall, B.L.; Crocker, M.E.; Olsen, D.K.

    1989-05-01

    Adsorption of sodium dodecylsulfate, Triton X-100, decyltrimethylammonium bromide surfactants onto silica gel and Berea sandstone mineral surfaces has been studied as a function of temperature, solution salt concentration, and mineral surface wettability. Adsorption studies using a flow calorimeter were conducted using pure surfactants and minerals. The studies were then extended to the adsorption of one type of commercial surfactant onto both consolidated and crushed Berea sandstone using column techniques. This has allowed the comparison of different methods to evaluate surfactant losses from flowing rather than static surfactant solutions. 20 refs., 15 figs., 37 tabs.

  12. Thermally stable surfactants and compositions and methods of use thereof

    DOEpatents

    Chaiko, David J.

    2008-09-02

    There are provided novel thermally stable surfactants for use with fillers in the preparation of polymer composites and nanocomposites. Typically, surfactants of the invention are urethanes, ureas or esters of thiocarbamic acid having a hydrocarbyl group of from 10 to 50 carbons and optionally including an ionizable or charged group (e.g., carboxyl group or quaternary amine). Thus, there are provided surfactants having Formula I: ##STR00001## wherein the variables are as defined herein. Further provided are methods of making thermally stable surfactants and compositions, including composites and nanocomposites, using fillers coated with the surfactants.

  13. SIMULATION OF SURFACTANT-ENHANCED AQUIFER REMEDIATION

    EPA Science Inventory

    Surfactant-enhanced aquifer remediation (SEAR) is currently under active investigation as one of the most promising alternatives to conventional pump-and-treat remediation for aquifers contaminated by dense nonaqueous phase organic liquids. An existing three-dimensional finite-di...

  14. Photosensitive surfactants: micellization and interaction with DNA.

    PubMed

    Zakrevskyy, Yuriy; Roxlau, Julian; Brezesinski, Gerald; Lomadze, Nino; Santer, Svetlana

    2014-01-28

    Recently, photosensitive surfactants have re-attracted considerable attention. It has been shown that their association with oppositely charged biologically important polyelectrolytes, such as DNA or microgels, can be efficiently manipulated simply by light exposure. In this article, we investigate the self-assembly of photosensitive surfactants as well as their interactions with DNA by calorimetric and spectroscopic methods. Critical micelle concentration (CMC), standard micellization enthalpy, entropy, and Gibbs energy were determined in different conditions (ionic strengths and temperatures) for a series of cationic surfactants with an azobenzene group in their tail. It is shown, that aggregation forces of photosensitive units play an important role in the micellization giving the major contribution to the micellization enthalpy. The onset of the aggregation can be traced from shift of the absorption peak position in the UV-visible spectrum. Titration UV-visible spectroscopy is used as an alternative, simple, and sensitive approach to estimate CMC. The titration UV-visible spectroscopy was also employed to investigate interactions (CAC: critical aggregation concentration, precipitation, and colloidal stabilization) in the DNA-surfactant complex.

  15. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2003-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have acquired field oil and core samples and field brine compositions from Marathon. We have conducted preliminary adsorption and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Receding contact angles increase with surfactant adsorption. Plans for the next quarter include conducting adsorption, phase behavior and wettability studies.

  16. Dilute Surfactant Methods for Carbonate Formations

    SciTech Connect

    Kishore K. Mohanty

    2005-10-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the best hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (35-62% OOIP) for initially oil-wet cores through wettability alteration and IFT reduction. Core-scale simulation results match those of the experiments. Initial capillarity-driven imbibition gives way to a final gravity-driven process. As the matrix block height increases, surfactant alters wettability to a lesser degree, or permeability decreases, oil production rate decreases. The scale-up to field scale will be further studied in the next quarter.

  17. SURFACTANT FLUSH: HOW WELL DID IT WORK?

    EPA Science Inventory

    The Oklahoma Corporation Commission through a contract with Surbec-Art, Inc. of Norman Oklahoma has remediated TPH contamination at a gasoline spill at Golden, Oklahoma. Residual gasoline was removed from the subsurface using a flush of surfactant, followed by in situ bioremedia...

  18. Phase diagrams of DNA-photosensitive surfactant complexes: effect of ionic strength and surfactant structure.

    PubMed

    Zakrevskyy, Yuriy; Titov, Evgenii; Lomadze, Nino; Santer, Svetlana

    2014-10-28

    Realization of all-optically controlled and efficient DNA compaction is the major motivation in the study of interactions between DNA and photosensitive surfactants. In this article, using recently published approach of phase diagram construction [Y. Zakrevskyy, P. Cywinski, M. Cywinska, J. Paasche, N. Lomadze, O. Reich, H.-G. Löhmannsroben, and S. Santer, J. Chem. Phys. 140, 044907 (2014)], a strategy for substantial reduction of compaction agent concentration and simultaneous maintaining the light-induced decompaction efficiency is proposed. The role of ionic strength (NaCl concentration), as a very important environmental parameter, and surfactant structure (spacer length) on the changes of positions of phase transitions is investigated. Increase of ionic strength leads to increase of the surfactant concentration needed to compact DNA molecule. However, elongation of the spacer results to substantial reduction of this concentration. DNA compaction by surfactants with longer tails starts to take place in diluted solutions at charge ratios Z < 1 and is driven by azobenzene-aggregation compaction mechanism, which is responsible for efficient decompaction. Comparison of phase diagrams for different DNA-photosensitive surfactant systems allowed explanation and proposal of a strategy to overcome previously reported limitations of the light-induced decompaction for complexes with increasing surfactant hydrophobicity.

  19. Organised surfactant assemblies in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Sanz-Medel, Alfredo; Fernandez de la Campa, Maria del Rosario; Gonzalez, Elisa Blanco; Fernandez-Sanchez, Maria Luisa

    1999-02-01

    The use of surfactant-based organised assemblies in analytical atomic spectroscopy is extensively and critically reviewed along three main lines: first, the ability of organised media to enhance detection of atomic spectroscopic methods by favourable manipulation of physical and chemical properties of the sample solution second, the extension of separation mechanisms by resorting to organised media and third a discussion of synergistic combinations of liquid chromatography separations and atomic detectors via the use of vesicular mobile phases. Changes in physical properties of sample solutions aspirated in atomic spectrometry by addition of surfactants can be advantageously used in at least four different ways: (i) to improve nebulisation efficiency; (ii) to enhance wettability of solid surfaces used for atomisation; (iii) to improve compatibility between aqueous and organic phases; and (iv) to achieve good dispersion of small particles in "slurry" techniques. Controversial results and statements published so far are critically discussed. The ability of surfactant-based organised assemblies, such as micelles and vesicles, to organise reactants at the molecular level has also been applied to enhance the characteristics of chemical generation of volalite species of metals and semi-metals (e.g., hydride or ethylide generation of As, Pb, Cd, Se, Sn, and cold vapour Hg generation) used in atomic methods. Enhancements in efficiency/transport of volatile species, increases in the reaction kinetics, stabilisation of some unstable species and changes in the selectivity of the reactions by surfactants are dealt with. Non-chromatographic cloud-point separations to design pre-concentration procedures with subsequent metal determination by atomic methods are addressed along with chromatographic separations of expanded scope by addition of surfactants to the conventional aqueous mobile phases of reversed-phase high-performance liquid chromatography. Finally, the synergistic

  20. Degradation of pulmonary surfactant disaturated phosphatidylcholines by alveolar macrophages

    SciTech Connect

    Miles, P.R.; Ma, J.Y.; Bowman, L.

    1988-06-01

    Experiments were performed to determine whether rat pulmonary surfactant disaturated phosphatidylcholines (DSPC) are degraded by alveolar macrophages in vitro. When (3H)choline-labeled surfactant materials are incubated with unlabeled alveolar macrophages, approximately 40% of the labeled DSPC is broken down in 6 h. There is just a slight decrease in the specific activity of DSPC, which suggests that most products of degradation are not reincorporated into DSPC, at least during the 6-h incubation period. There is a time- and temperature-dependent association of surfactant DSPC with alveolar macrophages, and some of the cell-associated materials are released from the cell fragments after sonication. Association of surfactant with the cells precedes degradation. The breakdown of surfactant DSPC by intact alveolar macrophages lags behind that produced by sonicated cell preparations with disrupted cell membranes. These data and other information suggest that the surfactant materials are internalized by the cells, before the breakdown. The products of degradation probably include free choline and fatty acids, most of which appear in the extracellular fluid. The breakdown processes do not seem to depend on the physical form of the surfactant or on the presence of surfactant apoproteins. Incubation of the cells alone also results in disappearance of intracellular DSPC, some of which may be surfactant phospholipid taken up by the cells in vivo. These results indicate that alveolar macrophages can degrade surfactant DSPC and suggest that these cells may be involved in catabolism of pulmonary surfactant materials.

  1. Comparative study of clinical pulmonary surfactants using atomic force microscopy.

    PubMed

    Zhang, Hong; Fan, Qihui; Wang, Yi E; Neal, Charles R; Zuo, Yi Y

    2011-07-01

    Clinical pulmonary surfactant is routinely used to treat premature newborns with respiratory distress syndrome, and has shown great potential in alleviating a number of neonatal and adult respiratory diseases. Despite extensive study of chemical composition, surface activity, and clinical performance of various surfactant preparations, a direct comparison of surfactant films is still lacking. In this study, we use atomic force microscopy to characterize and compare four animal-derived clinical surfactants currently used throughout the world, i.e., Survanta, Curosurf, Infasurf and BLES. These modified-natural surfactants are further compared to dipalmitoyl phosphatidylcholine (DPPC), a synthetic model surfactant of DPPC:palmitoyl-oleoyl phosphatidylglycerol (POPG) (7:3), and endogenous bovine natural surfactant. Atomic force microscopy reveals significant differences in the lateral structure and molecular organization of these surfactant preparations. These differences are discussed in terms of DPPC and cholesterol contents. We conclude that all animal-derived clinical surfactants assume a similar structure of multilayers of fluid phospholipids closely attached to an interfacial monolayer enriched in DPPC, at physiologically relevant surface pressures. This study provides the first comprehensive survey of the lateral structure of clinical surfactants at various surface pressures. It may have clinical implications on future application and development of surfactant preparations.

  2. Pulmonary surfactants and their role in pathophysiology of lung disorders.

    PubMed

    Akella, Aparna; Deshpande, Shripad B

    2013-01-01

    Surfactant is an agent that decreases the surface tension between two media. The surface tension between gaseous-aqueous interphase in the lungs is decreased by the presence of a thin layer of fluid known as pulmonary surfactant. The pulmonary surfactant is produced by the alveolar type-II (AT-II) cells of the lungs. It is essential for efficient exchange of gases and for maintaining the structural integrity of alveoli. Surfactant is a secretory product, composed of lipids and proteins. Phosphatidylcholine and phosphatidylglycerol are the major lipid constituents and SP-A, SP-B, SP-C, SP-D are four types of surfactant associated proteins. The lipid and protein components are synthesized separately and are packaged into the lamellar bodies in the AT-II cells. Lamellar bodies are the main organelle for the synthesis and metabolism of surfactants. The synthesis, secretion and recycling of the surfactant lipids and proteins is regulated by complex genetic and metabolic mechanisms. The lipid-protein interaction is very important for the structural organization of surfactant monolayer and its functioning. Alterations in surfactant homeostasis or biophysical properties can result in surfactant insufficiency which may be responsible for diseases like respiratory distress syndrome, lung proteinosis, interstitial lung diseases and chronic lung diseases. The biochemical, physiological, developmental and clinical aspects of pulmonary surfactant are presented in this article to understand the pathophysiological mechanisms of these diseases.

  3. Lung surfactants and different contributions to thin film stability.

    PubMed

    Hermans, Eline; Bhamla, M Saad; Kao, Peter; Fuller, Gerald G; Vermant, Jan

    2015-11-01

    The surfactant lining the walls of the alveoli in the lungs increases pulmonary compliance and prevents collapse of the lung at the end of expiration. In premature born infants, surfactant deficiency causes problems, and lung surfactant replacements are instilled to facilitate breathing. These pulmonary surfactants, which form complex structured fluid-fluid interfaces, need to spread with great efficiency and once in the alveolus they have to form a thin stable film. In the present work, we investigate the mechanisms affecting the stability of surfactant-laden thin films during spreading, using drainage flows from a hemispherical dome. Three commercial lung surfactant replacements Survanta, Curosurf and Infasurf, along with the phospholipid dipalmitoylphosphatidylcholine (DPPC), are used. The surface of the dome can be covered with human alveolar epithelial cells and experiments are conducted at the physiological temperature. Drainage is slowed down due to the presence of all the different lung surfactant replacements and therefore the thin films show enhanced stability. However, a scaling analysis combined with visualization experiments demonstrates that different mechanisms are involved. For Curosurf and Infasurf, Marangoni stresses are essential to impart stability and interfacial shear rheology does not play a role, in agreement with what is observed for simple surfactants. Survanta, which was historically the first natural surfactant used, is rheologically active. For DPPC the dilatational properties play a role. Understanding these different modes of stabilization for natural surfactants can benefit the design of effective synthetic surfactant replacements for treating infant and adult respiratory disorders.

  4. Hydrophobic surfactant proteins strongly induce negative curvature.

    PubMed

    Chavarha, Mariya; Loney, Ryan W; Rananavare, Shankar B; Hall, Stephen B

    2015-07-01

    The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism. PMID:26153706

  5. Hydrophobic Surfactant Proteins Strongly Induce Negative Curvature

    PubMed Central

    Chavarha, Mariya; Loney, Ryan W.; Rananavare, Shankar B.; Hall, Stephen B.

    2015-01-01

    The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism. PMID:26153706

  6. Surfactant-enhanced alkaline flooding field project

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  7. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    SciTech Connect

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-02-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine.

  8. Effect of surfactants on the biodegradation of hydrocarbons

    SciTech Connect

    Salma, T.; Miller, C.A.

    1996-10-01

    Developing an improved understanding of enhanced biodegradation is of great interest in remediation of contaminated soils, aquifers and cleanup of oil spills. Effect of several Ethoxylate type non-ionic surfactants and mixtures of non-ionic and anionic surfactants on the biodegradation of n-decane was investigated. Microbial growth on the solubilized hydrocarbon was found to be stimulated by all of the non-ionic surfactants tested, with varying degrees of enhancements in the rate of biodegradation. Linear Alkyl benzene Sulfonate, an anionic surfactant, decreased the degradation rates in mixtures with non-ionic surfactant and did not support the growth with or without the oil phase when used alone. Bacterial cell concentration and hydrocarbon content were measured as a function of time to study the rate of cell growth and degradation kinetics of n-decane for some of the surfactants. The results confirmed that solubilization in nonionic surfactants can greatly enhance the rates of hydrocarbon degradation.

  9. Two Roles of Nonionic Surfactants on the Electrorheological Response

    PubMed

    Kim; Klingenberg

    1996-11-10

    The influence of three nonionic surfactants (Brij 30, GMO, and GTO) on the electrorheological response of various alumina/silicone oil suspensions is investigated. The dependence of the dynamic yield stress on such variables as surfactant type and concentration, water and ion content, and electric field strength and frequency is reported. The prevalent feature common to all formulations is that the yield stress, tau0, initially increases with surfactant concentration, passes through a maximum, and then decreases with surfactant concentration. Below the maximum, the yield stress increases quadratically with the field strength, E, while above the maximum, yield stress increases slower than E2. The increase in the yield stress with surfactant concentration is due to surfactant-enhanced interfacial polarization, which may arise from increased proton transport via neighboring hydrogen bonds. The nonlinear behavior observed at large surfactant concentrations (i.e., tau0 $\

  10. Structure and Conformational Dynamics of DMPC/Dicationic Surfactant and DMPC/Dicationic Surfactant/DNA Systems

    PubMed Central

    Pietralik, Zuzanna; Krzysztoń, Rafał; Kida, Wojciech; Andrzejewska, Weronika; Kozak, Maciej

    2013-01-01

    Amphiphilic dicationic surfactants, known as gemini surfactants, are currently studied for gene delivery purposes. The gemini surfactant molecule is composed of two hydrophilic “head” groups attached to hydrophobic chains and connected via molecular linker between them. The influence of different concentrations of 1,5-bis (1-imidazolilo-3- decyloxymethyl) pentane chloride (gemini surfactant) on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers with and without the presence of DNA was investigated using Fourier transformed infrared (FTIR) and circular dichroism (CD) spectroscopies, small angle scattering of synchrotron radiation and differential scanning calorimetry. With increasing concentration of surfactant in DMPC/DNA systems, a disappearance of pretransition and a decrease in the main phase transition enthalpy and temperature were observed. The increasing intensity of diffraction peaks as a function of surfactant concentration also clearly shows the ability of the surfactant to promote the organisation of lipid bilayers in the multilayer lamellar phase. PMID:23571492

  11. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    SciTech Connect

    George J. Hirasaki; Clarence A. Miller

    2006-09-09

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a

  12. Pulmonary surfactant adsorption is increased by hyaluronan or polyethylene glycol.

    PubMed

    Taeusch, H William; Dybbro, Eric; Lu, Karen W

    2008-04-01

    In acute lung injuries, inactivating agents may interfere with transfer (adsorption) of pulmonary surfactants to the interface between air and the aqueous layer that coats the interior of alveoli. Some ionic and nonionic polymers reduce surfactant inactivation in vitro and in vivo. In this study, we tested directly whether an ionic polymer, hyaluronan, or a nonionic polymer, polyethylene glycol, enhanced adsorption of a surfactant used clinically. We used three different methods of measuring adsorption in vitro: a modified pulsating bubble surfactometer; a King/Clements device; and a spreading trough. In addition we measured the effects of both polymers on surfactant turbidity, using this assay as a nonspecific index of aggregation. We found that both hyaluronan and polyethylene glycol significantly increased the rate and degree of surfactant material adsorbed to the surface in all three assays. Hyaluronan was effective in lower concentrations (20-fold) than polyethylene glycol and, unlike polyethylene glycol, hyaluronan did not increase apparent aggregation of surfactant. Surfactant adsorption in the presence of serum was also enhanced by both polymers regardless of whether hyaluronan or polyethylene glycol was included with serum in the subphase or added to the surfactant applied to the surface. Therefore, endogenous polymers in the alveolar subphase, or exogenous polymers added to surfactant used as therapy, may both be important for reducing inactivation of surfactant that occurs with various lung injuries.

  13. Kinematic viscosity of therapeutic pulmonary surfactants with added polymers.

    PubMed

    Lu, Karen W; Pérez-Gil, Jesús; Taeusch, H William

    2009-03-01

    The addition of various polymers to pulmonary surfactants improves surface activity in experiments both in vitro and in vivo. Although the viscosity of surfactants has been investigated, the viscosity of surfactant polymer mixtures has not. In this study, we have measured the viscosities of Survanta and Infasurf with and without the addition of polyethylene glycol, dextran or hyaluronan. The measurements were carried out over a range of surfactant concentrations using two concentrations of polymers at two temperatures. Our results indicate that at lower surfactant concentrations, the addition of any polymers increased the viscosity. However, the addition of polyethylene glycol and dextran to surfactants at clinically used concentrations can substantially lower viscosity. Addition of hyaluronan at clinical surfactant concentrations slightly increased Infasurf viscosity and produced little change in Survanta viscosity. Effects of polymers on viscosity correlate with changes in size and distribution of surfactant aggregates and the apparent free volume of liquid as estimated by light microscopy. Aggregation of surfactant vesicles caused by polymers may therefore not only improve surface activity as previously shown, but may also affect viscosity in ways that could improve surfactant distribution in vivo.

  14. LNAPL Removal from Unsaturated Porous Media using Surfactant Infiltration

    SciTech Connect

    Zhong, Lirong; Oostrom, Martinus

    2012-11-19

    A series of unsaturated column experiments was performed to evaluate light non-aqueous phase liquid (LNAPL) fate and removal during surfactant solution infiltration. Surfactant-LNAPL phase behavior tests were conducted to optimize the remedial solutions. Packed sand and site sediment columns were first processed to establish representative LNAPL smear zone under unsaturated conditions. Infiltration of low-concentration surfactant was then applied in a stepwise flush mode, with 0.3 column pore volume (PV) of solution in each flush. The influence of infiltrated surfactant solution volume and pH on LNAPL removal was assessed. A LNAPL bank was observed at the very front of the first surfactant infiltration in each column, indicating that a very low surfactant concentration is needed to reduce the LNAPL-water interfacial tension sufficiently enough to mobilize trapped LNAPL under unsaturated conditions. More LNAPL was recovered as additional steps of surfactant infiltration were applied. Up to 99% LNAPL was removed after six infiltration steps, with less than 2.0 PV of total surfactant solution application, suggesting surfactant infiltration may be an effective method for vadose zone LNAPL remediation. The influence of pH tested in this study (3.99~10.85) was insignificant because the buffering capacity of the sediment kept the pH in the column higher than the zero point charge, pHzpc, of the sediment and therefore the difference between surfactant sorption was negligible.

  15. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    SciTech Connect

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.

  16. Tuning of nanoparticle-surfactant interactions in aqueous system

    NASA Astrophysics Data System (ADS)

    Kumar, Sugam; Aswal, V. K.

    2011-01-01

    The interaction of charged (anionic) silica nanoparticles with ionic and nonionic surfactants has been studied using small-angle neutron scattering (SANS). The surfactants used are anionic sodium dodecyl sulfate (SDS), cationic dodecyltrimethyl ammonium bromide (DTAB) and nonionic decaoxyethylene n-dodecylether (C12E10). The measurements are carried out at fixed concentration (1 wt%) of silica nanoparticles and with surfactant concentration varied in the range 0-2 wt%. It is found that there is no direct interaction between the nanoparticles and the surfactant (SDS) when they both are similarly charged. Both the silica nanoparticles and micelles coexist individually with no significant change in the structure of the micelles with respect to that in the pure surfactant solution. On the other hand, the presence of oppositely charged surfactant (DTAB) leads to the aggregation of silica nanoparticles even with very low surfactant concentration. The aggregation of silica nanoparticles is characterized by fractal structure and its fractal dimension remains constant with the increase in the surfactant concentration. In the case of nonionic surfactant, it interacts with the individual silica nanoparticles. The interaction is examined using two models: one that considers the surfactant layer coating on silica nanoparticles and a second one where the surface of the nanoparticles is decorated by the micelles. Contrast variation SANS measurements confirm the uniform decoration of nonionic micelles on the nanoparticles.

  17. The effects of surfactant formulation on nonequilibrium NAPL solubilization.

    PubMed

    Zhong, Lirong; Mayer, Alex S; Pope, Gary A

    2003-01-01

    Surfactant-enhanced aquifer remediation (SEAR) involves the injection of surfactant solutions into aquifers contaminated with nonaqueous phase liquids (NAPL). Batch and column experiments were used to assess the effect of surfactant formulation on the rate of NAPL solubilization. The experimental variables were surfactant type, surfactant concentration, electrolyte concentration, and cosolvent concentration. Model equations were proposed and solved to describe solubilization under the conditions of each type of experiment. Using these models, a solubilization rate constant, kappa(b), and an overall mass transfer rate coefficient, kappa, were estimated from the batch and column experiments, respectively. The solubilization rate constant was consistently sensitive to surfactant type, surfactant concentration, and electrolyte concentration. The estimated solubilization rate constants varied over two orders of magnitude. The results of the column experiments also were sensitive to the surfactant formulation. Variations in the fitted mass transfer rate coefficient parameter, beta(0), were related to variations in the surfactant formulations. A comparison between the results of the batch and column experiments yields an apparent relationship between beta(0) and kappa(b). This relationship suggests that the mass transfer rate coefficient is directly related to the formulation of the surfactant solution.

  18. Molecular simulation of surfactant-assisted protein refolding

    NASA Astrophysics Data System (ADS)

    Lu, Diannan; Liu, Zheng; Liu, Zhixia; Zhang, Minlian; Ouyang, Pingkai

    2005-04-01

    Protein refolding to its native state in vitro is a challenging problem in biotechnology, i.e., in the biomedical, pharmaceutical, and food industry. Protein aggregation and misfolding usually inhibit the recovery of proteins with their native states. These problems can be partially solved by adding a surfactant into a suitable solution environment. However, the process of this surfactant-assisted protein refolding is not well understood. In this paper, we wish to report on the first-ever simulations of surfactant-assisted protein refolding. For these studies, we defined a simple model for the protein and the surfactant and investigated how a surfactant affected the folding behavior of a two-dimensional lattice protein molecule. The model protein and model surfactant were chosen such that we could capture the important features of the folding process and the interaction between the protein and the surfactant, namely, the hydrophobic interaction. It was shown that, in the absence of surfactants, a protein in an "energy trap" conformation, i.e., a local energy minima, could not fold into the native form, which was characterized by a global energy minimum. The addition of surfactants created folding pathways via the formation of protein-surfactant complexes and thus enabled the conformations that fell into energy trap states to escape from these traps and to form the native proteins. The simulation results also showed that it was necessary to match the hydrophobicity of surfactant to the concentration of denaturant, which was added to control the folding or unfolding of a protein. The surfactants with different hydrophobicity had their own concentration range on assisting protein refolding. All of these simulations agreed well with experimental results reported elsewhere, indicating both the validity of the simulations presented here and the potential application of the simulations for the design of a surfactant on assisting protein refolding.

  19. Evaluation of mixed surfactants for improved chemical flooding

    SciTech Connect

    Llave, F.M.; French, T.R.; Lorenz, P.B.

    1993-02-01

    Phase behavior studies were conducted using combinations of a primary surfactant component and several ethoxylated surfactants. The objective of the study is to evaluate combinations of surfactants, anionic-nonionic and anionic-anionic mixtures, that would yield favorable phase behavior and solubilization capacity. The dependence of the solution behavior on the additive surfactant structure, surfactant type, oil, surfactant proportion, salinity, HLB, and temperature was observed. The results showed that the ethoxylated surfactants can improve the solution behavior of the overall system. The increase in optimum salinity range of these solutions corresponded to an increase in the degree of ethoxylation of additive surfactant, up to a certain limit. The nonionic surfactant additives yielded much higher salinities compared to the results from the ethoxylated anionics tested. The proportion of surfactant component in solution was critical in achieving a balance between the solubilization capacity and the enhancement in the system`s salinity tolerance. Some combinations of these types of surfactants showed improved solution behavior with favorable solubilization capacity. The phase inversion temperature (PIT) method has been shown to be a relatively fast method for screening candidate surfactant systems. Comparisons were made using both the conventional salinity scan and the PIT method on selected chemical systems. The results showed good agreement between the salinity regions determined using both methods. A difference in the dependence of optimal salinity on HLB was observed for the different nonionics tested. The linear alkyl alcohol ethoxylates exhibited a behavior distinct from the dialkyl phenols at similar HLB levels with and without the primary sulfonate component in the solution. Other experiments performed at NIPER have shown that surfactant-enhanced alkaline flooding has good potential for the recovery of oil from Naval Petroleum Reserve Number 3 (NPR No. 3).

  20. Evaluation of mixed surfactants for improved chemical flooding

    SciTech Connect

    Llave, F.M.; French, T.R.; Lorenz, P.B.

    1993-02-01

    Phase behavior studies were conducted using combinations of a primary surfactant component and several ethoxylated surfactants. The objective of the study is to evaluate combinations of surfactants, anionic-nonionic and anionic-anionic mixtures, that would yield favorable phase behavior and solubilization capacity. The dependence of the solution behavior on the additive surfactant structure, surfactant type, oil, surfactant proportion, salinity, HLB, and temperature was observed. The results showed that the ethoxylated surfactants can improve the solution behavior of the overall system. The increase in optimum salinity range of these solutions corresponded to an increase in the degree of ethoxylation of additive surfactant, up to a certain limit. The nonionic surfactant additives yielded much higher salinities compared to the results from the ethoxylated anionics tested. The proportion of surfactant component in solution was critical in achieving a balance between the solubilization capacity and the enhancement in the system's salinity tolerance. Some combinations of these types of surfactants showed improved solution behavior with favorable solubilization capacity. The phase inversion temperature (PIT) method has been shown to be a relatively fast method for screening candidate surfactant systems. Comparisons were made using both the conventional salinity scan and the PIT method on selected chemical systems. The results showed good agreement between the salinity regions determined using both methods. A difference in the dependence of optimal salinity on HLB was observed for the different nonionics tested. The linear alkyl alcohol ethoxylates exhibited a behavior distinct from the dialkyl phenols at similar HLB levels with and without the primary sulfonate component in the solution. Other experiments performed at NIPER have shown that surfactant-enhanced alkaline flooding has good potential for the recovery of oil from Naval Petroleum Reserve Number 3 (NPR No. 3).

  1. Next Generation Surfactants for Improved Chemical Flooding Technology

    SciTech Connect

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies

  2. Hydrogels of sodium alginate in cationic surfactants: Surfactant dependent modulation of encapsulation/release toward Ibuprofen.

    PubMed

    Jabeen, Suraya; Chat, Oyais Ahmad; Maswal, Masrat; Ashraf, Uzma; Rather, Ghulam Mohammad; Dar, Aijaz Ahmad

    2015-11-20

    The interaction of cetyltrimethylammoium bromide (CTAB) and its gemini homologue (butanediyl-1,4-bis (dimethylcetylammonium bromide), 16-4-16 with biocompatible polymer sodium alginate (SA) has been investigated in aqueous medium. Addition of K2CO3 influences viscoelastic properties of surfactant impregnated SA via competition between electrostatic and hydrophobic interactions. Viscosity of these polymer-surfactant systems increases with increase in concentration of K2CO3, and a cryogel is formed at about 0.5M K2CO3 concentration. The thermal stability of gel (5% SA+0.5M K2CO3) decreases with increase in surfactant concentration, a minimum is observed with increase in 16-4-16 concentration. The impact of surfactant addition on the alginate structure vis-à-vis its drug loading capability and release thereof was studied using Ibuprofen (IBU) as the model drug. The hydrogel with 16-4-16 exhibits higher IBU encapsulation and faster release in comparison to the one containing CTAB. This higher encapsulation-cum-faster release capability has been related to micelle mediated solubilization and greater porosity of the hydrogel with gemini surfactant.

  3. Moving liquid surfactant as a way of assessing the properties of surfactant, liquids and surfaces

    NASA Astrophysics Data System (ADS)

    Titov, A. O.; Titov, O. P.; Titov, M. O.; Karbainov, A. N.

    2011-04-01

    In the study of surface phenomena of the main and only instrumentally-defined parameters are surface tension and wetting angle, including in the field of nanotechnology. These indicators were introduced more than 200 years ago, and any new inventions in this field was no more. The university developed a new method and device for determining the surface activity. The basis of the method and device is the use of video cameras to record the droplet size and changes on the surface of the liquid layer of known thickness from the impact of drops of surfactant (surfactant). Committed changes are then processed using computer software and calculated parameters, which can be characterized by a surfactant and surface properties, which is fluid and very liquid. Determine the surface tension or contact angle is not necessary. Measures of surface activity using the method and device are: The amount of fluid that can move one kilogram of surfactant. The value of this index varies from tens of nanometers to hundreds of thousands of units. The indicator can be converted to energy units, joules. The amount of fluid confined by a surface per unit time is calculated based on the first indicator, complements the characterization of surfactant and may be an indicator of surface characteristics and fluid. Propagation speed of the capillary and microwaves. This indicator complements the first two.

  4. Interfacial reactions of ozone with surfactant protein B in a model lung surfactant system.

    PubMed

    Kim, Hugh I; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W; Jang, Seung Soon; Neidholdt, Evan L; Goddard, William A; Heath, James R; Kanik, Isik; Beauchamp, J L

    2010-02-24

    Oxidative stresses from irritants such as hydrogen peroxide and ozone (O(3)) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary surfactant protein B (SP-B) due to the heterogeneous reaction with O(3), field-induced droplet ionization (FIDI) mass spectrometry has been utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report structurally specific oxidative changes of SP-B(1-25) (a shortened version of human SP-B) at the air-liquid interface. We also present studies of the interfacial oxidation of SP-B(1-25) in a nonionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) surfactant layer as a model PS system, where competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B(1-25) at the interface is quite different from that in the solution phase. In comparison with the nearly complete homogeneous oxidation of SP-B(1-25), only a subset of the amino acids known to react with ozone are oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid surfactant layer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system subjected to oxidative stress.

  5. Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates.

    PubMed

    D'Agostino, Lisa A; Mabury, Scott A

    2014-01-01

    Recent studies comparing the results of total organofluorine-combustion ion chromatography (TOF-CIC) to targeted analysis of perfluoroalkyl and polyfluoroalkyl substances (PFASs) by liquid chromatography tandem mass spectrometry (LC-MS/MS) have shown that a significant yet variable portion of the total organofluorine in environmental and biological samples is in the form of unknown PFASs. A portion of this unknown organofluorine likely originates in proprietary fluorinated surfactants not included in LC-MS/MS analyses and not fully characterized by the environmental science community, which may enter the environment through use in aqueous film forming foams (AFFFs) for firefighting. Contamination of water, biota, and soils with various PFASs due to AFFF deployment has been documented. Ten fluorinated AFFF concentrates, 9 of which were obtained from fire sites in Ontario, Canada, and two commercial fluorinated surfactant concentrates were characterized in order to identify novel fluorinated surfactants. Mixed-mode ion exchange solid phase extraction (SPE) fractionated fluorinated surfactants based on ionic character. High resolution mass spectrometry assigned molecular formulas to fluorinated surfactant ions, while collision induced dissociation (CID) spectra assisted structural elucidation. LC-MS/MS detected isomers and low abundance fluorinated chain lengths. In total, 12 novel and 10 infrequently reported PFAS classes were identified in fluorinated chain lengths from C3 to C15 for a total of 103 compounds. Further research should examine the environmental fate and toxicology of these PFASs, especially their potential as perfluoroalkyl acid (PFAA) precursors. PMID:24256061

  6. Bioavailability enhancement by addition of surfactant and surfactant-like compounds

    SciTech Connect

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1995-12-31

    The bioavailability and microbial degradation of contaminant compounds (e.g., toluene and naphthalene) were enhanced by adding synthetic surfactants, biosurfactants, and nutrients with surfactant like properties. In addition to enhanced contaminant degradation, these surfactant compounds have the potential to change the availability of natural organic matter (NOM), and thus may affect overall site bioremediation. Two bacterial bioreporter strains that are induced by toluene or naphthalene were used to directly measure contaminant bioavailability. A cell-free biosurfactant product, Tween-80, and an oleophilic fertilizer were added to aqueous suspensions and soil slurries containing toluene or naphthalene. The addition of these surfactant compounds at or below the critical micelle concentration (CMC) enhanced bioavailability as measured by increased levels of bioluminescence. Bioluminescence data were coupled with gas chromatographic analyses. The addition of Tween-80 increased not only the bioavailability of the contaminants but also, in a separate assay, the bioavailability of recalcitrant NOM. The enhanced NOM bioavailability was inferred from measurements of biomass by optical density increases and plate counts. Thus, adding surfactant compounds for enhanced contaminant degradation has the potential to introduce additional competition for nutrients and microbial metabolism, a significant area of concern for in situ site remediation.

  7. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.

    PubMed

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2016-04-15

    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes. PMID:26617046

  8. Amphipols: Polymeric surfactants for membrane biology research.

    SciTech Connect

    Popot, J.-L.; Berry, E.A.; Charvolin, D.; Creuzenet, C.; Ebel, C.; Engelman, D.M.; Flotenmeyer, M.; Giusti, F.; Gohon, Y.; Hong, Q.; Lakey, J.H.; Leonard, K.; Shuman, H.A.; Timmins, P.; Warschawski, D.E.; Zito, F.; Zoonens, M.; Pucci, B.; Tribet, C.

    2003-06-20

    Membrane proteins classically are handled in aqueous solutions as complexes with detergents. The dissociating character of detergents, combined with the need to maintain an excess of them, frequently results in more or less rapid inactivation of the protein under study. Over the past few years, we have endeavored to develop a novel family of surfactants, dubbed amphipols (APs). APs are amphiphilic polymers that bind to the transmembrane surface of the protein in a noncovalent but, in the absence of a competing surfactant, quasi-irreversible manner. Membrane proteins complexed by APs are in their native state, stable, and they remain water soluble in the absence of detergent or free APs. An update is presented of the current knowledge about these compounds and their demonstrated or putative uses in membrane biology.

  9. Surfactants and interfacial phenomena, 2nd Ed

    SciTech Connect

    Rosen

    1989-01-01

    The second edition of this monograph on surfactants has been updated to reflect recent advances in our knowledge of theory and practices. New applications run the gamut from microelectronics and magnetic recording, to biotechnology and nonconventional energy conversion. There is a new chapter on the interactions between surfactants. New sections have been added, and original sections expanded, on such topics as ultralow liquid-liquid interfacial tension; microemulsions, miniemulsions, and multiple emulsions; liquid crystal formation; hydrotropy; and steric forces in the stabilization of dispersions. There is also new material on lime soap dispersing agents; fabric softeners, adsorption and wetting of solid surfaces, both equilibrium and none-equilibrium; the relationship between adsorption and micellation in aqueous solutions and its effect on surface tension reduction; and factors determining micellar structure and shape.

  10. Penetration of surfactant solutions into hydrophobic capillaries.

    PubMed

    Bain, Colin D

    2005-08-21

    The initial rise velocity of surfactant solutions in hydrophobic capillaries is independent of time (F. Tiberg, B. Zhmud, K. Hallstensson and M. von Bahr, Phys. Chem. Chem. Phys., 2000, 2, 5189). By analogy with the hydrodynamics of an overflowing cylinder, we present a steady-state solution for capillary penetration in which the velocity is determined by the adsorption kinetics at the air-water interface. Good agreement between the model predictions and experimental data of Tiberg and coworkers is obtained for the non-ionic surfactant C10E6 under the assumption of diffusion-controlled adsorption. The longer chain homologue, C14E6, shows evidence of kinetic barriers to adsorption.

  11. Polymer enrichment decelerates surfactant membranes near interfaces

    NASA Astrophysics Data System (ADS)

    Lipfert, F.; Frielinghaus, H.; Holderer, O.; Mattauch, S.; Monkenbusch, M.; Arend, N.; Richter, D.

    2014-04-01

    Close to a planar surface, lamellar structures are imposed upon otherwise bulk bicontinuous microemulsions. Thermally induced membrane undulations are modified by the presence of the rigid interface. While it has been shown that a pure membrane's dynamics are accelerated close to the interface, we observed nearly unchanged relaxation rates for membranes spiked with large amphiphilic diblock copolymers. An increase of the polymer concentration by a factor of 2-3 for the first and second surfactant membrane layers was observed. We interpret the reduced relaxation times as the result of an interplay between the bending rigidity and the characteristic distance of the first surfactant membrane to the rigid interface, which causes the hydrodynamic and steric interface effects described in Seifert's theory. The influence of these effects on decorated membranes yields a reduction of the frequencies and an amplification of the amplitudes of long-wavelength undulations, which are in accordance to our experimental findings.

  12. Surfactant-driven fracture of gels: Growth

    NASA Astrophysics Data System (ADS)

    Daniels, Karen; Schillaci, Mark; Bostwick, Joshua

    2012-11-01

    A droplet of surfactant spreading on a gel substrate can produce fractures on the gel surface, which originate at the contact-line and propagate outwards in a star-burst pattern. Fractures have previously been observed to initiate through a thermal process, with the number of fractures controlled by the ratio of surface tension differential to gel shear modulus. After the onset of fracture, experiments show the arm length grows with universal power law L =t 3 / 4 that does not scale with any material parameters (Daniels et al. 2007, PRL), including super-spreading surfactants (Spandangos et al. 2012, Langmuir). We develop a model for crack growth controlled by the transport of an inviscid fluid into the fracture tip. While treating the gel as a linear material correctly predicts power-law growth, we find that only by considering a Neo-Hookean (incompressible) material do we obtain agreement with the experiments.

  13. Surfactant controlled synthesis of crystalline phosphovanadate nanorods

    SciTech Connect

    Asnani, Minakshi; Thomas, Jency; Sen, Prasenjit; Ramanan, Arunachalam . E-mail: aramanan@chemistry.iitd.ac.in

    2007-04-12

    Phosphovanadate nanorods were obtained in a reaction of vanadium (V) oxide as a precursor and a cationic surfactant, dodecylpyridinium chloride, as structure directing template at pH {approx}3 at room temperature. The composition and morphology of the nanorods was established by powder X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), fourier transform infra-red spectroscopy (FTIR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The obtained nanorods have diameters of 40-60 nm with lengths up to 1 {mu}m. The effect of reaction parameters such as concentration of surfactant and pH of the solution on the growth of nanorods has been investigated. A plausible mechanism involving the coalescence of nanoparticle 'seeds' leading to one-dimensional nanorods is also discussed. The same reaction when performed under hydrothermal condition, keeping other reaction parameters unchanged, resulted in the formation of phosphovanadate nanospheres of diameter 10-15 nm.

  14. A DOS Primer for Librarians.

    ERIC Educational Resources Information Center

    Beecher, Henry

    1989-01-01

    Presents a basic orientation to the functions and capabilities of disk operating systems (DOS), aimed at the nontechnically oriented user of IBM personal computers and compatible microcomputers. Areas discussed include booting up, the use of floppy and hard disks, file storage and manipulation, and directories. Further readings are provided. (CLB)

  15. Study of surfactant adsorption on colloidal particles

    SciTech Connect

    Cummins, P.G.; Staples, E. ); Penfold, J. )

    1990-05-03

    Surface tension and small-angle neutron scattering have been used to study the nature of surfactant adsorption on silica sols. This paper presents results on the characterization of the ludox silica sol and adsorbed layers of hexaethylene glycol monododecyl ether (C{sub 12}E{sub 6}). Preliminary results are presented that demonstrate the presence of a lower consolute boundary for the composite system.

  16. Effect of Surfactants on Antibiotic Resistance

    PubMed Central

    Suling, William J.; O'Leary, William M.

    1975-01-01

    The effectiveness of surfactants as potentiators of antibiotic activity on several resistant strains of bacteria, selected from clinical sources and laboratory collections, was studied using a tube dilution assay. Bacterial strains included members of the Enterobacteriaceae and staphylococci. Cetyltrimethylammonium bromide (CTAB), Tween 80 (Tw80), a mixture of n-alkyldimethyl betaines (L14), and alpha-(2,4,5-trichlorophenoxy) propionic acid (TCP) were tested in combination with pencillin G (PenG), methicillin (Met), streptomycin (Sm), polymyxin B (PmB), and chlortetracycline (CTC). Growth response to the drug combinations was compared with the response to each drug alone. CTAB and L14 but not Tw80 or TCP were found to potentiate the activity of CTC on strains of Escherichia coli, Proteus mirabilis, and Klebsiella pneumoniae. Studies on the inhibition of protein synthesis by CTC in cells of a strain of E. coli suggested that the surfactants increased the uptake of antibiotic into the cells. CTAB and L14 almost completely sensitized strains of P. mirabilis, Serratia marcescens, K. pneumoniae, and E. coli to PmB. With the exception of K. pneumoniae, TCP was also effective in potentiating the activity of PmB on the above strains whereas Tw80 showed potentiation only with a strain of E. coli. CTAB and L14 but not TCP or Tw80 potentiated the activity of PenG but not Met on strains of staphylococci. Studies of penicillinase in the cells suggested that the surfactants inhibited the formation of this enzyme possibly at the level of induction. None of the surfactants were found to potentiate the activity of Sm. PMID:1101823

  17. Rhamnolipid surfactants: alternative substrates, new strategies.

    PubMed

    Benincasa, Maria; Marqués, AnaM; Pinazo, Aurora; Manresa, Angels

    2010-01-01

    This chapter concentrates on the various possibilities of using alternative substrates and new strategies. Such strategies include an integrated production system to reduce the environmental impact and an attempt to minimize residues, which reinforces socio-economic and region-structural development. Additionally, we offer an overview of the physicochemical and biological properties of rhamnolipid surfactants associated with the applications of these molecules in different circumstances.

  18. Biosurfactants: a sustainable replacement for chemical surfactants?

    PubMed

    Marchant, Roger; Banat, Ibrahim M

    2012-09-01

    Glycolipid biosurfactants produced by bacteria and yeasts provide significant opportunities to replace chemical surfactants with sustainable biologically produced alternatives in bulk commercial products such as laundry detergents and surface cleaners. Sophorolipids are already available in sufficient yield to make their use feasible while rhamnolipids and mannosylerythritol lipids require further development. The ability to tailor the biosurfactant produced to the specific needs of the product formulation will be an important future step. PMID:22618240

  19. Interactions of bovine serum albumin with cationic imidazolium and quaternary ammonium gemini surfactants: effects of surfactant architecture.

    PubMed

    Zhou, Ting; Ao, Mingqi; Xu, Guiying; Liu, Teng; Zhang, Juan

    2013-01-01

    The interactions of BSA with a series of cationic imidazolium gemini surfactants ([C(n)-s-C(n)im]Br(2), n=10, 12, 14, s=2, 4, 6), quaternary ammonium surfactants (C(12)C(2)C(12)), and their corresponding monomers ([C(12)mim]Br and DTAB) are investigated by fluorescence using pyrene as a molecular probe, synchronous fluorescence, circular dichroism (CD), and UV-visible absorption spectra. These surfactants are used to elucidate the effects of surfactant hydrophilic head group, spacer length, and hydrophobic chain length on the conformation of BSA. The results of fluorescence spectra and CD show that the imidazolium gemini surfactants with shorter spacers or with longer hydrophobic chains have a larger effect on BSA unfolding, and the imidazolium gemini surfactant interacts with BSA more strongly than its corresponding monomer and the quaternary ammonium gemini surfactant. These conclusions have been confirmed by the binding constants (K(a)) and binding sites (n) for the BSA/surfactant system. Stern-Volmer quenching constants K(SV) of cationic surfactants binding to BSA are obtained, indicating that the probable quenching mechanism is initiated by ground-state complex formation rather than by dynamic collision. Moreover, the synchronous fluorescence spectra show that the surfactants mainly interact with tryptophan residues of BSA.

  20. Bending elasticity of charged surfactant layers: the effect of mixing.

    PubMed

    Bergström, L Magnus

    2006-08-01

    Expressions have been derived from which the spontaneous curvature (H(0)), bending rigidity (k(c)), and saddle-splay constant (k(c)) of mixed monolayers and bilayers may be calculated from molecular and solution properties as well as experimentally available quantities such as the macroscopic hydrophobic-hydrophilic interfacial tension. Three different cases of binary surfactant mixtures have been treated in detail: (i) mixtures of an ionic and a nonionic surfactant, (ii) mixtures of two oppositely charged surfactants, and (iii) mixtures of two ionic surfactants with identical headgroups but different tail volumes. It is demonstrated that k(c)H(0), k(c), and k(c) for mixtures of surfactants with flexible tails may be subdivided into one contribution that is due to bending properties of an infinitely thin surface as calculated from the Poisson-Boltzmann mean field theory and one contribution appearing as a result of the surfactant film having a finite thickness with the surface of charge located somewhat outside the hydrophobic-hydrophilic interface. As a matter of fact, the picture becomes completely different as finite layer thickness effects are taken into account, and as a result, the spontaneous curvature is extensively lowered whereas the bending rigidity is raised. Furthermore, an additional contribution to k(c) is present for surfactant mixtures but is absent for k(c)H(0) and k(c). This contribution appears as a consequence of the minimization of the free energy with respect to the composition of a surfactant layer that is open in the thermodynamic sense and must always be negative (i.e., k(c) is generally found to be brought down by the process of mixing two or more surfactants). The magnitude of the reduction of k(c) increases with increasing asymmetry between two surfactants with respect to headgroup charge number and tail volume. As a consequence, the bending rigidity assumes the lowest values for layers formed in mixtures of two oppositely charged

  1. Surfactant-enhanced remediation of organic contaminated soil and water.

    PubMed

    Paria, Santanu

    2008-04-21

    Surfactant based remediation technologies for organic contaminated soil and water (groundwater or surface water) is of increasing importance recently. Surfactants are used to dramatically expedite the process, which in turn, may reduce the treatment time of a site compared to use of water alone. In fact, among the various available remediation technologies for organic contaminated sites, surfactant based process is one of the most innovative technologies. To enhance the application of surfactant based technologies for remediation of organic contaminated sites, it is very important to have a better understanding of the mechanisms involved in this process. This paper will provide an overview of the recent developments in the area of surfactant enhanced soil and groundwater remediation processes, focusing on (i) surfactant adsorption on soil, (ii) micellar solubilization of organic hydrocarbons, (iii) supersolubilization, (iv) density modified displacement, (v) degradation of organic hydrocarbon in presence surfactants, (vi) partitioning of surfactants onto soil and liquid organic phase, (vii) partitioning of contaminants onto soil, and (viii) removal of organics from soil in presence of surfactants. Surfactant adsorption on soil and/or sediment is an important step in this process as it results in surfactant loss reduced the availability of the surfactants for solubilization. At the same time, adsorbed surfactants will retained in the soil matrix, and may create other environmental problem. The biosurfactants are become promising in this application due to their environmentally friendly nature, nontoxic, low adsorption on to soil, and good solubilization efficiency. Effects of different parameters like the effect of electrolyte, pH, soil mineral and organic content, soil composition etc. on surfactant adsorption are discussed here. Micellar solubilization is also an important step for removal of organic contaminants from the soil matrix, especially for low aqueous

  2. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2005-07-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Laboratory imbibition tests show that imbibition rate is not very sensitive to the surfactant concentration (in the range of 0.05-0.2 wt%) and small amounts of trapped gas saturation. It is however very sensitive to oil permeability and water-oil-ratio. Less than 0.5 M Na2CO3 is needed for in situ soap generation and low adsorption; NaCl can be added to reach the necessary total salinity. The simulation result matches the laboratory imbibition experimental data. Small fracture spacing and high permeability would be needed for high rate of recovery.

  3. Therapeutic surfactant-stripped frozen micelles

    PubMed Central

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.

    2016-01-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like ‘top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and ‘bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2–3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated. PMID:27193558

  4. Probing Nanoscale Thermal Transport in Surfactant Solutions.

    PubMed

    Cao, Fangyu; Liu, Ying; Xu, Jiajun; He, Yadong; Hammouda, B; Qiao, Rui; Yang, Bao

    2015-01-01

    Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scattering, thermal conductivity measurements, and molecular dynamics simulations. We report the first experimental observation of a minimum thermal conductivity occurring at the critical micelle concentration (CMC): the thermal conductivity of the surfactant solution decreases as AOT is added till the onset of micellization but increases as more AOT is added. The decrease of thermal conductivity with AOT loading in solutions in which AOT molecules are dispersed as monomers suggests that even the interfaces between individual oleophobic headgroup of AOT molecules and their surrounding non-polar octane molecules can hinder heat transfer. The increase of thermal conductivity with AOT loading after the onset of micellization indicates that the thermal transport in the core of AOT micelles and across the surfactant-oil interfaces, both of which span only a few nanometers, are efficient. PMID:26534840

  5. Electrohydrodynamics of a surfactant-covered drop

    NASA Astrophysics Data System (ADS)

    Oberlander, Andrew; Ouriemi, Malika; Vlahovska, Petia

    2014-11-01

    We present an experimental study of the behavior of a drop covered with insoluble surfactant in a uniform DC electric field. Steady drop shapes, drop evolution upon application of the field, and drop relaxation after the field is turned off are observed for a polybutadiene (PB) drop suspended in silicon oil (PDMS). The surfactant is generated at the drop interface by reaction between end-functionalized PB and PDMS. The experimental data is compared with the theory of Nganguia et al. (2013) for the steady shapes, and a new model developed by us which accounts for polarization relaxation. The latter effect turns to be significant for our system of very low conductivity fluids, for which the Maxwell-Wagner time is of the order of tens of seconds. We will discuss the complex interplay of shape deformation, surfactant redistribution, and interfacial charging in droplet electrohydrodynamics. Our results are important for understanding electrorheology of emulsions commonly found in the petroleum industry. Supported by NSF-CBET-1132614.

  6. Evaulation of irritation potential of surfactant mixtures.

    PubMed

    Turkoglu, M; Sakr, A

    1999-12-01

    Irritation potential of sodium laureth sulfate (SLES) alone, and in combination with lauryl glucoside (LG), polysorbate 20 (PS) and cocoamidopropyl betaine (CAPB) was tested in 13 human subjects. Four main and six sub-formulations were prepared and evaluated. Formulations were applied to the forearm as a 24 h close patch study. Irritation was scored by two different methods using an in vivo clinical protocol based on visual scoring and on the stratum corneum capacitance measurement. Irritation was found to be dose dependent. At 2 mg/patch level ten subjects did not show any skin reaction. At 20 mg/patch level eleven subjects showed a broad range of skin irritation. The highest irritation was observed with the formula that contained SLES, LG, and cocamide DEA together. Among the sub-formulations, cocamide DEA showed the highest irritation grade. A statistically significant correlation was observed between visual, clinical and corneometer scores. It was concluded that the irritation potential of surfactants was related to the total surfactant concentration, application mode, and the thermodynamic activity of molecules in the solution as well as the chemical structure of the surfactant molecules. PMID:18503452

  7. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2003-10-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior, interfacial tension (IFT) and wettability studies. Alfoterra-38 (0.05 wt%), Alfoterra-35 (0.05 wt%), SS-6656 (0.05 wt%), and DTAB (1 wt%) altered the wettability of the initially oil-wet calcite plate to an intermediate/water-wet state. Low IFT ({approx}10{sup -3} dynes/cm) is obtained with surfactants 5-166, Alfoterra-33 and Alfoterra-38. Plans for the next quarter include conducting wettability and mobilization studies.

  8. Foam stabilisation using surfactant exfoliated graphene.

    PubMed

    Sham, Alison Y W; Notley, Shannon M

    2016-05-01

    Liquid-air foams have been stabilised using a suspension of graphene particles at very low particle loadings. The suspension was prepared through the liquid phase exfoliation of graphite in the presence of the non-ionic tri-block surfactant, Pluronic® F108. The graphene particles possess an extremely high aspect ratio, with lateral dimensions of between 0.1 and 1.3 μm as evidenced by TEM imaging. The particles were shown to exhibit a number of other properties known to favour stabilisation of foam structures. Particle surface activity was confirmed through surface tension measurements, suggesting the particles favour adsorption at the air-water interface. The evolution of bubble size distributions over time indicated the presence of particles yielded improvements to foam stability due to a reduction in disproportionation. Foam stability measurements showed a non-linear relationship between foam half-life and graphene concentration, indicative of the rate at which particles adsorb at bubble surfaces. The wettability of the graphene particles was altered upon addition of alkali metal chlorides, with the stability of the foams being enhanced according to the series Na(+)>Li(+)>K(+)>Cs(+). This effect is indicative of the relative hydration capacity of each salt with respect to the surfactant, which is adsorbed along the graphene plane as a result of the exfoliation process. Thus, surfactant exfoliated graphene particles exhibit a number of different features that demonstrate efficient application of high-aspect ratio particles in the customisation and enhancement of foams.

  9. Dynamics of surfactants spreading on gel layers

    NASA Astrophysics Data System (ADS)

    Spandagos, Constantine; Luckham, Paul; Matar, Omar

    2009-11-01

    Gel-like materials are of central importance to a large number of engineering, biological, biomedical and day-life applications. This work attempts to investigate the spreading of droplets of surfactant solutions on agar gels, which is accompanied by cracking of the gel layers. The cracking progresses via the formation of patterns that resemble ``starbursts,'' which have been reported recently in the literature by Daniels et al. Marangoni stresses generated by surface tension gradients between the surfactant droplet and the uncontaminated gel layer are identified to be the driving force behind these phenomena. The morphology and dynamics of the starburst patterns are investigated for droplets of different surfactant solutions, including sodiumdodecylsulphate, spreading on gel layers of different strengths. The instability is characterised in terms of the number of arms that form, and their mean width and length as a function of time. In addition, photoelasticity is used to provide information about the stress field of the material, which, combined with the results from our direct visualisation, can elucidate further the mechanisms underlying the pattern formation and the nature of the interactions between the liquid and the gel.

  10. How surfactants influence evaporation-driven flows

    NASA Astrophysics Data System (ADS)

    Liepelt, Robert; Marin, Alvaro; Rossi, Massimiliano; Kähler, Christian J.

    2014-11-01

    Capillary flows appear spontaneously in sessile evaporating drops and give rise to particle accumulation around the contact lines, commonly known as coffee-stain effect (Deegan et al., Nature, 1997). On the other hand, out-of-equilibrium thermal effects may induce Marangoni flows in the droplet's surface that play an important role in the flow patterns and in the deposits left on the substrate. Some authors have argued that contamination or the presence of surfactants might reduce or eventually totally annul the Marangoni flow (Hu & Larson, J. Phys. Chem. B, 2006). On the contrary, others have shown an enhancement of the reverse surface flow (Sempels et al., Nat. Commun., 2012). In this work, we employ Astigmatic Particle Tracking Velocimetry (APTV) to obtain the 3D3C evaporation-driven flow in both bulk and droplet's surface, using surfactants of different ionic characters and solubility. Our conclusions lead to a complex scenario in which different surfactants and concentrations yield very different surface-flow patterns, which eventually might influence the colloidal deposition patterns.

  11. Therapeutic surfactant-stripped frozen micelles

    NASA Astrophysics Data System (ADS)

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.

    2016-05-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like `top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and `bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2-3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated.

  12. Probing Nanoscale Thermal Transport in Surfactant Solutions.

    PubMed

    Cao, Fangyu; Liu, Ying; Xu, Jiajun; He, Yadong; Hammouda, B; Qiao, Rui; Yang, Bao

    2015-11-04

    Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scattering, thermal conductivity measurements, and molecular dynamics simulations. We report the first experimental observation of a minimum thermal conductivity occurring at the critical micelle concentration (CMC): the thermal conductivity of the surfactant solution decreases as AOT is added till the onset of micellization but increases as more AOT is added. The decrease of thermal conductivity with AOT loading in solutions in which AOT molecules are dispersed as monomers suggests that even the interfaces between individual oleophobic headgroup of AOT molecules and their surrounding non-polar octane molecules can hinder heat transfer. The increase of thermal conductivity with AOT loading after the onset of micellization indicates that the thermal transport in the core of AOT micelles and across the surfactant-oil interfaces, both of which span only a few nanometers, are efficient.

  13. Probing Nanoscale Thermal Transport in Surfactant Solutions

    NASA Astrophysics Data System (ADS)

    Cao, Fangyu; Liu, Ying; Xu, Jiajun; He, Yadong; Hammouda, B.; Qiao, Rui; Yang, Bao

    2015-11-01

    Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scattering, thermal conductivity measurements, and molecular dynamics simulations. We report the first experimental observation of a minimum thermal conductivity occurring at the critical micelle concentration (CMC): the thermal conductivity of the surfactant solution decreases as AOT is added till the onset of micellization but increases as more AOT is added. The decrease of thermal conductivity with AOT loading in solutions in which AOT molecules are dispersed as monomers suggests that even the interfaces between individual oleophobic headgroup of AOT molecules and their surrounding non-polar octane molecules can hinder heat transfer. The increase of thermal conductivity with AOT loading after the onset of micellization indicates that the thermal transport in the core of AOT micelles and across the surfactant-oil interfaces, both of which span only a few nanometers, are efficient.

  14. Probing Nanoscale Thermal Transport in Surfactant Solutions

    PubMed Central

    Cao, Fangyu; Liu, Ying; Xu, Jiajun; He, Yadong; Hammouda, B.; Qiao, Rui; Yang, Bao

    2015-01-01

    Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scattering, thermal conductivity measurements, and molecular dynamics simulations. We report the first experimental observation of a minimum thermal conductivity occurring at the critical micelle concentration (CMC): the thermal conductivity of the surfactant solution decreases as AOT is added till the onset of micellization but increases as more AOT is added. The decrease of thermal conductivity with AOT loading in solutions in which AOT molecules are dispersed as monomers suggests that even the interfaces between individual oleophobic headgroup of AOT molecules and their surrounding non-polar octane molecules can hinder heat transfer. The increase of thermal conductivity with AOT loading after the onset of micellization indicates that the thermal transport in the core of AOT micelles and across the surfactant-oil interfaces, both of which span only a few nanometers, are efficient. PMID:26534840

  15. Rheological properties of ovalbumin hydrogels as affected by surfactants addition.

    PubMed

    Hassan, Natalia; Messina, Paula V; Dodero, Veronica I; Ruso, Juan M

    2011-04-01

    The gel properties of ovalbumin mixtures with three different surfactants (sodium perfluorooctanoate, sodium octanoate and sodium dodecanoate) have been studied by rheological techniques. The gel elasticities were determined as a function of surfactant concentration and surfactant type. The fractal dimension of the formed structures was evaluated from plots of storage modulus against surfactant concentration. The role of electrostatic, hydrophobic and disulfide SS interactions in these systems has been demonstrated to be the predominant. The viscosity of these structures tends to increase with surfactant concentration, except for the fluorinated one. Unfolded ovalbumin molecules tend to form fibrillar structures that tend to increase with surfactant concentration, except for the fluorinated one. This fact has been related to the particular nature of this molecule.

  16. [Pulmonary surfactant homeostasis associated genetic abnormalities and lung diseases].

    PubMed

    Jiang, Xiaojing; Sun, Xiuzhu; Du, Weihua; Hao, Haisheng; Zhao, Xueming; Wang, Dong; Zhu, Huabin; Liu, Yan

    2016-08-01

    Pulmonary surfactant (PS) is synthesized and secreted by alveolar epithelial type II (AEII) cells, which is a complex compound formed by proteins and lipids. Surfactant participates in a range of physiological processes such as reducing the surface tension, keeping the balance of alveolar fluid, maintaining normal alveolar morphology and conducting host defense. Genetic disorders of the surfactant homeostasis genes may result in lack of surfactant or cytotoxicity, and lead to multiple lung diseases in neonates, children and adults, including neonatal respiratory distress syndrome, interstitial pneumonia, pulmonary alveolar proteinosis, and pulmonary fibrosis. This paper has provided a review for the functions and processes of pulmonary surfactant metabolism, as well as the connection between disorders of surfactant homeostasis genes and lung diseases.

  17. Surfactant-induced postsynthetic modulation of Pd nanoparticle crystallinity.

    SciTech Connect

    Liu, Y.; Wang, C.; Wei, Y.; Zhu, L.; Li, D.; Jiang, J. S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S.

    2011-02-01

    Modulation of Pd nanoparticle (NP) crystallinity is achieved by switching the surfactants of different binding strengths. Pd NPs synthesized in the presence of weak binding surfactants such as oleylamine possess polyhedral shapes and a polycrystalline nature. When oleylamine is substituted by trioctylphosphine, a much stronger binding surfactant, the particles become spherical and their crystallinity decreases significantly. Moreover, the Pd NPs reconvert their polycrystalline structure when the surfactant is switched back to oleylamine. Through control experiments and molecular dynamics simulation, we propose that this unusual nanocrystallinity transition induced by surfactant exchange was resulted from a counterbalance between the surfactant binding energy and the nanocrystal adhesive energy. The findings represent a novel postsynthetic approach to tailoring the structure and corresponding functional performance of nanomaterials.

  18. Fluctuant magnetism in metal oxide nanocrystals capped with surfactants

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhui; Xiong, Shijie; Wu, Xinglong; Thurber, Aaron; Jones, Michael; Gu, Min; Pan, Zhongda; Tenne, Dmitri A.; Hanna, Charles B.; Du, Youwei; Punnoose, Alex

    2013-08-01

    We demonstrate experimentally that magnetism in ZnO, TiO2, CeO2, and SnO2 nanocrystals (NCs) has a fluctuant nature that varies with capping surfactant type and concentration. By developing a forced hydrolysis approach with additional postprocessing for the synthesis and surfactant capping of these NCs, we effectively avoid the influence of size, shape, and magnetic impurities on the magnetic behavior of NCs, thus revealing the systematic influence of the capping surfactants on the NC magnetism. The x-ray photoelectron spectroscopy results and theoretical calculations clearly show that the magnetism fluctuation with surfactant concentration can be attributed to the periodic variation of spins, which arises from the concentration-dependent electron transfer from surfactants to NCs. Our results not only explain the previously reported seemingly irregular magnetism induced by capping surfactants but also provide an effective approach to tune or optimize the NC magnetism.

  19. Enhancement of enzymatic hydrolysis of cellulose by surfactant

    SciTech Connect

    Ooshima, H.; Sakata, M.; Harano, Y.

    1986-01-01

    Effects of surfactants on enzymatic saccharification of cellulose have been studied. Nonionic, amphoteric, and cationic surfactants enhanced the saccharification, while anionic surfactant did not. Cationic and anionic surfactants denatured cellulase in their relatively low concentrations, namely, more than 0.008 and 0.001%, respectively. Using nonionic surfactant Tween 20, which is most effective to the enhancement (e.g., the fractional conversion attained by 72 h saccharification of 5 wt % Avicel in the presence of 0.05 wt % Tween 20 is increased by 35%), actions of surfactant have been examined. As the results, it was suggested that Tween 20 plays an important role in the hydrolysis of crystalline cellulose and that Tween 20 disturbs the adsorption of endoglucanase on cellulose, i.e., varies the adsorption balance of endo- and exoglucanase, resulting in enhancing the reaction. The influence of Tween 20 to the saccharification was found to remain in simultaneous saccharification and fermentation of Avicel.

  20. [Liposome phospholipid substitution and lung function in surfactant deprived rats].

    PubMed

    Obladen, M

    1985-01-01

    In vivo activity of an artificial surfactant was studied in surfactant depleted rats. After tenfold alveolar lavage, PaO2, tidal volume, and compliance of the respiratory system fell to one third of initial value. Substitution of large unilamellar vesicles containing 90% Dipalmitoylphosphatidylcholine and 10% unsaturated phosphatidylglycerol largely restored oxygenation and lung mechanics in most animals. Complete normalization with weaning from the ventilator, however, was achieved neither with liposomes nor with natural surfactant concentrate.

  1. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    SciTech Connect

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.

  2. Surfactant development for enhanced oil recover. Final report

    SciTech Connect

    1996-07-01

    The general objective of the project is to develop novel surfactants for tertiary recovery of light oil at elevated temperatures and high brine concentrations. Specific objectives are: to design, synthesize and characterize new surfactants capable of forming microemulsions of high stability at high temperatures and high salinity; to select microemulsions that will yield optimum efficiency and effectiveness in oil solubilization; to characterize the physico-chemical properties of selected microemulsion; to correlate surfactant efficacy with physico-chemical variables of selected reservoirs.

  3. Investigation of Polymer-Surfactant and Polymer-Drug-Surfactant Miscibility for Solid Dispersion.

    PubMed

    Gumaste, Suhas G; Gupta, Simerdeep Singh; Serajuddin, Abu T M

    2016-09-01

    In a solid dispersion (SD), the drug is generally dispersed either molecularly or in the amorphous state in polymeric carriers, and the addition of a surfactant is often important to ensure drug release from such a system. The objective of this investigation was to screen systematically polymer-surfactant and polymer-drug-surfactant miscibility by using the film casting method. Miscibility of the crystalline solid surfactant, poloxamer 188, with two commonly used amorphous polymeric carriers, Soluplus® and HPMCAS, was first studied. Then, polymer-drug-surfactant miscibility was determined using itraconazole as the model drug, and ternary phase diagrams were constructed. The casted films were examined by DSC, PXRD and polarized light microscopy for any crystallization or phase separation of surfactant, drug or both in freshly prepared films and after exposure to 40°C/75% RH for 7, 14, and 30 days. The miscibility of poloxamer 188 with Soluplus® was <10% w/w, while its miscibility with HPMCAS was at least 30% w/w. Although itraconazole by itself was miscible with Soluplus® up to 40% w/w, the presence of poloxamer drastically reduced its miscibility to <10%. In contrast, poloxamer 188 had minimal impact on HPMCAS-itraconazole miscibility. For example, the phase diagram showed amorphous miscibility of HPMCAS, itraconazole, and poloxamer 188 at 54, 23, and 23% w/w, respectively, even after exposure to 40°C/75% RH for 1 month. Thus, a relatively simple and practical method of screening miscibility of different components and ultimately physical stability of SD is provided. The results also identify the HPMCAS-poloxamer 188 mixture as an optimal surface-active carrier system for SD. PMID:27301752

  4. Investigation of Polymer-Surfactant and Polymer-Drug-Surfactant Miscibility for Solid Dispersion.

    PubMed

    Gumaste, Suhas G; Gupta, Simerdeep Singh; Serajuddin, Abu T M

    2016-09-01

    In a solid dispersion (SD), the drug is generally dispersed either molecularly or in the amorphous state in polymeric carriers, and the addition of a surfactant is often important to ensure drug release from such a system. The objective of this investigation was to screen systematically polymer-surfactant and polymer-drug-surfactant miscibility by using the film casting method. Miscibility of the crystalline solid surfactant, poloxamer 188, with two commonly used amorphous polymeric carriers, Soluplus® and HPMCAS, was first studied. Then, polymer-drug-surfactant miscibility was determined using itraconazole as the model drug, and ternary phase diagrams were constructed. The casted films were examined by DSC, PXRD and polarized light microscopy for any crystallization or phase separation of surfactant, drug or both in freshly prepared films and after exposure to 40°C/75% RH for 7, 14, and 30 days. The miscibility of poloxamer 188 with Soluplus® was <10% w/w, while its miscibility with HPMCAS was at least 30% w/w. Although itraconazole by itself was miscible with Soluplus® up to 40% w/w, the presence of poloxamer drastically reduced its miscibility to <10%. In contrast, poloxamer 188 had minimal impact on HPMCAS-itraconazole miscibility. For example, the phase diagram showed amorphous miscibility of HPMCAS, itraconazole, and poloxamer 188 at 54, 23, and 23% w/w, respectively, even after exposure to 40°C/75% RH for 1 month. Thus, a relatively simple and practical method of screening miscibility of different components and ultimately physical stability of SD is provided. The results also identify the HPMCAS-poloxamer 188 mixture as an optimal surface-active carrier system for SD.

  5. Surfactant effects on environmental behavior of pesticides.

    PubMed

    Katagi, Toshiyuki

    2008-01-01

    The potential effects of adjuvants, including surfactants used in pesticide formulation, have been extensively studied for many small organic chemicals, but similar investigation on pesticides is limited in most cases. Solubilizing effects leading to the apparently increased water solubility of a pesticide are commonly known through the preparation of formulations, but fundamental profiles, especially for a specific monodisperse surfactant, are not fully studied. Reduced volatilization of a pesticide from the formulation can be explained by analogy of a very simple organic chemical, but the actual mechanism for the pesticide is still obscure. In contrast, from the point of view of avoiding groundwater contamination with a pesticide, adsorption/desorption profiles in the presence of surfactants and adjuvants have been examined extensively as well as pesticide mobility in the soil column. The basic mechanism in micelle-catalyzed hydrolysis is well known, and theoretical approaches including the PPIE model have succeeded in explaining the observed effects of surfactants, but its application to pesticides is also limited. Photolysis, especially in an aqueous phase, is in the same situation. The dilution effect in the real environment would show these effects on hydrolysis and photolysis to be much less than expected from the laboratory basic studies, but more information is necessary to examine the practical extent of the effects in an early stage of applying a pesticide formulation to crops and soil. Many adjuvants, including surfactants, are biodegradable in the soil environment, and thus their effects on the biodegradation of a pesticide in soil and sediment may be limited, as demonstrated by field trials. Not only from the theoretical but also the practical aspect, the foliar uptake of pesticide in the presence of adjuvants has been investigated extensively and some prediction on the ease of foliar uptake can be realized in relation to the formulation technology

  6. The Pulmonary Surfactant: Impact of Tobacco Smoke and Related Compounds on Surfactant and Lung Development

    PubMed Central

    Scott, J Elliott

    2004-01-01

    Cigarette smoking, one of the most pervasive habits in society, presents many well established health risks. While lung cancer is probably the most common and well documented disease associated with tobacco exposure, it is becoming clear from recent research that many other diseases are causally related to smoking. Whether from direct smoking or inhaling environmental tobacco smoke (ETS), termed secondhand smoke, the cells of the respiratory tissues and the lining pulmonary surfactant are the first body tissues to be directly exposed to the many thousands of toxic chemicals in tobacco. Considering the vast surface area of the lung and the extreme attenuation of the blood-air barrier, it is not surprising that this organ is the primary route for exposure, not just to smoke but to most environmental contaminants. Recent research has shown that the pulmonary surfactant, a complex mixture of phospholipids and proteins, is the first site of defense against particulates or gas components of smoke. However, it is not clear what effect smoke has on the surfactant. Most studies have demonstrated that smoking reduces bronchoalveolar lavage phospholipid levels. Some components of smoke also appear to have a direct detergent-like effect on the surfactant while others appear to alter cycling or secretion. Ultimately these effects are reflected in changes in the dynamics of the surfactant system and, clinically in changes in lung mechanics. Similarly, exposure of the developing fetal lung through maternal smoking results in postnatal alterations in lung mechanics and higher incidents of wheezing and coughing. Direct exposure of developing lung to nicotine induces changes suggestive of fetal stress. Furthermore, identification of nicotinic receptors in fetal lung airways and corresponding increases in airway connective tissue support a possible involvement of nicotine in postnatal asthma development. Finally, at the level of the alveoli of the lung, colocalization of nicotinic

  7. The Pulmonary Surfactant: Impact of Tobacco Smoke and Related Compounds on Surfactant and Lung Development

    PubMed Central

    Scott, J Elliott

    2004-01-01

    Cigarette smoking, one of the most pervasive habits in society, presents many well established health risks. While lung cancer is probably the most common and well documented disease associated with tobacco exposure, it is becoming clear from recent research that many other diseases are causally related to smoking. Whether from direct smoking or inhaling environmental tobacco smoke (ETS), termed secondhand smoke, the cells of the respiratory tissues and the lining pulmonary surfactant are the first body tissues to be directly exposed to the many thousands of toxic chemicals in tobacco. Considering the vast surface area of the lung and the extreme attenuation of the blood-air barrier, it is not surprising that this organ is the primary route for exposure, not just to smoke but to most environmental contaminants. Recent research has shown that the pulmonary surfactant, a complex mixture of phospholipids and proteins, is the first site of defense against particulates or gas components of smoke. However, it is not clear what effect smoke has on the surfactant. Most studies have demonstrated that smoking reduces bronchoalveolar lavage phospholipid levels. Some components of smoke also appear to have a direct detergent-like effect on the surfactant while others appear to alter cycling or secretion. Ultimately these effects are reflected in changes in the dynamics of the surfactant system and, clinically in changes in lung mechanics. Similarly, exposure of the developing fetal lung through maternal smoking results in postnatal alterations in lung mechanics and higher incidents of wheezing and coughing. Direct exposure of developing lung to nicotine induces changes suggestive of fetal stress. Furthermore, identification of nicotinic receptors in fetal lung airways and corresponding increases in airway connective tissue support a possible involvement of nicotine in postnatal asthma development. Finally, at the level of the alveoli of the lung, colocalization of nicotinic

  8. Interactions in Calcium Oxalate Hydrate/Surfactant Systems.

    PubMed

    Sikiric; Filipovic-Vincekovic; Babic-Ivancić Vdović Füredi-Milhofer

    1999-04-15

    Phase transformation of calcium oxalate dihydrate (COD) into the thermodynamically stable monohydrate (COM) in anionic (sodium dodecyl sulfate (SDS)) and cationic (dodecylammonium chloride) surfactant solutions has been studied. Both surfactants inhibit, but do not stop transformation from COD to COM due to their preferential adsorption at different crystal faces. SDS acts as a stronger transformation inhibitor. The general shape of adsorption isotherms of both surfactants at the solid/liquid interface is of two-plateau-type, but differences in the adsorption behavior exist. They originate from different ionic and molecular structures of crystal surfaces and interactions between surfactant headgroups and solid surface. Copyright 1999 Academic Press.

  9. Surfactant mediated growth of Ti/Ni multilayers

    SciTech Connect

    Gupta, Mukul; Amir, S. M.; Gupta, Ajay; Stahn, Jochen

    2011-03-07

    The surfactant mediated growth of Ti/Ni multilayers is studied. They were prepared using ion beam sputtering at different adatom energies. It was found that the interface roughness decreased significantly when the multilayers were sputtered with Ag as surfactant at an ion energy of 0.75 keV. On the other hand, when the ion energy was increased to 1 keV, it resulted in enhanced intermixing at the interfaces and no appreciable effect of Ag surfactant could be observed. On the basis of the obtained results, the influence of adatom energy on the surfactant mediated growth mechanism is discussed.

  10. Surfactant-free liquid films under gravity and microgravity conditions

    NASA Astrophysics Data System (ADS)

    Decker, William E.; Penley, Ned J.; Sojka, Jan J.

    1992-04-01

    Experiments carried out onboard NASA's KC-135 aircraft to better understand the role of surfactant in liquid films are described. Liquid films of water, oil (DC-704), and UV curable polymer (UVR 6110), all without surfactant (soap), drawn in a g less than 0.02 g, are found to be stable at least as long as the duration of a KC-135 microgravity period (about 25 s). Films from the same fluids when drawn in normal gravity are unstable and can be made stable by adding the surfactant. Although the addition of surfactant increases the viscosity of the fluid, the film drains more rapidly due to a modified micelle fluid structure.

  11. Infasurf and Curosurf: Theoretical and Practical Considerations with New Surfactants

    PubMed Central

    Nguyen, Thuy N.; Cunsolo, Stephanie M.; Gal, Peter; Ransom, J. Laurence

    2003-01-01

    Type II pneumocytes, normally responsible for surfactant production and release, are insufficiently formed and differentiated in the premature infant born before 34 weeks' gestation. Without an adequate amount of pulmonary surfactant, alveolar surface tension increases, leading to collapse and decreased lung compliance. Pulmonary surfactants are naturally occurring substances made of lipids and proteins. They lower surface tension at the interface between the air in the lungs, specifically at the alveoli, and the blood in the capillaries. This review examines the relative benefits of the two most recently marketed surfactants, calfactan (Infasurf) and poractant alfa (Curosurf). PMID:23300398

  12. Theory of Energy Level Tuning in Quantum Dots by Surfactants

    NASA Astrophysics Data System (ADS)

    Zherebetskyy, Danylo; Wang, Lin-Wang; Materials Sciences Division, Lawrence Berkeley National Laboratory Team

    2015-03-01

    Besides quantum confinement that provides control of the quantum dot (QD) band gap, surface ligands allow control of the absolute energy levels. We theoretically investigate energy level tuning in PbS QD by surfactant exchange. We perform direct calculations of real-size QD with various surfactants within the frame of the density functional theory and explicitly analyze the influence of the surfactants on the electronic properties of the QD. This work provides a hint for predictable control of the absolute energy levels and their fine tuning within 3 eV range by modification of big and small surfactants that simultaneously passivate the QD surface.

  13. TOXICITY COMPARISON OF BIOSURFACTANTS AND SYNTHETIC SURFACTANTS USED IN OIL SPILL REMEDIATION TO TWO ESTUARINE SPECIES

    EPA Science Inventory

    The relative environmental toxicities of synthetic and biogenic surfactants used in oil spill remediation efforts are not well understood. Acute and chronic toxicities of three synthetic surfactants and three microbially produced surfactants were determined and compared in this s...

  14. HENRY'S LAW CONSTANTS AND MICELLAR PARTITIONING OF VOLATILE ORGANIC COMPOUNDS IN SURFACTANT SOLUTIONS

    EPA Science Inventory

    Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace expe...

  15. PROPERTIES OF FOOD GRADE (EDIBLE) SURFACTANTS AFFECTING SUBSURFACE REMEDIATION OF CHLORINATED SOLVENTS

    EPA Science Inventory

    In this research, several food grade (edible) surfactants are systematically evaluated for various loss mechanisms: precipitation, adsorption, and coacervation (for nonionic surfactants). Cloud points for the polyethoxylate sorbitan (T-MAZ) surfactants are much higher than aquife...

  16. Environmental and human safety of major surfactants. Volume 1. Anionic surfactants. Part 1. Linear alkylbenzene sulfonates. Final report

    SciTech Connect

    Not Available

    1991-02-01

    The report discusses critical reviews of published literature and unpublished company data on major surfactants. Part 1 of Vol. 1 discusses the chemistry, biodegradation, environmental effects and safety and human safety of linear alkylbenzene sulfonates. The information presented updates and supplements similar data included in two predecessor studies, Human Safety and Environmental Aspects of Major Surfactants (1977) NTIS Accession Number PB-301193 and Human and Environmental Aspects of Major Surfactants (Supplement) (1981) NTIS Accession Number PB-81-182453.

  17. Environmental and human safety of major surfactants. Volume 1. Anionic surfactants. Part 3. Alkyl sulfates. Final report

    SciTech Connect

    Not Available

    1991-02-01

    The report discusses critical reviews of published literature and unpublished company data on major surfactants. Part 3 of Vol. 1 discusses the chemistry, biodegradation, environmental effects and safety and human safety of alkyl sulfates. The information presented updates and supplements similar data included in two predecessor studies, Human Safety and Environmental Aspects of Major Surfactants (1977) NTIS Accession Number PB301193 and Human and Environmental Aspects of Major Surfactants (Supplement) (1981) NTIS Accession Number PB81-182453.

  18. Environmental and human safety of major surfactants. Volume 1. Anionic surfactants. Part 2. Alcohol ethoxy sulfates. Final report

    SciTech Connect

    Not Available

    1991-02-01

    The report discusses critical reviews of published literature and unpublished company data on major surfactants. Part 2 of Vol. 1 discusses the chemistry, biodegradation, environmental effects and safety and human safety of alcohol ethoxy sulfates. The information presented updates and supplements similar data included in two predecessor studies, Human Safety and Environmental Aspects of Major Surfactants (1977) NTIS Accession Number PB301193 and Human and Environmental Aspects of Major Surfactants (Supplement) (1981) NTIS Accessiion Number PB81-182453.

  19. Adsorption of polyoxyethylenic surfactants on quartz, kaolin, and dolomite: A correlation between surfactant structure and solid surface nature

    SciTech Connect

    Nevskaia, D.M.; Guerrero-Ruiz, A.; Lopez-Gonzalez, J.deD.

    1996-08-10

    Adsorption of a surfactant at a liquid-solid interface makes up the basis of many technological processes such as detergency, flotation, water treatment, and enhanced oil recovery. The influence of variables such as adsorption temperature, polar chain length, and nature of functional groups on the adsorption, from aqueous solutions, of various surfactants (TX-114, TX-100, TX-165, TX-305, NP1P4E, NP4P1E, NP4S, NP10S, and NP25S) has been investigated. Several nonporous solids, including various samples of quartz, kaolin, and dolomite, were studied. Conformational changes of adsorbed surfactant molecules on one quartz, when the oxyethylenic length of Tritons increases, have been detected. For all the other solid samples the surface is not completely covered by Tritons. On quartz, the surfactants are adsorbed by hydrogen bonds between the surfactant`s ether groups and the silanol groups of the solid surface. These hydroxyl groups must be free and sufficiently separated from other hydroxyls of the solid surface. When the number of propoxy groups increases (from NP1P4E to NP4P1E) the adsorbed amount of surfactant on the solid studied decreases. Anionic surfactants are adsorbed on quartz in lower amounts than the corresponding nonionic surfactants. However, the adsorbed amounts of Tritons and sulfated Tritons on kaolin are similar, probably due to the positive charges on the edges of this material.

  20. The effect of polymer-surfactant interaction on the rheological properties of surfactant enhanced alkaline flooding formulations

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1993-02-01

    Surfactant-enhanced, lower pH (weak) alkaline chemicals are effective for mobilizing residual oil. Polymer is used for mobility control because if mobility control is lost, then oil recovery is reduced. The ability to maintain mobility control during surfactant-alkaline flooding can be adversely affected by chemical interaction. In this work, interaction between polymers and surfactants was shown to be affected by pH, ionic strength, crude oil, and the properties of the polymers and surfactants. Polymer-surfactant interaction (phase separation, precipitation, and viscosity loss) occurred between most of the polymers and surfactants that were tested. Polymer-surfactant interaction is difficult to eliminate, and no method was found for completely eliminating interaction. Polymer-surfactant interaction occurred at optimal salinity and below optimal salinity. Polymer-surfactant interaction had an adverse effect on polymer rheology; however, the adverse effect of interaction on polymer rheology was lessened when oil was present. Increasing the pH of chemical systems further reduced the adverse effects of interaction on polymer rheology.

  1. Characterization of Phase and Emulsion Behavior, Surfactant Retention, and Oil Recovery for Novel Alcohol Ethoxycarboxylate Surfactants

    SciTech Connect

    Lebone T. Moeti; Ramanathan Sampath

    1998-05-01

    This semi-annual technical progress report describes work performed at Clark Atlanta University under DOE Grant No. DE-FG26-97FT97278 during the period October 01, 1997 to April 01, 1998 which covers the first six months of the project. During this reporting period, laboratory space to set up the surfactant characterization measurement system in the Research Science Center was made available. A Ph.D. student in Chemistry was identified and is supported as a Graduate Research Assistant in this project. Her contribution towards this project will form her Ph.D. thesis. The test matrix to perform salinity and temperature scans was established. Supply requests to obtain refined hydrocarbon, surfactant, and crude were processed and supplies obtained. A temperature bath with a control unit to perform temperature scans was obtained on loan from Federal Energy Technology Center, Morgantown, WV. The setting up of the temperature control unit, and associated chiller with water circulation lines is in progress. Tests were conducted on several hybrid surfactants to identify the best surfactants for future experimental work that yield almost equal volumes of top, middle, and bottom phases when mixed with oil and water. The student reviewed the current literature in the subject area, and modeling efforts that were established in previous studies to predict electrical conductivities and inversion phenomena. These activities resulted in one published conference paper, and one student poster paper during this reporting period.

  2. Surfactant enhanced disinfection of the human norovirus surrogate, tulane virus with organic acids and surfactant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human infection with foodborne viruses can occur following consumption of contaminated food, person-to-person body contact, or release of aerosols. Combinatorial treatments of surfactants and organic acids may have synergistic or additive mechanisms to inactivate foodborne viruses and prevent outbr...

  3. Stokes-Flow Destabilization by Interfacial Surfactants

    NASA Astrophysics Data System (ADS)

    Frenkel, Alexander; Halpern, David

    2002-11-01

    We consider the infinitesimal-disturbance stability of a plane Couette-Poiseuille flow of two Newtonian fluids with an insoluble surfactant at the interface, with gravity being excluded to isolate the Marangoni effect of the surfactant-dependent surface-tension. The principal result is that, in contrast to the (well-studied) surfactantless cases of such flows, there is instability (for certain ranges of parameters), for which inertia plays no role, but the non-zero shear of basic velocity at (both sides of) the interface is necessary. A quadratic equation is found for the complex wave-speed of the "interfacial" normal modes of disturbances. Hence, the growth-rate is available as an elementary function of five variables--the wavenumber and the four dimensionless parameters of the problem: the Marangoni number, the viscosity ratio, the interfacial shear-rate of basic velocity, and the thickness ratio. The comparative simplicity of the growth-rate function allows for a rather extensive characterization of instability (by asymptotic and numerical means) over the entire parameter space and for all wavenumbers. In particular, it is long-wave in most cases, but has a "mid-wave" character for some ranges of parameters. The growth rate approaches zero at small wavenumbers. It decreases (linearly) toward negative infinity in the limit of infinitly large wavenumbers. The maximum (over all wavenumbers) growth rate approaches zero in both the limits of small and large Marangoni numbers. Among the different asymptotic limits, the only singular one is the zero limit of surface tension at zero surfactant concentration; only in this (probably, non-physical) case, the instability is short-wave. Finally, the critical (instability-onset) hypersurface in the parameter space is ascertained.

  4. Gemini surfactants with a disaccharide spacer.

    PubMed

    Menger, F M; Mbadugha, B N

    2001-02-01

    A gemini surfactant is an amphiphile possessing (in sequence) the following: hydrocarbon tail/polar group/spacer/polar group/hydrocarbon tail. Widespread interest in geminis has emerged recently from both industrial and academic laboratories. In the present contribution, two related families of geminis have been synthesized, both with trehalose, a disaccharide, as a polar spacer. One family, Series-A, is nonionic and has amide groups separating the long chains from the trehalose spacer. The other family, Series-B, has quaternary ammonium ions connecting the long chains to the trehalose spacer. It was found that Series-A geminis are water insoluble despite the two amides and multiple hydroxyls. When hydrated or extruded, these geminis form microscopically visible vesicular and tubular structures above their transition temperatures (which were determined calorimetrically). Insoluble monomolecular films, constructed from these geminis, have interfacial areas that are dominated by the sugar spacer although intermolecular chain/chain interactions seem to stabilize the films. Thus, the behavior of Series-A geminis in many ways parallels that of phospholipids and simple double-chain surfactants. It is as if the trehalose is less of a spacer than a large but conventional headgroup. In contrast, cationic Series-B geminis are water soluble and form micelles with critical micelle concentrations an order of magnitude lower than that of corresponding conventional surfactants. Molecular modeling using the Amber force field explains the difference in properties between the two families of geminis. Series-A are tubular in shape and thus prefer bilayer packing as do other amphiphiles in which the headgroups are similar in width to the sum of the tail diameters. Series-B geminis are conical-shaped and pack more readily into spherical micelles. This work entails synthesis, tensiometry, conductance, microscopy, surface balance studies, calorimetry, light scattering, and molecular

  5. Size separation of analytes using monomeric surfactants

    DOEpatents

    Yeung, Edward S.; Wei, Wei

    2005-04-12

    A sieving medium for use in the separation of analytes in a sample containing at least one such analyte comprises a monomeric non-ionic surfactant of the of the general formula, B-A, wherein A is a hydrophilic moiety and B is a hydrophobic moiety, present in a solvent at a concentration forming a self-assembled micelle configuration under selected conditions and having an aggregation number providing an equivalent weight capable of effecting the size separation of the sample solution so as to resolve a target analyte(s) in a solution containing the same, the size separation taking place in a chromatography or electrophoresis separation system.

  6. Study of the Local Horizon. (Spanish Title: Estudio del Horizonte Local.) Estudo do Horizonte Local

    NASA Astrophysics Data System (ADS)

    Ros, Rosa M.

    2009-12-01

    The study of the horizon is fundamental to easy the first observations of the students at any education center. A simple model, to be developed in each center, allows to easy the study and comprehension of the rudiments of astronomy. The constructed model is presented in turn as a simple equatorial clock, other models (horizontal and vertical) may be constructed starting from it. El estudio del horizonte es fundamental para poder facilitar las primeras observaciones de los alumnos en un centro educativo. Un simple modelo, que debe realizarse para cada centro, nos permite facilitar el estudio y la comprensión de los primeros rudimentos astronómicos. El modelo construido se presenta a su vez como un sencillo modelo de reloj ecuatorial y a partir de él se pueden construir otros modelos (horizontal y vertical). O estudo do horizonte é fundamental para facilitar as primeiras observações dos alunos num centro educativo. Um modelo simples, que deve ser feito para cada centro, permite facilitar o estudo e a compreensão dos primeiros rudimentos astronômicos. O modelo construído apresenta-se, por sua vez, como um modelo simples de relógio equatorial e a partir dele pode-se construir outros modelos (horizontal e vertical)

  7. Solubilization of DNAPLs by mixed surfactant: reduction in partitioning losses of nonionic surfactant.

    PubMed

    Zhao, Baowei; Zhu, Lizhong; Yang, Kun

    2006-02-01

    Efforts to remediate the dense nonaqueous phase liquids (DNAPLs) by mobilizing them face with risks of driving the contaminants deeper into aquifer zones. This spurs research for modifying the approach for in situ remediation. In this paper, a novel solubilization of DNAPLs by mixed nonionic and anionic surfactant, Triton X-100 (TX100) and sodium dodecylbenzene sulfonate (SDBS), was presented and compared with those by single ones. Given 1:40 phase ratio of DNAPL:water (v/v) and the total surfactant concentration from 0.2 to 10gl(-1), mixed TX100-SDBS at the total mass ratios of 3:1, 1:1 and 1:3 exhibited significant solubilization for the DNAPLs, trichloroethene (TCE), chlorobenzene (CB) and 1,2-dichlorobenzene (1,2-DCB). The solubilization extent by mixed TX100-SDBS was much larger than by single TX100 and even larger than by single SDBS at the ratios of 1:1 and 1:3, respectively. TX100 partitioning into the organic phase dictated the solubilization extent. The TX100 losses into TCE, CB and 1,2-DCB phases were more than 99%, 97% and 97% when single TX100 was used. With SDBS alone, no SDBS partitioned into DNAPLs was observed and in mixed systems, SDBS decreased greatly the partition loss of TX100 into DNAPLs. The extent of TX100 partition decreased with increasing the amount of SDBS. The mechanism for reduction of TX100 partition was discussed. TX100 and SDBS formed mixed micelles in the solution phase. The inability of SDBS to partition into DNAPLs and the mutual affinity of SDBS and TX100 in the mixed micelle controlled the partitioning of TX100 into DNAPL phase. The work presented here demonstrates that mixed nonionic-anionic surfactants would be preferred over single surfactants for solubilization remediation of DNAPLs, which could avoid risks of driving the contaminants deeper into aquifers and decrease the surfactant loss and remediation cost.

  8. Study of surfactant-skin interactions by skin impedance measurements.

    PubMed

    Lu, Guojin; Moore, David J

    2012-02-01

    The stratum corneum (SC) plays a very critical physiological role as skin barrier in regulating water loss through the skin and protects the body from a wide range of physical and chemical exogenous insults. Surfactant-containing formulations can induce skin damage and irritation owing to surfactant absorption and penetration. It is generally accepted that reduction in skin barrier properties occurs only after surfactants have penetrated/permeated into the skin barrier. To mitigate the harshness of surfactant-based cleansing products, penetration/permeation of surfactants should be reduced. Skin impedance measurements have been taken in vitro on porcine skin using vertical Franz diffusion cells to investigate the impact of surfactants, temperature and pH on skin barrier integrity. These skin impedance results demonstrate excellent correlation with other published methods for assessing skin damage and irritation from different surfactant chemistry, concentration, pH, time of exposure and temperature. This study demonstrates that skin impedance can be utilized as a routine approach to screen surfactant-containing formulations for their propensity to compromise the skin barrier and hence likely lead to skin irritation. PMID:21923733

  9. Evaluation of surfactant-water mixtures as cleaning agents

    SciTech Connect

    Harding, W.B.

    1993-02-01

    Water solutions of several common surfactants were tested for their capabilities as cleaners in an ultrasonic cleaning process. Glass and stainless steel test specimens were soiled with organic materials, cleaned in a test solution, and evaluated for cleanliness by the water-break test. No surfactant was able to clean all of the specimens sufficiently to pass the test.

  10. Surfactant roles in modern sample preparation techniques: a review.

    PubMed

    Moradi, Morteza; Yamini, Yadollah

    2012-09-01

    The pressure to decrease organic solvent usage in laboratories is increasing. Thus miniaturization and improvement of sample handling using alternatives is a challenge that has been discussed by several researchers. From this perspective, surfactant-based sample preparations were an educated choice. Since the introduction of cloud point extraction by Watanabe, considerable studies have been focused on the chemical properties of surfactants in the extraction methods. The unique properties of surfactants make them flexible agents for different miniaturized sample preparation techniques based on solid- or liquid-phase extraction. As a result, the use of surfactants with different roles in sample-preparation methodologies (such as surfactant as an emulsifier, surfactant rich phase as an extraction medium, ion pair-based extraction, hemimicelle/admicelle extraction, surfactant-coated magnetic nanoparticle, solid-phase microextraction with micellar desorption) is an important contribution to minimizing the problems arising from preliminary operations, which are the weakest step in analytical measurement. This paper reviews the literature dealing with the application of surfactant-based sample preparations to the separation and the preconcentration of organic and inorganic species. PMID:22887709

  11. Interaction of photosensitive surfactant with DNA and poly acrylic acid

    SciTech Connect

    Zakrevskyy, Yuriy Paasche, Jens; Lomadze, Nino; Santer, Svetlana; Cywinski, Piotr; Cywinska, Magdalena; Reich, Oliver; Löhmannsröben, Hans-Gerd

    2014-01-28

    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes’ properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate – for the first time – complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules.

  12. PHASE BEHAVIOR OF WATER/PERCHLOROETHYLENE/ANIONIC SURFACTANT SYSTEMS

    EPA Science Inventory

    Winsor Type I (o/w), Type II (w/o), and Type III (middle phase) microemulsions have been generated for water and perchloroethylene (PCE) in combination with anionic surfactants and the appropriate electrolyte concentration. The surfactant formulation was a combination of sodium d...

  13. New Y-shaped surfactants from renewable resources.

    PubMed

    Ali, Tammar Hussein; Hussen, Rusnah Syahila Duali; Heidelberg, Thorsten

    2014-11-01

    A series of sugar-based surfactants, involving a single hydrophobic chain (C12) and two side-by-side arranged head groups, was prepared form simple glucose precursors. All surfactants were highly water soluble and exhibited exclusively micellar assemblies. This behavior makes them interesting candidates for oil in water emulsifiers.

  14. Surfactant-assisted liquefaction of particulate carbonaceous substances

    NASA Technical Reports Server (NTRS)

    Hsu, G. C. (Inventor)

    1978-01-01

    A slurry of carbonaceous particles such as coal containing an oil soluble polar substituted oleophilic surfactant, suitably an amine substituted long chain hydrocarbon, is liquefied at high temperature and high hydrogen presence. The pressure of surfactant results in an increase in yield and the conversion product contains a higher proportion of light and heavy oils and less asphaltene than products from other liquefaction processes.

  15. Study of surfactant-skin interactions by skin impedance measurements.

    PubMed

    Lu, Guojin; Moore, David J

    2012-02-01

    The stratum corneum (SC) plays a very critical physiological role as skin barrier in regulating water loss through the skin and protects the body from a wide range of physical and chemical exogenous insults. Surfactant-containing formulations can induce skin damage and irritation owing to surfactant absorption and penetration. It is generally accepted that reduction in skin barrier properties occurs only after surfactants have penetrated/permeated into the skin barrier. To mitigate the harshness of surfactant-based cleansing products, penetration/permeation of surfactants should be reduced. Skin impedance measurements have been taken in vitro on porcine skin using vertical Franz diffusion cells to investigate the impact of surfactants, temperature and pH on skin barrier integrity. These skin impedance results demonstrate excellent correlation with other published methods for assessing skin damage and irritation from different surfactant chemistry, concentration, pH, time of exposure and temperature. This study demonstrates that skin impedance can be utilized as a routine approach to screen surfactant-containing formulations for their propensity to compromise the skin barrier and hence likely lead to skin irritation.

  16. The Influence of Surfactants on the Zeta Potential of Coals

    SciTech Connect

    Marsalek, R.

    2009-07-01

    The surface of three different kinds of coal was modified by three surfactants (cationic, anionic, and non-ionic). Changes on coal surface were examined by the zeta potential technique. The influence of the dispersion of pH, concentration of surfactants, and contact time were investigated. The most significant change in zeta potential resulting from adding surfactants was observed in activated coal (hydrophobic surface, largest BET surface area). Adding the cationic surfactant led to an increase of the zeta potential, contrary to measuring done in water. The anionic surfactant decreased the value of the zeta potential; however, this change was not too remarkable. The results proved that even a very low concentration of the cationic surfactant (0.01 mmol/L) causes a remarkable change of the zeta potential. On the other hand, a similar effect was observed until the concentration of the anionic surfactant reached about 10 mmol/L. The mechanism of binding surfactants is not simple, but preferential hydrophobic interactions were discovered.

  17. Endogenous surfactant turnover in preterm infants measured with stable isotopes.

    PubMed

    Bunt, J E; Zimmermann, L J; Wattimena, J L; van Beek, R H; Sauer, P J; Carnielli, V P

    1998-03-01

    We studied surfactant synthesis and turnover in vivo in preterm infants using the stable isotope [U-13C]glucose, as a precursor for the synthesis of palmitic acid in surfactant phosphatidylcholine (PC). Six preterm infants (birth weight, 916 +/- 244 g; gestational age, 27.7 +/- 1.7 wk) received a 24-h [U-13C]glucose infusion on the first day of life. The 13C-enrichment of palmitic acid in surfactant PC, obtained from tracheal aspirates, was measured by gas chromatography-combustion interface-isotope ratio mass spectrometry. We observed a significant incorporation of carbon-13 from glucose into surfactant PC palmitate. PC palmitate became enriched after 19.4 +/- 2.3 (16.5 to 22.3) h and reached maximum enrichment at 70 +/- 18 (48 to 96) h after the start of the label infusion. The fractional synthesis rate (FSR) of surfactant PC palmitate from glucose was 2.7 +/- 1.3%/d. We calculated the absolute production rate of surfactant PC to be 4.2 mg/kg/d, and the half-life to be 113 +/- 25 (87 to 144) h. Data on endogenous surfactant production and turnover were obtained for the first time in human infants with the use of stable isotopes. This novel and safe method could be applied to address many important issues concerning surfactant metabolism in preterm infants, children, and adults.

  18. Interaction of photosensitive surfactant with DNA and poly acrylic acid.

    PubMed

    Zakrevskyy, Yuriy; Cywinski, Piotr; Cywinska, Magdalena; Paasche, Jens; Lomadze, Nino; Reich, Oliver; Löhmannsröben, Hans-Gerd; Santer, Svetlana

    2014-01-28

    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes' properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate - for the first time - complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules. PMID:25669583

  19. Can surfactants affect management of non-water repellent soils?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants affect the water relations of water repellent soils but may or may not affect those of wettable soils. We studied the effects of three surfactants, Aquatrols IrrigAid Gold®, an ethylene oxide/propylene oxide block copolymer, and an alkyl polyglycoside, along with untreated tap water as ...

  20. Micellization properties of cardanol as a renewable co-surfactant.

    PubMed

    Fontana, Antonella; Guernelli, Susanna; Zaccheroni, Nelsi; Zappacosta, Romina; Genovese, Damiano; De Crescentini, Lucia; Riela, Serena

    2015-09-21

    With the aim to improve the features of surfactant solutions in terms of sustainability and renewability we propose the use of hydrogenated natural and sustainable plant-derived cardanol as an additive to commercial surfactants. In the present study we demonstrated that its addition, in amounts as high as 10%, to commercial surfactants of different charge does not significantly affect surfactant properties. Conversely, the presence of hydrogenated cardanol can strongly affect spectrophotometric determination of CMC if preferential interactions with the dyes used take place. This latter evidence may be profitably exploited in surfactant manufacturing by considering that the concurrent presence of a rigid organic molecule such as Orange OT and 10% hydrogenated cardanol decreases the CMC of CTAB up to 65 times.

  1. Thinning of drying latex films due to surfactant.

    PubMed

    Gundabala, Venkata R; Routh, Alexander F

    2006-11-01

    Lateral non-uniformities in surfactant distribution in drying latex films induce surface tension gradients at the film surface and lead to film thinning through surfactant spreading. Here we investigate the influence of the surfactant driven to the air-water interface, during the early stages of latex film drying, on the film thinning process which could possibly lead to film rupture. A film height evolution equation is coupled with conservation equations for particles and surfactant, within the lubrication approximation, and solved numerically, to obtain the film height, particle volume fraction, and surfactant concentration profiles. Parametric analysis identifies the effect of drying rate, dispersion viscosity and initial particle volume fraction on film thinning and reveals the conditions under which films could rupture. The results from surface profilometry conform qualitatively to the model predictions.

  2. Enhanced solubilization of curcumin in mixed surfactant vesicles.

    PubMed

    Kumar, Arun; Kaur, Gurpreet; Kansal, S K; Chaudhary, Ganga Ram; Mehta, S K

    2016-05-15

    Self-assemblies of equimolar double and single chain mixed ionic surfactants, with increasing numbers of carbon atoms of double chain surfactant, were analyzed on the basis of fluorescence and conductivity results. Attempts were also made to enhance the solubilization of curcumin in aqueous equimolar mixed surfactant systems. Mixed surfactant assembly was successful in retarding the degradation of curcumin in alkaline media (only 25-28 40% degraded in 10h at pH 13). Fluorescence spectroscopy and fluorescence quenching methods were employed to predict the binding position and mechanism of curcumin with self-assemblies. Results indicate that the interactions take place according to both dynamic and static quenching mechanisms and curcumin was distributed in a palisade layer of mixed aggregates. Antioxidant activity (using DPPH radical) and biocompatibility (using calf-thymus DNA) of curcumin-loaded mixed surfactant formulations were also evaluated. The prepared systems improved the stability, solubility and antioxidant activity of curcumin and additionally are biocompatible.

  3. Structural rearrangements in self-assembled surfactant layers at surfaces

    SciTech Connect

    Sushko, Maria L.; Liu, Jun

    2010-03-25

    The transition from compact to extended configuration in ionic surfactant layers under the influence of salt, surfactant surface density and temperature is studied using the classical density functional theory (cDFT). The increase in ionic strength of aqueous salt solution or in surfactant surface density leads to the transition from the hemicylindrical to the perpendicular monolayer configuration of the molecules. Although producing the same structural rearrangement in the surfactant layer the origin of the effect of salt and surface density is different. While the addition of salt increases the out-of-plane attractive interactions with the solvent, the increase in density results in the increase in the in-plane repulsion in surfactant layer. The temperature effects are subtler and are mainly manifested in the reduction of the solution structuring at elevated temperatures.

  4. Enhanced solubilization of curcumin in mixed surfactant vesicles.

    PubMed

    Kumar, Arun; Kaur, Gurpreet; Kansal, S K; Chaudhary, Ganga Ram; Mehta, S K

    2016-05-15

    Self-assemblies of equimolar double and single chain mixed ionic surfactants, with increasing numbers of carbon atoms of double chain surfactant, were analyzed on the basis of fluorescence and conductivity results. Attempts were also made to enhance the solubilization of curcumin in aqueous equimolar mixed surfactant systems. Mixed surfactant assembly was successful in retarding the degradation of curcumin in alkaline media (only 25-28 40% degraded in 10h at pH 13). Fluorescence spectroscopy and fluorescence quenching methods were employed to predict the binding position and mechanism of curcumin with self-assemblies. Results indicate that the interactions take place according to both dynamic and static quenching mechanisms and curcumin was distributed in a palisade layer of mixed aggregates. Antioxidant activity (using DPPH radical) and biocompatibility (using calf-thymus DNA) of curcumin-loaded mixed surfactant formulations were also evaluated. The prepared systems improved the stability, solubility and antioxidant activity of curcumin and additionally are biocompatible. PMID:26776022

  5. Aqueous foam surfactants for geothermal drilling fluids: 1. Screening

    SciTech Connect

    Rand, P.B.

    1980-01-01

    Aqueous foam is a promising drilling fluid for geothermal wells because it will minimize damage to the producing formation and would eliminate the erosion problems of air drilling. Successful use of aqueous foam will require a high foaming surfactant which will: (1) be chemically stable in the harsh thermal and chemical environment, and (2) form stable foams at high temperatures and pressures. The procedures developed to generate and test aqueous foams and the effects of a 260/sup 0/C temperature cycle on aqueous surfactant solutions are presented. More than fifty selected surfactants were evaluated with representatives from the amphoteric, anionic, cationic, and nonionic classes included. Most surfactants were severely degraded by this temperature cycle; however, some showed excellent retention of their properties. The most promising surfactant types were the alkyl and alkyl aryl sulfonates and the ethoxylated nonionics.

  6. Microemulsions: Structures, surfactant layer properties and wetting transitions

    NASA Astrophysics Data System (ADS)

    Abillon, O.; Lee, L. T.; Langevin, D.; Wong, K.

    1991-03-01

    We review briefly the basic known features of microemulsion structures, emphasizing the importance of the surfactant layer bending elasticity. The results for water-alkane-nonionic-surfactant systems, confirming the close relationship between the maximum characteristic size in the microemulsion and the persistence length of the surfactant layer, are presented. We show that microemulsions are formed when the surfactant layer bending moduli are in a well defined range: if the bending modulus is too large, ordered lamellar phases are obtained, while if it is too small, the surfactant film cannot form, and the medium is a structureless molecular mixture. The evolution between microemulsions and molecular mixtures is continuous; its relationship with the wetting transition between the microemulsion and the two excess phases is discussed.

  7. A method for preparing radiolabelled rat pulmonary surfactant.

    PubMed Central

    Lewis, R W; Harwood, J L; Richards, R J

    1986-01-01

    A method is described for the preparation of rat pulmonary surfactant, radiolabelled specifically in the phosphatidylcholine species, which may be used for degradative studies of the lipoprotein complex. Intravenously administered [methyl-14C]choline chloride is maximally incorporated into alveolar surface surfactant 8 h after injection, and more than 97% of this radiolabel is present in the phosphatidylcholine fraction of the surfactant and, of this, 75% is associated with the dipalmitoyl phosphatidylcholine species. Electron microscopy indicates that the isolated surfactant has a similar physical form to that found at the alveolar surface. The mineral alpha-quartz can be used to increase the yield of surfactant lavaged from the lung surface, but the complex isolated from rats treated in this manner has a low specific radioactivity (less than 1000 d.p.m./mg) compared with that prepared from control animals (22860 d.p.m./mg). PMID:3755594

  8. The removal of anionic surfactants from water in coagulation process.

    PubMed

    Kaleta, Jadwiga; Elektorowicz, Maria

    2013-01-01

    This paper presents the results of a laboratory study on the effectiveness of the coagulation process in removing surfactants from water. The application of traditional coagulants (aluminium sulfate and iron chlorides) has not brought satisfactory results, the reduction in anionic surfactant (AS) content reached 7.6% and 10%, respectively. Adding cationic polyelectrolyte (Zetag-50) increased the removal efficiency to 24%. Coagulation using a polyelectrolyte alone proved to be more efficient, the reduction in surfactant content fluctuated at a level of about 50%. Complete surfactant removal was obtained when powdered activated carbon was added 5 minutes before the basic coagulant to the coagulation process. The efficiency of surfactant coagulation also increased after the application of powdered clinoptilolite, but to a smaller degree. Then the removal of AS was found to be improved by dosing powdered clinoptilolite simultaneously or with short delay after the addition of the basic coagulant. PMID:23837351

  9. Modulating the Substrate Selectivity of DNA Aptamers Using Surfactants.

    PubMed

    Peterson, Amberlyn M; Jahnke, Frank M; Heemstra, Jennifer M

    2015-11-01

    Nucleic acid aptamers have a number of advantages compared to antibodies, including greater ease of production and increased thermal stability. We hypothesized that aptamers may also be capable of functioning in the presence of high concentrations of surfactants, which readily denature antibodies and other protein-based affinity reagents. Here we report the first systematic investigation into the compatibility of DNA aptamers with surfactants. We find that neutral and anionic surfactants have only a minor impact on the ability of aptamers to fold and bind hydrophilic target molecules. Additionally, we demonstrate that surfactants can be utilized to modulate the substrate binding preferences of aptamers, likely due to the sequestration of hydrophobic target molecules within micelles. The compatibility of aptamers with commonly used surfactants is anticipated to expand their scope of potential applications, and the ability to modulate the substrate binding preferences of aptamers using a simple additive provides a novel route to increasing their selectivity in analytical applications.

  10. Dissolution of a surfactant-containing active porous material.

    PubMed

    Brielles, Nelly; Chantraine, Florence; Viana, Marylène; Chulia, Dominique; Branlard, Paul; Rubinstenn, Gilles; Lequeux, François; Mondain-Monval, Olivier

    2008-12-15

    We have studied the imbibition and dissolution of a porous material in two separate scenarios: (1) when the porous material contains a surfactant powder and (2) when the porous material is dissolved in a surfactant solution. We show that the dissolution kinetics in both scenarios is significantly affected by the presence of the surfactant and results in an increase in the characteristic imbibition time of the porous material, which can be well understood in the framework of the classical law of capillarity. Slowing of the imbibition kinetics was found to be affected by a modification of the liquid wetting properties, but is also affected by a variation in the solubility of the porous material in the presence of the surfactant. Furthermore, there is a depletion effect of the surfactant inside the rising liquid, which is in good agreement with previous work and theoretical predictions.

  11. Delivery and performance of surfactant replacement therapies to treat pulmonary disorders.

    PubMed

    El-Gendy, Nashwa; Kaviratna, Anubhav; Berkland, Cory; Dhar, Prajnaparamita

    2013-08-01

    Lung surfactant is crucial for optimal pulmonary function throughout life. An absence or deficiency of surfactant can affect the surfactant pool leading to respiratory distress. Even if the coupling between surfactant dysfunction and the underlying disease is not always well understood, using exogenous surfactants as replacement is usually a standard therapeutic option in respiratory distress. Exogenous surfactants have been extensively studied in animal models and clinical trials. The present article provides an update on the evolution of surfactant therapy, types of surfactant treatment, and development of newer-generation surfactants. The differences in the performance between various surfactants are highlighted and advanced research that has been conducted so far in developing the optimal delivery of surfactant is discussed.

  12. Mechanisms of Particle Charging by Surfactants in Nonpolar Dispersions.

    PubMed

    Lee, Joohyung; Zhou, Zhang-Lin; Alas, Guillermo; Behrens, Sven Holger

    2015-11-10

    Electric charging of colloidal particles in nonpolar solvents plays a crucial role for many industrial applications and products, including rubbers, engine oils, toners, or electronic displays. Although disfavored by the low solvent permittivity, particle charging can be induced by added surfactants, even nonionic ones, but the underlying mechanism is poorly understood, and neither the magnitude nor the sign of charge can generally be predicted from the particle and surfactant properties. The conclusiveness of scientific studies has been limited partly by a traditional focus on few surfactant types with many differences in their chemical structure and often poorly defined composition. Here we investigate the surface charging of poly(methyl methacrylate) particles dispersed in hexane-based solutions of three purified polyisobutylene succinimide polyamine surfactants with "subtle" structural variations. We precisely vary the surfactant chemistry by replacing only a single electronegative atom located at a fixed position within the polar headgroup. Electrophoresis reveals that these small differences between the surfactants lead to qualitatively different particle charging. In the respective particle-free surfactant solutions we also find potentially telling differences in the size of the surfactant aggregates (inverse micelles), the residual water content, and the electric solution conductivity as well as indications for a significant size difference between oppositely charged inverse micelles of the most hygroscopic surfactant. An analysis that accounts for the acid/base properties of all constituents suggests that the observed particle charging is better described by asymmetric adsorption of charged inverse micelles from the liquid bulk than by charge creation at the particle surface. Intramicellar acid-base interaction and intermicellar surfactant exchange help rationalize the formation of micellar ions pairs with size asymmetry. PMID:26484617

  13. Influence of surfactants on unsaturated water flow and solute transport

    NASA Astrophysics Data System (ADS)

    Karagunduz, Ahmet; Young, Michael H.; Pennell, Kurt D.

    2015-04-01

    Surfactants can reduce soil water retention by changing the surface tension of water and the contact angle between the liquid and solid phases. As a result, water flow and solute transport in unsaturated soil may be altered in the presence of surfactants. In this study, the effects of a representative nonionic surfactant, Triton X-100, on coupled water flow and nonreactive solute transport during unsaturated flow conditions were evaluated. Batch reactor experiments were conducted to measure the surfactant sorption characteristics, while unsaturated transport experiments were performed in columns packed with 40-270 mesh Ottawa sand at five initial water contents. Following the introduction of surfactant solution, the rate of water percolation through the sand increased; however, this period of rapid water drainage was followed by decreased water percolation due to the reduction in soil water content and the corresponding decrease in unsaturated hydraulic conductivity behind the surfactant front. The observed changes in water percolation occurred sequentially, and resulted in faster nonreactive solute transport than was observed in the absence of surfactant. A one-dimensional mathematical model accurately described coupled water flow, surfactant, and solute transport under most experimental conditions. Differences between model predictions and experimental data were observed in the column study performed at the lowest water content (0.115 cm3/cm3), which was attributed to surfactant adsorption at the air-water interface. These findings demonstrate the potential influence of surfactants additives on unsaturated water flow and solute transport in soils, and demonstrate a methodology to couple these processes in a predictive modeling tool.

  14. Aqueous dual-tailed surfactants simulated on the alumina surface.

    PubMed

    Liu, Zhen; Yu, Jian-Guo; O'Rear, Edgar A; Striolo, Alberto

    2014-08-14

    Atomistic molecular dynamics (MD) simulations were used to compare the morphology of aqueous surfactant self-assembled aggregates on a flat alumina substrate. The substrate was modeled using the CLAYFF force field, and it was considered fully protonated. Three ionic surfactants were considered, all with a sulfate headgroup. The first surfactant was the single-tailed, widely studied sodium dodecyl sulfate (SDS), for which previous simulation results are available on several substrates. The results obtained for this surfactant were used for benchmarking the behavior of two dual-tailed surfactants. These latter surfactants have equal structure, except that in one case both linear tails are composed by seven fully protonated carbon atoms [CH3(CH2)6CHOSO3(CH2)6CH3(-), 2H7], whereas in the other, one tail is composed by seven fully protonated carbon atoms and the other tail is composed by seven fully fluorinated carbon atoms [CF3(CF2)6CHOSO3(CH2)6CH3(-), H7F7]. Our results suggest that preferential interactions lead to surfactant aggregates for H7F7 that differ compared to both those obtained for SDS and 2H7. Although molecular-level geometric structural differences can be invoked to explain differences between H7F7 and SDS aggregates, those between H7F7 and 2H7 aggregates can only be ascribed to atomic-scale interactions. Because as the adsorbed amount of surfactant increases, the self-assembled surfactant aggregates change, suggesting that the substrate on which adsorption occurs effectively evolves as adsorption progresses, compared to bare alumina. The morphological differences observed in our simulations coupled with molecular-level microphase separation might explain, in part, the unusual retrograde adsorption isotherm that has been observed experimentally for H7F7 surfactants on alumina. PMID:25089638

  15. 3D Model of Surfactant Replacement Therapy

    NASA Astrophysics Data System (ADS)

    Grotberg, James; Tai, Cheng-Feng; Filoche, Marcel

    2015-11-01

    Surfactant Replacement Therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. Though successful in neonatal applications, its use in adults had early success followed by failure. We present the first mathematical model of 3D SRT where a liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug first deposits a coating film on the airway wall which subtracts from its volume, a ``coating cost''. Then the plug splits unevenly at the airway bifurcation due to gravity. The steps are repeated until a plug ruptures or reaches the tree endpoint alveoli/acinus. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published literature, the earlier successful adult SRT studies show comparatively good index values, while the later failed studies do not. Those unsuccessful studies used smaller dose volumes with higher concentration mixtures, apparently assuming a well mixed compartment. The model shows that adult lungs are not well mixed in SRT due to the coating cost and gravity effects. Returning to the higher dose volume protocols could save many thousands of lives annually in the US. Supported by NIH Grants HL85156, HL84370 and Agence Nationale de la Recherche, ANR no. 2010-BLAN-1119-05.

  16. Surfactant secretion and clearance in the newborn

    SciTech Connect

    Stevens, P.A.; Wright, J.R.; Clements, J.A. )

    1989-10-01

    Pregnant rabbits (30 days) were injected intravenously with (3H)choline 8 h before delivery. The fetuses were delivered, and lung lavage and lamellar body phospholipids (PL) were analyzed. Some newborns also received radioactively labeled surfactant intratracheally on delivery and were permitted to breathe. With time, intratracheal label decreased in lavage and appeared in the lamellar body fraction, and intravenous label accumulated in both pools. Using a tracer analysis for non-steady state, we calculated surfactant secretion and clearance rates for the newborn period. Before birth, both rates rose slightly from 1.8 micrograms PL.g body wt-1.h-1 at 6 h before birth to 7.3 at birth. Immediately after birth, secretion rate rose to 37.7 micrograms PL.g body wt-1.h-1. Between 1.5 and 2 h after birth it fell to a minimum of 1.8 micrograms PL.g body wt-1.h-1 and then rose slowly to 6.0 at 12 h. After birth, clearance rate increased less than secretion rate (maximum 24.7 micrograms PL.g body wt-1.h-1 shortly after birth) then followed the same pattern but did not balance secretion rate in the 1st day.

  17. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2005-04-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Laboratory imbibition tests show about 61% oil recovery in the case of Alf-38 and 37% in the case of DTAB. A numerical model has been developed that fits the rate of imbibition of the laboratory experiment. Field-scale fracture block simulation shows that as the fracture spacing increases, so does the time of recovery. Plans for the next quarter include simulation studies.

  18. Surfactants for Bubble Removal against Buoyancy.

    PubMed

    Raza, Md Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications. PMID:26743179

  19. Surfactants for Bubble Removal against Buoyancy

    PubMed Central

    Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications. PMID:26743179

  20. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  1. Surfactants for Bubble Removal against Buoyancy

    NASA Astrophysics Data System (ADS)

    Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications.

  2. Characterizing the Effect of Salt and Surfactant Concentration on the Counterion Atmosphere around Surfactant Stabilized SWCNTs Using Analytical Ultracentrifugation.

    PubMed

    Lam, Stephanie; Zheng, Ming; Fagan, Jeffrey A

    2016-04-26

    Accurate characterization of dispersed-phase nanoparticle properties such as density, size, solvation, and charge is necessary for their utilization in applications such as medicine, energy, and materials. Herein, analytical ultracentrifugation (AUC) is used to quantify bile salt surfactant adsorption on length sorted (7,6) single-wall carbon nanotubes (SWCNTs) as a function of bulk surfactant concentration and in the presence of varying quantities of a monovalent salt-sodium chloride. These measurements provide high precision adsorbed surfactant density values in the literature for only the second SWCNT structure to date and report the quantity of adsorbed surfactant across a broad range of bulk surfactant concentrations utilized in SWCNT dispersion processing. Second, the measurements presented herein unambiguously demonstrate, via AUC, a direct relation between the size of the counterion cloud around a surfactant-stabilized SWCNT and solution ionic strength. The results show that changes in the size of the counterion cloud around surfactant-stabilized SWCNT are attributable to electrostatic phenomenon and not to changes in the quantity of adsorbed surfactant with salt addition. These results provide important reference values for projecting SWCNT dispersion behavior as a function of solution conditions and extend the range of nanoparticle properties measurable via AUC. PMID:27031248

  3. The binding and insertion of imidazolium-based ionic surfactants into lipid bilayers: the effects of the surfactant size and salt concentration.

    PubMed

    Lee, Hwankyu; Jeon, Tae-Joon

    2015-02-28

    Imidazolium-based ionic surfactants with hydrocarbon tails of different sizes were simulated with lipid bilayers at different salt concentrations. Starting with the random position of ionic surfactants outside the bilayer, surfactants with long tails mostly insert into the bilayer, while those with short tails show the insertion of fewer surfactant molecules, indicating the effect of the tail length. In particular, surfactants with a tail of two or four hydrocarbons insert and reversibly detach from the bilayer, while the inserted longer surfactants cannot be reversibly detached because of the strong hydrophobic interaction with lipid tails, in quantitative agreement with experiments. Longer surfactants insert more deeply and irreversibly into the bilayer and thus increase lateral diffusivities of the bilayer, indicating that longer surfactants more significantly disorder lipid bilayers, which also agrees with experiments regarding the effect of the tail length of ionic surfactants on membrane permeability and toxicity. Addition of NaCl ions weakens the electrostatic interactions between headgroups of surfactants and lipids, leading to the binding of fewer surfactants into the bilayer. In particular, our simulation findings indicate that insertion of ionic surfactants can be initiated by either the hydrophobic interaction between tails of surfactants and lipids or the electrostatic binding between imidazolium heads and lipid heads, and the strength of hydrophobic and electrostatic interactions depends on the tail length of surfactants.

  4. Perfluorinated Alcohols Induce Complex Coacervation in Mixed Surfactants.

    PubMed

    Jenkins, Samuel I; Collins, Christopher M; Khaledi, Morteza G

    2016-03-15

    Recently, we reported a unique and nearly ubiquitous phenomenon of inducing simple and complex coacervation in solutions of a broad variety of individual and mixed amphiphiles and over a wide range of concentrations and mole fractions. This paper describes a novel type of biphasic separation in aqueous solutions of mixed cationic-anionic (catanionic) surfactants induced by hexafluoroisopropanol (HFIP). The test cases included mixtures of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) (surfactants with different carbon chain lengths) as well as dodecyltrimethylammonium bromide (DTAB) with SDS (surfactants with the same carbon chain lengths). The CTAB-SDS-HFIP coacervate systems can be produced at many different mole ratios of surfactant, but DTAB-SDS-HFIP formed only coacervates at equimolar (1:1) mole ratios of DTAB and SDS. The phase-transition behavior of both systems was studied over a wide range of surfactant and HFIP concentrations at the stoichiometric (1:1) mole ratio of cationic/anionic surfactants. The chemical compositions of each of the two phases (aqueous-rich and coacervate phases) were studied with regard to the concentrations of HFIP, water, and individual surfactants. It is revealed that the surfactant-rich phase (coacervate phase) contains a large percentage of fluoroalcohol relative to the aqueous phase and is enriched in both surfactants but contains a small percentage of water. Surprisingly, the concentration of water in the coacervate phase increases as the total HFIP concentration is increased while the concentration of HFIP in the coacervate phase remains relatively constant, which means a larger amount of water associated with HFIP molecules is extracted into the coacervate phase, which results in the growth of the phase. The volume of the coacervate phase increases with an increase in surfactant concentration and total HFIP %. The coacervate phase is highly enriched in the two amphiphilic ions (DTA(+) and DS

  5. Surfactant and nonlinear drop dynamics in microgravity

    NASA Astrophysics Data System (ADS)

    Jankovsky, Joseph Charles

    2000-11-01

    Large amplitude drop dynamics in microgravity were conducted during the second United States Microgravity Laboratory mission carried onboard the Space Shuttle Columbia (20 October-5 November 1995). Centimeter- sized drops were statically deformed by acoustic radiation pressure and released to oscillate freely about a spherical equilibrium. Initial aspect ratios of up to 2.0 were achieved. Experiments using pure water and varying aqueous concentrations of Triton-X 100 and bovine serum albumin (BSA) were performed. The axisymmetric drop shape oscillations were fit using the degenerate spherical shape modes. The frequency and decay values of the fundamental quadrupole and fourth order shape mode were analyzed. Several large amplitude nonlinear oscillation dynamics were observed. Shape entrainment of the higher modes by the fundamental quadrupole mode occurred. Amplitude- dependent effects were observed. The nonlinear frequency shift, where the oscillation frequency is found to decrease with larger amplitudes, was largely unaffected by the presence of surfactants. The percentage of time spent in the prolate shape over one oscillation cycle was found to increase with oscillation amplitude. This prolate shape bias was also unaffected by the addition of surfactants. These amplitude-dependent effects indicate that the nonlinearities are a function of the bulk properties and not the surface properties. BSA was found to greatly enhance the surface viscoelastic properties by increasing the total damping of the oscillation, while Triton had only a small influence on damping. The surface concentration of BSA was found to be diffusion-controlled over the time of the experiments, while the Triton diffusion rate was very rapid. Using the experimental frequency and decay values, the suface viscoelastic properties of surface dilatational viscosity ( ks ) and surface shear viscosity ( ms ) were found for varying surfactant concentrations using the transcendental equation of Lu

  6. Retained surfactant catheter and pneumothorax in a premature neonate.

    PubMed

    Ismawan, J M; Abdallah, C

    2016-09-16

    Surfactant catheters are used to administer exogenous surfactant as a preventive and therapeutic measure for surfactant deficiency in premature neonates. We describe the case of a retained surfactant catheter in a 700 g premature neonate with associated pneumothorax. PMID:27589543

  7. Characterization and control of surfactant-mediated Norovirus interactions.

    PubMed

    Mertens, Brittany S; Velev, Orlin D

    2015-11-28

    Understanding of the colloidal interactions of Norovirus particles in aqueous medium could provide insights on the origins of the notorious stability and infectivity of these widespread viral agents. We characterized the effects of solution pH and surfactant type and concentration on the aggregation, dispersion, and disassembly of Norovirus virus-like particles (VLPs) using dynamic light scattering, electrophoretic light scattering, and transmission electron microscopy. Owing to net negative surface charge of the VLPs at neutral pH, low concentrations of cationic surfactant tend to aggregate the VLPs, whereas low concentrations of anionic surfactant tend to disperse the particles. Increasing the concentration of these surfactants beyond their critical micelle concentration leads to virus capsid disassembly and breakdown of aggregates. Non-ionic surfactants, however, had little effect on virus interactions and likely stabilized them additionally in suspension. The data were interpreted on the basis of simple models for surfactant binding and re-charging of the virus capsid. We used zeta potential data to characterize virus surface charge and interpret the mechanisms behind these demonstrated surfactant-virus interactions. The fundamental understanding and control of these interactions will aid in practical formulations for virus inactivation and removal from contaminated surfaces.

  8. Rheology and structure of surface crosslinked surfactant-activated microgels.

    PubMed

    Li, Dongcui; Hsu, Raymond; Figura, Brian; Jacobs, Robert; Li, Sinan; Horvath, Steve; Clifford, Ted; Chari, Krishnan

    2016-09-14

    Nonionic surfactant-activated microgels (SAMs), composed of hydrophobic alkyl acrylates and hydrophilic hydroxyalkyl esters that utilize the effects of surfactant mediated swelling and interaction to provide pH-independent rheological properties, were previously reported as a new pathway to the rheology modification of surfactant solutions. Crosslinking was shown to play an important role in the properties of these soft microgel systems. To understand the impact of crosslinking chemistry on SAM polymers, we have compared two types of SAM polymers: a conventionally crosslinked SAM polymer via allyl pentaerythritol and a novel SAM polymer, where the surface is self-crosslinked via a reactive surfactant. We have systematically characterized the polymer's swelling, rheology and microstructure in a model system containing the polymer, sodium dodecyl sulfate (SDS) and water. Surface self-crosslinking is demonstrated to be a more effective crosslinking approach to create surfactant-mediated interactions between the microgel particles, resulting in more effective rheology modification. Internal crosslinking hinders both the full swelling of the SAM polymer as well as inter-particle bridging interactions, and is therefore less effective. To our best knowledge, this is the first report on creating a novel surface self-crosslinked microgel via a dual-functional reactive surfactant that interacts with a non-reactive surfactant to create a yield stress fluid.

  9. Sublethal effect of agronomical surfactants on the spider Pardosa agrestis.

    PubMed

    Niedobová, Jana; Hula, Vladimír; Michalko, Radek

    2016-06-01

    In addition to their active ingredients, pesticides contain also additives - surfactants. Use of surfactants has been increasing over the past decade, but their effects on non-target organisms, especially natural enemies of pests, have been studied only very rarely. The effect of three common agrochemical surfactants on the foraging behavior of the wolf spider Pardosa agrestis was studied in the laboratory. Differences in short-term, long-term, and overall cumulative predatory activities were investigated. We found that surfactant treatment significantly affected short-term predatory activity but had no effect on long-term predatory activity. The surfactants also significantly influenced the cumulative number of killed prey. We also found the sex-specific increase in cumulative kills after surfactants treatment. This is the first study showing that pesticide additives have a sublethal effect that can weaken the predatory activity of a potential biological control agent. More studies on the effects of surfactants are needed to understand how they affect beneficial organisms in agroecosystems. PMID:26878602

  10. Extensive intraalveolar pulmonary hemorrhage in infants dying after surfactant therapy.

    PubMed

    Pappin, A; Shenker, N; Hack, M; Redline, R W

    1994-04-01

    To assess the possible relationship between exogenous surfactant therapy and pulmonary hemorrhage in premature infants, we compared autopsy findings in 15 infants treated with exogenous surfactant and in 29 who died before the introduction of surfactant therapy. Infants who met the following criteria were included: birth weight 501 to 1500 gm, survival 4 hours to 7 days, and no congenital anomalies. Average birth weight, gestational age, and age at death were equivalent for the two groups. High rates of pulmonary hemorrhage were present in both groups (treated 80% vs untreated 83%). The untreated group had higher incidences of interstitial hemorrhage and lung hematomas and significantly more large interstitial hemorrhages: 31% untreated versus 0% treated (p < 0.05). The overall rate of intraalveolar hemorrhage was similar in the two groups, but surfactant-treated infants were more likely to have extensive intraalveolar hemorrhage: 53% versus 14% (p < 0.05). Most surfactant-treated infants who survived more than 24 hours had extensive intraalveolar hemorrhage (8/9). Patients who had extensive intraalveolar hemorrhage, with or without prior surfactant therapy, frequently had clinically significant pulmonary hemorrhage (7/12). These findings indicate that infants who die after surfactant therapy have higher rates of a specific type of pulmonary hemorrhage--extensive intraalveolar hemorrhage.

  11. Effects of Surfactants on Chlorobenzene Absorption on Pyrite Surface

    NASA Astrophysics Data System (ADS)

    Hoa, P. T.; Suto, K.; Inoue, C.; Hara, J.

    2007-03-01

    Recently, both surfactant extraction of chlorinated compounds from contaminated soils and chemical reduction of chlorinated compounds by pyrite have had received a lot of attention. The reaction of the natural mineral pyrite was found as a surface controlling process which strongly depends on absorption of contaminants on the surface. Surfactants were not only aggregated into micelle which increase solubility of hydrophobic compounds but also tend to absorb on the solid surface. This study investigated effects of different kinds of Surfactants on absorption of chlorobenzene on pyrite surface in order to identify coupling potential of surfactant application and remediation by pyrite. Surfactants used including non-ionic, anionic and cationic which were Polyoxyethylene (23) Lauryl Ether (Brij35), Sodium Dodecyl Sulfate (SDS) and Cetyl TrimethylAmmonium Bromide (CTAB) respectively were investigated with a wide range of surfactant concentration up to 4 times of each critical micelle concentration (CMC). Chlorobenzene was chosen as a representative compound. The enhancement or competition effects of Surfactants on absorption were discussed.

  12. The effect of surfactant on pollutant biosorption of Trametes versicolor

    NASA Astrophysics Data System (ADS)

    Gül, Ülküye Dudu; Silah, Hülya; Akbaş, Halide; Has, Merve

    2016-04-01

    The major problem concerning industrial wastewater is treatment of dye and heavy metal containing effluents. Industrial effluents are also contained surfactants that are used as levelling, dispersing and wetting agents. The purpose of this study was to investigate the effect of surfactant on textile dye biosorption properties of a white rot fungus named Trametes versicolor. Reactive dyes are commonly used in textile industry because of their advantages such as brightness and excellent color fastness. A recative textile dye, called Everzol Black, was used in this study. The low-cost mollasses medium is used for fungal growth. The usage of mollases, the sugar refinery effluent as a source of energy and nutrients, gained importance because of reducing the cost and also reusing another waste. In biosorption process the effect of surfactant on dye removal properties of T. versicolor was examined as a function of pH, dye consentration and surfactant concentration. The results of this study showed that the surfactant enhanced the dye removal capacity of Trametes versicolor. The dye and surfactant molecules were interacted electrostatically and these electrostatic interactions improved dye removal properties of filamentous fungus T. versicolor. The results of this study recommended the use of surfactants as an inducer in textile wastewater treatment technologies.

  13. Dicationic Surfactants with Glycine Counter Ions for Oligonucleotide Transportation.

    PubMed

    Pietralik, Zuzanna; Skrzypczak, Andrzej; Kozak, Maciej

    2016-08-01

    Gemini surfactants are good candidates to bind, protect, and deliver nucleic acids. Herein, the concept of amino acids (namely glycine) as counter ions of gemini surfactants for gene therapy application was explored. This study was conducted on DNA and RNA oligomers and two quaternary bis-imidazolium salts, having 2,5-dioxahexane and 2,8-dioxanonane spacer groups. The toxicity level of surfactants was assessed by an MTT assay, and their ability to bind nucleic acids was tested through electrophoresis. The nucleic acid conformation was established based on circular dichroism and infrared spectroscopic analyses. The structures of the formed complexes were characterized by small-angle scattering of synchrotron radiation. Both studied surfactants appear to be suitable for gene therapy; however, although they vary by only three methylene groups in the spacer, they differ in binding ability and toxicity. The tested oligonucleotides maintained their native conformations upon surfactant addition and the studied lipoplexes formed a variety of structures. In systems based on a 2,5-dioxahexane spacer, a hexagonal phase was observed for DNA-surfactant complexes and a micellar phase was dominant with RNA. For the surfactant with a 2,8-dioxanonane spacer group, the primitive cubic phase prevailed. PMID:27214208

  14. Surfactant remediation field demonstration using a vertical circulation well

    SciTech Connect

    Knox, R.C.; Sabatini, D.A.; Harwell, J.H.; Brown, R.E.; West, C.C.; Blaha, F.; Griffin, C.

    1997-11-01

    A field demonstration of surfactant-enhanced solubilization was completed in a shallow unconfined aquifer located at a Coast Guard Station in Traverse City, Michigan. The primary objectives of the study were: (1) to assess the ability of the vertical circulation well (VCW) system for controlling chemical extractants added to the subsurface; and (2) to assess the behavior of the surfactant solution in the subsurface, with a goal of maximum surfactant recovery. A secondary objective was to demonstrate enhanced removal of PCE and recalcitrant components of a jet fuel. The analytical results showed that the surfactant increased the contaminant mass extracted by 40-fold and 90-fold for the PCE and jet fuel constituents, respectively. The surfactant solution demonstrated minimal sorption (retardation) and did not precipitate in the subsurface formation. In addition, the VCW system was able to capture in excess of 95% of the injected surfactant solution. Additional field testing and full-scale implementation of surfactant-enhanced subsurface remediation should be performed.

  15. Interaction between casein and the oppositely charged surfactant.

    PubMed

    Liu, Yan; Guo, Rong

    2007-09-01

    The interactions between the classical cationic surfactant dodecyltrimethylammonium bromide (DTAB) and 2.0 mg/mL casein were investigated using isothermal titration calorimetry (ITC), turbidity, dynamic light scattering (DLS), and fluorescence spectra measurements. The results suggest that the cationic headgroup of the surfactant individually binds to the negatively charged amino acid sites on the casein chains because of the electrostatic attraction upon the addition of DTAB. When the surfactant concentration reaches a critical value c1, DTAB forms micelle-like aggregates on the casein chain, resulting in the formation of insoluble casein/DTAB complexes. Further addition of DTAB leads to the redissolution of casein/DTAB complexes because of the net positive charge on casein/DTAB complexes and the formation of DTAB free micelles. The addition of salt screens the repulsion between the surfactant headgroups and the attraction between casein and surfactant molecules, which weakens the binding of surfactant onto the casein chain, favoring the formation of free surfactant micelles.

  16. Magnetic Surfactants and Polymers with Gadolinium Counterions for Protein Separations.

    PubMed

    Brown, Paul; Bromberg, Lev; Rial-Hermida, M Isabel; Wasbrough, Matthew; Hatton, T Alan; Alvarez-Lorenzo, Carmen

    2016-01-26

    New magnetic surfactants, (cationic hexadecyltrimethlyammonium bromotrichlorogadolinate (CTAG), decyltrimethylammonium bromotrichlorogadolinate (DTAG), and a magnetic polymer (poly(3-acrylamidopropyl)trimethylammonium tetrachlorogadolinate (APTAG)) have been synthesized by the simple mixing of the corresponding surfactants and polymer with gadolinium metal ions. A magnetic anionic surfactant, gadolinium tri(1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate) (Gd(AOT)3), was synthesized via metathesis. Both routes enable facile preparation of magnetically responsive magnetic polymers and surfactants without the need to rely on nanocomposites or organic frameworks with polyradicals. Electrical conductivity, surface tensiometry, SQUID magnetometry, and small-angle neutron scattering (SANS) demonstrate surface activity and self-aggregation behavior of the magnetic surfactants similar to their magnetically inert parent analogues but with added magnetic properties. The binding of the magnetic surfactants to proteins enables efficient separations under low-strength (0.33 T) magnetic fields in a new, nanoparticle-free approach to magnetophoretic protein separations and extractions. Importantly, the toxicity of the magnetic surfactants and polymers is, in some cases, lower than that of their halide analogues.

  17. Rheology and structure of surface crosslinked surfactant-activated microgels.

    PubMed

    Li, Dongcui; Hsu, Raymond; Figura, Brian; Jacobs, Robert; Li, Sinan; Horvath, Steve; Clifford, Ted; Chari, Krishnan

    2016-09-14

    Nonionic surfactant-activated microgels (SAMs), composed of hydrophobic alkyl acrylates and hydrophilic hydroxyalkyl esters that utilize the effects of surfactant mediated swelling and interaction to provide pH-independent rheological properties, were previously reported as a new pathway to the rheology modification of surfactant solutions. Crosslinking was shown to play an important role in the properties of these soft microgel systems. To understand the impact of crosslinking chemistry on SAM polymers, we have compared two types of SAM polymers: a conventionally crosslinked SAM polymer via allyl pentaerythritol and a novel SAM polymer, where the surface is self-crosslinked via a reactive surfactant. We have systematically characterized the polymer's swelling, rheology and microstructure in a model system containing the polymer, sodium dodecyl sulfate (SDS) and water. Surface self-crosslinking is demonstrated to be a more effective crosslinking approach to create surfactant-mediated interactions between the microgel particles, resulting in more effective rheology modification. Internal crosslinking hinders both the full swelling of the SAM polymer as well as inter-particle bridging interactions, and is therefore less effective. To our best knowledge, this is the first report on creating a novel surface self-crosslinked microgel via a dual-functional reactive surfactant that interacts with a non-reactive surfactant to create a yield stress fluid. PMID:27470971

  18. New serine-derived gemini surfactants as gene delivery systems.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; de Lima, Maria C Pedroso; Jurado, Amália S

    2015-01-01

    Gemini surfactants have been extensively used for in vitro gene delivery. Amino acid-derived gemini surfactants combine the special aggregation properties characteristic of the gemini surfactants with high biocompatibility and biodegradability. In this work, novel serine-derived gemini surfactants, differing in alkyl chain lengths and in the linker group bridging the spacer to the headgroups (amine, amide and ester), were evaluated for their ability to mediate gene delivery either per se or in combination with helper lipids. Gemini surfactant-based DNA complexes were characterized in terms of hydrodynamic diameter, surface charge, stability in aqueous buffer and ability to protect DNA. Efficient formulations, able to transfect up to 50% of the cells without causing toxicity, were found at very low surfactant/DNA charge ratios (1/1-2/1). The most efficient complexes presented sizes suitable for intravenous administration and negative surface charge, a feature known to preclude potentially adverse interactions with serum components. This work brings forward a new family of gemini surfactants with great potential as gene delivery systems.

  19. Surfactants in atmospheric aerosols and rainwater around lake ecosystem.

    PubMed

    Razak, Intan Suraya; Latif, Mohd Talib; Jaafar, Shoffian Amin; Khan, Md Firoz; Mushrifah, Idris

    2015-04-01

    This study was conducted to determine the composition of surfactants in atmospheric aerosols and rainwater in the vicinity of Lake Chini, Malaysia. Samples of atmospheric aerosol and rainwater were collected between March and September 2011 using a high volume air sampler (HVAS) and glass bottles equipped with funnel. Colorimetric analysis was undertaken to determine the concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The water-soluble ionic compositions were determined using inductively coupled plasma mass spectrometry for cations (Na, K, Mg and Ca) and ion chromatography equipped with a conductivity detector for anions (F(-), Cl(-), NO3(-), and SO4(2-)) and the Nessler Method was used to obtain the NH4(+) concentrations. The source apportionment of MBAS and DBAS in atmospheric aerosols was identified using a combination of principal component analysis (PCA) and multiple linear regression (MLR). The results revealed that the concentrations of surfactants in atmospheric aerosols and rainwater were dominated by anionic surfactants as MBAS. The concentration of surfactants as MBAS and DBAS was dominated in fine mode compared to coarse mode aerosols. Using PCA/MLR analysis, two major sources of atmospheric surfactants to Lake Chini were identified as soil dust (75 to 93%) and biomass burning (2 to 22%).

  20. Optimization of metalworking fluid microemulsion surfactant concentrations for microfiltration recycling.

    PubMed

    Zhao, Fu; Clarens, Andres; Skerlos, Steven J

    2007-02-01

    Microfiltration can be used as a recycling technology to increase metalworking fluid (MWF) life span, decrease procurement and disposal costs, and reduce occupational health risks and environmental impacts. The cost-effectiveness of the process can be increased by minimizing fouling interactions between MWFs and membranes. This paper reports on the development of a microfiltration model that establishes governing relationships between MWF surfactant system characteristics and microfiltration recycling performance. The model, which is based on surfactant adsorption/desorption kinetics, queueing theory, and coalescence kinetics of emulsion droplets, is verified experimentally. An analysis of the model and supporting experimental evidence indicates that the selection of surfactant systems minimally adsorb to membranes and lead to a high activation energy of coalescence results in a higher MWF flux through microfiltration membranes. The model also yields mathematical equations that express the optimal concentrations of anionic and nonionic surfactants with which microfiltration flux is maximized for a given combination of oil type, oil concentration, and surfactant types. Optimal MWF formulations are demonstrated for a petroleum oil MWF using a disulfonate/ ethoxylated alcohol surfactant package and for several vegetable oil MWFs using a disulfonate/ethoxylated glyceryl ester surfactant package. The optimization leads to flux increases ranging from 300 to 800% without impact on manufacturing performance. It is further shown that MWF reformulation efforts directed toward increasing microfiltration flux can have the beneficial effect of increasing MWF robustness to deterioration and flux decline in the presence of elevated concentrations of hardwater ions.

  1. Gemini ester quat surfactants and their biological activity.

    PubMed

    Łuczyński, Jacek; Frąckowiak, Renata; Włoch, Aleksandra; Kleszczyńska, Halina; Witek, Stanisław

    2013-03-01

    Cationic gemini surfactants are an important class of surface-active compounds that exhibit much higher surface activity than their monomeric counterparts. This type of compound architecture lends itself to the compound being easily adsorbed at interfaces and interacting with the cellular membranes of microorganisms. Conventional cationic surfactants have high chemical stability but poor chemical and biological degradability. One of the main approaches to the design of readily biodegradable and environmentally friendly surfactants involves inserting a bond with limited stability into the surfactant molecule to give a cleavable surfactant. The best-known example of such a compound is the family of ester quats, which are cationic surfactants with a labile ester bond inserted into the molecule. As part of this study, a series of gemini ester quat surfactants were synthesized and assayed for their biological activity. Their hemolytic activity and changes in the fluidity and packing order of the lipid polar heads were used as the measures of their biological activity. A clear correlation between the hemolytic activity of the tested compounds and their alkyl chain length was established. It was found that the compounds with a long hydrocarbon chain showed higher activity. Moreover, the compounds with greater spacing between their alkyl chains were more active. This proves that they incorporate more easily into the lipid bilayer of the erythrocyte membrane and affect its properties to a greater extent. A better understanding of the process of cell lysis by surfactants and of their biological activity may assist in developing surfactants with enhanced selectivity and in widening their range of application.

  2. The evolutionary significance of pulmonary surfactant in lungfish (Dipnoi).

    PubMed

    Orgeig, S; Daniels, C B

    1995-08-01

    In this study, we characterized surfactant lipids from the lungs of the lungfish, Protopterus annectens, Lepidosiren paradoxa, and Neoceratodus fosteri (Sarcopterygiia: Dipnoi). We quantified the types of phospholipids present, the amounts of total phospholipid, disaturated phospholipid (DSP)--purported to be the primary surface tension-controlling agent--and cholesterol (CHOL), an important fluidizer. The surfactant phospholipid profiles of all three lungfish were very similar to each other and those of many other animals reported previously. Phosphatidylcholine was the dominant phospholipid (60% to 80%); phosphatidylglycerol was virtually absent; and there was a significant proportion of the combination of phosphatidylserine and phosphatidylinositol (10%). The Australian lungfish N. forsteri possessed a surfactant 5 times richer in CHOL and 2 and 3 times poorer in DSP than the surfactant of the African lungfish P. annectens and the South American lungfish L. paradoxa, respectively. Hence, the CHOL/DSP mass ratio of N. forsteri was 12 and 20 times greater than that of P. annectens and L. paradoxa, respectively. Therefore, the surfactant composition of the two derived species of lungfish (P. annectens and L. paradoxa) very closely resembles that of amphibians, whereas surfactant from the primitive lungfish (N. forsteri) is almost identical to that of the primitive air-breathing actinopterygiian fish. Thus, it is likely that pulmonary surfactant had only a single origin, coinciding with that of the vertebrates. As with most nonmammalian vertebrates, it is possible that lungfish surfactant functions as an antiglue at low lung volumes or when the lungs are completely collapsed. Furthermore, it appears that within a species, an increase in lung development correlates with an increase in the relative amount of surfactant cholesterol and a decrease in the phospholipid saturation level.

  3. Novel fluorinated gemini surfactants with γ-butyrolactone segments.

    PubMed

    Kawase, Tokuzo; Okada, Kazuyuki; Oida, Tatsuo

    2015-01-01

    In this work, novel γ-butyrolactone-type monomeric and dimeric (gemini) surfactants with a semifluoroalkyl group [Rf- (CH2)3-; Rf = C4F9, C6F13, C8F17] as the hydrophobic group were successfully synthesized. Dimethyl malonate was dimerized or connected using Br(CH2)sBr (s = 0, 1, 2, 3) to give tetraesters, and they were bis-allylated. Radical addition of fluoroalkyl using Rf-I and an initiator, i.e., 2,2'-azobisisobutyronitrile for C4F9 or di-t-butyl peroxide for C6F13 and C8F17, was perform at high temperature, with prolonged heating, to obtain bis(semifluoroalkyl)-dilactone diesters. These dilactone diesters were hydrolyzed using KOH/EtOH followed by decarboxylation in AcOH to afford γ-butyrolactonetype gemini surfactants. Common 1 + 1 semifluoroalkyl lactone surfactants were synthesized using the same method. Their surfactant properties [critical micelle concentration (CMC), γCMC, pC20, ΓCMC, and AG] were investigated by measuring the surface tension of the γ-hydroxybutyrate form prepared in aqueous tetrabutylammonium hydroxide solution. As expected, the CMC values of the gemini surfactants were more than one order of magnitude smaller than those of the corresponding 1 + 1 surfactants. Other properties also showed the excellent ability of the gemini structure to reduce the surface tension. These surfactants were easily and quantitatively recovered by acidification. The monomeric surfactant was recovered in the γ-hydroxybutyric acid form, and the gemini surfactant as a mixture of γ-butyrolactone and γ-hydroxybutyric acid forms.

  4. Solubilization of DNAPLs by mixed surfactant: synergism and solubilization capacity.

    PubMed

    Zhao, Baowei; Zhu, Lizhong

    2006-08-25

    Efforts to remove the dense nonaqueous phase liquids (DNAPLs) in subsurface by mobilizing them face with risks of driving the contaminants deeper into aquifer zones. In this paper, a synergistical solubilization of DNAPLs by mixed nonionic and anionic surfactant, Triton X-100 (TX100) and sodium dodecylbenzene sulfonate (SDBS) in DNAPL/water systems was presented. Given 1:40 phase ratio of DNAPL:water (v/v), mixed TX100-SDBS exhibited significantly synergistical solubilization for the DNAPLs, trichloroethene (TCE), chlorobenzene (CB) and 1,2-dichlorobenzene (1,2-DCB), respectively, when the total surfactant concentration was up to 6000mg/L, i.e. the condition when solubilization by the mixture was better than those attainable with individual components by themselves. The synergistical extents depended on the initial ratios of TX100 to SDBS, the initial surfactant concentrations and the properties of DNAPLs. Given the total surfactant concentration, synergistical extents increased with the fraction of SDBS in mixed surfactant. On the contrary, did with the total surfactant concentration. The solubilization capacity by 3:1, 1:1 and 1:3 of mass ratio of TX100-SDBS were determined and compared with those by single ones. In the view of the mass solubilization ratio (SR), the mixed TX100-SDBS could solubilize more DNAPLs than single SDBS at given surfactant concentration. Reduction in partition of TX100 and synergistic solubilization were responsible for the significant solubilization extent of mixed system. The work presented here demonstrates that mixed nonionic-anionic surfactants would be preferred over the corresponding single surfactants for solubilization remediation of DNAPLs, which could decrease risks of driving the contaminants deeper into aquifers.

  5. Single well surfactant test to evaluate surfactant floods using multi tracer method

    DOEpatents

    Sheely, Clyde Q.

    1979-01-01

    Data useful for evaluating the effectiveness of or designing an enhanced recovery process said process involving mobilizing and moving hydrocarbons through a hydrocarbon bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well, comprising (a) determining hydrocarbon saturation in a volume in the formation near a well bore penetrating formation, (b) injecting sufficient mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore, and (c) determining the hydrocarbon saturation in a volume including at least a part of the volume of (b) by an improved single well surfactant method comprising injecting 2 or more slugs of water containing the primary tracer separated by water slugs containing no primary tracer. Alternatively, the plurality of ester tracers can be injected in a single slug said tracers penetrating varying distances into the formation wherein the esters have different partition coefficients and essentially equal reaction times. The single well tracer method employed is disclosed in U.S. Pat. No. 3,623,842. This method designated the single well surfactant test (SWST) is useful for evaluating the effect of surfactant floods, polymer floods, carbon dioxide floods, micellar floods, caustic floods and the like in subterranean formations in much less time and at much reduced cost compared to conventional multiwell pilot tests.

  6. Biodegradation of the anionic surfactant dialkyl sulphosuccinate

    SciTech Connect

    Hales, S.G. . Port Sunlight Lab.)

    1993-10-01

    A range of Organization for Economic Cooperation and Development (OECD) guideline test systems was used to determine the extent and possible mechanisms of biodegradation of dialkyl sulphosuccinate (DASS, C[sub 6]/C[sub 8]). Primary biodegradation of DASS was virtually complete in OECD guideline tests and in simulations of activated sludge sewage treatment systems under both optimal and adverse conditions, and of an anaerobic digester. Ultimate biodegradation increased form about 50% in ready tests to 94% in more powerful inherent tests. [[sup 14]C]DASS was used to determine the fate of the surfactant in activated sludge and in surface waters. Mechanistic studies were performed to ascertain the biodegradative pathway of [[sup 14]C]DASS. A putative degradation pathway for DASS is proposed.

  7. Towards commercial production of microbial surfactants.

    PubMed

    Mukherjee, Soumen; Das, Palashpriya; Sen, Ramkrishna

    2006-11-01

    Biosurfactants or microbial surfactants are surface-active biomolecules that are produced by a variety of microorganisms. Biosurfactants have gained importance in the fields of enhanced oil recovery, environmental bioremediation, food processing and pharmaceuticals owing to their unique properties--higher biodegradability, lower toxicity, and effectiveness at extremes of temperature, pH and salinity. However, large-scale production of these molecules has not been realized because of low yields in production processes and high recovery and purification costs. This article describes some practical approaches that have been adopted to make the biosurfactant production process economically attractive: these include the use of cheaper raw materials, optimized and efficient bioprocesses and overproducing mutant and recombinant strains for obtaining maximum productivity. The application of these strategies in biosurfactant production processes, particularly those using hyper-producing recombinant strains in the optimally controlled environment of a bioreactor, might lead towards the successful commercial production of these valuable and versatile biomolecules in near future.

  8. Surfactant-based critical phenomena in microgravity

    NASA Technical Reports Server (NTRS)

    Kaler, Eric W.; Paulaitis, Michael E.

    1994-01-01

    The objective of this research project is to characterize by experiment and theoretically both the kinetics of phase separation and the metastable structures produced during phase separation in a microgravity environment. The particular systems we are currently studying are mixtures of water, nonionic surfactants, and compressible supercritical fluids at temperatures and pressures where the coexisting liquid phases have equal densities (isopycnic phases). In this report, we describe experiments to locate equilibrium isopycnic phases and to determine the 'local' phase behavior and critical phenomena at nearby conditions of temperature, pressure, and composition. In addition, we report the results of preliminary small angle neutron scattering (SANS) experiments to characterize microstructures that exist in these mixtures at different fluid densities.

  9. Surfactant-driven fracture of gels: Initiation

    NASA Astrophysics Data System (ADS)

    Bostwick, Joshua; Schillaci, Mark; Daniels, Karen

    2012-11-01

    A droplet of surfactant spreading on a gel substrate can produce fractures on the gel surface, which originate at the contact-line and propagate outwards in a star-burst pattern. Experiments show that the number of arms is controlled by the ratio of surface tension contrast to the gel's shear modulus. To further understand the mechanism behind crack initiation, we model the gel as a linear elastic solid and compute the state of stress that develops within the substrate from the uncompensated contact-line forces. The elastic solution yields an effective metric to predict the number of fractures. We also show that the depth of the gel is critical parameter in the fracture process, as it can help mitigate large surface tractions. This observation is confirmed in experiments.

  10. Surfactant Two-Dimensional Self-Assembly under Confinement

    SciTech Connect

    Sushko, Maria L.; Liu, Jun

    2011-03-28

    Confinement-induced structural rearrangements in supported self-assembled surfactant layers in aqueous salt solutions are investigated using classical Density Functional Theory. The systematic study of the influence of the nature of electrolyte revealed that 2:1 electrolyte stabilizes the hemicylindrical configuration of ionic surfactant layers, while a confinement-induced transition to a tilted monolayer configuration was found in symmetric 1:1 and 2:2 electrolytes. On the basis of this study we formulate a general model for the energetics of structural rearrangements in supported surfactant layers.

  11. Nonionic surfactant vesicles for delivery of RNAi therapeutics

    PubMed Central

    Paecharoenchai, Orapan; Teng, Lesheng; Yung, Bryant C; Teng, Lirong; Opanasopit, Praneet; Lee, Robert J

    2014-01-01

    RNAi is a promising potential therapeutic approach for many diseases. A major barrier to its clinical translation is the lack of efficient delivery systems for siRNA. Among nonviral vectors, nonionic surfactant vesicles (niosomes) have shown a great deal of promise in terms of their efficacy and toxicity profiles. Nonionic surfactants have been shown to be a superior alternative to phospholipids in several studies. There is a large selection of surfactants with various properties that have been incorporated into niosomes. Therefore, there is great potential for innovation in terms of nisome composition. This article summarizes recent advancements in niosome technology for the delivery of siRNA. PMID:24156490

  12. Non-specificity of surfactant deficiency in neonatal respiratory disorders.

    PubMed Central

    James, D K; Chiswick, M L; Harkes, A; Williams, M; Hallworth, J

    1984-01-01

    The phospholipid content of lung fluid taken from 77 babies during the first day of life was studied. Babies with hyaline membrane disease had low concentrations of the surfactant phospholipids phosphatidylcholine, phosphatidylinositol, and phosphatidylglycerol. The palmitic acid content in phosphatidylcholine was also lower than normal. Surfactant deficiency was not, however, specific for hyaline membrane disease, as similar phospholipid abnormalities were observed in babies with congenital pneumonia and transient tachypnoea of the newborn. These findings have important clinical implications. They are relevant to research into surfactant substitution and cast doubts on the value of the antenatal phospholipid lung profile of amniotic fluid in predicting the risk of hyaline membrane disease. PMID:6426671

  13. Amino acid–based surfactants: New antimicrobial agents.

    PubMed

    Pinazo, A; Manresa, M A; Marques, A M; Bustelo, M; Espuny, M J; Pérez, L

    2016-02-01

    The rapid increase of drug resistant bacteria makes necessary the development of new antimicrobial agents. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds given that they can be prepared from renewable raw materials. In this review, we discuss the structural features that promote antimicrobial activity of amino acid-based surfactants. Monocatenary, dicatenary and gemini surfactants that contain different amino acids on the polar head and show activity against bacteria are revised. The synthesis and basic physico-chemical properties have also been included.

  14. Key interactions of surfactants in therapeutic protein formulations: A review.

    PubMed

    Khan, Tarik A; Mahler, Hanns-Christian; Kishore, Ravuri S K

    2015-11-01

    Proteins as amphiphilic, surface-active macromolecules, demonstrate substantial interfacial activity, which causes considerable impact on their multifarious applications. A commonly adapted measure to prevent interfacial damage to proteins is the use of nonionic surfactants. Particularly in biotherapeutic formulations, the use of nonionic surfactants is ubiquitous in order to prevent the impact of interfacial stress on drug product stability. The scope of this review is to convey the current understanding of interactions of nonionic surfactants with proteins both at the interface and in solution, with specific focus to their effects on biotherapeutic formulations.

  15. Two types of surfactant phases and four coexisting liquid phases in a water/nonionic surfactant/triglyceride/hydrocarbon system

    SciTech Connect

    Kunieda, H.; Asaoka, H.; Shinoda, K.

    1988-01-14

    A three-phase region consisting of reversed micellar solution (Om), surfactant (D'), and excess water (W) phases was observed in a wide range of water/oil ratios in a water/R/sub 12/EO/sub 4//triglyceride (1,2,3-(tris(2-ethylhexanoyloxy)propane, TEH) system. The composition of middle phase (D') remains in the vicinity of a water-surfactant axis, and its phase behavior is different from that in a water/nonionic surfactant/saturated hydrocarbon system, in which the composition of surfactant phase (D) changes from water-rich to oil-rich with increasing lipophilicity of surfactant. The D' phase is identified with the surfactant phase known as the L/sub 3/ phase in which an oblate spheroid aggregate is present. In a four-component system of water/R/sub 12/EO//sub 4//TEH/hexadecane, a four phase region consisting of water, two surfactant (D and D'), and oil phases appears due to the overlapping of two three-phase regions. The mechanism for the formation of the four-phase region and the existence of four types of three-phase regions were concluded and actually discovered in a carefully selected system.

  16. Dynamic surface tension of polyelectrolyte/surfactant systems with opposite charges: two states for the surfactant at the interface.

    PubMed

    Ritacco, Hernán A; Busch, Jorge

    2004-04-27

    The molecular reorientation model of Fainerman et al. is conceptually adapted to explain the dynamic surface tension behavior in polyelectrolyte/surfactant systems with opposite charges. The equilibrium surface tension curves and the adsorption dynamics may be explained by assuming that there are two different states for surfactant molecules at the interface. One of these states corresponds to the adsorption of the surfactant as monomers, and the other to the formation of a mixed complex at the surface. The model also explains the plateaus that appear in the dynamic surface tension curves and gives a picture of the adsorption process.

  17. Surfactants in the Management of Respiratory Distress Syndrome in Extremely Premature Infants

    PubMed Central

    Ramanathan, Rangasamy

    2006-01-01

    Respiratory distress syndrome (RDS) is primarily due to decreased production of pulmonary surfactant, and it is associated with significant neonatal morbidity and mortality. Exogenous pulmonary surfactant therapy is currently the treatment of choice for RDS, as it demonstrates the best clinical and economic outcomes. Studies confirm the benefits of surfactant therapy to include reductions in mortality, pneumothorax, and pulmonary interstitial emphysema, as well as improvements in oxygenation and an increased rate of survival without bronchopulmonary dysplasia. Phospholipids (PL) and surfactant-associated proteins (SP) play key roles in the physiological activity of surfactant. Different types of natural and synthetic surfactant preparations are currently available. To date, natural surfactants demonstrate superior outcomes compared to the synthetic surfactants, at least during the acute phase of RDS. This disparity is often attributed to biochemical differences including the presence of surfactant-associated proteins in natural products that are not found in the currently available synthetic surfactants. Comparative trials of the natural surfactants strive to establish the precise differences in clinical outcomes among the different preparations. As new surfactants become available, it is important to evaluate them relative to the known benefits of the previously existing surfactants. In order to elucidate the role of surfactant therapy in the management of RDS, it is important to review surfactant biochemistry, pharmacology, and outcomes from randomized clinical trials. PMID:23118650

  18. Surfactant dissolution and mobilization of LNAPL contaminants in aquifers.

    PubMed

    Chevalier, Lizette R

    2003-05-01

    Improper disposal, accidental spills and leaks of non-aqueous phase liquids (NAPL) such as gasoline, fuel oil and creosote result in long-term persistent sources of groundwater pollution. Column and 2-D tanks experiments were conducted to evaluate the use of surfactant-enhanced recovery of light non-aqueous phase liquids (LNAPL) in groundwater aquifers. These experiments focused on the use of surfactants to promote dissolution and mobilization in addition to evaluating the increase of aqueous phase permeability as residual NAPL is recovered. Further experiments are presented that show the innovative use of surfactants during primary pumping to recover free product can potentially increase the amount of free product recovered, can potentially reduce the amount of residual NAPL remaining after primary pumping and performs better than the use of surfactants to mobilize trapped residual NAPL.

  19. Comparative acute toxicities of surfactants to aquatic invertebrates

    SciTech Connect

    Lewis, M.A.; Suprenant, D.

    1983-06-01

    Investigations of the toxicity of surfactants to aquatic invertebrates have been limited primarily to determining the effects on a few species. In this study, the 48-hr LC50 values for three surfactants are reported for six species of aquatic invertebrates. The acute toxicities (LC50) for each surfactant (mg/liter) varied 159 to 580 X and were as follows: C11.8LAS (anionic), 1.7 (Dero sp.) to 270 (Asellus sp.); C14-15 alkylethoxylate (nonionic), 1.0 (Dugesia sp.) to 6.8 (Rhabditis sp.); CTAC (cationic), 0.1 (Gammarus sp.) to 58 (Asellus sp.). When compared to previously developed data, Daphnia magna was typically found to be the most sensitive of all species tested, including fish, to the surfactants.

  20. [Study of novel artificial lung surfactants incorporating partially fluorinated amphiphiles].

    PubMed

    Nakahara, Hiromichi

    2012-01-01

    Lung surfactants (LS), a complex of ∼90 wt% lipids (mainly dipalmitoylphosphatidylcholine or DPPC) and ∼10 wt% surfactant proteins (SP-A, -B, -C, and -D), adsorb to an air-alveolar fluid interface and then lower its surface tension down to near zero during expiration. Intratracheal instillation of exogenous LS preparations can effectively compensate for surfactant deficiency in premature infants with respiratory distress syndrome (RDS). Surfacten® (Mitsubishi Tanabe Pharma Corporation, Osaka, Japan), a modified bovine lung extract and an effective surfactant replacement in treatment for RDS patients, is supplemented with DPPC, palmitic acid, and tripalmitin. For the premature infants suffering from RDS, instillation of Surfacten® leads to a dramatic improvement in lung function and compliance. Herein, the author reviews potential use of newly designed preparations containing a mimicking peptide of SP-B and also introduces the current research on the preparations incorporated with partially fluorinated amphiphiles to improve their efficacy.

  1. Performance characteristics and solution properties of surfactants in shampoos.

    PubMed

    Donaldson, B R; Messenger, E T

    1979-04-01

    Synopsis A brief analysis is made of the main types of surfactants used in shampoos and bubble baths. The requirements of a modern shampoo are discussed as are the means by which these can be achieved by the use of a number of selected additives such as the traditional alkanolamides, and the newer amine oxides, amido amine betaines and alkyl amine betaines. In particular, such aspects as the achievement of viscosity control, foam generation, shelf life stability and safety are examined. The physical chemistry of the behaviour in solution of several selected non-ionic and amphoteric nitrogen containing surfactants is discussed and how these affect viscosity modification and foam generation. Mention is also made of the chemistry of the new highly concentrated anionic surfactants and the benefits that they give the formulator. Finally, the attributes of imidazoline derived surfactants are outlined with special reference to their mildness and foaming ability.

  2. MICROEMULSION OF MIXED CHLORINATED SOLVENTS USING FOOD GRADE (EDIBLE) SURFACTANTS

    EPA Science Inventory

    Ground water contamination frequently consists of mixed chlorinated solvents [e.g., tetrachloroethylene (PCE), trichloroethylene (TCE), and trans-1,2- dichloroethylene (DCE)]. In this research, mixtures of the food grade (edible) surfactants bis(2-ethylhexyl) sodium sulfosuccinat...

  3. Experimental study on thermophoresis of colloids in aqueous surfactant solutions

    NASA Astrophysics Data System (ADS)

    Dong, Ruo-Yu; Zhou, Yi; Yang, Chun; Cao, Bing-Yang

    2015-12-01

    Thermophoresis refers to the motion of particles under a temperature gradient and it is one of the particle manipulation techniques. Regarding the thermophoresis of particles in liquid media, however, many open questions still remain, especially the role of the interfacial effect. This work reports on a systematic experimental investigation of surfactant effects, especially the induced interfacial effect, on the thermophoresis of colloids in aqueous solutions via a microfluidic approach. Two kinds of commonly used surfactants, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), are selected and the results show that from relatively large concentrations, the two surfactants can greatly enhance the thermophilic mobilities. Specifically, it is found that the colloid-water interfaces modified with more polar end groups can potentially lead to a stronger thermophilic tendency. Due to the complex effects of surfactants, further theoretical model development is needed to quantitatively describe the dependence of thermophoresis on the interface characteristics.

  4. Effects of Nonionic Surfactants on Bacterial Transport Through Porous Media

    NASA Astrophysics Data System (ADS)

    Brown, D. G.; Jaffe, P. R.

    2001-12-01

    Through a systematic study, it was shown that the nonionic surfactants Brij 30 and Brij 35 were able to enhance the transport of a Sphingomonas sp. through an aquifer sand. The magnitude of the enhancement increased with decreasing solution ionic strength and increasing polyoxyethylene chain length of the surfactant. The mechanism of this enhanced transport appears to be due to expansion of the electric double layer through displacement of the counter ions by the sorbed surfactant. This expanded electric double layer increases the electrostatic repulsion, with a resultant reduction in the collision efficiency and an increase in the Langmuirian blocking parameter. Application of the colloid filtration theory with the experimental parameters of this study shows that nonionic surfactants have the potential to significantly enhance the bacterial travel distance, especially for low ionic strength systems.

  5. Dictionary of surfactants English/German and German/English

    SciTech Connect

    Siekmann, K.

    1987-01-01

    This dictionary is supplement to the monograph ''Surfactants in Consumer Products'' edited by Professor Dr. J. Falbe. It comprises approximately 3.200 keywords of the chemistry, technology and applications of surfactants in English/German and German/English. In the monograph the physical-chemical principles of action of the surfactants, their production and their application in laundry detergents, dishwashing detergents and cleaning agents as well as in cosmetics and toiletries are discussed. The technological aspects of application and formulation along with those of production and manufacturing processes are illustrated. Ecological and toxicological questions are probed in depth. Finally, important economic data concerning this branch of industry as well as an attempt to provide a perspective with regard to the future of the surfactant market round out the picture.

  6. Deformation and stability of surfactant - or particle - laden drop

    NASA Astrophysics Data System (ADS)

    Brosseau, Quentin; Pradillo, Gerardo; Oberlander, Andrew; Vlahovska, Petia; SoftMech@Brown Team

    2015-11-01

    We present an experimental study of the behavior of a drop covered with insoluble surfactant or colloidal particles in a uniform DC electric field. Steady drop shapes, drop evolution upon application of the field, and drop relaxation after the field is turned off are observed for leaky dielectric fluids: Polybutadiene (PB), Silicon oil (PDMS), and Castor oil (CO). The surfactant is generated at the drop interface by reaction between end-functionalized PB and PDMS. The experimental data is compared with existing theoretical models for the steady shape of surfactant covered droplet, and adjusted models taking into account the presence of colloidal spheres with range of electrical properties. We will discuss the complex interplay of shape deformation, surfactant elasticity, particle redistribution, and interfacial charging in droplet electrohydrodynamics. Our results are important for understanding electrorheology of emulsions commonly found in the petroleum industry. We acknowledge grant NSF CBET 1437545 for funding.

  7. Endotoxin suppresses surfactant synthesis in cultured rat lung cells

    SciTech Connect

    Li, J.J.; Sanders, R.L.; McAdam, K.P.; Gelfand, J.A.; Burke, J.F.

    1989-02-01

    Pulmonary complications secondary to postburn sepsis are a major cause of death in burned patients. Using an in vitro organotypic culture system, we examined the effect of E. coli endotoxin (LPS) on lung cell surfactant synthesis. Our results showed that E. coli endotoxin (1.0, 2.5, 10 micrograms LPS/ml) was capable of suppressing the incorporation of /sup 3/H-choline into de novo synthesized surfactant, lamellar bodies (LB), and common myelin figures (CMF) at 50%, 68%, and 64%, respectively. In a similar study, we were able to show that LPS also inhibited /sup 3/H-palmitate incorporation by cultured lung cells. LPS-induced suppression of surfactant synthesis was reversed by hydrocortisone. Our results suggest that LPS may play a significant role in reducing surfactant synthesis by rat lung cells, and thus contribute to the pathogenesis of sepsis-related respiratory distress syndrome (RDS) in burn injury.

  8. FLUORINATED SURFACTANTS IN THE GREAT LAKES - YESTERDAY, TODAY, AND TOMORROW

    EPA Science Inventory

    Perfluorooctane surfactants have been reported in biota, water, and air samples worldwide. Despite these reports, the main environmental sources of these compounds remain undefined. As a presentation to the emerging chemicals workshop of the International Joint Commission on Grea...

  9. Evidence for surfactant solubilization of plant epicuticular wax.

    PubMed

    Tamura, H; Knoche, M; Bukovac, M J

    2001-04-01

    The solubilization of isolated, reconstituted tomato (Lycopersicon esculentum Mill.) fruit and broccoli (Brassica oleracaea var. botrytis L.) leaf epicuticular waxes (ECW) by nonionic octylphenoxypolyethoxy ethanol surfactant (Triton X-100) was demonstrated in a model system by TLC and fluorescence analysis using pyrene as a fluorescent probe. ECW was solubilized at or above the surfactant critical micelle concentration; solubilization increased with an increase in micelle concentration. As shown by the fluorescence quenching of pyrene, surfactant solubilization of the ECW increased rapidly for the first 12 h, then approached a plateau, increased linearly with an increase in temperature (22--32 degrees C), and decreased linearly with the log of the polyoxyethylene chain length (range 5--40 oxyethylenes). These data are discussed in relation to surfactant effects on phytotoxicity and performance of foliar spray application of agrochemicals. PMID:11308330

  10. INFLUENCE OF SURFACTANTS ON MICROBIAL DEGRADATION OF ORGANIC COMPOUNDS

    EPA Science Inventory

    Surfactants have the ability to increase aqueous concentrations of poorly soluble compounds and interfacial areas between immiscible fluids, thus potentially improving the accessibility of these substrates to microorganisms. However, both enhancements and inhibitions of biodegrad...

  11. Field experiment of lignosulfonate preflushing for surfactant adsorption reduction

    SciTech Connect

    Hong, S.A. ); Bae, J.H. )

    1990-11-01

    Lignosulfonate was field tested as a sacrificial adsorbate in conjunction with the ongoing Glenn Pool surfactant flood expansion project. A 2 wt% lignosulfonate solution was injected for 10 days as part of the preflush in this project. Results of the analyses of two observation well samples are interpreted for the effect of lignosulfonate on sulfonate absorption and process performance. Even though the evidence was ambiguous, the authors conclude that the low-cost lignosulfonate preflushing was beneficial to surfactant flooding.

  12. Spreading of liquids in the presence of surfactants

    SciTech Connect

    Rame, E.

    1988-01-01

    The identification and means for determining a predictive parametrization for the dynamics of liquids spreading on solids in the presence of surfactants are presented. The presence of surfactants poses a significant departure with respect to modeling the spreading of pure fluids. It is shown that, when surfactants are present, the traditional hydrodynamic assumptions predict an infinite force exerted by the fluids on the solid surface. However, the methods that successfully removed this singularity in the case of pure fluids, are not adequate here. This is due to the surfactant's ability to transfer between the fluid-fluid interface and the solid surface during spreading. The material parameters that make the hydrodynamical problem well posed are identified; they are the dynamic contact angle and transfer ratio of surfactant. They are assumed to depend on the velocity of spreading and the local surfactant concentration in the vicinity of the moving contact line. These relationships are not amenable to a direct measurement. Therefore, in order for the parametrization to have predictive power, the author has devised an indirect way for the determination of the constitutive relationships. The model was applied to the deposition of a Langmuir-Blodgett film. The author shows that-due to viscous effects-the surfactant concentration on the liquid interface can not be constant throughout the interface. The evaluation of viscous effects on the surface tension of the surfactant-covered liquid interface allows the prediction of collapse and rarification of the monolayer spread on the liquid interface-important in the performance of the deposition.

  13. Water-soluble fluorochemical surfactant well stimulation additives

    SciTech Connect

    Clark, H.B.; Pike, M.T.; Rengel, G.L.

    1982-07-01

    Water-soluble fluorochemical surfactants have been used in the oilfield since the early 1970's as surface tension depressants in a variety of aqueous stimulation fluids for low-permeability oil and gas wells. A discussion is presented of a laboratory study of the behavior of water-soluble fluorochemical surfactants relative to their oilfield use. Data are presented on surface tension depression, thermal stability, adsorption, fluid removal from sandpacks, flow rates, and emulsification tendencies. 7 refs.

  14. Liquefaction Of Coal With Surfactant And Disposable Catalyst

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1996-01-01

    Fuels derived from coal more competitive with petroleum products. Improved coal-liquefaction process exploits synergistic effects of disposable iron oxide catalyst and cheap anionic surfactant. Efficiency of conversion achieved in significantly higher than efficiencies obtained with addition of either surfactant or catalyst alone. No costly pretreatment necessary, and increase in conversion achieved under processing conditions milder than those used heretofore in liquefaction of coal. Quality of distillates obtained after liquefaction in process expected superior to distillates obtained after liquefaction by older techniques.

  15. A level-set method for interfacial flows with surfactant

    NASA Astrophysics Data System (ADS)

    Xu, Jian-Jun; Li, Zhilin; Lowengrub, John; Zhao, Hongkai

    2006-03-01

    A level-set method for the simulation of fluid interfaces with insoluble surfactant is presented in two-dimensions. The method can be straightforwardly extended to three-dimensions and to soluble surfactants. The method couples a semi-implicit discretization for solving the surfactant transport equation recently developed by Xu and Zhao [J. Xu, H. Zhao. An Eulerian formulation for solving partial differential equations along a moving interface, J. Sci. Comput. 19 (2003) 573-594] with the immersed interface method originally developed by LeVeque and Li and [R. LeVeque, Z. Li. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31 (1994) 1019-1044] for solving the fluid flow equations and the Laplace-Young boundary conditions across the interfaces. Novel techniques are developed to accurately conserve component mass and surfactant mass during the evolution. Convergence of the method is demonstrated numerically. The method is applied to study the effects of surfactant on single drops, drop-drop interactions and interactions among multiple drops in Stokes flow under a steady applied shear. Due to Marangoni forces and to non-uniform Capillary forces, the presence of surfactant results in larger drop deformations and more complex drop-drop interactions compared to the analogous cases for clean drops. The effects of surfactant are found to be most significant in flows with multiple drops. To our knowledge, this is the first time that the level-set method has been used to simulate fluid interfaces with surfactant.

  16. Controlling colloid charge in nonpolar liquids with surfactants.

    PubMed

    Smith, Gregory N; Eastoe, Julian

    2013-01-14

    The formation of ions in nonpolar solvents (with relative permittivity ε(r) of approximately 2) is more difficult than in polar liquids; however, these charged species play an important role in many applications, such as electrophoretic displays. The low relative permittivities of these solvents mean that charges have to be separated by large distances to be stable (approximately 28 nm or 40 times that in water). The inverse micelles formed by surfactants in these solvents provide an environment to stabilize ions and charges. Common surfactants used are sodium dioctylsulfosuccinate (Aerosol OT or AOT), polyisobutylene succinimide, sorbitan oleate, and zirconyl 2-ethyl hexanoate. The behavior of charged inverse micelles has been studied on both the bulk and on the microscopic scale and can be used to determine the motion of the micelles, their structure, and the nature of the electrostatic double layer. Colloidal particles are only weakly charged in the absence of surfactant, but in the presence of surfactants, many types, including polymers, metal oxides, carbon blacks, and pigments, have been observed to become positively or negatively charged. Several mechanisms have been proposed as the origin of surface charge, including acid-base reactions between the colloid and the inverse micelle, preferential adsorption of charged inverse micelles, or dissolution of surface species. While most studies vary only the concentration of surfactant, systematic variation of the particle surface chemistry or the surfactant structure have provided insight into the origin of charging in nonpolar liquids. By carefully varying system parameters and working to understand the interactions between surfactants and colloidal surfaces, further advances will be made leading to better understanding of the origin of charge and to the development of more effective surfactants. PMID:23187453

  17. Interactions of cationic trimeric, gemini and monomeric surfactants with trianionic curcumin in aqueous solution.

    PubMed

    Wang, Meina; Wu, Chunxian; Tang, Yongqiang; Fan, Yaxun; Han, Yuchun; Wang, Yilin

    2014-05-21

    Interactions of trianionic curcumin (Cur(3-)) with a series of cationic surfactants, monomeric surfactant dodecyl trimethylammonium bromide (DTAB), dimeric surfactant hexamethylene-1,6-bis(dodecyldimethylammonium bromide) (12-6-12) and trimeric surfactant tri(dodecyldimethylammonioacetoxy)diethyltriamine trichloride (DTAD), have been investigated in aqueous solution of pH 13.0. Surface tension and spectral measurements indicate that the cationic surfactants display a similar surfactant concentration dependent interaction process with Cur(3-), involving three interaction stages. At first the three cationic surfactants electrostatically bind on Cur(3-) to form the surfactant-Cur(3-) complex. Then the bound and unbound cationic surfactants with Cur(3-) aggregate into surfactant-Cur(3-) mixed micelles through hydrophobic interactions above the critical micelle concentration of the surfactants (CMCC) in the presence of Cur(3-). Finally excess unbound surfactants self-assemble into micelles like those without Cur(3-). For all the three surfactants, the addition of Cur(3-) only decreases the critical micelle concentration of 12-6-12 but does not affect the critical micelle concentration of DTAB and DTAD. As the oligomeric degree of surfactants increases, the intermolecular interaction of the cationic surfactants with Cur(3-) increases and the surfactant amount needed for Cur(3-) encapsulation decreases. Compared with 12-6-12, either the weaker interaction of DTAB with Cur(3-) or stronger interaction of DTAD with Cur(3-) limits the stability or solubility of Cur(3-) in surfactant micelles. Therefore, gemini surfactant 12-6-12 is the best choice to effectively suppress Cur(3-) degradation at very low concentrations. Isothermal titration microcalorimetry, surface tension and (1)H NMR results reveal that 12-6-12 and Cur(3-) form a (12-6-12)2-Cur(3-) complex and start to form micelles at extremely decreased concentrations, where either 12-6-12 or Cur(3-) works as a bridge

  18. Surfactant-enhanced rapid spreading of drops on solid surfaces

    NASA Astrophysics Data System (ADS)

    Beacham, David; Craster, Richard; Matar, Omar

    2009-11-01

    We consider the surfactant-enhanced rapid spreading of drops on solid substrates. This work is conducted in connection with the ability of aqueous trisiloxane solutions to wet effectively highly hydrophobic substrates. We use lubrication theory to derive coupled advective-diffusion equations for surfactant transport to an interface equation. This model accounts for Marangoni stresses, diffusion, intermolecular forces, basal surfactant transport, micelle formation and break-up in the bulk, and sorptive fluxes at both the gas-liquid and liquid- solid interfaces; the model also employs appropriate surfactant equations of state. Our numerical results show the effect of basal adsorption and the mass of deposited surfactant on the deformation of the droplet and its spreading rate. We demonstrate that this rate is maximised for intermediate rates of basal adsorption and total surfactant mass. We also show that for a certain range of parameter values, the spreading is accompanied by pronounced rim formation, as previously observed experimentally. The stability of this rim to transverse disturbances is briefly explored.

  19. Barrier or carrier? Pulmonary surfactant and drug delivery.

    PubMed

    Hidalgo, Alberto; Cruz, Antonio; Pérez-Gil, Jesús

    2015-09-01

    To consider the lung as a target for drug delivery and to optimise strategies directed at the pulmonary route, it is essential to consider the role of pulmonary surfactant, a thin lipid-protein film lining the respiratory surface of mammalian lungs. Membrane-based surfactant multilayers are essential for reducing the surface tension at the respiratory air-liquid interface to minimise the work of breathing. Different components of surfactant are also responsible for facilitating the removal of potentially pathological entities such as microorganisms, allergens or environmental pollutants and particles. Upon inhalation, drugs or nanoparticles first contact the surfactant layer, and these interactions critically affect their lifetime and fate in the airways. This review summarises the current knowledge on the possible role and effects of the pulmonary surfactant system in drug delivery strategies. It also summarises the evidence that suggests that pulmonary surfactant is far from being an insuperable barrier and could be used as an efficient shuttle for delivering hydrophobic and hydrophilic compounds deep into the lung and the organism.

  20. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.

    PubMed

    Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami

    2009-05-15

    The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards. PMID:18799262

  1. Cooling enhancement of aerosol particles due to surfactant precipitation.

    PubMed

    Beaver, Melinda R; Freedman, Miriam A; Hasenkopf, Christa A; Tolbert, Margaret A

    2010-07-01

    Light extinction by particles in Earth's atmosphere is strongly dependent on the particle size, chemical composition, and ability to take up water. In this work, we have measured the optical growth factors, fRH(ext)(RH, dry), for complex particles composed of an inorganic salt, sodium nitrate, and an anionic surfactant, sodium dodecyl sulfate. In contrast with previous studies using soluble and slightly soluble organic compounds, optical growth in excess to that expected based on the volume weighted water uptake of the individual components is observed. We explored the relationship between optical growth and concentration of surfactant by investigating the role of particle density, the effect of a surfactant monolayer, and increased light extinction by surfactant aggregates and precipitates. For our experimental conditions, it is likely that surfactant precipitates are responsible for the observed increase in light scattering. The contribution of surfactant precipitates to light scattering of aerosol particles has not been previously explored and has significant implications for characterizing the aerosol direct effect.

  2. [Recent findings in fetal lung development: structure, surfactant, lung fluid].

    PubMed

    Schwartze, H

    1990-01-01

    A great deal of lung development takes place after birth; new alveoli continue to develop until 8-11 years. However, the differentiation of epithelial cells is characteristic of the fetal lung from 24 weeks of gestation onwards: this is the point at which the surfactant containing type II cells can first be identified. Lung blood flow and the metabolic rate of type II cells increase in parallel rates the last 20% of the gestation period. The timely synthesis of surfactant depends on the availability of the fetal hormones T3, cortisol and prolactin, whereas this synthesis is inhibited by insulin and testosterone. Endogenous surfactant consists of 80% phosphatidylcholine and 10% protein. A sufficient quantity of surfactant is only available at term. Nowadayx, surfactant deficiency can be treated successfully with various exogenous surfactant preparations. Fetal lung liquid contributes about one half to the amniotic fluid. It is partly secreted by an active transport system. Secretion is inhibited by the stimulation of beta-adrenergic receptors in the lung tissue. The epithelial surface of the alveoli is a barrier which limits protein penetration considerably; lung liquid contains minimal amounts of protein. Under pathological conditions (RDS, haemorrhagic lung oedema) the alveolar barrier is disturbed so that plasma protein penetrate into the air spaces and form hyaline membranes.

  3. Fast online determination of surfactant inhibition in acidic phase bioreactors.

    PubMed

    Feitkenhauer, H

    2004-01-01

    Surfactants have been shown to inhibit the anaerobic digestion process severely, with the methanogenic microorganisms being the most affected. The diverse nature of surfactants used even in one (e.g. textile finishing) plant makes an online determination of surfactants sometimes very difficult and expensive. Therefore a fast online determination of inhibitory effects on the acidogenic microorganisms (first step of the degradation cascade) can help to give an early warning signal or to calculate a "pseudo"-surfactant concentration. In a two-phase system this information can be used to protect the methanogenic reactor against surfactant overloading and its long term negative effects. In this paper it is shown that the inhibition is a consequence of microbial inhibition and is not caused by an inactivation of extracellular hydrolytic enzymes (released by the cells for biopolymer cleavage). A titration technique was successfully employed to measure the surfactant inhibition in a laboratory-scale acidification reactor. Additional experiments demonstrate (using sodium dodecyl sulfate as the model substance) how inhibitory effects (and strategies to overcome inhibitory effects) can be investigated efficiently.

  4. Highly stable surfactant assisted polyaniline nanostructures with enhanced electroactivity

    NASA Astrophysics Data System (ADS)

    Jamdegni, Monika; Kaur, Amarjeet

    2016-05-01

    Different nanostructures of Polyaniline(PANI) i.e. nanospheres, nanorods, nanofibers and layered structures have been successfully synthesized using varied concentration of anionic sodium dodecyl sulphate(SDS) and cationic Hexamethyltriammonium bromide (HTAB) by electrochemical method. Surfactant assisted morphology has been studied using FESEM. Incorporation of surfactants to the polymer matrix has been confirmed using FTIR spectroscopy. Electro activity and stability towards reversible redox activity was studied using cyclic voltammatry and chronoamperometry.The anionic surfactant severely enhances electroactivity and areal capacitance (3 Fcm-2) which was found to be two order higher than PANI film prepared without surfactant (0.039 Fcm-2), attributable to its additional doping effect. Immobilization of large surfactant molecule to polymer matrix inhibits its degradation due to nuleophilic attack ascribed to hydrophobic effect of surfactant. For PANI-SDS redox behavior remained almost same after 1000 reverse redox cycles while for PANI-HTAB we got only marginal changes.Our PANI-SDS samples are promising candidates for electro chromic applications.

  5. [Acute toxicity of different type pesticide surfactants to Daphnia magna].

    PubMed

    Li, Xiu-huan; Li, Hua; Chen, Cheng-yu; Li, Jian-tao; Liu, Feng

    2013-08-01

    By using the standard test methods in Experimental Guideline for Environmental Safety Evaluation of Chemical Pesticide to aquatic organisms, a comparative study was conducted on the acute toxicity of 39 nonionic, 6 anionic, and 3 cationic surfactants to Daphnia magna. The acute toxicity of three cationic surfactants 1427, 1227 and C8-10 to D. magna belonged to virulent level, and the toxicity of 1427 was the highest, with the EC50 value being 0.97 x 10(-2) mg x L(-1). The acute toxicity of nonionic surfactants polyoxyethylene ether castor oil EL, Tween, and Span emulsifiers belonged to low level, but the toxicity of alkylphenol polyoxyethylene ether and fatty alcohol polyoxyethylene ether surfactants was relatively high, of which, AEO-7 and AEO-5 displayed high toxicity, with the EC50 value being 0.82 and 0.97 mg x L(-1), respectively. In these surfactants, the more liposolubility, the higher the toxicity was. Most of the anionic surfactants were medium in toxicity, but the acute toxicity of NNO belonged to high toxicity, with the EC50 value being 0.17 mg x L(-1).

  6. Solubilization of herbicides by single and mixed commercial surfactants.

    PubMed

    Galán-Jiménez, M C; Gómez-Pantoja, E; Morillo, E; Undabeytia, T

    2015-12-15

    The solubilization capabilities of micellar solutions of three single surfactants, two alcohol alkoxylates B048 and B266, and the tallow alkyl ethoxylated amine ET15, and their equimolar mixed solutions toward the herbicides flurtamone (FL), metribuzin (MTZ) and mesotrione (MST) were investigated. The solubilization capacity was quantified in terms of the molar solubilization ratio (MSR), critical micellar concentration (CMC), micelle-water partition coefficient (Kmc), binding constant (K1), number of aggregation (Nagg) and Stern-Volmer constant (Ksv). The herbicides were greatly solubilized into different loci of the micelles: FL within the inner hydrophobic core, MST at the micelle/water interface and MTZ in the palisade region. Equimolar binary surfactant mixtures did not improve the solubilization of herbicides over those of single components, with the exception of MTZ by the B266/ET15 system which enhanced solubilization by 10-20%. This enhanced solubilization of MTZ was due to an increased number of micelles that arise from both the intermediate Nagg relative to that of the single surfactants and the lower CMC. The use of Ksv values was a better predictor of the solubilization of polar molecules within binary mixtures of these surfactants than the interaction parameter β(M) from regular solution theory (RST). The results herein suggest that the use of mixed surfactant systems for the solubilization of polar molecules in environmental remediation technologies may be very limited in scope, without clear advantages over the use of single surfactant systems.

  7. A systems approach to mapping transcriptional networks controlling surfactant homeostasis

    PubMed Central

    2010-01-01

    Background Pulmonary surfactant is required for lung function at birth and throughout life. Lung lipid and surfactant homeostasis requires regulation among multi-tiered processes, coordinating the synthesis of surfactant proteins and lipids, their assembly, trafficking, and storage in type II cells of the lung. The mechanisms regulating these interrelated processes are largely unknown. Results We integrated mRNA microarray data with array independent knowledge using Gene Ontology (GO) similarity analysis, promoter motif searching, protein interaction and literature mining to elucidate genetic networks regulating lipid related biological processes in lung. A Transcription factor (TF) - target gene (TG) similarity matrix was generated by integrating data from different analytic methods. A scoring function was built to rank the likely TF-TG pairs. Using this strategy, we identified and verified critical components of a transcriptional network directing lipogenesis, lipid trafficking and surfactant homeostasis in the mouse lung. Conclusions Within the transcriptional network, SREBP, CEBPA, FOXA2, ETSF, GATA6 and IRF1 were identified as regulatory hubs displaying high connectivity. SREBP, FOXA2 and CEBPA together form a common core regulatory module that controls surfactant lipid homeostasis. The core module cooperates with other factors to regulate lipid metabolism and transport, cell growth and development, cell death and cell mediated immune response. Coordinated interactions of the TFs influence surfactant homeostasis and regulate lung function at birth. PMID:20659319

  8. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.

    PubMed

    Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami

    2009-05-15

    The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.

  9. Large scale molecular dynamics study of polymer-surfactant complex

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Sumpter, Bobby

    2012-02-01

    In this work, we study the self-assembly of cationic polyelectrolytes mediated by anionic surfactants in dilute or semi-dilute and gel states. The understanding of the dilute system is a requirement for the understanding of gel states. The importance of polyelectrolyte with oppositely charged colloidal particles can be found in biological systems, such as immobilization of enzymes in polyelectrolyte complexes or nonspecific association of DNA with protein. With the same understanding, interaction of surfactants with polyelectrolytes shows intriguing phenomena that are important for both in academic research as well as industrial applications. Many useful properties of PE surfactant complexes come from the highly ordered structures of surfactant self-assembly inside the PE aggregate. We do large scale molecular dynamics simulation using LAMMPS to understand the structure and dynamics of PE-surfactant systems. Our investigation shows highly ordered ring-string structures that have been observed experimentally in biological systems. We will investigate many different properties of PE-surfactant complexation which will be helpful for pharmaceutical, engineering and biological applications.

  10. Effect of surfactants on single-bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi

    1998-10-01

    The effect of surfactants on single-bubble sonoluminescence (SBSL) is studied theoretically based on the hot-spot model that a SBSL bubble collapses quasiadiabatically and that the quasi-thermal radiation is the origin of the light emission. Stottlemyer and Apfel [J. Acoust. Soc. Am. 102, 1418 (1997)] reported that the surfactant called Triton X-100, which provides free interfacial motion, reduced the magnitude of the light pulse from the bubble. It is clarified by the present study that the effect of the surfactant is caused by the inhibition of condensation of water vapor at the bubble wall at the collapse, which results in lowering the achieved temperature inside a bubble due to the enhancement of the amount of vapor that undergoes endothermal chemical reactions. It is predicted, based on the hot-spot model, that the radiation is not thermalized inside a bubble in the case of SBSL in a solution of the surfactant in water and that the spectrum of SBSL may deviate from the blackbody spectrum and may have some characteristic lines such as the OH line (310 nm). It is suggested that surfactants can be used to enhance the chemical reactions of vapor in sonochemistry. It is also suggested that some of the surfactants are dissociated by the extremely high temperature at the bubble wall at the collapse.

  11. Sporicidal Activities of Various Surfactant Components against Bacillus subtilis Spores.

    PubMed

    Cho, Won-Il; Cheigh, Chan-Ick; Hwang, Hee-Jeong; Chung, Myong-Soo

    2015-06-01

    The sporicidal activities against Bacillus subtilis spores of surfactant components with hydrophilic and hydrophobic properties that can lead to the denaturation of various proteins comprising the spore structure were investigated. The reduction in spore numbers by each of the surfactant components bornyl acetate, geranyl acetate, pinene, p-cymene, camphene, citral, 2,3-dihydrobenzofuran, polylysine, and thiamine dilaurylsulfate at 1% was estimated at 1 to 2 log CFU/ml. The average hydrophilelipophile balance value of surfactants with sporicidal activity causing a reduction of 1 to 2 log CFU/ml was 9.3, with a range from 6.7 to 15.8, which is similar to the values of various chemical surfactants of 9.6 to 16.7. The results also showed that the surfactants that were hydrophobic were more effective than those that were hydrophilic in killing B. subtilis spores. Furthermore, the sporicidal effect of surfactants like geranyl acetate and γ-terpinene was significantly enhanced in the presence of a germinant, because L-alanine and synergistic cofactors (e.g., K(+) ions) trigger cortex hydrolysis in spores.

  12. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    NASA Astrophysics Data System (ADS)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  13. Thermodynamic effects of the hydrophobic surfactant proteins on the early adsorption of pulmonary surfactant.

    PubMed

    Schram, V; Hall, S B

    2001-09-01

    We determined the influence of the two hydrophobic proteins, SP-B and SP-C, on the thermodynamic barriers that limit adsorption of pulmonary surfactant to the air-water interface. We compared the temperature and concentration dependence of adsorption, measured by monitoring surface tension, between calf lung surfactant extract (CLSE) and the complete set of neutral and phospholipids (N&PL) without the proteins. Three stages generally characterized the various adsorption isotherms: an initial delay during which surface tension remained constant, a fall in surface tension at decreasing rates, and, for experiments that reached approximately 40 mN/m, a late acceleration of the fall in surface tension to approximately 25 mN/m. For the initial change in surface tension, the surfactant proteins accelerated adsorption for CLSE relative to N&PL by more than ten-fold, reducing the Gibbs free energy of transition (DeltaG(O)) from 119 to 112 kJ/mole. For the lipids alone in N&PL, the enthalpy of transition (DeltaH(O), 54 kJ/mole) and entropy (-T. DeltaS, 65 kJ/mole at 37 degrees C) made roughly equal contributions to DeltaG(O). The proteins in CLSE had little effect on -T. DeltaS(O) (68 kJ/mole), but lowered DeltaG(O) for CLSE by reducing DeltaH(O) (44 kJ/mole). Models of the detailed mechanisms by which the proteins facilitate adsorption must meet these thermodynamic constraints.

  14. Flexible polyelectrolyte conformation in the presence of cationic and anionic surfactants

    NASA Astrophysics Data System (ADS)

    Passos, C. B.; Kuhn, P. S.; Diehl, A.

    2015-11-01

    In this work we have studied the conformation of flexible polyelectrolyte chains in the presence of cationic and anionic surfactant molecules. We developed a simple theoretical model for the formation of the polyelectrolyte-cationic surfactant complexes and mixed micelles formed by cationic and anionic surfactant molecules, in the framework of the Debye-Hückel-Bjerrum-Manning and Flory theories, with the hydrophobic interaction included explicitly as an effective short-ranged attraction between the surfactant hydrocarbon tails. This simple model allows us to calculate the extension of the polyelectrolyte-cationic surfactant complexes as a function of the anionic surfactant concentration, for different types of cationic and anionic surfactant molecules. A discrete conformational transition from a collapsed state to an elongated coil was found, for all surfactant chain lengths we have considered, in agreement with the experimental observations for the unfolding of ​DNA-cationic surfactant complexes.

  15. Localisation of exogenous surfactants in cell membranes in the air-blood barrier: rat model.

    PubMed

    Marszałek, Andrzej; Biczysko, Wiesława; Wasowicz, Marcin; Surowiak, Paweł; Zabel, Maciej; Florek, Ewa

    2003-11-01

    The use of exogenous surfactants has been introduced into the therapy of patients of different ages. Much better results have been obtained in the treatment of respiratory distress syndrome with surfactants enriched with surfactant proteins. In the following study we used protein-containing surfactants (survanta and curosurf). The aim of the following study was to determine the localisation of artificial surfactants in the lung tissue. Using the Immunogold Technique, biotinylated surfactant proteins were traced in the air-blood barriers. In all lungs the exogenous surfactant was present only in some alveoli. In these parts small areas of atelectasis as well as oedema and transudate accumulation were seen. These changes were less severe after biotinylated curosurf treatment. In electron microscope studies we found surfactant elements in the air-blood barrier and other structures of the alveolar septa. Immunogold studies confirm the presence of biotynylated surfactant in the elements of the air-blood barrier. PMID:14655120

  16. Inactivation of pulmonary surfactant due to serum-inhibited adsorption and reversal by hydrophilic polymers: experimental.

    PubMed

    Taeusch, H William; Bernardino de la Serna, Jorge; Perez-Gil, Jesus; Alonso, Coralie; Zasadzinski, Joseph A

    2005-09-01

    The rate of change of surface pressure, pi, in a Langmuir trough following the deposition of surfactant suspensions on subphases containing serum, with or without polymers, is used to model a likely cause of surfactant inactivation in vivo: inhibition of surfactant adsorption due to competitive adsorption of surface active serum proteins. Aqueous suspensions of native porcine surfactant, organic extracts of native surfactant, and the clinical surfactants Curosurf, Infasurf, and Survanta spread on buffered subphases increase the surface pressure, pi, to approximately 40 mN/m within 2 min. The variation with concentration, temperature, and mode of spreading confirmed Brewster angle microscopy observations that subphase to surface adsorption of surfactant is the dominant form of surfactant transport to the interface. However (with the exception of native porcine surfactant), similar rapid increases in pi did not occur when surfactants were applied to subphases containing serum. Components of serum are surface active and adsorb reversibly to the interface increasing pi up to a concentration-dependent saturation value, pi(max). When surfactants were applied to subphases containing serum, the increase in pi was significantly slowed or eliminated. Therefore, serum at the interface presents a barrier to surfactant adsorption. Addition of either hyaluronan (normally found in alveolar fluid) or polyethylene glycol to subphases containing serum reversed inhibition by restoring the rate of surfactant adsorption to that of the clean interface, thereby allowing surfactant to overcome the serum-induced barrier to adsorption.

  17. Use of surfactants for the remediation of contaminated soils: a review.

    PubMed

    Mao, Xuhui; Jiang, Rui; Xiao, Wei; Yu, Jiaguo

    2015-03-21

    Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation.

  18. Impact of model perfumes on surfactant and mixed surfactant self-assembly.

    PubMed

    Penfold, J; Tucker, I; Green, A; Grainger, D; Jones, C; Ford, G; Roberts, C; Hubbard, J; Petkov, J; Thomas, R K; Grillo, I

    2008-11-01

    The impact of some model perfumes on surfactant self-assembly has been investigated, using small-angle neutron scattering. A range of different model perfumes, with differing degrees of hydrophilicity/hydrophobicity, have been explored, and in order of increasing hydrophobicity include phenyl ethanol (PE), rose oxide (RO), limonene (LM), linalool (LL), and dihydrogen mercenol (DHM). The effect of their solubilization on the nonionic surfactant micelles of dodecaethylene monododecyl ether (C12EO12) and on the mixed surfactant aggregates of C12EO12 and the cationic dialkyl chain surfactant dihexadecyl dimethyl ammonium bromide (DHDAB) has been quantified. For PE and LL the effect of their solubilization on the micelle, mixed micelle/lamellar and lamellar regimes of the C12EO12/DHDAB mixtures, has also been determined. For the C12EO12 and mixed DHDAB/C12EO12 micelles PE is solubilized predominantly at the hydrophilic/hydrophobic interface, whereas the more hydrophobic perfumes, from RO to DHM, are solubilized predominantly in the hydrophobic core of the micelles. For the C12EO12 micelles, with increasing perfume concentration, the more hydrophobic perfumes (RO to DHM) promote micellar growth. Relatively modest growth is observed for RO and LM, whereas substantial growth is observed for LL and DHM. In contrast, for the addition of PE the C12EO12 micelles remain as relatively small globular micelles, with no significant growth. For the C12EO12/DHDAB mixed micelles, the pattern of behavior with the addition of perfume is broadly similar, except that the micellar growth with increasing perfume concentration for the more hydrophobic perfumes is less pronounced. In the Lbeta (Lv) region of the DHDAB-rich C12EO12/DHDAB phase diagram, the addition of PE results in a less structured (less rigid) lamellar phase, and ultimately a shift toward a structure more consistent with a sponge or bicontinuous phase. In the mixed L1/Lbeta region of the phase diagram PE induces a slight

  19. Lung surfactant protein A (SP-A) interactions with model lung surfactant lipids and an SP-B fragment.

    PubMed

    Sarker, Muzaddid; Jackman, Donna; Booth, Valerie

    2011-06-01

    Surfactant protein A (SP-A) is the most abundant protein component of lung surfactant, a complex mixture of proteins and lipids. SP-A performs host defense activities and modulates the biophysical properties of surfactant in concerted action with surfactant protein B (SP-B). Current models of lung surfactant mechanism generally assume SP-A functions in its octadecameric form. However, one of the findings of this study is that when SP-A is bound to detergent and lipid micelles that mimic lung surfactant phospholipids, it exists predominantly as smaller oligomers, in sharp contrast to the much larger forms observed when alone in water. These investigations were carried out in sodium dodecyl sulfate (SDS), dodecylphosphocholine (DPC), lysomyristoylphosphatidylcholine (LMPC), lysomyristoylphosphatidylglycerol (LMPG), and mixed LMPC + LMPG micelles, using solution and diffusion nuclear magnetic resonance (NMR) spectroscopy. We have also probed SP-A's interaction with Mini-B, a biologically active synthetic fragment of SP-B, in the presence of micelles. Despite variations in Mini-B's own interactions with micelles of different compositions, SP-A is found to interact with Mini-B in all micelle systems and perhaps to undergo a further structural rearrangement upon interacting with Mini-B. The degree of SP-A-Mini-B interaction appears to be dependent on the type of lipid headgroup and is likely mediated through the micelles, rather than direct binding.

  20. Surfactants at Single-Walled Carbon Nanotube-Water Interface: Physics of Surfactants, Counter-Ions, and Hydration Shell

    NASA Astrophysics Data System (ADS)

    Khare, Ketan S.; Phelan, Frederick R., Jr.

    Specialized applications of single-walled carbon nanotubes (SWCNTs) require an efficient and reliable method to sort these materials into monodisperse fractions with respect to their defining metrics (chirality, length, etc.) while retaining their physical and chemical integrity. A popular method to achieve this goal is to use surfactants that individually disperse SWCNTs in water and then to separate the resulting colloidal mixture into fractions that are enriched in monodisperse SWCNTs. Recently, experiments at NIST have shown that subtle point mutations of chemical groups in bile salt surfactants have a large impact on the hydrodynamic properties of SWCNT-surfactant complexes during ultracentrifugation. These results provide strong motivation for understanding the rich physics underlying the assembly of surfactants around SWCNTs, the structure and dynamics of counter ions around the resulting complex, and propagation of these effects into the first hydration shell. Here, all-atom molecular dynamics simulations are used to investigate the thermodynamics of SWCNT-bile salt surfactant complexes in water with an emphasis on the buoyant characteristics of the SWCNT-surfactant complexes. Simulation results will be presented along with a comparison with experimental data. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

  1. Mature Surfactant Protein-B Expression by Immunohistochemistry as a Marker for Surfactant System Development in the Fetal Sheep Lung.

    PubMed

    Lock, Mitchell C; McGillick, Erin V; Orgeig, Sandra; Zhang, Song; McMillen, I Caroline; Morrison, Janna L

    2015-11-01

    Evaluation of the number of type II alveolar epithelial cells (AECs) is an important measure of the lung's ability to produce surfactant. Immunohistochemical staining of these cells in lung tissue commonly uses antibodies directed against mature surfactant protein (SP)-C, which is regarded as a reliable SP marker of type II AECs in rodents. There has been no study demonstrating reliable markers for surfactant system maturation by immunohistochemistry in the fetal sheep lung despite being widely used as a model to study lung development. Here we examine staining of a panel of surfactant pro-proteins (pro-SP-B and pro-SP-C) and mature proteins (SP-B and SP-C) in the fetal sheep lung during late gestation in the saccular/alveolar phase of development (120, 130, and 140 days), with term being 150 ± 3 days, to identify the most reliable marker of surfactant producing cells in this species. Results from this study indicate that during late gestation, use of anti-SP-B antibodies in the sheep lung yields significantly higher cell counts in the alveolar epithelium than SP-C antibodies. Furthermore, this study highlights that mature SP-B antibodies are more reliable markers than SP-C antibodies to evaluate surfactant maturation in the fetal sheep lung by immunohistochemistry.

  2. Dielectrophoresis of a surfactant-laden viscous drop

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-06-01

    The dielectrophoresis of a surfactant-laden viscous drop in the presence of non-uniform DC electric field is investigated analytically and numerically. Considering the presence of bulk-insoluble surfactants at the drop interface, we first perform asymptotic solution for both low and high surface Péclet numbers, where the surface Péclet number signifies the strength of surface convection of surfactants as compared to the diffusion at the drop interface. Neglecting fluid inertia and interfacial charge convection effects, we obtain explicit expression for dielectrophoretic drop velocity for low and high Péclet numbers by assuming small deviation of drop shape from sphericity and small deviation of surfactant concentration from the equilibrium uniform distribution. We then depict a numerical solution, assuming spherical drop, for arbitrary values of Péclet number. Our analyses demonstrate that the asymptotic solution shows excellent agreement with the numerical solution in the limiting conditions of low and high Péclet numbers. The present analysis shows that the flow-induced redistribution of the surfactants at the drop interface generates Marangoni stress, owing to the influence of the surfactant distribution on the local interfacial tension, at the drop interface and significantly alters the drop velocity at steady state. For a perfectly conducting/dielectric drop suspended in perfectly dielectric medium, Marangoni stress always retards the dielectrophoretic velocity of the drop as compared with a surfactant-free drop. For a leaky dielectric drop suspended in another leaky dielectric medium, in the low Péclet number limit, depending on the electrical conductivity and permittivity of both the liquids, the Marangoni stress may aid or retard the dielectrophoretic velocity of the drop. The Marangoni stress also has the ability to move the drop in the opposite direction as compared with a surfactant-free drop. This non-intuitive reverse motion of the drop is

  3. Self-Assembly of Nanoparticle Surfactants

    NASA Astrophysics Data System (ADS)

    Lombardo, Michael T.

    Self-assembly utilizes non-covalent forces to organize smaller building blocks into larger, organized structures. Nanoparticles are one type of building block and have gained interest recently due to their unique optical and electrical properties which have proved useful in fields such as energy, catalysis, and advanced materials. There are several techniques currently used to self-assemble nanoparticles, each with its own set of benefits and drawbacks. Here, we address the limited number of techniques in non-polar solvents by introducing a method utilizing amphiphilic gold nanoparticles. Grafted polymer chains provide steric stabilization while small hydrophilic molecules induce assembly through short range attractive forces. The properties of these self-assembled structures are found to be dependent on the polymer and small molecules surface concentrations and chemistries. These particles act as nanoparticle surfactants and can effectively stabilize oil-water interfaces, such as in an emulsion. In addition to the work in organic solvent, similar amphiphilic particles in aqueous media are shown to effectively stabilize oil-in-water emulsions that show promise as photoacoustic/ultrasound theranostic agents.

  4. Groundwater pollution by perfluorinated surfactants in Tokyo.

    PubMed

    Murakami, Michio; Kuroda, Keisuke; Sato, Nobuyuki; Fukushi, Tetsuo; Takizawa, Satoshi; Takada, Hideshige

    2009-05-15

    Perfluorinated surfactants (PFSs) in groundwater were analyzed to reveal their distribution and sources. Sixteen groundwater and spring samples were collected from the Tokyo metropolitan area, and nine PFSs, including perfluorooctane-sulfonate (PFOS) and perfluorooctanoate (PFOA), were analyzed by liquid chromatography-tandem mass spectrometry. A column test using artificial street runoff was also performed to study their behavior. PFSs were detected in all groundwater samples, some at concentrations comparable to those in wastewater and street runoff, suggesting widespread contamination of groundwater by PFSs. In particular, PFOS -was more abundant in groundwater than in rivers, wastewater, and street runoff. This was attributed to its production from the degradation of its precursors, as supported by the column test. The occurrence of short-chain perfluorocarboxylates (PFCAs) in groundwater was also consistent with the results of the column test, showing that limited amounts of short-chain PFCAs were removed by soil, as the efficiency of removal increased with the chain length. We evaluated the contributions of PFCAs from wastewater and surface runoff to groundwater by using two indicators, the long/(short + long) ratio and the even(even + odd) ratio. Both ratios showed good agreement in their calculated contributions in heavily contaminated groundwater where breakthroughs likely occurred. Wastewater and surface runoff contributed to 54-86% and 16-46% of PFCAs, respectively, in groundwater.

  5. An Investigation of CNT Cytotoxicity by Using Surfactants in Different Ratio

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Kumar, Neeraj; Thakur, Rajesh; Bhanjana, Gaurav; Dilbaghi, Neeraj

    2011-12-01

    This account reports a comparative analysis on dispersion of multiwalled and single walled carbon nanotubes with different surfactants like—Triton X-100, Tween 20, Tween 80, and sodium dodecyl sulfate (SDS). Dispersion of CNTs has been characterized by UV-Vis spectroscopy, electron microscopy and probe microscopy. An optimum CNT-to-surfactant ratio has been determined for each surfactant. Surfactant concentration in different ratio is found to deteriorate the quality of nanotube dispersion. Electron microscopy analysis of a high-surfactant sample concentration enables us to construct a plausible mechanism for increase or decrease in CNT dispersion at high surfactant concentration.

  6. Stabilization of aqueous suspensions serving as the basis for cooling lubricant liquids using nonionogenic surfactants

    SciTech Connect

    Baranova, B.I.; Volkova, M.V.; Belyaeva, N.N.; Lavrov, I.S.; Kopylov, Y.S.

    1983-01-20

    A study of the adsorption of nonionogenic surfactants on the surface of antifriction materials (S-O graphite, molybdenum disulfide, and boron nitride) showed that the formation of saturated adsorption layers occurs at surfactant concentrations close to the critical micelle concentration. The adsorption of all the surfactants studied occurs best on the most hydrophobic surface (the graphite surface). The best stabilizing action of the surfactant is found at surfactant concentrations corresponding to the formation of a saturated adsorption layer when the packing of the surfactant molecules in the adsorption layer is rather dense, which apparently corresponds to the best hydration of the particle surface.

  7. Alkyl-imidazolium glycosides: non-ionic-cationic hybrid surfactants from renewable resources.

    PubMed

    Salman, Abbas Abdulameer; Tabandeh, Mojtaba; Heidelberg, Thorsten; Hussen, Rusnah Syahila Duali; Ali, Hapipah Mohd

    2015-08-14

    A series of surfactants combining carbohydrate and imidazolium head groups were prepared and investigated on their assembly behavior. The presence of the imidazolium group dominated the interactions of the surfactants, leading to high CMCs and large molecular surface areas, reflected in curved rather than lamellar surfactant assemblies. The carbohydrate, on the other hand, stabilized molecular assemblies slightly and reduced the surface tension of surfactant solutions considerably. A comparative emulsion study discourages the use of pure alkyl imidazolium glycosides owing to reduced assembly stabilities compared with APGs. However, the surfactants are believed to have potential as component in carbohydrate based surfactant mixtures.

  8. Cell-specific modulation of surfactant proteins by ambroxol treatment

    SciTech Connect

    Seifart, Carola . E-mail: zwiebel@mailer.uni-marburg.de; Clostermann, Ursula; Seifart, Ulf

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  9. Effect of air pollutants on the pulmonary surfactant system.

    PubMed

    Müller, B; Seifart, C; Barth, P J

    1998-09-01

    Air pollutants have been recognized to influence the structure and function of the surfactant system. Agents that have received the most attention include ozone, nitrogen dioxide, hyperoxia, diesel exhaust, tobacco smoke, silica and fibrous materials such as asbestos. The deleterious effects of air pollutants on the surfactant system depend on the size of the agent, on its solubility in aqueous solutions and chemical reactivity and on its concentration and the duration of exposure. Hereby the following general rules apply: the smaller the agent's size and the less water soluble the pollutant is, the greater the tendency to reach the alveoli during breathing. In addition, the reactivity also determines the depth of penetration into alveoli. Compounds with high reactivity such as O3, which also fulfil the earlier rules, will react with the upper respiratory tract compared with compounds with slightly reduced reactivity, such as NO2, which will penetrate the alveoli. The common consequence of exposure to air pollutants is an accumulation of surfactant phospholipids and surfactant-specific proteins in the bronchoalveolar lavage fluid. These components also are structurally altered, mainly by oxidant gases, resulting in impairment of their biological activity. Thus, for surfactant phospholipids, there is impaired adsorption to the air-liquid interface due to oxidation of their fatty acids. Also, surfactant protein A, regarded as a modulator of the surfactant system, shows impaired functions after exposure to oxidants. It is likely that in addition to the effects described in this review not all effects are known because the molecular effects of several key components (e.g. SP-B and C) have not been well studied.

  10. Cell-specific modulation of surfactant proteins by ambroxol treatment.

    PubMed

    Seifart, Carola; Clostermann, Ursula; Seifart, Ulf; Müller, Bernd; Vogelmeier, Claus; von Wichert, Peter; Fehrenbach, Heinz

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  11. Stabilization of lamellar oil-water liquid crystals by surfactant/ co-surfactant monolayers

    NASA Astrophysics Data System (ADS)

    Braganza, L. F.; Dubois, M.; Tabony, J.

    1989-03-01

    LIQUID crystals are divided into two main classes, thermotropic and lyotropic. Thermotropic liquid crystals are formed by melting, whereas lyotropic liquid crystals arise from the association of molecules, such as soap and water, that in general are not in themselves liquid crystalline. Thermotropic liquid crystals are used for liquid-crystal displays; lyotropic liquid crystals occur in living cells. Here we report a novel sequence of lyotropic liquid crystals comprising alternate layers of oil and water whose thickness varies linearly with the relative proportions of oil and water, and we have determined their structure using neutron diffraction methods. The oil and water layers are separated and stabilized by a monolayer film of surfactant and co-surfactant. The individual layers are typically a hundred ångströms or more in thickness, and total lamellar spacings of up to 1,000 Å were observed. This behaviour is difficult to describe in terms of the theories of colloid stability currently used to describe lyotropic liquid crystals. An understanding of the self-organization of such systems over such large distances would elucidate how long-range liquid-crystalline ordering arises in living cells. Moreover, thermotropic liquid crystals are expensive and chemically relatively unstable, and lamellar mesophases of the lyotopic type described here could lead to inexpensive, chemically stable liquid-crystalline materials suitable for industrial application.

  12. Surfactant Uptake Dynamics in Mammalian Cells Elucidated with Quantitative Coherent Anti-Stokes Raman Scattering Microspectroscopy

    PubMed Central

    Okuno, Masanari; Kano, Hideaki; Fujii, Kenkichi; Bito, Kotatsu; Naito, Satoru; Leproux, Philippe; Couderc, Vincent; Hamaguchi, Hiro-o

    2014-01-01

    The mechanism of surfactant-induced cell lysis has been studied with quantitative coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The dynamics of surfactant molecules as well as intracellular biomolecules in living Chinese Hamster Lung (CHL) cells has been examined for a low surfactant concentration (0.01 w%). By using an isotope labeled surfactant having CD bonds, surfactant uptake dynamics in living cells has been traced in detail. The simultaneous CARS imaging of the cell itself and the internalized surfactant has shown that the surfactant molecules is first accumulated inside a CHL cell followed by a sudden leak of cytosolic components such as proteins to the outside of the cell. This finding indicates that surfactant uptake occurs prior to the cell lysis, contrary to what has been believed: surface adsorption of surfactant molecules has been thought to occur first with subsequent disruption of cell membranes. Quantitative CARS microspectroscopy enables us to determine the molecular concentration of the surfactant molecules accumulated in a cell. We have also investigated the effect of a drug, nocodazole, on the surfactant uptake dynamics. As a result of the inhibition of tubulin polymerization by nocodazole, the surfactant uptake rate is significantly lowered. This fact suggests that intracellular membrane trafficking contributes to the surfactant uptake mechanism. PMID:24710120

  13. Surfactant Saturation of Drops in Microgravity by Terrestrial Simulation

    NASA Astrophysics Data System (ADS)

    Viviani, Antonio

    It is well known that diffusion plays an appreciable role in mass transfer only in the case of weak gravitational convection. However, even under such conditions the use of a surfactant as a dif-fusing substance essentially complicates the mass transfer processes. The appearance of gas or liquid inclusions in the surfactant solution causes the development of solutocapillary motion on their surface, which may become a generator of the large-scale flows in the surrounding liquid, especially in microgravity conditions. The paper presents the results of terrestrial simulation of such flows during saturation of the drop of weakly soluble fluid by a surfactant from its water solution forming a thin ( 1 ) horizontal layer. In our experiments, we used chlorobenzene and water as the basic fluids of the drop and the surrounding medium, respectively, and isopropyl alcohol -as a surfactant. The initial concentration 0 of the alcohol in the solution ranged from 5 to 50%. This lent specific feature to the saturation process, manifesting itself in the fact that at concentration higher than 25% a mutual dissolution of water and chlorobenzene began to increase. Visualization of flow structures and concentration fields showed that in laboratory conditions even at maximum suppression of the gravitational convection the saturation of the surfactant is a rather complicated process specified by the initial surfactant concentration in the solution and by the degree of the solution homogeneity. In the case of initially homoge-neous solution, a complicated character of mass transfer between the drop and the surrounding medium is evidently due to the small values of surfactant diffusion coefficients in basic flu-ids. Penetration of the surfactant into the drop leads to the formation of local inhomigeneities of the solution density at both sides of the interface and to the development of a slow three-dimensional flow of gravitational nature. An increase in the concentration gives rise to a

  14. Solution rheology of polyelectrolytes and polyelectrolyte-surfactant systems

    NASA Astrophysics Data System (ADS)

    Plucktaveesak, Nopparat

    The fundamental understanding of polyelectrolytes in aqueous solutions is an important branch of polymer research. In this work, the rheological properties of polyelectrolytes and polyelectrolyte/surfactant systems are studied. Various synthetic poly electrolytes are chosen with varied hydrophobicity. We discuss the effects of adding various surfactants to aqueous solutions of poly(ethylene oxide)-b-poly(propylene oxide)- b-polyethylene oxide)-g-poly(acrylic acid) (PEO-PPO-PAA) in the first chapter. Thermogelation in aqueous solutions of PEO-PPO-PAA is due to micellization caused by aggregation of poly(propylene oxide) (PPO) blocks resulting from temperature-induced dehydration of PPO. When nonionic surfactants with hydrophilic-lipophilic balance (HLB) parameter exceeding 11 or Cn alkylsulfates; n-octyl (C8), n-decyl (C 10) and n-dodecyl (C12) sulfates are added, the gelation threshold temperature (Tgel) of 1.0wt% PEO-PPO-PAA in aqueous solutions increases. In contrast, when nonionic surfactants with HLB below 11 are added, the gelation temperature decreases. On the other hand, alkylsulfates with n = 16 or 18 and poly(ethylene oxide) (PEO) do not affect the Tgel. The results imply that both hydrophobicity and tail length of the added surfactant play important roles in the interaction of PEO-PPO-PAA micelles and the surfactant. In the second chapter, the solution behavior of alternating copolymers of maleic acid and hydrophobic monomer is studied. The alternating structure of monomers with two-carboxylic groups and hydrophobic monomers make these copolymers unique. Under appropriate conditions, these carboxylic groups dissociate leaving charges on the chain. The potentiometric titrations of copolymer solutions with added CaCl2 reveal two distinct dissociation processes corresponding to the dissociation of the two adjacent carboxylic acids. The viscosity data as a function of polymer concentration of poly(isobutylene-alt-sodium maleate), poly

  15. Surfactant-Enhanced Benard Convection on an Evaporating Drop

    NASA Astrophysics Data System (ADS)

    Nguyen, Van X.; Stebe, Kathleen J.

    2001-11-01

    Surfactant effects on an evaporating drop are studied experimentally. Using a fluorescent probe, the distribution and surface phase of the surfactant is directly imaged throughout the evaporation process. From these experiments, we identify conditions in which surfactants promote surface tension-driven Benard instabilities in aqueous systems. The drops under study contain finely divided particles, which act as tracers in the flow, and form well-defined patterns after the drop evaporates. Two flow fields have been reported in this system. The first occurs because the contact line becomes pinned by solid particles at the contact line region. In order for the contact line to remain fixed, an outward flow toward the ring results, driving further accumulation at the contact ring. A ‘coffee ring’ of particles is left as residue after the drop evaporates[1]. The second flow is Benard convection, driven by surface tension gradients on the drop[2,3]. In our experiments, an insoluble monolayer of pentadecanoic acid is spread at the interface of a pendant drop. The surface tension is recorded, and the drop is deposited on a well-defined solid substrate. Fluorescent images of the surface phase of the surfactant are recorded as the drop evaporates. The surfactant monolayer assumes a variety of surface states as a function of the area per molecule at the interface: surface gaseous, surface liquid expanded, and surface liquid condensed phases[4]. Depending upon the surface state of the surfactant as the drop evaporates, transitions of residue patterns left by the particles occur, from the coffee ring pattern to Benard cells to irregular patterns, suggesting a strong resistance to outward flow are observed. The occurrence of Benard cells on a surfactant-rich interface occurs when the interface is in LE-LC coexistence. Prior research concerning surfactant effects on this instability predict that surfactants are strongly stabilizing[5]. The mechanisms for this change in behavior

  16. Tetrabutylammonium alkyl carboxylate surfactants in aqueous solution: self-association behavior, solution nanostructure, and comparison with tetrabutylammonium alkyl sulfate surfactants.

    PubMed

    Zana, Raoul; Schmidt, Judith; Talmon, Yeshayahu

    2005-12-01

    A series of long and ultralong chain tetrabutylammonium alkyl carboxylate (TBACm, TBA = tetrabutylammonium ion; Cm = carboxylate ion C(m-1)H(2)(m-1)CO(2)(-) of total carbon number m) surfactants have been obtained by direct neutralization of the fatty acids with m = 12, 14, 18, 22, and 24 by tetrabutylammonium hydroxide. Time-resolved fluorescence quenching has been used to determine the micelle aggregation number (N) of the surfactants with m = 12, 14, and 18 in the temperature range 10-50 degrees C and of the surfactants with m = 22 and 24 in the temperature range 25-60 degrees C. In all instances the values of N were well below those that can be calculated for the maximum spherical micelle formed by surfactants with the same alkyl chain as the investigated surfactants on the basis of the oil drop model for the micelle core. The microstructure of selected solutions of TBAC22 was examined using transmission electron microscopy at cryogenic temperature and compared to the microstructure of solutions of TBA dodecyl and tetradecyl sulfates. These observations generally confirmed the findings of TRFQ. The self-association behavior of these anionic surfactants with TBA counterions is explained on the basis of the large size and the hydrophobicity of the tetrabutylammonium ions. The important differences in behavior that have been evidenced between tetrabutylammonium alkyl carboxylates and alkyl sulfates are discussed in terms of differences in distribution of the surfactant electrical charge on the headgroup and alkyl chain predicted by quantum chemical calculations (Langmuir 1999, 15, 7546).

  17. Biophysicochemical Interaction of a Clinical Pulmonary Surfactant with Nanoalumina.

    PubMed

    Mousseau, F; Le Borgne, R; Seyrek, E; Berret, J-F

    2015-07-01

    We report on the interaction of pulmonary surfactant composed of phospholipids and proteins with nanometric alumina (Al2O3) in the context of lung exposure and nanotoxicity. We study the bulk properties of phospholipid/nanoparticle dispersions and determine the nature of their interactions. The clinical surfactant Curosurf, both native and extruded, and a protein-free surfactant are investigated. The phase behavior of mixed surfactant/particle dispersions was determined by optical and electron microscopy, light scattering, and zeta potential measurements. It exhibits broad similarities with that of strongly interacting nanosystems such as polymers, proteins or particles, and supports the hypothesis of electrostatic complexation. At a critical stoichiometry, micron-sized aggregates arising from the association between oppositely charged vesicles and nanoparticles are formed. Contrary to the models of lipoprotein corona or of particle wrapping, our work shows that vesicles maintain their structural integrity and trap the particles at their surfaces. The agglomeration of particles in surfactant phase is a phenomenon of importance that could change the interactions of the particles with lung cells.

  18. Hot water, surfactant, and polymer flooding process for heavy oil

    SciTech Connect

    Ashrawi, S.S.

    1992-01-28

    This patent describes a method of recovering viscous petroleum from a subterranean, porous and permeable formation penetrated by at least one injection well and by at least one production well, both in fluid communication with the formation. It comprises injecting a thermal recovery fluid into the formation to heat the formation above its natural temperature; injecting a surfactant solution into the formation, the surfactant solution comprising a mixture of petrochemical sulfonate and a co-surfactant, the co-surfactant being an olefin sulfonate having the general formula CH{sub 3}{emdash}(CH{sub 2}){sub x}{emdash}CH{double bond}CH{emdash}(CH{sub 2}){sub y}{emdash}SO{sub 3}{sup {minus}}M{sup +}, wherein x is 0 to 15, x + y is 9 to 15, and M is a monovalent cation; injecting a water-soluble polymer solution into the formation through the same well the surfactant solution was injected into; and recovering petroleum through a production well.

  19. Surfactant-activated microgels: a new pathway to rheology modification.

    PubMed

    Chari, Krishnan; Hsu, Raymond; Bhargava, Prachur; Figura, Brian; Yang, Wayne; Park, Jung Hyun; Clifford, Ted; Kadir, Murat

    2013-12-17

    Alkali swellable microgels are widely used to control rheology of formulated products containing surfactants. However, formulations based on these pH-responsive polymers show undesirably large changes in yield stress in a range of pH close to the pKa of the acid group. Analysis of the behavior of a cross-linked copolymer of ethyl acrylate and methacrylic acid in the nonionized form (at pH below the pKa of methacrylic acid) in the presence of sodium dodecyl sulfate shows surfactant-mediated swelling (an increase in particle diameter by over 2.5×) and a peak in zero-shear viscosity versus surfactant concentration indicating surfactant-mediated interaction of the swollen microgels. On the basis of these results, we demonstrate a new class of nonionic microgels composed of hydrophobic alkyl acrylates and hydrophilic hydroxyalkyl esters that utilize the effects of surfactant-mediated swelling and interaction to provide pH-independent rheological properties.

  20. Electrophoretic mobility of oil droplets in electrolyte and surfactant solutions.

    PubMed

    Wuzhang, Jiachen; Song, Yongxin; Sun, Runzhe; Pan, Xinxiang; Li, Dongqing

    2015-10-01

    Electrophoretic mobility of oil droplets of micron sizes in PBS and ionic surfactant solutions was measured in this paper. The experimental results show that, in addition to the applied electric field, the speed and the direction of electrophoretic motion of oil droplets depend on the surfactant concentration and on if the droplet is in negatively charged SDS solutions or in positively charged hexadecyltrimethylammonium bromide (CTAB) solutions. The absolute value of the electrophoretic mobility increases with increased surfactant concentration before the surfactant concentration reaches to the CMC. It was also found that there are two vortices around the oil droplet under the applied electric field. The size of the vortices changes with the surfactant and with the electric field. The vortices around the droplet directly affect the drag of the flow field to the droplet motion and should be considered in the studies of electrophoretic mobility of oil droplets. The existence of the vortices will also influence the determination and the interpretation of the zeta potential of the oil droplets based on the measured mobility data. PMID:26140616

  1. Interfacial behavior of pulmonary surfactant preparations containing egg yolk lecithin.

    PubMed

    Nakahara, Hiromichi; Shibata, Osamu

    2014-01-01

    Mammalian lungs are covered with lipid-protein complexes or pulmonary surfactants. In this work, which aimed towards the less expensive production of artificial pulmonary surfactants, we produced surfactants composed of egg yolk lecithin (eggPC), palmitic acid, and hexadecanol (= 0.30/0.35/0.35, mol/mol/mol ) containing different amounts of Hel 13-5 (NH2-KLLKLLLKLWLKLLKLLL-COOH) as a substitute for the proteins in native pulmonary surfactants. Surface pressure (π)-molecular area (A) and surface potential (DV)-A isotherms of the mixtures were measured via the Wilhelmy and ionizing (241)Am electrode methods, respectively. The interactions between the lipid components and Hel 13-5 led to variations in the surface pressure caused by the expulsion of fluid components from the surface. Furthermore, the π-A and DV-A isotherms featured large hysteresis loops for the surfactant that contained a small amount of Hel 13-5 during compression and successive expansion cycling. To elucidate the morphology, the phase behavior was visualized in situ at the air-water interface by means of fluorescence microscopy; the images suggested less effective interactions between Hel 13-5 and the unsaturated PC in eggPC despite the similarity of their monolayer properties.

  2. Impact of surfactants on the crystal growth of amorphous celecoxib.

    PubMed

    Mosquera-Giraldo, Laura I; Trasi, Niraj S; Taylor, Lynne S

    2014-01-30

    The purpose of this study was to investigate the impact of surfactants on the rate of crystal growth of amorphous celecoxib, both in the presence and absence of a polymer. Celecoxib is a poorly water-soluble non-steroidal anti-inflammatory drug. Such compounds may be formulated as amorphous solid dispersions to improve bioavailability, and solid dispersions can contain both a surfactant and a polymer. While the impact of polymers on crystal growth rates has been studied, the effect of surfactants is largely unexplored. Herein, the effect of sodium lauryl sulfate (SLS), sucrose palmitate and d-α tocopherol polyethylenglycol 1000 succinate (TPGS) at a 10% (w/w) concentration on the crystal growth rate of celecoxib was investigated. Linear crystal growth rates as a function of temperature (70-120 °C) were measured using optical microscopy. The mixtures were characterized using differential scanning calorimetry (DSC), infrared spectroscopy, and X-ray diffraction. The results indicate that the surfactants increase the crystal growth rate of amorphous celecoxib. However, addition of polyvinyl pyrrolidone (PVP) helped to mitigate the increase in growth rates, although the ternary systems were highly complex. Thus it is clear that the impact of a surfactant on the physical stability of an amorphous solid dispersion should be considered during formulation.

  3. [Adsorption of phenol chemicals by surfactant-modified zeolites].

    PubMed

    Xie, Jie; Wang, Zhe; Wu, De-Yi; Li, Chun-Jie

    2012-12-01

    Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently. Surfactant-modified zeolites were studied for adsorption of phenol chemicals (phenol, p-chlorphenol, bisphenol A). It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification. The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm. For the two surfactant-surfactant modified zeolites, the maximum adsorption amounts of phenol, p-chlorphenol, and bisphenol A calculated from the Langmuir equation were 37.7, 52.36, 90.9 mg x g(-1) and 10.7, 22.83, 56.8 mg x g(-1), respectively. When pH values of solutions were higher than the pK(a) values of phenol chemicals, the removal efficiencies were getting higher with the increase of pH values. The octanol/water partition coefficient (K(ow)) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites. Higher K(ow) value, which means the greater hydrophobicity of the chemicals, resulted in a higher removal.

  4. Dynamics of Surfactant Liquid Plugs at Bifurcating Lung Airway Models

    NASA Astrophysics Data System (ADS)

    Tavana, Hossein

    2013-11-01

    A surfactant liquid plug forms in the trachea during surfactant replacement therapy (SRT) of premature babies. Under air pressure, the plug propagates downstream and continuously divides into smaller daughter plugs at continuously branching lung airways. Propagating plugs deposit a thin film on airway walls to reduce surface tension and facilitate breathing. The effectiveness of SRT greatly depends on the final distribution of instilled surfactant within airways. To understand this process, we investigate dynamics of splitting of surfactant plugs in engineered bifurcating airway models. A liquid plug is instilled in the parent tube to propagate and split at the bifurcation. A split ratio, R, is defined as the ratio of daughter plug lengths in the top and bottom daughter airway tubes and studied as a function of the 3D orientation of airways and different flow conditions. For a given Capillary number (Ca), orienting airways farther away from a horizontal position reduced R due to the flow of a larger volume into the gravitationally favored daughter airway. At each orientation, R increased with 0.0005 < Ca < 0.05. This effect diminished by decrease in airways diameter. This approach will help elucidate surfactant distribution in airways and develop effective SRT strategies.

  5. Partition and water/oil adsorption of some surfactants.

    PubMed

    Tadmouri, Rawad; Zedde, Chantal; Routaboul, Corinne; Micheau, Jean-Claude; Pimienta, Véronique

    2008-10-01

    Adsorption isotherms have been determined at the water/oil interface for five biphasic systems involving surfactants (non-ionic and ionic) present in both phases at partition equilibrium. The systems studied were polyoxyethylene(23)lauryl ether (Brij35) in water/hexane and four ionic surfactants, hexadecyltrimethylammonium bromide (CTAB), and a series of three tetraalkylammonium dodecylsulfate (TEADS, TPADS, and TBADS) in water/CH 2Cl 2. Interfacial tension measurements performed at the water/air and water/oil interfaces provided all the necessary information for the determination of the adsorption parameters by taking partition into account. These measurements also allowed the comparison of the adsorption properties at both interfaces which showed an increase of the adsorption equilibrium constant and a decrease of the maximum surface concentration at the water/oil interface compared to water/air. The values of the critical aggregation concentration showed, in all cases, that only the surfactant dissolved in the aqueous phase contribute to the decrease of the water/oil interfacial tension. In the case of the four ionic surfactants, the critical aggregation concentration obtained in biphasic conditions were lowered because of the formation of mixed surfactant-CH 2Cl 2 aggregates.

  6. Vacuum Production Characteristics of Ice Slurries Treated with Surfactants

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi; Okada, Kazuto; Fujisawa, Ryo; Komoda, Yoshiyuki; Usui, Hiromoto

    The production characteristics of ice particles treated with surfactant additives and brines in the case of using vacuum ice production system have been investigated. In the present study, cetyl dimethyl betaine was used as surfactants and the results were compared with those in the case when poly(oxyethylene) sorbitan monooleate used in the previous studies was tested. From the results, it was found that ice particles size produced by using a vacuum system becomes much smaller than that made by the scraper ice production system used in the previous study. It was also found that the size of ice particles treated with the present surfactants without brine still remains small. Additionally, the fluidity of ice slurry treated with the present surfactants was enough high though the drag reduction could not be observed due to the small diameter of the present test pipe. From these results, a combination of the present surfactant treatment without brine and the vacuum ice production system was concluded to have an advantage for the production of fine ice particles.

  7. The effect of smoke inhalation on pulmonary surfactant.

    PubMed

    Nieman, G F; Clark, W R; Wax, S D; Webb, S R

    1980-02-01

    This paper details efforts to define the primary pathophysiology of acute smoke inhalation without the variables of infection, burns, or fluid resuscitation. A standard dose of smoke (wood and kerosene) was delivered at 37 C to mongrel dogs. The parameters studied included blood gases, carboxyhemoglobin, pulmonary and systemic hemodynamics, respiratory mechanics, surface tension area curves as an indication of surfactant activity, and in vivo photomicroscopy. The FiO2 of the smoke was 17 volumes per cent; the carbon monoxide 17,000 ppm. Immediately following smoke exposure, dense, nonsegmental atelectasis developed. Hemodynamic changes were insignificant, but the PaO2 fell to 49 mmHg; the right to left shunt rose from 5 to 41%. Surfactant reduction was significant: enough to cause an increase in the minimum surface tension from 7 to 22 dynes/cm. This surfactant loss may explain the atelectasis seen and the marked instability of subpleural alveolar walls. The data collected are consistent and support the acute inactivation of surfactant as one of the primary pathophysiologic events in smoke inhalation. The clinical correlation is good; surfactant loss may explain why victims of smoke inhalation are so vulnerable to fluid administration if they have thermal burns as well effectiveness of medical devices. PMID:6892674

  8. Emulsification through surfactant hydration: the PIC process revisited.

    PubMed

    Roger, Kevin; Cabane, Bernard; Olsson, Ulf

    2011-01-18

    We have performed sudden composition changes on a (surfactant + oil + water) system by adding water to a (surfactant + oil) solution. This composition change quenches the system into a metastable oil-in-water emulsion with a population in the 100 nm range. The conditions for a successful quench are as follows: the initial water content should be below a boundary called the "clearing boundary" (CB), the final water content should be sufficiently beyond CB, and the quench should be fast. We have used high purity components to avoid the complex phase separation patterns that occur with low purity ingredients: the surfactant is octaethylenehexadecyl ether (C(16)E(8)) and the oil is hexadecane (C(16)). Under these conditions, we show that the pathway for this type of quench proceeds through the swelling of the reverse micellar phase by the added water and the formation of a sponge phase. Then, further water addition causes the nucleation of oil droplets in this sponge phase, with a size that matches the spontaneous curvature of the sponge phase. Part of the surfactant remains adsorbed on these droplets, and the rest is expelled as micelles that coexist with the droplets. It is concluded that a PIC emulsification will always lead to a bimodal size distribution with surfactant "wasted" in small micelles. This is in contrast with the more efficient PIT emulsification.

  9. Atomistic Simulations of Poly(N-isopropylacrylamide) Surfactants in Water

    NASA Astrophysics Data System (ADS)

    Abbott, Lauren J.; Stevens, Mark J.

    2015-03-01

    The amphiphilic polymer poly(N-isopropylacrylamide) (PNIPAM) displays a sharp phase transition at its LCST around 32 °C, which results from competing interactions of the hydrophobic and hydrophilic groups with water. This thermoresponsive behavior can be exploited in more complex architectures, such as block copolymers or surfactants, to provide responsive PNIPAM head groups. In these systems, however, changes to the hydrophobic/hydrophilic balance can alter the transition behavior. In this work, we perform atomistic simulations of PNIPAM-alkyl surfactants to study the temperature dependence of their structures. A single chain of the surfactant does not show temperature-responsive behavior. Instead, below and above the LCST of PNIPAM, the surfactant folds to bring the hydrophobic alkyl tail in contact with the PNIPAM backbone, shielding it from water. In addition to single chains, we explore the self-assembly of multiple surfactants into micelles and how the temperature-dependent behavior is changed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Spatiotemporal measurement of surfactant distribution on gravity-capillary waves

    NASA Astrophysics Data System (ADS)

    Strickland, Stephen; Shearer, Michael; Daniels, Karen

    2015-11-01

    Materials adsorbed to the surface of a fluid - for instance, crude oil, biogenic slicks, or industrial/medical surfactants - will move in response to surface waves. Due to the difficulty of non-invasive measurement of the spatial distribution of a molecular monolayer, little is known about the dynamics that couple the surface waves and the evolving density field. We report measurements of the spatiotemporal dynamics of the density field of an insoluble surfactant driven by gravity-capillary waves in a shallow cylindrical container. Standing Faraday waves and traveling waves generated by the meniscus are superimposed to create a non-trivial surfactant density field. We measure both the height field of the surface using moire-imaging and the density field of the surfactant via the fluorescence of NBD-tagged phosphatidylcholine. Through phase-averaging stroboscopically-acquired images of the density field, we determine that the surfactant accumulates on the leading edge of the traveling meniscus waves and in the troughs of the standing Faraday waves. We fit the spatiotemporal variations in the two fields and report measurements of the wavenumbers as well as a temporal phase shift between the two fields. These measurements suggest that longitudinal waves contribute to the dynamics. Funded by NSF grant DMS-0968258.

  11. Mutagenicity of diesel exhaust soot dispersed in phospholipid surfactants

    SciTech Connect

    Wallace, W.; Keane, M.; Xing, S.; Harrison, J.; Gautam, M.; Ong, T.

    1994-06-01

    Organics extractable from respirable diesel exhaust soot particles by organic solvents have been known for some time to be direct acting frameshift mutagens in the Ames Salmonella typhimurium histidine reversion assay. Upon deposition in a pulmonary alveolus or respiratory bronchiole, respirable diesel soot particles will contact first the hypophase which is coated by and laden with surfactants. To model interactions of soot and pulmonary surfactant, the authors dispersed soots in vitro in the primary phospholipid pulmonary surfactant dipalmitoyl glycerophosphorylcholine (lecithin) (DPL) in physiological saline. They have shown that diesel soots dispersed in lecithin surfactant can express mutagenic activity, in the Ames assay system using S. typhimurium TA98, comparable to that expressed by equal amounts of soot extracted by dichloromethane/dimethylsulfoxide (DCM/DMSO). Here the authors report additional data on the same system using additional exhaust soots and also using two other phospholipids, dipalmitoyl glycerophosphoryl ethanolamine (DPPE), and dipalmitoyl phosphatidic acid (DPPA), with different ionic character hydrophilic moieties. A preliminary study of the surfactant dispersed soot in an eucaryotic cell test system also is reported.

  12. Universal surfactant for water, oils, and CO2.

    PubMed

    Mohamed, Azmi; Trickett, Kieran; Chin, Swee Yee; Cummings, Stephen; Sagisaka, Masanobu; Hudson, Laura; Nave, Sandrine; Dyer, Robert; Rogers, Sarah E; Heenan, Richard K; Eastoe, Julian

    2010-09-01

    A trichain anionic surfactant sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sulfonate (TC14) is shown to aggregate in three different types of solvent: water, heptane, and liquid CO(2). Small-angle neutron scattering (SANS) has been used to characterize the surfactant aggregates in water, heptane, and dense CO(2). Surface tension measurements, and analyses, show that the addition of a third branched chain to the surfactant structural template is critical for sufficiently lowering the surface energy, tipping the balance between a CO(2)-incompatible surfactant (AOT) and CO(2)-philic compounds that will aggregate to form micelles in dense CO(2) (TC14). These results highlight TC14 as one of the most adaptable and useful surfactants discovered to date, being compatible with a wide range of solvent types from high dielectric polar solvent water to alkanes with low dielectrics and even being active in the uncooperative and challenging solvent environment of liquid CO(2).

  13. Activated sludge acclimatisation kinetics to non-ionic surfactants.

    PubMed

    Carvalho, G; Novais, J M; Pinheiro, H M

    2003-01-01

    The biodegradation of surfactants is a frequent and complex problem in domestic and industrial wastewater treatment processes. In addition to the resulting metabolites being sometimes refractory, the complete biodegradation of many of the most employed non-ionic surfactants requires long hydraulic retention times and the presence of specialised bacterial consortia. Preliminary acclimatisation tests highlighted the importance of the sludge acclimatisation state to a specific surfactant substrate for biotreatment efficiency. This paper reports on studies aimed at quantifying activated sludge acclimatisation and memory retention levels when subjected to changes in the type of surfactant included in the feed. Several transitions were tested, namely from an alkylphenol ethoxylate to a linear alkyl ethoxylate and the reverse, and between alkyl ethoxylates with different hydrophobic and hydrophilic molecular chain lengths. The kinetic results showed that sludge activation and memory loss were more dynamic for primary biodegradation It was found that the sludge was harder to adapt to alkylphenol ethoxylate than to alkyl ethoxylate. The former also apparently introduced an inhibitory effect, resulting in very slow degradation kinetics when imposed to alkyl ethoxylate acclimatised sludge. When replacing an alkyl ethoxylate with another surfactant of the same family, a longer ethoxylate chain reduced the degradation rates. This effect was further enhanced by simultaneously increasing the hydrophobic chain length of the substrate. The acclimatisation kinetic after the replacement of an alkyl ethoxylate by a longer counterpart was slower than the reverse case, and memory was also more easily lost. PMID:12641258

  14. Evaluation of surfactant flushing for remediating EDC-tar contamination

    NASA Astrophysics Data System (ADS)

    Liang, Chenju; Hsieh, Cheng-Lin

    2015-06-01

    Ethylene dichloride tar (EDC-tar) is a dense non-aqueous phase liquid (DNAPL) waste originated from the process of vinyl chloride production, with major constituents including chlorinated aliphatic and aromatic hydrocarbons. This study investigated the feasibility of Surfactant Enhanced Aquifer Remediation (SEAR) for treating EDC-tar contaminated aquifers. Initial experiments explored the potential to enhance the apparent solubility of EDC-tar using single or mixed surfactants. The results showed that an aqueous solution mixed anionic and non-ionic surfactants (i.e., SDS/Tween 80) exhibited higher EDC-tar apparent solubility and lower surface tension than other surfactant systems tested. Additionally, alkaline pH aids in increasing the EDC-tar apparent solubility. In column flushing experiments, it was seen that the alkaline mixed SDS/Tween 80 solution showed better removal of pure EDC-tar from silica sand porous media. Furthermore, separation of EDC-tar in the surfactant solution was conducted employing a salting-out effect. Significant separation of DNAPL was observed when 13 wt.% or more NaCl was added to the solution. Overall, this study evaluates the feasibility of using SEAR for remediating EDC-tar contaminated subsurface soil and groundwater.

  15. Controlling block copolymer phase behavior using ionic surfactant

    NASA Astrophysics Data System (ADS)

    Ray, D.; Aswal, V. K.

    2016-05-01

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO26PO39EO26)] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle-surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  16. Evaluation of surfactant flushing for remediating EDC-tar contamination.

    PubMed

    Liang, Chenju; Hsieh, Cheng-Lin

    2015-01-01

    Ethylene dichloride tar (EDC-tar) is a dense non-aqueous phase liquid (DNAPL) waste originated from the process of vinyl chloride production, with major constituents including chlorinated aliphatic and aromatic hydrocarbons. This study investigated the feasibility of Surfactant Enhanced Aquifer Remediation (SEAR) for treating EDC-tar contaminated aquifers. Initial experiments explored the potential to enhance the apparent solubility of EDC-tar using single or mixed surfactants. The results showed that an aqueous solution mixed anionic and non-ionic surfactants (i.e., SDS/Tween 80) exhibited higher EDC-tar apparent solubility and lower surface tension than other surfactant systems tested. Additionally, alkaline pH aids in increasing the EDC-tar apparent solubility. In column flushing experiments, it was seen that the alkaline mixed SDS/Tween 80 solution showed better removal of pure EDC-tar from silica sand porous media. Furthermore, separation of EDC-tar in the surfactant solution was conducted employing a salting-out effect. Significant separation of DNAPL was observed when 13 wt.% or more NaCl was added to the solution. Overall, this study evaluates the feasibility of using SEAR for remediating EDC-tar contaminated subsurface soil and groundwater.

  17. Amphoteric surfactants: processing, product composition and properties.

    PubMed

    Leidreiter, H I; Gruning, B; Kaseborn, D

    1997-10-01

    Cocamidopropyl betaine (CAPB) has been the most important secondary surfactant for personal-cleansing products for a long time. Its excellent toxicological profile is an important reason for its increasing use in oral-care products. Recently it has gained interest for further applications such as household cleaners, dish-washing liquids, and industrial and technical products. Imidazoline-derived amphoterics such as sodium cocoampho-acetate (SCAA) or diacetate play a more minor role than CAPB. Owing to the low irritation potential of the pure surfactant and its good toxicological properties, ampho-acetates have mainly found applications in cosmetics. Their industrial applications have been relatively small. While CAPB has a well-defined chemical structure from a straightforward production process, most imidazoline-derived amphoterics exhibit a complex composition of compounds with different structures. This depends on the production parameters. Improved processing methods have recently led to the commercial availability of well-defined SCAA with low levels of by-products. Modern production processes and the composition of high-purity amphoterics are reviewed. Raw materials and by-products are described, together with their analytical methods. The cosmetic performance, cleansing and foaming power, rheological effects and mildness-enhancing properties of both CAPB and SCAA are compared. La cocamidopropyl-betaine (CAPB) est, depuis longtemps le tensio-actif secondaire le plus important pour les produits d'hygiene personnelle. L'excellent profil toxicologique de la CAPB est certainement une raison majeure de son usage croissant dans les produits de soin buccaux. La CAPB a suscite depuis peu un interet pour des applications supplementaires telles que les nettoyants menagers, les liquides vaisselle, les produits industriels et techniques. Les derives amphoteres de l'imidazoline tels que le cocoampho-acetate de sodium (SCAA) ou le diacetate occupent une place mineure

  18. A DOS Primer for Librarians: Part II.

    ERIC Educational Resources Information Center

    Beecher, Henry

    1990-01-01

    Provides an introduction to DOS commands and strategies for the effective organization and use of hard disks. Functions discussed include the creation of directories and subdirectories, enhanced copying, the assignment of disk drives, and backing up the hard disk. (CLB)

  19. DOS Batch Files As Control Programs

    NASA Technical Reports Server (NTRS)

    Van Dyk, David A.

    1991-01-01

    Computer-programming technique circumvents maximum of 640K imposed on random-access memory (RAM) by DOS (Disk Operating System) software. Involves breaking application program into smaller programs. Each resulting subprogram, when compiled and linked, must be small enough to fit within 640K of RAM. Retrieved from storage on disk as needed. In terms of DOS software, each subprogram ".EXE" file executed in "stand-alone" manner.

  20. Conformational and phase transitions in DNA--photosensitive surfactant solutions: Experiment and modeling.

    PubMed

    Kasyanenko, N; Lysyakova, L; Ramazanov, R; Nesterenko, A; Yaroshevich, I; Titov, E; Alexeev, G; Lezov, A; Unksov, I

    2015-02-01

    DNA binding to trans- and cis-isomers of azobenzene containing cationic surfactant in 5 mM NaCl solution was investigated by the methods of dynamic light scattering (DLS), low-gradient viscometry (LGV), atomic force microscopy (AFM), circular dichroism (CD), gel electrophoresis (GE), flow birefringence (FB), UV-Vis spectrophotometry. Light-responsive conformational transitions of DNA in complex with photosensitive surfactant, changes in DNA optical anisotropy and persistent length, phase transition of DNA into nanoparticles induced by high surfactant concentration, as well as transformation of surfactant conformation under its binding to macromolecule were studied. Computer simulations of micelles formation for cis- and trans-isomers of azobenzene containing surfactant, as well as DNA-surfactant interaction, were carried out. Phase diagram for DNA-surfactant solutions was designed. The possibility to reverse the DNA packaging induced by surfactant binding with the dilution and light irradiation was shown.

  1. Switchable Pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a conventional cationic surfactant.

    PubMed

    Zhu, Yue; Jiang, Jianzhong; Liu, Kaihong; Cui, Zhenggang; Binks, Bernard P

    2015-03-24

    A stable oil-in-water Pickering emulsion stabilized by negatively charged silica nanoparticles hydrophobized in situ with a trace amount of a conventional cationic surfactant can be rendered unstable on addition of an equimolar amount of an anionic surfactant. The emulsion can be subsequently restabilized by adding a similar trace amount of cationic surfactant along with rehomogenization. This destabilization-stabilization behavior can be cycled many times, demonstrating that the Pickering emulsion is switchable. The trigger is the stronger electrostatic interaction between the oppositely charged ionic surfactants compared with that between the cationic surfactant and the (initially) negatively charged particle surfaces. The cationic surfactant prefers to form ion pairs with the added anionic surfactant and thus desorbs from particle surfaces rendering them surface-inactive. This access to switchable Pickering emulsions is easier than those employing switchable surfactants, polymers, or surface-active particles, avoiding both the complicated synthesis and the stringent switching conditions.

  2. Non-ionic surfactants do not consistently improve the enzymatic hydrolysis of pure cellulose.

    PubMed

    Zhou, Yan; Chen, Hongmei; Qi, Feng; Zhao, Xuebing; Liu, Dehua

    2015-04-01

    Non-ionic surfactants have been frequently reported to improve the enzymatic hydrolysis of pretreated lignocellulosic biomass and pure cellulose. However, how the hydrolysis condition, substrate structure and cellulase formulation affect the beneficial action of surfactants has not been well elucidated. In this work, it was found that the enzymatic hydrolysis of pure cellulose was not consistently improved by surfactants. Contrarily, high surfactant concentration, e.g. 5 g/L, which greatly improved the hydrolysis of dilute acid pretreated substrates, actually showed notable inhibition to pure cellulose conversion in the late phase of hydrolysis. Under an optimal hydrolysis condition, the improvement by surfactant was limited, but under harsh conditions surfactant indeed could enhance cellulose conversion. It was proposed that non-ionic surfactants could interact with substrates and cellulases to impact the adsorption behaviors of cellulases. Therefore, the beneficial action of surfactants on pure cellulose hydrolysis is influenced by hydrolysis condition, cellulose structural features and cellulase formulation.

  3. Surfactant for dye-penetrant inspection is insensitive to liquid oxygen

    NASA Technical Reports Server (NTRS)

    1966-01-01

    LOX insensitive solvent is blended into a mixture of commercially available surfactants to clean metal surfaces which are to be investigated by the dye-penetrant method. The surfactant mixture is applied before and after application of the dye.

  4. Removal of 226Ra and 228Ra from TENORM sludge waste using surfactants solutions.

    PubMed

    Attallah, M F; Hamed, Mostafa M; El Afifi, E M; Aly, H F

    2015-01-01

    The feasibility of using surfactants as extracting agent for the removal of radium species from TENORM sludge produced from petroleum industry is evaluated. In this investigation cationic and nonionic surfactants were used as extracting agents for the removal of radium radionuclides from the sludge waste. Two surfactants namely cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX100) were investigated as the extracting agents. Different parameters affecting the removal of both (226)Ra and (228)Ra by the two surfactants as well as their admixture were studied by the batch technique. These parameters include effect of shaking time, surfactants concentration and temperature as well as the effect of surfactants admixture. It was found that, higher solution temperature improves the removal efficiency of radium species. Combined extraction of nonionic and cationic surfactants produces synergistic effect in removal both (226)Ra and (228)Ra, where the removals reached 84% and 80% for (226)Ra and (228)Ra, respectively, were obtained using surfactants admixture.

  5. Phase behavior and oil recovery investigations using mixed and alkaline-enhanced surfactant systems

    SciTech Connect

    Llave, F.M.; Gall, B.L.; French, T.R.; Noll, L.A.; Munden, S.A.

    1992-03-01

    The results of an evaluation of different mixed surfactant and alkaline-enhanced surfactant systems for enhanced oil recovery are described. Several mixed surfactant systems have been studies to evaluate their oil recovery potential as well as improved adaptability to different ranges of salinity, divalent ion concentrations, and temperature. Several combinations of screening methods were used to help identify potential chemical formulations and determine conditions where particular chemical systems can be applied. The effects of different parameters on the behavior of the overall surfactant system were also studied. Several commercially available surfactants were tested as primary components in the mixtures used in the study. These surfactants were formulated with different secondary as well as tertiary components, including ethoxylated and non-ethoxylated sulfonates and sulfates. Improved salinity and hardness tolerance was achieved for some of these chemical systems. The salinity tolerance of these systems were found to be dependent on the molecular weight, surfactant type, and concentration of the surfactant components.

  6. Removal of 226Ra and 228Ra from TENORM sludge waste using surfactants solutions.

    PubMed

    Attallah, M F; Hamed, Mostafa M; El Afifi, E M; Aly, H F

    2015-01-01

    The feasibility of using surfactants as extracting agent for the removal of radium species from TENORM sludge produced from petroleum industry is evaluated. In this investigation cationic and nonionic surfactants were used as extracting agents for the removal of radium radionuclides from the sludge waste. Two surfactants namely cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX100) were investigated as the extracting agents. Different parameters affecting the removal of both (226)Ra and (228)Ra by the two surfactants as well as their admixture were studied by the batch technique. These parameters include effect of shaking time, surfactants concentration and temperature as well as the effect of surfactants admixture. It was found that, higher solution temperature improves the removal efficiency of radium species. Combined extraction of nonionic and cationic surfactants produces synergistic effect in removal both (226)Ra and (228)Ra, where the removals reached 84% and 80% for (226)Ra and (228)Ra, respectively, were obtained using surfactants admixture. PMID:25464043

  7. Surfactant development for enhanced oil recovery. Seventh quarterly report, April 1--June 30, 1995

    SciTech Connect

    1995-11-01

    The overall objective of the project is to develop surfactant system(s) that will enhance projects on tertiary oil recovery. Such surfactant systems will be expected to be stable at high temperatures and exhibit high salinity tolerance. The authors have shown in previous reports that double-tailed surfactants show very good promise as well as remarkable potential for effective tertiary oil recovery. For this reason they have continued to devote research activities on this class of surfactants. In this report two additional double-tailed surfactants were synthesized and their critical micelle concentration (CMC) determined. These surfactants are sodium dihexadecyl phosphate (SDDP) and calcium ditetradecyl sulfonate CaDTDS. These are all anionic surfactants with different head groups. The observed critical micelle concentration for these surfactants are 0.78 {times} 10{sup {minus}5} M and 0.81 {times} 10{sup {minus}5} M, respectively. These CMC values were obtained using conductometric and surface tensiometric methods.

  8. SOLUBILIZATION AND MICROEMULSIFICATION OF CHLORINATED SOLVENTS USING DIRECT FOOD ADDITIVE (EDIBLE) SURFACTANTS (JOURNAL)

    EPA Science Inventory

    Surfactant enhanced subsurface remediation is being evaluated as an innovative technology to expedite contaminant extraction from the subsurface. Regulatory approval of this technology will likely be enhanced by use of surfactants with FDA direct food additive status ("edible" su...

  9. Enhanced molar sorption ratio for naphthalene through the impregnation of surfactant into chitosan hydrogel beads.

    PubMed

    Chatterjee, Sudipta; Lee, Dae S; Lee, Min W; Woo, Seung H

    2010-06-01

    Surfactants in their impregnated forms in chitosan beads (CBs) were used for sorption of naphthalene (NAP) from aqueous solutions. Three different surfactants, Triton X-100 (TX100), cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), were selected for this study. The results showed that surfactant-impregnated CS beads (SICBs) in the form of a separate phase surfactant were very effective for NAP sorption. The calculated molar sorption ratio (MSR(B) mol NAP/mol surfactant) of the surfactant impregnated into SICBs was much greater than the intrinsic molar solubilization ratio (MSR) in liquid phase. The high MSR(B) value could be explained by favorable configurations of surfactants in beads, such as micelles in sorbed form. The equilibrium isotherm did not follow Langmuir or Freundlich models, but followed Chapman sigmoidal equation, indicating co-operative sorption of solutes. Using SICBs as a separate phase surfactant may be a valuable tool for remediation of groundwater contaminated with hydrophobic organic compounds.

  10. Spontaneous surface self-assembly in protein-surfactant mixtures: interactions between hydrophobin and ethoxylated polysorbate surfactants.

    PubMed

    Tucker, Ian M; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Cox, Andrew R; Hedges, Nick; Webster, John R P

    2014-05-01

    The synergistic interactions between certain ethoxylated polysorbate nonionic surfactants and the protein hydrophobin result in spontaneous self-assembly at the air-water interface to form layered surface structures. The surface structures are characterized using neutron reflectivity. The formation of the layered surface structures is promoted by the hydrophobic interaction between the polysorbate alkyl chain and the hydrophobic patch on the surface of the globular hydrophobin and the interaction between the ethoxylated sorbitan headgroup and hydrophilic regions of the protein. The range of the ethoxylated polysorbate concentrations over which the surface ordering occurs is a maximum for the more hydrophobic surfactant polyoxyethylene(8) sorbitan monostearate. The structures at the air-water interface are accompanied by a profound change in the wetting properties of the solution on hydrophobic substrates. In the absence of the polysorbate surfactant, hydrophobin wets a hydrophobic surface, whereas the hydrophobin/ethoxylated polysorbate mixtures where multilayer formation occurs result in a significant dewetting of hydrophobic surfaces. The spontaneous surface self-assembly for hydrophobin/ethoxylated polysorbate surfactant mixtures and the changes in surface wetting properties provide a different insight into protein-surfactant interactions and potential for manipulating surface and interfacial properties and protein surface behavior.

  11. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    DOEpatents

    Smith, Douglas D.; Hiller, John M.

    1998-01-01

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration.

  12. The interaction of a model active pharmaceutical with cationic surfactant and the subsequent design of drug based ionic liquid surfactants.

    PubMed

    Qamar, Sara; Brown, Paul; Ferguson, Steven; Khan, Rafaqat Ali; Ismail, Bushra; Khan, Abdur Rahman; Sayed, Murtaza; Khan, Asad Muhammad

    2016-11-01

    Interactions of active pharmaceutical ingredients (API) with surfactants remain an important research area due to the need to improve drug delivery systems. In this study, UV-Visible spectrophotometry was used to investigate the interactions between a model low molecular weight hydrophilic drug sodium valproate (SV) and cationic surfactant cetyltrimethylammonium bromide (CTAB). Changes in the spectra of SV were observed in pre- and post-micellar concentrations of CTAB. The binding constant (Kb) values and the number of drug molecules encapsulated per micelle were calculated, which posed the possibility of mixed micelle formation and strong complexation between SV and CTAB. These results were compared to those of a novel room temperature surface active ionic liquid, which was synthesized by the removal of inorganic counterions from a 1:1 mixture of CTAB and SV. In this new compound the drug now constitutes a building block of the carrier and, as such, has considerably different surfactant properties to its building blocks. In addition, enhanced solubility in a range of solvents, including simulated gastric fluid, was observed. The study provides valuable experimental evidence concerning the performance of drug based surfactant ionic liquids and how their chemical manipulation, without altering the architecture of the API, leads to control of surfactant behavior and physicochemical properties. In turn, this should feed through to improved and controlled drug release rates and delivery mechanisms, and the prevention of precipitation or formation of polymorphs typical of crystalline form APIs.

  13. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    DOEpatents

    Smith, D.D.; Hiller, J.M.

    1998-02-24

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.

  14. The interaction of a model active pharmaceutical with cationic surfactant and the subsequent design of drug based ionic liquid surfactants.

    PubMed

    Qamar, Sara; Brown, Paul; Ferguson, Steven; Khan, Rafaqat Ali; Ismail, Bushra; Khan, Abdur Rahman; Sayed, Murtaza; Khan, Asad Muhammad

    2016-11-01

    Interactions of active pharmaceutical ingredients (API) with surfactants remain an important research area due to the need to improve drug delivery systems. In this study, UV-Visible spectrophotometry was used to investigate the interactions between a model low molecular weight hydrophilic drug sodium valproate (SV) and cationic surfactant cetyltrimethylammonium bromide (CTAB). Changes in the spectra of SV were observed in pre- and post-micellar concentrations of CTAB. The binding constant (Kb) values and the number of drug molecules encapsulated per micelle were calculated, which posed the possibility of mixed micelle formation and strong complexation between SV and CTAB. These results were compared to those of a novel room temperature surface active ionic liquid, which was synthesized by the removal of inorganic counterions from a 1:1 mixture of CTAB and SV. In this new compound the drug now constitutes a building block of the carrier and, as such, has considerably different surfactant properties to its building blocks. In addition, enhanced solubility in a range of solvents, including simulated gastric fluid, was observed. The study provides valuable experimental evidence concerning the performance of drug based surfactant ionic liquids and how their chemical manipulation, without altering the architecture of the API, leads to control of surfactant behavior and physicochemical properties. In turn, this should feed through to improved and controlled drug release rates and delivery mechanisms, and the prevention of precipitation or formation of polymorphs typical of crystalline form APIs. PMID:27472069

  15. Modification of deeply buried hydrophobic interfaces by ionic surfactants.

    PubMed

    Tamam, Lilach; Pontoni, Diego; Sapir, Zvi; Yefet, Shai; Sloutskin, Eli; Ocko, Benjamin M; Reichert, Harald; Deutsch, Moshe

    2011-04-01

    Hydrophobicity, the spontaneous segregation of oil and water, can be modified by surfactants. The way this modification occurs is studied at the oil-water interface for a range of alkanes and two ionic surfactants. A liquid interfacial monolayer, consisting of a mixture of alkane molecules and surfactant tails, is found. Upon cooling, it freezes at T(s), well above the alkane's bulk freezing temperature, T(b). The monolayer's phase diagram, derived by surface tensiometry, is accounted for by a mixtures-based theory. The monolayer's structure is measured by high-energy X-ray reflectivity above and below T(s). A solid-solid transition in the frozen monolayer, occurring approximately 3 °C below T(s), is discovered and tentatively suggested to be a rotator-to-crystal transition.

  16. Binary surfactant mixtures for minimizing alcohol cosolvent requirements

    SciTech Connect

    Fortney, L.N.; Lalanne-Cassov, C.; Schechter, R.S.; Wade, W.H.; Yiv, S.H.

    1983-10-01

    The role of alcohols in microemulsion formation is two-fold. They are used to bring the oil/water/surfactant system to its optimum formulation and they destroy highly extended structures, generating instead microemulsion. Given the freedom of choice among surfactants and their mixtures, the former role of the alcohol can easily be obviated. However, the latter requirement is more fundamental and not so easily removed. This study provides guidance in the purposeful construction of mixtures of synthetic surfactants which can minimize or eliminate alcohol requirements, depending on temperature and salinity. The approach was to mix straight tailed (high solubilization) species with mid-chain branched (low cosolvent requirement) species in a spectrum of mole ratios and reduce the alcohol concentration to the point that phase transitions destroyed the microemulsion. A number of systems were identified with acceptably large solubilization parameters and no residual cosolvent requirements.

  17. Study of surfactant mediated growth of Ni/V superlattices

    SciTech Connect

    Amir, S. M.; Gupta, Mukul; Potdar, Satish; Gupta, Ajay; Stahn, Jochen

    2013-07-14

    The Ni/V multilayers are useful as soft x-ray mirrors, polarizers, and phase retarders. For these applications, it is necessary that the interfaces roughness and interdiffusion must be as small as possible. The V-on-Ni and Ni-on-V interfaces are asymmetric due to the difference in the surface free energy of Ni and V. In this work, we report Ag surfactant mediated growth of Ni/V superlattices prepared using ion beam sputter deposition technique. These superlattices were studied using x-ray and neutron scattering techniques. It was found that when added in an optimum amount, Ag surfactant results in reduced interface roughness and interdiffusion across the interfaces. Obtained results can be understood with the surfactant floating-off mechanism leading to a balance in the surface free energy of Ni and V.

  18. Tuning of depletion interaction in nanoparticle-surfactant systems

    SciTech Connect

    Ray, D. Aswal, V. K.

    2014-04-24

    The interaction of anionic silica nanoparticles (Ludox LS30) and non-ionic surfactants decaethylene glycol monododecylether (C12E10) without and with anionic sodium dodecyl sulfate (SDS) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticlesurfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-C12E10 system leads to the depletion-induced aggregation of nanoparticles. The system however behaves very differently on addition of SDS where depletion interaction gets suppressed and aggregation of nanoparticles can be prevented. We show that C12E10 and SDS form mixed micelles and the charge on these micelles plays important role in tuning the depletion interaction.

  19. Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces

    NASA Technical Reports Server (NTRS)

    Kumar, Nitin; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid/surfaces. At a hydrophobic surface, the air/hydrophobic solid tension is low, and the solid/aqueous tension is high. A large contact angle forms as the aqueous/air tension acts together with the solid/air tension to balance the large solid/aqueous tension. The aqueous phase, instead of spreading, is held in a meniscus by the large angle. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants (i.e. amphiphiles with a hydrophobic chain of methylene groups attached to a large polar group to give aqueous solubility) do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm or polyethylene. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3)) and an extended ethoxylate (-(OCH2CH2)n-) polar group in the form of a chain with seven or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (lermed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread and can be used in microgravity. We propose that the trisiloxane surfactants superspread when the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross sectional area of the disk is larger than that of the extended ethoxylate chain, the

  20. Modification of deeply buried hydrophobic interfaces by ionic surfactants.

    PubMed

    Tamam, Lilach; Pontoni, Diego; Sapir, Zvi; Yefet, Shai; Sloutskin, Eli; Ocko, Benjamin M; Reichert, Harald; Deutsch, Moshe

    2011-04-01

    Hydrophobicity, the spontaneous segregation of oil and water, can be modified by surfactants. The way this modification occurs is studied at the oil-water interface for a range of alkanes and two ionic surfactants. A liquid interfacial monolayer, consisting of a mixture of alkane molecules and surfactant tails, is found. Upon cooling, it freezes at T(s), well above the alkane's bulk freezing temperature, T(b). The monolayer's phase diagram, derived by surface tensiometry, is accounted for by a mixtures-based theory. The monolayer's structure is measured by high-energy X-ray reflectivity above and below T(s). A solid-solid transition in the frozen monolayer, occurring approximately 3 °C below T(s), is discovered and tentatively suggested to be a rotator-to-crystal transition. PMID:21422287

  1. Remediation of sandy soils using surfactant solutions and foams.

    PubMed

    Couto, Hudson J B; Massarani, Guilio; Biscaia, Evaristo C; Sant'Anna, Geraldo L

    2009-05-30

    Remediation of sandy soils contaminated with diesel oil was investigated in bench-scale experiments. Surfactant solution, regular foams and colloidal gas aphrons were used as remediation fluids. An experimental design technique was used to investigate the effect of relevant process variables on remediation efficiency. Soils prepared with different average particle sizes (0.04-0.12 cm) and contaminated with different diesel oil contents (40-80 g/kg) were used in experiments conducted with remediation fluids. A mathematical model was proposed allowing for the determination of oil removal rate-constant (k(v)) and oil content remaining in the soil after remediation (C(of)) as well as estimation of the percentage of oil removed. Oil removal efficiencies obtained under the central experimental design conditions were 96%, 88% and 35% for aphrons, regular foams and surfactant solutions, respectively. High removal efficiencies were obtained using regular foams and aphrons, demanding small amounts of surfactant.

  2. Acute eosinophilic pneumonia associated with glyphosate-surfactant exposure.

    PubMed

    De Raadt, Wanda M; Wijnen, Petal A; Bast, Aalt; Bekers, Otto; Drent, Marjolein

    2015-01-01

    We report a case of a female patient who developed acute eosinophilic pneumonia (AEP) after recent onset of smoking and exposure to glyphosate-surfactant.The additional exposure associated with the recent start of smoking may have contributed to the development and/or severity of AEP.A clinical relapse after re-challenge four years later both with smoking and glyphosate-surfactant made the association highly likely.Respiratory distress is a factor of poor outcome and mortality after ingestion of glyphosate-surfactant.This case highlights the importance of a thorough exposure history e.g., possible occupational and environmental exposures together with drug-intake.Genotyping should be considered in cases of severe unexplained pulmonary damage. PMID:26278698

  3. Evaluation of aqueous-foam surfactants for geothermal drilling fluids

    SciTech Connect

    Rand, P.B.; Montoya, O.J.

    1983-07-01

    Aqueous foams are potentially useful drilling and cleanout fluids for geothermal applications. Successful use of foams requires surfactants (foaming agents) that can survive in the high-temperature geothermal environment. In this study, solutions of aqueous-foam-forming surfactants have been exposed to 260/sup 0/C (500/sup 0/F) and 310/sup 0/C (590/sup 0/F) in various chemical environments to determine if they can survive and make foams after exposure. Comparison of foams before and after exposure and the change in solution pH were used to evaluate their performance. Controlled liquid-volume-fraction foams, made in a packed-bed foam generator, were used for all tests. These tests have shown that many commercially available surfactants can survive short high-temperature cycles in mild acids, mild bases, and salt solutions as evidenced by their ability to make foams after exposure to high temperatures.

  4. Characterization of micellar solutions using surfactant ion electrodes

    SciTech Connect

    Kale, K.M.; Cussler, E.L.; Evans, D.F.

    1980-03-20

    Surfactant ion electrodes were used to investigate the dimerization, aggregation, and micelle formation occurring at 25 C in aqueous solutions of sodium dodecyl sulfate, decyltrimethylammonium bromide, tetradecyltrimethylammonium bromide (TTAB), and orange II (4-((2-hydroxy-1-naphthalenyl) acid monosodium salt) as a function of added electrolyte. The surfactant electrodes, which contained a liquid membrane ion exchanger, permitted a direct determination of the surfactant monomer activity. Analysis of these data gave an association constant of 1000 for orange II, an estimated fractional charge on the DTAB micelle of 0.78, a dimerization constant of 400 (l/m) for TTAB, and a second break above the commonly accepted critical micelle concentration for sodium dodecyl sulfate, a break which may result from an ordering of the micelles. 20 references.

  5. Novel cationic dye and crosslinkable surfactant for DNA biophotonics

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis E.; Latimer, Luke N.; Benight, Stephanie J.; Watanabe, Zachary H.; Elder, Delwin L.; Robinson, Bruce H.; Bartsch, Carrie M.; Heckman, Emily M.; Depotter, Griet; Clays, Koen

    2012-10-01

    Biopolymers such as DNA can be used as a host material for nonlinear optical dyes for photonic applications. In previous work by Heckman et al. (Proc. SPIE 6401, 640108-2), the chromophore Disperse Red 1 (DR1) was combined with CTMA-DNA (a water-insoluble DNA/surfactant complex) to produce an electro-optic waveguide modulator. However, DR1 does not bind strongly to DNA and has a low first hyperpolarizability (β). We have used theory-aided design to develop and synthesize a novel chromophore with strong affinity for DNA and higher β than DR1. We have also developed a surfactant containing a photocrosslinkable moiety that can be used to harden thin films of the DNA/surfactant/dye composite under ultraviolet light. The optical and thermal properties of these materials and outlook for device applications will be discussed.

  6. Isolating phosphorus from sludge in the presence of surfactants

    SciTech Connect

    Nikandrov, I.S.; Kogtev, S.E.; Solinov, I.A.

    1988-09-10

    The authors have examined extracting phosphorus by treatment with solutions containing surfactants, which were oleic acid, sodium tripolyphosphate, and trisodium phosphate, which were of pure or chemically pure grades. The phosphorus slime from the Kuibyshevfosfor Cooperative contained 68% elemental phosphorus; the slime from making red phosphorus at the Korund Cooperative contained 67% elemental phosphorus. The aqueous surfactant was added at an appropriate concentration in a ratio of five to the sludge. The ratio and the concentration providing a high degree of extraction were found in preliminary experiments. The decrease in phosphorus extraction as the temperature difference between the heating medium and the sludge in the reactor increases (it governs the boiling rate) to more than 40% is due to the properties changing on account of the rapid oxidation of the phosphorus and the partial steam distillation. The surfactant isolated from the solution after filtration is suitable for second treatment of new sludge batches.

  7. Modification of Deeply Buried Hydrophobic Interfaces by Ionic Surfactants

    SciTech Connect

    L Tamam; D Pontoni Z Sapir; S Yefet; S Sloutskin; B Ocko; H Reichert; M Deutsch

    2011-12-31

    Hydrophobicity, the spontaneous segregation of oil and water, can be modified by surfactants. The way this modification occurs is studied at the oil-water interface for a range of alkanes and two ionic surfactants. A liquid interfacial monolayer, consisting of a mixture of alkane molecules and surfactant tails, is found. Upon cooling, it freezes at T{sub s}, well above the alkane's bulk freezing temperature, T{sub b}. The monolayer's phase diagram, derived by surface tensiometry, is accounted for by a mixtures-based theory. The monolayer's structure is measured by high-energy X-ray reflectivity above and below T{sub s}. A solid-solid transition in the frozen monolayer, occurring approximately 3 C below T{sub s}, is discovered and tentatively suggested to be a rotator-to-crystal transition.

  8. Modification of Deeply Buried Hydrophobic Interfaces by Ionic Surfactants

    SciTech Connect

    Ocko, B.M.; Tamam, L.; Pontoni, D.; Sapir, Z.; Yefet, S.; Sloutskin, E.; Reichert, H.; Deutsch, M.

    2011-04-05

    Hydrophobicity, the spontaneous segregation of oil and water, can be modified by surfactants. The way this modification occurs is studied at the oil-water interface for a range of alkanes and two ionic surfactants. A liquid interfacial monolayer, consisting of a mixture of alkane molecules and surfactant tails, is found. Upon cooling, it freezes at T{sub s}, well above the alkane's bulk freezing temperature, T{sub b}. The monolayer's phase diagram, derived by surface tensiometry, is accounted for by a mixtures-based theory. The monolayer's structure is measured by high-energy X-ray reflectivity above and below T{sub s}. A solid-solid transition in the frozen monolayer, occurring approximately 3 C below T{sub s}, is discovered and tentatively suggested to be a rotator-to-crystal transition.

  9. Phase Transitions in Nanostructured Polyelectrolyte-Surfactant Complexes

    NASA Astrophysics Data System (ADS)

    Leonard, Michael; Strey, Helmut

    2001-03-01

    When a water-soluble polyelectrolyte is combined with an oppositely-charged surfactant solution at a stoichiometric charge ratio, self-assembly into highly-ordered, water-insoluble structures occurs. We have prepared such complexes with poly(sodium acrylate)-co-acrylamide, alginic acid, and chitosan, combined with cationic and anionic surfactants. The phases exhibited by these complexes in aqueous solution are highly sensitive to such factors as osmotic pressure, salt type, ionic strength, and polyelectrolyte charge density. In this study, we have used small angle X-ray scattering to examine osmotic stress-induced structural phase transitions in these complexes under these various environmental conditions. The morphological consequences of combining polyelectrolytes with swollen, emulsion-bound surfactant micelles were also investigated. Results of this work, as well as the potential to use these complexes as nanoporous, biocompatible materials, will be discussed.

  10. Method for making surfactant-templated thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hongyou

    2002-01-01

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  11. Method for making surfactant-templated thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hong You

    2010-08-31

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  12. Effect of surfactants on weight gain in mice.

    PubMed

    Kaneene, J B; Ross, R W

    1986-03-01

    A study was conducted to determine if four surfactants can induce increased weight gain in the mouse. Basic-H, Triton X-100, Amway All Purpose Adjuvant and X-77 were put in water and fed to various groups of ICR 21 day old female mice for a period of 43 days. All the mice were clinically normal throughout the study period. Pathological examination of a random sample of the mice revealed no gross pathological changes. Similarly, histopathological examination of the lungs, livers and intestines did not reveal any visible lesions. Basic-H and Amway surfactants induced weight gain, though not significantly, better at 0.1% (V/V) concentration while X-77 and Triton X-100 induced weight gain better at 0.4% (V/V) concentration. Overall results show that none of the surfactants tested induced significant weight gain.

  13. Understanding the mutual impact of interaction between hydrophobic nanoparticles and pulmonary surfactant monolayer.

    PubMed

    Sachan, Amit K; Galla, Hans-Joachim

    2014-03-26

    Interaction between hydrophobic nanoparticles (NPs) and a pulmonary surfactant (PS) film leads to a shift in molecular packing of surfactant molecules in the PS film around the interacting NPs. The resultant structural arrangement of surfactants around the NPs may be a potential structural factor responsible for their high retention ability within the film. Moreover, during this interaction, surfactant molecules coat the NPs and change their surface properties.

  14. Surfactant process for promoting gas hydrate formation and application of the same

    DOEpatents

    Rogers, Rudy E.; Zhong, Yu

    2002-01-01

    This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.

  15. Metal Nanoparticle Pollutants Interfere with Pulmonary Surfactant Function In Vitro☆

    PubMed Central

    Bakshi, Mandeep Singh; Zhao, Lin; Smith, Ronald; Possmayer, Fred; Petersen, Nils O.

    2008-01-01

    Abstract Reported associations between air pollution and pulmonary and cardiovascular diseases prompted studies on the effects of gold nanoparticles (Au NP) on pulmonary surfactant function. Low levels (3.7 mol % Au/lipid, 0.98% wt/wt) markedly inhibited adsorption of a semisynthetic pulmonary surfactant (dipalmitoyl-phosphatidylcholine (DPPC)/palmitoyl-oleoyl-phosphatidylglycerol/surfactant protein B (SP-B); 70:30:1 wt %). Au NP also impeded the surfactant's ability to reduce surface tension (γ) to low levels during film compression and to respread during film expansion. Transmission electron microscopy showed that Au NP generated by a seed-growth method were spherical with diameters of ∼15 nm. Including palmitoyl-oleoyl-phosphatidylglycerol appeared to coat the NP with at least one lipid bilayer but did not affect NP shape or size. Similar overall observations occurred with dimyristoyl phosphatidylglycerol. Dipalmitoyl-phosphatidylglycerol was less effective in NP capping, although similar sized NP were formed. Including SP-B (1% wt/wt) appears to induce the formation of elongated strands of interacting threads with the fluid phosphatidylglycerols (PG). Including DPPC resulted in formation of aggregated, less spherical NP with a larger size distribution. With DPPC, strand formation due to SP-B was not observed. Agarose gel electrophoresis studies demonstrated that the aggregation induced by SP-B blocked migration of PG-coated NP. Migration was also influenced by the fluidity of the PGs. It is concluded that Au NP can interact with and sequester pulmonary surfactant phospholipids and, if inhaled from the atmosphere, could impede pulmonary surfactant function in the lung. PMID:17890383

  16. Impact of C-reactive protein (CRP) on surfactant function

    SciTech Connect

    Li, J.J.; Sanders, R.L.; McAdam, K.P.; Hales, C.A.; Thompson, B.T.; Gelfand, J.A.; Burke, J.F. )

    1989-12-01

    Plasma levels of the acute-phase reactant, C-reactive protein (CRP), increase up to one thousand-fold as a result of trauma or inflammation. CRP binds to phosphorylcholine (PC) in a calcium-ion dependent manner. The structural homology between PC and the major phospholipid component of surfactant, dipalmitoyl phosphatidylcholine (DPPC), led to the present study in which we examined if CRP levels might be increased in patients with adult respiratory distress syndrome (ARDS), and subsequently interfere with surfactant function. Our results showed that CRP levels in the bronchoalveolar fluid (BALF) was increased in patients with ARDS (97.8 +/- 84.2 micrograms/mg total protein vs. 4.04 +/- 2.2 micrograms/mg total protein in normals). Our results show that CRP binds to liposomes containing DPPC and phosphatidylglycerol (PG). As a result of this interaction, CRP inhibits the surface activity of a PG-DPPC mixture when tested with a Wilhelmy surfactometer or with the Enhorning pulsating bubble apparatus. Furthermore, the surface activity of a clinically used surfactant replacement, Surfactant TA (2 mg/ml), was also severely impaired by CRP in a dose-dependent manner (doses used ranging from 24.5 to 1,175 micrograms/ml). In contrast, human serum albumin (HSA) at 500 and 900 micrograms/ml had no inhibitory effect on Surfactant TA surface activity. These results suggest that CRP, although not an initiating insult in ARDS, may contribute to the subsequent abnormalities of surfactant function and thus the pathogenesis of the pulmonary dysfunction seen in ARDS.

  17. Postdeposition dispersion of aerosol medications using surfactant carriers.

    PubMed

    Marcinkowski, Amy L; Garoff, Stephen; Tilton, Robert D; Pilewski, Joseph M; Corcoran, Timothy E

    2008-12-01

    Inhaled aerosol drugs provide a means of directly treating the lungs; however, aerosol deposition and drug distribution can be nonuniform, especially in obstructive lung disease. We hypothesize that surfactant-based aerosol carriers will disperse medications over airway surfaces after deposition through surface tension driven flows, increasing dose uniformity and improving drug distribution into underventilated regions. We considered saline and surfactant aerosol delivery via cannula onto several model airway surfaces including porcine gastric mucus (PGM) and both cystic fibrosis (CF) and non-CF human bronchial epithelial cells (HBEs). Fluorescent dye and microspheres (d = 100 nm, 1 mum) were used to qualitatively and quantitatively assess postdeposition dispersion. Aerosol volume median diameters were in the 1-4 mum range. The tested surfactants included sodium dodecyl sulfate (SDS), cetyl trimethyl ammonium bromide (CTAB), tyloxapol, and calfactant. All surfactants tested on PGM (tyloxapol, calfactant, SDS, and CTAB) significantly increased dispersion area versus saline with all markers (2-20-fold increases; all p < 0.04). Both surfactants tested on CF HBEs (tyloxapol and calfactant) significantly increased dispersion area versus saline with all markers (1.6-4.1-fold increases; all p Surfactant carriers enhanced dispersion after aerosol deposition onto model airway surfaces, and may improve the efficacy of inhaled preparations such as inhaled antibiotics for cystic fibrosis.

  18. Vapour-liquid equilibrium relationship between toluene and mixed surfactants.

    PubMed

    Tian, Senlin; Li, Yingjie; Mo, Hong; Ning, Ping

    2012-01-01

    Micellar partitioning of volatile organic compounds (VOCs) in surfactant solutions and its effects on vapour-liquid equilibrium is fundamental to the overall design and implementation ofsurfactant-enhanced remediation. Knowledge of the vapour-liquid equilibrium partitioning coefficients for VOCs, especially in contaminated soils and groundwater in which they exist, is required. Headspace experiments were performed to quantify the effect of three mixed surfactants, cetyltrimethyl ammonium bromide (CTMAB) with tetrabutylammonium bromide (TBAB), sodium dodecyl sulphate (SDS) with Triton X-405 (TX405), and CTMAB with Triton X-100 (TX100), on the apparent Henry's constants (Hc) of toluene at temperatures ranging from 25 degrees C to 40 degrees C. The Hc values were significantly reduced in the presence of all three mixed surfactants at concentrations above their critical micelle concentrations (CMC). Mixed micellar partitioning, showing effects on the vapour-liquid equilibrium of toluene, was primarily responsible for the significant reduction of Hc in their mixed systems. The mixed surfactants CTMAB-TX100 had the greatest effect on Hc above the CMC, followed by SDS-TX405, then CTMAB-TBAB. Mixed systems of CTMAB-TX100 decreased Hc at concentrations significantly lower than the SDS-TX405 and CTMAB-TBAB concentrations, because of to the lower CMC of CTMAB-TX100. Vapour-liquid equilibrium data were also tested against the model (Hc = H/(1 + K(X - CMC)) that described the partitioning of VOCs in vapour-water-micelle phases. The correlation of Hc with mixed surfactant concentrations (X) and CMC can be utilized as an effective tool to predict the Hc by mixed surfactants. PMID:22988616

  19. Evaporation of Sessile Droplets Laden with Particles and Insoluble Surfactants.

    PubMed

    Karapetsas, George; Chandra Sahu, Kirti; Matar, Omar K

    2016-07-12

    We consider the flow dynamics of a thin evaporating droplet in the presence of an insoluble surfactant and noninteracting particles in the bulk. On the basis of lubrication theory, we derive a set of evolution equations for the film height, the interfacial surfactant, and bulk particle concentrations, taking into account the dependence of liquid viscosity on the local particle concentration. An important ingredient of our model is that it takes into account the fact that the surfactant adsorbed at the interface hinders evaporation. We perform a parametric study to investigate how the presence of surfactants affects the evaporation process as well as the flow dynamics with and without the presence of particles in the bulk. Our numerical calculations show that the droplet lifetime is affected significantly by the balance between the ability of the surfactant to enhance spreading, suppressing the effect of thermal Marangoni stresses-induced motion, and to hinder the evaporation flux through the reduction of the effective interfacial area of evaporation, which tend to accelerate and decelerate the evaporation process, respectively. For particle-laden droplets and in the case of dilute solutions, the droplet lifetime is found to be weakly dependent on the initial particle concentration. We also show that the particle deposition patterns are influenced strongly by the direct effect of the surfactant on the evaporative flux; in certain cases, the "coffee-stain" effect is enhanced significantly. A discussion of the delicate interplay between the effects of capillary pressure and solutal and thermal Marangoni stresses, which drive the liquid flow inside of the evaporating droplet giving rise to the observed results, is provided herein.

  20. Vapour-liquid equilibrium relationship between toluene and mixed surfactants.

    PubMed

    Tian, Senlin; Li, Yingjie; Mo, Hong; Ning, Ping

    2012-01-01

    Micellar partitioning of volatile organic compounds (VOCs) in surfactant solutions and its effects on vapour-liquid equilibrium is fundamental to the overall design and implementation ofsurfactant-enhanced remediation. Knowledge of the vapour-liquid equilibrium partitioning coefficients for VOCs, especially in contaminated soils and groundwater in which they exist, is required. Headspace experiments were performed to quantify the effect of three mixed surfactants, cetyltrimethyl ammonium bromide (CTMAB) with tetrabutylammonium bromide (TBAB), sodium dodecyl sulphate (SDS) with Triton X-405 (TX405), and CTMAB with Triton X-100 (TX100), on the apparent Henry's constants (Hc) of toluene at temperatures ranging from 25 degrees C to 40 degrees C. The Hc values were significantly reduced in the presence of all three mixed surfactants at concentrations above their critical micelle concentrations (CMC). Mixed micellar partitioning, showing effects on the vapour-liquid equilibrium of toluene, was primarily responsible for the significant reduction of Hc in their mixed systems. The mixed surfactants CTMAB-TX100 had the greatest effect on Hc above the CMC, followed by SDS-TX405, then CTMAB-TBAB. Mixed systems of CTMAB-TX100 decreased Hc at concentrations significantly lower than the SDS-TX405 and CTMAB-TBAB concentrations, because of to the lower CMC of CTMAB-TX100. Vapour-liquid equilibrium data were also tested against the model (Hc = H/(1 + K(X - CMC)) that described the partitioning of VOCs in vapour-water-micelle phases. The correlation of Hc with mixed surfactant concentrations (X) and CMC can be utilized as an effective tool to predict the Hc by mixed surfactants.

  1. Damping of drop oscillations by surfactants and surface viscosity

    NASA Technical Reports Server (NTRS)

    Rush, Brian M.; Nadim, Ali

    1999-01-01

    An energy equation is derived for the general case of a viscous drop suspended in a viscous medium with surfactants contaminating the interface. It contains terms that clearly identify dissipation contributions from the viscous effects in the bulk fluids, surface shear and dilatational viscosity effects at the interface, and surfactant transport. An efficient boundary integral method is developed which incorporates the effects of a constant surface dilatational viscosity in simulations of an oscillating two-dimensional inviscid drop. Surface dilatational viscosity is shown to have a significant damping effect on the otherwise undamped inviscid oscillations.

  2. Coverage area and fading time of surfactant-amended herbicidal droplets on cucurbitaceous leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper use of appropriate surfactants to control droplet behaviors on leaf surfaces is critical to improve herbicide application efficacy for controlling paddy melons. An esterified seed oil surfactant and a petroleum oil surfactant were investigated to modify spread areas and fading times of water ...

  3. EFFECTS OF SURFACTANTS ON FLUORANTHENE MINERALIZATION BY SPHINGOMONAS PAUCIMOBILIS STRAIN EPA 505

    EPA Science Inventory

    Past results from surfactant-enhanced biodegradation studies have been equivocal because of inhibitory effects of the surfactants and a poor understanding of the characteristics of PAH-degrading microorganisms that make them responsive to surfactants. We have studied the minerali...

  4. Oil recovery method utilizing a dialkyl phenol polyethoxy alkyl sulfonate as a solubilizing co-surfactant

    SciTech Connect

    Dunn, N.G.; Hughes, J.W.; Kudchadker, M.V.

    1980-09-02

    The dialkylbenzene polyethoxy alkyl sulfonate is combined with a water soluble petroleum sulfonate surfactant to form an effective surfactant solution that is stable in high salinity environments. The surfactant solution is injected into an underground petroleum reservoir in order to recover crude oil therefrom.

  5. Use of taurine additives in enhanced oil recovery with anionic surfactants

    SciTech Connect

    Prukop, G.; Chea, C.K.

    1990-12-11

    This patent describes a method disclosed for increasing the recovery of oil in enhanced oil recovery operations employing anionic surfactant by blending a taurine with the anionic surfactant. The taurine may also increase the salt and divalent ion tolerance of the aniomic surfactant.

  6. Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants

    EPA Science Inventory

    One-step green synthesis of gold (Au) nanostructures is described using naturally occurring biodegradable plant surfactants such as VeruSOL-3™ (mixture of d-limonene and plant-based surfactants), VeruSOL-10™, VeruSOL-11™ and VeruSOL-12™ (individual plant-based surfactants deri...

  7. Effect of surfactant types and their concentration on the structural characteristics of nanoclay

    NASA Astrophysics Data System (ADS)

    Zawrah, M. F.; Khattab, R. M.; Saad, E. M.; Gado, R. A.

    2014-03-01

    A series of organo-modified nanoclays was synthesized using three different surfactants having different alkyl chain lengths and concentrations [0.5-5.0 cation exchange capacity (CEC)]. These surfactants were Ethanolamine (EA), Cetyltrimethylammoniumbromide (CTAB) and Tetraoctadecylammoniumbromide (TO). The obtained modified nanoclays were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM) and compared with unmodified nanoclay. The results of XRD analysis indicated that the basal d-spacing has increased with increasing alkyl chain length and surfactant concentration. From the obtained microstructures of these organo-modified nanoclays, the mechanism of surfactant adsorption was proposed. At relatively low loading of surfactant, most of surfactant entered the spacing by an ion-exchange mechanism and is adsorbed onto the interlayer cation sites. When the concentration of the surfactant exceeds the CEC of clay, the surfactant molecules then adhere to the surface adsorbed surfactant. Some surfactants entered the interlayers, whereas the others were attached to the clay surface. When the concentration of surfactant increased further beyond 2.0 CEC, the surfactants might occupy the inter-particle space within the house-of-cards aggregate structure.

  8. Properties of a Soybean Oil-based Surfactant and Its Application in Microbubble Preparation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since microbubbles are thermodynamically unstable, surfactants are usually added to improve their stability. Demand for the use of vegetable oil-based surfactants has been increasing due to safety and environmental concerns. This work investigates a soybean oil-based surfactant and its application...

  9. Screening of mixed surfactant systems: Phase behavior studies and CT imaging of surfactant-enhanced oil recovery experiments

    SciTech Connect

    Llave, F.M.; Gall, B.L.; Lorenz, P.B.; Cook, I.M.; Scott, L.J.

    1993-11-01

    A systematic chemical screening study was conducted on selected anionic-nonionic and nonionic-nonionic systems. The objective of the study was to evaluate and determine combinations of these surfactants that would exhibit favorable phase behavior and solubilization capacity. The effects of different parameters including (a) salinity, (b) temperature, (c) alkane carbon number, (c) hydrophilic/lipophilic balance (HLB) of nonionic component, and (d) type of surfactant on the behavior of the overall chemical system were evaluated. The current work was conducted using a series of ethoxylated nonionic surfactants in combinations of several anionic systems with various hydrocarbons. Efforts to correlate the behavior of these mixed systems led to the development of several models for the chemical systems tested. The models were used to compare the different systems and provided some guidelines for formulating them to account for variations in salinity, oil hydrocarbon number, and temperature. The models were also evaluated to determine conformance with the results from experimental measurements. The models provided good agreement with experimental results. X-ray computed tomography (CT) was used to study fluid distributions during chemical enhanced oil recovery experiments. CT-monitored corefloods were conducted to examine the effect of changing surfactant slug size injection on oil bank formation and propagation. Reducing surfactant slug size resulted in lower total oil production. Oil recovery results, however, did not correlate with slug size for the low-concentration, alkaline, mixed surfactant system used in these tests. The CT measurements showed that polymer mobility control and core features also affected the overall oil recovery results.

  10. Effective Surfactants Blend Concentration Determination for O/W Emulsion Stabilization by Two Nonionic Surfactants by Simple Linear Regression

    PubMed Central

    Hassan, A. K.

    2015-01-01

    In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature–conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility. PMID:26664063

  11. Effective Surfactants Blend Concentration Determination for O/W Emulsion Stabilization by Two Nonionic Surfactants by Simple Linear Regression.

    PubMed

    Hassan, A K

    2015-01-01

    In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature-conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility. PMID:26664063

  12. Microstructure of Mixed Surfactant Solutions by Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Naranjo, Edward

    1995-01-01

    Surfactant mixtures add a new dimension to the design of complex fluid microstructure. By combining different surfactants it is not only possible to modify aggregate morphology and control the macrascopic properties of colloidal dispersions but also to produce a variety of novel synergistic phases. Mixed systems produce new microstructures by altering the intermolecular and interaggregate forces in ways impossible for single component systems. In this dissertation, we report on the phase behavior and microstructure of several synthetic and biological surfactant mixtures as elucidated by freeze-fracture and cryo-transmission electron microscopy. We have discovered that stable, spontaneous unilamellar vesicles can be prepared from aqueous mixtures of commercially available single-tailed cationic and anionic surfactants. Vesicle stability is determined by the length and volume of the hydrocarbon chains of the "catanionic" pairs. Mixtures containing bulky or branched surfactant pairs (C _{16}/C_{12 -14}) in water produce defect-free fairly monodisperse equilibrium vesicles at high dilution. In contrast, mixtures of catanionic surfactants with highly asymmetric tails (C_{16}/C_8 ) form phases of porous vesicles, dilute lamellar L_{alpha}, and anomalous isotropic L_3 phases. Images of the microstructure by freeze-fracture microscopy show that the L_3 phase consists of multiconnected self-avoiding bilayers with saddle shaped curvature. The forces between bilayers of vesicle-forming cationic and anionic surfactant mixtures were also measured using the Surface Force Apparatus (SFA). We find that the vesicles are stabilized by a long range electrostatic repulsion at large separations (>20 A) and an additional salt-independent repulsive force below 20 A. The measured forces correlate very well with the ternary phase diagram and the vesicle microstructures observed by electron microscopy. In addition to studying ionic surfactants, we have also done original work with

  13. Enhancing the Thermocapillary Migration of Bubbles Retarded by the Adsorption of Surfactant Impurities By Using Remobilizing Surfactants

    NASA Astrophysics Data System (ADS)

    Maldarelli, Charles; Balasubramaniam, R.

    2002-11-01

    Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is applied to the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow which propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillarity to direct the movement of bubbles in space is the fact that surfactant impurities which are unavoidably present in the continuous phase can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. (This can also be the case if kinetic desorption of surfactant at the back end of the bubble is much slower than convection.) For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like and bubbles translate as solid particles). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature induced tension gradient, and can decrease to near zero the bubble's thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have been retarded by the adsorption onto the bubble surface of a surfactant impurity. Our remobilization theory proposes to use

  14. Altered lipid synthesis in type II pneumonocytes exposed to lung surfactant.

    PubMed Central

    Thakur, N R; Tesan, M; Tyler, N E; Bleasdale, J E

    1986-01-01

    When type II pneumonocytes were exposed to purified lung surfactant that contained 1-palmitoyl-2-[3H]palmitoyl-glycero-3-phosphocholine, radiolabelled surfactant was apparently taken up by the cells since it could not be removed by either repeated washing or exchange with non-radiolabelled surfactant, but was released when the cells were lysed. After 4 h of exposure to [3H]surfactant, more than half of the 3H within cells remained in disaturated phosphatidylcholine. Incorporation of [3H]choline, [14C]palmitate and [14C]acetate into glycerophospholipids was decreased in type II cells exposed to surfactant and this inhibition, like surfactant uptake, was half-maximal when the extracellular concentration of surfactant was approx. 0.1 mumol of lipid P/ml. Inhibition of incorporation of radiolabelled precursors by surfactant occurred rapidly and reversibly and was not due solely to dilution of the specific radioactivity of intracellular precursors. Activity of dihydroxyacetone-phosphate acyltransferase, but not glycerol-3-phosphate acyltransferase, was decreased in type II cells exposed to surfactant and this was reflected by a decrease in the 14C/3H ratio of total lipids synthesized when cells incubated with [U-14C]glycerol and [2-3H]glycerol were exposed to surfactant. Phosphatidylcholine, phosphatidylglycerol and cholesterol, either individually or mixed in the molar ratio found in surfactant, did not mimic purified surfactant in the inhibition of glycerophospholipid synthesis. In contrast, an apoprotein fraction isolated from surfactant inhibited greatly the incorporation of [3H]choline into lipids and this inhibitory activity was labile to heat and to trypsin. It is concluded that the apparent uptake of surfactant by type II cells in vitro is accompanied by an inhibition of glycerophospholipid synthesis via a mechanism that involves a surfactant apoprotein. Images Fig. 4. PMID:3827860

  15. Cationic surfactant adsorption states determined by the dependence of the electrophoretic mobility on dilution

    SciTech Connect

    Chang, C.H.

    1987-01-01

    A dilution method was devised in order to examine the dependence of the mobility of dilute aqueous coal dispersions on concentration. Mobility trends observed on dilution with water and the parent surfactant solution were interpreted in terms of desorption and adsorption of surfactant on coal. The dispersions were also studied by comparing the surface tension of surfactant solutions with the filtrates from a range of coal dispersions. The surfactants used were DTAB (Dodecyltrimethylammonium Bromide), CTAB (Cetyltrimethylammonium Bromide), ATLAS G-271 (N-Soya-N-ethyl morpholinium ethosulfate) and MERPOL-SE, (CH/sub 3/-(CH/sub 2/)/sub 24/-(OCH/sub 2/CH/sub 2/)/sub 8/-OH). The mobility of coal in the presence of cationic surfactant decreased as the dilution ratio increased and reach a constant value. It was also shown that the mobility remained near zero and constant if a non-ionic surfactant was used. On dilution with cationic surfactant solution, the mobility rose to a constant value at high dilution which was more than twice the aqueous asymptote suggesting the separate contribution of reversibility adsorbed surfactant. The structure of surfactant was another effect which controlled the adsorption mechanism. The two major properties of surfactant structure were the hydrophobicity and steric hindrance. The results also implied that hydrophobic tail-adsorbed was the dominant mechanism in contrast to the model which was proposed in earlier studies. Comparison of surface tension between pure surfactant solution and the filtrate from coal/surfactant solution indicated that the surfactants did not all act alike in some cases. Natural surfactant had been desorbed or eluted and in some cases surfactant had been adsorbed.

  16. Effects of nonionic surfactants on the microbial mineralization of phenanthrene in soil-water systems. [Surfactants used: alkylethoxylate and alkylphenol ethoxylate

    SciTech Connect

    Laha, S.; Luthy, R.G.

    1992-01-01

    The purpose of the work reported in this paper was to determine whether the inhibitory effect on microbial degradation of phenanthrene was specific to the nonionic surfactants used previously, i.e., the alkylethoxylate and alkylphenol ethoxylate surfactants. Thus, a number of nonionic surfactants of varying structures and properties were selected for further investigation. In addition, several tests were performed to verify results from earlier experiments.

  17. Mechanisms for lowering of interfacial tension in alkali/acidic oil systems; Effect of added surfactant

    SciTech Connect

    Rudin, J. Wasan, D.T. . Dept. of Chemical Engineering)

    1992-08-01

    This paper reports that experimental studies are conducted in order to determine the physicochemical mechanism responsible for lowering of interfacial tension in alkali, surfactant, and surfactant-enhanced alkali/acidic oil systems. A well-defined model oil is chosen to examine the influence of various surfactants and surfactant mixtures, such as oleic acid and its ionic counterpart, sodium dodecyl sulfate, petroleum sulfonate, and isobutanol, on equilibrium interfacial tension. With added surfactant alone, the interfacial tension goes through an ultralow minimum with increasing acid concentration. This proves for the first time that the un-ionized acid species plays a major role in affecting interfacial tension, and the ionized acid species.

  18. Length shortening and surfactant mixing behavior of nonionic/ionic mixed cylindrical micelle

    NASA Astrophysics Data System (ADS)

    Kim, Sanghyun; Kwon, Su Yong; Moon, Jun hyuk; Kim, Mahn Won

    2008-10-01

    Cylindrical micelles, which are surfactant self-assembled structures with nm scale, usually grow in length as surfactant concentration increases. Small angle neutron scattering of nonionic/ionic (C 12E 5/DTAB) mixed cylindrical micellar solution showed the shape of aggregates maintained the cylindrical geometry while the micellar length shortened as the fraction of ionic surfactant increased. Unexpectedly, we observed, for the first time, the micellar length shortened as total surfactant concentration increased at constant DTAB mole fraction. This observation suggests that strong non-ideal mixing of the surfactants in the cylindrical micelles, leading to an end-cap energy lowering with increasing concentration, is responsible for the length shortening.

  19. Surfactant Modified/Mediated Thin-Layer Chromatographic Systems for the Analysis of Amino Acids

    PubMed Central

    Bhawani, Showkat A.; Albishri, Hassan M.; Mohamad Ibrahim, Mohamad N.; Mohammad, A.

    2013-01-01

    This review incorporates a large number of chromatographic systems modified by the surfactants. A large number of solvent systems and stationary phases are summarized in this paper. Three different kinds of surfactants (anionic, cationic, and nonionic) are used as modifiers for stationary phases as well as solvent systems. Surfactants are used at all the three different concentration levels (below, above, and at critical micelle concentration) where surfactants behave differently. Modifications of both stationary phases and solvent systems by surfactants produced a new generation of chromatographic systems. Microemulsion solvent systems are also incorporated in this paper. Microemulsion thin-layer chromatography is a new approach in the field of chromatography. PMID:24455427

  20. Surfactant compositions useful in enhanced oil recovery processes

    SciTech Connect

    Nuckels, N.J.; Thompson, J.L.

    1984-01-17

    Surfactant compositions comprising: (1) an alkylated, diaromatic sulfonate, (2) a petroleum sulfonate, (3) a condensation product of an alkanol and an alkylene oxide, or a sulfate of such a condensation product, and (4) a glycol ether are useful in enhanced oil recovery processes.

  1. Reductive dechlorination of chlorobenzenes in surfactant-amended sediment slurries

    SciTech Connect

    Van Hoof, P.L.; Jafvert, C.T.

    1996-11-01

    Microbial anaerobic dechlorination of hexachlorobenzene (HCB) was examined in sediment slurries amended with two classes of nonionic surfactant, polyoxyethylene (POE) sorbitan fatty acid esters (Tweens) and POE alcohols (Brijs). The rationale for surfactant addition was to increase the bioavailability of highly sorbed organic pollutants to degrading microorganisms by enhancing their solubility. The solubility of HCB was initially enhanced via micellar partitioning; however, primary degradation of most surfactants occurred within 10 d. Dechlorination activity was significantly reduced at POE alcohol concentrations above the critical micelle concentration (cmc), with or without the occurrence of surfactant degradation. Tween 80 decreased HCB dechlorination at concentrations significantly above the cmc. At concentrations closer to the cmc, Tween 80 increased dechlorination rate constants four- to fivefold in acclimated slurries. Additions of Tween 80 at or below the cmc stimulated dechlorination activity in unacclimated slurries that exhibited very little activity in unamended controls. An average of 89% of HCB was dechlorinated after 90 d, compared to 20% in unamended sediments. No effect was observed for POE alcohols at these sub-cmc levels. The lack of a stimulated response for the POE alcohols suggests that Tween 80 may not be acting simply as a source of carbon or energy.

  2. Hierarchical structure formation of cylindrical brush polymer-surfactant complexes.

    PubMed

    Cong, Yang; Gunari, Nikhil; Zhang, Bin; Janshoff, Andreas; Schmidt, Manfred

    2009-06-01

    The complex formation of cylindrical brush polymers with poly(l-lysine) side chains (PLL) and sodium dodecyl sulfate (SDS) can induce a helical conformation of the cylindrical brush polymer in aqueous solution (Gunari, N.; Cong, Y.; Zhang, B.; Fischer, K.; Janshoff, A.; Schmidt, M. Macromol. Rapid Commun. 2008, 29, 821-825). Herein, we have systematically investigated the influence of surfactant, salt, and pH on the supramolecular structure formation. The cylindrical brush polymers and their complexes with surfactants were directly visualized by atomic force microscopy in air and in aqueous solution. The alkyl chain length (measured by the carbon number, n) of the surfactant plays a key role. While helical structures were formed with n=10, 11, and 12, no helices were observed with n<10 and n>13. Addition of salt destroys the helical structures as do pH conditions below 4 and above 6, most probably because the polymer-surfactant complexes start to disintegrate. Circular dichroism was utilized to monitor the PLL side chain conformation and clearly revealed that beta-sheet formation of the side chains induces the helical conformation of the atactic main chain. PMID:19326944

  3. NMR spectroscopy of proteins encapsulated in a positively charged surfactant.

    PubMed

    Lefebvre, Brian G; Liu, Weixia; Peterson, Ronald W; Valentine, Kathleen G; Wand, A Joshua

    2005-07-01

    Traditionally, large proteins, aggregation-prone proteins, and membrane proteins have been difficult to examine by modern multinuclear and multidimensional solution NMR spectroscopy. A major limitation presented by these protein systems is that their slow molecular reorientation compromises many aspects of the more powerful solution NMR methods. Several approaches have emerged to deal with the various spectroscopic difficulties arising from slow molecular reorientation. One of these takes the approach of actively seeking to increase the effective rate of molecular reorientation by encapsulating the protein of interest within the protective shell of a reverse micelle and dissolving the resulting particle in a low viscosity fluid. Since the encapsulation is largely driven by electrostatic interactions, the preparation of samples of acidic proteins suitable for NMR spectroscopy has been problematic owing to the paucity of suitable cationic surfactants. Here, it is shown that the cationic surfactant CTAB may be used to prepare samples of encapsulated anionic proteins dissolved in low viscosity solvents. In a more subtle application, it is further shown that this surfactant can be employed to encapsulate a highly basic protein, which is completely denatured upon encapsulation using an anionic surfactant. PMID:15949753

  4. The Determination of Anionic Surfactants in Natural and Waste Waters.

    ERIC Educational Resources Information Center

    Crisp, P. T.; And Others

    1983-01-01

    Background information, procedures, and results of an experiment suitable for measuring subpart per million concentrations of anionic surfactants in natural waters and waste effluents are provided. The experiment required only a spectrophotometer or filter photometer and has been successfully performed by students in an undergraduate environmental…

  5. Role of lymphatics in removal of sheep lung surfactant lipid.

    PubMed

    Tarpey, M M; O'Brodovich, H M; Young, S L

    1983-04-01

    To study the role of lung lymphatics in the removal of surfactant lipid from the sheep lung, we injected [1-14C]palmitate intravenously into six animals previously fitted with a cannula draining the caudal mediastinal lymph node. Lung lymph was collected for 100 h after injection of radiolabel. We obtained alveolar lavage material through a tracheostomy in four other animals after intravenous injection of [9,10-3H]palmitate. We measured radioactivity at several time points in lipid extracts from lymph, lavage fluid, and lung tissue. Alveolar lavage disaturated phosphatidylcholine (DSPC) specific activity peaked at about 40 h and was reduced to 30% of this value by 82 h. About 2% of the injected radiolabel was incorporated into lung tissue lipids. Only 4% of the level of labeling achieved in lung tissue lipids was found in lung lymph lipid during 100 h of lymph collection. Sixty-three percent of radiolabel in lymph lipid was recovered in phospholipids, and 29% of phospholipid radiolabel was found in DSPC. The distribution of phosphorus and palmitate radiolabel in lung lymph phospholipid did not closely resemble that of surfactant lipid. No rise in lung lymph DSPC specific activity was observed following the peak in lavage specific activity. If surfactant lipid is removed from the alveolar compartment without extensive recycling, then we conclude that the lung lymphatics do not play a major role in the clearance of surfactant lipid from the alveolar surface. PMID:6687883

  6. SURFACTANT REMEDIATION FIELD DEMONSTRATION USING A VERTICAL CIRCULATION WELL

    EPA Science Inventory

    A field demonstration of surfactant-enhanced solubilization was completed in a shallow unconfined aquifer located at a Coast Guard Station in Traverse City, Michigan. The primary objectives of the study were: (1) to assess the ability of the vertical circulation well (VCW) system...

  7. RECOVERY OF VOCS FROM SURFACTANT SOLUTION BY PERVAPORATION

    EPA Science Inventory

    Surfactant-based processes are emerging as promising technologies to enhance conventional pump-and-treat methods for remediating soils contaminated with nonaqueous phase liquids (NAPLs), primarily due to the potential to significantly reduce the remediation time. In order to reus...

  8. Effect of surfactants on PANI morphologies and supercapacitive properties

    NASA Astrophysics Data System (ADS)

    Kim, Young Sam; Sohn, Jae Sang; Ju, Hae Ri; Inamdar, A. I.; Im, Hyunsik; Kim, Hyungsang

    2012-05-01

    Surfactant-mediated polyaniline (PANI) samples were fabricated using an electrodeposition technique for electrochemical supercapacitor applications. We investigated the effect of surfactants such as sodium dodecyl sulfate (SDS), polyvinyl alcohol (PVA), ethylenediaminetetraacetic acid (EDTA) on the PANI morphologies. The surfactants act as a template for PANI deposition during the electrodeposition, modifying the PANI morphology. Scanning electron microscope (SEM) images of the pure PANI samples showed a uniform nanocrystalline structure whilst the surfactant-mediated samples showed overgrown cauliflower-like structures. The electrochemical supercapacitive properties (charge-discharge) were studied in a 0.5 M LiClO4 electrolyte. While the capacitance of the pure PANI sample was 240 Fg-1 at a scan rate of 20 mVs-1, it was 199 Fg-1, 106 Fg-1, and 42 Fg-1 for the PANI-SDS, PANI-PVA and PANI-EDTA samples, respectively. The electrochemical stability of the samples was investigated for 1000 charge-discharge cycles by using cyclic voltammetry measurements.

  9. Residual Patterns of Alkyl Polyoxyethylene Surfactant Droplets after Water Evaporation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a nonionic, alkyl polyoxyethylene surfactant (X-77®) in aqueous solutions, sessile droplet spreading, pinning, evaporation, contraction, and post-evaporation deposits are characterized. X-77® is widely used in the agricultural field as a spreader/adherent, intended to optimize pathenogenic ag...

  10. Degradation of Surfactants in Hydroponic Wheat Root Zones

    NASA Astrophysics Data System (ADS)

    Monje, Oscar; McCoy, Lashelle; Flanagan, Aisling

    Hygiene water recycling in recirculating hydroponic systems can be enhanced by plant roots by providing a substrate and root exudates for bacterial growth. However, reduced plant growth can occur during batch mode additions of high concentrations of surfactant. An analog hygiene water stream containing surfactants (Steol CS330, Mirataine CB) was added to a hydroponically-grown wheat plant root zone. The plants were grown at 700 mol mol-1 CO2, a photosynthetic photon flux of 300 mol m-2 s-1, and a planting density of 380 plants m-2. Volumetric oxygen mass transfer coefficients were determined using the fermentative/dynamic outgassing method to maintain adequate oxygen mass transfer rates in the root zone. This analysis suggested an optimal flow rate of the hydroponic solution of 5 L min-1. The hydroponic system was inoculated with biofilm from a bioreactor and rates of surfactant degradation were measured daily based on reduction in chemical oxygen demand (COD). The COD decreased from 400 to 100 mg L-1 after 2 days following batch addition of the analog hygiene water to the hydroponic system. Measurements of dissolved oxygen concentration and solution temperature suggest that the root zone was provided adequate aeration to meet both oxygen demands from plant and microbial respiration during the degradation of the surfactant. Results from this study show that hydroponic systems can be used to enhance rates of hygiene water processing.

  11. SURFACTANT ENHANCED REMEDIATION OF SOIL COLUMNS CONTAMINATED BY RESIDUAL TETRACHLOROETHYLENE

    EPA Science Inventory

    The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa sand was evaluated in four column experiments. Residual PCE was emplaced by injecting 14C-labeled PCE into water-saturated soil columns and displacing the free product ...

  12. Effect of surfactants on the survival and sorption of viruses.

    PubMed

    Chattopadhyay, Devamita; Chattopadhyay, Sandip; Lyon, William G; Wilson, John T

    2002-10-01

    There is an increasing concern about the protection of groundwater from contamination by enteric viruses and the prevention of outbreaks of waterborne diseases. Knowledge of survivability and transport of viruses from their point of origin is necessary to determine their potential effects on the neighboring groundwater systems. The distribution of virus is, in turn, dependent on the physical and chemical compositions of the surrounding soil and subsurface systems. For the present study, we have determined the effects of different surfactants (cationic, anionic, nonionic, and biological) and natural organic matter (NOM) on bacteriophages. Results indicated that surfactants and NOM adversely affect phage survival in binary systems, with surfactants being the most harmful. Studies with ternary systems also showed that the presence of surfactants reduced sorption of phages on sorbents either by occupying available sorption sites on the sorbent material or by displacing the sorbed phages from the sorbent surface. Water contact angles of the selected phages and different sorbent surfaces have been measured. Experimental data demonstrated that the sorption of hydrophobic viruses was favored by hydrophobic sorbents, while the sorption of hydrophilic viruses was favored by hydrophilic sorbents.

  13. Preparation of microemulsions with soybean oil-based surfactants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emulsions are widely applied in food, cosmeceutical and medicinal formulations. Smaller and highly stable droplets of emulsions are important for their application. This research reports that by using soybean oil-based surfactants, the higher stabilized oil-in-water emulsions were obtained via an ul...

  14. Surfactant manganese complexes as models for the oxidation of water

    SciTech Connect

    Wohlgemuth, R.; Otvos, J.W.; Calvin, M.

    1984-02-01

    Surfactant manganese complexes have been studied spectroscopically and electrochemically as models for the catalysts involved in the photooxidation of water to produce oxygen. Evidence has been obtained for the participation of the suggested redox cycle Mn/sup II/ to Mn/sup III/ to Mn/sup IV/ and back to Mn/sup II/ with the evolution of oxygen.

  15. SURFACTANT/CO-SOLVENT FLUSHING TECHNOLOGIES: PERFORMANCE ASSESSMENT

    EPA Science Inventory

    The use of surfactant and co-solvent solutions to remove non-aqueous phase liquids (NAPLs) from soils has seen significant research and development activity over the last decade. These soil flushing technologies are now entering the full-scale implementation stage of their develo...

  16. Dispersion and rheology of surfactant-mediated silver nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Nan; Huang, Chih-Ta; Tseng, Wenjea J.; Wei, Ming-Hsiung

    2010-11-01

    Polycrystalline silver (Ag) nanoparticles were dispersed in solvent mixtures consisting of 2-butoxyethyl acetate (BCA) and diethylene glycol monoethyl ether acetate (CA) in a BCA:CA weight ratio of 5:1. Three commercially available polymeric surfactants were used, and the gravitational sedimentation, agglomerate-size distribution, isothermal adsorption, and rheological behavior of the nanoparticle suspensions were examined. One of the surfactants (hereafter termed 9250) was found effective in stabilizing the Ag nanoparticle suspensions. Both the adsorption isotherm and the Fourier transform infrared spectroscopy revealed the preferential adsorption of the 9250 surfactant molecules on the nanoparticle surface, forming a Langmuir-type monolayer adsorption in the given solvents so that a steric stabilization was rendered. An optimal surfactant concentration of 5 wt.% (in terms of the solids weight) was determined experimentally. In addition, the Ag suspensions with a broad range of solids concentration (ϕ = 1-16 vol.%) showed a shear-thinning flow character over a shear-rate range from 1 to 4000 s-1, revealing that an attractive interparticle interaction was operative. Relative viscosity (ηr) of the nanoparticle suspensions deviated from the linearity when ϕ was greater than ˜10 vol.%; at which, the attractive potential began to dominate the interparticle interactions. This ηr-ϕ dependence was compared with various existing models and the (viscosity) predictive capability of the models was discussed.

  17. REMOVAL OF ORGANIC CHEMICALS FROM WASTEWATER BY SURFACTANT SEPARATION

    SciTech Connect

    Unknown

    2002-01-01

    This research presents a novel hybrid process for removing organic chemicals from contaminated water. The process uses surfactant to carry out two unit operations (1) Extraction; (2) Foam flotation. In the first step, surfactant is used to extract most of the amounts of organic contaminants in the stream. In the second step, foam flotation is used to further reduce organic contaminants and recover surfactant from the stream. The process combines the advantages of extraction and foam flotation, which allows the process not only to handle a wide range of organic contaminants, but also to effectively treat a wide range of the concentration of organic contaminants in the stream and reduce it to a very low level. Surfactant regeneration can be done by conventional methods. This process is simple and low cost. The wastes are recoverable. The objective of this research is to develop an environmentally innocuous process for the wastewater or reclaimed water treatment with the ability to handle a wide range of organic contaminants, also to effectively treat a wide range of the concentration of organic contaminants in contaminated water and reduce it to a very low level, finally, provides simpler, less energy cost and economically-practical process design. Another purpose is to promote the environmental concern in minority students and encourage minority students to become more involved in environmental engineering research.

  18. Comparative insight into surfactants mediated amyloidogenesis of lysozyme.

    PubMed

    Chaturvedi, Sumit K; Khan, Javed M; Siddiqi, Mohammad K; Alam, Parvez; Khan, Rizwan H

    2016-02-01

    Electrostatic and hydrophobic interactions have an important role in the protein aggregation. In this study, we have investigated the effect of charge and hydrophobicity of oppositely charged surfactants i.e., anionic (AOT and SDS) and cationic (CTAB and DTAB) on hen egg white lysozyme at pH 9.0 and 13.0, respectively. We have employed various methods such as turbidity measurements, Rayleigh light scattering, ThT, Congo red and ANS dye binding assays, far-UV CD, atomic force microscopy, transmission electron and fluorescence microscopy. At lower molar ratio, both anionic and cationic surfactants promote amyloid fibril formation in lysozyme at pH 9.0 and 13.0, respectively. The aggregation was proportionally increased with respect to protein concentration and hydrophobicity of surfactant. The morphology of aggregates at both the pH was fibrillar in structure, as visualized by dye binding and microscopic imaging techniques. Initially, the interaction between surfactants and lysozyme was electrostatic and then hydrophobic as investigated by ITC. This study demonstrates the crucial role of charge and hydrophobicity during amyloid fibril formation.

  19. Adsorption of a multicomponent rhamnolipid surfactant to soil

    SciTech Connect

    Noordmann, W.H.; Brusseau, M.L.; Janssen, D.B.

    2000-03-01

    The adsorption of rhamnolipid, a multicomponent biosurfactant with potential application in soil remediation, to two sandy soils was investigated using batch and column studies. The surfactant mixture contained six anionic components differing in lipid chain length and number of rhamnose moieties. Batch adsorption experiments indicated that the overall adsorption isotherms of total surfactant and of the individual components leveled off above a concentration at which micelles were formed. Column experiments showed that the retardation factors for the total surfactant and for the individual components decreased with increasing influent concentration. Extended tailing was observed in the distal portion of the surfactant breakthrough curve. The concentration-dependent retardation factors and the extended tailing are in accordance with the nonlinear (concave) adsorption isotherms found in the batch adsorption studies. The more hydrophobic rhamnolipid components were preferentially adsorbed, but adsorption was not correlated with the organic carbon content of the soil. This suggests that adsorption of rhamnolipid to soil is not a partitioning process but mainly an interfacial adsorption process.

  20. Parametric analysis of surfactant-aided imbibition in fractured carbonates.

    PubMed

    Adibhatla, B; Mohanty, K K

    2008-01-15

    Many carbonate oil reservoirs are oil-wet and fractured; waterflood recovery is very low. Dilute surfactant solution injection into the fractures can improve oil production from the matrix by altering the wettability of the rock to a water-wetting state. A 2D, two-phase, multicomponent, finite-volume, fully-implicit numerical simulator calibrated with our laboratory results is used to assess the sensitivity of the process to wettability alteration, IFT reduction, oil viscosity, surfactant diffusivity, matrix block dimensions, and permeability heterogeneity. Capillarity drives the oil production at the early stage, but gravity is the major driving force afterwards. Surfactants which alter the wettability to a water-wet regime give higher recovery rates for higher IFT systems. Surfactants which cannot alter wettability give higher recovery for lower IFT systems. As the wettability alteration increases the rate of oil recovery increases. Recovery rate decreases with permeability significantly for a low tension system, but only mildly for high tension systems. Increasing the block dimensions and increasing oil viscosity decreases the rate of oil recovery and is in accordance with the scaling group for a gravity driven process. Heterogeneous layers in a porous medium can increase or decrease the rate of oil recovery depending on the permeability and the aspect ratio of the matrix block.

  1. Fluoroalkylated polyethylene glycol as potential surfactant for perfluorocarbon emulsion.

    PubMed

    Peng, C A; Hsu, Y C

    2001-11-01

    So far, perfluorocarbon (PFC) emulsions have been manufactured based mainly on two surfactants, Pluronic F-68 and egg yolk phospholipids (EYP) for clinical use. However, they have been documented to induce inflammatory or allergic responses when PFC emulsions were injected into human bloodstream. The cause of these side effects is associated with the phagocytosis of emulsified PFC microparticles by cells such as macrophages. In order to lessen the side effects, it is logic to develop surfactants, which are more phagocytosis-resistant and biocompatible. In this study, a perfluoroalkylated polyethylene glycol (R(F)-PEG) surfactant was synthesized by reacting perfluorooctanoyl chloride (C7F15COCl) with PEG of molecular weigh 8000. Both R(F)-PEG 8000 and EYP were used to make PFC emulsions separately by an ultrasonic homogenizer. Individual PFC emulsions were then incubated with mouse macrophage J774A.1 cells to examine the degree of phagocytosis. From microscopic observation of cell morphology, our results showed that the process of phagocytosis was retarded to a large extend using the R(F)-PEG surfactant. We also harnessed 19F-NMR to quantitatively detect the amount of PFC emulsions phagocytosed by J774A.1 cells. 19F-NMR result was consistent with the qualitative microscopic observation aforementioned. PMID:11795633

  2. Influence of polymer-surfactant aggregates on fluid flow.

    PubMed

    Malcher, Tadeusz; Gzyl-Malcher, Barbara

    2012-10-01

    This paper describes the influence of interactions of poly(ethylene oxide) (PEO) with cationic cetyltrimethylammonium bromide (CTAB) micelles on drag reduction. Since the interactions between PEO and CTAB micelles alone are weak, salicylate ions were used as CTAB counterions. They facilitate formation of polymer-micelle aggregates by screening the electrostatic repulsions between the charged surfactant headgroups. The influence of polymer-surfactant interactions on drag reduction is of biomedical engineering importance. Drag reducing additives introduced to blood produce beneficial effects on blood circulation, representing a novel way to treat cardiovascular disorders. PEO is a blood-compatible polymer. However, it quickly mechanically degrades when subjected to high shear stresses. Thus, there is a need to search for other additives able to reduce drag, which would be more mechanically stable, e.g. polymer-surfactant aggregates. Numerical simulations of the flow were performed using the CFX software. Based on the internal structure of the polymer-surfactant solution, a hypothesis explaining the reason of increase of drag reduction and decrease in dynamic viscosity with increasing shear rate was proposed. It was suggested that the probable reason for the abrupt increase in friction factor, observed when the critical Reynolds number was exceeded, was the disappearance of the difference in the dynamic viscosity.

  3. ABC copolymer silicone surfactant templating for biomimetic silicification.

    PubMed

    Sun, Bo; Guo, Caiyun; Yao, Yuan; Che, Shunai

    2012-07-15

    Using the ABC copolymer silicone surfactant polydimethylsiloxane (PDMS)-graft-(polyethylene oxide (PEO)-block-propylene oxide (PPO)) (PSEP, Scheme 1a) as a template and tetraethoxysilane (TEOS) as a silica source, silica particles with various structures and morphologies (i.e., disordered spherical micellar aggregation, two-dimensional p6mm mesostructure, asymmetric multi-layer non-equilibrium vesicles and symmetric monolayer vesicles) were synthesized by changing the synthesis temperature from 30 to 80 °C. Increasing the hydrophobicity of the surfactant by increasing the temperature resulted in an increase in the surfactant packing parameter g, which led to the mesophase transformation from micellar to cylinder and later to a lamellar structure. The good compatibility between the PDMS and the TEOS, the different natures of the hydrophobic PDMS and PPO segments, and the hydrolysis and condensation rates of TEOS enabled the variation of silicification structures. This novel silicone surfactant templating route and a new type of materials with highly ordered mesostructures and asymmetric morphologies provide a new insight into the molecular factors governing inorganic-organic mesophase and biosilicification for fabricating functionalized materials.

  4. Transport of a nonionic surfactant through plant cuticles

    SciTech Connect

    Petracek, P.D.; Bukovac, M.J. )

    1989-04-01

    While surfactants are widely used to enhance the performance of foliar applied chemicals, their interaction with the plant cuticle is not well understood. We have studied the transport of a nonionic surfactant, Triton X-100, through enzymatically isolated tomato fruit cuticular membranes (CM). Transport characteristics were determined by measuring the transfer rate of {sup 14}C-labeled surfactant from donor to receiver cell through an interfacing CM. Waxes of the cuticle greatly reduced membrane permeance (P): 11.2 and 82.7x10{sup {minus}12} m{center dot}s{sup {minus}1} for CM and dewaxed CM (DCM), respectively, at 25{degrees}C. Further, cuticular waxes reduced both partitioning and diffusion. Increase in partitioning on removal of waxes may be attributed to an increase in number of accessible sites in the matrix which preferentially bind and probably participate in the diffusion of surfactant through the cuticle. Temperature increases of 10{degrees}C between 5 and 35{degrees}C resulted in a nearly two-fold increase in diffusion and partitioning and a three-fold increase in permeance.

  5. Diarmed (adamantyl/alkyl) surfactants from nitrilotriacetic acid.

    PubMed

    Trillo, Juan V; Vázquez Tato, José; Jover, Aida; de Frutos, Santiago; Soto, Victor H; Galantini, Luciano; Meijide, Francisco

    2014-11-01

    The compounds presented here constitute a clear example of molecular biomimetics as their design is inspired on the structure and properties of natural phospholipids. Thus novel double-armed surfactants have been obtained in which nitrilotriacetic acid plays the role of glycerol in phospholipids. The hydrophobic arms are linked to the head group through amide bonds (which is also the case of sphingomyelin): (R1NHCOCH2)(R2NHCOCH2)NCH2CO2H (R1 being CH3(CH2)11, CH3(CH2)17, CH3(CH2)7CHCH(CH2)8, and adamantyl, and R2=adamantyl). The dependence of the surface tension with concentration shows the typical profile of surfactants since a breaking point, which corresponds to the critical aggregation concentration (cac), is observed in all cases. The cac of these diarmed derivatives are about 1-3 orders of magnitude lower than those of classical monoalkyl derivatives used as reference compounds. In contrast to conventional surfactants, reversed trends in cac values and molecular areas at the solution-air interface have been observed. This anomalous behavior is tied to the structure of the surfactants and suggests that long and flexible alkyl chains should self-coil previous to the aggregation or adsorption phenomena. Above cac all compounds form large aggregates, globular in shape, which tend to associate forming giant aggregates. PMID:25465758

  6. Microporosity of Bicontinuous Polymer Composites: Diffusion of Water and Surfactant

    NASA Astrophysics Data System (ADS)

    Kuta, K.; Challa, V.; Cheung, M.; Lopina, S.; von Meerwall, E.

    2000-10-01

    We have used the proton NMR pulsed-gradient spin-echo method to study the self-diffusion of water and surfactant in bicontinuous microcomposites formed with methyl methacrylate and hydroxy ethyl methacrylate, crosslinked with ethylene glycol dimethacrylate, in the presence of water containing 10 wt. percent sodium dodecyl sulfate as surfactant. Measurements were made over the full bicontinuous range of water content, (30 to 96 wt. percent) at 50 deg. C at a diffusion time of 12-15 ms. At spin-echo times greater than a few ms the echo of the glassy open-cell network phase was unobservable. The diffusivity spectrum of the mobile fraction is cleanly separable into two components differing by a factor of at least 30, attributable to water and surfactant. We find that the diffusivity of water increases with increasing water content, but that of the surfactant decreases. Measurements of restricted diffusion (non-adherence to Fick's second law) can reveal the size of the diffusionally accessible pores and its distribution, and their degree of interconnection. Corresponding measurements of time-resolved apparent diffusion are in progress.

  7. Pulmonary surfactant will secure free airflow through a narrow tube.

    PubMed

    Liu, M Y; Wang, L M; Li, E; Enhorning, G

    1991-08-01

    Well functioning pulmonary surfactant is necessary to ensure alveolar stability. It is proposed that surfactant is also required to keep the finest cylindrical airways open, thereby securing an unrestricted flow of air to and from the alveoli. If the surfactant is inadequate in quality or quality there is a risk that liquid will accumulate in the most marrow section of the airway and form a blocking column. To study that possibility special glass capillaries were used. The glass capillaries were heated and extended to make a short section very narrow. In the lumen of that section a minute volume (1 microliter) of liquid was deposited, which formed a blocking column. When pressure was raised on one side of the column, it forced the liquid to move away from the narrow section. Pressure dropped to zero as air could pass, and if the liquid column consisted of calf lung surfactant extract (CLSE), pressure remained at zero because a new liquid column did not form. If, on the other hand, the liquid column consisted of saline solution it would repeatedly reform as soon as it had been pressed out of the capillary's narrow section. The same occurred if the CLSE suspension forming the liquid column was very dilute or contained inhibiting proteins. These observations did not require that the capillary consisted of the material glass; they were also noted when the narrow tube was outlined by epithelium.

  8. Unique influence of cholesterol on modifying the aggregation behavior of surfactant assemblies: investigation of photophysical and dynamical properties of 2,2'-bipyridine-3,3'-diol, BP(OH)2 in surfactant micelles, and surfactant/cholesterol forming vesicles.

    PubMed

    Ghosh, Surajit; Kuchlyan, Jagannath; Roychowdhury, Subhajit; Banik, Debasis; Kundu, Niloy; Roy, Arpita; Sarkar, Nilmoni

    2014-08-01

    The binding and rotational properties of an excited-state intramolecular proton transfer (ESIPT) fluorophore, 2,2'-bipyridine-3,3'-diol, BP(OH)2 has been investigated in alkyltrimethylammonium bromide containing (CnTAB, n = 12, 14, and 16) micelles and alkyltrimethylammonium bromide/cholesterol (CnTAB (n = 14 and 16)/cholesterol) forming vesicles using fluorescence-based spectroscopy techniques. The formation of thermodynamically stable unilamellar self-assemblies of alkyltrimethylammonium bromide/cholesterol are characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements. Individually, aqueous solutions of all these alkyltrimethylammonium bromide form micelles after certain surfactant concentration (critical micelle concentration, cmc) of surfactant, whereas cholesterol molecules are insoluble in water. But with the variation of the cholesterol-to-surfactant molar ratio (Q = [cholesterol]/[surfactant]), uniform distribution of vesicular aggregates in aqueous solution can be obtained. The micelle-to-vesicle transition of surfactant solution upon addition of cholesterol also influences the steady state emission profile, fluorescence lifetime, and rotational dynamics of BP(OH)2 molecule. The diketo tautomer of BP(OH)2 molecule gets stabilized as the concentration of surfactant increases in aqueous solution. Fluorescence lifetime and rotational time constant of the BP(OH)2 molecule are also influenced by the variation of alkyl chain length of surfactant molecule. The emission quantum yield (Φ) is also found to be sensitive with surfactant concentration, variation in chain length of surfactants, and it saturates after the cmc of surfactants. The rigid and restricted microenvironment of vesicle bilayer enhance the lifetime and also rotational relaxation of BP(OH)2 significantly. The rotational behavior of BP(OH)2 in surfactant/cholesterol self-assemblies is also explained by using analytical parameters related to time

  9. Biomimetic oligosaccharide and peptide surfactant polymers designed for cardiovascular biomaterials

    NASA Astrophysics Data System (ADS)

    Ruegsegger, Mark Andrew

    A common problem associated with cardiovascular devices is surface induced thrombosis initiated by the rapid, non-specific adsorption of plasma proteins onto the biomaterial surface. Control of the initial protein adsorption is crucial to achieve the desired longevity of the implanted biomaterial. The cell membrane glycocalyx acts as a non-thrombogenic interface through passive (dense oligosaccharide structures) and active (ligand/receptor interactions) mechanisms. This thesis is designed to investigate biomimicry of the cell glycocalyx to minimize non-specific protein adsorption and promote specific ligand/receptor interactions. Biomimetic macromolecules were designed through the molecular-scale engineering of polymer surfactants, utilizing a poly(vinyl amine) (PVAm) backbone to which hydrophilic (dextran, maltose, peptide) and hydrophobic alkyl (hexanoyl or hexanal) chains are simultaneously attached. The structure was controlled through the molar feed ratio of hydrophobic-to-hydrophilic groups, which also provided control of the solution and surface-active properties. To mimic passive properties, a series of oligomaltose surfactants were synthesized with increasing saccharide length (n = 2, 7, 15 where n is number of glucose units) to investigate the effect of coating height on protein adsorption. The surfactants were characterized by infra red (IR) and nuclear magnetic resonance (NMR) spectroscopies for structural properties and atomic force microscopy (AFM) and contact angle goniometry for surface activity. Protein adsorption under dynamic flow (5 dyn/cm2) was reduced by 85%--95% over the bare hydrophobic substrate; platelet adhesion dropped by ˜80% compared to glass. Peptide ligands were incorporated into the oligosaccharide surfactant to promote functional activity of the passive coating. The surfactants were synthesized to contain 0%, 25%, 50%, 75%, and 100% peptide ligand density and were stable on hydrophobic surfaces. The peptide surface density was

  10. Soap opera : polymer-surfactant interactions on thin film surfaces /

    SciTech Connect

    Ozer, B. H.; Johal, M. S.; Wang, H. L.; Robinson, J. M.

    2001-01-01

    Surfactants are macromolecules with unique properties. They commonly contain a polar head group with a nonpolar hydrocarbon chain. These properties allow surfactants to solubilize greases and other nonpolar molecules. One particular way that this is accomplished is through the formation of micelles. Micelles are formed at the critical micelle concentration (cmc), which varies depending upon the nature of the surfactant and also the media in which the surfactant resides. These micelles can take a variety of shapes, but are generally characterized by surrounding the grease with the nonpolar hydrocarbon chains, exposing only the polarized head groups to the media, usually water. This property of easy solubilization has made surfactants a very attractive industrial agent, They are used most conventionally as industrial cleaning agents and detergents. However, they also have lesser-known applications in conjunction with polymers and other macromolecular mixtures, often creating a system with novel properties, such as increased solubilization and smoother mixture consistency. A recently developed field has investigated the self-assembly of polymers and polyelectrolytes onto thin film surfaces. There are many reasons for studying this process, such as for second harmonic generation purposes and bioassays. In this study, the interaction between the anionic polyelectrolyte poly[1-[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and two surfactants of opposite charge, Sodium Dodecyl Sulfate (SDS) and Dodecyl Trimethyl Ammonium Bromide (DTAB), in their assembly onto thin film surfaces was investigated. The kinetics of adsorbance onto the thin films was examined, followed by construction of 10-bilayer films using an alternating layer of the cationic polyelectrolyte poly(ethylenimine) (PEI) to provide the electrostatic means for the PAZO/surfactant combination to assemble onto the thin film. The kinetics of adsorption is being

  11. The effect of polymer-surfactant interaction on the rheological properties of surfactant enhanced alkaline flooding formulations. [Phase separation, precipitation and viscosity loss

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1993-02-01

    Surfactant-enhanced, lower pH (weak) alkaline chemicals are effective for mobilizing residual oil. Polymer is used for mobility control because if mobility control is lost, then oil recovery is reduced. The ability to maintain mobility control during surfactant-alkaline flooding can be adversely affected by chemical interaction. In this work, interaction between polymers and surfactants was shown to be affected by pH, ionic strength, crude oil, and the properties of the polymers and surfactants. Polymer-surfactant interaction (phase separation, precipitation, and viscosity loss) occurred between most of the polymers and surfactants that were tested. Polymer-surfactant interaction is difficult to eliminate, and no method was found for completely eliminating interaction. Polymer-surfactant interaction occurred at optimal salinity and below optimal salinity. Polymer-surfactant interaction had an adverse effect on polymer rheology; however, the adverse effect of interaction on polymer rheology was lessened when oil was present. Increasing the pH of chemical systems further reduced the adverse effects of interaction on polymer rheology.

  12. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces

    NASA Astrophysics Data System (ADS)

    Miranda, Paulo Barbeitas

    Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayers are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayers at liquid/vapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the conformational order of surfactant monolayers. The first part of the Thesis is concerned with surfactant monolayers at the air/water interface (Langmuir films). Surface crystallization of an alcohol Langmuir film and of liquid alkanes are studied and their phase transition behaviors are found to be of different nature, although driven by similar intermolecular interactions. The effect of crystalline order of Langmuir monolayers on the interfacial water structure is also investigated. It is shown that water forms a well-ordered hydrogen-bonded network underneath an alcohol monolayer, in contrast to a fatty acid monolayer which induces a more disordered structure. In the latter case, ionization of the monolayer becomes more significant with increase of the water pH value, leading to an electric-field-induced ordering of interfacial water molecules. We also show that the orientation and conformation of fairly complicated molecules in a Langmuir monolayer can be completely mapped out using a combination of SFG and second harmonic generation (SHG). For a quantitative analysis of molecular orientation at an interface, local-field corrections must be included. The second part is a study of self-assembled surfactant monolayers at the

  13. Fatty Acids as Surfactants on Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.

    2003-12-01

    Fatty acids (n-alcanoic acids) are common compounds in numerous anthropogenic and natural emissions. According to Rogge et al. (1993), catalyst-equipped automobiles emitted more than 600 μg km-1 of fatty acids which was over 50% of all identified organics in fine aerosol emissions. Coal burning produces fatty acids ranging from about 1700 mg kg-1 for bituminous coal to over 10000 mg kg-1 for lignite (Oros and Simoneit, 2000). Similarly, biomass burning is an important source for aerosol fatty acids. They are the major identified compound group in deciduous tree smoke, their total emission factor being measured as 1589 mg kg-1 which was 56% of all identified organic compounds (Oros and Simoneit, 2001a). Large amounts of fatty acid are also emitted from burning of conifer trees and grass (Oros and Simoneit, 2001a; Simoneit, 2002). Fatty acids have been reported to be major constituents of marine aerosols in many investigations (Barger and Garrett, 1976; Gagosian et. al, 1981; Sicre et al., 1990; Stephanou, 1992). It has been suggested that as the marine aerosol particles form, they acquire a coating of organic surfactants (Blanchard, 1964; Gill et al., 1983; Middlebrook et al., 1998; Ellison et al., 1999). Amphiphilic molecules, including lipids, can be assembled as monomolecular layers at air/water interfaces as well as transported to a solid support. Recently, we could show by time-of-flight secondary ion mass spectrometry that fatty acids are important ingredients of the outermost surface layer of the sea-salt aerosol particles (Tervahattu et al., 2002). In their TOF-SIMS studies on the surface composition of atmospheric aerosols, Peterson and Tyler (2002) found fatty acids on the surface of Montana forest fire particles. In this work we have studied by TOF-SIMS the surface chemical composition of aerosol particles emitted from field fires in the Baltic and other East European countries and transported to Finland as well as aerosol particles transported from

  14. Exogenous surfactant suppresses inflammation in experimental endotoxin-induced lung injury.

    PubMed

    Mittal, Neha; Sanyal, Sankar Nath

    2009-01-01

    Our objective was to evaluate the anti-inflammatory effects of exogenous surfactant and surfactant phospholipids on the lipopolysaccharide (LPS)-induced lung injury. Exogenous surfactant (porcine surfactant) and surfactant phospholipid (dipalmitoyl phospholipid DPPC, hexadecanol, tylaxopol) were instilled intratracheally with LPS in rats. Expression of surfactant apoproteins (SP-A) and the cyclooxygenase enzymes (COX-1 and -2) was studied by immunohistochemistry, and apoptosis was analyzed by in situ terminal dUTP nick end labeling TUNEL assay. The intracellular reactive oxygen species (ROS) was measured in the isolated macrophages by fluorescence measurement with dichlorofluorescein diacetate (DCFH-DA). LPS-induced oxidative burst and apoptosis at 72 hours were reduced by both porcine and synthetic surfactant. SP-A as well as COX-1 and -2 expressions were suppressed with synthetic surfactant treatment, whereas with porcine surfactant (P-SF) the SP-A expression was enhanced in response to LPS administration. These results indicate that exogenous surfactant inhibits LPS-induced inflammation. This anti-inflammatory activity may be an important outcome of surfactant therapy in endotoxin-induced respiratory distress.

  15. The effect of surfactant composition on the chemical and structural properties of nanostructured lipid carriers.

    PubMed

    Karn-Orachai, Kullavadee; Smith, Siwaporn Meejoo; Phunpee, Sarunya; Treethong, Alongkot; Puttipipatkhachorn, Satit; Pratontep, Sirapat; Ruktanonchai, Uracha Rungsardthong

    2014-01-01

    Fine-tuning the nanoscale structure and morphology of nanostructured lipid carriers (NLCs) is central to improving drug loading and stability of the particles. The role of surfactant charge on controlling the structure, the physicochemical properties and the stability of NLCs has been investigated using three surfactant types (cationic, anionic, non-ionic), and mixed surfactants. Either one, a mixture of two, or a mixture of three surfactants were used to coat the NLCs, with these classified as one, two and three surfactant systems, respectively. The mixed (two and three) surfactant systems produced smaller NLC particles and yielded NLCs with lower crystallinity than the one surfactant system. The combined effects of the ionic and the non-ionic surfactants may play a key role in assisting the lipid-oil mixing, as well as maintaining colloidal repulsion between NLC particles. In contrast, for the three surfactant system, the lipid-oil mixture in the NLCs appeared less homogenous. This was also reflected in the results of the stability study, which indicated that NLC particle sizes in two surfactant systems appeared to be retained over longer periods than for other surfactant systems. PMID:24861323

  16. Effects of surfactants and salt on Henry's constant of n-hexane.

    PubMed

    Yang, Chunping; Chen, Fayuan; Luo, Shenglian; Xie, Gengxin; Zeng, Guangming; Fan, Changzheng

    2010-03-15

    n-Hexane biological removal is intrinsically limited by its hydrophobic nature and low bioavailability. The addition of surfactants could enhance the transport of volatile organic compounds (VOCs) and change the gas-liquid equilibrium of VOCs. In this paper, the effects of four surfactants, sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), tert-octylphenoxypoly-ethoxyethanol (Triton X-100), polyoxyethylene (20) sorbitan monooleate (Tween 80), and sodium nitrate on apparent Henry's constant of n-hexane in surfactant solutions were investigated. The apparent Henry's constants were significantly reduced when surfactants concentrations exceeded their critical micelle concentrations (cmc's). On a cmc basis, the anionic surfactant SDS was found to have the greatest effect on the apparent Henry's constant with CTAB succeeding, then followed by Triton X-100 and Tween 80. However, the apparent Henry's constant of n-hexane decreased even more rapidly when Triton X-100, a nonionic surfactant, was added than when the ionic surfactant of SDS or CTAB was applied under identical mass concentration and other conditions. These results suggest that Triton X-100 have the biggest solubilization of n-hexane among the four surfactants. Sodium nitrate slightly decreased the apparent Henry's constant of n-hexane in surfactant solutions, and could be considered as a cosolvent in the surfactant-(n-hexane) solution. In addition, the relationship between apparent Henry's constant and surfactant concentration was further developed.

  17. New surfactants for EOR applications: Effect of chain length on performance

    NASA Astrophysics Data System (ADS)

    Mushtaq, Muhammad; Tan, Isa M.; Sagir, Muhammad

    2014-10-01

    Two surfactants were synthesized using natural oil derivative as raw material. The surfactants contained n-propoxy and n-hexoxy pendent chains. In this multistep synthesis, hydroxyl groups (OH) were successfully protected by the acetylation reaction and the subsequent sulfonation step produced sulfonated surfactants. The relative yield of sulfonation for hexoxy chain surfactant was found lower when compared to short chain propoxy surfactant. Steric hindrance and high viscosity were the factors which showed influence on the production yield. Both surfactants were found excellent performers in EOR evaluation tests. The surfactants were found tolerant against heat and mild salinity. Microemulsion was generated by both surfactants with crude oil resulting good solubilisation parameters. The surfactant with longer side chain (10-Acetoxy-9-hexoxy-2-sulfo-octadecanoic acid methyl ester) showed low interfacial tension (IFT) (0.019 mN/m) and high oil recovery (93.2%). The propoxy side chain surfactant (10-Acetoxy-9-propoxy-2-sulfo-octadecanoic acid methyl ester) showed 0.033 mN/m IFT and a recovery of 89.3 %. It is concluded that both surfactants are suitable for Chemical EOR applications.

  18. Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles.

    PubMed

    Beck-Broichsitter, Moritz; Ruppert, Clemens; Schmehl, Thomas; Günther, Andreas; Seeger, Werner

    2014-01-01

    Reasonable suspicion has accumulated that inhaled nano-scale particulate matter influences the biophysical function of the pulmonary surfactant system. Hence, it is evident to provide novel insights into the extent and mechanisms of nanoparticle-surfactant interactions in order to facilitate the fabrication of safe nanomedicines suitable for pulmonary applications. Negatively- and positively-charged poly(styrene) nanoparticles (diameters of ~100nm) served as model carriers. Nanoparticles were incubated with several synthetic and naturally-derived pulmonary surfactants to characterize the sensitivity of each preparation to biophysical inactivation. Changes in surface properties (i.e. adsorption and dynamic surface tension behavior) were monitored in a pulsating bubble surfactometer. Both nanoparticle formulations revealed a dose-dependent influence on the biophysical behavior of all investigated pulmonary surfactants. However, the surfactant sensitivity towards inhibition depended on both the carrier type, where negatively-charged nanoparticles showed increased inactivation potency compared to their positively-charged counterparts, and surfactant composition. Among the surfactants tested, synthetic mixtures (i.e. phospholipids, phospholipids supplemented with surfactant protein B, and Venticute®) were more susceptible to surface-activity inhibition as the more complex naturally-derived preparations (i.e. Alveofact® and large surfactant aggregates isolated from rabbit bronchoalveolar lavage fluid). Overall, nanoparticle characteristics and surfactant constitution both influence the extent of biophysical inhibition of pulmonary surfactants.

  19. Adsorption of mixed cationic-nonionic surfactant and its effect on bentonite structure.

    PubMed

    Zhang, Yaxin; Zhao, Yan; Zhu, Yong; Wu, Huayong; Wang, Hongtao; Lu, Wenjing

    2012-01-01

    The adsorption of cationic-nonionic mixed surfactant onto bentonite and its effect on bentonite structure were investigated. The objective was to improve the understanding of surfactant behavior on clay mineral for its possible use in remediation technologies of soil and groundwater contaminated by toxic organic compounds. The cationic surfactant used was hexadecylpyridinium bromide (HDPB), and the nonionic surfactant was Triton X-100 (TX100). Adsorption of TX100 was enhanced significantly by the addition of HDPB, but this enhancement decreased with an increase in the fraction of the cationic surfactant. Part of HDPB was replaced by TX100 which decreased the adsorption of HDPB. However, the total adsorbed amount of the mixed surfactant was still increased substantially, indicating the synergistic effect between the cationic and nonionic surfactants. The surfactant-modified bentonite was characterized by Brunauer-Emmett-Teller specific surface area measurement, Fourier transform infrared spectroscopy, and thermogravimetric-derivative thermogravimetric/differential thermal analyses. Surfactant intercalation was found to decrease the bentonite specific surface area, pore volume, and surface roughness and irregularities, as calculated by nitrogen adsorption-desorption isotherms. The co-adsorption of the cationic and nonionic surfactants increased the ordering conformation of the adsorbed surfactants on bentonite, but decreased the thermal stability of the organobentonite system.

  20. Cross-flow ultrafiltration of micellar surfactant solutions

    SciTech Connect

    Markels, J.H.; Lynn, S.; Radke, C.J.

    1995-09-01

    A steady-state fouling-resistance and osmotic-pressure model is used to predict flux in the laminar, cross-flow ultrafiltration of micellar cetyl (=hexadecyl)pyridinium chloride (CPC) solutions at 0.01-M NaCl background electrolyte. The model assumes a constant overall hydraulic resistance including the effect of surfactant fouling and native membrane resistance. Measurements of osmotic pressures of CPC solutions at 0.01-M NaCl as a function of surfactant concentration describe the effect of concentration polarization on permeate flux. Two types of asymmetric polyethersulfone membranes are used: 5,000 molecular weight cutoff (MWCO) membranes that allow partial monomer permeation, but quantitatively reject all micelles; 50,000 MWCO membranes that allow some micelle permeation. For the former, the intrinsic rejection coefficient for monomer, measured separately, is sufficient to describe surfactant rejection, without adjustable parameters. Predictions of the volumetric flux of the permeate, including the value of the limiting flux, agree well with the experimental results over the entire range of pressure drop, axial velocity, and bulk surfactant concentration. For the 50,000 MWCO membranes the data are described using a best-fit value of the overall surfactant rejection coefficient. For the first time, unusual behavior is observed experimentally in which the flux levels off with increasing pressure drop across the membrane, only to increase sharply again at higher applied pressure drop. Both effects are in accord with the proposed model. No gel layer need be postulated to explain the flux behavior of either membrane type.