Sample records for surgery simulator experiment

  1. Prior experience in micro-surgery may improve the surgeon's performance in robotic surgical training.

    PubMed

    Perez, Manuela; Perrenot, Cyril; Tran, Nguyen; Hossu, Gabriela; Felblinger, Jacques; Hubert, Jacques

    2013-09-01

    Robotic surgery has witnessed a huge expansion. Robotic simulators have proved to be of major interest in training. Some authors have suggested that prior experience in micro-surgery could improve robotic surgery training. To test micro-surgery as a new approach in training, we proposed a prospective study comparing the surgical performance of micro-surgeons with that of general surgeons on a robotic simulator. 49 surgeons were enrolled; 11 in the micro-surgery group (MSG); 38 n the control group (CG). Performance was evaluated based on five dV-Trainer® exercises. MSG achieved better results for all exercises including exercises requiring visual evaluation of force feed-back, economy of motion, instrument force and position. These results show that experience in micro-surgery could significantly improve surgeons' abilities and their performance in robotic training. So, as micro-surgery practice is relatively cheap, it could be easily included in basic robotic surgery training. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Telemedicine, virtual reality, and surgery

    NASA Technical Reports Server (NTRS)

    Mccormack, Percival D.; Charles, Steve

    1994-01-01

    Two types of synthetic experience are covered: virtual reality (VR) and surgery, and telemedicine. The topics are presented in viewgraph form and include the following: geometric models; physiological sensors; surgical applications; virtual cadaver; VR surgical simulation; telesurgery; VR Surgical Trainer; abdominal surgery pilot study; advanced abdominal simulator; examples of telemedicine; and telemedicine spacebridge.

  3. Assessment of skills using a virtual reality temporal bone surgery simulator.

    PubMed

    Linke, R; Leichtle, A; Sheikh, F; Schmidt, C; Frenzel, H; Graefe, H; Wollenberg, B; Meyer, J E

    2013-08-01

    Surgery on the temporal bone is technically challenging due to its complex anatomy. Precise anatomical dissection of the human temporal bone is essential and is fundamental for middle ear surgery. We assessed the possible application of a virtual reality temporal bone surgery simulator to the education of ear surgeons. Seventeen ENT physicians with different levels of surgical training and 20 medical students performed an antrotomy with a computer-based virtual temporal bone surgery simulator. The ease, accuracy and timing of the simulated temporal bone surgery were assessed using the automatic assessment software provided by the simulator device and additionally with a modified Final Product Analysis Scale. Trained ENT surgeons, physicians without temporal bone surgical training and medical students were all able to perform the antrotomy. However, the highly trained ENT surgeons were able to complete the surgery in approximately half the time, with better handling and accuracy as assessed by the significant reduction in injury to important middle ear structures. Trained ENT surgeons achieved significantly higher scores using both dissection analysis methods. Surprisingly, there were no significant differences in the results between medical students and physicians without experience in ear surgery. The virtual temporal bone training system can stratify users of known levels of experience. This system can be used not only to improve the surgical skills of trained ENT surgeons for more successful and injury-free surgeries, but also to train inexperienced physicians/medical students in developing their surgical skills for the ear.

  4. Current status of validation for robotic surgery simulators - a systematic review.

    PubMed

    Abboudi, Hamid; Khan, Mohammed S; Aboumarzouk, Omar; Guru, Khurshid A; Challacombe, Ben; Dasgupta, Prokar; Ahmed, Kamran

    2013-02-01

    To analyse studies validating the effectiveness of robotic surgery simulators. The MEDLINE(®), EMBASE(®) and PsycINFO(®) databases were systematically searched until September 2011. References from retrieved articles were reviewed to broaden the search. The simulator name, training tasks, participant level, training duration and evaluation scoring were extracted from each study. We also extracted data on feasibility, validity, cost-effectiveness, reliability and educational impact. We identified 19 studies investigating simulation options in robotic surgery. There are five different robotic surgery simulation platforms available on the market. In all, 11 studies sought opinion and compared performance between two different groups; 'expert' and 'novice'. Experts ranged in experience from 21-2200 robotic cases. The novice groups consisted of participants with no prior experience on a robotic platform and were often medical students or junior doctors. The Mimic dV-Trainer(®), ProMIS(®), SimSurgery Educational Platform(®) (SEP) and Intuitive systems have shown face, content and construct validity. The Robotic Surgical SimulatorTM system has only been face and content validated. All of the simulators except SEP have shown educational impact. Feasibility and cost-effectiveness of simulation systems was not evaluated in any trial. Virtual reality simulators were shown to be effective training tools for junior trainees. Simulation training holds the greatest potential to be used as an adjunct to traditional training methods to equip the next generation of robotic surgeons with the skills required to operate safely. However, current simulation models have only been validated in small studies. There is no evidence to suggest one type of simulator provides more effective training than any other. More research is needed to validate simulated environments further and investigate the effectiveness of animal and cadaveric training in robotic surgery. © 2012 BJU International.

  5. Surgical simulators in cataract surgery training.

    PubMed

    Sikder, Shameema; Tuwairqi, Khaled; Al-Kahtani, Eman; Myers, William G; Banerjee, Pat

    2014-02-01

    Virtual simulators have been widely implemented in medical and surgical training, including ophthalmology. The increasing number of published articles in this field mandates a review of the available results to assess current technology and explore future opportunities. A PubMed search was conducted and a total of 10 articles were reviewed. Virtual simulators have shown construct validity in many modules, successfully differentiating user experience levels during simulated phacoemulsification surgery. Simulators have also shown improvements in wet-lab performance. The implementation of simulators in the residency training has been associated with a decrease in cataract surgery complication rates. Virtual reality simulators are an effective tool in measuring performance and differentiating trainee skill level. Additionally, they may be useful in improving surgical skill and patient outcomes in cataract surgery. Future opportunities rely on taking advantage of technical improvements in simulators for education and research.

  6. PubMed Central

    LINKE, R.; LEICHTLE, A.; SHEIKH, F.; SCHMIDT, C.; FRENZEL, H.; GRAEFE, H.; WOLLENBERG, B.; MEYER, J.E.

    2013-01-01

    SUMMARY Surgery on the temporal bone is technically challenging due to its complex anatomy. Precise anatomical dissection of the human temporal bone is essential and is fundamental for middle ear surgery. We assessed the possible application of a virtual reality temporal bone surgery simulator to the education of ear surgeons. Seventeen ENT physicians with different levels of surgical training and 20 medical students performed an antrotomy with a computer-based virtual temporal bone surgery simulator. The ease, accuracy and timing of the simulated temporal bone surgery were assessed using the automatic assessment software provided by the simulator device and additionally with a modified Final Product Analysis Scale. Trained ENT surgeons, physicians without temporal bone surgical training and medical students were all able to perform the antrotomy. However, the highly trained ENT surgeons were able to complete the surgery in approximately half the time, with better handling and accuracy as assessed by the significant reduction in injury to important middle ear structures. Trained ENT surgeons achieved significantly higher scores using both dissection analysis methods. Surprisingly, there were no significant differences in the results between medical students and physicians without experience in ear surgery. The virtual temporal bone training system can stratify users of known levels of experience. This system can be used not only to improve the surgical skills of trained ENT surgeons for more successful and injury-free surgeries, but also to train inexperienced physicians/medical students in developing their surgical skills for the ear. PMID:24043916

  7. A Guide for Developing Human-Robot Interaction Experiments in the Robotic Interactive Visualization and Experimentation Technology (RIVET) Simulation

    DTIC Science & Technology

    2016-05-01

    research, Kunkler (2006) suggested that the similarities between computer simulation tools and robotic surgery systems (e.g., mechanized feedback...distribution is unlimited. 49 Davies B. A review of robotics in surgery . Proceedings of the Institution of Mechanical Engineers, Part H: Journal...ARL-TR-7683 ● MAY 2016 US Army Research Laboratory A Guide for Developing Human- Robot Interaction Experiments in the Robotic

  8. Evaluation of simulation training in cardiothoracic surgery: the Senior Tour perspective.

    PubMed

    Fann, James I; Feins, Richard H; Hicks, George L; Nesbitt, Jonathan C; Hammon, John W; Crawford, Fred A

    2012-02-01

    The study objective was to introduce senior surgeons, referred to as members of the "Senior Tour," to simulation-based learning and evaluate ongoing simulation efforts in cardiothoracic surgery. Thirteen senior cardiothoracic surgeons participated in a 2½-day Senior Tour Meeting. Of 12 simulators, each participant focused on 6 cardiac (small vessel anastomosis, aortic cannulation, cardiopulmonary bypass, aortic valve replacement, mitral valve repair, and aortic root replacement) or 6 thoracic surgical simulators (hilar dissection, esophageal anastomosis, rigid bronchoscopy, video-assisted thoracoscopic surgery lobectomy, tracheal resection, and sleeve resection). The participants provided critical feedback regarding the realism and utility of the simulators, which served as the basis for a composite assessment of the simulators. All participants acknowledged that simulation may not provide a wholly immersive experience. For small vessel anastomosis, the portable chest model is less realistic compared with the porcine model, but is valuable in teaching anastomosis mechanics. The aortic cannulation model allows multiple cannulations and can serve as a thoracic aortic surgery model. The cardiopulmonary bypass simulator provides crisis management experience. The porcine aortic valve replacement, mitral valve annuloplasty, and aortic root models are realistic and permit standardized training. The hilar dissection model is subject to variability of porcine anatomy and fragility of the vascular structures. The realistic esophageal anastomosis simulator presents various approaches to esophageal anastomosis. The exercise associated with the rigid bronchoscopy model is brief, and adding additional procedures should be considered. The tracheal resection, sleeve resection, and video-assisted thoracoscopic surgery lobectomy models are highly realistic and simulate advanced maneuvers. By providing the necessary tools, such as task trainers and assessment instruments, the Senior Tour may be one means to enhance simulation-based learning in cardiothoracic surgery. The Senior Tour members can provide regular programmatic evaluation and critical analyses to ensure that proposed simulators are of educational value. Published by Mosby, Inc.

  9. Risk as Feelings in the Effect of Patient Outcomes on Physicians' Subsequent Treatment Decisions: A Randomized Trial and Manipulation Validation

    PubMed Central

    Hemmerich, Joshua A; Elstein, Arthur S; Schwarze, Margaret L; Moliski, Elizabeth G; Dale, William

    2013-01-01

    The present study tested predictions derived from the Risk as Feelings hypothesis about the effects of prior patients' negative treatment outcomes on physicians' subsequent treatment decisions. Two experiments at The University of Chicago, U.S.A., utilized a computer simulation of an abdominal aortic aneurysm (AAA) patient with enhanced realism to present participants with one of three experimental conditions: AAA rupture causing a watchful waiting death (WWD), perioperative death (PD), or a successful operation (SO), as well as the statistical treatment guidelines for AAA. Experiment 1 tested effects of these simulated outcomes on (n=76) laboratory participants' (university student sample) self-reported emotions, and their ratings of valence and arousal of the AAA rupture simulation and other emotion inducing picture stimuli. Experiment 2 tested two hypotheses: 1) that experiencing a patient WWD in the practice trial's experimental condition would lead physicians to choose surgery earlier, and 2) experiencing a patient PD would lead physicians to choose surgery later with the next patient. Experiment 2 presented (n=132) physicians (surgeons and geriatricians) with the same experimental manipulation and a second simulated AAA patient. Physicians then chose to either go to surgery or continue watchful waiting. The results of Experiment 1 demonstrated that the WWD experimental condition significantly increased anxiety, and was rated similarly to other negative and arousing pictures. The results of Experiment 2 demonstrated that, after controlling for demographics, baseline anxiety, intolerance for uncertainty, risk attitudes, and the influence of simulation characteristics, the WWD experimental condition significantly expedited decisions to choose surgery for the next patient. The results support the Risk as Feelings hypothesis on physicians' treatment decisions in a realistic AAA patient computer simulation. Bad outcomes affected emotions and decisions, even with statistical AAA rupture risk guidance present. These results suggest that bad patient outcomes cause physicians to experience anxiety and regret that influences their subsequent treatment decision-making for the next patient. PMID:22571890

  10. Risk as feelings in the effect of patient outcomes on physicians' future treatment decisions: a randomized trial and manipulation validation.

    PubMed

    Hemmerich, Joshua A; Elstein, Arthur S; Schwarze, Margaret L; Moliski, Elizabeth Ghini; Dale, William

    2012-07-01

    The present study tested predictions derived from the Risk as Feelings hypothesis about the effects of prior patients' negative treatment outcomes on physicians' subsequent treatment decisions. Two experiments at The University of Chicago, U.S.A., utilized a computer simulation of an abdominal aortic aneurysm (AAA) patient with enhanced realism to present participants with one of three experimental conditions: AAA rupture causing a watchful waiting death (WWD), perioperative death (PD), or a successful operation (SO), as well as the statistical treatment guidelines for AAA. Experiment 1 tested effects of these simulated outcomes on (n = 76) laboratory participants' (university student sample) self-reported emotions, and their ratings of valence and arousal of the AAA rupture simulation and other emotion-inducing picture stimuli. Experiment 2 tested two hypotheses: 1) that experiencing a patient WWD in the practice trial's experimental condition would lead physicians to choose surgery earlier, and 2) experiencing a patient PD would lead physicians to choose surgery later with the next patient. Experiment 2 presented (n = 132) physicians (surgeons and geriatricians) with the same experimental manipulation and a second simulated AAA patient. Physicians then chose to either go to surgery or continue watchful waiting. The results of Experiment 1 demonstrated that the WWD experimental condition significantly increased anxiety, and was rated similarly to other negative and arousing pictures. The results of Experiment 2 demonstrated that, after controlling for demographics, baseline anxiety, intolerance for uncertainty, risk attitudes, and the influence of simulation characteristics, the WWD experimental condition significantly expedited decisions to choose surgery for the next patient. The results support the Risk as Feelings hypothesis on physicians' treatment decisions in a realistic AAA patient computer simulation. Bad outcomes affected emotions and decisions, even with statistical AAA rupture risk guidance present. These results suggest that bad patient outcomes cause physicians to experience anxiety and regret that influences their subsequent treatment decision-making for the next patient. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. [Simulation training in surgical education - application of virtual reality laparoscopic simulators in a surgical skills course].

    PubMed

    Lehmann, K S; Gröne, J; Lauscher, J C; Ritz, J-P; Holmer, C; Pohlen, U; Buhr, H-J

    2012-04-01

    Training and simulation are gaining importance in surgical education. Today, virtual reality surgery simulators provide sophisticated laparoscopic training scenarios and offer detailed assessment methods. This also makes simulators interesting for the application in surgical skills courses. The aim of the current study was to assess the suitability of a virtual surgery simulator for training and assessment in an established surgical training course. The study was conducted during the annual "Practical Course for Visceral Surgery" (Warnemuende, Germany). 36 of 108 course participants were assigned at random for the study. Training was conducted in 15 sessions over 5 days with 4 identical virtual surgery simulators (LapSim) and 2 standardised training tasks. The simulator measured 16 individual parameters and calculated 2 scores. Questionnaires were used to assess the test persons' laparoscopic experience, their training situation and the acceptance of the simulator training. Data were analysed with non-parametric tests. A subgroup analysis for laparoscopic experience was conducted in order to assess the simulator's construct validity and assessment capabilities. Median age was 32 (27 - 41) years; median professional experience was 3 (1 - 11) years. Typical laparoscopic learning curves with initial significant improvements and a subsequent plateau phase were measured over 5 days. The individual training sessions exhibited a rhythmic variability in the training results. A shorter night's sleep led to a marked drop in performance. The participants' different experience levels could clearly be discriminated ( ≤ 20 vs. > 20 laparoscopic operations; p ≤ 0.001). The questionnaire showed that the majority of the participants had limited training opportunities in their hospitals. The simulator training was very well accepted. However, the participants severely misjudged the real costs of the simulators that were used. The learning curve on the simulator was successfully mastered during the course. Construct validity could be demonstrated within the course setting. The simulator's assessment system can be of value for the assessment of laparoscopic training performance within surgical skills courses. Acceptance of the simulator training is high. However, simulators are currently too expensive to be used within a large training course. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Assessment of construct validity of a virtual reality laparoscopy simulator.

    PubMed

    Rosenthal, Rachel; Gantert, Walter A; Hamel, Christian; Hahnloser, Dieter; Metzger, Juerg; Kocher, Thomas; Vogelbach, Peter; Scheidegger, Daniel; Oertli, Daniel; Clavien, Pierre-Alain

    2007-08-01

    The aim of this study was to assess whether virtual reality (VR) can discriminate between the skills of novices and intermediate-level laparoscopic surgical trainees (construct validity), and whether the simulator assessment correlates with an expert's evaluation of performance. Three hundred and seven (307) participants of the 19th-22nd Davos International Gastrointestinal Surgery Workshops performed the clip-and-cut task on the Xitact LS 500 VR simulator (Xitact S.A., Morges, Switzerland). According to their previous experience in laparoscopic surgery, participants were assigned to the basic course (BC) or the intermediate course (IC). Objective performance parameters recorded by the simulator were compared to the standardized assessment by the course instructors during laparoscopic pelvitrainer and conventional surgery exercises. IC participants performed significantly better on the VR simulator than BC participants for the task completion time as well as the economy of movement of the right instrument, not the left instrument. Participants with maximum scores in the pelvitrainer cholecystectomy task performed the VR trial significantly faster, compared to those who scored less. In the conventional surgery task, a significant difference between those who scored the maximum and those who scored less was found not only for task completion time, but also for economy of movement of the right instrument. VR simulation provides a valid assessment of psychomotor skills and some basic aspects of spatial skills in laparoscopic surgery. Furthermore, VR allows discrimination between trainees with different levels of experience in laparoscopic surgery establishing construct validity for the Xitact LS 500 clip-and-cut task. Virtual reality may become the gold standard to assess and monitor surgical skills in laparoscopic surgery.

  13. Virtual reality simulation training in Otolaryngology.

    PubMed

    Arora, Asit; Lau, Loretta Y M; Awad, Zaid; Darzi, Ara; Singh, Arvind; Tolley, Neil

    2014-01-01

    To conduct a systematic review of the validity data for the virtual reality surgical simulator platforms available in Otolaryngology. Ovid and Embase databases searched July 13, 2013. Four hundred and nine abstracts were independently reviewed by 2 authors. Thirty-six articles which fulfilled the search criteria were retrieved and viewed in full text. These articles were assessed for quantitative data on at least one aspect of face, content, construct or predictive validity. Papers were stratified by simulator, sub-specialty and further classified by the validation method used. There were 21 articles reporting applications for temporal bone surgery (n = 12), endoscopic sinus surgery (n = 6) and myringotomy (n = 3). Four different simulator platforms were validated for temporal bone surgery and two for each of the other surgical applications. Face/content validation represented the most frequent study type (9/21). Construct validation studies performed on temporal bone and endoscopic sinus surgery simulators showed that performance measures reliably discriminated between different experience levels. Simulation training improved cadaver temporal bone dissection skills and operating room performance in sinus surgery. Several simulator platforms particularly in temporal bone surgery and endoscopic sinus surgery are worthy of incorporation into training programmes. Standardised metrics are necessary to guide curriculum development in Otolaryngology. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  14. Construct validity of the LapVR virtual-reality surgical simulator.

    PubMed

    Iwata, Naoki; Fujiwara, Michitaka; Kodera, Yasuhiro; Tanaka, Chie; Ohashi, Norifumi; Nakayama, Goro; Koike, Masahiko; Nakao, Akimasa

    2011-02-01

    Laparoscopic surgery requires fundamental skills peculiar to endoscopic procedures such as eye-hand coordination. Acquisition of such skills prior to performing actual surgery is highly desirable for favorable outcome. Virtual-reality simulators have been developed for both surgical training and assessment of performance. The aim of the current study is to show construct validity of a novel simulator, LapVR (Immersion Medical, San Jose, CA, USA), for Japanese surgeons and surgical residents. Forty-four subjects were divided into the following three groups according to their experience in laparoscopic surgery: 14 residents (RE) with no experience in laparoscopic surgery, 14 junior surgeons (JR) with little experience, and 16 experienced surgeons (EX). All subjects executed "essential task 1" programmed in the LapVR, which consists of six tasks, resulting in automatic measurement of 100 parameters indicating various aspects of laparoscopic skills. Time required for each task tended to be inversely correlated with experience in laparoscopic surgery. For the peg transfer skill, statistically significant differences were observed between EX and RE in three parameters, including total time and average time taken to complete the procedure and path length for the nondominant hand. For the cutting skill, similar differences were observed between EX and RE in total time, number of unsuccessful cutting attempts, and path length for the nondominant hand. According to the programmed comprehensive evaluation, performance in terms of successful completion of the task and actual experience of the participants in laparoscopic surgery correlated significantly for the peg transfer (P=0.007) and cutting skills (P=0.026). The peg transfer and cutting skills could best distinguish between EX and RE. This study is the first to provide evidence that LapVR has construct validity to discriminate between novice and experienced laparoscopic surgeons.

  15. Virtual reality simulators: valuable surgical skills trainers or video games?

    PubMed

    Willis, Ross E; Gomez, Pedro Pablo; Ivatury, Srinivas J; Mitra, Hari S; Van Sickle, Kent R

    2014-01-01

    Virtual reality (VR) and physical model (PM) simulators differ in terms of whether the trainee is manipulating actual 3-dimensional objects (PM) or computer-generated 3-dimensional objects (VR). Much like video games (VG), VR simulators utilize computer-generated graphics. These differences may have profound effects on the utility of VR and PM training platforms. In this study, we aimed to determine whether a relationship exists between VR, PM, and VG platforms. VR and PM simulators for laparoscopic camera navigation ([LCN], experiment 1) and flexible endoscopy ([FE] experiment 2) were used in this study. In experiment 1, 20 laparoscopic novices played VG and performed 0° and 30° LCN exercises on VR and PM simulators. In experiment 2, 20 FE novices played VG and performed colonoscopy exercises on VR and PM simulators. In both experiments, VG performance was correlated with VR performance but not with PM performance. Performance on VR simulators did not correlate with performance on respective PM models. VR environments may be more like VG than previously thought. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.

  16. Design-Based Comparison of Spine Surgery Simulators: Optimizing Educational Features of Surgical Simulators.

    PubMed

    Ryu, Won Hyung A; Mostafa, Ahmed E; Dharampal, Navjit; Sharlin, Ehud; Kopp, Gail; Jacobs, W Bradley; Hurlbert, R John; Chan, Sonny; Sutherland, Garnette R

    2017-10-01

    Simulation-based education has made its entry into surgical residency training, particularly as an adjunct to hands-on clinical experience. However, one of the ongoing challenges to wide adoption is the capacity of simulators to incorporate educational features required for effective learning. The aim of this study was to identify strengths and limitations of spine simulators to characterize design elements that are essential in enhancing resident education. We performed a mixed qualitative and quantitative cohort study with a focused survey and interviews of stakeholders in spine surgery pertaining to their experiences on 3 spine simulators. Ten participants were recruited spanning all levels of training and expertise until qualitative analysis reached saturation of themes. Participants were asked to perform lumbar pedicle screw insertion on 3 simulators. Afterward, a 10-item survey was administrated and a focused interview was conducted to explore topics pertaining to the design features of the simulators. Overall impressions of the simulators were positive with regards to their educational benefit, but our qualitative analysis revealed differing strengths and limitations. Main design strengths of the computer-based simulators were incorporation of procedural guidance and provision of performance feedback. The synthetic model excelled in achieving more realistic haptic feedback and incorporating use of actual surgical tools. Stakeholders from trainees to experts acknowledge the growing role of simulation-based education in spine surgery. However, different simulation modalities have varying design elements that augment learning in distinct ways. Characterization of these design characteristics will allow for standardization of simulation curricula in spinal surgery, optimizing educational benefit. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The benefits of being a video gamer in laparoscopic surgery.

    PubMed

    Sammut, Matthew; Sammut, Mark; Andrejevic, Predrag

    2017-09-01

    Video games are mainly considered to be of entertainment value in our society. Laparoscopic surgery and video games are activities similarly requiring eye-hand and visual-spatial skills. Previous studies have not conclusively shown a positive correlation between video game experience and improved ability to accomplish visual-spatial tasks in laparoscopic surgery. This study was an attempt to investigate this relationship. The aim of the study was to investigate whether previous video gaming experience affects the baseline performance on a laparoscopic simulator trainer. Newly qualified medical officers with minimal experience in laparoscopic surgery were invited to participate in the study and assigned to the following groups: gamers (n = 20) and non-gamers (n = 20). Analysis included participants' demographic data and baseline video gaming experience. Laparoscopic skills were assessed using a laparoscopic simulator trainer. There were no significant demographic differences between the two groups. Each participant performed three laparoscopic tasks and mean scores between the two groups were compared. The gamer group had statistically significant better results in maintaining the laparoscopic camera horizon ± 15° (p value = 0.009), in the complex ball manipulation accuracy rates (p value = 0.024) and completed the complex laparoscopic simulator task in a significantly shorter time period (p value = 0.001). Although prior video gaming experience correlated with better results, there were no significant differences for camera accuracy rates (p value = 0.074) and in a two-handed laparoscopic exercise task accuracy rates (p value = 0.092). The results show that previous video-gaming experience improved the baseline performance in laparoscopic simulator skills. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  18. Da Vinci© Skills Simulator™: is an early selection of talented console surgeons possible?

    PubMed

    Meier, Mark; Horton, Kevin; John, Hubert

    2016-12-01

    To investigate whether the learning curve of robotic surgery simulator training depends on the probands' characteristics, such as age and prior experience, we conducted a study of six distinct proband groups, using the da Vinci Skills Simulator: experienced urological robotic surgeons, surgeons with experience as da Vinci tableside assistants, urological surgeons with laparoscopic experience, urological surgeons without laparoscopic experience, and complete novices aged 25 and younger and 40 and older. The results showed that all experienced robotic surgeons reached expert level (>90 %, as defined previously in the literature) within the first three repetitions and remained on a high level of performance. All other groups performed worse. Tableside assistants, laparoscopically experienced surgeons, and younger novices showed a better performance in all exercises than surgeons without laparoscopic experience and older novices. A linear mixed-effects model analysis demonstrated no significant difference in learning curves between proband groups in all exercises except the RW1 exercise for the younger proband group. In summary, we found that performance in robotic surgery, measured by performance scores in three virtual simulator modules using the EndoWrist techniques, was dependent on age and prior experience with robotic and laparoscopic surgery. However, and most importantly, the learning curve was not significantly affected by these factors. This suggests that the da Vinci Skills Simulator™ is a useful practice tool for everyone learning or performing robotic surgery, and that early selection of talented surgeons is neither possible nor necessary.

  19. Outcomes of a virtual-reality simulator-training programme on basic surgical skills in robot-assisted laparoscopic surgery.

    PubMed

    Phé, Véronique; Cattarino, Susanna; Parra, Jérôme; Bitker, Marc-Olivier; Ambrogi, Vanina; Vaessen, Christophe; Rouprêt, Morgan

    2017-06-01

    The utility of the virtual-reality robotic simulator in training programmes has not been clearly evaluated. Our aim was to evaluate the impact of a virtual-reality robotic simulator-training programme on basic surgical skills. A simulator-training programme in robotic surgery, using the da Vinci Skills Simulator, was evaluated in a population including junior and seasoned surgeons, and non-physicians. Their performances on robotic dots and suturing-skin pod platforms before and after virtual-simulation training were rated anonymously by surgeons experienced in robotics. 39 participants were enrolled: 14 medical students and residents in surgery, 14 seasoned surgeons, 11 non-physicians. Junior and seasoned surgeons' performances on platforms were not significantly improved after virtual-reality robotic simulation in any of the skill domains, in contrast to non-physicians. The benefits of virtual-reality simulator training on several tasks to basic skills in robotic surgery were not obvious among surgeons in our initial and early experience with the simulator. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Factors associated with simulator-assessed laparoscopic surgical skills of veterinary students.

    PubMed

    Kilkenny, Jessica J; Singh, Ameet; Kerr, Carolyn L; Khosa, Deep K; Fransson, Boel A

    2017-06-01

    OBJECTIVE To determine whether simulator-assessed laparoscopic skills of veterinary students were associated with training level and prior experience performing nonlaparoscopic veterinary surgery and other activities requiring hand-eye coordination and manual dexterity. DESIGN Experiment. SAMPLE 145 students without any prior laparoscopic surgical or fundamentals of laparoscopic surgery (FLS) simulator experience in years 1 (n = 39), 2 (34), 3 (39), and 4 (33) at a veterinary college. PROCEDURES A questionnaire was used to collect data from participants regarding experience performing veterinary surgery, playing video games, and participating in other activities. Participants performed a peg transfer, pattern cutting, and ligature loop-placement task on an FLS simulator, and FLS scores were assigned by an observer. Scores were compared among academic years, and correlations between amounts of veterinary surgical experience and FLS scores were assessed. A general linear model was used to identify predictors of FLS scores. RESULTS Participants were predominantly female (75%), right-hand dominant (92%), and between 20 and 29 years of age (98%). No significant differences were identified among academic years in FLS scores for individual tasks or total FLS score. Scores were not significantly associated with prior surgical or video game experience. Participants reporting no handicraft experience had significantly lower total FLS scores and FLS scores for task 2 than did participants reporting a lot of handicraft experience. CONCLUSIONS AND CLINICAL RELEVANCE Prior veterinary surgical and video game experience had no influence on FLS scores in this group of veterinary students, suggesting that proficiency of veterinary students in FLS may require specific training.

  1. Force-Sensing Enhanced Simulation Environment (ForSense) for laparoscopic surgery training and assessment.

    PubMed

    Cundy, Thomas P; Thangaraj, Evelyn; Rafii-Tari, Hedyeh; Payne, Christopher J; Azzie, Georges; Sodergren, Mikael H; Yang, Guang-Zhong; Darzi, Ara

    2015-04-01

    Excessive or inappropriate tissue interaction force during laparoscopic surgery is a recognized contributor to surgical error, especially for robotic surgery. Measurement of force at the tool-tissue interface is, therefore, a clinically relevant skill assessment variable that may improve effectiveness of surgical simulation. Popular box trainer simulators lack the necessary technology to measure force. The aim of this study was to develop a force sensing unit that may be integrated easily with existing box trainer simulators and to (1) validate multiple force variables as objective measurements of laparoscopic skill, and (2) determine concurrent validity of a revised scoring metric. A base plate unit sensitized to a force transducer was retrofitted to a box trainer. Participants of 3 different levels of operative experience performed 5 repetitions of a peg transfer and suture task. Multiple outcome variables of force were assessed as well as a revised scoring metric that incorporated a penalty for force error. Mean, maximum, and overall magnitudes of force were significantly different among the 3 levels of experience, as well as force error. Experts were found to exert the least force and fastest task completion times, and vice versa for novices. Overall magnitude of force was the variable most correlated with experience level and task completion time. The revised scoring metric had similar predictive strength for experience level compared with the standard scoring metric. Current box trainer simulators can be adapted for enhanced objective measurements of skill involving force sensing. These outcomes are significantly influenced by level of expertise and are relevant to operative safety in laparoscopic surgery. Conventional proficiency standards that focus predominantly on task completion time may be integrated with force-based outcomes to be more accurately reflective of skill quality. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Mechanical simulators for training for laparoscopic surgery in urology.

    PubMed

    Rassweiler, Jens; Klein, Jan; Teber, Dogu; Schulze, Michael; Frede, Thomas

    2007-03-01

    The introduction of laparoscopic surgery into urology has led to new training concepts differing significantly from previous concepts of training for open surgery. This paper focuses on the type and importance of mechanical simulators in laparoscopic training. On the basis of our own studies and experience with the development of various concepts of laparoscopic training, including different modules (i.e., Pelvi-trainer, animal models, clinical mentoring) since 1991, we reviewed the current literature concerning all types of simulators. We focused on training for laparoscopic ablative and reconstructive surgery using mechanical simulators. The principle of a mechanical simulator (i.e., a box with the possibility of trocar insertion) has not changed during the last decade. However, the types of Pelvi-trainers and the models used inside have been improved significantly. According to the task of the simulator, various sophisticated models have been developed, including standardized phantoms, animal organs, and even perfused segments of porcine organs. For laparoscopic suturing, various step-by-step training concepts have been presented. These can be used for determination of the ability of a physician with an interest in laparoscopic surgery, but also to classify the training status of a laparosopic surgeon. Training in laparoscopic surgery has become an important topic, not only in learning a procedure, but also in maintaining skills and preparing for the management of complications. For these purposes, mechanical simulators will definitely play an important role in the future.

  3. A 3D virtual reality simulator for training of minimally invasive surgery.

    PubMed

    Mi, Shao-Hua; Hou, Zeng-Gunag; Yang, Fan; Xie, Xiao-Liang; Bian, Gui-Bin

    2014-01-01

    For the last decade, remarkable progress has been made in the field of cardiovascular disease treatment. However, these complex medical procedures require a combination of rich experience and technical skills. In this paper, a 3D virtual reality simulator for core skills training in minimally invasive surgery is presented. The system can generate realistic 3D vascular models segmented from patient datasets, including a beating heart, and provide a real-time computation of force and force feedback module for surgical simulation. Instruments, such as a catheter or guide wire, are represented by a multi-body mass-spring model. In addition, a realistic user interface with multiple windows and real-time 3D views are developed. Moreover, the simulator is also provided with a human-machine interaction module that gives doctors the sense of touch during the surgery training, enables them to control the motion of a virtual catheter/guide wire inside a complex vascular model. Experimental results show that the simulator is suitable for minimally invasive surgery training.

  4. Operating Room Performance Improves after Proficiency-Based Virtual Reality Cataract Surgery Training.

    PubMed

    Thomsen, Ann Sofia Skou; Bach-Holm, Daniella; Kjærbo, Hadi; Højgaard-Olsen, Klavs; Subhi, Yousif; Saleh, George M; Park, Yoon Soo; la Cour, Morten; Konge, Lars

    2017-04-01

    To investigate the effect of virtual reality proficiency-based training on actual cataract surgery performance. The secondary purpose of the study was to define which surgeons benefit from virtual reality training. Multicenter masked clinical trial. Eighteen cataract surgeons with different levels of experience. Cataract surgical training on a virtual reality simulator (EyeSi) until a proficiency-based test was passed. Technical performance in the operating room (OR) assessed by 3 independent, masked raters using a previously validated task-specific assessment tool for cataract surgery (Objective Structured Assessment of Cataract Surgical Skill). Three surgeries before and 3 surgeries after the virtual reality training were video-recorded, anonymized, and presented to the raters in random order. Novices (non-independently operating surgeons) and surgeons having performed fewer than 75 independent cataract surgeries showed significant improvements in the OR-32% and 38%, respectively-after virtual reality training (P = 0.008 and P = 0.018). More experienced cataract surgeons did not benefit from simulator training. The reliability of the assessments was high with a generalizability coefficient of 0.92 and 0.86 before and after the virtual reality training, respectively. Clinically relevant cataract surgical skills can be improved by proficiency-based training on a virtual reality simulator. Novices as well as surgeons with an intermediate level of experience showed improvement in OR performance score. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  5. Simulation training in video-assisted urologic surgery.

    PubMed

    Hoznek, András; Salomon, Laurent; de la Taille, Alexandre; Yiou, René; Vordos, Dimitrios; Larre, Stéphane; Abbou, Clément-Claude

    2006-03-01

    The current system of surgical education is facing many challenges in terms of time efficiency, costs, and patient safety. Training using simulation is an emerging area, mostly based on the experience of other high-risk professions like aviation. The goal of simulation-based training in surgery is to develop not only technical but team skills. This learning environment is stress-free and safe, allows standardization and tailoring of training, and also objectively evaluate performances. The development of simulation training is straightforward in endourology, since these procedures are video-assisted and the low degree of freedom of the instruments is easily replicated. On the other hand, these interventions necessitate a long learning curve, training in the operative room is especially costly and risky. Many models are already in use or under development in all fields of video-assisted urologic surgery: ureteroscopy, percutaneous surgery, transurethral resection of the prostate, and laparoscopy. Although bench models are essential, simulation increasingly benefits from the achievements and development of computer technology. Still in its infancy, virtual reality simulation will certainly belong to tomorrow's teaching tools.

  6. Prior video game utilization is associated with improved performance on a robotic skills simulator.

    PubMed

    Harbin, Andrew C; Nadhan, Kumar S; Mooney, James H; Yu, Daohai; Kaplan, Joshua; McGinley-Hence, Nora; Kim, Andrew; Gu, Yiming; Eun, Daniel D

    2017-09-01

    Laparoscopic surgery and robotic surgery, two forms of minimally invasive surgery (MIS), have recently experienced a large increase in utilization. Prior studies have shown that video game experience (VGE) may be associated with improved laparoscopic surgery skills; however, similar data supporting a link between VGE and proficiency on a robotic skills simulator (RSS) are lacking. The objective of our study is to determine whether volume or timing of VGE had any impact on RSS performance. Pre-clinical medical students completed a comprehensive questionnaire detailing previous VGE across several time periods. Seventy-five subjects were ultimately evaluated in 11 training exercises on the daVinci Si Skills Simulator. RSS skill was measured by overall score, time to completion, economy of motion, average instrument collision, and improvement in Ring Walk 3 score. Using the nonparametric tests and linear regression, these metrics were analyzed for systematic differences between non-users, light, and heavy video game users based on their volume of use in each of the following four time periods: past 3 months, past year, past 3 years, and high school. Univariate analyses revealed significant differences between heavy and non-users in all five performance metrics. These trends disappeared as the period of VGE went further back. Our study showed a positive association between video game experience and robotic skills simulator performance that is stronger for more recent periods of video game use. The findings may have important implications for the evolution of robotic surgery training.

  7. Validation of a novel virtual reality simulator for robotic surgery.

    PubMed

    Schreuder, Henk W R; Persson, Jan E U; Wolswijk, Richard G H; Ihse, Ingmar; Schijven, Marlies P; Verheijen, René H M

    2014-01-01

    With the increase in robotic-assisted laparoscopic surgery there is a concomitant rising demand for training methods. The objective was to establish face and construct validity of a novel virtual reality simulator (dV-Trainer, Mimic Technologies, Seattle, WA) for the use in training of robot-assisted surgery. A comparative cohort study was performed. Participants (n = 42) were divided into three groups according to their robotic experience. To determine construct validity, participants performed three different exercises twice. Performance parameters were measured. To determine face validity, participants filled in a questionnaire after completion of the exercises. Experts outperformed novices in most of the measured parameters. The most discriminative parameters were "time to complete" and "economy of motion" (P < 0.001). The training capacity of the simulator was rated 4.6 ± 0.5 SD on a 5-point Likert scale. The realism of the simulator in general, visual graphics, movements of instruments, interaction with objects, and the depth perception were all rated as being realistic. The simulator is considered to be a very useful training tool for residents and medical specialist starting with robotic surgery. Face and construct validity for the dV-Trainer could be established. The virtual reality simulator is a useful tool for training robotic surgery.

  8. Validation of a Novel Virtual Reality Simulator for Robotic Surgery

    PubMed Central

    Schreuder, Henk W. R.; Persson, Jan E. U.; Wolswijk, Richard G. H.; Ihse, Ingmar; Schijven, Marlies P.; Verheijen, René H. M.

    2014-01-01

    Objective. With the increase in robotic-assisted laparoscopic surgery there is a concomitant rising demand for training methods. The objective was to establish face and construct validity of a novel virtual reality simulator (dV-Trainer, Mimic Technologies, Seattle, WA) for the use in training of robot-assisted surgery. Methods. A comparative cohort study was performed. Participants (n = 42) were divided into three groups according to their robotic experience. To determine construct validity, participants performed three different exercises twice. Performance parameters were measured. To determine face validity, participants filled in a questionnaire after completion of the exercises. Results. Experts outperformed novices in most of the measured parameters. The most discriminative parameters were “time to complete” and “economy of motion” (P < 0.001). The training capacity of the simulator was rated 4.6 ± 0.5 SD on a 5-point Likert scale. The realism of the simulator in general, visual graphics, movements of instruments, interaction with objects, and the depth perception were all rated as being realistic. The simulator is considered to be a very useful training tool for residents and medical specialist starting with robotic surgery. Conclusions. Face and construct validity for the dV-Trainer could be established. The virtual reality simulator is a useful tool for training robotic surgery. PMID:24600328

  9. Surgical simulation training in orthopedics: current insights.

    PubMed

    Kalun, Portia; Wagner, Natalie; Yan, James; Nousiainen, Markku T; Sonnadara, Ranil R

    2018-01-01

    While the knowledge required of residents training in orthopedic surgery continues to increase, various factors, including reductions in work hours, have resulted in decreased clinical learning opportunities. Recent work suggests residents graduate from their training programs without sufficient exposure to key procedures. In response, simulation is increasingly being incorporated into training programs to supplement clinical learning. This paper reviews the literature to explore whether skills learned in simulation-based settings results in improved clinical performance in orthopedic surgery trainees. A scoping review of the literature was conducted to identify papers discussing simulation training in orthopedic surgery. We focused on exploring whether skills learned in simulation transferred effectively to a clinical setting. Experimental studies, systematic reviews, and narrative reviews were included. A total of 15 studies were included, with 11 review papers and four experimental studies. The review articles reported little evidence regarding the transfer of skills from simulation to the clinical setting, strong evidence that simulator models discriminate among different levels of experience, varied outcome measures among studies, and a need to define competent performance in both simulated and clinical settings. Furthermore, while three out of the four experimental studies demonstrated transfer between the simulated and clinical environments, methodological study design issues were identified. Our review identifies weak evidence as to whether skills learned in simulation transfer effectively to clinical practice for orthopedic surgery trainees. Given the increased reliance on simulation, there is an immediate need for comprehensive studies that focus on skill transfer, which will allow simulation to be incorporated effectively into orthopedic surgery training programs.

  10. Is there inter-procedural transfer of skills in intraocular surgery? A randomized controlled trial.

    PubMed

    Thomsen, Ann Sofia Skou; Kiilgaard, Jens Folke; la Cour, Morten; Brydges, Ryan; Konge, Lars

    2017-12-01

    To investigate how experience in simulated cataract surgery impacts and transfers to the learning curves for novices in vitreoretinal surgery. Twelve ophthalmology residents without previous experience in intraocular surgery were randomized to (1) intensive training in cataract surgery on a virtual-reality simulator until passing a test with predefined validity evidence (cataract trainees) or to (2) no cataract surgery training (novices). Possible skill transfer was assessed using a test consisting of all 11 vitreoretinal modules on the EyeSi virtual-reality simulator. All participants repeated the test of vitreoretinal surgical skills until their performance curve plateaued. Three experienced vitreoretinal surgeons also performed the test to establish validity evidence. Analysis with independent samples t-tests was performed. The vitreoretinal test on the EyeSi simulator demonstrated evidence of validity, given statistically significant differences in mean test scores for the first repetition; experienced surgeons scored higher than novices (p = 0.023) and cataract trainees (p = 0.003). Internal consistency for the 11 modules of the test was acceptable (Cronbach's α = 0.73). Our findings did not indicate a transfer effect with no significant differences found between cataract trainees and novices in their starting scores (mean ± SD 381 ± 129 points versus 455 ± 82 points, p = 0.262), time to reach maximum performance level (10.7 ± 3.0 hr versus 8.7 ± 2.8 hr, p = 0.265), or maximum scores (785 ± 162 points versus 805 ± 73 points, p = 0.791). Pretraining in cataract surgery did not demonstrate any measurable effect on vitreoretinal procedural performance. The results of this study indicate that we should not anticipate extensive transfer of surgical skills when planning training programmes in intraocular surgery. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Virtual planning for craniomaxillofacial surgery--7 years of experience.

    PubMed

    Adolphs, Nicolai; Haberl, Ernst-Johannes; Liu, Weichen; Keeve, Erwin; Menneking, Horst; Hoffmeister, Bodo

    2014-07-01

    Contemporary computer-assisted surgery systems more and more allow for virtual simulation of even complex surgical procedures with increasingly realistic predictions. Preoperative workflows are established and different commercially software solutions are available. Potential and feasibility of virtual craniomaxillofacial surgery as an additional planning tool was assessed retrospectively by comparing predictions and surgical results. Since 2006 virtual simulation has been performed in selected patient cases affected by complex craniomaxillofacial disorders (n = 8) in addition to standard surgical planning based on patient specific 3d-models. Virtual planning could be performed for all levels of the craniomaxillofacial framework within a reasonable preoperative workflow. Simulation of even complex skeletal displacements corresponded well with the real surgical result and soft tissue simulation proved to be helpful. In combination with classic 3d-models showing the underlying skeletal pathology virtual simulation improved planning and transfer of craniomaxillofacial corrections. Additional work and expenses may be justified by increased possibilities of visualisation, information, instruction and documentation in selected craniomaxillofacial procedures. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  12. A review of computer-aided oral and maxillofacial surgery: planning, simulation and navigation.

    PubMed

    Chen, Xiaojun; Xu, Lu; Sun, Yi; Politis, Constantinus

    2016-11-01

    Currently, oral and maxillofacial surgery (OMFS) still poses a significant challenge for surgeons due to the anatomic complexity and limited field of view of the oral cavity. With the great development of computer technologies, he computer-aided surgery has been widely used for minimizing the risks and improving the precision of surgery. Areas covered: The major goal of this paper is to provide a comprehensive reference source of current and future development of computer-aided OMFS including surgical planning, simulation and navigation for relevant researchers. Expert commentary: Compared with the traditional OMFS, computer-aided OMFS overcomes the disadvantage that the treatment on the region of anatomically complex maxillofacial depends almost exclusively on the experience of the surgeon.

  13. High correlation between performance on a virtual-reality simulator and real-life cataract surgery.

    PubMed

    Thomsen, Ann Sofia Skou; Smith, Phillip; Subhi, Yousif; Cour, Morten la; Tang, Lilian; Saleh, George M; Konge, Lars

    2017-05-01

    To investigate the correlation in performance of cataract surgery between a virtual-reality simulator and real-life surgery using two objective assessment tools with evidence of validity. Cataract surgeons with varying levels of experience were included in the study. All participants performed and videorecorded three standard cataract surgeries before completing a proficiency-based test on the EyeSi virtual-reality simulator. Standard cataract surgeries were defined as: (1) surgery performed under local anaesthesia, (2) patient age >60 years, and (3) visual acuity >1/60 preoperatively. A motion-tracking score was calculated by multiplying average path length and average number of movements from the three real-life surgical videos of full procedures. The EyeSi test consisted of five abstract and two procedural modules: intracapsular navigation, antitremor training, intracapsular antitremor training, forceps training, bimanual training, capsulorhexis and phaco divide and conquer. Eleven surgeons were enrolled. After a designated warm-up period, the proficiency-based test on the EyeSi simulator was strongly correlated to real-life performance measured by motion-tracking software of cataract surgical videos with a Pearson correlation coefficient of -0.70 (p = 0.017). Performance on the EyeSi simulator is significantly and highly correlated to real-life surgical performance. However, it is recommended that performance assessments are made using multiple data sources. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  14. Survey of minimally invasive general surgery fellows training in robotic surgery.

    PubMed

    Shaligram, Abhijit; Meyer, Avishai; Simorov, Anton; Pallati, Pradeep; Oleynikov, Dmitry

    2013-06-01

    Minimally invasive surgery fellowships offer experience in robotic surgery, the nature of which is poorly defined. The objective of this survey was to determine the current status and opportunities for robotic surgery training available to fellows training in the United States and Canada. Sixty-five minimally invasive surgery fellows, attending a fundamentals of fellowship conference, were asked to complete a questionnaire regarding their demographics and experiences with robotic surgery and training. Fifty-one of the surveyed fellows completed the questionnaire (83 % response). Seventy-two percent of respondents had staff surgeons trained in performing robotic procedures, with 55 % of respondents having general surgery procedures performed robotically at their institution. Just over half (53 %) had access to a simulation facility for robotic training. Thirty-three percent offered mechanisms for certification and 11 % offered fellowships in robotic surgery. One-third of the minimally invasive surgery fellows felt they had been trained in robotic surgery and would consider making it part of their practice after fellowship. However, most (80 %) had no plans to pursue robotic surgery fellowships. Although a large group (63 %) felt optimistic about the future of robotic surgery, most respondents (72.5 %) felt their current experience with robotic surgery training was poor or below average. There is wide variation in exposure to and training in robotic surgery in minimally invasive surgery fellowship programs in the United States and Canada. Although a third of trainees felt adequately trained for performing robotic procedures, most fellows felt that their current experience with training was not adequate.

  15. Technological advances in robotic-assisted laparoscopic surgery.

    PubMed

    Tan, Gerald Y; Goel, Raj K; Kaouk, Jihad H; Tewari, Ashutosh K

    2009-05-01

    In this article, the authors describe the evolution of urologic robotic systems and the current state-of-the-art features and existing limitations of the da Vinci S HD System (Intuitive Surgical, Inc.). They then review promising innovations in scaling down the footprint of robotic platforms, the early experience with mobile miniaturized in vivo robots, advances in endoscopic navigation systems using augmented reality technologies and tracking devices, the emergence of technologies for robotic natural orifice transluminal endoscopic surgery and single-port surgery, advances in flexible robotics and haptics, the development of new virtual reality simulator training platforms compatible with the existing da Vinci system, and recent experiences with remote robotic surgery and telestration.

  16. Objective evaluation of minimally invasive surgical skills for transplantation. Surgeons using a virtual reality simulator.

    PubMed

    Dănilă, R; Gerdes, B; Ulrike, H; Domínguez Fernández, E; Hassan, I

    2009-01-01

    The learning curve in laparoscopic surgery may be associated with higher patient risk, which is unacceptable in the setting of kidney donation. Virtual reality simulators may increase the safety and efficiency of training in laparoscopic surgery. The aim of this study was to investigate if the results of a training session reflect the actual skill level of transplantation surgeons and whether the simulator could differentiate laparoscopic experienced transplantation surgeon from advanced trainees. 16 subjects were assigned to one of two groups: 5 experienced transplantation surgeon and 11 advanced residents, with only assistant role during transplantation. The level of performance was measured by a relative scoring system that combines single parameters assessed by the computer. The higher the level of transplantation experience of a participant, the higher the laparoscopic performance. Experienced transplantation surgeons showed statistically significant better scores than the advanced group for time and precision parameters. Our results show that performance of the various tasks on the simulator corresponds to the respective level of experience in transplantation surgery in our research groups. This study confirms construct validity for the LapSim. It thus measures relevant skills and can be integrated in an endoscopic training and assessment curriculum for transplantations surgeons.

  17. Visual-spatial ability is more important than motivation for novices in surgical simulator training: a preliminary study.

    PubMed

    Schlickum, Marcus; Hedman, Leif; Felländer-Tsai, Li

    2016-02-21

    To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience. Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully.

  18. Haptic feedback improves surgeons' user experience and fracture reduction in facial trauma simulation.

    PubMed

    Girod, Sabine; Schvartzman, Sara C; Gaudilliere, Dyani; Salisbury, Kenneth; Silva, Rebeka

    2016-01-01

    Computer-assisted surgical (CAS) planning tools are available for craniofacial surgery, but are usually based on computer-aided design (CAD) tools that lack the ability to detect the collision of virtual objects (i.e., fractured bone segments). We developed a CAS system featuring a sense of touch (haptic) that enables surgeons to physically interact with individual, patient-specific anatomy and immerse in a three-dimensional virtual environment. In this study, we evaluated initial user experience with our novel system compared to an existing CAD system. Ten surgery resident trainees received a brief verbal introduction to both the haptic and CAD systems. Users simulated mandibular fracture reduction in three clinical cases within a 15 min time limit for each system and completed a questionnaire to assess their subjective experience. We compared standard landmarks and linear and angular measurements between the simulated results and the actual surgical outcome and found that haptic simulation results were not significantly different from actual postoperative outcomes. In contrast, CAD results significantly differed from both the haptic simulation and actual postoperative results. In addition to enabling a more accurate fracture repair, the haptic system provided a better user experience than the CAD system in terms of intuitiveness and self-reported quality of repair.

  19. Using virtual reality simulation to assess competence in video-assisted thoracoscopic surgery (VATS) lobectomy.

    PubMed

    Jensen, Katrine; Bjerrum, Flemming; Hansen, Henrik Jessen; Petersen, René Horsleben; Pedersen, Jesper Holst; Konge, Lars

    2017-06-01

    The societies of thoracic surgery are working to incorporate simulation and competency-based assessment into specialty training. One challenge is the development of a simulation-based test, which can be used as an assessment tool. The study objective was to establish validity evidence for a virtual reality simulator test of a video-assisted thoracoscopic surgery (VATS) lobectomy of a right upper lobe. Participants with varying experience in VATS lobectomy were included. They were familiarized with a virtual reality simulator (LapSim ® ) and introduced to the steps of the procedure for a VATS right upper lobe lobectomy. The participants performed two VATS lobectomies on the simulator with a 5-min break between attempts. Nineteen pre-defined simulator metrics were recorded. Fifty-three participants from nine different countries were included. High internal consistency was found for the metrics with Cronbach's alpha coefficient for standardized items of 0.91. Significant test-retest reliability was found for 15 of the metrics (p-values <0.05). Significant correlations between the metrics and the participants VATS lobectomy experience were identified for seven metrics (p-values <0.001), and 10 metrics showed significant differences between novices (0 VATS lobectomies performed) and experienced surgeons (>50 VATS lobectomies performed). A pass/fail level defined as approximately one standard deviation from the mean metric scores for experienced surgeons passed none of the novices (0 % false positives) and failed four of the experienced surgeons (29 % false negatives). This study is the first to establish validity evidence for a VATS right upper lobe lobectomy virtual reality simulator test. Several simulator metrics demonstrated significant differences between novices and experienced surgeons and pass/fail criteria for the test were set with acceptable consequences. This test can be used as a first step in assessing thoracic surgery trainees' VATS lobectomy competency.

  20. Practice Makes Perfect: Correlations Between Prior Experience in High-level Athletics and Robotic Surgical Performance Do Not Persist After Task Repetition.

    PubMed

    Shee, Kevin; Ghali, Fady M; Hyams, Elias S

    Robotic surgical skill development is central to training in urology as well as in other surgical disciplines. Here, we describe a pilot study assessing the relationships between robotic surgery simulator performance and 3 categories of activities, namely, videogames, musical instruments, and athletics. A questionnaire was administered to preclinical medical students for general demographic information and prior experiences in surgery, videogames, musical instruments, and athletics. For follow-up performance studies, we used the Matchboard Level 1 and 2 modules on the da Vinci Skills Simulator, and recorded overall score, time to complete, economy of motion, workspace range, instrument collisions, instruments out of view, and drops. Task 1 was run once, whereas task 2 was run 3 times. All performance studies on the da Vinci Surgical Skills Simulator took place in the Simulation Center at Dartmouth-Hitchcock Medical Center. All participants were medical students at the Geisel School of Medicine. After excluding students with prior hands-on experience in surgery, a total of 30 students completed the study. We found a significant correlation between athletic skill level and performance for both task 1 (p = 0.0002) and task 2 (p = 0.0009). No significant correlations were found for videogame or musical instrument skill level. Students with experience in certain athletics (e.g., volleyball, tennis, and baseball) tended to perform better than students with experience in other athletics (e.g., track and field). For task 2, which was run 3 times, this association did not persist after the third repetition due to significant improvements in students with low-level athletic skill (levels 0-2). Our study suggests that prior experience in high-level athletics, but not videogames or musical instruments, significantly influences surgical proficiency in robot-naive students. Furthermore, our study suggests that practice through task repetition can overcome initial differences that may be related to a background in athletics. These novel relationships may have broader implications for the future recruitment and training of robotic surgeons and may warrant further investigation. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  1. Performances on simulator and da Vinci robot on subjects with and without surgical background.

    PubMed

    Moglia, Andrea; Ferrari, Vincenzo; Melfi, Franca; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred; Morelli, Luca

    2017-08-17

    To assess whether previous training in surgery influences performance on da Vinci Skills Simulator and da Vinci robot. In this prospective study, thirty-seven participants (11 medical students, 17 residents, and 9 attending surgeons) without previous experience in laparoscopy and robotic surgery performed 26 exercises at da Vinci Skills Simulator. Thirty-five then executed a suture using a da Vinci robot. The overall scores on the exercises at the da Vinci Skills Simulator show a similar performance among the groups with no statistically significant pair-wise differences (p < .05). The quality of the suturing based on the unedited videos of the test run was similar for the intermediate (7 (4, 10)) and expert group (6.5 (4.5, 10)), and poor for the untrained groups (5 (3.5, 9)), without statistically significant difference (p < .05). This study showed, for subjects new to laparoscopy and robotic surgery, insignificant differences in the scores at the da Vinci Skills Simulator and at the da Vinci robot on inanimate models.

  2. Residents' perspectives of the value of a simulation curriculum in a general surgery residency program: a multimethod study of stakeholder feedback.

    PubMed

    Wehbe-Janek, Hania; Colbert, Colleen Y; Govednik-Horny, Cara; White, Bobbie Ann A; Thomas, Scott; Shabahang, Mohsen

    2012-06-01

    Simulation has altered surgical curricula throughout residency programs. The purpose of this multimethod study was to explore residents' perceptions of simulation within surgical residency as relevant stakeholder feedback and program evaluation of the surgery simulation curriculum. Focus groups were held with a sample of surgery residents (n = 25) at a university-affiliated program. Residents participated in focus groups based on level of training and completed questionnaires regarding simulation curricula. Groups were facilitated by nonsurgeon faculty. Residents were asked: "What is the role of simulation in surgical education?" An interdisciplinary team recorded narrative data and performed content analyses. Quantitative data from questionnaires were summarized using descriptive statistics and frequencies. Major themes from the qualitative data included: concerns regarding simulation in surgical education (28%), exposure to situations and technical skills in a low-stress learning environment (24%), pressure by external agencies (19%), an educational tool (17%), and quality assurance for patient care (12%). Laparoscopy and cadaver lab were the most prevalent simulation training during residency, in addition to trauma simulations, central lines/chest tubes/IV access, and stapling lab. In response to the statement: "ACGME should require a simulation curriculum in surgery residency," 52.1% responded favorably and 47.8% responded nonfavorably. Residents acknowledge the value of simulation in patient safety, quality, and exposure to procedures before clinical experience, but remain divided on efficacy and requirement of simulation within curricula. The greater challenge to residency programs may be strategic implementation of simulation curricula within the right training context. Copyright © 2012 Mosby, Inc. All rights reserved.

  3. Visual-spatial ability is more important than motivation for novices in surgical simulator training: a preliminary study

    PubMed Central

    Hedman, Leif; Felländer-Tsai, Li

    2016-01-01

    Objectives To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Methods Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience.  Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. Results A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). Conclusions This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully.  PMID:26897701

  4. Model-based surgical planning and simulation of cranial base surgery.

    PubMed

    Abe, M; Tabuchi, K; Goto, M; Uchino, A

    1998-11-01

    Plastic skull models of seven individual patients were fabricated by stereolithography from three-dimensional data based on computed tomography bone images. Skull models were utilized for neurosurgical planning and simulation in the seven patients with cranial base lesions that were difficult to remove. Surgical approaches and areas of craniotomy were evaluated using the fabricated skull models. In preoperative simulations, hand-made models of the tumors, major vessels and nerves were placed in the skull models. Step-by-step simulation of surgical procedures was performed using actual surgical tools. The advantages of using skull models to plan and simulate cranial base surgery include a better understanding of anatomic relationships, preoperative evaluation of the proposed procedure, increased understanding by the patient and family, and improved educational experiences for residents and other medical staff. The disadvantages of using skull models include the time and cost of making the models. The skull models provide a more realistic tool that is easier to handle than computer-graphic images. Surgical simulation using models facilitates difficult cranial base surgery and may help reduce surgical complications.

  5. Cattle Uterus: A Novel Animal Laboratory Model for Advanced Hysteroscopic Surgery Training

    PubMed Central

    Ewies, Ayman A. A.; Khan, Zahid R.

    2015-01-01

    In recent years, due to reduced training opportunities, the major shift in surgical training is towards the use of simulation and animal laboratories. Despite the merits of Virtual Reality Simulators, they are far from representing the real challenges encountered in theatres. We introduce the “Cattle Uterus Model” in the hope that it will be adopted in training courses as a low cost and easy-to-set-up tool. It adds new dimensions to the advanced hysteroscopic surgery training experience by providing tactile sensation and simulating intraoperative difficulties. It complements conventional surgical training, aiming to maximise clinical exposure and minimise patients' harm. PMID:26265918

  6. Transcranial phase aberration correction using beam simulations and MR-ARFI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, Urvi, E-mail: urvi.vyas@gmail.com; Kaye, Elena; Pauly, Kim Butts

    2014-03-15

    Purpose: Transcranial magnetic resonance-guided focused ultrasound surgery is a noninvasive technique for causing selective tissue necrosis. Variations in density, thickness, and shape of the skull cause aberrations in the location and shape of the focal zone. In this paper, the authors propose a hybrid simulation-MR-ARFI technique to achieve aberration correction for transcranial MR-guided focused ultrasound surgery. The technique uses ultrasound beam propagation simulations with MR Acoustic Radiation Force Imaging (MR-ARFI) to correct skull-caused phase aberrations. Methods: Skull-based numerical aberrations were obtained from a MR-guided focused ultrasound patient treatment and were added to all elements of the InSightec conformal bone focusedmore » ultrasound surgery transducer during transmission. In the first experiment, the 1024 aberrations derived from a human skull were condensed into 16 aberrations by averaging over the transducer area of 64 elements. In the second experiment, all 1024 aberrations were applied to the transducer. The aberrated MR-ARFI images were used in the hybrid simulation-MR-ARFI technique to find 16 estimated aberrations. These estimated aberrations were subtracted from the original aberrations to result in the corrected images. Each aberration experiment (16-aberration and 1024-aberration) was repeated three times. Results: The corrected MR-ARFI image was compared to the aberrated image and the ideal image (image with zero aberrations) for each experiment. The hybrid simulation-MR-ARFI technique resulted in an average increase in focal MR-ARFI phase of 44% for the 16-aberration case and 52% for the 1024-aberration case, and recovered 83% and 39% of the ideal MR-ARFI phase for the 16-aberrations and 1024-aberration case, respectively. Conclusions: Using one MR-ARFI image and noa priori information about the applied phase aberrations, the hybrid simulation-MR-ARFI technique improved the maximum MR-ARFI phase of the beam's focus.« less

  7. Perceptions, training experiences, and preferences of surgical residents toward laparoscopic simulation training: a resident survey.

    PubMed

    Shetty, Shohan; Zevin, Boris; Grantcharov, Teodor P; Roberts, Kurt E; Duffy, Andrew J

    2014-01-01

    Simulation training for surgical residents can shorten learning curves, improve technical skills, and expedite competency. Several studies have shown that skills learned in the simulated environment are transferable to the operating room. Residency programs are trying to incorporate simulation into the resident training curriculum to supplement the hands-on experience gained in the operating room. Despite the availability and proven utility of surgical simulators and simulation laboratories, they are still widely underutilized by surgical trainees. Studies have shown that voluntary use leads to minimal participation in a training curriculum. Although there are several simulation tools, there is no clear evidence of the superiority of one tool over the other in skill acquisition. The purpose of this study was to explore resident perceptions, training experiences, and preferences regarding laparoscopic simulation training. Our goal was to profile resident participation in surgical skills simulation, recognize potential barriers to voluntary simulator use, and identify simulation tools and tasks preferred by residents. Furthermore, this study may help to inform whether mandatory/protected training time, as part of the residents' curriculum is essential to enhance participation in the simulation laboratory. A cross-sectional study on general surgery residents (postgraduate years 1-5) at Yale University School of Medicine and the University of Toronto via an online questionnaire was conducted. Overall, 67 residents completed the survey. The institutional review board approved the methods of the study. Overall, 95.5% of the participants believed that simulation training improved their laparoscopic skills. Most respondents (92.5%) perceived that skills learned during simulation training were transferrable to the operating room. Overall, 56.7% of participants agreed that proficiency in a simulation curriculum should be mandatory before operating room experience. The simulation laboratory was most commonly used during work hours; lack of free time during work hours was most commonly cited as a reason for underutilization. Factors influencing use of the simulation laboratory in order of importance were the need for skill development, an interest in minimally invasive surgery, mandatory/protected time in a simulation environment as part of the residency program curriculum, a recommendation by an attending surgeon, and proximity of the simulation center. The most preferred simulation tool was the live animal model followed by cadaveric tissue. Virtual reality simulators were among the least-preferred (25%) simulation tools. Most residents (91.0%) felt that mandatory/protected time in a simulation environment should be introduced into resident training protocols. Mandatory and protected time in a simulation environment as part of the resident training curriculum may improve participation in simulation training. A comprehensive curriculum, which includes the use of live animals, cadaveric tissue, and virtual reality simulators, may enhance the laparoscopic training experience and interest level of surgical trainees. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  8. Technical tips and advancements in pediatric minimally invasive surgical training on porcine based simulations.

    PubMed

    Narayanan, Sarath Kumar; Cohen, Ralph Clinton; Shun, Albert

    2014-06-01

    Minimal access techniques have transformed the way pediatric surgery is practiced. Due to various constraints, surgical residency programs have not been able to tutor adequate training skills in the routine setting. The advent of new technology and methods in minimally invasive surgery (MIS), has similarly contributed to the need for systematic skills' training in a safe, simulated environment. To enable the training of the proper technique among pediatric surgery trainees, we have advanced a porcine non-survival model for endoscopic surgery. The technical advancements over the past 3 years and a subjective validation of the porcine model from 114 participating trainees using a standard questionnaire and a 5-point Likert scale have been described here. Mean attitude scores and analysis of variance (ANOVA) were used for statistical analysis of the data. Almost all trainees agreed or strongly agreed that the animal-based model was appropriate (98.35%) and also acknowledged that such workshops provided adequate practical experience before attempting on human subjects (96.6%). Mean attitude score for respondents was 19.08 (SD 3.4, range 4-20). Attitude scores showed no statistical association with years of experience or the level of seniority, indicating a positive attitude among all groups of respondents. Structured porcine-based MIS training should be an integral part of skill acquisition for pediatric surgery trainees and the experience gained can be transferred into clinical practice. We advocate that laparoscopic training should begin in a controlled workshop setting before procedures are attempted on human patients.

  9. Teaching Palatoplasty Using a High-Fidelity Cleft Palate Simulator.

    PubMed

    Cheng, Homan; Podolsky, Dale J; Fisher, David M; Wong, Karen W; Lorenz, H Peter; Khosla, Rohit K; Drake, James M; Forrest, Christopher R

    2018-01-01

    Cleft palate repair is a challenging procedure for cleft surgeons to teach. A novel high-fidelity cleft palate simulator has been described for surgeon training. This study evaluates the simulator's effect on surgeon procedural confidence and palatoplasty knowledge among learners. Plastic surgery trainees attended a palatoplasty workshop consisting of a didactic session on cleft palate anatomy and repair followed by a simulation session. Participants completed a procedural confidence questionnaire and palatoplasty knowledge test immediately before and after the workshop. All participants reported significantly higher procedural confidence following the workshop (p < 0.05). Those with cleft palate surgery experience had higher procedural confidence before (p < 0.001) and after (p < 0.001) the session. Palatoplasty knowledge test scores increased in 90 percent of participants. The mean baseline test score was 28 ± 10.89 percent and 43 ± 18.86 percent following the workshop. Those with prior cleft palate experience did not have higher mean baseline test scores than those with no experience (30 percent versus 28 percent; p > 0.05), but did have significantly higher scores after the workshop (61 percent versus 35 percent; p < 0.05). All trainees strongly agreed or agreed that the simulator should be integrated into training and they would use it again. This study demonstrates the effective use of a novel cleft palate simulator as a training tool to teach palatoplasty. Improved procedural confidence and knowledge were observed after a single session, with benefits seen among trainees both with and without previous cleft experience.

  10. Development of a Drilling Simulator for Dental Implant Surgery.

    PubMed

    Kinoshita, Hideaki; Nagahata, Masahiro; Takano, Naoki; Takemoto, Shinji; Matsunaga, Satoru; Abe, Shinichi; Yoshinari, Masao; Kawada, Eiji

    2016-01-01

    The aim of this study was to develop and evaluate a dental implant surgery simulator that allows learners to experience the drilling forces necessary to perform an osteotomy in the posterior mandibular bone. The simulator contains a force-sensing device that receives input and counteracts this force, which is felt as resistance by the user. The device consists of an actuator, a load cell, and a control unit. A mandibular bone model was fabricated in which the predicted forces necessary to drill the cortical and trabecular bone were determined via micro CT image-based 3D finite element analysis. The simulator was evaluated by five dentists from the Department of Implantology at Tokyo Dental College. The ability of the evaluators to distinguish the drilling resistance through different regions of the mandibular bone was investigated. Of the five dentists, four sensed the change in resistance when the drill perforated the upper cortical bone. All five dentists were able to detect when the drill made contact with lingual cortical bone and when the lingual bone was perforated. This project successfully developed a dental implant surgery simulator that allows users to experience the forces necessary to drill through types of bone encountered during osteotomy. Furthermore, the researchers were able to build a device by which excessive drilling simulates a situation in which the lingual cortical bone is perforated--a situation that could lead to negative repercussions in a clinical setting. The simulator was found to be useful to train users to recognize the differences in resistance when drilling through the mandibular bone.

  11. Incorporating simulation in vascular surgery education.

    PubMed

    Bismuth, Jean; Donovan, Michael A; O'Malley, Marcia K; El Sayed, Hosam F; Naoum, Joseph J; Peden, Eric K; Davies, Mark G; Lumsden, Alan B

    2010-10-01

    The traditional apprenticeship model introduced by Halsted of "learning by doing" may just not be valid in the modern practice of vascular surgery. The model is often criticized for being somewhat unstructured because a resident's experience is based on what comes through the "door." In an attempt to promote uniformity of training, multiple national organizations are currently delineating standard curricula for each trainee to govern the knowledge and cases required in a vascular residency. However, the outcomes are anything but uniform. This means that we graduate vascular specialists with a surprisingly wide spectrum of abilities. Use of simulation may benefit trainees in attaining a level of technical expertise that will benefit themselves and their patients. Furthermore, there is likely a need to establish a simulation-based certification process for graduating trainees to further ascertain minimum technical abilities. Copyright © 2010 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  12. Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training.

    PubMed

    Cohen, Alan R; Lohani, Subash; Manjila, Sunil; Natsupakpong, Suriya; Brown, Nathan; Cavusoglu, M Cenk

    2013-08-01

    Virtual reality simulation is a promising alternative to training surgical residents outside the operating room. It is also a useful aide to anatomic study, residency training, surgical rehearsal, credentialing, and recertification. Surgical simulation is based on a virtual reality with varying degrees of immersion and realism. Simulators provide a no-risk environment for harmless and repeatable practice. Virtual reality has three main components of simulation: graphics/volume rendering, model behavior/tissue deformation, and haptic feedback. The challenge of accurately simulating the forces and tactile sensations experienced in neurosurgery limits the sophistication of a virtual simulator. The limited haptic feedback available in minimally invasive neurosurgery makes it a favorable subject for simulation. Virtual simulators with realistic graphics and force feedback have been developed for ventriculostomy, intraventricular surgery, and transsphenoidal pituitary surgery, thus allowing preoperative study of the individual anatomy and increasing the safety of the procedure. The authors also present experiences with their own virtual simulation of endoscopic third ventriculostomy.

  13. Computer-assisted orthognathic surgery combined with fibular osteomyocutaneous flap reconstruction to correct facial asymmetry and maxillary defects secondary to maxillectomy in childhood.

    PubMed

    Zhang, Lei; Sun, Hao; Yu, Hong-bo; Yuan, Hao; Shen, Guo-fang; Wang, Xu-dong

    2013-05-01

    Maxillectomy in childhood not only causes composite primary defects but also secondary malformation of the middle and lower face. In the case presented, we introduced computer-assisted planning and simulation of orthognathic surgery combined with fibular osteomyocutaneous flap reconstruction to correct complex craniofacial deformities. Virtual orthognathic surgery and maxillary reconstruction surgery were undertaken preoperatively. LeFort I osteotomy, with bilateral sagittal split ramus osteotomy and lower border ostectomy, was performed to correct malocclusion and facial asymmetry. Maxillary reconstruction was accomplished using a fibular osteomyocutaneous flap. The patient recovered uneventfully with an adequate aesthetic appearance on 3D computed tomography. Our experience indicates that orthognathic surgery combined with fibular osteomyocutaneous flap reconstruction can used to correct complex facial asymmetry and maxillary defects secondary to maxillectomy. Computer-assisted simulation enables precise execution of the reconstruction. It shortens the free flap ischemia time and reduces the risks associated with microsurgery.

  14. Pilot study on verification of effectiveness on operability of assistance system for robotic tele-surgery using simulation.

    PubMed

    Kawamura, Kazuya; Kobayashi, Yo; Fujie, Masakatsu G

    2010-01-01

    Tele-surgery enables medical care even in remote regions, and has been accomplished in clinical cases by means of dedicated communication lines. To make tele-surgery a more widespread method of providing medical care, a surgical environment needs to be made available using public lines of communication, such as the Internet. Moreover, a support system during surgery is required, as the use of surgical tools is performed in an environment subject to delay. In our research, we focus on the operability of specific tasks conducted by surgeons during a medical procedure, with the aim of clarifying, by means of a simulation, the optimum environment for robotic tele-surgery. In the study, we set up experimental systems using our proposed simulation system. In addition, we investigate the mental workloads on subjects and verify the effect of visual-assistance information as a pilot study. The operability of the task of gripping soft tissue was evaluated using a subjective workload assessment tool, the NASA Task Load Index. Results show that the tasks were completed, but the workload did not improve to less than 300ms and 400ms in the simulated environment. Verifying the effect of the support system was an important task under a more-than 200ms delay using this experiment, and future studies will evaluate the operability of the system under varying conditions of comfort. In addition, an intra-operative assistance system will be constructed using a simulation.

  15. Proficiency training on a virtual reality robotic surgical skills curriculum.

    PubMed

    Bric, Justin; Connolly, Michael; Kastenmeier, Andrew; Goldblatt, Matthew; Gould, Jon C

    2014-12-01

    The clinical application of robotic surgery is increasing. The skills necessary to perform robotic surgery are unique from those required in open and laparoscopic surgery. A validated laparoscopic surgical skills curriculum (Fundamentals of Laparoscopic Surgery or FLS™) has transformed the way surgeons acquire laparoscopic skills. There is a need for a similar skills training and assessment tool for robotic surgery. Our research group previously developed and validated a robotic training curriculum in a virtual reality (VR) simulator. We hypothesized that novice robotic surgeons could achieve proficiency levels defined by more experienced robotic surgeons on the VR robotic curriculum, and that this would result in improved performance on the actual daVinci Surgical System™. 25 medical students with no prior robotic surgery experience were recruited. Prior to VR training, subjects performed 2 FLS tasks 3 times each (Peg Transfer, Intracorporeal Knot Tying) using the daVinci Surgical System™ docked to a video trainer box. Task performance for the FLS tasks was scored objectively. Subjects then practiced on the VR simulator (daVinci Skills Simulator) until proficiency levels on all 5 tasks were achieved before completing a post-training assessment of the 2 FLS tasks on the daVinci Surgical System™ in the video trainer box. All subjects to complete the study (1 dropped out) reached proficiency levels on all VR tasks in an average of 71 (± 21.7) attempts, accumulating 164.3 (± 55.7) minutes of console training time. There was a significant improvement in performance on the robotic FLS tasks following completion of the VR training curriculum. Novice robotic surgeons are able to attain proficiency levels on a VR simulator. This leads to improved performance in the daVinci surgical platform on simulated tasks. Training to proficiency on a VR robotic surgery simulator is an efficient and viable method for acquiring robotic surgical skills.

  16. SIM Life: a new surgical simulation device using a human perfused cadaver.

    PubMed

    Faure, J P; Breque, C; Danion, J; Delpech, P O; Oriot, D; Richer, J P

    2017-02-01

    In primary and continuing medical education, simulation is becoming a mandatory technique. In surgery, simulation spreading is slowed down by the distance which exists between the devices currently available on the market and the reality, in particular anatomical, of an operating room. We propose a new model for surgical simulation with the use of cadavers in a circulation model mimicking pulse and artificial respiration available for both open and laparoscopic surgery. The model was a task trainer designed by four experts in our simulation laboratory combining plastic, electronic, and biologic material. The cost of supplies needed for the construction was evaluated. The model was used and tested over 24 months on 35 participants, of whom 20 were surveyed regarding the realism of the model. The model involved a cadaver, connected to a specific device that permits beating circulation and artificial respiration. The demonstration contributed to teaching small groups of up to four participants and was reproducible over 24 months of courses. Anatomic correlation, realism, and learning experience were highly rated by users CONCLUSION: This model for surgical simulation in both open and laparoscopic surgery was found to be realistic, available to assessed objectively performance in a pedagogic program.

  17. A novel augmented reality simulator for skills assessment in minimal invasive surgery.

    PubMed

    Lahanas, Vasileios; Loukas, Constantinos; Smailis, Nikolaos; Georgiou, Evangelos

    2015-08-01

    Over the past decade, simulation-based training has come to the foreground as an efficient method for training and assessment of surgical skills in minimal invasive surgery. Box-trainers and virtual reality (VR) simulators have been introduced in the teaching curricula and have substituted to some extent the traditional model of training based on animals or cadavers. Augmented reality (AR) is a new technology that allows blending of VR elements and real objects within a real-world scene. In this paper, we present a novel AR simulator for assessment of basic laparoscopic skills. The components of the proposed system include: a box-trainer, a camera and a set of laparoscopic tools equipped with custom-made sensors that allow interaction with VR training elements. Three AR tasks were developed, focusing on basic skills such as perception of depth of field, hand-eye coordination and bimanual operation. The construct validity of the system was evaluated via a comparison between two experience groups: novices with no experience in laparoscopic surgery and experienced surgeons. The observed metrics included task execution time, tool pathlength and two task-specific errors. The study also included a feedback questionnaire requiring participants to evaluate the face-validity of the system. Between-group comparison demonstrated highly significant differences (<0.01) in all performance metrics and tasks denoting the simulator's construct validity. Qualitative analysis on the instruments' trajectories highlighted differences between novices and experts regarding smoothness and economy of motion. Subjects' ratings on the feedback questionnaire highlighted the face-validity of the training system. The results highlight the potential of the proposed simulator to discriminate groups with different expertise providing a proof of concept for the potential use of AR as a core technology for laparoscopic simulation training.

  18. Putting the MeaT into TeaM Training: Development, Delivery, and Evaluation of a Surgical Team-Training Workshop.

    PubMed

    Seymour, Neal E; Paige, John T; Arora, Sonal; Fernandez, Gladys L; Aggarwal, Rajesh; Tsuda, Shawn T; Powers, Kinga A; Langlois, Gerard; Stefanidis, Dimitrios

    2016-01-01

    Despite importance to patient care, team training is infrequently used in surgical education. To address this, a workshop was developed by the Association for Surgical Education Simulation Committee to teach team training using high-fidelity patient simulators and the American College of Surgeons-Association of Program Directors in Surgery team-training curriculum. Workshops were conducted at 3 national meetings. Participants completed preworkshop and postworkshop questionnaires to define experience, confidence in using simulation, intention to implement, as well as workshop content quality. The course consisted of (A) a didactic review of Preparation, Implementation, and Debriefing and (B) facilitated small group simulation sessions followed by debriefings. Of 78 participants, 51 completed the workshops. Overall, 65% indicated that residents at their institutions used patient simulation, but only 33% used the American College of Surgeons-the Association of Program Directors in Surgery team-training modules. The workshop increased confidence to implement simulation team training (3.4 ± 1.3 vs 4.5 ± 0.9). Quality and importance were rated highly (5.4 ± 00.6, highest score = 6). Preparation for simulation-based team training is possible in this workshop setting, although the effect on actual implementation remains to be determined. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  19. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience.

    PubMed

    Schmauss, Daniel; Haeberle, Sandra; Hagl, Christian; Sodian, Ralf

    2015-06-01

    In individual cases, routine preoperative imaging might not be sufficient for optimal planning of cardiovascular procedures. Three-dimensional printing (3D), a widely used technique to build life-like replicas of anatomical structures that has proven value in different medical disciplines, might overcome these shortcomings. However, data on 3D printing in cardiovascular medicine are limited to single reports. This stimulated us to present our single-centre experience with 3D printing models in cardiac surgery and interventional cardiology. Between the years 2006 and 2013, we fabricated 3D printing models using preoperative computed tomography or magnetic resonance imaging data in paediatric and adult cardiac surgery, as well as interventional cardiology. We present the 8 most representative cases. The models were very helpful for perioperative planning and orientation, as well as simulation of procedures due to the exact and life-like illustration of the cardiovascular anatomy. The fabrication of 3D printing models is feasible for perioperative planning and simulation in a variety of complex cases in paediatric and adult cardiac surgery, as well as in interventional cardiology. Further studies including more patients and providing more data are expected to demonstrate that the use of 3D printing may decrease morbidity and mortality of complex, non-routine procedures in cardiovascular medicine. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  20. Force and torque modelling of drilling simulation for orthopaedic surgery.

    PubMed

    MacAvelia, Troy; Ghasempoor, Ahmad; Janabi-Sharifi, Farrokh

    2014-01-01

    The advent of haptic simulation systems for orthopaedic surgery procedures has provided surgeons with an excellent tool for training and preoperative planning purposes. This is especially true for procedures involving the drilling of bone, which require a great amount of adroitness and experience due to difficulties arising from vibration and drill bit breakage. One of the potential difficulties with the drilling of bone is the lack of consistent material evacuation from the drill's flutes as the material tends to clog. This clogging leads to significant increases in force and torque experienced by the surgeon. Clogging was observed for feed rates greater than 0.5 mm/s and spindle speeds less than 2500 rpm. The drilling simulation systems that have been created to date do not address the issue of drill flute clogging. This paper presents force and torque prediction models that account for this phenomenon. The two coefficients of friction required by these models were determined via a set of calibration experiments. The accuracy of both models was evaluated by an additional set of validation experiments resulting in average R² regression correlation values of 0.9546 and 0.9209 for the force and torque prediction models, respectively. The resulting models can be adopted by haptic simulation systems to provide a more realistic tactile output.

  1. The rationale for combining an online audiovisual curriculum with simulation to better educate general surgery trainees.

    PubMed

    AlJamal, Yazan N; Ali, Shahzad M; Ruparel, Raaj K; Brahmbhatt, Rushin D; Yadav, Siddhant; Farley, David R

    2014-09-01

    Surgery interns' training has historically been weighted toward patient care, operative observation, and sleeping when possible. With more protected free time and less clinical time, real educational hours for trainees in 2013 are precious. We created a 20-session (3 hours each) simulation curriculum (with pre- and post-tests) and a 24/7 online audiovisual (AV) curriculum for surgery interns. Friday morning simulation sessions emphasize operative skills and judgment. AV clips (using operating room, whiteboard, and simulation center videos) take learners through 20 different general surgery operations with follow-up quizzes. We report our early experience with this novel setup. Thirty-two surgical interns (2012-2013) attended simulation sessions on 20 separate subjects (hernia, breast, hepatobiliary, endocrine, etc). Post-test scores improved (P < .05) and trainees enjoyed using surgical skills for 3 hours each Friday morning (mean, >4.5; Likert scale, 1-5). The AV curriculum feedback is similar (mean, >4.3) and usage is available 24/7 preparing learners for both operating room and simulation sessions. Most simulation sessions utilize low-fidelity models to keep costs <$50 per session. Scores on our semiannual Surgical Olympics (mean score of 49.6 in July vs 82.9 in January; P < .05) improved significantly, suggesting that interns are improving their surgical skills and knowledge. Residents enjoy and learn from the step-by-step, in-house, AV curriculum and both appreciate and thrive on the 'hands-on' simulation sessions mimicking operations they see in real operating rooms. The cost of these programs is not prohibitive and the programs offer simulated repetitions for duty-hour-regulated trainees. Copyright © 2014 Mosby, Inc. All rights reserved.

  2. Basics of robotics and manipulators in endoscopic surgery.

    PubMed

    Rininsland, H H

    1993-06-01

    The experience with sophisticated remote handling systems for nuclear operations in inaccessible rooms can to a large extent be transferred to the development of robotics and telemanipulators for endoscopic surgery. A telemanipulator system is described consisting of manipulator, endeffector and tools, 3-D video-endoscope, sensors, intelligent control system, modeling and graphic simulation and man-machine interfaces as the main components or subsystems. Such a telemanipulator seems to be medically worthwhile and technically feasible, but needs a lot of effort from different scientific disciplines to become a safe and reliable instrument for future endoscopic surgery.

  3. Can fatigue affect acquisition of new surgical skills? A prospective trial of pre- and post-call general surgery residents using the da Vinci surgical skills simulator.

    PubMed

    Robison, Weston; Patel, Sonya K; Mehta, Akshat; Senkowski, Tristan; Allen, John; Shaw, Eric; Senkowski, Christopher K

    2018-03-01

    To study the effects of fatigue on general surgery residents' performance on the da Vinci Skills Simulator (dVSS). 15 General Surgery residents from various postgraduate training years (PGY2, PGY3, PGY4, and PGY5) performed 5 simulation tasks on the dVSS as recommended by the Robotic Training Network (RTN). The General Surgery residents had no prior experience with the dVSS. Participants were assigned to either the Pre-call group or Post-call group based on call schedule. As a measure of subjective fatigue, residents were given the Epworth Sleepiness Scale (ESS) prior to their dVSS testing. The dVSS MScore™ software recorded various metrics (Objective Structured Assessment of Technical Skills, OSATS) that were used to evaluate the performance of each resident to compare the robotic simulation proficiency between the Pre-call and Post-call groups. Six general surgery residents were stratified into the Pre-call group and nine into the Post-call group. These residents were also stratified into Fatigued (10) or Nonfatigued (5) groups, as determined by their reported ESS scores. A statistically significant difference was found between the Pre-call and Post-call reported sleep hours (p = 0.036). There was no statistically significant difference between the Pre-call and Post-call groups or between the Fatigued and Nonfatigued groups in time to complete exercise, number of attempts, and high MScore™ score. Despite variation in fatigue levels, there was no effect on the acquisition of robotic simulator skills.

  4. Modeling of light propagation in canine gingiva

    NASA Astrophysics Data System (ADS)

    Mrotek, Marcin

    2017-08-01

    This study is a preliminary evaluation of the effectivenes of laser-based surgery of maxillary and mandibular bone in dogs. Current methods of gingivial surgery in dogs require the use of general anaesthesia.1, 2 The proposed methods of laser surgery can be performed on conscious dogs, which substantially reduces the associated risks. Two choices of lasers, Nd:YAG and a 930 nm semiconductor lasers were evaluated. The former is already widely used in human laser surgery, while the latter provides an opportunity of decreasing the size of the optical setup. The results obtained from the simulations warrant further experiments with the evaluated wavelengths and animal tissue samples.

  5. Robotic Surgery Simulator: Elements to Build a Training Program.

    PubMed

    Tillou, Xavier; Collon, Sylvie; Martin-Francois, Sandrine; Doerfler, Arnaud

    2016-01-01

    Face, content, and construct validity of robotic surgery simulators were confirmed in the literature by several studies, but elements to build a training program are still lacking. The aim of our study was to validate a progressive training program and to assess according to prior surgical experience the amount of training needed with a robotic simulator to complete the program. Exercises using the Da Vinci Skill Simulator were chosen to ensure progressive learning. A new exercise could only be started if a minimal score of 80% was achieved in the prior one. The number of repetitions to achieve an exercise was not limited. We devised a "performance index" by calculating the ratio of the sum of scores for each exercise over the number of repetitions needed to complete the exercise with at least an 80% score. The study took place at the François Baclesse Cancer Center. Participants all work at the primary care university Hospital located next to the cancer center. A total of 32 surgeons participated in the study- 2 experienced surgeons, 8 junior and 8 senior residents in surgery, 6 registrars, and 6 attending surgeons. There was no difference between junior and senior residents, whereas the registrars had better results (p < 0.0001). The registrars performed less exercise repetitions compared to the junior or senior residents (p = 0.012). Attending surgeons performed significantly more repetitions than registrars (p = 0.024), but they performed fewer repetitions than junior or senior residents with no statistical difference (p = 0.09). The registrars had a performance index of 50, which is the best result among all novice groups. Attending surgeons were between senior and junior residents with an index at 33.85. Choice of basic exercises to manipulate different elements of the robotic surgery console in a specific and progressive order enables rapid progress. The level of prior experience in laparoscopic surgery affects outcomes. More advanced laparoscopic expertise seems to slow down learning, surgeons having to "unlearn" to acquire a new technique. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  6. Limited value of haptics in virtual reality laparoscopic cholecystectomy training.

    PubMed

    Thompson, Jonathan R; Leonard, Anthony C; Doarn, Charles R; Roesch, Matt J; Broderick, Timothy J

    2011-04-01

    Haptics is an expensive addition to virtual reality (VR) simulators, and the added value to training has not been proven. This study evaluated the benefit of haptics in VR laparoscopic surgery training for novices. The Simbionix LapMentor II haptic VR simulator was used in the study. Randomly, 33 laparoscopic novice students were placed in one of three groups: control, haptics-trained, or nonhaptics-trained group. The control group performed nine basic laparoscopy tasks and four cholecystectomy procedural tasks one time with haptics engaged at the default setting. The haptics group was trained to proficiency in the basic tasks and then performed each of the procedural tasks one time with haptics engaged. The nonhaptics group used the same training protocol except that haptics was disengaged. The proficiency values used were previously published expert values. Each group was assessed in the performance of 10 laparoscopic cholecystectomies (alternating with and without haptics). Performance was measured via automatically collected simulator data. The three groups exhibited no differences in terms of sex, education level, hand dominance, video game experience, surgical experience, and nonsurgical simulator experience. The number of attempts required to reach proficiency did not differ between the haptics- and nonhaptics-training groups. The haptics and nonhaptics groups exhibited no difference in performance. Both training groups outperformed the control group in number of movements as well as path length of the left instrument. In addition, the nonhaptics group outperformed the control group in total time. Haptics does not improve the efficiency or effectiveness of LapMentor II VR laparoscopic surgery training. The limited benefit and the significant cost of haptics suggest that haptics should not be included routinely in VR laparoscopic surgery training.

  7. The viewpoint-specific failure of modern 3D displays in laparoscopic surgery.

    PubMed

    Sakata, Shinichiro; Grove, Philip M; Hill, Andrew; Watson, Marcus O; Stevenson, Andrew R L

    2016-11-01

    Surgeons conventionally assume the optimal viewing position during 3D laparoscopic surgery and may not be aware of the potential hazards to team members positioned across different suboptimal viewing positions. The first aim of this study was to map the viewing positions within a standard operating theatre where individuals may experience visual ghosting (i.e. double vision images) from crosstalk. The second aim was to characterize the standard viewing positions adopted by instrument nurses and surgical assistants during laparoscopic pelvic surgery and report the associated levels of visual ghosting and discomfort. In experiment 1, 15 participants viewed a laparoscopic 3D display from 176 different viewing positions around the screen. In experiment 2, 12 participants (randomly assigned to four clinically relevant viewing positions) viewed laparoscopic suturing in a simulation laboratory. In both experiments, we measured the intensity of visual ghosting. In experiment 2, participants also completed the Simulator Sickness Questionnaire. We mapped locations within the dimensions of a standard operating theatre at which visual ghosting may result during 3D laparoscopy. Head height relative to the bottom of the image and large horizontal eccentricities away from the surface normal were important contributors to high levels of visual ghosting. Conventional viewing positions adopted by instrument nurses yielded high levels of visual ghosting and severe discomfort. The conventional viewing positions adopted by surgical team members during laparoscopic pelvic operations are suboptimal for viewing 3D laparoscopic displays, and even short periods of viewing can yield high levels of discomfort.

  8. A Systematic Review of Virtual Reality Simulators for Robot-assisted Surgery.

    PubMed

    Moglia, Andrea; Ferrari, Vincenzo; Morelli, Luca; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred

    2016-06-01

    No single large published randomized controlled trial (RCT) has confirmed the efficacy of virtual simulators in the acquisition of skills to the standard required for safe clinical robotic surgery. This remains the main obstacle for the adoption of these virtual simulators in surgical residency curricula. To evaluate the level of evidence in published studies on the efficacy of training on virtual simulators for robotic surgery. In April 2015 a literature search was conducted on PubMed, Web of Science, Scopus, Cochrane Library, the Clinical Trials Database (US) and the Meta Register of Controlled Trials. All publications were scrutinized for relevance to the review and for assessment of the levels of evidence provided using the classification developed by the Oxford Centre for Evidence-Based Medicine. The publications included in the review consisted of one RCT and 28 cohort studies on validity, and seven RCTs and two cohort studies on skills transfer from virtual simulators to robot-assisted surgery. Simulators were rated good for realism (face validity) and for usefulness as a training tool (content validity). However, the studies included used various simulation training methodologies, limiting the assessment of construct validity. The review confirms the absence of any consensus on which tasks and metrics are the most effective for the da Vinci Skills Simulator and dV-Trainer, the most widely investigated systems. Although there is consensus for the RoSS simulator, this is based on only two studies on construct validity involving four exercises. One study on initial evaluation of an augmented reality module for partial nephrectomy using the dV-Trainer reported high correlation (r=0.8) between in vivo porcine nephrectomy and a virtual renorrhaphy task according to the overall Global Evaluation Assessment of Robotic Surgery (GEARS) score. In one RCT on skills transfer, the experimental group outperformed the control group, with a significant difference in overall GEARS score (p=0.012) during performance of urethrovesical anastomosis on an inanimate model. Only one study included assessment of a surgical procedure on real patients: subjects trained on a virtual simulator outperformed the control group following traditional training. However, besides the small numbers, this study was not randomized. There is an urgent need for a large, well-designed, preferably multicenter RCT to study the efficacy of virtual simulation for acquisition competence in and safe execution of clinical robotic-assisted surgery. We reviewed the literature on virtual simulators for robot-assisted surgery. Validity studies used various simulation training methodologies. It is not clear which exercises and metrics are the most effective in distinguishing different levels of experience on the da Vinci robot. There is no reported evidence of skills transfer from simulation to clinical surgery on real patients. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  9. The use of a virtual reality surgical simulator for cataract surgical skill assessment with 6 months of intervening operating room experience.

    PubMed

    Sikder, Shameema; Luo, Jia; Banerjee, P Pat; Luciano, Cristian; Kania, Patrick; Song, Jonathan C; Kahtani, Eman S; Edward, Deepak P; Towerki, Abdul-Elah Al

    2015-01-01

    To evaluate a haptic-based simulator, MicroVisTouch™, as an assessment tool for capsulorhexis performance in cataract surgery. The study is a prospective, unmasked, nonrandomized dual academic institution study conducted at the Wilmer Eye Institute at Johns Hopkins Medical Center (Baltimore, MD, USA) and King Khaled Eye Specialist Hospital (Riyadh, Saudi Arabia). This prospective study evaluated capsulorhexis simulator performance in 78 ophthalmology residents in the US and Saudi Arabia in the first round of testing and 40 residents in a second round for follow-up. Four variables (circularity, accuracy, fluency, and overall) were tested by the simulator and graded on a 0-100 scale. Circularity (42%), accuracy (55%), and fluency (3%) were compiled to give an overall score. Capsulorhexis performance was retested in the original cohort 6 months after baseline assessment. Average scores in all measured metrics demonstrated statistically significant improvement (except for circularity, which trended toward improvement) after baseline assessment. A reduction in standard deviation and improvement in process capability indices over the 6-month period was also observed. An interval objective improvement in capsulorhexis skill on a haptic-enabled cataract surgery simulator was associated with intervening operating room experience. Further work investigating the role of formalized simulator training programs requiring independent simulator use must be studied to determine its usefulness as an evaluation tool.

  10. Skills in minimally invasive and open surgery show limited transferability to robotic surgery: results from a prospective study.

    PubMed

    Kowalewski, Karl-Friedrich; Schmidt, Mona W; Proctor, Tanja; Pohl, Moritz; Wennberg, Erica; Karadza, Emir; Romero, Philipp; Kenngott, Hannes G; Müller-Stich, Beat P; Nickel, Felix

    2018-04-01

    There is limited evidence on the transferability of conventional laparoscopic and open surgical skills to robotic-assisted surgery. The primary aim of this study was to evaluate the transferability of expertise in conventional laparoscopy and open surgery to robotic-assisted surgery using the da Vinci Skills Simulator (dVSS). Secondary aims included evaluating the influence of individual participants' characteristics. Participants performed four tasks on the dVSS: Peg Board 1 (PB), Pick and Place (PP), Thread the Rings (TR), and Suture Sponge 1 (SS). Participants were classified into three groups (Novice, Intermediate, Experts) according to experience in laparoscopic and open surgery. All tasks were performed twice except for SS. Performance was assessed using the built-in scoring system. 37 medical students and 25 surgeons participated. Experts did not perform significantly better than less experienced participants on the dVSS. Specifically, with regard to laparoscopic experience, total simulator scores were: Novices 68.2 ± 28.8; Intermediates 65.1 ± 31.2; Experts 65.1 ± 30.0; p = 0.611. Regarding open surgical experience, scores were: Novices 68.6 ± 28.7; Intermediates 68.2 ± 30.8; Experts 63.2 ± 30.3; p = 0.305. Although there were some significant differences among groups for single parameters in specific tasks, there was no constant superiority of one group. Laparoscopic and open surgical Novices improved significantly in overall score and time for all three tasks (p < 0.05). Laparoscopic intermediates improved only in PP time (4.64 ± 3.42; p = 0.006), open Intermediates in PB score (11.98 ± 13.01; p = 0.025), and open Experts in PP score (6.69 ± 11.48; p = 0.048). Laparoscopic experts showed no improvement. Participants with gaming experience had better overall scores than non-gamers when comparing all second attempts (Gamer 83.62 ± 7.57; Non-Gamer 76.31 ± 12.78; p = 0.008) as well as first and second attempts together (Gamer 72.08 ± 8.86; Non-Gamer 65.45 ± 11.68; p = 0.039). Musical and sports experience showed no correlation with robotic performance. Robotic-assisted surgery requires skills distinct from conventional laparoscopy or open surgery. Basic robotic skills training prior to patient contact should be required.

  11. European consensus on a competency-based virtual reality training program for basic endoscopic surgical psychomotor skills.

    PubMed

    van Dongen, Koen W; Ahlberg, Gunnar; Bonavina, Luigi; Carter, Fiona J; Grantcharov, Teodor P; Hyltander, Anders; Schijven, Marlies P; Stefani, Alessandro; van der Zee, David C; Broeders, Ivo A M J

    2011-01-01

    Virtual reality (VR) simulators have been demonstrated to improve basic psychomotor skills in endoscopic surgery. The exercise configuration settings used for validation in studies published so far are default settings or are based on the personal choice of the tutors. The purpose of this study was to establish consensus on exercise configurations and on a validated training program for a virtual reality simulator, based on the experience of international experts to set criterion levels to construct a proficiency-based training program. A consensus meeting was held with eight European teams, all extensively experienced in using the VR simulator. Construct validity of the training program was tested by 20 experts and 60 novices. The data were analyzed by using the t test for equality of means. Consensus was achieved on training designs, exercise configuration, and examination. Almost all exercises (7/8) showed construct validity. In total, 50 of 94 parameters (53%) showed significant difference. A European, multicenter, validated, training program was constructed according to the general consensus of a large international team with extended experience in virtual reality simulation. Therefore, a proficiency-based training program can be offered to training centers that use this simulator for training in basic psychomotor skills in endoscopic surgery.

  12. Can teenage novel users perform as well as General Surgery residents upon initial exposure to a robotic surgical system simulator?

    PubMed

    Mehta, A; Patel, S; Robison, W; Senkowski, T; Allen, J; Shaw, E; Senkowski, C

    2018-03-01

    New techniques in minimally invasive and robotic surgical platforms require staged curricula to insure proficiency. Scant literature exists as to how much simulation should play a role in training those who have skills in advanced surgical technology. The abilities of novel users may help discriminate if surgically experienced users should start at a higher simulation level or if the tasks are too rudimentary. The study's purpose is to explore the ability of General Surgery residents to gain proficiency on the dVSS as compared to novel users. The hypothesis is that Surgery residents will have increased proficiency in skills acquisition as compared to naive users. Six General Surgery residents at a single institution were compared with six teenagers using metrics measured by the dVSS. Participants were given two 1-h sessions to achieve an MScoreTM in the 90th percentile on each of the five simulations. MScoreTM software compiles a variety of metrics including total time, number of attempts, and high score. Statistical analysis was run using Student's t test. Significance was set at p value <0.05. Total time, attempts, and high score were compared between the two groups. The General Surgery residents took significantly less Total Time to complete Pegboard 1 (PB1) (p = 0.043). No significant difference was evident between the two groups in the other four simulations across the same MScoreTM metrics. A focused look at the energy dissection task revealed that overall score might not be discriminant enough. Our findings indicate that prior medical knowledge or surgical experience does not significantly impact one's ability to acquire new skills on the dVSS. It is recommended that residency-training programs begin to include exposure to robotic technology.

  13. Learning style and laparoscopic experience in psychomotor skill performance using a virtual reality surgical simulator.

    PubMed

    Windsor, John A; Diener, Scott; Zoha, Farah

    2008-06-01

    People learn in different ways, and training techniques and technologies should accommodate individual learning needs. This pilot study looks at the relationship between learning style, as measured with the Multiple Intelligences Developmental Assessment Scales (MIDAS), laparoscopic surgery experience and psychomotor skill performance using the MIST VR surgical simulator. Five groups of volunteer subjects were selected from undergraduate tertiary students, medical students, novice surgical trainees, advanced surgical trainees and experienced laparoscopic surgeons. Each group was administered the MIDAS followed by two simulated surgical tasks on the MIST VR simulator. There was a striking homogeny of learning styles amongst experienced laparoscopic surgeons. Significant differences in the distribution of primary learning styles were found (P < .01) between subjects with minimal surgical training and those with considerable experience. A bodily-kinesthetic learning style, irrespective of experience, was associated with the best performance of the laparoscopic tasks. This is the first study to highlight the relationship between learning style, psychomotor skill and laparoscopic surgical experience with implications for surgeon selection, training and credentialling.

  14. Are Nursing Students Appropriate Partners for the Interdisciplinary Training of Surgery Residents?

    PubMed

    Stefanidis, Dimitrios; Ingram, Katherine M; Williams, Kristy H; Bencken, Crystal L; Swiderski, Dawn

    2015-01-01

    Interdisciplinary team training in a simulation center recreates clinical team interactions and holds promise in improving teamwork of clinicians by breaking down educational silos. The objective of our study was to assess the appropriateness of interdisciplinary training with general surgery residents and nursing students. Over 2 consecutive academic years (2012-2013 and 2013-2014), general surgery residents participated in interdisciplinary team-training simulation-based sessions with senior nursing students. Scenario objectives included demonstration of appropriate teamwork and communication, and clinical decision making; sessions incorporated interdisciplinary debriefing of the scenarios. Participants were asked to assess their team-training experience and the appropriateness of their team-training partner. Responses were compared. A total of 16 team-training sessions were conducted during the study period. Overall, 12 surgery residents (67%) and 44 nursing students (63%) who had participated in at least 1 session responded to the survey. Although both residents and nursing students indicated that the knowledge and team skills acquired during these sessions were useful to them in clinical practice (73% vs 86%, respectively; p = not significant), residents rated their educational value lower (3.3 vs 4.3 on a 5-point scale, respectively; p < 0.01) and only 18% of the residents felt that these sessions should be continued compared with 90% of nursing students (p < 0.05). Most useful components of the sessions were participation in the scenario (73%) and debriefing (54%) for residents and for the nursing students, debriefing (91%), observation of others (68%), and interaction with resident physicians (66%) ranked highest; 48% of student nurses preferred residents as team-training partners whereas 100% residents preferred practicing nurses and 0% with nursing students owing to their limited clinical experience. Interdisciplinary team training and debriefing of surgery residents with nursing students is feasible and highly valued by nursing students. Nevertheless, our experience indicates that residents do not prefer nursing students as team-training partners owing to their limited clinical experience and would rather train with experienced nurses. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  15. Simulation in shoulder surgery.

    PubMed

    Colaço, Henry B; Tennent, Duncan

    2016-10-01

    Simulation is a rapidly developing field in medical education. There is a growing need for trainee surgeons to acquire surgical skills in a cost-effective learning environment to improve patient safety and compensate for a reduction in training time and operative experience. Although simulation is not a replacement for traditional models of surgical training, and robust assessment metrics need to be validated before widespread use for accreditation, it is a useful adjunct that may ultimately lead to improving surgical outcomes for our patients.

  16. Retention of laparoscopic procedural skills acquired on a virtual-reality surgical trainer.

    PubMed

    Maagaard, Mathilde; Sorensen, Jette Led; Oestergaard, Jeanett; Dalsgaard, Torur; Grantcharov, Teodor P; Ottesen, Bent S; Larsen, Christian Rifbjerg

    2011-03-01

    Virtual-reality (VR) simulator training has been shown to improve surgical performance in laparoscopic procedures in the operating room. We have, in a randomised controlled trial, demonstrated transferability to real operations. The validity of the LapSim virtual-reality simulator as an assessment tool has been demonstrated in several reports. However, an unanswered question regarding simulator training is the durability, or retention, of skills acquired during simulator training. The aim of the present study is to assess the retention of skills acquired using the LapSim VR simulator, 6 and 18 months after an initial training course. The investigation was designed as a 6- and 18-month follow-up on a cohort of participants who earlier participated in a skills training programme on the LapSim VR. The follow-up cohort consisted of trainees and senior consultants allocated to two groups: (1) novices (experience < 5 procedures, n = 9) and (2) experts (experience > 200 procedures during the past 3 years, n = 10). Each participant performed ten sessions. Assessment of skills was based on time, economy of movement and the error parameter "bleeding". The novice group were re-tested after 6 and 18 months, whereas the expert group were only retested once, after 6 months. None of the novices performed laparoscopic surgery in the follow-up period. The experts continued their daily work with laparoscopic surgery. Novices showed retention of skills after 6 months. After 18 months, novices' laparoscopic skills had returned to the pre-training level. This indicates that laparoscopic skills seemed to deteriorate in the period between 6 and 18 months without training. Experts showed consistent performance over time. This information can be included when planning training curricula in minimal invasive surgery.

  17. Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery

    NASA Astrophysics Data System (ADS)

    Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong

    2015-07-01

    Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.

  18. Design of an interventional magnetic resonance imaging coil for cerebral surgery

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Wang, Wen-Tao; Wang, Wei-Min

    2012-11-01

    In clinical magnetic resonance imaging (MRI), the design of the radiofrequency (RF) coil is very important. For certain applications, the appropriate coil can produce an improved image quality. However, it is difficult to achieve a uniform B1 field and a high signal-to-noise ratio (SNR) simultaneously. In this article, we design an interventional transmitter-and-receiver RF coil for cerebral surgery. This coil adopts a disassembly structure that can be assembled and disassembled repeatedly on the cerebral surgery gantry to reduce the amount of interference from the MRI during surgery. The simulation results and the imaging experiments demonstrate that this coil can produce a uniform RF field, a high SNR, and a large imaging range to meet the requirements of the cerebral surgery.

  19. Macular photostress and visual experience between microscope and intracameral illumination during cataract surgery.

    PubMed

    Seo, Hyejin; Nam, Dong Heun; Lee, Jong Yeon; Park, Su Jin; Kim, Yu Jeong; Kim, Seong-Woo; Chung, Tae-Young; Inoue, Makoto; Kim, Terry

    2018-02-01

    To evaluate macular photostress and visual experience between coaxial microscope illumination versus oblique intracameral illumination during cataract surgery. Gachon University Gil Hospital, Incheon, South Korea. Prospective case series. Consecutive patients who had cataract surgery using microscope illumination and intracameral illumination were included. The patients were asked to complete a questionnaire (seeing strong lights, feeling photophobia, feeling startled (fright) when seeing lights, seeing any colors, seeing any instruments or surgical procedures, and estimating intraoperative visual function) designed to describe their cataract surgery experience. The images projected on the retina of the model eye (rear view) with artificial opaque fragments in the anterior chamber during simulating cataract surgery were compared between the 2 illumination types. Sixty patients completed the questionnaire. Scores for strong lights, photophobia, fright, and color perception were significantly higher with microscope illumination than with intracameral illumination (all P < .001). More patients preferred the intracameral illumination (45 [75.0%]) to the microscope illumination (13 [21.7%]). In the rear-view images created in a model eye, only the bright microscope light in the center was seen without any lens image in the microscope illumination. However, in the intracameral illumination, the less bright light from the light pipe in the periphery and the lens fragments were seen more clearly. In a view of the patients' visual experience, oblique intracameral illumination caused less subjective photostress and was preferred over coaxial microscope illumination. Objective findings from the model-eye experiment correlated to the result of visual experience. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  20. Simulated in vivo Electrophysiology Experiments Provide Previously Inaccessible Insights into Visual Physiology

    PubMed Central

    Quiroga, Maria del Mar; Price, Nicholas SC

    2016-01-01

    Lecture content and practical laboratory classes are ideally complementary. However, the types of experiments that have led to our detailed understanding of sensory neuroscience are often not amenable to classroom experimentation as they require expensive equipment, time-consuming surgeries, specialized experimental techniques, and the use of animals. While sometimes feasible in small group teaching, these experiments are not suitable for large cohorts of students. Previous attempts to expose students to sensory neuroscience experiments include: the use of electrophysiology preparations in invertebrates, data-driven simulations that do not replicate the experience of conducting an experiment, or simply observing an experiment in a research laboratory. We developed an online simulation of a visual neuroscience experiment in which extracellular recordings are made from a motion sensitive neuron. Students have control over stimulation parameters (direction and contrast) and can see and hear the action potential responses to stimuli as they are presented. The simulation provides an intuitive way for students to gain insight into neurophysiology, including experimental design, data collection and data analysis. Our simulation allows large cohorts of students to cost-effectively “experience” the results of animal research without ethical concerns, to be exposed to realistic data variability, and to develop their understanding of how sensory neuroscience experiments are conducted. PMID:27980465

  1. 3D animation of facial plastic surgery based on computer graphics

    NASA Astrophysics Data System (ADS)

    Zhang, Zonghua; Zhao, Yan

    2013-12-01

    More and more people, especial women, are getting desired to be more beautiful than ever. To some extent, it becomes true because the plastic surgery of face was capable in the early 20th and even earlier as doctors just dealing with war injures of face. However, the effect of post-operation is not always satisfying since no animation could be seen by the patients beforehand. In this paper, by combining plastic surgery of face and computer graphics, a novel method of simulated appearance of post-operation will be given to demonstrate the modified face from different viewpoints. The 3D human face data are obtained by using 3D fringe pattern imaging systems and CT imaging systems and then converted into STL (STereo Lithography) file format. STL file is made up of small 3D triangular primitives. The triangular mesh can be reconstructed by using hash function. Top triangular meshes in depth out of numbers of triangles must be picked up by ray-casting technique. Mesh deformation is based on the front triangular mesh in the process of simulation, which deforms interest area instead of control points. Experiments on face model show that the proposed 3D animation facial plastic surgery can effectively demonstrate the simulated appearance of post-operation.

  2. Virtual Laparoscopic Training System Based on VCH Model.

    PubMed

    Tang, Jiangzhou; Xu, Lang; He, Longjun; Guan, Songluan; Ming, Xing; Liu, Qian

    2017-04-01

    Laparoscopy has been widely used to perform abdominal surgeries, as it is advantageous in that the patients experience lower post-surgical trauma, shorter convalescence, and less pain as compared to traditional surgery. Laparoscopic surgeries require precision; therefore, it is imperative to train surgeons to reduce the risk of operation. Laparoscopic simulators offer a highly realistic surgical environment by using virtual reality technology, and it can improve the training efficiency of laparoscopic surgery. This paper presents a virtual Laparoscopic surgery system. The proposed system utilizes the Visible Chinese Human (VCH) to construct the virtual models and simulates real-time deformation with both improved special mass-spring model and morph target animation. Meanwhile, an external device that integrates two five-degrees-of-freedom (5-DOF) manipulators was designed and made to interact with the virtual system. In addition, the proposed system provides a modular tool based on Unity3D to define the functions and features of instruments and organs, which could help users to build surgical training scenarios quickly. The proposed virtual laparoscopic training system offers two kinds of training mode, skills training and surgery training. In the skills training mode, the surgeons are mainly trained for basic operations, such as laparoscopic camera, needle, grasp, electric coagulation, and suturing. In the surgery-training mode, the surgeons can practice cholecystectomy and removal of hepatic cysts by guided or non-guided teaching.

  3. Single-Incision Transumbilical Surgery (SITUS) versus Single-Port Laparoscopic Surgery and conventional laparoscopic surgery: a prospective randomized comparative study of performance with novices in a dry laboratory.

    PubMed

    Schoenthaler, Martin; Avcil, Tuba; Sevcenco, Sabina; Nagele, Udo; Hermann, Thomas E W; Kuehhas, Franklin E; Shariat, Shahrokh F; Frankenschmidt, Alexander; Wetterauer, Ulrich; Miernik, Arkadiusz

    2015-01-01

    To evaluate the Single-Incision Transumbilical Surgery (SITUS) technique as compared to an established laparoendoscopic single-site surgery (LESS) technique (Single-Port Laparoscopic Surgery, SPLS) and conventional laparoscopy (CLS) in a surgical simulator model. Sixty-three medical students without previous laparoscopic experience were randomly assigned to one of the three groups (SITUS, SPLS and CLS). Subjects were asked to perform five standardized tasks of increasing difficulty adopted from the Fundamentals of Laparoscopic Surgery curriculum. Statistical evaluation included task completion times and accuracy. Overall performances of all tasks (except precision cutting) were significantly faster and of higher accuracy in the CLS and SITUS groups than in the SPLS group (p = 0.004 to p < 0.001). CLS and SITUS groups alone showed no significant difference in performance times and accuracy measurements for all tasks (p = 0.048 to p = 0.989). SITUS proved to be a simple, but highly effective technique to overcome restrictions of SPLS. In a surgical simulator model, novices were able to achieve task performances comparable to CLS and did significantly better than using a port-assisted LESS technique such as SPLS. The demonstrated advantages of SITUS may be attributed to a preservation of the basic principles of conventional laparoscopy, such as the use of straight instruments and an adequate degree of triangulation.

  4. Abdominal surgery process modeling framework for simulation using spreadsheets.

    PubMed

    Boshkoska, Biljana Mileva; Damij, Talib; Jelenc, Franc; Damij, Nadja

    2015-08-01

    We provide a continuation of the existing Activity Table Modeling methodology with a modular spreadsheets simulation. The simulation model developed is comprised of 28 modeling elements for the abdominal surgery cycle process. The simulation of a two-week patient flow in an abdominal clinic with 75 beds demonstrates the applicability of the methodology. The simulation does not include macros, thus programming experience is not essential for replication or upgrading the model. Unlike the existing methods, the proposed solution employs a modular approach for modeling the activities that ensures better readability, the possibility of easily upgrading the model with other activities, and its easy extension and connectives with other similar models. We propose a first-in-first-served approach for simulation of servicing multiple patients. The uncertain time duration of the activities is modeled using the function "rand()". The patients movements from one activity to the next one is tracked with nested "if()" functions, thus allowing easy re-creation of the process without the need of complex programming. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. Ergonomics and human factors in endoscopic surgery: a comparison of manual vs telerobotic simulation systems.

    PubMed

    Lee, E C; Rafiq, A; Merrell, R; Ackerman, R; Dennerlein, J T

    2005-08-01

    Minimally invasive surgical techniques expose surgeons to a variety of occupational hazards that may promote musculoskeletal disorders. Telerobotic systems for minimally invasive surgery may help to reduce these stressors. The objective of this study was to compare manual and telerobotic endoscopic surgery in terms of postural and mental stress. Thirteen participants with no experience as primary surgeons in endoscopic surgery performed a set of simulated surgical tasks using two different techniques--a telerobotic master--slave system and a manual endoscopic surgery system. The tasks consisted of passing a soft spherical object through a series of parallel rings, suturing along a line 5-cm long, running a 32-in ribbon, and cannulation. The Job Strain Index (JSI) and Rapid Upper Limb Assessment (RULA) were used to quantify upper extremity exposure to postural and force risk factors. Task duration was quantified in seconds. A questionnaire provided measures of the participants' intuitiveness and mental stress. The JSI and RULA scores for all four tasks were significantly lower for the telerobotic technique than for the manual one. Task duration was significantly longer for telerobotic than for manual tasks. Participants reported that the telerobotic technique was as intuitive as, and no more stressful than, the manual technique. Given identical tasks, the time to completion is longer using the telerobotic technique than its manual counterpart. For the given simulated tasks in the laboratory setting, the better scores for the upper extremity postural analysis indicate that telerobotic surgery provides a more comfortable environment for the surgeon without any additional mental stress.

  6. On the practicality of emergency surgery during long-duration space missions.

    PubMed

    Dawson, David L

    2008-07-01

    While discussions of the practicality of surgery in space often focus on technical issues, such as adapting instrumentation and procedures for use in microgravity, programmatic issues need to be addressed if meaningful capabilities for emergency surgery are to be considered for human exploration missions beyond low Earth orbit. Advanced technologies that have been evaluated, including simulation-enhanced training, telementoring, or robotic assistance, might help prepare or augment a crew medical officer, but a physician with advanced training and relevant experience will be needed if surgical capabilities beyond basic emergency aid are to be considered. Specific operational roles for physician-astronauts should be established.

  7. Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study.

    PubMed

    Lendvay, Thomas S; Brand, Timothy C; White, Lee; Kowalewski, Timothy; Jonnadula, Saikiran; Mercer, Laina D; Khorsand, Derek; Andros, Justin; Hannaford, Blake; Satava, Richard M

    2013-06-01

    Preoperative simulation warm-up has been shown to improve performance and reduce errors in novice and experienced surgeons, yet existing studies have only investigated conventional laparoscopy. We hypothesized that a brief virtual reality (VR) robotic warm-up would enhance robotic task performance and reduce errors. In a 2-center randomized trial, 51 residents and experienced minimally invasive surgery faculty in General Surgery, Urology, and Gynecology underwent a validated robotic surgery proficiency curriculum on a VR robotic simulator and on the da Vinci surgical robot (Intuitive Surgical Inc). Once they successfully achieved performance benchmarks, surgeons were randomized to either receive a 3- to 5-minute VR simulator warm-up or read a leisure book for 10 minutes before performing similar and dissimilar (intracorporeal suturing) robotic surgery tasks. The primary outcomes compared were task time, tool path length, economy of motion, technical, and cognitive errors. Task time (-29.29 seconds, p = 0.001; 95% CI, -47.03 to -11.56), path length (-79.87 mm; p = 0.014; 95% CI, -144.48 to -15.25), and cognitive errors were reduced in the warm-up group compared with the control group for similar tasks. Global technical errors in intracorporeal suturing (0.32; p = 0.020; 95% CI, 0.06-0.59) were reduced after the dissimilar VR task. When surgeons were stratified by earlier robotic and laparoscopic clinical experience, the more experienced surgeons (n = 17) demonstrated significant improvements from warm-up in task time (-53.5 seconds; p = 0.001; 95% CI, -83.9 to -23.0) and economy of motion (0.63 mm/s; p = 0.007; 95% CI, 0.18-1.09), and improvement in these metrics was not statistically significantly appreciated in the less-experienced cohort (n = 34). We observed significant performance improvement and error reduction rates among surgeons of varying experience after VR warm-up for basic robotic surgery tasks. In addition, the VR warm-up reduced errors on a more complex task (robotic suturing), suggesting the generalizability of the warm-up. Copyright © 2013 American College of Surgeons. All rights reserved.

  8. Virtual Reality Robotic Surgery Warm-Up Improves Task Performance in a Dry Lab Environment: A Prospective Randomized Controlled Study

    PubMed Central

    Lendvay, Thomas S.; Brand, Timothy C.; White, Lee; Kowalewski, Timothy; Jonnadula, Saikiran; Mercer, Laina; Khorsand, Derek; Andros, Justin; Hannaford, Blake; Satava, Richard M.

    2014-01-01

    Background Pre-operative simulation “warm-up” has been shown to improve performance and reduce errors in novice and experienced surgeons, yet existing studies have only investigated conventional laparoscopy. We hypothesized a brief virtual reality (VR) robotic warm-up would enhance robotic task performance and reduce errors. Study Design In a two-center randomized trial, fifty-one residents and experienced minimally invasive surgery faculty in General Surgery, Urology, and Gynecology underwent a validated robotic surgery proficiency curriculum on a VR robotic simulator and on the da Vinci surgical robot. Once successfully achieving performance benchmarks, surgeons were randomized to either receive a 3-5 minute VR simulator warm-up or read a leisure book for 10 minutes prior to performing similar and dissimilar (intracorporeal suturing) robotic surgery tasks. The primary outcomes compared were task time, tool path length, economy of motion, technical and cognitive errors. Results Task time (-29.29sec, p=0.001, 95%CI-47.03,-11.56), path length (-79.87mm, p=0.014, 95%CI -144.48,-15.25), and cognitive errors were reduced in the warm-up group compared to the control group for similar tasks. Global technical errors in intracorporeal suturing (0.32, p=0.020, 95%CI 0.06,0.59) were reduced after the dissimilar VR task. When surgeons were stratified by prior robotic and laparoscopic clinical experience, the more experienced surgeons(n=17) demonstrated significant improvements from warm-up in task time (-53.5sec, p=0.001, 95%CI -83.9,-23.0) and economy of motion (0.63mm/sec, p=0.007, 95%CI 0.18,1.09), whereas improvement in these metrics was not statistically significantly appreciated in the less experienced cohort(n=34). Conclusions We observed a significant performance improvement and error reduction rate among surgeons of varying experience after VR warm-up for basic robotic surgery tasks. In addition, the VR warm-up reduced errors on a more complex task (robotic suturing) suggesting the generalizability of the warm-up. PMID:23583618

  9. Virtual phacoemulsification surgical simulation using visual guidance and performance parameters as a feasible proficiency assessment tool.

    PubMed

    Lam, Chee Kiang; Sundaraj, Kenneth; Sulaiman, Mohd Nazri; Qamarruddin, Fazilawati A

    2016-06-14

    Computer based surgical training is believed to be capable of providing a controlled virtual environment for medical professionals to conduct standardized training or new experimental procedures on virtual human body parts, which are generated and visualised three-dimensionally on a digital display unit. The main objective of this study was to conduct virtual phacoemulsification cataract surgery to compare performance by users with different proficiency on a virtual reality platform equipped with a visual guidance system and a set of performance parameters. Ten experienced ophthalmologists and six medical residents were invited to perform the virtual surgery of the four main phacoemulsification cataract surgery procedures - 1) corneal incision (CI), 2) capsulorhexis (C), 3) phacoemulsification (P), and 4) intraocular lens implantation (IOL). Each participant was required to perform the complete phacoemulsification cataract surgery using the simulator for three consecutive trials (a standardized 30-min session). The performance of the participants during the three trials was supported using a visual guidance system and evaluated by referring to a set of parameters that was implemented in the performance evaluation system of the simulator. Subjects with greater experience obtained significantly higher scores in all four main procedures - CI1 (ρ = 0.038), CI2 (ρ = 0.041), C1 (ρ = 0.032), P2 (ρ = 0.035) and IOL1 (ρ = 0.011). It was also found that experience improved the completion times in all modules - CI4 (ρ = 0.026), C4 (ρ = 0.018), P6 (ρ = 0.028) and IOL4 (ρ = 0.029). Positive correlation was observed between experience and anti-tremor - C2 (ρ = 0.026), P3 (ρ = 0.015), P4 (ρ = 0.042) and IOL2 (ρ = 0.048) and similarly with anti-rupture - CI3 (ρ = 0.013), C3 (ρ = 0.027), P5 (ρ = 0.021) and IOL3 (ρ = 0.041). No significant difference was observed between the groups with regards to P1 (ρ = 0.077). Statistical analysis of the results obtained from repetitive trials between two groups of users reveal that augmented virtual reality (VR) simulators have the potential and capability to be used as a feasible proficiency assessment tool for the complete four main procedures of phacoemulsification cataract surgery (ρ < 0.05), indicating the construct validity of the modules simulated with augmented visual guidance and assessed through performance parameters.

  10. Learning curves and impact of previous operative experience on performance on a virtual reality simulator to test laparoscopic surgical skills.

    PubMed

    Grantcharov, Teodor P; Bardram, Linda; Funch-Jensen, Peter; Rosenberg, Jacob

    2003-02-01

    The study was carried out to analyze the learning rate for laparoscopic skills on a virtual reality training system and to establish whether the simulator was able to differentiate between surgeons with different laparoscopic experience. Forty-one surgeons were divided into three groups according to their experience in laparoscopic surgery: masters (group 1, performed more than 100 cholecystectomies), intermediates (group 2, between 15 and 80 cholecystectomies), and beginners (group 3, fewer than 10 cholecystectomies) were included in the study. The participants were tested on the Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR) 10 consecutive times within a 1-month period. Assessment of laparoscopic skills included time, errors, and economy of hand movement, measured by the simulator. The learning curves regarding time reached plateau after the second repetition for group 1, the fifth repetition for group 2, and the seventh repetition for group 3 (Friedman's tests P <0.05). Experienced surgeons did not improve their error or economy of movement scores (Friedman's tests, P >0.2) indicating the absence of a learning curve for these parameters. Group 2 error scores reached plateau after the first repetition, and group 3 after the fifth repetition. Group 2 improved their economy of movement score up to the third repetition and group 3 up to the sixth repetition (Friedman's tests, P <0.05). Experienced surgeons (group 1) demonstrated best performance parameters, followed by group 2 and group 3 (Mann-Whitney test P <0.05). Different learning curves existed for surgeons with different laparoscopic background. The familiarization rate on the simulator was proportional to the operative experience of the surgeons. Experienced surgeons demonstrated best laparoscopic performance on the simulator, followed by those with intermediate experience and the beginners. These differences indicate that the scoring system of MIST-VR is sensitive and specific to measuring skills relevant for laparoscopic surgery.

  11. Comparison of Actual Surgical Outcomes and 3D Surgical Simulations

    PubMed Central

    Tucker, Scott; Cevidanes, Lucia; Styner, Martin; Kim, Hyungmin; Reyes, Mauricio; Proffit, William; Turvey, Timothy

    2009-01-01

    Purpose The advent of imaging software programs have proved to be useful for diagnosis, treatment planning, and outcome measurement, but precision of 3D surgical simulation still needs to be tested. This study was conducted to determine if the virtual surgery performed on 3D models constructed from Cone-beam CT (CBCT) can correctly simulate the actual surgical outcome and to validate the ability of this emerging technology to recreate the orthognathic surgery hard tissue movements in 3 translational and 3 rotational planes of space. Methods Construction of pre- and post-surgery 3D models from CBCTs of 14 patients who had combined maxillary advancement and mandibular setback surgery and 6 patients who had one-piece maxillary advancement surgery was performed. The post-surgery and virtually simulated surgery 3D models were registered at the cranial base to quantify differences between simulated and actual surgery models. Hotelling T-test were used to assess the differences between simulated and actual surgical outcomes. Results For all anatomic regions of interest, there was no statistically significant difference between the simulated and the actual surgical models. The right lateral ramus was the only region that showed a statistically significant, but small difference when comparing two- and one-jaw surgeries. Conclusions Virtual surgical methods were reliably reproduced, oral surgery residents could benefit from virtual surgical training, and computer simulation has the potential to increase predictability in the operating room. PMID:20591553

  12. Can a virtual reality surgical simulation training provide a self-driven and mentor-free skills learning? Investigation of the practical influence of the performance metrics from the virtual reality robotic surgery simulator on the skill learning and associated cognitive workloads.

    PubMed

    Lee, Gyusung I; Lee, Mija R

    2018-01-01

    While it is often claimed that virtual reality (VR) training system can offer self-directed and mentor-free skill learning using the system's performance metrics (PM), no studies have yet provided evidence-based confirmation. This experimental study investigated what extent to which trainees achieved their self-learning with a current VR simulator and whether additional mentoring improved skill learning, skill transfer and cognitive workloads in robotic surgery simulation training. Thirty-two surgical trainees were randomly assigned to either the Control-Group (CG) or Experiment-Group (EG). While the CG participants reviewed the PM at their discretion, the EG participants had explanations about PM and instructions on how to improve scores. Each subject completed a 5-week training using four simulation tasks. Pre- and post-training data were collected using both a simulator and robot. Peri-training data were collected after each session. Skill learning, time spent on PM (TPM), and cognitive workloads were compared between groups. After the simulation training, CG showed substantially lower simulation task scores (82.9 ± 6.0) compared with EG (93.2 ± 4.8). Both groups demonstrated improved physical model tasks performance with the actual robot, but the EG had a greater improvement in two tasks. The EG exhibited lower global mental workload/distress, higher engagement, and a better understanding regarding using PM to improve performance. The EG's TPM was initially long but substantially shortened as the group became familiar with PM. Our study demonstrated that the current VR simulator offered limited self-skill learning and additional mentoring still played an important role in improving the robotic surgery simulation training.

  13. Preconditioning in laparoscopic surgery--results of a virtual reality pilot study.

    PubMed

    Paschold, M; Huber, T; Kauff, D W; Buchheim, K; Lang, H; Kneist, W

    2014-10-01

    This prospective study investigated the effect of preconditioning in laparoscopic cholecystectomy (LC) and appendectomy (LA) based on pre- and postoperative virtual reality laparoscopy (VRL) performances, with specific regard to the impact of different motor skills, types of surgery and levels of experience. Forty laparoscopic procedures (28 LC and 12 LA) were performed by 13 residents in the operating room. Participants completed a defined set of tasks on the VRL simulator directly prior to and after the operation: one preparational task (PT), a virtual procedural task with emphasis on fine preparation (VPT) and a navigational manoeuvre for instrument coordination (ICT). VRL performances were evaluated based on the assessed items of the simulator. Overall analysis of the surgeons' performance demonstrated better postoperative results for PT and VPT in 28 and 26 cases (p = 0.001 and p = 0.034), respectively. No significant difference was found for ICT (p = 0.638). Less-experienced residents had better postoperative results for PT and VPT (p = 0.009 and p = 0.041), whereas more-experienced surgeons had better postoperative results for PT only (p = 0.030). LC resulted in better postoperative performance for PT (p = 0.007). LA improved performance for PT and VPT (p = 0.034 and p = 0.006, respectively). Comparisons of surgeon's experience demonstrated a significant advantage for more-experienced surgeons in ICT (p = 0.033), while type of surgery showed an advantage for LA in VPT (p = 0.022). There is a preconditioning effect in laparoscopic surgery. The differing results related to LC and LA and the experience levels of surgeons suggest that differentiated warm-up strategies are required.

  14. Intelligent viewpoint selection for efficient CT to video registration in laparoscopic liver surgery.

    PubMed

    Robu, Maria R; Edwards, Philip; Ramalhinho, João; Thompson, Stephen; Davidson, Brian; Hawkes, David; Stoyanov, Danail; Clarkson, Matthew J

    2017-07-01

    Minimally invasive surgery offers advantages over open surgery due to a shorter recovery time, less pain and trauma for the patient. However, inherent challenges such as lack of tactile feedback and difficulty in controlling bleeding lower the percentage of suitable cases. Augmented reality can show a better visualisation of sub-surface structures and tumour locations by fusing pre-operative CT data with real-time laparoscopic video. Such augmented reality visualisation requires a fast and robust video to CT registration that minimises interruption to the surgical procedure. We propose to use view planning for efficient rigid registration. Given the trocar position, a set of camera positions are sampled and scored based on the corresponding liver surface properties. We implement a simulation framework to validate the proof of concept using a segmented CT model from a human patient. Furthermore, we apply the proposed method on clinical data acquired during a human liver resection. The first experiment motivates the viewpoint scoring strategy and investigates reliable liver regions for accurate registrations in an intuitive visualisation. The second experiment shows wider basins of convergence for higher scoring viewpoints. The third experiment shows that a comparable registration performance can be achieved by at least two merged high scoring views and four low scoring views. Hence, the focus could change from the acquisition of a large liver surface to a small number of distinctive patches, thereby giving a more explicit protocol for surface reconstruction. We discuss the application of the proposed method on clinical data and show initial results. The proposed simulation framework shows promising results to motivate more research into a comprehensive view planning method for efficient registration in laparoscopic liver surgery.

  15. A framework using cluster-based hybrid network architecture for collaborative virtual surgery.

    PubMed

    Qin, Jing; Choi, Kup-Sze; Poon, Wai-Sang; Heng, Pheng-Ann

    2009-12-01

    Research on collaborative virtual environments (CVEs) opens the opportunity for simulating the cooperative work in surgical operations. It is however a challenging task to implement a high performance collaborative surgical simulation system because of the difficulty in maintaining state consistency with minimum network latencies, especially when sophisticated deformable models and haptics are involved. In this paper, an integrated framework using cluster-based hybrid network architecture is proposed to support collaborative virtual surgery. Multicast transmission is employed to transmit updated information among participants in order to reduce network latencies, while system consistency is maintained by an administrative server. Reliable multicast is implemented using distributed message acknowledgment based on cluster cooperation and sliding window technique. The robustness of the framework is guaranteed by the failure detection chain which enables smooth transition when participants join and leave the collaboration, including normal and involuntary leaving. Communication overhead is further reduced by implementing a number of management approaches such as computational policies and collaborative mechanisms. The feasibility of the proposed framework is demonstrated by successfully extending an existing standalone orthopedic surgery trainer into a collaborative simulation system. A series of experiments have been conducted to evaluate the system performance. The results demonstrate that the proposed framework is capable of supporting collaborative surgical simulation.

  16. Hand-assisted laparoscopic sigmoid colectomy skills acquisition: augmented reality simulator versus human cadaver training models.

    PubMed

    Leblanc, Fabien; Senagore, Anthony J; Ellis, Clyde N; Champagne, Bradley J; Augestad, Knut M; Neary, Paul C; Delaney, Conor P

    2010-01-01

    The aim of this study was to compare a simulator with the human cadaver model for hand-assisted laparoscopic colorectal skills acquisition training. An observational prospective comparative study was conducted to compare the laparoscopic surgery training models. The study took place during the laparoscopic colectomy training course performed at the annual scientific meeting of the American Society of Colon and Rectal Surgeons. Thirty four practicing surgeons performed hand-assisted laparoscopic sigmoid colectomy on human cadavers (n = 7) and on an augmented reality simulator (n = 27). Prior laparoscopic colorectal experience was assessed. Trainers and trainees completed independently objective structured assessment forms. Training models were compared by trainees' technical skills scores, events scores, and satisfaction. Prior laparoscopic experience was similar in both surgeon groups. Generic and specific skills scores were similar on both training models. Generic events scores were significantly better on the cadaver model. The 2 most frequent generic events occurring on the simulator were poor hand-eye coordination and inefficient use of retraction. Specific events were scored better on the simulator and reached the significance limit (p = 0.051) for trainers. The specific events occurring on the cadaver were intestinal perforation and left ureter identification difficulties. Overall satisfaction was better for the cadaver than for the simulator model (p = 0.009). With regard to skills scores, the augmented reality simulator had adequate qualities for the hand-assisted laparoscopic colectomy training. Nevertheless, events scores highlighted weaknesses of the anatomical replication on the simulator. Although improvements likely will be required to incorporate the simulator more routinely into the colorectal training, it may be useful in its current form for more junior trainees or those early on their learning curve. Copyright 2010 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  17. Initial validation of a virtual-reality robotic simulator.

    PubMed

    Lendvay, Thomas S; Casale, Pasquale; Sweet, Robert; Peters, Craig

    2008-09-01

    Robotic surgery is an accepted adjunct to minimally invasive surgery, but training is restricted to console time. Virtual-reality (VR) simulation has been shown to be effective for laparoscopic training and so we seek to validate a novel VR robotic simulator. The American Urological Association (AUA) Office of Education approved this study. Subjects enrolled in a robotics training course at the 2007 AUA annual meeting underwent skills training in a da Vinci dry-lab module and a virtual-reality robotics module which included a three-dimensional (3D) VR robotic simulator. Demographic and acceptability data were obtained, and performance metrics from the simulator were compared between experienced and nonexperienced roboticists for a ring transfer task. Fifteen subjects-four with previous robotic surgery experience and 11 without-participated. Nine subjects were still in urology training and nearly half of the group had reported playing video games. Overall performance of the da Vinci system and the simulator were deemed acceptable by a Likert scale (0-6) rating of 5.23 versus 4.69, respectively. Experienced subjects outperformed nonexperienced subjects on the simulator on three metrics: total task time (96 s versus 159 s, P < 0.02), economy of motion (1,301 mm versus 2,095 mm, P < 0.04), and time the telemanipulators spent outside of the center of the platform's workspace (4 s versus 35 s, P < 0.02). This is the first demonstration of face and construct validity of a virtual-reality robotic simulator. Further studies assessing predictive validity are ultimately required to support incorporation of VR robotic simulation into training curricula.

  18. Video-based peer feedback through social networking for robotic surgery simulation: a multicenter randomized controlled trial.

    PubMed

    Carter, Stacey C; Chiang, Alexander; Shah, Galaxy; Kwan, Lorna; Montgomery, Jeffrey S; Karam, Amer; Tarnay, Christopher; Guru, Khurshid A; Hu, Jim C

    2015-05-01

    To examine the feasibility and outcomes of video-based peer feedback through social networking to facilitate robotic surgical skill acquisition. The acquisition of surgical skills may be challenging for novel techniques and/or those with prolonged learning curves. Randomized controlled trial involving 41 resident physicians performing the Tubes (Da Vinci Intuitive Surgical, Sunnyvale, CA) simulator exercise with versus without peer feedback of video-recorded performance through a social networking Web page. Data collected included simulator exercise score, time to completion, and comfort and satisfaction with robotic surgery simulation. There were no baseline differences between the intervention group (n = 20) and controls (n = 21). The intervention group showed improvement in mean scores from session 1 to sessions 2 and 3 (60.7 vs 75.5, P < 0.001, and 60.7 vs 80.1, P < 0.001, respectively). The intervention group scored significantly higher than controls at sessions 2 and 3 (75.5 vs 59.6, P = 0.009, and 80.1 vs 65.9, P = 0.019, respectively). The mean time (seconds) to complete the task was shorter for the intervention group than for controls during sessions 2 and 3 (217.4 vs 279.0, P = 0.004, and 201.4 vs 261.9, P = 0.006, respectively). At the study conclusion, feedback subjects were more comfortable with robotic surgery than controls (90% vs 62%, P = 0.021) and expressed greater satisfaction with the learning experience (100% vs 67%, P = 0.014). Of the intervention subjects, 85% found that peer feedback was useful and 100% found it effective. Video-based peer feedback through social networking appears to be an effective paradigm for surgical education and accelerates the robotic surgery learning curve during simulation.

  19. Development of the McGill simulator for endoscopic sinus surgery: a new high-fidelity virtual reality simulator for endoscopic sinus surgery.

    PubMed

    Varshney, Rickul; Frenkiel, Saul; Nguyen, Lily H P; Young, Meredith; Del Maestro, Rolando; Zeitouni, Anthony; Tewfik, Marc A

    2014-01-01

    The technical challenges of endoscopic sinus surgery (ESS) and the high risk of complications support the development of alternative modalities to train residents in these procedures. Virtual reality simulation is becoming a useful tool for training the skills necessary for minimally invasive surgery; however, there are currently no ESS virtual reality simulators available with valid evidence supporting their use in resident education. Our aim was to develop a new rhinology simulator, as well as to define potential performance metrics for trainee assessment. The McGill simulator for endoscopic sinus surgery (MSESS), a new sinus surgery virtual reality simulator with haptic feedback, was developed (a collaboration between the McGill University Department of Otolaryngology-Head and Neck Surgery, the Montreal Neurologic Institute Simulation Lab, and the National Research Council of Canada). A panel of experts in education, performance assessment, rhinology, and skull base surgery convened to identify core technical abilities that would need to be taught by the simulator, as well as performance metrics to be developed and captured. The MSESS allows the user to perform basic sinus surgery skills, such as an ethmoidectomy and sphenoidotomy, through the use of endoscopic tools in a virtual nasal model. The performance metrics were developed by an expert panel and include measurements of safety, quality, and efficiency of the procedure. The MSESS incorporates novel technological advancements to create a realistic platform for trainees. To our knowledge, this is the first simulator to combine novel tools such as the endonasal wash and elaborate anatomic deformity with advanced performance metrics for ESS.

  20. Mixed reality ventriculostomy simulation: experience in neurosurgical residency.

    PubMed

    Hooten, Kristopher G; Lister, J Richard; Lombard, Gwen; Lizdas, David E; Lampotang, Samsun; Rajon, Didier A; Bova, Frank; Murad, Gregory J A

    2014-12-01

    Medicine and surgery are turning toward simulation to improve on limited patient interaction during residency training. Many simulators today use virtual reality with augmented haptic feedback with little to no physical elements. In a collaborative effort, the University of Florida Department of Neurosurgery and the Center for Safety, Simulation & Advanced Learning Technologies created a novel "mixed" physical and virtual simulator to mimic the ventriculostomy procedure. The simulator contains all the physical components encountered for the procedure with superimposed 3-D virtual elements for the neuroanatomical structures. To introduce the ventriculostomy simulator and its validation as a necessary training tool in neurosurgical residency. We tested the simulator in more than 260 residents. An algorithm combining time and accuracy was used to grade performance. Voluntary postperformance surveys were used to evaluate the experience. Results demonstrate that more experienced residents have statistically significant better scores and completed the procedure in less time than inexperienced residents. Survey results revealed that most residents agreed that practice on the simulator would help with future ventriculostomies. This mixed reality simulator provides a real-life experience, and will be an instrumental tool in training the next generation of neurosurgeons. We have now implemented a standard where incoming residents must prove efficiency and skill on the simulator before their first interaction with a patient.

  1. Will the Playstation generation become better endoscopic surgeons?

    PubMed

    van Dongen, Koen W; Verleisdonk, Egbert-Jan M M; Schijven, Marlies P; Broeders, Ivo A M J

    2011-07-01

    A frequently heard comment is that the current "Playstation generation" will have superior baseline psychomotor skills. However, research has provided inconsistent results on this matter. The purpose of this study was to investigate whether the "Playstation generation" shows superior baseline psychomotor skills for endoscopic surgery on a virtual reality simulator. The 46 study participants were interns (mean age 24 years) of the department of surgery and schoolchildren (mean age 12.5 years) of the first year of a secondary school. Participants were divided into four groups: 10 interns with videogame experience and 10 without, 13 schoolchildren with videogame experience and 13 without. They performed four tasks twice on a virtual reality simulator for basic endoscopic skills. The one-way analysis of variance (ANOVA) with post hoc test Tukey-Bonferroni and the independent Student's t test were used to determine differences in mean scores. Interns with videogame experience scored significantly higher on total score (93 vs. 74.5; p=0.014) compared with interns without this experience. There was a nonsignificant difference in mean total scores between the group of schoolchildren with and those without videogame experience (61.69 vs. 55.46; p=0.411). The same accounts for interns with regard to mean scores on efficiency (50.7 vs. 38.9; p=0.011) and speed (18.8 vs. 14.3; p=0.023). In the group of schoolchildren, there was no statistical difference for efficiency (32.69 vs. 27.31; p=0.218) or speed (13.92 vs. 13.15; p=0.54). The scores concerning precision parameters did not differ for interns (23.5 vs. 21.3; p=0.79) or for schoolchildren (mean 15.08 vs. 15; p=0.979). Our study results did not predict an advantage of videogame experience in children with regard to superior psychomotor skills for endoscopic surgery. However, at adult age, a difference in favor of gaming is present. The next generation of surgeons might benefit from videogame experience during their childhood.

  2. Applied Research on Laparoscopic Simulator in the Resident Surgical Laparoscopic Operation Technical Training.

    PubMed

    Fu, Shangxi; Liu, Xiao; Zhou, Li; Zhou, Meisheng; Wang, Liming

    2017-08-01

    The purpose of this study was to estimate the effects of surgical laparoscopic operation course on laparoscopic operation skills after the simulated training for medical students with relatively objective results via data gained before and after the practice course of laparoscopic simulator of the resident standardized trainees. Experiment 1: 20 resident standardized trainees with no experience in laparoscopic surgery were included in the inexperienced group and finished simulated cholecystectomy according to simulator videos. Simulator data was collected (total operation time, path length, average speed of instrument movement, movement efficiency, number of perforations, the time cautery is applied without appropriate contact with adhesions, number of serious complications). Ten attending doctors were included in the experienced group and conducted the operation of simulated cholecystectomy directly. Data was collected with simulator. Data of two groups was compared. Experiment 2: Participants in inexperienced group were assigned to basic group (receiving 8 items of basic operation training) and special group (receiving 8 items of basic operation training and 4 items of specialized training), and 10 persons for each group. They received training course designed by us respectively. After training level had reached the expected target, simulated cholecystectomy was performed, and data was collected. Experimental data between basic group and special group was compared and then data between special group and experienced group was compared. Results of experiment 1 showed that there is significant difference between data in inexperienced group in which participants operated simulated cholecystectomy only according to instructors' teaching and operation video and data in experienced group. Result of experiment 2 suggested that, total operation time, number of perforations, number of serious complications, number of non-cauterized bleeding and the time cautery is applied without appropriate contact with adhesions in special group were all superior to those in basic group. There was no statistical difference on other data between special group and basic group. Comparing special group with experienced group, data of total operation time and the time cautery is applied without appropriate contact with adhesions in experienced group was superior to that in special group. There was no statistical difference on other data between special group and experienced group. Laparoscopic simulators are effective for surgical skills training. Basic courses could mainly improve operator's hand-eye coordination and perception of sense of the insertion depth for instruments. Specialized training courses could not only improve operator's familiarity with surgeries, but also reduce operation time and risk, and improve safety.

  3. A Secure and High-Fidelity Live Animal Model for Off-Pump Coronary Bypass Surgery Training.

    PubMed

    Liu, Xiaopeng; Yang, Yan; Meng, Qiang; Sun, Jiakang; Luo, Fuliang; Cui, Yongchun; Zhang, Hong; Zhang, Dong; Tang, Yue

    2016-01-01

    Existing simulators for off-pump coronary artery (CA) bypass grafting training are unable to provide cardiac surgery residents all necessary skills they need entering the operation room. In this study, we introduced a secure and high-fidelity live animal model to supplement the in vitro simulators for off-pump CA bypass grafting training. The left internal thoracic artery (ITA) of 3 Chinese miniature pigs was grafted to the left anterior descending CA using an end-to-side anastomosis. The free segment of the ITA was fixed on the ventricle surface, making it a simulative CA beating in synchrony with the heart. A total of 6 to 8 training anastomoses were made on each ITA. Animal Experiment Center in Fuwai Hospital. In total, 19 resident surgeons with at least 3 years of cardiac surgery work experience were trained using the new model. Their performances were recorded and reviewed. Simulative coronary arteries were successfully constructed in all 3 animals with no adverse event observed. A total of 19 anastomoses were then completed, 1 pig of 7 anastomoses and the other 2 animals of 6 anastomoses. Time consumption for the anastomosis was 782 ± 107 seconds. Anastomotic leakage was observed in 10/19 procedures. The most frequency site (7/10) was at the toe of the anastomosis. Further, the most common cause was uneven spacing or small margin of the stitches or both. Emergencies occurred during the training process included hypotension (7 procedures), tachyarrhythmia (4 procedures), and low blood oxygen saturation (1 procedure). This study demonstrated the safety and feasibility of our new live pig model in training resident surgeons. The simulative arteries can be easily accomplished and were long enough to place at least 6 anastomoses. Both on lumen diameter and motion status, they were proven to be a good substitution of the CA. Copyright © 2016. Published by Elsevier Inc.

  4. Comparing surgical experience with performance on a sinus surgery simulator.

    PubMed

    Diment, Laura E; Ruthenbeck, Greg S; Dharmawardana, Nuwan; Carney, A Simon; Woods, Charmaine M; Ooi, Eng H; Reynolds, Karen J

    2016-12-01

    This study evaluates whether surgical experience influences technical competence using the Flinders sinus surgery simulator, a virtual environment designed to teach nasal endoscopic surgical skills. Ten experienced sinus surgeons (five consultants and five registrars) and 14 novices (seven resident medical officers and seven interns/medical students) completed three simulation tasks using haptic controllers. Task 1 required navigation of the sinuses and identification of six anatomical landmarks, Task 2 required removal of unhealthy tissue while preserving healthy tissue and Task 3 entailed backbiting within pre-set lines on the uncinate process and microdebriding tissue between the cuts. Novices were compared with experts on a range of measures, using Mann-Whitney U -tests. Novices took longer on all tasks (Task 1: 278%, P < 0.005; Task 2: 112%, P < 0.005; Task 3: 72%, P < 0.005). In Task 1, novices' instruments travelled further than experts' (379%, P < 0.005), and provided greater maximum force (12%, P < 0.05). In Tasks 2 and 3 novices performed more cutting movements to remove the tissue (Task 2: 1500%, P < 0.005; Task 3: 72%, P < 0.005). Experts also completed more of Task 3 (66%, P < 0.05). The study demonstrated the Flinders sinus simulator's construct validity, differentiating between experts and novices with respect to procedure time, instrument distance travelled and number of cutting motions to complete the task. © 2015 Royal Australasian College of Surgeons.

  5. Ethics skills laboratory experience for surgery interns.

    PubMed

    Moon, Margaret R; Hughes, Mark T; Chen, Jiin-Yu; Khaira, Kiran; Lipsett, Pamela; Carrese, Joseph A

    2014-01-01

    Ethics curricula are nearly universal in residency training programs, but the content and delivery methods are not well described, and there is still a relative paucity of literature evaluating the effect of ethics curricula. Several commentators have called for more ethics curriculum development at the postgraduate level, and specifically in surgery training. We detail our development and implementation of a clinical ethics curriculum for surgery interns. We developed curricula and simulated patient cases for 2 core clinical ethics skills--breaking bad news and obtaining informed consent. Educational sessions for each topic included (1) framework development (discussion of interns' current experience, development of a consensus framework for ethical practice, and comparison with established frameworks) and (2) practice with simulated patient followed by peer and faculty feedback. At the beginning and end of each session, we administered a test of confidence and knowledge about the topics to assess the effect of the sessions. A total of 98 surgical interns participated in the ethics skills laboratory from Spring 2008 to Spring 2011. We identified significant improvement in confidence regarding the appropriate content of informed consent (<0.001) and capacity to break bad news (<0.001). We also identified significant improvement in overall knowledge regarding informed consent (<0.01), capacity assessment (<0.05), and breaking bad news (0.001). Regarding specific components of informed consent, capacity assessment, and breaking bad news, significant improvement was shown in some areas, while we failed to improve knowledge in others. Through faculty-facilitated small group discussion, surgery interns were able to develop frameworks for ethical practice that paralleled established frameworks. Skills-based training in clinical ethics resulted in an increase in knowledge scores and self-reported confidence. Evaluation of 4 annual cohorts of surgery interns demonstrates significant successes and some areas for improvement in this educational intervention. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  6. Cadaveric validation study of computational fluid dynamics model of sinus irrigations before and after sinus surgery

    PubMed Central

    Craig, John R; Zhao, Kai; Doan, Ngoc; Khalili, Sammy; Lee, John YK; Adappa, Nithin D; Palmer, James N

    2016-01-01

    Background Investigations into the distribution of sinus irrigations have been limited by labor-intensive methodologies that do not capture the full dynamics of irrigation flow. The purpose of this study was to validate the accuracy of a computational fluid dynamics (CFD) model for sinonasal irrigations through a cadaveric experiment. Methods Endoscopic sinus surgery was performed on two fresh cadavers to open all eight sinuses, including a Draf III procedure for cadaver 1, and Draf IIb frontal sinusotomies for cadaver 2. Computed tomography maxillofacial scans were obtained preoperatively and postoperatively, from which CFD models were created. Blue-dyed saline in a 240 mL squeeze bottle was used to irrigate cadaver sinuses at 60 mL/s (120 mL per side, over 2 seconds). These parameters were replicated in CFD simulations. Endoscopes were placed through trephinations drilled through the anterior walls of the maxillary and frontal sinuses, and sphenoid roofs. Irrigation flow into the maxillary, frontal, and sphenoid sinuses was graded both ipsilateral and contralateral to the side of nasal irrigation, and then compared with the CFD simulations. Results In both cadavers, preoperative and postoperative irrigation flow into maxillary, frontal, and sphenoid sinuses matched extremely well when comparing the CFD models and cadaver endoscopic videos. For cadaver 1, there was 100% concordance between the CFD model and cadaver videos, and 83% concordance for cadaver 2. Conclusions This cadaveric experiment provided potential validation of the CFD model for simulating saline irrigation flow into the maxillary, frontal, and sphenoid sinuses before and after sinus surgery. PMID:26880742

  7. Can skills assessment on a virtual reality trainer predict a surgical trainee's talent in laparoscopic surgery?

    PubMed

    Rosenthal, R; Gantert, W A; Scheidegger, D; Oertli, D

    2006-08-01

    A number of studies have investigated several aspects of feasibility and validity of performance assessments with virtual reality surgical simulators. However, the validity of performance assessments is limited by the reliability of such measurements, and some issues of reliability still need to be addressed. This study aimed to evaluate the hypothesis that test subjects show logarithmic performance curves on repetitive trials for a component task of laparoscopic cholecystectomy on a virtual reality simulator, and that interindividual differences in performance after considerable training are significant. According to kinesiologic theory, logarithmic performance curves are expected and an individual's learning capacity for a specific task can be extrapolated, allowing quantification of a person's innate ability to develop task-specific skills. In this study, 20 medical students at the University of Basel Medical School performed five trials of a standardized task on the LS 500 virtual reality simulator for laparoscopic surgery. Task completion time, number of errors, economy of instrument movements, and maximum speed of instrument movements were measured. The hypothesis was confirmed by the fact that the performance curves for some of the simulator measurements were very close to logarithmic curves, and there were significant interindividual differences in performance at the end of the repetitive trials. Assessment of perceptual motor skills and the innate ability of an individual with no prior experience in laparoscopic surgery to develop such skills using the LS 500 VR surgical simulator is feasible and reliable.

  8. Impact of hand dominance, gender, and experience with computer games on performance in virtual reality laparoscopy.

    PubMed

    Grantcharov, T P; Bardram, L; Funch-Jensen, P; Rosenberg, J

    2003-07-01

    The impact of gender and hand dominance on operative performance may be a subject of prejudice among surgeons, reportedly leading to discrimination and lack of professional promotion. However, very little objective evidence is available yet on the matter. This study was conducted to identify factors that influence surgeons' performance, as measured by a virtual reality computer simulator for laparoscopic surgery. This study included 25 surgical residents who had limited experience with laparoscopic surgery, having performed fewer than 10 laparoscopic cholecystectomies. The participants were registered according to their gender, hand dominance, and experience with computer games. All of the participants performed 10 repetitions of the six tasks on the Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR) within 1 month. Assessment of laparoscopic skills was based on three parameters measured by the simulator: time, errors, and economy of hand movement. Differences in performance existed between the compared groups. Men completed the tasks in less time than women ( p = 0.01, Mann-Whitney test), but there was no statistical difference between the genders in the number of errors and unnecessary movements. Individuals with right hand dominance performed fewer unnecessary movements ( p = 0.045, Mann-Whitney test), and there was a trend toward better results in terms of time and errors among the residence with right hand dominance than among those with left dominance. Users of computer games made fewer errors than nonusers ( p = 0.035, Mann-Whitney test). The study provides objective evidence of a difference in laparoscopic skills between surgeons differing gender, hand dominance, and computer experience. These results may influence the future development of training program for laparoscopic surgery. They also pose a challenge to individuals responsible for the selection and training of the residents.

  9. A pilot study examining experiential learning vs didactic education of abdominal compartment syndrome.

    PubMed

    Saraswat, Anju; Bach, John; Watson, William D; Elliott, John O; Dominguez, Edward P

    2017-08-01

    Current surgical education relies on simulated educational experiences or didactic sessions to teach low-frequency clinical events such as abdominal compartment syndrome (ACS). The purpose of this pilot study was to evaluate if simulation would improve performance and knowledge retention of ACS better than a didactic lecture. Nineteen general surgery residents were block randomized by postgraduate year level to a didactic or a simulation session. After 3 months, all residents completed a knowledge assessment before participating in an additional simulation. Two independent reviewers assessed resident performance via audio-video recordings. No baseline differences in ACS experience were noted between groups. The observational evaluation demonstrated a significant difference in performance between the didactic and simulation groups: 9.9 vs 12.5, P = .037 (effect size = 1.15). Knowledge retention was equivalent between groups. This pilot study suggests that simulation-based education may be more effective for teaching the basic concepts of ACS. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Editorial Commentary: "Virtual Reality" Simulation in Orthopaedic Surgery: Realistically Helpful, or Virtually Useless?

    PubMed

    Camp, Christopher L

    2018-05-01

    Although we have come a long way, the rapidly expanding field of virtual reality simulation for arthroscopic surgical skills acquisition is supported by only a limited amount of evidence. That said, the good news is that the evidence suggests that simulator experience translates into improved performance in the operating room. If proving this relation is our ultimate goal, more work is certainly needed. In this commentary, a "Task List" is proposed for surgeons and educators interested in using simulators and better defining their role in resident education. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. NOViSE: a virtual natural orifice transluminal endoscopic surgery simulator.

    PubMed

    Korzeniowski, Przemyslaw; Barrow, Alastair; Sodergren, Mikael H; Hald, Niels; Bello, Fernando

    2016-12-01

    Natural orifice transluminal endoscopic surgery (NOTES) is a novel technique in minimally invasive surgery whereby a flexible endoscope is inserted via a natural orifice to gain access to the abdominal cavity, leaving no external scars. This innovative use of flexible endoscopy creates many new challenges and is associated with a steep learning curve for clinicians. We developed NOViSE-the first force-feedback-enabled virtual reality simulator for NOTES training supporting a flexible endoscope. The haptic device is custom-built, and the behaviour of the virtual flexible endoscope is based on an established theoretical framework-the Cosserat theory of elastic rods. We present the application of NOViSE to the simulation of a hybrid trans-gastric cholecystectomy procedure. Preliminary results of face, content and construct validation have previously shown that NOViSE delivers the required level of realism for training of endoscopic manipulation skills specific to NOTES. VR simulation of NOTES procedures can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. In the context of an experimental technique, NOViSE could potentially facilitate NOTES development and contribute to its wider use by keeping practitioners up to date with this novel surgical technique. NOViSE is a first prototype, and the initial results indicate that it provides promising foundations for further development.

  12. Virtual reality in laparoscopic surgery.

    PubMed

    Uranüs, Selman; Yanik, Mustafa; Bretthauer, Georg

    2004-01-01

    Although the many advantages of laparoscopic surgery have made it an established technique, training in laparoscopic surgery posed problems not encountered in conventional surgical training. Virtual reality simulators open up new perspectives for training in laparoscopic surgery. Under realistic conditions in real time, trainees can tailor their sessions with the VR simulator to suit their needs and goals, and can repeat exercises as often as they wish. VR simulators reduce the number of experimental animals needed for training purposes and are suited to the pursuit of research in laparoscopic surgery.

  13. Validity evidence for procedural competency in virtual reality robotic simulation, establishing a credible pass/fail standard for the vaginal cuff closure procedure.

    PubMed

    Hovgaard, Lisette Hvid; Andersen, Steven Arild Wuyts; Konge, Lars; Dalsgaard, Torur; Larsen, Christian Rifbjerg

    2018-03-30

    The use of robotic surgery for minimally invasive procedures has increased considerably over the last decade. Robotic surgery has potential advantages compared to laparoscopic surgery but also requires new skills. Using virtual reality (VR) simulation to facilitate the acquisition of these new skills could potentially benefit training of robotic surgical skills and also be a crucial step in developing a robotic surgical training curriculum. The study's objective was to establish validity evidence for a simulation-based test for procedural competency for the vaginal cuff closure procedure that can be used in a future simulation-based, mastery learning training curriculum. Eleven novice gynaecological surgeons without prior robotic experience and 11 experienced gynaecological robotic surgeons (> 30 robotic procedures) were recruited. After familiarization with the VR simulator, participants completed the module 'Guided Vaginal Cuff Closure' six times. Validity evidence was investigated for 18 preselected simulator metrics. The internal consistency was assessed using Cronbach's alpha and a composite score was calculated based on metrics with significant discriminative ability between the two groups. Finally, a pass/fail standard was established using the contrasting groups' method. The experienced surgeons significantly outperformed the novice surgeons on 6 of the 18 metrics. The internal consistency was 0.58 (Cronbach's alpha). The experienced surgeons' mean composite score for all six repetitions were significantly better than the novice surgeons' (76.1 vs. 63.0, respectively, p < 0.001). A pass/fail standard of 75/100 was established. Four novice surgeons passed this standard (false positives) and three experienced surgeons failed (false negatives). Our study has gathered validity evidence for a simulation-based test for procedural robotic surgical competency in the vaginal cuff closure procedure and established a credible pass/fail standard for future proficiency-based training.

  14. General surgery training and robotics: Are residents improving their skills?

    PubMed

    Finnerty, Brendan M; Afaneh, Cheguevara; Aronova, Anna; Fahey, Thomas J; Zarnegar, Rasa

    2016-02-01

    While robotic-assisted operations have become more prevalent, many general surgery residencies do not have a formal robotic training curriculum. We sought to ascertain how well current general surgery training permits acquisition of robotic skills by comparing robotic simulation performance across various training levels. Thirty-six participants were categorized by level of surgical training: eight medical students (MS), ten junior residents (JR), ten mid-level residents (MLR), and eight senior residents (SR). Participants performed three simulation tasks on the da Vinci (®) Skills Simulator (MatchBoard, EnergyDissection, SutureSponge). Each task's scores (0-100) and cumulative scores (0-300) were compared between groups. There were no differences in sex, hand dominance, video gaming history, or prior robotic experience between groups; however, SR was the oldest (p < 0.001). The median overall scores did not differ: 188 (84-201) for MS, 183 (91-234) for JR, 197 (153-218) for MLR, and 205 (169-229) for SR (p = 0.14). The median SutureSponge score was highest for SR (61, range 39-81) compared to MS (43, range 26-61), JR (43, range 11-72), and MLR (55, range 36-68) (p = 0.039). However, there were no significant differences in MatchBoard (p = 0.27) or EnergyDissection (p = 0.99) scores between groups. There was a positive correlation between SutureSponge score and number of laparoscopic cases logged (p = 0.005, r(2) = 0.21), but this correlation did not exist for the MatchBoard or EnergyDissection tasks. Lastly, there was no correlation between total lifetime hours of video gaming and overall score (p = 0.89, R(2) = 0.0006). Robotic skillsets acquired during general surgery residency show minimal improvement during the course of training, although laparoscopic experience is correlated with advanced robotic task performance. Changes in residency curricula or pursuit of fellowship training may be warranted for surgeons seeking proficiency.

  15. A predictive bone drilling force model for haptic rendering with experimental validation using fresh cadaveric bone.

    PubMed

    Lin, Yanping; Chen, Huajiang; Yu, Dedong; Zhang, Ying; Yuan, Wen

    2017-01-01

    Bone drilling simulators with virtual and haptic feedback provide a safe, cost-effective and repeatable alternative to traditional surgical training methods. To develop such a simulator, accurate haptic rendering based on a force model is required to feedback bone drilling forces based on user input. Current predictive bone drilling force models based on bovine bones with various drilling conditions and parameters are not representative of the bone drilling process in bone surgery. The objective of this study was to provide a bone drilling force model for haptic rendering based on calibration and validation experiments in fresh cadaveric bones with different bone densities. Using a commonly used drill bit geometry (2 mm diameter), feed rates (20-60 mm/min) and spindle speeds (4000-6000 rpm) in orthognathic surgeries, the bone drilling forces of specimens from two groups were measured and the calibration coefficients of the specific normal and frictional pressures were determined. The comparison of the predicted forces and the measured forces from validation experiments with a large range of feed rates and spindle speeds demonstrates that the proposed bone drilling forces can predict the trends and average forces well. The presented bone drilling force model can be used for haptic rendering in surgical simulators.

  16. The Fundamentals of Laparoscopic Surgery and LapVR evaluation metrics may not correlate with operative performance in a novice cohort

    PubMed Central

    Steigerwald, Sarah N.; Park, Jason; Hardy, Krista M.; Gillman, Lawrence; Vergis, Ashley S.

    2015-01-01

    Background Considerable resources have been invested in both low- and high-fidelity simulators in surgical training. The purpose of this study was to investigate if the Fundamentals of Laparoscopic Surgery (FLS, low-fidelity box trainer) and LapVR (high-fidelity virtual reality) training systems correlate with operative performance on the Global Operative Assessment of Laparoscopic Skills (GOALS) global rating scale using a porcine cholecystectomy model in a novice surgical group with minimal laparoscopic experience. Methods Fourteen postgraduate year 1 surgical residents with minimal laparoscopic experience performed tasks from the FLS program and the LapVR simulator as well as a live porcine laparoscopic cholecystectomy. Performance was evaluated using standardized FLS metrics, automatic computer evaluations, and a validated global rating scale. Results Overall, FLS score did not show an association with GOALS global rating scale score on the porcine cholecystectomy. None of the five LapVR task scores were significantly associated with GOALS score on the porcine cholecystectomy. Conclusions Neither the low-fidelity box trainer or the high-fidelity virtual simulator demonstrated significant correlation with GOALS operative scores. These findings offer caution against the use of these modalities for brief assessments of novice surgical trainees, especially for predictive or selection purposes. PMID:26641071

  17. Virtual reality simulator for vitreoretinal surgery using integrated OCT data.

    PubMed

    Kozak, Igor; Banerjee, Pat; Luo, Jia; Luciano, Cristian

    2014-01-01

    Operative practice using surgical simulators has become a part of training in many surgical specialties, including ophthalmology. We introduce a virtual reality retina surgery simulator capable of integrating optical coherence tomography (OCT) scans from real patients for practicing vitreoretinal surgery using different pathologic scenarios.

  18. Fluid structure interaction simulations of the upper airway in obstructive sleep apnea patients before and after maxillomandibular advancement surgery.

    PubMed

    Chang, Kwang K; Kim, Ki Beom; McQuilling, Mark W; Movahed, Reza

    2018-06-01

    The purpose of this study was to analyze pharyngeal airflow using both computational fluid dynamics (CFD) and fluid structure interactions (FSI) in obstructive sleep apnea patients before and after maxillomandibular advancement (MMA) surgery. The airflow characteristics before and after surgery were compared with both CFD and FSI. In addition, the presurgery and postsurgery deformations of the airway were evaluated using FSI. Digitized pharyngeal airway models of 2 obstructive sleep apnea patients were generated from cone-beam computed tomography scans before and after MMA surgery. CFD and FSI were used to evaluate the pharyngeal airflow at a maximum inspiration rate of 166 ml per second. Standard steady-state numeric formulations were used for airflow simulations. Airway volume increased, pressure drop decreased, maximum airflow velocity decreased, and airway resistance dropped for both patients after the MMA surgery. These findings occurred in both the CFD and FSI simulations. The FSI simulations showed an area of marked airway deformation in both patients before surgery, but this deformation was negligible after surgery for both patients. Both CFD and FSI simulations produced airflow results that indicated less effort was needed to breathe after MMA surgery. The FSI simulations demonstrated a substantial decrease in airway deformation after surgery. These beneficial changes positively correlated with the large improvements in polysomnography outcomes after MMA surgery. Copyright © 2018 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  19. Urology residents training in laparoscopic surgery. Development of a virtual reality model.

    PubMed

    Gutiérrez-Baños, J L; Ballestero-Diego, R; Truan-Cacho, D; Aguilera-Tubet, C; Villanueva-Peña, A; Manuel-Palazuelos, J C

    2015-11-01

    The training and learning of residents in laparoscopic surgery has legal, financial and technological limitations. Simulation is an essential tool in the training of residents as a supplement to their training in laparoscopic surgery. The training should be structured in an appropriate environment, with previously established and clear objectives, taught by professionals with clinical and teaching experience in simulation. The training should be conducted with realistic models using animals and ex-vivo tissue from animals. It is essential to incorporate mechanisms to assess the objectives during the residents' training progress. We present the training model for laparoscopic surgery for urology residents at the University Hospital Valdecilla. The training is conducted at the Virtual Hospital Valdecilla, which is associated with the Center for Medical Simulation in Boston and is accredited by the American College of Surgeons. The model is designed in 3 blocks, basic for R1, intermediate for R2-3 and advanced for R4-5, with 9 training modules. The training is conducted in 4-hour sessions for 4 afternoons, for 3 weeks per year of residence. Residents therefore perform 240 hours of simulated laparoscopic training by the end of the course. For each module, we use structured objective assessments to measure each resident's training progress. Since 2003, 9 urology residents have been trained, in addition to the 5 who are currently in training. The model has undergone changes according to the needs expressed in the student feedback. The acquisition of skills in a virtual reality model has enabled the safe transfer of those skills to actual practice. A laparoscopic surgery training program designed in structured blocks and with progressive complexity provides appropriate training for transferring the skills acquired using this model to an actual scenario while maintaining patient safety. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Student perception of two different simulation techniques in oral and maxillofacial surgery undergraduate training.

    PubMed

    Lund, Bodil; Fors, Uno; Sejersen, Ronny; Sallnäs, Eva-Lotta; Rosén, Annika

    2011-10-12

    Yearly surveys among the undergraduate students in oral and maxillofacial surgery at Karolinska Institutet have conveyed a wish for increased clinical training, and in particular, in surgical removal of mandibular third molars. Due to lack of resources, this kind of clinical supervision has so far not been possible to implement. One possible solution to this problem might be to introduce simulation into the curriculum. The purpose of this study was to investigate undergraduate students' perception of two different simulation methods for practicing clinical reasoning skills and technical skills in oral and maxillofacial surgery. Forty-seven students participating in the oral and maxillofacial surgery course at Karolinska Institutet during their final year were included. Three different oral surgery patient cases were created in a Virtual Patient (VP) Simulation system (Web-SP) and used for training clinical reasoning. A mandibular third molar surgery simulator with tactile feedback, providing hands on training in the bone removal and tooth sectioning in third molar surgery, was also tested. A seminar was performed using the combination of these two simulators where students' perception of the two different simulation methods was assessed by means of a questionnaire. The response rate was 91.5% (43/47). The students were positive to the VP cases, although they rated their possible improvement of clinical reasoning skills as moderate. The students' perception of improved technical skills after training in the mandibular third molar surgery simulator was rated high. The majority of the students agreed that both simulation techniques should be included in the curriculum and strongly agreed that it was a good idea to use the two simulators in concert. The importance of feedback from the senior experts during simulator training was emphasised. The two tested simulation methods were well accepted and most students agreed that the future curriculum would benefit from permanent inclusion of these exercises, especially when used in combination. The results also stress the importance of teaching technical skills and clinical reasoning in concert.

  1. Surgical robot setup simulation with consistent kinematics and haptics for abdominal surgery.

    PubMed

    Hayashibe, Mitsuhiro; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Konishi, Kozo; Kakeji, Yoshihiro; Hashizume, Makoto

    2005-01-01

    Preoperative simulation and planning of surgical robot setup should accompany advanced robotic surgery if their advantages are to be further pursued. Feedback from the planning system will plays an essential role in computer-aided robotic surgery in addition to preoperative detailed geometric information from patient CT/MRI images. Surgical robot setup simulation systems for appropriate trocar site placement have been developed especially for abdominal surgery. The motion of the surgical robot can be simulated and rehearsed with kinematic constraints at the trocar site, and the inverse-kinematics of the robot. Results from simulation using clinical patient data verify the effectiveness of the proposed system.

  2. Are surgery training programs ready for virtual reality? A survey of program directors in general surgery.

    PubMed

    Haluck, R S; Marshall, R L; Krummel, T M; Melkonian, M G

    2001-12-01

    The use of advanced technology, such as virtual environments and computer-based simulators (VR/CBS), in training has been well established by both industry and the military. In contrast the medical profession, including surgery, has been slow to incorporate such technology in its training. In an attempt to identify factors limiting the regular incorporation of this technology into surgical training programs, a survey was developed and distributed to all general surgery program directors in the United States. A 22-question survey was sent to 254 general surgery program directors. The survey was designed to reflect attitudes of the program directors regarding the use of computer-based simulation in surgical training. Questions were scaled from 1 to 5 with 1 = strongly disagree and 5 = strongly agree. A total of 139 responses (55%) were returned. The majority of respondents (58%) had seen VR/CBS, but only 19% had "hands-on" experience with these systems. Respondents strongly agreed that there is a need for learning opportunities outside of the operating room and a role for VR/CBS in surgical training. Respondents believed both staff and residents would support this type of training. Concerns included VR/CBS' lack of validation and potential requirements for frequent system upgrades. Virtual environments and computer-based simulators, although well established training tools in other fields, have not been widely incorporated into surgical education. Our results suggest that program directors believe this type of technology would be beneficial in surgical education, but they lack adequate information regarding VR/CBS. Developers of this technology may need to focus on educating potential users and addressing their concerns.

  3. Validation of a virtual reality-based robotic surgical skills curriculum.

    PubMed

    Connolly, Michael; Seligman, Johnathan; Kastenmeier, Andrew; Goldblatt, Matthew; Gould, Jon C

    2014-05-01

    The clinical application of robotic-assisted surgery (RAS) is rapidly increasing. The da Vinci Surgical System™ is currently the only commercially available RAS system. The skills necessary to perform robotic surgery are unique from those required for open and laparoscopic surgery. A validated laparoscopic surgical skills curriculum (fundamentals of laparoscopic surgery or FLS™) has transformed the way surgeons acquire laparoscopic skills. There is a need for a similar skills training and assessment tool specific for robotic surgery. Based on previously published data and expert opinion, we developed a robotic skills curriculum. We sought to evaluate this curriculum for evidence of construct validity (ability to discriminate between users of different skill levels). Four experienced surgeons (>20 RAS) and 20 novice surgeons (first-year medical students with no surgical or RAS experience) were evaluated. The curriculum comprised five tasks utilizing the da Vinci™ Skills Simulator (Pick and Place, Camera Targeting 2, Peg Board 2, Matchboard 2, and Suture Sponge 3). After an orientation to the robot and a period of acclimation in the simulator, all subjects completed three consecutive repetitions of each task. Computer-derived performance metrics included time, economy of motion, master work space, instrument collisions, excessive force, distance of instruments out of view, drops, missed targets, and overall scores (a composite of all metrics). Experienced surgeons significantly outperformed novice surgeons in most metrics. Statistically significant differences were detected for each task in regards to mean overall scores and mean time (seconds) to completion. The curriculum we propose is a valid method of assessing and distinguishing robotic surgical skill levels on the da Vinci Si™ Surgical System. Further study is needed to establish proficiency levels and to demonstrate that training on the simulator with the proposed curriculum leads to improved robotic surgical performance in the operating room.

  4. The University of Pennsylvania curriculum for training otorhinolaryngology residents in transoral robotic surgery.

    PubMed

    Sperry, Steven M; O'Malley, Bert W; Weinstein, Gregory S

    2014-01-01

    To define a curriculum for the development of robotic surgical skills in otorhinolaryngology residency training. A systematic review of the current literature on robotic surgery training was performed. Based on prior reports in other specialties, a curriculum for otorhinolaryngology residents was created that progresses through several modules, including didactics, inanimate skills laboratory, and operative experience. The curriculum for residents in otorhinolaryngology was designed as follows: didactics include an overview of the robotic device and instruments, a tutorial in basic controls and function, and a room setup and positioning. The anatomy and steps of transoral procedures are taught through books, videos, operative observations, and cadaver dissections. Skills are developed with a virtual reality robotic simulator and robotics labs. The operative experience progresses from case observation to bedside assistant to console surgeon. The role of the console surgeon progresses in a stepwise fashion, and the procedures of radical tonsillectomy, supraglottic partial laryngectomy, and base of tongue resection have been organized as a series of steps. A structured curriculum for training residents in transoral robotic surgery was developed. This training is important for otorhinolaryngology residents to acquire the knowledge and skills to perform robotic surgery safely. © 2015 S. Karger AG, Basel.

  5. Effect of virtual reality training on laparoscopic surgery: randomised controlled trial

    PubMed Central

    Soerensen, Jette L; Grantcharov, Teodor P; Dalsgaard, Torur; Schouenborg, Lars; Ottosen, Christian; Schroeder, Torben V; Ottesen, Bent S

    2009-01-01

    Objective To assess the effect of virtual reality training on an actual laparoscopic operation. Design Prospective randomised controlled and blinded trial. Setting Seven gynaecological departments in the Zeeland region of Denmark. Participants 24 first and second year registrars specialising in gynaecology and obstetrics. Interventions Proficiency based virtual reality simulator training in laparoscopic salpingectomy and standard clinical education (controls). Main outcome measure The main outcome measure was technical performance assessed by two independent observers blinded to trainee and training status using a previously validated general and task specific rating scale. The secondary outcome measure was operation time in minutes. Results The simulator trained group (n=11) reached a median total score of 33 points (interquartile range 32-36 points), equivalent to the experience gained after 20-50 laparoscopic procedures, whereas the control group (n=10) reached a median total score of 23 (22-27) points, equivalent to the experience gained from fewer than five procedures (P<0.001). The median total operation time in the simulator trained group was 12 minutes (interquartile range 10-14 minutes) and in the control group was 24 (20-29) minutes (P<0.001). The observers’ inter-rater agreement was 0.79. Conclusion Skills in laparoscopic surgery can be increased in a clinically relevant manner using proficiency based virtual reality simulator training. The performance level of novices was increased to that of intermediately experienced laparoscopists and operation time was halved. Simulator training should be considered before trainees carry out laparoscopic procedures. Trial registration ClinicalTrials.gov NCT00311792. PMID:19443914

  6. A systematic review of phacoemulsification cataract surgery in virtual reality simulators.

    PubMed

    Lam, Chee Kiang; Sundaraj, Kenneth; Sulaiman, Mohd Nazri

    2013-01-01

    The aim of this study was to review the capability of virtual reality simulators in the application of phacoemulsification cataract surgery training. Our review included the scientific publications on cataract surgery simulators that had been developed by different groups of researchers along with commercialized surgical training products, such as EYESI® and PhacoVision®. The review covers the simulation of the main cataract surgery procedures, i.e., corneal incision, capsulorrhexis, phacosculpting, and intraocular lens implantation in various virtual reality surgery simulators. Haptics realism and visual realism of the procedures are the main elements in imitating the actual surgical environment. The involvement of ophthalmology in research on virtual reality since the early 1990s has made a great impact on the development of surgical simulators. Most of the latest cataract surgery training systems are able to offer high fidelity in visual feedback and haptics feedback, but visual realism, such as the rotational movements of an eyeball with response to the force applied by surgical instruments, is still lacking in some of them. The assessment of the surgical tasks carried out on the simulators showed a significant difference in the performance before and after the training.

  7. Building an efficient surgical team using a bench model simulation: construct validity of the Legacy Inanimate System for Endoscopic Team Training (LISETT).

    PubMed

    Zheng, B; Denk, P M; Martinec, D V; Gatta, P; Whiteford, M H; Swanström, L L

    2008-04-01

    Complex laparoscopic tasks require collaboration of surgeons as a surgical team. Conventionally, surgical teams are formed shortly before the start of the surgery, and team skills are built during the surgery. There is a need to establish a training simulation to improve surgical team skills without jeopardizing the safety of surgery. The Legacy Inanimate System for Laparoscopic Team Training (LISETT) is a bench simulation designed to enhance surgical team skills. The reported project tested the construct validity of LISETT. The research question was whether the LISETT scores show progressive improvement correlating with the level of surgical training and laparoscopic team experience or not. With LISETT, two surgeons are required to work closely to perform two laparoscopic tasks: peg transportation and suturing. A total of 44 surgical dyad teams were recruited, composed of medical students, residents, laparoscopic fellows, and experienced surgeons. The LISETT scores were calculated according to the speed and accuracy of the movements. The LISETT scores were positively correlated with surgical experience, and the results can be generalized confidently to surgical teams (Pearson's coefficient, 0.73; p = 0.001). To analyze the influences of individual skill and team dynamics on LISETT performance, team quality was rated by team members using communication and cooperation characters after each practice. The LISETT scores are positively correlated with self-rated team quality scores (Pearson's coefficient, 0.39; p = 0.008). The findings proved LISETT to be a valid system for assessing cooperative skills of a surgical team. By increasing practice time, LISETT provides an opportunity to build surgical team skills, which include effective communication and cooperation.

  8. A Virtual Reality-Based Simulation of Abdominal Surgery

    DTIC Science & Technology

    1994-06-30

    415) 591-7881 In! IhNiI 1 SHORT TITLE: A Virtual Reality -Based Simulation of Abdominal Surgery REPORTING PERIOD: October 31, 1993-June 30, 1994 The...Report - A Virtual Reality -Based Simulation Of Abdominal Surgery Page 2 June 21, 1994 TECHNICAL REPORT SUMMARY Virtual Reality is a marriage between...applications of this technology. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations. simulate and

  9. A new possibility in thoracoscopic virtual reality simulation training: development and testing of a novel virtual reality simulator for video-assisted thoracoscopic surgery lobectomy.

    PubMed

    Jensen, Katrine; Bjerrum, Flemming; Hansen, Henrik Jessen; Petersen, René Horsleben; Pedersen, Jesper Holst; Konge, Lars

    2015-10-01

    The aims of this study were to develop virtual reality simulation software for video-assisted thoracic surgery (VATS) lobectomy, to explore the opinions of thoracic surgeons concerning the VATS lobectomy simulator and to test the validity of the simulator metrics. Experienced VATS surgeons worked with computer specialists to develop a VATS lobectomy software for a virtual reality simulator. Thoracic surgeons with different degrees of experience in VATS were enrolled at the 22nd meeting of the European Society of Thoracic Surgeons (ESTS) held in Copenhagen in June 2014. The surgeons were divided according to the number of performed VATS lobectomies: novices (0 VATS lobectomies), intermediates (1-49 VATS lobectomies) and experienced (>50 VATS lobectomies). The participants all performed a lobectomy of a right upper lobe on the simulator and answered a questionnaire regarding content validity. Metrics were compared between the three groups. We succeeded in developing the first version of a virtual reality VATS lobectomy simulator. A total of 103 thoracic surgeons completed the simulated lobectomy and were distributed as follows: novices n = 32, intermediates n = 45 and experienced n = 26. All groups rated the overall user realism of the VATS lobectomy scenario to a median of 5 on a scale 1-7, with 7 being the best score. The experienced surgeons found the graphics and movements realistic and rated the scenario high in terms of usefulness as a training tool for novice and intermediate experienced thoracic surgeons, but not very useful as a training tool for experienced surgeons. The metric scores were not statistically significant between groups. This is the first study to describe a commercially available virtual reality simulator for a VATS lobectomy. More than 100 thoracic surgeons found the simulator realistic, and hence it showed good content validity. However, none of the built-in simulator metrics could significantly distinguish between novice, intermediate experienced and experienced surgeons, and further development of the simulator software is necessary to develop valid metrics. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  10. A review of simulation platforms in surgery of the temporal bone.

    PubMed

    Bhutta, M F

    2016-10-01

    Surgery of the temporal bone is a high-risk activity in an anatomically complex area. Simulation enables rehearsal of such surgery. The traditional simulation platform is the cadaveric temporal bone, but in recent years other simulation platforms have been created, including plastic and virtual reality platforms. To undertake a review of simulation platforms for temporal bone surgery, specifically assessing their educational value in terms of validity and in enabling transition to surgery. Systematic qualitative review. Search of the Pubmed, CINAHL, BEI and ERIC databases. Assessment of reported outcomes in terms of educational value. A total of 49 articles were included, covering cadaveric, animal, plastic and virtual simulation platforms. Cadaveric simulation is highly rated as an educational tool, but there may be a ceiling effect on educational outcomes after drilling 8-10 temporal bones. Animal models show significant anatomical variation from man. Plastic temporal bone models offer much potential, but at present lack sufficient anatomical or haptic validity. Similarly, virtual reality platforms lack sufficient anatomical or haptic validity, but with technological improvements they are advancing rapidly. At present, cadaveric simulation remains the best platform for training in temporal bone surgery. Technological advances enabling improved materials or modelling mean that in the future plastic or virtual platforms may become comparable to cadaveric platforms, and also offer additional functionality including patient-specific simulation from CT data. © 2015 John Wiley & Sons Ltd.

  11. Sustained supervised practice on a coronary anastomosis simulator increases medical student interest in surgery, unsupervised practice does not.

    PubMed

    Lou, Xiaoying; Enter, Daniel; Sheen, Luke; Adams, Katherine; Reed, Carolyn E; McCarthy, Patrick M; Calhoon, John H; Verrier, Edward D; Lee, Richard

    2013-06-01

    Given declining interest in cardiothoracic (CT) training programs during the last decade, increasing emphasis has been placed on engaging candidates early in their training. We examined the effect of supervised and unsupervised practice on medical students' interest in CT surgery. Forty-five medical students participated in this study. Participants' interest level in surgery, CT surgery, and simulation were collected before and after a pretest session. Subsequently, participants were randomized to one of three groups: control (n = 15), unsupervised training on a low-fidelity task simulator (n = 15), or supervised training with a CT surgeon or fellow on the same simulator (n = 15). After 3 weeks, attitudes were reassessed at a posttest session. Interest levels were compared before and after the pretest using paired t tests, and the effects of training on interests were assessed with multiple linear regression analyses. After the pretest session, participants were significantly more interested in simulation (p = 0.001) but not in surgery or CT surgery. After training, compared with control group participants, supervised trainees demonstrated a significant increase in their interest level in pursuing a career in surgery (p = 0.028) and an increasing trend towards a career in CT surgery (p = 0.060), whereas unsupervised trainees did not. Supervised training on low-fidelity simulators enhances interest in a career in surgery. Practice that lacks supervision does not, possibly related to the complexity of the simulated task. Mentorship efforts may need to involve sustained interaction to provide medical students with enough exposure to appreciate a surgical career. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  12. [Specialist's training for laparoscopic surgery in Wet-lab educational operating theatre].

    PubMed

    Khubezov, D A; Sazhin, V P; Ogoreltsev, A Yu; Puchkov, D K; Rodimov, S V; Ignatov, I S; Tazina, T V; Evsyukova, M A

    2018-01-01

    To develop system for students training in laparoscopic surgery by using of Wet-lab educational operating theatre. We have launched laparoscopic surgery teaching program for students of Ryazan State Medical University. This system includes several stages. At the first stage professional selection was carried out on 'dry' laparoscopic simulators among III-IV-year students of medical faculty. So, 10 people were selected. The second stage included theoretical and practical parts consisting of development of basic laparoscopic skills on 'dry' simulators. 5 students who scored the maximum points were admitted to the next stage. The third stage is working in Wet-lab operating theatre with a mentor. There were 10 sessions on 10 laboratory pigs. Final stage of our study compares two groups of participants: main group - 5 students who underwent above-described program and control group of 5 residents without experience for laparoscopic operations. The participants of the main group had significantly higher OSATS score compared with another group (20 vs. 10; p<0.05). Movements effectiveness estimated by measuring of movements trajectory total length was also higher in main group than in control group (6 vs. 20; p<0.05). Experts' subjective assessment according to 10-point scale was also higher for students than for interns (9 vs. 5, p<0.05). Participants in the main group required significantly less time to complete the task compared with the control group (40 vs. 90 minutes, p<0.05). Our experience has shown that training system with Wet-lab operating theatre is effective for quick and efficient training of medical students in main laparoscopic procedures. In our opinion, introduction of students into 'advanced' surgery from early age will make it possible to get finally highly professional specialists.

  13. Tele-surgery simulation with a patient organ model for robotic surgery training.

    PubMed

    Suzuki, S; Suzuki, N; Hattori, A; Hayashibe, M; Konishi, K; Kakeji, Y; Hashizume, M

    2005-12-01

    Robotic systems are increasingly being incorporated into general laparoscopic and thoracoscopic surgery to perform procedures such as cholecystectomy and prostatectomy. Robotic assisted surgery allows the surgeon to conduct minimally invasive surgery with increased accuracy and with potential benefits for patients. However, current robotic systems have their limitations. These include the narrow operative field of view, which can make instrument manipulation difficult. Current robotic applications are also tailored to specific surgical procedures. For these reasons, there is an increasing demand on surgeons to master the skills of instrument manipulation and their surgical application within a controlled environment. This study describes the development of a surgical simulator for training and mastering procedures performed with the da Vinci surgical system. The development of a tele-surgery simulator and the construction of a training center are also described, which will enable surgeons to simulate surgery from or in remote places, to collaborate over long distances, and for off-site expert assistance. Copyright 2005 John Wiley & Sons, Ltd.

  14. Development and Evaluation of a Novel Pan-Specialty Virtual Reality Surgical Simulator for Smartphones.

    PubMed

    Nehme, Jean; Bahsoun, Ali N; Chow, Andre

    2016-01-01

    Touch Surgery is a novel simulator that allows cognitive task simulation and rehearsal of surgical procedures. Touch Surgery is designed for Apple and Android smartphones and tablets. This allows a global community of surgical professionals to review the steps of a procedure and test their competence. Content on Touch Surgery is developed with expert surgeons in the field from world leading institutions. Here we describe the development of Touch Surgery, its adoption by the global training community.

  15. A review of haptic simulator for oral and maxillofacial surgery based on virtual reality.

    PubMed

    Chen, Xiaojun; Hu, Junlei

    2018-06-01

    Traditional medical training in oral and maxillofacial surgery (OMFS) may be limited by its low efficiency and high price due to the shortage of cadaver resources. With the combination of visual rendering and feedback force, surgery simulators become increasingly popular in hospitals and medical schools as an alternative to the traditional training. Areas covered: The major goal of this review is to provide a comprehensive reference source of current and future developments of haptic OMFS simulators based on virtual reality (VR) for relevant researchers. Expert commentary: Visual rendering, haptic rendering, tissue deformation, and evaluation are key components of haptic surgery simulator based on VR. Compared with traditional medical training, virtual and tactical fusion of virtual environment in surgery simulator enables considerably vivid sensation, and the operators have more opportunities to practice surgical skills and receive objective evaluation as reference.

  16. A National Survey on Teaching and Assessing Technical Proficiency in Vascular Surgery in Canada.

    PubMed

    Drudi, Laura; Hossain, Sajjid; Mackenzie, Kent S; Corriveau, Marc-Michel; Abraham, Cherrie Z; Obrand, Daniel I; Vassiliou, Melina; Gill, Heather; Steinmetz, Oren K

    2016-05-01

    This survey aims to explore trainees' perspectives on how Canadian vascular surgery training programs are using simulation in teaching and assessing technical skills through a cross-sectional national survey. A 10-min online questionnaire was sent to Program Directors of Canada's Royal College of Physicians and Surgeons' of Canada approved training programs in vascular surgery. This survey was distributed among residents and fellows who were studying in the 2013-2014 academic year. Twenty-eight (58%) of the 48 Canadian vascular surgery trainees completed the survey. A total of 68% of the respondents were part of the 0 + 5 integrated vascular surgery training program. The use of simulation in the assessment of technical skills at the beginning of training was reported by only 3 (11%) respondents, whereas 43% reported that simulation was used in their programs in the assessment of technical skills at some time during their training. Training programs most often provided simulation as a method of teaching and learning endovascular abdominal aortic or thoracic aneurysm repair (64%). Furthermore, 96% of trainees reported the most common resource to learn and enhance technical skills was dialog with vascular surgery staff. Surveyed vascular surgery trainees in Canada report that simulation is rarely used as a tool to assess baseline technical skills at the beginning of training. Less than half of surveyed trainees in vascular surgery programs in Canada report that simulation is being used for skills acquisition. Currently, in Canadian training programs, simulation is most commonly used to teach endovascular skills. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A development of surgical simulator for training of operative skills using patient-specific data.

    PubMed

    Ogata, Masato; Nagasaka, Manabu; Inuiya, Toru; Makiyama, Kazuhide; Kubota, Yoshinobu

    2011-01-01

    At the Advanced Medical Research Center at Yokohama City University School of Medicine, we have been developing a practical surgical simulator for renal surgery. Unlike already commercialized laparoscopic surgical simulators, our surgical simulator is capable of using patient-specific models for preoperative training and improvement of laparoscopic surgical skills. We have been evaluating the simulator clinically with the aim of using it in renal surgery training at Yokohama City University Hospital. The simulator can be applied to other types of laparoscopic surgery, such as gynecological, thoracic, and gastrointestinal. Here, we report on the technical aspects of the simulator.

  18. Virtual reality-based simulators for spine surgery: a systematic review.

    PubMed

    Pfandler, Michael; Lazarovici, Marc; Stefan, Philipp; Wucherer, Patrick; Weigl, Matthias

    2017-09-01

    Virtual reality (VR)-based simulators offer numerous benefits and are very useful in assessing and training surgical skills. Virtual reality-based simulators are standard in some surgical subspecialties, but their actual use in spinal surgery remains unclear. Currently, only technical reviews of VR-based simulators are available for spinal surgery. Thus, we performed a systematic review that examined the existing research on VR-based simulators in spinal procedures. We also assessed the quality of current studies evaluating VR-based training in spinal surgery. Moreover, we wanted to provide a guide for future studies evaluating VR-based simulators in this field. This is a systematic review of the current scientific literature regarding VR-based simulation in spinal surgery. Five data sources were systematically searched to identify relevant peer-reviewed articles regarding virtual, mixed, or augmented reality-based simulators in spinal surgery. A qualitative data synthesis was performed with particular attention to evaluation approaches and outcomes. Additionally, all included studies were appraised for their quality using the Medical Education Research Study Quality Instrument (MERSQI) tool. The initial review identified 476 abstracts and 63 full texts were then assessed by two reviewers. Finally, 19 studies that examined simulators for the following procedures were selected: pedicle screw placement, vertebroplasty, posterior cervical laminectomy and foraminotomy, lumbar puncture, facet joint injection, and spinal needle insertion and placement. These studies had a low-to-medium methodological quality with a MERSQI mean score of 11.47 out of 18 (standard deviation=1.81). This review described the current state and applications of VR-based simulator training and assessment approaches in spinal procedures. Limitations, strengths, and future advancements of VR-based simulators for training and assessment in spinal surgery were explored. Higher-quality studies with patient-related outcome measures are needed. To establish further adaptation of VR-based simulators in spinal surgery, future evaluations need to improve the study quality, apply long-term study designs, and examine non-technical skills, as well as multidisciplinary team training. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Current state of virtual reality simulation in robotic surgery training: a review.

    PubMed

    Bric, Justin D; Lumbard, Derek C; Frelich, Matthew J; Gould, Jon C

    2016-06-01

    Worldwide, the annual number of robotic surgical procedures continues to increase. Robotic surgical skills are unique from those used in either open or laparoscopic surgery. The acquisition of a basic robotic surgical skill set may be best accomplished in the simulation laboratory. We sought to review the current literature pertaining to the use of virtual reality (VR) simulation in the acquisition of robotic surgical skills on the da Vinci Surgical System. A PubMed search was conducted between December 2014 and January 2015 utilizing the following keywords: virtual reality, robotic surgery, da Vinci, da Vinci skills simulator, SimSurgery Educational Platform, Mimic dV-Trainer, and Robotic Surgery Simulator. Articles were included if they were published between 2007 and 2015, utilized VR simulation for the da Vinci Surgical System, and utilized a commercially available VR platform. The initial search criteria returned 227 published articles. After all inclusion and exclusion criteria were applied, a total of 47 peer-reviewed manuscripts were included in the final review. There are many benefits to utilizing VR simulation for robotic skills acquisition. Four commercially available simulators have been demonstrated to be capable of assessing robotic skill. Three of the four simulators demonstrate the ability of a VR training curriculum to improve basic robotic skills, with proficiency-based training being the most effective training style. The skills obtained on a VR training curriculum are comparable with those obtained on dry laboratory simulation. The future of VR simulation includes utilization in assessment for re-credentialing purposes, advanced procedural-based training, and as a warm-up tool prior to surgery.

  20. A Novel Haptic Interactive Approach to Simulation of Surgery Cutting Based on Mesh and Meshless Models

    PubMed Central

    Liu, Peter X.; Lai, Pinhua; Xu, Shaoping; Zou, Yanni

    2018-01-01

    In the present work, the majority of implemented virtual surgery simulation systems have been based on either a mesh or meshless strategy with regard to soft tissue modelling. To take full advantage of the mesh and meshless models, a novel coupled soft tissue cutting model is proposed. Specifically, the reconstructed virtual soft tissue consists of two essential components. One is associated with surface mesh that is convenient for surface rendering and the other with internal meshless point elements that is used to calculate the force feedback during cutting. To combine two components in a seamless way, virtual points are introduced. During the simulation of cutting, the Bezier curve is used to characterize smooth and vivid incision on the surface mesh. At the same time, the deformation of internal soft tissue caused by cutting operation can be treated as displacements of the internal point elements. Furthermore, we discussed and proved the stability and convergence of the proposed approach theoretically. The real biomechanical tests verified the validity of the introduced model. And the simulation experiments show that the proposed approach offers high computational efficiency and good visual effect, enabling cutting of soft tissue with high stability. PMID:29850006

  1. Twelve tips for postgraduate or undergraduate medics building a basic microsurgery simulation training course.

    PubMed

    Mason, Katrina A; Theodorakopoulou, Evgenia; Pafitanis, Georgios; Ghanem, Ali M; Myers, Simon R

    2016-09-01

    Microsurgery is used in a variety of surgical specialties, including Plastic Surgery, Maxillofacial Surgery, Ophthalmic Surgery, Otolaryngology and Neurosurgery. It is considered one of the most technically challenging fields of surgery. Microsurgical skills demand fine, precise and controlled movements, and microsurgical skill acquisition has a steep initial learning curve. Microsurgical simulation provides a safe environment for skill acquisition before operating clinically. The traditional starting point for anyone wanting to pursue microsurgery is a basic simulation training course. We present twelve tips for postgraduate and undergraduate medics on how to set up and run a basic ex-vivo microsurgery simulation training course suitable for their peers.

  2. Implementing a robotics curriculum at an academic general surgery training program: our initial experience.

    PubMed

    Winder, Joshua S; Juza, Ryan M; Sasaki, Jennifer; Rogers, Ann M; Pauli, Eric M; Haluck, Randy S; Estes, Stephanie J; Lyn-Sue, Jerome R

    2016-09-01

    The robotic surgical platform is being utilized by a growing number of hospitals across the country, including academic medical centers. Training programs are tasked with teaching their residents how to utilize this technology. To this end, we have developed and implemented a robotic surgical curriculum, and share our initial experience here. Our curriculum was implemented for all General Surgical residents for the academic year 2014-2015. The curriculum consisted of online training, readings, bedside training, console simulation, participating in ten cases as bedside first assistant, and operating at the console. 20 surgical residents were included. Residents were provided the curriculum and notified the department upon completion. Bedside assistance and operative console training were completed in the operating room through a mix of biliary, foregut, and colorectal cases. During the fiscal years of 2014 and 2015, there were 164 and 263 robot-assisted surgeries performed within the General Surgery Department, respectively. All 20 residents completed the online and bedside instruction portions of the curriculum. Of the 20 residents trained, 13/20 (65 %) sat at the Surgeon console during at least one case. Utilizing this curriculum, we have trained and incorporated residents into robot-assisted cases in an efficient manner. A successful curriculum must be based on didactic learning, reading, bedside training, simulation, and training in the operating room. Each program must examine their caseload and resident class to ensure proper exposure to this platform.

  3. Computer Simulation and Digital Resources for Plastic Surgery Psychomotor Education.

    PubMed

    Diaz-Siso, J Rodrigo; Plana, Natalie M; Stranix, John T; Cutting, Court B; McCarthy, Joseph G; Flores, Roberto L

    2016-10-01

    Contemporary plastic surgery residents are increasingly challenged to learn a greater number of complex surgical techniques within a limited period. Surgical simulation and digital education resources have the potential to address some limitations of the traditional training model, and have been shown to accelerate knowledge and skills acquisition. Although animal, cadaver, and bench models are widely used for skills and procedure-specific training, digital simulation has not been fully embraced within plastic surgery. Digital educational resources may play a future role in a multistage strategy for skills and procedures training. The authors present two virtual surgical simulators addressing procedural cognition for cleft repair and craniofacial surgery. Furthermore, the authors describe how partnerships among surgical educators, industry, and philanthropy can be a successful strategy for the development and maintenance of digital simulators and educational resources relevant to plastic surgery training. It is our responsibility as surgical educators not only to create these resources, but to demonstrate their utility for enhanced trainee knowledge and technical skills development. Currently available digital resources should be evaluated in partnership with plastic surgery educational societies to guide trainees and practitioners toward effective digital content.

  4. Current robotic curricula for surgery residents: A need for additional cognitive and psychomotor focus.

    PubMed

    Green, Courtney A; Chern, Hueylan; O'Sullivan, Patricia S

    2018-02-01

    Current robot surgery curricula developed by industry were designed for expert surgeons. We sought to identify the robotic curricula that currently exist in general surgery residencies and describe their components. We identified 12 residency programs with robotic curricula. Using a structured coding form to identify themes including sequence, duration, emphasis and assessment, we generated a descriptive summary. Curricula followed a similar sequence: learners started with online modules and simulation exercises, followed by bedside experience during R2-R3 training years, and then operative opportunities on the console in the final years of training. Consistent portions of the curricula reflect a device-dependent training paradigm; they defined the sequence of instruction. Most curricula lacked specifics on duration and content of training activities. None clearly described cognitive or psychomotor skills needed by residents and none required a proficiency assessment before graduation. Resident-specific robotic curricula remain grounded in initial industrial efforts to train experienced surgeons, are non-specific regarding the type and nature of hands on experience, and do not include discussion of operative technique and surgical concepts. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. An assessment of the physical impact of complex surgical tasks on surgeon errors and discomfort: a comparison between robot-assisted, laparoscopic and open approaches.

    PubMed

    Elhage, Oussama; Challacombe, Ben; Shortland, Adam; Dasgupta, Prokar

    2015-02-01

    To evaluate, in a simulated suturing task, individual surgeons’ performance using three surgical approaches: open, laparoscopic and robot-assisted. subjects and methods: Six urological surgeons made an in vitro simulated vesico-urethral anastomosis. All surgeons performed the simulated suturing task using all three surgical approaches (open, laparoscopic and robot-assisted). The time taken to perform each task was recorded. Participants were evaluated for perceived discomfort using the self-reporting Borg scale. Errors made by surgeons were quantified by studying the video recording of the tasks. Anastomosis quality was quantified using scores for knot security, symmetry of suture, position of suture and apposition of anastomosis. The time taken to complete the task by the laparoscopic approach was on average 221 s, compared with 55 s for the open approach and 116 s for the robot-assisted approach (anova, P < 0.005). The number of errors and the level of self-reported discomfort were highest for the laparoscopic approach (anova, P < 0.005). Limitations of the present study include the small sample size and variation in prior surgical experience of the participants. In an in vitro model of anastomosis surgery, robot-assisted surgery combines the accuracy of open surgery while causing lesser surgeon discomfort than laparoscopy and maintaining minimal access.

  6. Using simulators to teach pediatric airway procedures in an international setting.

    PubMed

    Schwartz, Marissa A; Kavanagh, Katherine R; Frampton, Steven J; Bruce, Iain A; Valdez, Tulio A

    2018-01-01

    There has been a growing shift towards endoscopic management of laryngeal procedures in pediatric otolaryngology. There still appears to be a shortage of pediatric otolaryngology programs and children's hospitals worldwide where physicians can learn and practice these skills. Laryngeal simulation models have the potential to be part of the educational training of physicians who lack exposure to relatively uncommon pediatric otolaryngologic pathology. The objective of this study was to assess the utility of pediatric laryngeal models to teach laryngeal pathology to physicians at an international meeting. Pediatric laryngeal models were assessed by participants at an international pediatric otolaryngology meeting. Participants provided demographic information and previous experience with pediatric airways. Participants then performed simulated surgery on these models and evaluated them using both a previously validated Tissue Likeness Scale and a pre-simulation to post-simulation confidence scale. Participants reported significant subjective improvement in confidence level after use of the simulation models (p < 0.05). Participants reported realistic representations of human anatomy and pathology. The models' tissue mechanics were adequate to practice operative technique including the ability to incise, suture, and suspend models. The pediatric laryngeal models demonstrate high quality anatomy, which is easy manipulated with surgical instruments. These models allow both trainees and surgeons to practice time-sensitive airway surgeries in a safe and controlled environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A Computer Based Cognitive Simulation of Cataract Surgery

    DTIC Science & Technology

    2011-12-01

    for zonular absence, assess for notable lenticular astigmatism ** How and when do you decide to use a capsular tension ring? (Expert) Zonular...INTRODUCTION The Virtual Mentor Cataract Surgery Trainer is a computer based, cognitive simulation of phacoemulsification cataract surgery. It is...the Cataract Trainer. BODY Phacoemulsification cataract surgery (phaco) is a difficult procedure to learn, with little margin for error. As in other

  8. Positive correlation between motion analysis data on the LapMentor virtual reality laparoscopic surgical simulator and the results from videotape assessment of real laparoscopic surgeries.

    PubMed

    Matsuda, Tadashi; McDougall, Elspeth M; Ono, Yoshinari; Hattori, Ryohei; Baba, Shiro; Iwamura, Masatsugu; Terachi, Toshiro; Naito, Seiji; Clayman, Ralph V

    2012-11-01

    We studied the construct validity of the LapMentor, a virtual reality laparoscopic surgical simulator, and the correlation between the data collected on the LapMentor and the results of video assessment of real laparoscopic surgeries. Ninety-two urologists were tested on basic skill tasks No. 3 (SK3) to No. 8 (SK8) on the LapMentor. They were divided into three groups: Group A (n=25) had no experience with laparoscopic surgeries as a chief surgeon; group B (n=33) had <35 experiences; and group C (n=34) had ≥35 experiences. Group scores on the accuracy, efficacy, and time of the tasks were compared. Forty physicians with ≥20 experiences supplied unedited videotapes showing a laparoscopic nephrectomy or an adrenalectomy in its entirety, and the videos were assessed in a blinded fashion by expert referees. Correlations between the videotape score (VS) and the performances on the LapMentor were analyzed. Group C showed significantly better outcomes than group A in the accuracy (SK5) (P=0.013), efficacy (SK8) (P=0.014), or speed (SKs 3 and 8) (P=0.009 and P=0.002, respectively) of the performances of LapMentor. Group B showed significantly better outcomes than group A in the speed and efficacy of the performances in SK8 (P=0.011 and P=0.029, respectively). Analyses of motion analysis data of LapMentor demonstrated that smooth and ideal movement of instruments is more important than speed of the movement of instruments to achieve accurate performances in each task. Multiple linear regression analysis indicated that the average score of the accuracy in SK4, 5, and 8 had significant positive correlation with VS (P=0.01). This study demonstrated the construct and predictive validity of the LapMentor basic skill tasks, supporting their possible usefulness for the preclinical evaluation of laparoscopic skills.

  9. Automatic Localization of Vertebral Levels in X-Ray Fluoroscopy Using 3D-2D Registration: A Tool to Reduce Wrong-Site Surgery

    PubMed Central

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-01-01

    Surgical targeting of the incorrect vertebral level (“wrong-level” surgery) is among the more common wrong-site surgical errors, attributed primarily to a lack of uniquely identifiable radiographic landmarks in the mid-thoracic spine. Conventional localization method involves manual counting of vertebral bodies under fluoroscopy, is prone to human error, and carries additional time and dose. We propose an image registration and visualization system (referred to as LevelCheck), for decision support in spine surgery by automatically labeling vertebral levels in fluoroscopy using a GPU-accelerated, intensity-based 3D-2D (viz., CT-to-fluoroscopy) registration. A gradient information (GI) similarity metric and CMA-ES optimizer were chosen due to their robustness and inherent suitability for parallelization. Simulation studies involved 10 patient CT datasets from which 50,000 simulated fluoroscopic images were generated from C-arm poses selected to approximate C-arm operator and positioning variability. Physical experiments used an anthropomorphic chest phantom imaged under real fluoroscopy. The registration accuracy was evaluated as the mean projection distance (mPD) between the estimated and true center of vertebral levels. Trials were defined as successful if the estimated position was within the projection of the vertebral body (viz., mPD < 5mm). Simulation studies showed a success rate of 99.998% (1 failure in 50,000 trials) and computation time of 4.7 sec on a midrange GPU. Analysis of failure modes identified cases of false local optima in the search space arising from longitudinal periodicity in vertebral structures. Physical experiments demonstrated robustness of the algorithm against quantum noise and x-ray scatter. The ability to automatically localize target anatomy in fluoroscopy in near-real-time could be valuable in reducing the occurrence of wrong-site surgery while helping to reduce radiation exposure. The method is applicable beyond the specific case of vertebral labeling, since any structure defined in pre-operative (or intra-operative) CT or cone-beam CT can be automatically registered to the fluoroscopic scene. PMID:22864366

  10. Automated outcome scoring in a virtual reality simulator for endodontic surgery.

    PubMed

    Yin, Myat Su; Haddawy, Peter; Suebnukarn, Siriwan; Rhienmora, Phattanapon

    2018-01-01

    We address the problem of automated outcome assessment in a virtual reality (VR) simulator for endodontic surgery. Outcome assessment is an essential component of any system that provides formative feedback, which requires assessing the outcome, relating it to the procedure, and communicating in a language natural to dental students. This study takes a first step toward automated generation of such comprehensive feedback. Virtual reference templates are computed based on tooth anatomy and the outcome is assessed with a 3D score cube volume which consists of voxel-level non-linear weighted scores based on the templates. The detailed scores are transformed into standard scoring language used by dental schools. The system was evaluated on fifteen outcome samples that contained optimal results and those with errors including perforation of the walls, floor, and both, as well as various combinations of major and minor over and under drilling errors. Five endodontists who had professional training and varying levels of experiences in root canal treatment participated as raters in the experiment. Results from evaluation of our system with expert endodontists show a high degree of agreement with expert scores (information based measure of disagreement 0.04-0.21). At the same time they show some disagreement among human expert scores, reflecting the subjective nature of human outcome scoring. The discriminatory power of the AOS scores analyzed with three grade tiers (A, B, C) using the area under the receiver operating characteristic curve (AUC). The AUC values are generally highest for the {AB: C} cutoff which is cutoff at the boundary between clinically acceptable (B) and clinically unacceptable (C) grades. The objective consistency of computed scores and high degree of agreement with experts make the proposed system a promising addition to existing VR simulators. The translation of detailed level scores into terminology commonly used in dental surgery supports natural communication with students and instructors. With the reference virtual templates created automatically, the approach is robust and is applicable in scoring the outcome of any dental surgery procedure involving the act of drilling. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Surgical resident evaluations of portable laparoscopic box trainers incorporated into a simulation-based minimally invasive surgery curriculum.

    PubMed

    Zapf, Matthew A C; Ujiki, Michael B

    2015-02-01

    Box trainers have been shown to be an effective tool for teaching laparoscopic skills; however, residents are challenged to find practice time. Portable trainers theoretically allow for extended hands on practice out of the hospital. We aimed to report resident experience with laparoscopic home box trainers. Over 2 years, all residents rotating through a minimally invasive service were given a portable trainer and access to a surgical simulation lab for practice. Each trainer contained a collapsible frame, a webcam with USB port, trocars, and laparoscopic instruments (needle driver, shears, Maryland and straight dissecting graspers) as well as Fundamentals of Laparoscopic Surgery skills testing materials. Residents were asked to log hours, usages, and their experience anonymously. Twenty-three residents received a portable trainer. Fifty percent of the participants found the trainer useful or very useful, 25% said it was not useful, and 25% did not access the trainer. Those that used the trainer during their rotation did so 3.1 ± 3.0 times for 2.9 ± 3.0 hours/week. After completing their rotation, 5 of 12 residents used their trainer for an average of 10.2 ± 9.4 hours. Forty-two percent of the responders liked the accessibility of the home box trainers, while 25% criticized the camera-computer interface. Portable box trainers are useful and can effectively supplement a laboratory-based surgical simulation curriculum; however, personal possession of a portable simulator does not result in voluntarily long-term practice. © The Author(s) 2014.

  12. [Hi-Fi simulation: Teaching crisis resource management to surgery residents].

    PubMed

    Georgescu, Mihai; Tanoubi, Issam; Drolet, Pierre; Robitaille, Arnaud; Perron, Roger; Patenaude, Jean Victor

    2015-02-01

    High-fidelity (HiFi) simulation has shown its effectiveness for teaching crisis resource management (CRM) principles, and our institutional experience in this area is mainly with anesthesiology residents. We recently added to our postgraduate curriculum a new CRM course designed to cater to the specific needs of surgical residents. This short communication describes the experience of the University of Montreal Simulation Centre (Centre d'Apprentissage des Attitudes et Habiletés Cliniques CAAHC) regarding HiFi simulationbased CRM and communication skills teaching for surgical residents. Thirty residents agreed to participate in a simulation course with pre-established scenarios and educational CRM objectives on a voluntary basis. When surveyed immediately after the activity, all residents agreed that the educational objectives were well defined (80% "strongly agree" and 20% "agree"). The survey also showed that the course was well accepted by all participants (96% "strongly agree" and 4% "agree"). Further trials with randomized groups and more reliable assessment tools are needed to validate our results. Still, integrating HiFi simulation based CRM learning in the surgical residency curriculum seems like an interesting step.

  13. Residency Training in Robotic General Surgery: A Survey of Program Directors

    PubMed Central

    George, Lea C.; O'Neill, Rebecca

    2018-01-01

    Objective Robotic surgery continues to expand in minimally invasive surgery; however, the literature is insufficient to understand the current training process for general surgery residents. Therefore, the objectives of this study were to identify the current approach to and perspectives on robotic surgery training. Methods An electronic survey was distributed to general surgery program directors identified by the Accreditation Council for Graduate Medical Education website. Multiple choice and open-ended questions regarding current practices and opinions on robotic surgery training in general surgery residency programs were used. Results 20 program directors were surveyed, a majority being from medium-sized programs (4–7 graduating residents per year). Most respondents (73.68%) had a formal robotic surgery curriculum at their institution, with 63.16% incorporating simulation training. Approximately half of the respondents believe that more time should be dedicated to robotic surgery training (52.63%), with simulation training prior to console use (84.21%). About two-thirds of the respondents (63.16%) believe that a formal robotic surgery curriculum should be established as a part of general surgery residency, with more than half believing that exposure should occur in postgraduate year one (55%). Conclusion A formal robotics curriculum with simulation training and early surgical exposure for general surgery residents should be given consideration in surgical residency training. PMID:29854454

  14. Residency Training in Robotic General Surgery: A Survey of Program Directors.

    PubMed

    George, Lea C; O'Neill, Rebecca; Merchant, Aziz M

    2018-01-01

    Robotic surgery continues to expand in minimally invasive surgery; however, the literature is insufficient to understand the current training process for general surgery residents. Therefore, the objectives of this study were to identify the current approach to and perspectives on robotic surgery training. An electronic survey was distributed to general surgery program directors identified by the Accreditation Council for Graduate Medical Education website. Multiple choice and open-ended questions regarding current practices and opinions on robotic surgery training in general surgery residency programs were used. 20 program directors were surveyed, a majority being from medium-sized programs (4-7 graduating residents per year). Most respondents (73.68%) had a formal robotic surgery curriculum at their institution, with 63.16% incorporating simulation training. Approximately half of the respondents believe that more time should be dedicated to robotic surgery training (52.63%), with simulation training prior to console use (84.21%). About two-thirds of the respondents (63.16%) believe that a formal robotic surgery curriculum should be established as a part of general surgery residency, with more than half believing that exposure should occur in postgraduate year one (55%). A formal robotics curriculum with simulation training and early surgical exposure for general surgery residents should be given consideration in surgical residency training.

  15. The effects of video games on laparoscopic simulator skills.

    PubMed

    Jalink, Maarten B; Goris, Jetse; Heineman, Erik; Pierie, Jean-Pierre E N; ten Cate Hoedemaker, Henk O

    2014-07-01

    Recently, there has been a growth in studies supporting the hypothesis that video games have positive effects on basic laparoscopic skills. This review discusses all studies directly related to these effects. A search in the PubMed and EMBASE databases was performed using synonymous terms for video games and laparoscopy. All available articles concerning video games and their effects on skills on any laparoscopic simulator (box trainer, virtual reality, and animal models) were selected. Video game experience has been related to higher baseline laparoscopic skills in different studies. There is currently, however, no standardized method to assess video game experience, making it difficult to compare these studies. Several controlled experiments have, nevertheless, shown that video games cannot only be used to improve laparoscopic basic skills in surgical novices, but are also used as a temporary warming-up before laparoscopic surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Training safer orthopedic surgeons. Construct validation of a virtual-reality simulator for hip fracture surgery.

    PubMed

    Akhtar, Kashif; Sugand, Kapil; Sperrin, Matthew; Cobb, Justin; Standfield, Nigel; Gupte, Chinmay

    2015-01-01

    Virtual-reality (VR) simulation in orthopedic training is still in its infancy, and much of the work has been focused on arthroscopy. We evaluated the construct validity of a new VR trauma simulator for performing dynamic hip screw (DHS) fixation of a trochanteric femoral fracture. 30 volunteers were divided into 3 groups according to the number of postgraduate (PG) years and the amount of clinical experience: novice (1-4 PG years; less than 10 DHS procedures); intermediate (5-12 PG years; 10-100 procedures); expert (> 12 PG years; > 100 procedures). Each participant performed a DHS procedure and objective performance metrics were recorded. These data were analyzed with each performance metric taken as the dependent variable in 3 regression models. There were statistically significant differences in performance between groups for (1) number of attempts at guide-wire insertion, (2) total fluoroscopy time, (3) tip-apex distance, (4) probability of screw cutout, and (5) overall simulator score. The intermediate group performed the procedure most quickly, with the lowest fluoroscopy time, the lowest tip-apex distance, the lowest probability of cutout, and the highest simulator score, which correlated with their frequency of exposure to running the trauma lists for hip fracture surgery. This study demonstrates the construct validity of a haptic VR trauma simulator with surgeons undertaking the procedure most frequently performing best on the simulator. VR simulation may be a means of addressing restrictions on working hours and allows trainees to practice technical tasks without putting patients at risk. The VR DHS simulator evaluated in this study may provide valid assessment of technical skill.

  17. Computer-Simulated Arthroscopic Knee Surgery: Effects of Distraction on Resident Performance.

    PubMed

    Cowan, James B; Seeley, Mark A; Irwin, Todd A; Caird, Michelle S

    2016-01-01

    Orthopedic surgeons cite "full focus" and "distraction control" as important factors for achieving excellent outcomes. Surgical simulation is a safe and cost-effective way for residents to practice surgical skills, and it is a suitable tool to study the effects of distraction on resident surgical performance. This study investigated the effects of distraction on arthroscopic knee simulator performance among residents at various levels of experience. The authors hypothesized that environmental distractions would negatively affect performance. Twenty-five orthopedic surgery residents performed a diagnostic knee arthroscopy computer simulation according to a checklist of structures to identify and tasks to complete. Participants were evaluated on arthroscopy time, number of chondral injuries, instances of looking down at their hands, and completion of checklist items. Residents repeated this task at least 2 weeks later while simultaneously answering distracting questions. During distracted simulation, the residents had significantly fewer completed checklist items (P<.02) compared with the initial simulation. Senior residents completed the initial simulation in less time (P<.001), with fewer chondral injuries (P<.005) and fewer instances of looking down at their hands (P<.012), compared with junior residents. Senior residents also completed 97% of the diagnostic checklist, whereas junior residents completed 89% (P<.019). During distracted simulation, senior residents continued to complete tasks more quickly (P<.006) and with fewer instances of looking down at their hands (P<.042). Residents at all levels appear to be susceptible to the detrimental effects of distraction when performing arthroscopic simulation. Addressing even straightforward questions intraoperatively may affect surgeon performance. Copyright 2016, SLACK Incorporated.

  18. A pilot study of surgical training using a virtual robotic surgery simulator.

    PubMed

    Tergas, Ana I; Sheth, Sangini B; Green, Isabel C; Giuntoli, Robert L; Winder, Abigail D; Fader, Amanda N

    2013-01-01

    Our objectives were to compare the utility of learning a suturing task on the virtual reality da Vinci Skills Simulator versus the da Vinci Surgical System dry laboratory platform and to assess user satisfaction among novice robotic surgeons. Medical trainees were enrolled prospectively; one group trained on the virtual reality simulator, and the other group trained on the da Vinci dry laboratory platform. Trainees received pretesting and post-testing on the dry laboratory platform. Participants then completed an anonymous online user experience and satisfaction survey. We enrolled 20 participants. Mean pretest completion times did not significantly differ between the 2 groups. Training with either platform was associated with a similar decrease in mean time to completion (simulator platform group, 64.9 seconds [P = .04]; dry laboratory platform group, 63.9 seconds [P < .01]). Most participants (58%) preferred the virtual reality platform. The majority found the training "definitely useful" in improving robotic surgical skills (mean, 4.6) and would attend future training sessions (mean, 4.5). Training on the virtual reality robotic simulator or the dry laboratory robotic surgery platform resulted in significant improvements in time to completion and economy of motion for novice robotic surgeons. Although there was a perception that both simulators improved performance, there was a preference for the virtual reality simulator. Benefits unique to the simulator platform include autonomy of use, computerized performance feedback, and ease of setup. These features may facilitate more efficient and sophisticated simulation training above that of the conventional dry laboratory platform, without loss of efficacy.

  19. Differentiating levels of surgical experience on a virtual reality temporal bone simulator.

    PubMed

    Zhao, Yi C; Kennedy, Gregor; Hall, Richard; O'Leary, Stephen

    2010-11-01

    Virtual reality simulation is increasingly being incorporated into surgical training and may have a role in temporal bone surgical education. Here we test whether metrics generated by a virtual reality surgical simulation can differentiate between three levels of experience, namely novices, otolaryngology residents, and experienced qualified surgeons. Cohort study. Royal Victorian Eye and Ear Hospital. Twenty-seven participants were recruited. There were 12 experts, six residents, and nine novices. After orientation, participants were asked to perform a modified radical mastoidectomy on the simulator. Comparisons of time taken, injury to structures, and forces exerted were made between the groups to determine which specific metrics would discriminate experience levels. Experts completed the simulated task in significantly shorter time than the other two groups (experts 22 minutes, residents 36 minutes, and novices 46 minutes; P = 0.001). Novices exerted significantly higher average forces when dissecting close to vital structures compared with experts (0.24 Newton [N] vs 0.13 N, P = 0.002). Novices were also more likely to injure structures such as dura compared to experts (23 injuries vs 3 injuries, P = 0.001). Compared with residents, the experts modulated their force between initial cortex dissection and dissection close to vital structures. Using the combination of these metrics, we were able to correctly classify the participants' level of experience 90 percent of the time. This preliminary study shows that measurements of performance obtained from within a virtual reality simulator can differentiate between levels of users' experience. These results suggest that simulator training may have a role in temporal bone training beyond foundational training. Copyright © 2010 American Academy of Otolaryngology–Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  20. [Three-dimensional display simulation of lung surgery using "active shutter glasses"].

    PubMed

    Onuki, Takamasa; Kanzaki, Masato; Sakamoto, Kei; Kikkawa, Takuma; Isaka, Tamami; Shimizu, Toshihide; Oyama, Kunihiro; Murasugi, Masahide

    2011-08-01

    We have reported preoperative 3-dimensional (3D) simulation of thoracoscopic lung surgery using self-made software and internet shareware of 3D-modeler. Using "active shutter glasses", we have tried the "3D display simulation" of lung surgery. 3D display was more effective to grasp clear 3D interrelation between the bronchii and pulmonary vascular system than those in images of currently in use with the same information volume.

  1. Implementation of an interactive liver surgery planning system

    NASA Astrophysics Data System (ADS)

    Wang, Luyao; Liu, Jingjing; Yuan, Rong; Gu, Shuguo; Yu, Long; Li, Zhitao; Li, Yanzhao; Li, Zhen; Xie, Qingguo; Hu, Daoyu

    2011-03-01

    Liver tumor, one of the most wide-spread diseases, has a very high mortality in China. To improve success rates of liver surgeries and life qualities of such patients, we implement an interactive liver surgery planning system based on contrastenhanced liver CT images. The system consists of five modules: pre-processing, segmentation, modeling, quantitative analysis and surgery simulation. The Graph Cuts method is utilized to automatically segment the liver based on an anatomical prior knowledge that liver is the biggest organ and has almost homogeneous gray value. The system supports users to build patient-specific liver segment and sub-segment models using interactive portal vein branch labeling, and to perform anatomical resection simulation. It also provides several tools to simulate atypical resection, including resection plane, sphere and curved surface. To match actual surgery resections well and simulate the process flexibly, we extend our work to develop a virtual scalpel model and simulate the scalpel movement in the hepatic tissue using multi-plane continuous resection. In addition, the quantitative analysis module makes it possible to assess the risk of a liver surgery. The preliminary results show that the system has the potential to offer an accurate 3D delineation of the liver anatomy, as well as the tumors' location in relation to vessels, and to facilitate liver resection surgeries. Furthermore, we are testing the system in a full-scale clinical trial.

  2. Surgeon Training in Telerobotic Surgery via a Hardware-in-the-Loop Simulator

    PubMed Central

    Alemzadeh, Homa; Chen, Daniel; Kalbarczyk, Zbigniew; Iyer, Ravishankar K.; Kesavadas, Thenkurussi

    2017-01-01

    This work presents a software and hardware framework for a telerobotic surgery safety and motor skill training simulator. The aims are at providing trainees a comprehensive simulator for acquiring essential skills to perform telerobotic surgery. Existing commercial robotic surgery simulators lack features for safety training and optimal motion planning, which are critical factors in ensuring patient safety and efficiency in operation. In this work, we propose a hardware-in-the-loop simulator directly introducing these two features. The proposed simulator is built upon the Raven-II™ open source surgical robot, integrated with a physics engine and a safety hazard injection engine. Also, a Fast Marching Tree-based motion planning algorithm is used to help trainee learn the optimal instrument motion patterns. The main contributions of this work are (1) reproducing safety hazards events, related to da Vinci™ system, reported to the FDA MAUDE database, with a novel haptic feedback strategy to provide feedback to the operator when the underlying dynamics differ from the real robot's states so that the operator will be aware and can mitigate the negative impact of the safety-critical events, and (2) using motion planner to generate semioptimal path in an interactive robotic surgery training environment. PMID:29065635

  3. Comprehensive Training Curricula for Minimally Invasive Surgery

    PubMed Central

    Palter, Vanessa N

    2011-01-01

    Background The unique skill set required for minimally invasive surgery has in part contributed to a certain portion of surgical residency training transitioning from the operating room to the surgical skills laboratory. Simulation lends itself well as a method to shorten the learning curve for minimally invasive surgery by allowing trainees to practice the unique motor skills required for this type of surgery in a safe, structured environment. Although a significant amount of important work has been done to validate simulators as viable systems for teaching technical skills outside the operating room, the next step is to integrate simulation training into a comprehensive curriculum. Objectives This narrative review aims to synthesize the evidence and educational theories underlining curricula development for technical skills both in a broad context and specifically as it pertains to minimally invasive surgery. Findings The review highlights the critical aspects of simulation training, such as the effective provision of feedback, deliberate practice, training to proficiency, the opportunity to practice at varying levels of difficulty, and the inclusion of both cognitive teaching and hands-on training. In addition, frameworks for integrating simulation training into a comprehensive curriculum are described. Finally, existing curricula on both laparoscopic box trainers and virtual reality simulators are critically evaluated. PMID:22942951

  4. Supporting skill acquisition in cochlear implant surgery through virtual reality simulation.

    PubMed

    Copson, Bridget; Wijewickrema, Sudanthi; Zhou, Yun; Piromchai, Patorn; Briggs, Robert; Bailey, James; Kennedy, Gregor; O'Leary, Stephen

    2017-03-01

    To evaluate the effectiveness of a virtual reality (VR) temporal bone simulator in training cochlear implant surgery. We compared the performance of 12 otolaryngology registrars conducting simulated cochlear implant surgery before (pre-test) and after (post-tests) receiving training on a VR temporal bone surgery simulator with automated performance feedback. The post-test tasks were two temporal bones, one that was a mirror image of the temporal bone used as a pre-test and the other, a novel temporal bone. Participant performances were assessed by an otologist with a validated cochlear implant competency assessment tool. Structural damage was derived from an automatically generated simulator metric and compared between time points. Wilcoxon signed-rank test showed that there was a significant improvement with a large effect size in the total performance scores between the pre-test (PT) and both the first and second post-tests (PT1, PT2) (PT-PT1: P = 0.007, r = 0.78, PT-PT2: P = 0.005, r = 0.82). The results of the study indicate that VR simulation with automated guidance can effectively be used to train surgeons in training complex temporal bone surgeries such as cochlear implantation.

  5. Human cadaver retina model for retinal heating during corneal surgery with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yun, Jin; Zhao, Tianzhuo; Yan, Ying; Kurtz, Ron M.; Juhasz, Tibor

    2014-02-01

    Femtosecond lasers are widely used in everyday clinical procedures to perform minimally invasive corneal refractive surgery. The intralase femtosecond laser (AMO Corp. Santa Ana, CA) is a common example of such a laser. In the present study a numerical simulation was developed to quantify the temperature rise in the retina during femtosecond intracorneal surgery. Also, ex-vivo retinal heating due to laser irradiation was measured with an infrared thermal camera (Fluke Corp. Everett, WA) as a validation of the simulation. A computer simulation was developed using Comsol Multiphysics to calculate the temperature rise in the cadaver retina during femtosecond laser corneal surgery. The simulation showed a temperature rise of less than 0.3 degrees for realistic pulse energies for the various repetition rates. Human cadaver retinas were irradiated with a 150 kHz Intralase femtosecond laser and the temperature rise was measured withan infrared thermal camera. Thermal camera measurements are in agreement with the simulation. During routine femtosecond laser corneal surgery with normal clinical parameters, the temperature rise is well beneath the threshold for retina damage. The simulation predictions are in agreement with thermal measurements providing a level of experimental validation.

  6. Design and development of miniature parallel robot for eye surgery.

    PubMed

    Sakai, Tomoya; Harada, Kanako; Tanaka, Shinichi; Ueta, Takashi; Noda, Yasuo; Sugita, Naohiko; Mitsuishi, Mamoru

    2014-01-01

    A five degree-of-freedom (DOF) miniature parallel robot has been developed to precisely and safely remove the thin internal limiting membrane in the eye ground during vitreoretinal surgery. A simulator has been developed to determine the design parameters of this robot. The developed robot's size is 85 mm × 100 mm × 240 mm, and its weight is 770 g. This robot incorporates an emergency instrument retraction function to quickly remove the instrument from the eye in case of sudden intraoperative complications such as bleeding. Experiments were conducted to evaluate the robot's performance in the master-slave configuration, and the results demonstrated that it had a tracing accuracy of 40.0 μm.

  7. Energy consumption during simulated minimal access surgery with and without using an armrest.

    PubMed

    Jafri, Mansoor; Brown, Stuart; Arnold, Graham; Abboud, Rami; Wang, Weijie

    2013-03-01

    Minimal access surgery (MAS) can be a lengthy procedure when compared to open surgery and therefore surgeon fatigue becomes an important issue and surgeons may expose themselves to chronic injuries and making errors. There have been few studies on this topic and they have used only questionnaires and electromyography rather than direct measurement of energy expenditure (EE). The aim of this study was to investigate whether the use of an armrest could reduce the EE of surgeons during MAS. Sixteen surgeons performed simulated MAS with and without using an armrest. They were required to perform the time-consuming task of using scissors to cut a rubber glove through its top layer in a triangular fashion with the help of a laparoscopic camera. Energy consumptions were measured using the Oxycon Mobile system during all the procedures. Error rate and duration time for simulated surgery were recorded. After performing the simulated surgery, subjects scored how comfortable they felt using the armrest. It was found that O(2) uptake (VO(2)) was 5 % less when surgeons used the armrest. The error rate when performing the procedure with the armrest was 35 % compared with 42.29 % without the armrest. Additionally, comfort levels with the armrest were higher than without the armrest. 75 % of surgeons indicated a preference for using the armrest during the simulated surgery. The armrest provides support for surgeons and cuts energy consumption during simulated MAS.

  8. A review of virtual reality based training simulators for orthopaedic surgery.

    PubMed

    Vaughan, Neil; Dubey, Venketesh N; Wainwright, Thomas W; Middleton, Robert G

    2016-02-01

    This review presents current virtual reality based training simulators for hip, knee and other orthopaedic surgery, including elective and trauma surgical procedures. There have not been any reviews focussing on hip and knee orthopaedic simulators. A comparison of existing simulator features is provided to identify what is missing and what is required to improve upon current simulators. In total 11 hip replacements pre-operative planning tools were analysed, plus 9 hip trauma fracture training simulators. Additionally 9 knee arthroscopy simulators and 8 other orthopaedic simulators were included for comparison. The findings are that for orthopaedic surgery simulators in general, there is increasing use of patient-specific virtual models which reduce the learning curve. Modelling is also being used for patient-specific implant design and manufacture. Simulators are being increasingly validated for assessment as well as training. There are very few training simulators available for hip replacement, yet more advanced virtual reality is being used for other procedures such as hip trauma and drilling. Training simulators for hip replacement and orthopaedic surgery in general lag behind other surgical procedures for which virtual reality has become more common. Further developments are required to bring hip replacement training simulation up to date with other procedures. This suggests there is a gap in the market for a new high fidelity hip replacement and resurfacing training simulator. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Simulated Surgery-an exam for our time? Summary of the current status and development of the MRCGP Simulated Surgery module.

    PubMed

    Hawthorne, Kamila; Denney, Mei Ling; Bewick, Mike; Wakeford, Richard

    2006-01-01

    WHAT IS ALREADY KNOWN IN THIS AREA • The Simulated Surgery module of the MRCGP examination has been shown to be a valid and reliable assessment of clinical consulting skills. WHAT THIS WORK ADDS • This paper describes the further development of the methodology of the Simulated Surgery; showing the type of data analysis currently used to assure its quality and reliability. The measures taken to tighten up case quality are discussed. SUGGESTIONS FOR FUTURE RESEARCH The future development of clinical skills assessments in general practice is discussed. More work is needed on the effectiveness and reliability of lay assessors in complex integrated clinical cases. New methods to test areas that are difficult to reproduces in a simulated environment (such as acute emergencies and cases with the very young or very old) are also needed.

  10. The intensity dependence of lesion position shift during focused ultrasound surgery.

    PubMed

    Meaney, P M; Cahill, M D; ter Haar, G R

    2000-03-01

    Knowledge of the spatial distribution of intensity loss from an ultrasonic beam is critical for predicting lesion formation in focused ultrasound (US) surgery (FUS). To date, most models have used linear propagation models to predict intensity profiles required to compute the temporally varying temperature distributions used to compute thermal dose contours. These are used to predict the extent of thermal damage. However, these simulations fail to describe adequately the abnormal lesion formation behaviour observed during ex vivo experiments in cases for which the transducer drive levels are varied over a wide range. In such experiments, the extent of thermal damage has been observed to move significantly closer to the transducer with increased transducer drive levels than would be predicted using linear-propagation models. The first set of simulations described herein use the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear propagation model with the parabolic approximation for highly focused US waves to demonstrate that both the peak intensity and the lesion positions do, indeed, move closer to the transducer. This illustrates that, for accurate modelling of heating during FUS, nonlinear effects should be considered. Additionally, a first order approximation has been employed that attempts to account for the abnormal heat deposition distributions that accompany high transducer drive level FUS exposures where cavitation and boiling may be present. The results of these simulations are presented. It is suggested that this type of approach may be a useful tool in understanding thermal damage mechanisms.

  11. A new virtual-reality training module for laparoscopic surgical skills and equipment handling: can multitasking be trained? A randomized controlled trial.

    PubMed

    Bongers, Pim J; Diederick van Hove, P; Stassen, Laurents P S; Dankelman, Jenny; Schreuder, Henk W R

    2015-01-01

    During laparoscopic surgery distractions often occur and multitasking between surgery and other tasks, such as technical equipment handling, is a necessary competence. In psychological research, reduction of adverse effects of distraction is demonstrated when specifically multitasking is trained. The aim of this study was to examine whether multitasking and more specifically task-switching can be trained in a virtual-reality (VR) laparoscopic skills simulator. After randomization, the control group trained separately with an insufflator simulation module and a laparoscopic skills exercise module on a VR simulator. In the intervention group, insufflator module and VR skills exercises were combined to develop a new integrated training in which multitasking was a required competence. At random moments, problems with the insufflator appeared and forced the trainee to multitask. During several repetitions of a different multitask VR skills exercise as posttest, performance parameters (laparoscopy time, insufflator time, and errors) were measured and compared between both the groups as well with a pretest exercise to establish the learning effect. A face-validity questionnaire was filled afterward. University Medical Centre Utrecht, The Netherlands. Medical and PhD students (n = 42) from University Medical Centre Utrecht, without previous experience in laparoscopic simulation, were randomly assigned to either intervention (n = 21) or control group (n = 21). All participants performed better in the posttest exercises without distraction of the insufflator compared with the exercises in which multitasking was necessary to solve the insufflator problems. After training, the intervention group was significantly quicker in solving the insufflator problems (mean = 1.60Log(s) vs 1.70Log(s), p = 0.02). No significant differences between both the groups were seen in laparoscopy time and errors. Multitasking has negative effects on the laparoscopic performance. This study suggests an additional learning effect of training multitasking in VR laparoscopy simulation, because the trainees are able to handle a secondary task (solving insufflator problems) quicker. These results may aid the development of laparoscopy VR training programs in approximating real-life laparoscopic surgery. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  12. Virtual reality surgical simulators- a prerequisite for robotic surgery.

    PubMed

    Rajanbabu, Anupama; Drudi, Laura; Lau, Susie; Press, Joshua Z; Gotlieb, Walter H

    2014-06-01

    The field of computer assisted minimally invasive surgery is rapidly expanding worldwide, including in India. With more hospitals in India contemplating the acquisition of a robotic platform, training of robotic surgeons is becoming essential. Virtual reality simulators can be used for surgeons to become acquainted with the robotic console prior to live surgery. Our aim was to evaluate the amount of simulator training required before a surgeon first operates on the da Vinci® Surgical System. Simulations were conducted on the Intuitive Surgical's da Vinci® Robot Skill Simulator using the software obtained from Mimic Technologies. Participants included attending staff surgeons experienced in robotic surgery and novices. A set of seven activities were chosen for each participant. Based on the mean exercise score from the first attempt, staff surgeons outperformed the novices in all exercises. However, the difference in score between the staff and the novices decreased after the participants repeated the exercises and by the sixth attempt most of the novices obtained similar scores to the staff, suggesting that this might be at present the minimum set of repetitions indicated (or required) prior to performing life robotic surgery.

  13. Real-time simulation of soft tissue deformation and electrocautery procedures in laparoscopic rectal cancer radical surgery.

    PubMed

    Sui, Yuan; Pan, Jun J; Qin, Hong; Liu, Hao; Lu, Yun

    2017-12-01

    Laparoscopic surgery (LS), also referred to as minimally invasive surgery, is a modern surgical technique which is widely applied. The fulcrum effect makes LS a non-intuitive motor skill with a steep learning curve. A hybrid model of tetrahedrons and a multi-layer triangular mesh are constructed to simulate the deformable behavior of the rectum and surrounding tissues in the Position-Based Dynamics (PBD) framework. A heat-conduction based electric-burn technique is employed to simulate the electrocautery procedure. The simulator has been applied for laparoscopic rectum cancer surgery training. From the experimental results, trainees can operate in real time with high degrees of stability and fidelity. A preliminary study was performed to evaluate the realism and usefulness. This prototype simulator has been tested and verified by colorectal surgeons through a pilot study. They believed both the visual and the haptic performance of the simulation are realistic and helpful to enhance laparoscopic skills. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Development and implementation of a clinical pathway approach to simulation-based training for foregut surgery.

    PubMed

    Miyasaka, Kiyoyuki W; Buchholz, Joseph; LaMarra, Denise; Karakousis, Giorgos C; Aggarwal, Rajesh

    2015-01-01

    Contemporary demands on resident education call for integration of simulation. We designed and implemented a simulation-based curriculum for Post Graduate Year 1 surgery residents to teach technical and nontechnical skills within a clinical pathway approach for a foregut surgery patient, from outpatient visit through surgery and postoperative follow-up. The 3-day curriculum for groups of 6 residents comprises a combination of standardized patient encounters, didactic sessions, and hands-on training. The curriculum is underpinned by a summative simulation "pathway" repeated on days 1 and 3. The "pathway" is a series of simulated preoperative, intraoperative, and postoperative encounters in following up a single patient through a disease process. The resident sees a standardized patient in the clinic presenting with distal gastric cancer and then enters an operating room to perform a gastrojejunostomy on a porcine tissue model. Finally, the resident engages in a simulated postoperative visit. All encounters are rated by faculty members and the residents themselves, using standardized assessment forms endorsed by the American Board of Surgery. A total of 18 first-year residents underwent this curriculum. Faculty ratings of overall operative performance significantly improved following the 3-day module. Ratings of preoperative and postoperative performance were not significantly changed in 3 days. Resident self-ratings significantly improved for all encounters assessed, as did reported confidence in meeting the defined learning objectives. Conventional surgical simulation training focuses on technical skills in isolation. Our novel "pathway" curriculum targets an important gap in training methodologies by placing both technical and nontechnical skills in their clinical context as part of managing a surgical patient. Results indicate consistent improvements in assessments of performance as well as confidence and support its continued usage to educate surgery residents in foregut surgery. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  15. Virtual reality-assisted robotic surgery simulation.

    PubMed

    Albani, Justin M; Lee, David I

    2007-03-01

    For more than a decade, advancing computer technologies have allowed incorporation of virtual reality (VR) into surgical training. This has become especially important in training for laparoscopic procedures, which often are complex and leave little room for error. With the advent of robotic surgery and the development and prevalence of a commercial surgical system (da Vinci robot; Intuitive Surgical, Sunnyvale, CA), a valid VR-assisted robotic surgery simulator could minimize the steep learning curve associated with many of these complex procedures and thus enable better outcomes. To date, such simulation does not exist; however, several agencies and corporations are involved in making this dream a reality. We review the history and progress of VR simulation in surgical training, its promising applications in robotic-assisted surgery, and the remaining challenges to implementation.

  16. A perspective on the role and utility of haptic feedback in laparoscopic skills training.

    PubMed

    Singapogu, Ravikiran; Burg, Timothy; Burg, Karen J L; Smith, Dane E; Eckenrode, Amanda H

    2014-01-01

    Laparoscopic surgery is a minimally invasive surgical technique with significant potential benefits to the patient, including shorter recovery time, less scarring, and decreased costs. There is a growing need to teach surgical trainees this emerging surgical technique. Simulators, ranging from simple "box" trainers to complex virtual reality (VR) trainers, have emerged as the most promising method for teaching basic laparoscopic surgical skills. Current box trainers require oversight from an expert surgeon for both training and assessing skills. VR trainers decrease the dependence on expert teachers during training by providing objective, real-time feedback and automatic skills evaluation. However, current VR trainers generally have limited credibility as a means to prepare new surgeons and have often fallen short of educators' expectations. Several researchers have speculated that the missing component in modern VR trainers is haptic feedback, which refers to the range of touch sensations encountered during surgery. These force types and ranges need to be adequately rendered by simulators for a more complete training experience. This article presents a perspective of the role and utility of haptic feedback during laparoscopic surgery and laparoscopic skills training by detailing the ranges and types of haptic sensations felt by the operating surgeon, along with quantitative studies of how this feedback is used. Further, a number of research studies that have documented human performance effects as a result of the presence of haptic feedback are critically reviewed. Finally, key research directions in using haptic feedback for laparoscopy training simulators are identified.

  17. Simulation-based training for prostate surgery.

    PubMed

    Khan, Raheej; Aydin, Abdullatif; Khan, Muhammad Shamim; Dasgupta, Prokar; Ahmed, Kamran

    2015-10-01

    To identify and review the currently available simulators for prostate surgery and to explore the evidence supporting their validity for training purposes. A review of the literature between 1999 and 2014 was performed. The search terms included a combination of urology, prostate surgery, robotic prostatectomy, laparoscopic prostatectomy, transurethral resection of the prostate (TURP), simulation, virtual reality, animal model, human cadavers, training, assessment, technical skills, validation and learning curves. Furthermore, relevant abstracts from the American Urological Association, European Association of Urology, British Association of Urological Surgeons and World Congress of Endourology meetings, between 1999 and 2013, were included. Only studies related to prostate surgery simulators were included; studies regarding other urological simulators were excluded. A total of 22 studies that carried out a validation study were identified. Five validated models and/or simulators were identified for TURP, one for photoselective vaporisation of the prostate, two for holmium enucleation of the prostate, three for laparoscopic radical prostatectomy (LRP) and four for robot-assisted surgery. Of the TURP simulators, all five have demonstrated content validity, three face validity and four construct validity. The GreenLight laser simulator has demonstrated face, content and construct validities. The Kansai HoLEP Simulator has demonstrated face and content validity whilst the UroSim HoLEP Simulator has demonstrated face, content and construct validity. All three animal models for LRP have been shown to have construct validity whilst the chicken skin model was also content valid. Only two robotic simulators were identified with relevance to robot-assisted laparoscopic prostatectomy, both of which demonstrated construct validity. A wide range of different simulators are available for prostate surgery, including synthetic bench models, virtual-reality platforms, animal models, human cadavers, distributed simulation and advanced training programmes and modules. The currently validated simulators can be used by healthcare organisations to provide supplementary training sessions for trainee surgeons. Further research should be conducted to validate simulated environments, to determine which simulators have greater efficacy than others and to assess the cost-effectiveness of the simulators and the transferability of skills learnt. With surgeons investigating new possibilities for easily reproducible and valid methods of training, simulation offers great scope for implementation alongside traditional methods of training. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  18. Distal radius osteotomy with volar locking plates based on computer simulation.

    PubMed

    Miyake, Junichi; Murase, Tsuyoshi; Moritomo, Hisao; Sugamoto, Kazuomi; Yoshikawa, Hideki

    2011-06-01

    Corrective osteotomy using dorsal plates and structural bone graft usually has been used for treating symptomatic distal radius malunions. However, the procedure is technically demanding and requires an extensive dorsal approach. Residual deformity is a relatively frequent complication of this technique. We evaluated the clinical applicability of a three-dimensional osteotomy using computer-aided design and manufacturing techniques with volar locking plates for distal radius malunions. Ten patients with metaphyseal radius malunions were treated. Corrective osteotomy was simulated with the help of three-dimensional bone surface models created using CT data. We simulated the most appropriate screw holes in the deformed radius using computer-aided design data of a locking plate. During surgery, using a custom-made surgical template, we predrilled the screw holes as simulated. After osteotomy, plate fixation using predrilled screw holes enabled automatic reduction of the distal radial fragment. Autogenous iliac cancellous bone was grafted after plate fixation. The median volar tilt, radial inclination, and ulnar variance improved from -20°, 13°, and 6 mm, respectively, before surgery to 12°, 24°, and 1 mm, respectively, after surgery. The median wrist flexion improved from 33° before surgery to 60° after surgery. The median wrist extension was 70° before surgery and 65° after surgery. All patients experienced wrist pain before surgery, which disappeared or decreased after surgery. Surgeons can operate precisely and easily using this advanced technique. It is a new treatment option for malunion of distal radius fractures.

  19. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study

    PubMed Central

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365

  20. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study.

    PubMed

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.

  1. Simulation-Based Training - Evaluation of the Course Concept "Laparoscopic Surgery Curriculum" by the Participants.

    PubMed

    Köckerling, Ferdinand; Pass, Michael; Brunner, Petra; Hafermalz, Matthias; Grund, Stefan; Sauer, Joerg; Lange, Volker; Schröder, Wolfgang

    2016-01-01

    The learning curve in minimally invasive surgery is much longer than in open surgery. This is thought to be due to the higher demands made on the surgeon's skills. Therefore, the question raised at the outset of training in laparoscopic surgery is how such skills can be acquired by undergoing training outside the bounds of clinical activities to try to shorten the learning curve. Simulation-based training courses are one such model. In 2011, the surgery societies of Germany adopted the "laparoscopic surgery curriculum" as a recommendation for the learning content of systematic training courses for laparoscopic surgery. The curricular structure provides for four 2-day training courses. These courses offer an interrelated content, with each course focusing additionally on specific topics of laparoscopic surgery based on live operations, lectures, and exercises carried out on bio simulators. Between 1st January, 2012 and 31st March, 2016, a total of 36 training courses were conducted at the Vivantes Endoscopic Training Center in accordance with the "laparoscopic surgery curriculum." The training courses were attended by a total of 741 young surgeons and were evaluated as good to very good during continuous evaluation by the participants. Training courses based on the "laparoscopic surgery curriculum" for acquiring skills in laparoscopy are taken up and positively evaluated by young surgeons.

  2. Continuous Curvilinear Capsulorhexis Training and Non-Rhexis Related Vitreous Loss: The Specificity of Virtual Reality Simulator Surgical Training (An American Ophthalmological Society Thesis)

    PubMed Central

    McCannel, Colin A.

    2017-01-01

    Purpose To assess the specificity of simulation-based virtual reality ophthalmic cataract surgery training on the Eyesi ophthalmic virtual reality surgical simulator, and test the hypothesis that microsurgical motor learning is highly specific. Methods Retrospective educational interventional case series. The rates of vitreous loss and retained lens material, and vitreous loss and retained lens material associated with an errant continuous curvilinear capsulorhexis (CCC) were assessed among 1037 consecutive cataract surgeries performed during four consecutive academic years at a teaching hospital. The data were grouped by Eyesi use and capsulorhexis intensive training curriculum (CITC) completion. The main intervention was the completion of the CITC on the Eyesi. Results In the Eyesi simulator experience-based stratification, the vitreous loss rate was similar in each group (chi square p=0.95) and was not preceded by an errant CCC in 86.2% for “CITC done at least once”, 57.1% for “CITC not done, but some Eyesi use”, and 48.9% for “none” training groups (p=4×10−5). Retained lens material overall and occurring among the errant CCC cases was similar among training groups (p=0.82 and p=0.71, respectively). Conclusions Eyesi capsulorhexis training was not associated with lower vitreous loss rates overall. However, non-errant CCC associated vitreous loss was higher among those who underwent Eyesi capsulorhexis training. Training focused on the CCC portion of cataract surgery may not reduce vitreous loss unassociated with an errant CCC. It is likely that surgical training is highly specific to the task being trained. Residents may need to be trained for all surgical steps with adequate intensity to minimize overall complication rates. PMID:29021716

  3. Continuous Curvilinear Capsulorhexis Training and Non-Rhexis Related Vitreous Loss: The Specificity of Virtual Reality Simulator Surgical Training (An American Ophthalmological Society Thesis).

    PubMed

    McCannel, Colin A

    2017-08-01

    To assess the specificity of simulation-based virtual reality ophthalmic cataract surgery training on the Eyesi ophthalmic virtual reality surgical simulator, and test the hypothesis that microsurgical motor learning is highly specific. Retrospective educational interventional case series. The rates of vitreous loss and retained lens material, and vitreous loss and retained lens material associated with an errant continuous curvilinear capsulorhexis (CCC) were assessed among 1037 consecutive cataract surgeries performed during four consecutive academic years at a teaching hospital. The data were grouped by Eyesi use and capsulorhexis intensive training curriculum (CITC) completion. The main intervention was the completion of the CITC on the Eyesi. In the Eyesi simulator experience-based stratification, the vitreous loss rate was similar in each group (chi square p=0.95) and was not preceded by an errant CCC in 86.2% for "CITC done at least once", 57.1% for "CITC not done, but some Eyesi use", and 48.9% for "none" training groups (p=4×10-5). Retained lens material overall and occurring among the errant CCC cases was similar among training groups (p=0.82 and p=0.71, respectively). Eyesi capsulorhexis training was not associated with lower vitreous loss rates overall. However, non-errant CCC associated vitreous loss was higher among those who underwent Eyesi capsulorhexis training. Training focused on the CCC portion of cataract surgery may not reduce vitreous loss unassociated with an errant CCC. It is likely that surgical training is highly specific to the task being trained. Residents may need to be trained for all surgical steps with adequate intensity to minimize overall complication rates.

  4. In vivo biomechanical measurement and haptic simulation of portal placement procedure in shoulder arthroscopic surgery

    PubMed Central

    Chae, Sanghoon; Jung, Sung-Weon

    2018-01-01

    A survey of 67 experienced orthopedic surgeons indicated that precise portal placement was the most important skill in arthroscopic surgery. However, none of the currently available virtual reality simulators include simulation / training in portal placement, including haptic feedback of the necessary puncture force. This study aimed to: (1) measure the in vivo force and stiffness during a portal placement procedure in an actual operating room and (2) implement active haptic simulation of a portal placement procedure using the measured in vivo data. We measured the force required for port placement and the stiffness of the joint capsule during portal placement procedures performed by an experienced arthroscopic surgeon. Based on the acquired mechanical property values, we developed a cable-driven active haptic simulator designed to train the portal placement skill and evaluated the validity of the simulated haptics. Ten patients diagnosed with rotator cuff tears were enrolled in this experiment. The maximum peak force and joint capsule stiffness during posterior portal placement procedures were 66.46 (±10.76N) and 2560.82(±252.92) N/m, respectively. We then designed an active haptic simulator using the acquired data. Our cable-driven mechanism structure had a friction force of 3.763 ± 0.341 N, less than 6% of the mean puncture force. Simulator performance was evaluated by comparing the target stiffness and force with the stiffness and force reproduced by the device. R-squared values were 0.998 for puncture force replication and 0.902 for stiffness replication, indicating that the in vivo data can be used to implement a realistic haptic simulator. PMID:29494691

  5. Finite element model of the temperature increase in excised porcine cadaver iris during direct illumination by femtosecond laser pulses

    PubMed Central

    Sun, Hui; Kurtz, Ronald M.

    2012-01-01

    Abstract. In order to model the thermal effect of laser exposure of the iris during laser corneal surgery, we simulated the temperature increase in porcine cadaver iris. The simulation data for the 60 kHz FS60 Laser showed that the temperature increased up to 1.23°C and 2.45°C (at laser pulse energy 1 and 2 µJ, respectively) by the 24 second procedure time. Calculated temperature profiles show good agreement with data obtained from ex vivo experiments using porcine cadaver iris. Simulation results of different types of femtosecond lasers indicate that the Laser in situ keratomileusis procedure does not present a safety hazard to the iris. PMID:22894525

  6. Simulation-based mastery learning for endoscopy using the endoscopy training system: a strategy to improve endoscopic skills and prepare for the fundamentals of endoscopic surgery (FES) manual skills exam.

    PubMed

    Ritter, E Matthew; Taylor, Zachary A; Wolf, Kathryn R; Franklin, Brenton R; Placek, Sarah B; Korndorffer, James R; Gardner, Aimee K

    2018-01-01

    The fundamentals of endoscopic surgery (FES) program has considerable validity evidence for its use in measuring the knowledge, skills, and abilities required for competency in endoscopy. Beginning in 2018, the American Board of Surgery will require all candidates to have taken and passed the written and performance exams in the FES program. Recent work has shown that the current ACGME/ABS required case volume may not be enough to ensure trainees pass the FES skills exam. The aim of this study was to investigate the feasibility of a simulation-based mastery-learning curriculum delivered on a novel physical simulation platform to prepare trainees to pass the FES manual skills exam. The newly developed endoscopy training system (ETS) was used as the training platform. Seventeen PGY 1 (10) and PGY 2 (7) general surgery residents completed a pre-training assessment consisting of all 5 FES tasks on the GI Mentor II. Subjects then trained to previously determined expert performance benchmarks on each of 5 ETS tasks. Once training benchmarks were reached for all tasks, a post-training assessment was performed with all 5 FES tasks. Two subjects were lost to follow-up and never returned for training or post-training assessment. One additional subject failed to complete any portion of the curriculum, but did return for post-training assessment. The group had minimal endoscopy experience (median 0, range 0-67) and minimal prior simulation experience. Three trainees (17.6%) achieved a passing score on the pre-training FES assessment. Training consisted of an average of 48 ± 26 repetitions on the ETS platform distributed over 5.1 ± 2 training sessions. Seventy-one percent achieved proficiency on all 5 ETS tasks. There was dramatic improvement demonstrated on the mean post-training FES assessment when compared to pre-training (74.0 ± 8 vs. 50.4 ± 16, p < 0.0001, effect size = 2.4). The number of ETS tasks trained to proficiency correlated moderately with the score on the post-training assessment (r = 0.57, p = 0.028). Fourteen (100%) subjects who trained to proficiency on at least one ETS task passed the post-training FES manual skills exam. This simulation-based mastery learning curriculum using the ETS is feasible for training novices and allows for the acquisition of the technical skills required to pass the FES manual skills exam. This curriculum should be strongly considered by programs wishing to ensure that trainees are prepared for the FES exam.

  7. Cataract Vision Simulator

    MedlinePlus

    ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...

  8. Development of a Virtual Reality Simulator for Natural Orifice Translumenal Endoscopic Surgery (NOTES) Cholecystectomy Procedure.

    PubMed

    Ahn, Woojin; Dargar, Saurabh; Halic, Tansel; Lee, Jason; Li, Baichun; Pan, Junjun; Sankaranarayanan, Ganesh; Roberts, Kurt; De, Suvranu

    2014-01-01

    The first virtual-reality-based simulator for Natural Orifice Translumenal Endoscopic Surgery (NOTES) is developed called the Virtual Translumenal Endoscopic Surgery Trainer (VTESTTM). VTESTTM aims to simulate hybrid NOTES cholecystectomy procedure using a rigid scope inserted through the vaginal port. The hardware interface is designed for accurate motion tracking of the scope and laparoscopic instruments to reproduce the unique hand-eye coordination. The haptic-enabled multimodal interactive simulation includes exposing the Calot's triangle and detaching the gall bladder while performing electrosurgery. The developed VTESTTM was demonstrated and validated at NOSCAR 2013.

  9. Retinal Detachment Vision Simulator

    MedlinePlus

    ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...

  10. Face, content, construct, and concurrent validity of a novel robotic surgery patient-side simulator: the Xperience™ Team Trainer.

    PubMed

    Xu, Song; Perez, Manuela; Perrenot, Cyril; Hubert, Nicolas; Hubert, Jacques

    2016-08-01

    To determine the face, content, construct, and concurrent validity of the Xperience™ Team Trainer (XTT) as an assessment tool of robotic surgical bed-assistance skills. Subjects were recruited during a robotic surgery curriculum. They were divided into three groups: the group RA with robotic bed-assistance experience, the group LS with laparoscopic surgical experience, and the control group without bed-assistance or laparoscopic experience. The subjects first performed two standard FLS exercises on a laparoscopic simulator for the assessment of basic laparoscopic skills. After that, they performed three virtual reality exercises on XTT, and then performed similar exercises on physical models on a da Vinci(®) box trainer. Twenty-eight persons volunteered for and completed the tasks. Most expert subjects agreed on the realism of XTT and the three exercises, and also their interest for teamwork and bed-assistant training. The group RA and the group LS demonstrated a similar level of basic laparoscopic skills. Both groups performed better than the control group on the XTT exercises (p < 0.05). The performance superiority of the group RA over LS was observed but not statistically significant. Correlation of performance was determined between the tests on XTT and on da Vinci(®) box trainer. The introduction of XTT facilitates the training of bedside assistants and emphasizes the importance of teamwork, which may change the paradigm of robotic surgery training in the near future. As an assessment tool of bed-assistance skills, XTT proves face, content, and concurrent validity. However, these results should be qualified considering the potential limitations of this exploratory study with a relatively small sample size. The training modules remain to be developed, and more complex and discriminative exercises are expected. Other studies will be needed to further determine construct validity in the future.

  11. Non-Proliferative Diabetic Retinopathy Vision Simulator

    MedlinePlus

    ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...

  12. Virtual Surgery for Conduit Reconstruction of the Right Ventricular Outflow Tract.

    PubMed

    Ong, Chin Siang; Loke, Yue-Hin; Opfermann, Justin; Olivieri, Laura; Vricella, Luca; Krieger, Axel; Hibino, Narutoshi

    2017-05-01

    Virtual surgery involves the planning and simulation of surgical reconstruction using three-dimensional (3D) modeling based upon individual patient data, augmented by simulation of planned surgical alterations including implantation of devices or grafts. Here we describe a case in which virtual cardiac surgery aided us in determining the optimal conduit size to use for the reconstruction of the right ventricular outflow tract. The patient is a young adolescent male with a history of tetralogy of Fallot with pulmonary atresia, requiring right ventricle-to-pulmonary artery (RV-PA) conduit replacement. Utilizing preoperative magnetic resonance imaging data, virtual surgery was undertaken to construct his heart in 3D and to simulate the implantation of three different sizes of RV-PA conduit (18, 20, and 22 mm). Virtual cardiac surgery allowed us to predict the ability to implant a conduit of a size that would likely remain adequate in the face of continued somatic growth and also allow for the possibility of transcatheter pulmonary valve implantation at some time in the future. Subsequently, the patient underwent uneventful conduit change surgery with implantation of a 22-mm Hancock valved conduit. As predicted, the intrathoracic space was sufficient to accommodate the relatively large conduit size without geometric distortion or sternal compression. Virtual cardiac surgery gives surgeons the ability to simulate the implantation of prostheses of different sizes in relation to the dimensions of a specific patient's own heart and thoracic cavity in 3D prior to surgery. This can be very helpful in predicting optimal conduit size, determining appropriate timing of surgery, and patient education.

  13. Development and implementation of a clinical pathway approach to simulation-based training for foregut surgery

    PubMed Central

    Miyasaka, Kiyoyuki W; Buchholz, Joseph; LaMarra, Denise; Karakousis, Giorgos C; Aggarwal, Rajesh

    2015-01-01

    Introduction Contemporary demands on resident education call for integration of simulation. We designed and implemented a simulation-based curriculum for PGY1 surgery residents to teach technical and non-technical skills within a clinical pathway approach for a foregut surgical patient, from outpatient visit through surgery and post-op follow-up. Methods The three-day curriculum for groups of six residents comprises a combination of standardized patient (SP) encounters, didactic sessions, and hands-on training. The curriculum is underpinned by a summative simulation “pathway” repeated on days 1 and 3. The “pathway” is a series of simulated pre-op, intra-op, and post-op encounters following a single patient through a disease process. The resident sees an SP in clinic presenting with distal gastric cancer, then enters an operating room to perform a gastro-jejunostomy on a porcine tissue model. Finally, the resident engages in a simulated post-operative visit. All encounters are rated by faculty members and the residents themselves, using standardized assessment forms endorsed by the American Board of Surgery. Results 18 first-year residents underwent this curriculum. Faculty ratings of overall operative performance significantly improved following the three-day module. Ratings of preoperative and postoperative performance were not significantly changed in three days. Resident self-ratings significantly improved for all encounters assessed, as did reported confidence in meeting defined learning objectives. Conclusions Conventional surgical simulation training focuses on technical skills in isolation. Our novel “pathway” curriculum targets an important gap in training methodologies by placing both technical and non-technical skills in their clinical context as part of managing a surgical patient. Results indicate consistent improvements in assessments of performance as well as confidence and support its continued usage to educate surgery residents in foregut surgery. PMID:25869238

  14. Construct validation of a novel hybrid surgical simulator.

    PubMed

    Broe, D; Ridgway, P F; Johnson, S; Tierney, S; Conlon, K C

    2006-06-01

    Simulated minimal access surgery has improved recently as both a learning and assessment tool. The construct validation of a novel simulator, ProMis, is described for use by residents in training. ProMis is a surgical simulator that can design tasks in both virtual and actual reality. A pilot group of surgical residents ranging from novice to expert completed three standardized tasks: orientation, dissection, and basic suturing. The tasks were tested for construct validity. Two experienced surgeons examined the recorded tasks in a blinded fashion using an objective structured assessment of technical skills format (OSATS: task-specific checklist and global rating score) as well as metrics delivered by the simulator. The findings showed excellent interrater reliability (Cronbach's alpha of 0.88 for the checklist and 0.93 for the global rating). The median scores in the experience groups were statistically different in both the global rating and the task-specific checklists (p < 0.05). The scores for the orientation task alone did not reach significance (p = 0.1), suggesting that modification is required before ProMis could be used in isolation as an assessment tool. The three simulated tasks in combination are construct valid for differentiating experience levels among surgeons in training. This hybrid simulator has potential added benefits of marrying the virtual with actual, and of combining simple box traits and advanced virtual reality simulation.

  15. Positive Correlation Between Motion Analysis Data on the LapMentor Virtual Reality Laparoscopic Surgical Simulator and the Results from Videotape Assessment of Real Laparoscopic Surgeries

    PubMed Central

    McDougall, Elspeth M.; Ono, Yoshinari; Hattori, Ryohei; Baba, Shiro; Iwamura, Masatsugu; Terachi, Toshiro; Naito, Seiji; Clayman, Ralph V.

    2012-01-01

    Abstract Purpose We studied the construct validity of the LapMentor, a virtual reality laparoscopic surgical simulator, and the correlation between the data collected on the LapMentor and the results of video assessment of real laparoscopic surgeries. Materials and Methods Ninety-two urologists were tested on basic skill tasks No. 3 (SK3) to No. 8 (SK8) on the LapMentor. They were divided into three groups: Group A (n=25) had no experience with laparoscopic surgeries as a chief surgeon; group B (n=33) had <35 experiences; and group C (n=34) had ≥35 experiences. Group scores on the accuracy, efficacy, and time of the tasks were compared. Forty physicians with ≥20 experiences supplied unedited videotapes showing a laparoscopic nephrectomy or an adrenalectomy in its entirety, and the videos were assessed in a blinded fashion by expert referees. Correlations between the videotape score (VS) and the performances on the LapMentor were analyzed. Results Group C showed significantly better outcomes than group A in the accuracy (SK5) (P=0.013), efficacy (SK8) (P=0.014), or speed (SKs 3 and 8) (P=0.009 and P=0.002, respectively) of the performances of LapMentor. Group B showed significantly better outcomes than group A in the speed and efficacy of the performances in SK8 (P=0.011 and P=0.029, respectively). Analyses of motion analysis data of LapMentor demonstrated that smooth and ideal movement of instruments is more important than speed of the movement of instruments to achieve accurate performances in each task. Multiple linear regression analysis indicated that the average score of the accuracy in SK4, 5, and 8 had significant positive correlation with VS (P=0.01). Conclusions This study demonstrated the construct and predictive validity of the LapMentor basic skill tasks, supporting their possible usefulness for the preclinical evaluation of laparoscopic skills. PMID:22642549

  16. Internet-Based Digital Simulation for Cleft Surgery Education: A 5-Year Assessment of Demographics, Usage, and Global Effect.

    PubMed

    Kantar, Rami S; Plana, Natalie M; Cutting, Court B; Diaz-Siso, Jesus Rodrigo; Flores, Roberto L

    2018-01-29

    In October 2012, a freely available, internet-based cleft simulator was created in partnership between academic, nonprofit, and industry sectors. The purpose of this educational resource was to address global disparities in cleft surgery education. This report assesses demographics, usage, and global effect of our simulator, in its fifth year since inception. Evaluate the global effect, usage, and demographics of an internet-based educational digital simulation cleft surgery software. Simulator modules, available in five languages demonstrate surgical anatomy, markings, detailed procedures, and intraoperative footage to supplement digital animation. Available data regarding number of users, sessions, countries reached, and content access were recorded. Surveys evaluating the demographic characteristics of registered users and simulator use were collected by direct e-mail. The total number of simulator new and active users reached 2865 and 4086 in June 2017, respectively. By June 2017, users from 136 countries had accessed the simulator. From 2015 to 2017, the number of sessions was 11,176 with a monthly average of 399.0 ± 190.0. Developing countries accounted for 35% of sessions and the average session duration was 9.0 ± 7.3 minutes. This yields a total simulator screen time of 100,584 minutes (1676 hours). Most survey respondents were surgeons or trainees (87%) specializing in plastic, maxillofacial, or general surgery (89%). Most users found the simulator to be useful (88%), at least equivalent or more useful than other resources (83%), and used it for teaching (58%). Our internet-based interactive cleft surgery platform reaches its intended target audience, is not restricted by socioeconomic barriers to access, and is judged to be useful by surgeons. More than 4000 active users have been reached since inception. The total screen time over approximately 2 years exceeded 1600 hours. This suggests that future surgical simulators of this kind may be sustainable by stakeholders interested in reaching this target audience. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  17. [Geometry of laparoscopy, telesurgery, training and telementoring].

    PubMed

    Rassweiler, J; Frede, T

    2002-03-01

    Laparoscopic surgery in general is handicapped by the reduction of the range of motion from 6 to 4 degrees of freedom. This has a major impact on technically difficult procedures such as laparoscopic radical prostatectomy. Solutions for this problem include understanding the geometry of laparoscopy with sophisticated training programs, but also newly developed surgical robots, computer simulators, and telementoring. This article evaluates the value of these alternatives based on own experience and an analysis of the current literature. Our experience with robot-assisted surgery includes 244 laparoscopic radical prostatectomies using a voice-controlled camera arm (AESOP) and 6 telesurgical interventions with the da Vinci system. Additionally, experimental studies were performed focussing on the geometry of laparoscopy and new training concepts such as perfused pelvitrainers and computer simulation. Three-dimensional systems have not yet proved to be effective due to handling problems such as shutter glasses, video helmets, or reduced brightness. At present, there are only two robotic surgical systems (ZEUS, da Vinci) in clinical use for telesurgery, of which only the da Vinci provides stereovision and all 6 degrees of freedom (DOF). In the meantime, more than 100 laparoscopic radical prostatectomies have been performed with this system. However, there was no evidence of any advantages over the conventional laparoscopic approach. The ZEUS in combination with the telecommunication system SOKRATES is the only device that enables telemanipulation and telementoring over long distances (i.e., transatlantic). Robotic surgery represents a turning point in surgical research. However, broad use of robotic systems is limited mainly because of high investment and running costs. Whereas audiovisual telementoring will play a clear role in future training concepts, the need for telemanipulation or telesurgery has not yet been clarified.

  18. From dV-Trainer to Real Robotic Console: The Limitations of Robotic Skill Training.

    PubMed

    Yang, Kun; Zhen, Hang; Hubert, Nicolas; Perez, Manuela; Wang, Xing Huan; Hubert, Jacques

    To investigate operators' performance quality, mental stress, and ergonomic habits through a training curriculum on robotic simulators. Forty volunteers without robotic surgery experience were recruited to practice 2 exercises on a dV-Trainer (dVT) for 14 hours. The simulator software (M-score a ) provided an automatic evaluation of the overall score for the surgeons' performance. Each participant provided a subjective difficulty score (validity to be proven) for each exercise. Their ergonomic habits were evaluated based on the workspace range and armrest load-validated criteria for evaluating the proficiency of using the armrest. They then repeated the same tasks on a da Vinci Surgical Skill Simulator for a final-level test. Their final scores were compared with their initial scores and the scores of 5 experts on the da Vinci Surgical Skill Simulator. A total of 14 hours of training on the dVT significantly improved the surgeons' performance scores to the expert level with a significantly reduced workload, but their ergonomic score was still far from the expert level. Sufficient training on the dVT improves novices' performance, reduces psychological stress, and inculcates better ergonomic habits. Among the evaluated criteria, novices had the most difficulty in achieving expert levels of ergonomic skills. The training benefits of robotic surgery simulators should be determined with quantified variables. The detection of the limitations during robotic training curricula could guide the targeted training and improve the training effect. Copyright © 2017. Published by Elsevier Inc.

  19. 3D printing to simulate laparoscopic choledochal surgery.

    PubMed

    Burdall, Oliver C; Makin, Erica; Davenport, Mark; Ade-Ajayi, Niyi

    2016-05-01

    Laparoscopic simulation has transformed skills acquisition for many procedures. However, realistic nonbiological simulators for complex reconstructive surgery are rare. Life-like tactile feedback is particularly difficult to reproduce. Technological innovations may contribute novel solutions to these shortages. We describe a hybrid model, harnessing 3D technology to simulate laparoscopic choledochal surgery for the first time. Digital hepatic anatomy images and standard laparoscopic trainer dimensions were employed to create an entry level laparoscopic choledochal surgery model. The information was fed into a 3D systems project 660pro with visijet pxl core powder to create a free standing liver mold. This included a cuboid portal in which to slot disposable hybrid components representing hepatic and pancreatic ducts and choledochal cyst. The mold was used to create soft silicone replicas with T28 resin and T5 fast catalyst. The model was assessed at a national pediatric surgery training day. The 10 delegates that trialed the simulation felt that the tactile likeness was good (5.6/10±1.71, 10=like the real thing), was not too complex (6.2/10±1.35; where 1=too simple, 10=too complicated), and generally very useful (7.36/10±1.57, 10=invaluable). 100% stated that they felt they could reproduce this in their own centers, and 100% would recommend this simulation to colleagues. Though this first phase choledochal cyst excision simulation requires further development, 3D printing provides a useful means of creating specific and detailed simulations for rare and complex operations with huge potential for development. Copyright © 2016. Published by Elsevier Inc.

  20. Comparative analysis of the functionality of simulators of the da Vinci surgical robot.

    PubMed

    Smith, Roger; Truong, Mireille; Perez, Manuela

    2015-04-01

    The implementation of robotic technology in minimally invasive surgery has led to the need to develop more efficient and effective training methods, as well as assessment and skill maintenance tools for surgical education. Multiple simulators and procedures are available for educational and training purposes. A need for comparative evaluations of these simulators exists to aid users in selecting an appropriate device for their purposes. We conducted an objective review and comparison of the design and capabilities of all dedicated simulators of the da Vinci robot, the da Vinci Skill Simulator (DVSS) (Intuitive Surgical Inc., Sunnyvale, CA, USA), dV-Trainer (dVT) (Mimic Technologies Inc., Seattle, WA, USA), and Robotic Surgery Simulator (RoSS) (Simulated Surgical Skills, LLC, Williamsville, NY, USA). This provides base specifications of the hardware and software, with an emphasis on the training capabilities of each system. Each simulator contains a large number of training exercises, DVSS = 40, dVT = 65, and RoSS = 52 for skills development. All three offer 3D visual images but use different display technologies. The DVSS leverages the real robotic surgeon's console to provide visualization, hand controls, and foot pedals. The dVT and RoSS created simulated versions of all of these control systems. They include systems management services which allow instructors to collect, export, and analyze the scores of students using the simulators. This study is the first to provide comparative information of the three simulators functional capabilities with an emphasis on their educational skills. They offer unique advantages and capabilities in training robotic surgeons. Each device has been the subject of multiple validation experiments which have been published in the literature. But those do not provide specific details on the capabilities of the simulators which are necessary for an understanding sufficient to select the one best suited for an organization's needs.

  1. A surgical simulator for peeling the inner limiting membrane during wet conditions.

    PubMed

    Omata, Seiji; Someya, Yusei; Adachi, Shyn'ya; Masuda, Taisuke; Hayakawa, Takeshi; Harada, Kanako; Mitsuishi, Mamoru; Totsuka, Kiyohito; Araki, Fumiyuki; Takao, Muneyuki; Aihara, Makoto; Arai, Fumihito

    2018-01-01

    The present study was performed to establish a novel ocular surgery simulator for training in peeling of the inner limited membrane (ILM). This simulator included a next-generation artificial ILM with mechanical properties similar to the natural ILM that could be peeled underwater in the same manner as in actual surgery. An artificial eye consisting of a fundus and eyeball parts was fabricated. The artificial eye was installed in the eye surgery simulator. The fundus part was mounted in the eyeball, which consisted of an artificial sclera, retina, and ILM. To measure the thickness of the fabricated ILM on the artificial retina, we calculated the distance of the step height as the thickness of the artificial ILM. Two experienced ophthalmologists then assessed the fabricated ILM by sensory evaluation. The minimum thickness of the artificial ILM was 1.9 ± 0.3 μm (n = 3). We were able to perform the peeling task with the ILM in water. Based on the sensory evaluation, an ILM with a minimum thickness and 1000 degrees of polymerization was suitable for training. We installed the eye model on an ocular surgery simulator, which allowed for the performance of a sequence of operations similar to ILM peeling. In conclusion, we developed a novel ocular surgery simulator for ILM peeling. The artificial ILM was peeled underwater in the same manner as in an actual operation.

  2. The use of virtual reality simulation of head trauma in a surgical boot camp.

    PubMed

    Vergara, Victor M; Panaiotis; Kingsley, Darra; Alverson, Dale C; Godsmith, Timothy; Xia, Shan; Caudell, Thomas P

    2009-01-01

    Surgical "boot camps" provide excellent opportunities to enhance orientation, learning, and preparation of new surgery interns as they enter the clinical arena. This paper describes the utilization of an interactive virtual reality (VR) simulation and associated virtual patient (VP) as an additional tool for surgical boot camps. Complementing other forms of simulation, virtual patients (VPs) require less specialized equipment and can also provide a wide variety of medical scenarios. In this paper we discuss a study that measured the learning effectiveness of a real-world VP simulation used by a class of new surgery interns who operated it with a standard computer interface. The usability of the simulator as a learning tool has been demonstrated and measured. This study brings the use of VR simulation with VPs closer to wider application and integration into a training curriculum, such as a surgery intern boot camp.

  3. Virtual reality in ophthalmology training.

    PubMed

    Khalifa, Yousuf M; Bogorad, David; Gibson, Vincent; Peifer, John; Nussbaum, Julian

    2006-01-01

    Current training models are limited by an unstructured curriculum, financial costs, human costs, and time constraints. With the newly mandated resident surgical competency, training programs are struggling to find viable methods of assessing and documenting the surgical skills of trainees. Virtual-reality technologies have been used for decades in flight simulation to train and assess competency, and there has been a recent push in surgical specialties to incorporate virtual-reality simulation into residency programs. These efforts have culminated in an FDA-approved carotid stenting simulator. What role virtual reality will play in the evolution of ophthalmology surgical curriculum is uncertain. The current apprentice system has served the art of surgery for over 100 years, and we foresee virtual reality working synergistically with our current curriculum modalities to streamline and enhance the resident's learning experience.

  4. Prevailing Trends in Haptic Feedback Simulation for Minimally Invasive Surgery.

    PubMed

    Pinzon, David; Byrns, Simon; Zheng, Bin

    2016-08-01

    Background The amount of direct hand-tool-tissue interaction and feedback in minimally invasive surgery varies from being attenuated in laparoscopy to being completely absent in robotic minimally invasive surgery. The role of haptic feedback during surgical skill acquisition and its emphasis in training have been a constant source of controversy. This review discusses the major developments in haptic simulation as they relate to surgical performance and the current research questions that remain unanswered. Search Strategy An in-depth review of the literature was performed using PubMed. Results A total of 198 abstracts were returned based on our search criteria. Three major areas of research were identified, including advancements in 1 of the 4 components of haptic systems, evaluating the effectiveness of haptic integration in simulators, and improvements to haptic feedback in robotic surgery. Conclusions Force feedback is the best method for tissue identification in minimally invasive surgery and haptic feedback provides the greatest benefit to surgical novices in the early stages of their training. New technology has improved our ability to capture, playback and enhance to utility of haptic cues in simulated surgery. Future research should focus on deciphering how haptic training in surgical education can increase performance, safety, and improve training efficiency. © The Author(s) 2016.

  5. Bed Capacity Planning Using Stochastic Simulation Approach in Cardiac-surgery Department of Teaching Hospitals, Tehran, Iran

    PubMed Central

    TORABIPOUR, Amin; ZERAATI, Hojjat; ARAB, Mohammad; RASHIDIAN, Arash; AKBARI SARI, Ali; SARZAIEM, Mahmuod Reza

    2016-01-01

    Background: To determine the hospital required beds using stochastic simulation approach in cardiac surgery departments. Methods: This study was performed from Mar 2011 to Jul 2012 in three phases: First, collection data from 649 patients in cardiac surgery departments of two large teaching hospitals (in Tehran, Iran). Second, statistical analysis and formulate a multivariate linier regression model to determine factors that affect patient's length of stay. Third, develop a stochastic simulation system (from admission to discharge) based on key parameters to estimate required bed capacity. Results: Current cardiac surgery department with 33 beds can only admit patients in 90.7% of days. (4535 d) and will be required to over the 33 beds only in 9.3% of days (efficient cut off point). According to simulation method, studied cardiac surgery department will requires 41–52 beds for admission of all patients in the 12 next years. Finally, one-day reduction of length of stay lead to decrease need for two hospital beds annually. Conclusion: Variation of length of stay and its affecting factors can affect required beds. Statistic and stochastic simulation model are applied and useful methods to estimate and manage hospital beds based on key hospital parameters. PMID:27957466

  6. Computer-assisted preoperative simulation for positioning and fixation of plate in 2-stage procedure combining maxillary advancement by distraction technique and mandibular setback surgery.

    PubMed

    Suenaga, Hideyuki; Taniguchi, Asako; Yonenaga, Kazumichi; Hoshi, Kazuto; Takato, Tsuyoshi

    2016-01-01

    Computer-assisted preoperative simulation surgery is employed to plan and interact with the 3D images during the orthognathic procedure. It is useful for positioning and fixation of maxilla by a plate. We report a case of maxillary retrusion by a bilateral cleft lip and palate, in which a 2-stage orthognathic procedure (maxillary advancement by distraction technique and mandibular setback surgery) was performed following a computer-assisted preoperative simulation planning to achieve the positioning and fixation of the plate. A high accuracy was achieved in the present case. A 21-year-old male patient presented to our department with a complaint of maxillary retrusion following bilateral cleft lip and palate. Computer-assisted preoperative simulation with 2-stage orthognathic procedure using distraction technique and mandibular setback surgery was planned. The preoperative planning of the procedure resulted in good aesthetic outcomes. The error of the maxillary position was less than 1mm. The implementation of the computer-assisted preoperative simulation for the positioning and fixation of plate in 2-stage orthognathic procedure using distraction technique and mandibular setback surgery yielded good results. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Assessment of virtual reality robotic simulation performance by urology resident trainees.

    PubMed

    Ruparel, Raaj K; Taylor, Abby S; Patel, Janil; Patel, Vipul R; Heckman, Michael G; Rawal, Bhupendra; Leveillee, Raymond J; Thiel, David D

    2014-01-01

    To examine resident performance on the Mimic dV-Trainer (MdVT; Mimic Technologies, Inc., Seattle, WA) for correlation with resident trainee level (postgraduate year [PGY]), console experience (CE), and simulator exposure in their training program to assess for internal bias with the simulator. Residents from programs of the Southeastern Section of the American Urologic Association participated. Each resident was scored on 4 simulator tasks (peg board, camera targeting, energy dissection [ED], and needle targeting) with 3 different outcomes (final score, economy of motion score, and time to complete exercise) measured for each task. These scores were evaluated for association with PGY, CE, and simulator exposure. Robotic skills training laboratory. A total of 27 residents from 14 programs of the Southeastern Section of the American Urologic Association participated. Time to complete the ED exercise was significantly shorter for residents who had logged live robotic console compared with those who had not (p = 0.003). There were no other associations with live robotic console time that approached significance (all p ≥ 0.21). The only measure that was significantly associated with PGY was time to complete ED exercise (p = 0.009). No associations with previous utilization of a robotic simulator in the resident's home training program were statistically significant. The ED exercise on the MdVT is most associated with CE and PGY compared with other exercises. Exposure of trainees to the MdVT in training programs does not appear to alter performance scores compared with trainees who do not have the simulator. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.

  8. Intraoperative imaging during Mohs surgery with reflectance confocal microscopy: initial clinical experience

    NASA Astrophysics Data System (ADS)

    Flores, Eileen S.; Cordova, Miguel; Kose, Kivanc; Phillips, William; Rossi, Anthony; Nehal, Kishwer; Rajadhyaksha, Milind

    2015-06-01

    Mohs surgery for the removal of nonmelanoma skin cancers (NMSCs) is performed in stages, while being guided by the examination for residual tumor with frozen pathology. However, preparation of frozen pathology at each stage is time consuming and labor intensive. Real-time intraoperative reflectance confocal microscopy (RCM), combined with video mosaicking, may enable rapid detection of residual tumor directly in the surgical wounds on patients. We report our initial experience on 25 patients, using aluminum chloride for nuclear contrast. Imaging was performed in quadrants in the wound to simulate the Mohs surgeon's examination of pathology. Images and videos of the epidermal and dermal margins were found to be of clinically acceptable quality. Bright nuclear morphology was identified at the epidermal margin and detectable in residual NMSC tumors. The presence of residual tumor and normal skin features could be detected in the peripheral and deep dermal margins. Intraoperative RCM imaging may enable detection of residual tumor directly on patients during Mohs surgery, and may serve as an adjunct for frozen pathology. Ultimately, for routine clinical utility, a stronger tumor-to-dermis contrast may be necessary, and also a smaller microscope with an automated approach for imaging in the entire wound in a rapid and controlled manner.

  9. Characteristics predicting laparoscopic skill in medical students: nine years' experience in a single center.

    PubMed

    Nomura, Tsutomu; Matsutani, Takeshi; Hagiwara, Nobutoshi; Fujita, Itsuo; Nakamura, Yoshiharu; Kanazawa, Yoshikazu; Makino, Hiroshi; Mamada, Yasuhiro; Fujikura, Terumichi; Miyashita, Masao; Uchida, Eiji

    2018-01-01

    We introduced laparoscopic simulator training for medical students in 2007. This study was designed to identify factors that predict the laparoscopic skill of medical students, to identify intergenerational differences in abilities, and to estimate the variability of results in each training group. Our ultimate goal was to determine the optimal educational program for teaching laparoscopic surgery to medical students. Between 2007 and 2015, a total of 270 fifth-year medical students were enrolled in this observational study. Before training, the participants were asked questions about their interest in laparoscopic surgery, experience with playing video games, confidence about driving, and manual dexterity. After the training, aspects of their competence (execution time, instrument path length, and economy of instrument movement) were assessed. Multiple regression analysis identified significant effects of manual dexterity, gender, and confidence about driving on the results of the training. The training results have significantly improved over recent years. The variability among the results in each training group was relatively small. We identified the characteristics of medical students with excellent laparoscopic skills. We observed educational benefits from interactions between medical students within each training group. Our study suggests that selection and grouping are important to the success of modern programs designed to train medical students in laparoscopic surgery.

  10. Instrument Motion Metrics for Laparoscopic Skills Assessment in Virtual Reality and Augmented Reality.

    PubMed

    Fransson, Boel A; Chen, Chi-Ya; Noyes, Julie A; Ragle, Claude A

    2016-11-01

    To determine the construct and concurrent validity of instrument motion metrics for laparoscopic skills assessment in virtual reality and augmented reality simulators. Evaluation study. Veterinarian students (novice, n = 14) and veterinarians (experienced, n = 11) with no or variable laparoscopic experience. Participants' minimally invasive surgery (MIS) experience was determined by hospital records of MIS procedures performed in the Teaching Hospital. Basic laparoscopic skills were assessed by 5 tasks using a physical box trainer. Each participant completed 2 tasks for assessments in each type of simulator (virtual reality: bowel handling and cutting; augmented reality: object positioning and a pericardial window model). Motion metrics such as instrument path length, angle or drift, and economy of motion of each simulator were recorded. None of the motion metrics in a virtual reality simulator showed correlation with experience, or to the basic laparoscopic skills score. All metrics in augmented reality were significantly correlated with experience (time, instrument path, and economy of movement), except for the hand dominance metric. The basic laparoscopic skills score was correlated to all performance metrics in augmented reality. The augmented reality motion metrics differed between American College of Veterinary Surgeons diplomates and residents, whereas basic laparoscopic skills score and virtual reality metrics did not. Our results provide construct validity and concurrent validity for motion analysis metrics for an augmented reality system, whereas a virtual reality system was validated only for the time score. © Copyright 2016 by The American College of Veterinary Surgeons.

  11. A Review of Endoscopic Simulation: Current Evidence on Simulators and Curricula.

    PubMed

    King, Neil; Kunac, Anastasia; Merchant, Aziz M

    2016-01-01

    Upper and lower endoscopy is an important tool that is being utilized more frequently by general surgeons. Training in therapeutic endoscopic techniques has become a mandatory requirement for general surgery residency programs in the United States. The Fundamentals of Endoscopic Surgery has been developed to train and assess competency in these advanced techniques. Simulation has been shown to increase the skill and learning curve of trainees in other surgical disciplines. Several types of endoscopy simulators are commercially available; mechanical trainers, animal based, and virtual reality or computer-based simulators all have their benefits and limitations. However they have all been shown to improve trainee's endoscopic skills. Endoscopic simulators will play a critical role as part of a comprehensive curriculum designed to train the next generation of surgeons. We reviewed recent literature related to the various types of endoscopic simulators and their use in an educational curriculum, and discuss the relevant findings. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  12. Simulation in laparoscopic surgery.

    PubMed

    León Ferrufino, Felipe; Varas Cohen, Julián; Buckel Schaffner, Erwin; Crovari Eulufi, Fernando; Pimentel Müller, Fernando; Martínez Castillo, Jorge; Jarufe Cassis, Nicolás; Boza Wilson, Camilo

    2015-01-01

    Nowadays surgical trainees are faced with a more reduced surgical practice, due to legal limitations and work hourly constraints. Also, currently surgeons are expected to dominate more complex techniques such as laparoscopy. Simulation emerges as a complementary learning tool in laparoscopic surgery, by training in a safe, controlled and standardized environment, without jeopardizing patient' safety. Simulation' objective is that the skills acquired should be transferred to the operating room, allowing reduction of learning curves. The use of simulation has increased worldwide, becoming an important tool in different surgical residency programs and laparoscopic training courses. For several countries, the approval of these training courses are a prerequisite for the acquisition of surgeon title certifications. This article reviews the most important aspects of simulation in laparoscopic surgery, including the most used simulators and training programs, as well as the learning methodologies and the different key ways to assess learning in simulation. Copyright © 2013 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Use of three-dimensional computer graphic animation to illustrate cleft lip and palate surgery.

    PubMed

    Cutting, C; Oliker, A; Haring, J; Dayan, J; Smith, D

    2002-01-01

    Three-dimensional (3D) computer animation is not commonly used to illustrate surgical techniques. This article describes the surgery-specific processes that were required to produce animations to teach cleft lip and palate surgery. Three-dimensional models were created using CT scans of two Chinese children with unrepaired clefts (one unilateral and one bilateral). We programmed several custom software tools, including an incision tool, a forceps tool, and a fat tool. Three-dimensional animation was found to be particularly useful for illustrating surgical concepts. Positioning the virtual "camera" made it possible to view the anatomy from angles that are impossible to obtain with a real camera. Transparency allows the underlying anatomy to be seen during surgical repair while maintaining a view of the overlaying tissue relationships. Finally, the representation of motion allows modeling of anatomical mechanics that cannot be done with static illustrations. The animations presented in this article can be viewed on-line at http://www.smiletrain.org/programs/virtual_surgery2.htm. Sophisticated surgical procedures are clarified with the use of 3D animation software and customized software tools. The next step in the development of this technology is the creation of interactive simulators that recreate the experience of surgery in a safe, digital environment. Copyright 2003 Wiley-Liss, Inc.

  14. Local and national laparoscopic skill competitions: residents' opinions and impact on adoption of simulation-based training.

    PubMed

    McCreery, Greig L; El-Beheiry, Mostafa; Schlachta, Christopher M

    2017-11-01

    Dedicated practice using laparoscopic simulators improves operative performance. Yet, voluntary utilization is minimal. We hypothesized that skill competition between peers, at the local and national level, positively influences residents' use of laparoscopic simulators. A web-based survey evaluated the relationship between Canadian General Surgery residents' use of laparoscopic simulation and participation in competition. Secondary outcomes assessed attitudes regarding simulation training, factors limiting use, and associations between competition level and usage. One hundred ninety (23%) of 826 potential participants responded. Eighty-three percent rated their laparoscopic abilities as novice or intermediate. More than 70% agreed that use of simulation practice improves intra-operative performance, and should be a mandatory component of training. However, 58% employed simulator practice less than once per month, and 18% never used a simulator. Sixty-five percent engaged in simulator training for 5 h or less over the preceding 6 months. Seventy-three percent had participated in laparoscopic skill competition. Of those, 51% agreed that competition was a motivation for simulation practice. No association was found between those with competition experience and simulator use. However, 83% of those who had competed nationally reported >5 h of simulator use in the previous 6 months compared to those with no competition experience (26%), local competition (40%), and local national-qualifying competition (23%) (p < 0.001). This study does not support the hypothesis that competition alone universally increases voluntary use of simulation-based training, with only the minority of individuals competing at the national level demonstrated significantly higher simulation use. However, simulation training was perceived as a valuable exercise. Lack of time and access to simulators, as opposed to lack of interest, were the most commonly reported to limited use.

  15. Development of a Haptic Interface for Natural Orifice Translumenal Endoscopic Surgery Simulation

    PubMed Central

    Dargar, Saurabh; Sankaranarayanan, Ganesh

    2016-01-01

    Natural orifice translumenal endoscopic surgery (NOTES) is a minimally invasive procedure, which utilizes the body’s natural orifices to gain access to the peritoneal cavity. The NOTES procedure is designed to minimize external scarring and patient trauma, however flexible endoscopy based pure NOTES procedures require critical scope handling skills. The delicate nature of the NOTES procedure requires extensive training, thus to improve access to training while reducing risk to patients we have designed and developed the VTEST©, a virtual reality NOTES simulator. As part of the simulator, a novel decoupled 2-DOF haptic device was developed to provide realistic force feedback to the user in training. A series of experiments were performed to determine the behavioral characteristics of the device. The device was found capable of rendering up to 5.62N and 0.190Nm of continuous force and torque in the translational and rotational DOF, respectively. The device possesses 18.1Hz and 5.7Hz of force bandwidth in the translational and rotational DOF, respectively. A feedforward friction compensator was also successfully implemented to minimize the negative impact of friction during the interaction with the device. In this work we have presented the detailed development and evaluation of the haptic device for the VTEST©. PMID:27008674

  16. State of the evidence on simulation-based training for laparoscopic surgery: a systematic review.

    PubMed

    Zendejas, Benjamin; Brydges, Ryan; Hamstra, Stanley J; Cook, David A

    2013-04-01

    Summarize the outcomes and best practices of simulation training for laparoscopic surgery. Simulation-based training for laparoscopic surgery has become a mainstay of surgical training. Much new evidence has accrued since previous reviews were published. We systematically searched the literature through May 2011 for studies evaluating simulation, in comparison with no intervention or an alternate training activity, for training health professionals in laparoscopic surgery. Outcomes were classified as satisfaction, skills (in a test setting) of time (to perform the task), process (eg, performance rating), product (eg, knot strength), and behaviors when caring for patients. We used random effects to pool effect sizes. From 10,903 articles screened, we identified 219 eligible studies enrolling 7138 trainees, including 91 (42%) randomized trials. For comparisons with no intervention (n = 151 studies), pooled effect size (ES) favored simulation for outcomes of knowledge (1.18; N = 9 studies), skills time (1.13; N = 89), skills process (1.23; N = 114), skills product (1.09; N = 7), behavior time (1.15; N = 7), behavior process (1.22; N = 15), and patient effects (1.28; N = 1), all P < 0.05. When compared with nonsimulation instruction (n = 3 studies), results significantly favored simulation for outcomes of skills time (ES, 0.75) and skills process (ES, 0.54). Comparisons between different simulation interventions (n = 79 studies) clarified best practices. For example, in comparison with virtual reality, box trainers have similar effects for process skills outcomes and seem to be superior for outcomes of satisfaction and skills time. Simulation-based laparoscopic surgery training of health professionals has large benefits when compared with no intervention and is moderately more effective than nonsimulation instruction.

  17. Status of Microsurgical Simulation Training in Plastic Surgery: A Survey of United States Program Directors.

    PubMed

    Al-Bustani, Saif; Halvorson, Eric G

    2016-06-01

    Various simulation models for microsurgery have been developed to overcome the limitations of Halstedian training on real patients. We wanted to assess the status of microsurgery simulation in plastic surgery residency programs in the United States. Data were analyzed from responses to a survey sent to all plastic surgery program directors in the United States, asking for type of simulation, quality of facilities, utilization by trainees, evaluation of trainee sessions, and perception of the relevance of simulation. The survey response rate was 50%. Of all programs, 69% provide microsurgical simulation and 75% of these have a laboratory with microscope and 52% provide live animal models. Half share facilities with other departments. The quality of facilities is rated as good or great in 89%. Trainee utilization is once every 3 to 6 months in 82% of programs. Only in 11% is utilization monthly. Formal evaluation of simulation sessions is provided by 41% of programs. All program directors agree simulation is relevant to competence in microsurgery, 60% agree simulation should be mandatory, and 43% require trainees to complete a formal microsurgery course prior to live surgery. There seems to be consensus that microsurgical simulation improves competence, and the majority of program directors agree it should be mandatory. Developing and implementing standardized simulation modules and assessment tools for trainees across the nation as part of a comprehensive competency-based training program for microsurgery is an important patient safety initiative that should be considered. Organizing with other departments to share facilities may improve their quality and hence utilization.

  18. Development and validation of a numerical model for cross-section optimization of a multi-part probe for soft tissue intervention.

    PubMed

    Frasson, L; Neubert, J; Reina, S; Oldfield, M; Davies, B L; Rodriguez Y Baena, F

    2010-01-01

    The popularity of minimally invasive surgical procedures is driving the development of novel, safer and more accurate surgical tools. In this context a multi-part probe for soft tissue surgery is being developed in the Mechatronics in Medicine Laboratory at Imperial College, London. This study reports an optimization procedure using finite element methods, for the identification of an interlock geometry able to limit the separation of the segments composing the multi-part probe. An optimal geometry was obtained and the corresponding three-dimensional finite element model validated experimentally. Simulation results are shown to be consistent with the physical experiments. The outcome of this study is an important step in the provision of a novel miniature steerable probe for surgery.

  19. Preoperative planning of thoracic surgery with use of three-dimensional reconstruction, rapid prototyping, simulation and virtual navigation.

    PubMed

    Heuts, Samuel; Sardari Nia, Peyman; Maessen, Jos G

    2016-01-01

    For the past decades, surgeries have become more complex, due to the increasing age of the patient population referred for thoracic surgery, more complex pathology and the emergence of minimally invasive thoracic surgery. Together with the early detection of thoracic disease as a result of innovations in diagnostic possibilities and the paradigm shift to personalized medicine, preoperative planning is becoming an indispensable and crucial aspect of surgery. Several new techniques facilitating this paradigm shift have emerged. Pre-operative marking and staining of lesions are already a widely accepted method of preoperative planning in thoracic surgery. However, three-dimensional (3D) image reconstructions, virtual simulation and rapid prototyping (RP) are still in development phase. These new techniques are expected to become an important part of the standard work-up of patients undergoing thoracic surgery in the future. This review aims at graphically presenting and summarizing these new diagnostic and therapeutic tools.

  20. Effectiveness of short-term endoscopic surgical skill training for young pediatric surgeons: a validation study using the laparoscopic fundoplication simulator.

    PubMed

    Jimbo, Takahiro; Ieiri, Satoshi; Obata, Satoshi; Uemura, Munenori; Souzaki, Ryota; Matsuoka, Noriyuki; Katayama, Tamotsu; Masumoto, Kouji; Hashizume, Makoto; Taguchi, Tomoaki

    2015-10-01

    Pediatric surgeons require highly advanced skills when performing endoscopic surgery; however, their experience is often limited in comparison to general surgeons. The aim of this study was to evaluate the effectiveness of endoscopic surgery training for less-experienced pediatric surgeons and then compare their skills before and after training. Young pediatric surgeons (n = 7) who participated in this study underwent a 2-day endoscopic skill training program, consisting of lectures, box training and live tissue training. The trainees performed the Nissen construction tasks before and after training using our objective evaluation system. A statistical analysis was conducted using the two-tailed paired Student's t tests. The time for task was 984 ± 220 s before training and 645 ± 92.8 s after training (p < 0.05). The total path length of both forceps was 37855 ± 10586 mm before training and 22582 ± 3045 mm after training (p < 0.05). The average velocity of both forceps was 26.1 ± 3.68 mm/s before training and 22.9 ± 2.47 mm/sec after training (p < 0.1). The right and left balance of suturing was improved after training (p < 0.05). Pediatric surgery trainees improved their surgical skills after receiving short-term training. We demonstrated the effectiveness of our training program, which utilized a new laparoscopic fundoplication simulator.

  1. Telescience testbed: operational support functions for biomedical experiments.

    PubMed

    Yamashita, M; Watanabe, S; Shoji, T; Clarke, A H; Suzuki, H; Yanagihara, D

    1992-07-01

    A telescience testbed was conducted to study the methodology of space biomedicine with simulated constraints imposed on space experiments. An experimental subject selected for this testbedding was an elaborate surgery of animals and electrophysiological measurements conducted by an operator onboard. The standing potential in the ampulla of the pigeon's semicircular canal was measured during gravitational and caloric stimulation. A principal investigator, isolated from the operation site, participated in the experiment interactively by telecommunication links. Reliability analysis was applied to the whole layers of experimentation, including design of experimental objectives and operational procedures. Engineering and technological aspects of telescience are discussed in terms of reliability to assure quality of science. Feasibility of robotics was examined for supportive functions to reduce the workload of the onboard operator.

  2. A review of training research and virtual reality simulators for the da Vinci surgical system.

    PubMed

    Liu, May; Curet, Myriam

    2015-01-01

    PHENOMENON: Virtual reality simulators are the subject of several recent studies of skills training for robot-assisted surgery. Yet no consensus exists regarding what a core skill set comprises or how to measure skill performance. Defining a core skill set and relevant metrics would help surgical educators evaluate different simulators. This review draws from published research to propose a core technical skill set for using the da Vinci surgeon console. Publications on three commercial simulators were used to evaluate the simulators' content addressing these skills and associated metrics. An analysis of published research suggests that a core technical skill set for operating the surgeon console includes bimanual wristed manipulation, camera control, master clutching to manage hand position, use of third instrument arm, activating energy sources, appropriate depth perception, and awareness of forces applied by instruments. Validity studies of three commercial virtual reality simulators for robot-assisted surgery suggest that all three have comparable content and metrics. However, none have comprehensive content and metrics for all core skills. INSIGHTS: Virtual reality simulation remains a promising tool to support skill training for robot-assisted surgery, yet existing commercial simulator content is inadequate for performing and assessing a comprehensive basic skill set. The results of this evaluation help identify opportunities and challenges that exist for future developments in virtual reality simulation for robot-assisted surgery. Specifically, the inclusion of educational experts in the development cycle alongside clinical and technological experts is recommended.

  3. Advanced technologies in plastic surgery: how new innovations can improve our training and practice.

    PubMed

    Grunwald, Tiffany; Krummel, Thomas; Sherman, Randy

    2004-11-01

    Over the last two decades, virtual reality, haptics, simulators, robotics, and other "advanced technologies" have emerged as important innovations in medical learning and practice. Reports on simulator applications in medicine now appear regularly in the medical, computer science, engineering, and popular literature. The goal of this article is to review the emerging intersection between advanced technologies and surgery and how new technology is being utilized in several surgical fields, particularly plastic surgery. The authors also discuss how plastic and reconstructive surgeons can benefit by working to further the development of multimedia and simulated environment technologies in surgical practice and training.

  4. Renal surgery in the new millennium.

    PubMed

    Delvecchio, F C; Preminger, G M

    2000-11-01

    In the not too distant future, the minimally invasive renal surgeon will be able to practice an operation on a difficult case on a three-dimensional virtual reality simulator, providing all attributes of the real procedure. The patient's imaging studies will be imported into the simulator to better mimic particular anatomy. When confident enough of his or her skills, the surgeon will start operating on the patient using the same virtual reality simulator/telepresence surgery console system, which will permit the live surgery to be conducted by robots hundreds of miles away. The robots will manipulate miniature endoscopes or control minimally or noninvasive ablative technologies. Endoscopic/laparoscopic footage of the surgical procedure will be stored digitally in optical disks to be used later in telementoring of a surgery resident. All this and more will be possible in the not so distant third millennium.

  5. Effect of Endovascular Interventions on General Surgery Trainee Operative Experience; a Comparison of Case Log Reports.

    PubMed

    Pedersen, Rose C; Li, Yiping; Chang, Jason S; Lew, Wesley K; Patel, Kaushal Kevin

    2016-05-01

    Vascular surgery fellowship training has evolved with the widespread adoption of endovascular interventions. The purpose of this study is to examine how general surgery trainee exposure to vascular surgery has changed over time. Review of the Accreditation Council for Graduate Medical Education national case log reports for graduating Vascular Surgery Fellows (VF), and general surgery residents (GSR) from 2001 to 2012 was performed. The number of GSR increased from 1021 to 1098, and the number of VF increased from 96 to 121 from 2001 to 2012. The total number of vascular cases done by VF increased by 1161 since 2001 (298-762), whereas the total number of vascular cases done by GSR has decreased by 40% during this time period (186-116). Vascular fellows increase was due primarily to an increase in endovascular experience; a finding not noted in general surgery residents. Vascular fellow case log changes are due primarily to an increase in endovascular experience that has not been mirrored by general surgery trainees. Open surgery experience has decreased overall for general surgery residents in all major categories, a change not seen in vascular surgery fellows. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Construct and face validity of a virtual reality-based camera navigation curriculum.

    PubMed

    Shetty, Shohan; Panait, Lucian; Baranoski, Jacob; Dudrick, Stanley J; Bell, Robert L; Roberts, Kurt E; Duffy, Andrew J

    2012-10-01

    Camera handling and navigation are essential skills in laparoscopic surgery. Surgeons rely on camera operators, usually the least experienced members of the team, for visualization of the operative field. Essential skills for camera operators include maintaining orientation, an effective horizon, appropriate zoom control, and a clean lens. Virtual reality (VR) simulation may be a useful adjunct to developing camera skills in a novice population. No standardized VR-based camera navigation curriculum is currently available. We developed and implemented a novel curriculum on the LapSim VR simulator platform for our residents and students. We hypothesize that our curriculum will demonstrate construct and face validity in our trainee population, distinguishing levels of laparoscopic experience as part of a realistic training curriculum. Overall, 41 participants with various levels of laparoscopic training completed the curriculum. Participants included medical students, surgical residents (Postgraduate Years 1-5), fellows, and attendings. We stratified subjects into three groups (novice, intermediate, and advanced) based on previous laparoscopic experience. We assessed face validity with a questionnaire. The proficiency-based curriculum consists of three modules: camera navigation, coordination, and target visualization using 0° and 30° laparoscopes. Metrics include time, target misses, drift, path length, and tissue contact. We analyzed data using analysis of variance and Student's t-test. We noted significant differences in repetitions required to complete the curriculum: 41.8 for novices, 21.2 for intermediates, and 11.7 for the advanced group (P < 0.05). In the individual modules, coordination required 13.3 attempts for novices, 4.2 for intermediates, and 1.7 for the advanced group (P < 0.05). Target visualization required 19.3 attempts for novices, 13.2 for intermediates, and 8.2 for the advanced group (P < 0.05). Participants believe that training improves camera handling skills (95%), is relevant to surgery (95%), and is a valid training tool (93%). Graphics (98%) and realism (93%) were highly regarded. The VR-based camera navigation curriculum demonstrates construct and face validity for our training population. Camera navigation simulation may be a valuable tool that can be integrated into training protocols for residents and medical students during their surgery rotations. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. A new system for evaluation of armrest use in robotic surgery and validation of a new ergonomic concept - armrest load.

    PubMed

    Yang, K; Perez, M; Perrenot, C; Hubert, N; Felblinger, J; Hubert, J

    2016-12-01

    The da Vinci robot provides a sitting position and an armrest to decrease workload and increase dexterity. We investigated the surgeon's ergonomic behaviour by installing force sensors on the dV-Trainer® simulator's armrest to measure the 'armrest load' during the performance of simulated exercises. Five experts and 48 novices performed two robotic simulation exercises on the dV-Trainer. We calculated the armrest load and evaluated their armrest-using habits. Overall score and workspace range were evaluated automatically by the simulator and compared with armrest load. Statistically significant differences exist for overall score, workspace range and armrest load between novices and experts. The armrest load score is a direct, sensitive measure for the ergonomic evaluation of a simulator's armrest use. This experience-dependent ergonomic difference between experts and novices (p = 0.007) highlights the importance of ergonomic training for novice robot users. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Measuring performance in virtual reality phacoemulsification surgery

    NASA Astrophysics Data System (ADS)

    Söderberg, Per; Laurell, Carl-Gustaf; Simawi, Wamidh; Skarman, Eva; Nordh, Leif; Nordqvist, Per

    2008-02-01

    We have developed a virtual reality (VR) simulator for phacoemulsification surgery. The current work aimed at developing a relative performance index that characterizes the performance of an individual trainee. We recorded measurements of 28 response variables during three iterated surgical sessions in 9 experienced cataract surgeons, separately for the sculpting phase and the evacuation phase of phacoemulsification surgery and compared their outcome to that of a reference group of naive trainees. We defined an individual overall performance index, an individual class specific performance index and an individual variable specific performance index. We found that on an average the experienced surgeons performed at a lower level than a reference group of naive trainees but that this was particularly attributed to a few surgeons. When their overall performance index was further analyzed as class specific performance index and variable specific performance index it was found that the low level performance was attributed to a behavior that is acceptable for an experienced surgeon but not for a naive trainee. It was concluded that relative performance indices should use a reference group that corresponds to the measured individual since the definition of optimal surgery may vary among trainee groups depending on their level of experience.

  9. The Effect of Product Safety Courses on the Adoption and Outcomes of LESS Surgery

    PubMed Central

    Toomey, Paul G.; Ross, Sharona B.; Choung, Edward; Donn, Natalie; Vice, Michelle; Luberice, Kenneth; Albrink, Michael

    2015-01-01

    Background and Objectives: As technology in surgery evolves, the medical instrument industry is inevitability involved in promoting the use and appropriate (ie, effective and safe) application of its products. This study was undertaken to evaluate industry-supported product safety courses in laparoendoscopic single-site (LESS) surgery, by using the metrics of surgeons' adoption of the technique, safety of the procedure, and surgeons' perception of the surgery. Methods: LESS surgery courses that involved didactic lectures, operative videos, operation observation, collaborative learning, and simulation, were attended by 226 surgeons. With Florida Hospital Tampa Institutional Review Board approval, the surgeons were queried before and immediately after the course, to assess their attitudes toward LESS surgery. Then, well after the course, the surgeons were contacted, repeatedly if necessary, to complete questionnaires. Results: Before the course, 82% of the surgeons undertook more than 10 laparoscopic operations per month. Immediately after the course, 86% were confident that they were prepared to perform LESS surgery. Months after the course, 77% of the respondents had adopted LESS surgery, primarily cholecystectomy; 59% had added 1 or more trocars in 0–20% of their procedures; and 73% held the opinion that operating room observation was the most helpful learning experience. Complications with LESS surgery were noted 12% of the time. Advantages of the technique were better cosmesis (58%) and patient satisfaction (38%). Disadvantages included risk of complications (37%) and higher technical demand (25%). Seventy-eight percent viewed LESS surgery as an advancement in surgical technique. Conclusion: In multifaceted product safety courses, operating room observation is thought to provide the most helpful instruction for those wanting to undertake LESS surgery. The procedure has been safely adopted by surgeons who frequently perform laparoscopies. The tradeoff is in performing a more difficult technique to obtain better cosmesis for the patient. We must continue to conduct critical evaluations of product safety courses for the introduction of new technology in surgery. PMID:26045652

  10. The Effect of Product Safety Courses on the Adoption and Outcomes of LESS Surgery.

    PubMed

    Toomey, Paul G; Ross, Sharona B; Choung, Edward; Donn, Natalie; Vice, Michelle; Luberice, Kenneth; Albrink, Michael; Rosemurgy, Alexander S

    2015-01-01

    As technology in surgery evolves, the medical instrument industry is inevitability involved in promoting the use and appropriate (ie, effective and safe) application of its products. This study was undertaken to evaluate industry-supported product safety courses in laparoendoscopic single-site (LESS) surgery, by using the metrics of surgeons' adoption of the technique, safety of the procedure, and surgeons' perception of the surgery. LESS surgery courses that involved didactic lectures, operative videos, operation observation, collaborative learning, and simulation, were attended by 226 surgeons. With Florida Hospital Tampa Institutional Review Board approval, the surgeons were queried before and immediately after the course, to assess their attitudes toward LESS surgery. Then, well after the course, the surgeons were contacted, repeatedly if necessary, to complete questionnaires. Before the course, 82% of the surgeons undertook more than 10 laparoscopic operations per month. Immediately after the course, 86% were confident that they were prepared to perform LESS surgery. Months after the course, 77% of the respondents had adopted LESS surgery, primarily cholecystectomy; 59% had added 1 or more trocars in 0-20% of their procedures; and 73% held the opinion that operating room observation was the most helpful learning experience. Complications with LESS surgery were noted 12% of the time. Advantages of the technique were better cosmesis (58%) and patient satisfaction (38%). Disadvantages included risk of complications (37%) and higher technical demand (25%). Seventy-eight percent viewed LESS surgery as an advancement in surgical technique. In multifaceted product safety courses, operating room observation is thought to provide the most helpful instruction for those wanting to undertake LESS surgery. The procedure has been safely adopted by surgeons who frequently perform laparoscopies. The tradeoff is in performing a more difficult technique to obtain better cosmesis for the patient. We must continue to conduct critical evaluations of product safety courses for the introduction of new technology in surgery.

  11. Using a virtual reality temporal bone simulator to assess otolaryngology trainees.

    PubMed

    Zirkle, Molly; Roberson, David W; Leuwer, Rudolf; Dubrowski, Adam

    2007-02-01

    The objective of this study is to determine the feasibility of computerized evaluation of resident performance using hand motion analysis on a virtual reality temporal bone (VR TB) simulator. We hypothesized that both computerized analysis and expert ratings would discriminate the performance of novices from experienced trainees. We also hypothesized that performance on the virtual reality temporal bone simulator (VR TB) would differentiate based on previous drilling experience. The authors conducted a randomized, blind assessment study. Nineteen volunteers from the Otolaryngology-Head and Neck Surgery training program at the University of Toronto drilled both a cadaveric TB and a simulated VR TB. Expert reviewers were asked to assess operative readiness of the trainee based on a blind video review of their performance. Computerized hand motion analysis of each participant's performance was conducted. Expert raters were able to discriminate novices from experienced trainees (P < .05) on cadaveric temporal bones, and there was a trend toward discrimination on VR TB performance. Hand motion analysis showed that experienced trainees had better movement economy than novices (P < .05) on the VR TB. Performance, as measured by hand motion analysis on the VR TB simulator, reflects trainees' previous drilling experience. This study suggests that otolaryngology trainees could accomplish initial temporal bone training on a VR TB simulator, which can provide feedback to the trainee, and may reduce the need for constant faculty supervision and evaluation.

  12. Bassett healthcare rural surgery experience.

    PubMed

    Borgstrom, David C; Heneghan, Steven J

    2009-12-01

    The surgical training at Bassett is naturally broader than in many university settings, with a survey showing that nearly 70% of graduates who practice general surgery remain in a rurally designated area. Rural surgery experience falls into 3 categories: undergraduate, graduate, and postgraduate. The general surgery training program has no competing fellowships or subspecialty residencies; residents get significant experience with endoscopy; ear, nose, and throat; plastic and hand surgery; and obstetrics and gynecology. The rural setting lifestyle is valued by the students, residents, and fellows alike. It provides an ideal setting for recognizing the specific nuances of small-town American life, with a high-quality education and surgical experience.

  13. Educational program in crisis management for cardiac surgery teams including high realism simulation.

    PubMed

    Stevens, Louis-Mathieu; Cooper, Jeffrey B; Raemer, Daniel B; Schneider, Robert C; Frankel, Allan S; Berry, William R; Agnihotri, Arvind K

    2012-07-01

    Cardiac surgery demands effective teamwork for safe, high-quality care. The objective of this pilot study was to develop a comprehensive program to sharpen performance of experienced cardiac surgical teams in acute crisis management. We developed and implemented an educational program for cardiac surgery based on high realism acute crisis simulation scenarios and interactive whole-unit workshop. The impact of these interventions was assessed with postintervention questionnaires, preintervention and 6-month postintervention surveys, and structured interviews. The realism of the acute crisis simulation scenarios gradually improved; most participants rated both the simulation and whole-unit workshop as very good or excellent. Repeat simulation training was recommended every 6 to 12 months by 82% of the participants. Participants of the interactive workshop identified 2 areas of highest priority: encouraging speaking up about critical information and interprofessional information sharing. They also stressed the importance of briefings, early communication of surgical plan, knowing members of the team, and continued simulation for practice. The pre/post survey response rates were 70% (55/79) and 66% (52/79), respectively. The concept of working as a team improved between surveys (P = .028), with a trend for improvement in gaining common understanding of the plan before a procedure (P = .075) and appropriate resolution of disagreements (P = .092). Interviewees reported that the training had a positive effect on their personal behaviors and patient care, including speaking up more readily and communicating more clearly. Comprehensive team training using simulation and a whole-unit interactive workshop can be successfully deployed for experienced cardiac surgery teams with demonstrable benefits in participant's perception of team performance. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  14. Three-Dimensional Liver Surgery Simulation: Computer-Assisted Surgical Planning with Three-Dimensional Simulation Software and Three-Dimensional Printing.

    PubMed

    Oshiro, Yukio; Ohkohchi, Nobuhiro

    2017-06-01

    To perform accurate hepatectomy without injury, it is necessary to understand the anatomical relationship among the branches of Glisson's sheath, hepatic veins, and tumor. In Japan, three-dimensional (3D) preoperative simulation for liver surgery is becoming increasingly common, and liver 3D modeling and 3D hepatectomy simulation by 3D analysis software for liver surgery have been covered by universal healthcare insurance since 2012. Herein, we review the history of virtual hepatectomy using computer-assisted surgery (CAS) and our research to date, and we discuss the future prospects of CAS. We have used the SYNAPSE VINCENT medical imaging system (Fujifilm Medical, Tokyo, Japan) for 3D visualization and virtual resection of the liver since 2010. We developed a novel fusion imaging technique combining 3D computed tomography (CT) with magnetic resonance imaging (MRI). The fusion image enables us to easily visualize anatomic relationships among the hepatic arteries, portal veins, bile duct, and tumor in the hepatic hilum. In 2013, we developed an original software, called Liversim, which enables real-time deformation of the liver using physical simulation, and a randomized control trial has recently been conducted to evaluate the use of Liversim and SYNAPSE VINCENT for preoperative simulation and planning. Furthermore, we developed a novel hollow 3D-printed liver model whose surface is covered with frames. This model is useful for safe liver resection, has better visibility, and the production cost is reduced to one-third of a previous model. Preoperative simulation and navigation with CAS in liver resection are expected to help planning and conducting a surgery and surgical education. Thus, a novel CAS system will contribute to not only the performance of reliable hepatectomy but also to surgical education.

  15. 6th Yahya Cohen Lecture: visual experience during cataract surgery.

    PubMed

    Au Eong, K G

    2002-09-01

    The visual sensations many patients experience during cataract surgery under local anaesthesia have received little attention until recently. This paper reviews the recent studies on this phenomenon, discusses its clinical significance and suggests novel approaches to reduce its negative impact on the surgery. Literature review. Many patients who have cataract surgery under retrobulbar, peribulbar or topical anaesthesia experience a variety of visual sensations in their operated eye during surgery. These visual sensations include perception of light, movements, flashes, one or more colours, surgical instruments, the surgeon's hand/fingers, the surgeon and changes in light brightness. Some patients experience transient no light perception, even if the operation is performed under topical anaesthesia. The clinical significance of this phenomenon lies in the fact that approximately 7.1% to 15.4% of patients find their visual experience frightening. This fear and anxiety may cause some patients to become uncooperative during surgery and trigger a sympathetic surge, causing such undesirable effects as hypertension, tachycardia, ischaemic strain on the heart, hyperventilation and acute panic attack. Several approaches to reduce the negative impact of patients' visual experience are suggested, including appropriate preoperative counselling and reducing the ability of patients to see during surgery. The findings that some patients find their intraoperative visual experience distressing have a major impact on the way ophthalmologists manage their cataract patients. To reduce its negative impact, surgeons should consider incorporating appropriate preoperative counselling on potential intraoperative visual experience when obtaining informed consent for surgery.

  16. Training less-experienced faculty improves reliability of skills assessment in cardiac surgery.

    PubMed

    Lou, Xiaoying; Lee, Richard; Feins, Richard H; Enter, Daniel; Hicks, George L; Verrier, Edward D; Fann, James I

    2014-12-01

    Previous work has demonstrated high inter-rater reliability in the objective assessment of simulated anastomoses among experienced educators. We evaluated the inter-rater reliability of less-experienced educators and the impact of focused training with a video-embedded coronary anastomosis assessment tool. Nine less-experienced cardiothoracic surgery faculty members from different institutions evaluated 2 videos of simulated coronary anastomoses (1 by a medical student and 1 by a resident) at the Thoracic Surgery Directors Association Boot Camp. They then underwent a 30-minute training session using an assessment tool with embedded videos to anchor rating scores for 10 components of coronary artery anastomosis. Afterward, they evaluated 2 videos of a different student and resident performing the task. Components were scored on a 1 to 5 Likert scale, yielding an average composite score. Inter-rater reliabilities of component and composite scores were assessed using intraclass correlation coefficients (ICCs) and overall pass/fail ratings with kappa. All components of the assessment tool exhibited improvement in reliability, with 4 (bite, needle holder use, needle angles, and hand mechanics) improving the most from poor (ICC range, 0.09-0.48) to strong (ICC range, 0.80-0.90) agreement. After training, inter-rater reliabilities for composite scores improved from moderate (ICC, 0.76) to strong (ICC, 0.90) agreement, and for overall pass/fail ratings, from poor (kappa = 0.20) to moderate (kappa = 0.78) agreement. Focused, video-based anchor training facilitates greater inter-rater reliability in the objective assessment of simulated coronary anastomoses. Among raters with less teaching experience, such training may be needed before objective evaluation of technical skills. Published by Elsevier Inc.

  17. Porcine cadaver organ or virtual-reality simulation training for laparoscopic cholecystectomy: a randomized, controlled trial.

    PubMed

    Van Bruwaene, Siska; Schijven, Marlies P; Napolitano, Daniel; De Win, Gunter; Miserez, Marc

    2015-01-01

    As conventional laparoscopic procedural training requires live animals or cadaver organs, virtual simulation seems an attractive alternative. Therefore, we compared the transfer of training for the laparoscopic cholecystectomy from porcine cadaver organs vs virtual simulation to surgery in a live animal model in a prospective randomized trial. After completing an intensive training in basic laparoscopic skills, 3 groups of 10 participants proceeded with no additional training (control group), 5 hours of cholecystectomy training on cadaver organs (= organ training) or proficiency-based cholecystectomy training on the LapMentor (= virtual-reality training). Participants were evaluated on time and quality during a laparoscopic cholecystectomy on a live anaesthetized pig at baseline, 1 week (= post) and 4 months (= retention) after training. All research was performed in the Center for Surgical Technologies, Leuven, Belgium. In total, 30 volunteering medical students without prior experience in laparoscopy or minimally invasive surgery from the University of Leuven (Belgium). The organ training group performed the procedure significantly faster than the virtual trainer and borderline significantly faster than control group at posttesting. Only 1 of 3 expert raters suggested significantly better quality of performance of the organ training group compared with both the other groups at posttesting (p < 0.01). There were no significant differences between groups at retention testing. The virtual trainer group did not outperform the control group at any time. For trainees who are proficient in basic laparoscopic skills, the long-term advantage of additional procedural training, especially on a virtual but also on the conventional organ training model, remains to be proven. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  18. Initial laparoscopic basic skills training shortens the learning curve of laparoscopic suturing and is cost-effective.

    PubMed

    Stefanidis, Dimitrios; Hope, William W; Korndorffer, James R; Markley, Sarah; Scott, Daniel J

    2010-04-01

    Laparoscopic suturing is an advanced skill that is difficult to acquire. Simulator-based skills curricula have been developed that have been shown to transfer to the operating room. Currently available skills curricula need to be optimized. We hypothesized that mastering basic laparoscopic skills first would shorten the learning curve of a more complex laparoscopic task and reduce resource requirements for the Fundamentals of Laparoscopic Surgery suturing curriculum. Medical students (n = 20) with no previous simulator experience were enrolled in an IRB-approved protocol, pretested on the Fundamentals of Laparoscopic Surgery suturing model, and randomized into 2 groups. Group I (n = 10) trained (unsupervised) until proficiency levels were achieved on 5 basic tasks; Group II (n = 10) received no basic training. Both groups then trained (supervised) on the Fundamentals of Laparoscopic Surgery suturing model until previously reported proficiency levels were achieved. Two weeks later, they were retested to evaluate their retention scores, training parameters, instruction requirements, and cost between groups using t-test. Baseline characteristics and performance were similar for both groups, and 9 of 10 subjects in each group achieved the proficiency levels. The initial performance on the simulator was better for Group I after basic skills training, and their suturing learning curve was shorter compared with Group II. In addition, Group I required less active instruction. Overall time required to finish the curriculum was similar for both groups; but the Group I training strategy cost less, with a savings of $148 per trainee. Teaching novices basic laparoscopic skills before a more complex laparoscopic task produces substantial cost savings. Additional studies are needed to assess the impact of such integrated curricula on ultimate educational benefit. Copyright (c) 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  19. [Team training and assessment in mixed reality-based simulated operating room : Current state of research in the field of simulation in spine surgery exemplified by the ATMEOS project].

    PubMed

    Stefan, P; Pfandler, M; Wucherer, P; Habert, S; Fürmetz, J; Weidert, S; Euler, E; Eck, U; Lazarovici, M; Weigl, M; Navab, N

    2018-04-01

    Surgical simulators are being increasingly used as an attractive alternative to clinical training in addition to conventional animal models and human specimens. Typically, surgical simulation technology is designed for the purpose of teaching technical surgical skills (so-called task trainers). Simulator training in surgery is therefore in general limited to the individual training of the surgeon and disregards the participation of the rest of the surgical team. The objective of the project Assessment and Training of Medical Experts based on Objective Standards (ATMEOS) is to develop an immersive simulated operating room environment that enables the training and assessment of multidisciplinary surgical teams under various conditions. Using a mixed reality approach, a synthetic patient model, real surgical instruments and radiation-free virtual X‑ray imaging are combined into a simulation of spinal surgery. In previous research studies, the concept was evaluated in terms of realism, plausibility and immersiveness. In the current research, assessment measurements for technical and non-technical skills are developed and evaluated. The aim is to observe multidisciplinary surgical teams in the simulated operating room during minimally invasive spinal surgery and objectively assess the performance of the individual team members and the entire team. Moreover, the effectiveness of training methods and surgical techniques or success critical factors, e. g. management of crisis situations, can be captured and objectively assessed in the controlled environment.

  20. Canadian Association of University Surgeons’ Annual Symposium. Surgical simulation: The solution to safe training or a promise unfulfilled?

    PubMed Central

    Brindley, Peter G.; Jones, Daniel B.; Grantcharov, Teodor; de Gara, Christopher

    2012-01-01

    At its 2009 annual symposium, chaired by Dr. William (Bill) Pollett, the Canadian Association of University Surgeons brought together speakers with expertise in surgery and medical education to discuss the role of surgical simulation for improving surgical training and safety. Dr. Daniel Jones, of Harvard University and the 2009 Charles Tator Lecturer, highlighted how simulation has been used to teach advanced laparoscopic surgery. He also outlined how the American College of Surgeons is moving toward competency assessments as a requirement before surgeons are permitted to perform laparoscopic surgery on patients. Dr. Teodor Grantcharov, from the University of Toronto, highlighted the role of virtual reality simulators in laparoscopic surgery as well as box trainers. Dr. Peter Brindley from the University of Alberta, although a strong proponent of simulation, cautioned against an overzealous adoption without addressing its current limitations. He also emphasized simulation’s value in team training and crisis resource management training. Dr. Chris de Gara, also from the University of Alberta, questioned to what extent simulators should be used to determine competency. He raised concerns that if technical skills are learned in isolation, they may become “decontextualized,” and therefore simulation might become counterproductive. He outlined how oversimplification can have an “enchanting” effect, including a false sense of security. As a result, simulation must be used appropriately and along the entire education continuum. Furthermore, far more needs to be done to realize its role in surgical safety. PMID:22854147

  1. Laparoscopic skills maintenance: a randomized trial of virtual reality and box trainer simulators.

    PubMed

    Khan, Montaha W; Lin, Diwei; Marlow, Nicholas; Altree, Meryl; Babidge, Wendy; Field, John; Hewett, Peter; Maddern, Guy

    2014-01-01

    A number of simulators have been developed to teach surgical trainees the basic skills required to effectively perform laparoscopic surgery; however, consideration needs to be given to how well the skills taught by these simulators are maintained over time. This study compared the maintenance of laparoscopic skills learned using box trainer and virtual reality simulators. Participants were randomly allocated to be trained and assessed using either the Society of American Gastrointestinal Endoscopic Surgeons Fundamentals of Laparoscopic Surgery (FLS) simulator or the Surgical Science virtual reality simulator. Once participants achieved a predetermined level of proficiency, they were assessed 1, 3, and 6 months later. At each assessment, participants were given 2 practice attempts and assessed on their third attempt. The study was conducted through the Simulated Surgical Skills Program that was held at the Royal Australasian College of Surgeons, Adelaide, Australia. Overall, 26 participants (13 per group) completed the training and all follow-up assessments. There were no significant differences between simulation-trained cohorts for age, gender, training level, and the number of surgeries previously performed, observed, or assisted. Scores for the FLS-trained participants did not significantly change over the follow-up period. Scores for LapSim-trained participants significantly deteriorated at the first 2 follow-up points (1 and 3 months) (p < 0.050), but returned to be near initial levels by the final follow-up (6 months). This research showed that basic laparoscopic skills learned using the FLS simulator were maintained more consistently than those learned on the LapSim simulator. However, by the final follow-up, both simulator-trained cohorts had skill levels that were not significantly different to those at proficiency after the initial training period. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  2. Porcine cadaver iris model for iris heating during corneal surgery with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Wang, Jiang; Yan, Ying; Juhasz, Tibor; Kurtz, Ron

    2015-03-01

    Multiple femtosecond lasers have now been cleared for use for ophthalmic surgery, including for creation of corneal flaps in LASIK surgery. Preliminary study indicated that during typical surgical use, laser energy may pass beyond the cornea with potential effects on the iris. As a model for laser exposure of the iris during femtosecond corneal surgery, we simulated the temperature rise in porcine cadaver iris during direct illumination by the femtosecond laser. Additionally, ex-vivo iris heating due to femtosecond laser irradiation was measured with an infrared thermal camera (Fluke corp. Everett, WA) as a validation of the simulation.

  3. Computational Planning in Facial Surgery.

    PubMed

    Zachow, Stefan

    2015-10-01

    This article reflects the research of the last two decades in computational planning for cranio-maxillofacial surgery. Model-guided and computer-assisted surgery planning has tremendously developed due to ever increasing computational capabilities. Simulators for education, planning, and training of surgery are often compared with flight simulators, where maneuvers are also trained to reduce a possible risk of failure. Meanwhile, digital patient models can be derived from medical image data with astonishing accuracy and thus can serve for model surgery to derive a surgical template model that represents the envisaged result. Computerized surgical planning approaches, however, are often still explorative, meaning that a surgeon tries to find a therapeutic concept based on his or her expertise using computational tools that are mimicking real procedures. Future perspectives of an improved computerized planning may be that surgical objectives will be generated algorithmically by employing mathematical modeling, simulation, and optimization techniques. Planning systems thus act as intelligent decision support systems. However, surgeons can still use the existing tools to vary the proposed approach, but they mainly focus on how to transfer objectives into reality. Such a development may result in a paradigm shift for future surgery planning. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Distribution of innate psychomotor skills recognized as important for surgical specialization in unconditioned medical undergraduates.

    PubMed

    Moglia, Andrea; Morelli, Luca; Ferrari, Vincenzo; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred

    2018-03-14

    There is an increasing interest for a test assessing objectively the innate aptitude for surgery as a craft specialty to complement the current selection process of surgical residents. The aim of this study was to quantify the size of individuals with high, average, and low level of innate psychomotor skills among medical students. A volunteer sample of 155 medical students, without prior experience with surgical simulator, executed five tasks at a virtual simulator for robot-assisted surgery. They had to reach proficiency twice consecutively in each before moving to the next one. A weighting based on time and number of attempts needed to reach proficiency was assigned to each task. Nine students (5.8%) out of 155 significantly outperformed all the others on median (i.q.r.) weighted time [44.7 (42.2-47.3) min vs. 98.5 (70.8-131.8) min, p < 0.001], and number of attempts to reach proficiency [14 (12-15) vs. 23 (19-32.75), p < 0.001). Seventeen students (11.0%) scored significantly much worse than the rest on median weighted time [202.2 (182.5-221.0) min vs. 84.3 (65.7-114.4) min, p < 0.001], and number of attempts [42 (40-48) vs. 22 (17.25-28), p < 0.001]. Low correlation between simulator scores and extracurricular activities, like videogames and musical instruments, was found. The test successfully identified two groups straddling the large cohort with average innate aptitude for psychomotor skills: (i) innately gifted and (ii) with scarce level. Hence, exercises on a virtual simulator are a valid test of innate manual dexterity and can be considered to complement the selection process for a surgical training program, primarily to identify individuals with low innate aptitude for surgery and advise them to consider specialization in other (non-craft) medical specialties.

  5. 3D-Printed Simulation Device for Orbital Surgery.

    PubMed

    Lichtenstein, Juergen Thomas; Zeller, Alexander Nicolai; Lemound, Juliana; Lichtenstein, Thorsten Enno; Rana, Majeed; Gellrich, Nils-Claudius; Wagner, Maximilian Eberhard

    Orbital surgery is a challenging procedure because of its complex anatomy. Training could especially benefit from dedicated study models. The currently available devices lack sufficient anatomical representation and realistic soft tissue properties. Hence, we developed a 3D-printed simulation device for orbital surgery with tactual (haptic) correct simulation of all relevant anatomical structures. Based on computed tomography scans collected from patients treated in a third referral center, the hard and soft tissue were segmented and virtually processed to generate a 3D-model of the orbit. Hard tissue was then physically realized by 3D-printing. The soft tissue was manufactured by a composite silicone model of the nucleus and the surrounding tissue over a negative mold model also generated by 3D-printing. The final model was evaluated by a group of 5 trainees in oral and maxillofacial surgery (1) and a group of 5 consultants (2). All participants were asked to reconstruct an isolated orbital floor defect with a titanium implant. A stereotactic navigation system was available to all participants. Their experience was evaluated for haptic realism, correct representation of surgical approach, general handling of model, insertion of implant into the orbit, placement and fixation of implant, and usability of navigated control. The items were evaluated via nonparametric statistics (1 [poor]-5 [good]). Group 1 gave an average mark of 4.0 (±0.9) versus 4.6 (±0.6) by group 2. The haptics were rated as 3.6 (±1.1) [1] and 4.2 (±0.8) [2]. The surgical approach was graded 3.7 (±1.2) [1] and 4.0 (±1.0) [2]. Handling of the models was rated 3.5 (±1.1) [1] and 4 (±0.7) [2]. The insertion of the implants was marked as 3.7 (±0.8) [1] and 4.2 (±0.8) [2]. Fixation of the implants was also perceived to be realistic with 3.6 (±0.9) [1] and 4.2 (±0.45) [2]. Lastly, surgical navigation was rated 3.8 (±0.8) [1] and 4.6 (±0.56) [2]. In this project, all relevant hard and soft tissue characteristics of orbital anatomy could be realized. Moreover, it was possible to demonstrate that the entire workflow of an orbital procedure may be simulated. Hence, using this model training expenses may be reduced and patient security could be enhanced. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  6. Surgery applications of virtual reality

    NASA Technical Reports Server (NTRS)

    Rosen, Joseph

    1994-01-01

    Virtual reality is a computer-generated technology which allows information to be displayed in a simulated, bus lifelike, environment. In this simulated 'world', users can move and interact as if they were actually a part of that world. This new technology will be useful in many different fields, including the field of surgery. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations, simulate and perform surgical procedures (telesurgery), and predict the outcomes of surgery. The authors of this paper describe the basic components of a virtual reality surgical system. These components include: the virtual world, the virtual tools, the anatomical model, the software platform, the host computer, the interface, and the head-coupled display. In the chapter they also review the progress towards using virtual reality for surgical training, planning, telesurgery, and predicting outcomes. Finally, the authors present a training system being developed for the practice of new procedures in abdominal surgery.

  7. Virtual reality for dermatologic surgery: virtually a reality in the 21st century.

    PubMed

    Gladstone, H B; Raugi, G J; Berg, D; Berkley, J; Weghorst, S; Ganter, M

    2000-01-01

    In the 20th century, virtual reality has predominantly played a role in training pilots and in the entertainment industry. Despite much publicity, virtual reality did not live up to its perceived potential. During the past decade, it has also been applied for medical uses, particularly as training simulators, for minimally invasive surgery. Because of advances in computer technology, virtual reality is on the cusp of becoming an effective medical educational tool. At the University of Washington, we are developing a virtual reality soft tissue surgery simulator. Based on fast finite element modeling and using a personal computer, this device can simulate three-dimensional human skin deformations with real-time tactile feedback. Although there are many cutaneous biomechanical challenges to solve, it will eventually provide more realistic dermatologic surgery training for medical students and residents than the currently used models.

  8. Preoperative planning of thoracic surgery with use of three-dimensional reconstruction, rapid prototyping, simulation and virtual navigation

    PubMed Central

    Heuts, Samuel; Maessen, Jos G.

    2016-01-01

    For the past decades, surgeries have become more complex, due to the increasing age of the patient population referred for thoracic surgery, more complex pathology and the emergence of minimally invasive thoracic surgery. Together with the early detection of thoracic disease as a result of innovations in diagnostic possibilities and the paradigm shift to personalized medicine, preoperative planning is becoming an indispensable and crucial aspect of surgery. Several new techniques facilitating this paradigm shift have emerged. Pre-operative marking and staining of lesions are already a widely accepted method of preoperative planning in thoracic surgery. However, three-dimensional (3D) image reconstructions, virtual simulation and rapid prototyping (RP) are still in development phase. These new techniques are expected to become an important part of the standard work-up of patients undergoing thoracic surgery in the future. This review aims at graphically presenting and summarizing these new diagnostic and therapeutic tools PMID:29078505

  9. Off-the-job training for VATS employing anatomically correct lung models.

    PubMed

    Obuchi, Toshiro; Imakiire, Takayuki; Miyahara, Sou; Nakashima, Hiroyasu; Hamanaka, Wakako; Yanagisawa, Jun; Hamatake, Daisuke; Shiraishi, Takeshi; Moriyama, Shigeharu; Iwasaki, Akinori

    2012-02-01

    We evaluated our simulated major lung resection employing anatomically correct lung models as "off-the-job training" for video-assisted thoracic surgery trainees. A total of 76 surgeons voluntarily participated in our study. They performed video-assisted thoracic surgical lobectomy employing anatomically correct lung models, which are made of sponges so that vessels and bronchi can be cut using usual surgical techniques with typical forceps. After the simulation surgery, participants answered questionnaires on a visual analogue scale, in terms of their level of interest and the reality of our training method as off-the-job training for trainees. We considered that the closer a score was to 10, the more useful our method would be for training new surgeons. Regarding the appeal or level of interest in this simulation surgery, the mean score was 8.3 of 10, and regarding reality, it was 7.0. The participants could feel some of the real sensations of the surgery and seemed to be satisfied to perform the simulation lobectomy. Our training method is considered to be suitable as an appropriate type of surgical off-the-job training.

  10. Time while waiting: patients' experiences of scheduled surgery.

    PubMed

    Carr, Tracey; Teucher, Ulrich C; Casson, Alan G

    2014-12-01

    Research on patients' experiences of wait time for scheduled surgery has centered predominantly on the relative tolerability of perceived wait time and impacts on quality of life. We explored patients' experiences of time while waiting for three types of surgery with varied wait times--hip or knee replacement, shoulder surgery, and cardiac surgery. Thirty-two patients were recruited by their surgeons. We asked participants about their perceptions of time while waiting in two separate interviews. Using interpretative phenomenological analysis (IPA), we discovered connections between participant suffering, meaningfulness of time, and agency over the waiting period and the lived duration of time experience. Our findings reveal that chronological duration is not necessarily the most relevant consideration in determining the quality of waiting experience. Those findings helped us create a conceptual framework for lived wait time. We suggest that clinicians and policy makers consider the complexity of wait time experience to enhance preoperative patient care. © The Author(s) 2014.

  11. Translating weight loss into agency: Men's experiences 5 years after bariatric surgery

    PubMed Central

    Natvik, Eli; Gjengedal, Eva; Moltu, Christian; Råheim, Målfrid

    2015-01-01

    Fewer men than women with severe obesity undergo bariatric surgery for weight loss, and knowledge about men's situation after surgery, beyond medical status, is lacking. Our aim was to explore men's experiences with life after bariatric surgery from a long-term perspective. We conducted in-depth interviews with 13 men, aged 28–60 years, between 5 and 7 years after surgery. The analysis was inspired by Giorgi's phenomenological method. We found that agency was pivotal for how the men understood themselves and their lives after surgery. Weight loss meant regaining opportunities for living and acting in unrestricted and independent daily lives, yet surgery remained a radical treatment with complex consequences. Turning to surgery had involved conceptualizing their own body size as illness, which the men had resisted doing for years. After surgery, the rapid and major weight loss and the feelings of being exhausted, weak, and helpless were intertwined. The profound intensity of the weight loss process took the men by surprise. Embodying weight loss and change involved an inevitable renegotiating of experiences connected to the large body. Having bariatric surgery was a long-term process that seemed unfinished 5 years after surgery. Restrictions and insecurity connected to health and illness persist, despite successful weight loss and embodied change. Bariatric surgery initiated a complex and long-lasting life-changing process, involving both increased capacity for agency and illness-like experiences. PMID:26066518

  12. A consensus-based framework for design, validation, and implementation of simulation-based training curricula in surgery.

    PubMed

    Zevin, Boris; Levy, Jeffrey S; Satava, Richard M; Grantcharov, Teodor P

    2012-10-01

    Simulation-based training can improve technical and nontechnical skills in surgery. To date, there is no consensus on the principles for design, validation, and implementation of a simulation-based surgical training curriculum. The aim of this study was to define such principles and formulate them into an interoperable framework using international expert consensus based on the Delphi method. Literature was reviewed, 4 international experts were queried, and consensus conference of national and international members of surgical societies was held to identify the items for the Delphi survey. Forty-five international experts in surgical education were invited to complete the online survey by ranking each item on a Likert scale from 1 to 5. Consensus was predefined as Cronbach's α ≥0.80. Items that 80% of experts ranked as ≥4 were included in the final framework. Twenty-four international experts with training in general surgery (n = 11), orthopaedic surgery (n = 2), obstetrics and gynecology (n = 3), urology (n = 1), plastic surgery (n = 1), pediatric surgery (n = 1), otolaryngology (n = 1), vascular surgery (n = 1), military (n = 1), and doctorate-level educators (n = 2) completed the iterative online Delphi survey. Consensus among participants was achieved after one round of the survey (Cronbach's α = 0.91). The final framework included predevelopment analysis; cognitive, psychomotor, and team-based training; curriculum validation evaluation and improvement; and maintenance of training. The Delphi methodology allowed for determination of international expert consensus on the principles for design, validation, and implementation of a simulation-based surgical training curriculum. These principles were formulated into a framework that can be used internationally across surgical specialties as a step-by-step guide for the development and validation of future simulation-based training curricula. Copyright © 2012 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Toward Intraoperative Image-Guided Transoral Robotic Surgery

    PubMed Central

    Liu, Wen P.; Reaugamornrat, Sureerat; Deguet, Anton; Sorger, Jonathan M.; Siewerdsen, Jeffrey H.; Richmon, Jeremy; Taylor, Russell H.

    2014-01-01

    This paper presents the development and evaluation of video augmentation on the stereoscopic da Vinci S system with intraoperative image guidance for base of tongue tumor resection in transoral robotic surgery (TORS). Proposed workflow for image-guided TORS begins by identifying and segmenting critical oropharyngeal structures (e.g., the tumor and adjacent arteries and nerves) from preoperative computed tomography (CT) and/or magnetic resonance (MR) imaging. These preoperative planned data can be deformably registered to the intraoperative endoscopic view using mobile C-arm cone-beam computed tomography (CBCT) [1, 2]. Augmentation of TORS endoscopic video defining surgical targets and critical structures has the potential to improve navigation, spatial orientation, and confidence in tumor resection. Experiments in animal specimens achieved statistically significant improvement in target localization error when comparing the proposed image guidance system to simulated current practice. PMID:25525474

  14. The cortisol level and its relationship with depression, stress and anxiety indices in chronic methamphetamine-dependent patients and normal individuals undergoing inguinal hernia surgery.

    PubMed

    Pirnia, Bijan; Givi, Fatemeh; Roshan, Rasool; Pirnia, Kambiz; Soleimani, Ali Akbar

    2016-01-01

    Stimulants addition and abuse can cause some functional and morphological changes in the normal function of glands and hormones. Methamphetamine as an addictive stimulant drug affects the Hypothalamic- pituitary-adrenal (HPA) axis and consequently makes some changes in the psychological state of the drug users. The present study aims to examine the relationship between plasma levels of cortisol with depression, stress and anxiety symptoms in chronic methamphetamine-dependent patients and normal individuals who have undergone the inguinal hernia surgery. To meet the purpose of the study, 35 chronic methamphetamine-dependent patients in the active phase of drug abuse and 35 non-users (N=70) who were homogenized regarding the demographic features were purposefully selected from among the patients referred to undergo inguinal hernia surgery since March 15 to June 9, 2015. The participants were then divided into the control and experiment group. The changes in cortisol levels in plasma were measured using Radioimmunoassay (RIA) in three-time series including 0 (upon the induction of anesthesia), 12 and 24 hours after the surgery. Further, three behavioral indices of depression, anxiety and stress were measured using the Depression Anxiety Stress Scale 21 (DASS-21) and then the data were analyzed using t-test and Pearson Correlation coefficient. The plasma level of cortisol in the chronic methamphetamine-dependent patients (experiment group) had a significant increase in 24 hours after surgery (p<0.05). This study showed that cortisol levels in chronic methamphetamine-dependent patients were significantly higher than non-dependent patients in response to alarming events such as inguinal surgery. Changes in cortisol levels were intensified due to a confrontation with the phenomenon of pain and anxiety. In addition, depression index was higher in the chronic methamphetaminedependent patients than that in the non-dependent patients. However, there was no significant relationship between the cortisol level and depression index (p=0.001). The Hypothalamic-pituitary-adrenal (HPA) axis is considered as a key structure in the addiction to simulants, the reason which can explain the faster response of the chronic methamphetamine-dependent patients to the stressors such as surgery.

  15. LapSim virtual reality laparoscopic simulator reflects clinical experience in German surgeons.

    PubMed

    Langelotz, C; Kilian, M; Paul, C; Schwenk, W

    2005-11-01

    The aim of this study was to analyze the ability of a training module on a virtual laparoscopic simulator to assess surgical experience in laparoscopy. One hundred and fifteen participants at the 120th annual convent of the German surgical society took part in this study. All participants were stratified into two groups, one with laparoscopic experience of less than 50 operations (group 1, n=61) and one with laparoscopic experience of more than 50 laparoscopic operations (group 2, n=54). All subjects completed a laparoscopic training module consisting of five different exercises for navigation, coordination, grasping, cutting and clipping. The time to perform each task was measured, as were the path lengths of the instruments and their respective angles representing the economy of the movements. Results between groups were compared using chi(2) or Mann-Whitney U-test. Group 1 needed more time for completion of the exercises (median 424 s, range 99-1,376 s) than group 2 (median 315 s, range 168-625 s) (P<0.01). Instrument movements were less economic in group 1 with larger angular pathways, e.g. in the cutting exercise (median 352 degrees , range 104-1,628 degrees vs median 204 degrees , range 107-444 degrees , P<0.01), and longer path lengths (each instrument P<0.05). As time for completion of exercises, instrument path lengths and angular paths are indicators of clinical experience, it can be concluded that laparoscopic skills acquired in the operating room transfer into virtual reality. A laparoscopic simulator can serve as an instrument for the assessment of experience in laparoscopic surgery.

  16. Evaluation of Medical Students' Attitudes and Performance of Basic Surgery Skills in a Training Program Using Fresh Human skin, Excised During Body Contouring Surgeries.

    PubMed

    Rothenberger, Jens; Seyed Jafari, Seyed Morteza; Schnabel, Kai P; Tschumi, Christian; Angermeier, Sarina; Shafighi, Maziar

    2015-01-01

    Learning surgical skills in the operating room may be a challenge for medical students. Therefore, more approaches using simulation to enable students to develop their practical skills are required. We hypothesized that (1) there would be a need for additional surgical training for medical students in the pre-final year, and (2) our basic surgery skills training program using fresh human skin would improve medical students' surgical skills. We conducted a preliminary survey of medical students to clarify the need for further training in basic surgery procedures. A new approach using simulation to teach surgical skills on human skin was set up. The procedural skills of 15 randomly selected students were assessed in the operating room before and after participation in the simulation, using Objective Structured Assessment of Technical Skills. Furthermore, subjective assessment was performed based on students' self-evaluation. The data were analyzed using SPSS, version 21 (SPSS, Inc., Chicago, IL). The study took place at the Inselspital, Bern University Hospital. A total of 186 pre-final-year medical students were enrolled into the preliminary survey; 15 randomly selected medical students participated in the basic surgical skills training course on the fresh human skin operating room. The preliminary survey revealed the need for a surgical skills curriculum. The simulation approach we developed showed significant (p < 0.001) improvement for all 12 surgical skills, with mean cumulative precourse and postcourse values of 31.25 ± 5.013 and 45.38 ± 3.557, respectively. The self-evaluation contained positive feedback as well. Simulation of surgery using human tissue samples could help medical students become more proficient in handling surgical instruments before stepping into a real surgical situation. We suggest further studies evaluating our proposed teaching method and the possibility of integrating this simulation approach into the medical school curriculum. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  17. Laparoscopic skills assessment: an additional modality for pediatric surgery fellowship selection.

    PubMed

    Hazboun, Rajaie; Rodriguez, Samuel; Thirumoorthi, Arul; Baerg, Joanne; Moores, Donald; Tagge, Edward P

    2017-12-01

    The Pediatric Surgery fellow selection is a multi-layered process which has not included assessment of surgical dexterity. Data was collected prospectively as part of the 2016 Pediatric Surgery Match interview process. Applicants completed a questionnaire to document laparoscopic experience and fine motor skills activities. Actual laparoscopic skills were assessed using a simulator. Time to complete an intracorporeal knot was tabulated. An initial rank list was formulated based only on the ERAS application and interview scores. The rank list was re-formulated following the laparoscopic assessment. Un-paired T-test and regression were utilized to analyze the data. Forty applicants were interviewed with 18 matched (45%). The mean knot tying time was 201.31s for matched and 202.35s for unmatched applicants. Playing a musical instrument correlated with faster knot tying (p=0.03). No correlation was identified between knot tying time and either video game experience (p=0.4) or passing the FLS exam (p=0.78). Laparoscopic skills assessment lead to significant reordering of rank list (p=0.01). Laparoscopic skills performance significantly impacted ranking. Playing a musical instrument correlated with faster knot tying. No correlation was identified between laparoscopic performance and passing the FLS exam or other activities traditionally believed to improve technical ability. Prospective study. Level II. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Veterans Affairs general surgery service: the last bastion of integrated specialty care.

    PubMed

    Poteet, Stephen; Tarpley, Margaret; Tarpley, John L; Pearson, A Scott

    2011-11-01

    In a time of increasing specialization, academic training institutions provide a compartmentalized learning environment that often does not reflect the broad clinical experience of general surgery practice. This study aimed to evaluate the contribution of the Veterans Affairs (VA) general surgery surgical experience to both index Accreditation Council for Graduate Medical Education (ACGME) requirements and as a unique integrated model in which residents provide concurrent care of multiple specialty patients. Institutional review board approval was obtained for retrospective analysis of electronic medical records involving all surgical cases performed by the general surgery service from 2005 to 2009 at the Nashville VA. Over a 5-year span general surgery residents spent an average of 5 months on the VA general surgery service, which includes a postgraduate year (PGY)-5, PGY-3, and 2 PGY-1 residents. Surgeries involved the following specialties: surgical oncology, endocrine, colorectal, hepatobiliary, transplant, gastrointestinal laparoscopy, and elective and emergency general surgery. The surgeries were categorized according to ACGME index requirements. A total of 2,956 surgeries were performed during the 5-year period from 2005 through 2009. Residents participated in an average of 246 surgeries during their experience at the VA; approximately 50 cases are completed during the chief year. On the VA surgery service alone, 100% of the ACGME requirement was met for the following categories: endocrine (8 cases); skin, soft tissue, and breast (33 cases); alimentary tract (78 cases); and abdominal (88 cases). Approximately 50% of the ACGME requirement was met for liver, pancreas, and basic laparoscopic categories. The VA hospital provides an authentic, broad-based, general surgery training experience that integrates complex surgical patients simultaneously. Opportunities for this level of comprehensive care are decreasing or absent in many general surgery training programs. The increasing level of responsibility and simultaneous care of multiple specialty patients through the VA hospital systems offers a crucial experience for those pursuing a career in general surgery. Published by Elsevier Inc.

  19. Variability in Resident Operative Hand Experience by Specialty.

    PubMed

    Silvestre, Jason; Lin, Ines C; Levin, L Scott; Chang, Benjamin

    2018-01-01

    Recent attention has sought to standardize hand surgery training in the United States. This study analyzes the variability in operative hand experience for orthopedic and general surgery residents. Case logs for orthopedic and general surgery residency graduates were obtained from the American Council of Graduate Medical Education (2006-2007 to 2014-2015). Plastic surgery case logs were not available for comparison. Hand surgery case volumes were compared between specialties with parametric tests. Intraspecialty variation in orthopedic surgery was assessed between the bottom and top 10th percentiles in procedure categories. Case logs for 9605 general surgery residents and 5911 orthopedic surgery residents were analyzed. Orthopedic surgery residents performed a greater number of hand surgery cases than general surgery residents ( P < .001). Mean total hand experience ranged from 2.5 ± 4 to 2.8 ± 5 procedures for general surgery residents with no reported cases of soft tissue repairs, vascular repairs, and replants. Significant intraspecialty variation existed in orthopedic surgery for all hand procedure categories (range, 3.3-15.0). As the model for hand surgery training evolves, general surgeons may represent an underutilized talent pool to meet the critical demand for hand surgeon specialists. Future research is needed to determine acceptable levels of training variability in hand surgery.

  20. Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines

    PubMed Central

    Tan, Yunhao; Hua, Jing; Qin, Hong

    2009-01-01

    In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636

  1. Palpation Simulator of Beating Aorta for Cardiovascular Surgery Training

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yasuhiro; Nakao, Megumi; Kuroda, Tomohiro; Oyama, Hiroshi; Komori, Masaru; Matsuda, Tetsuya; Sakaguchi, Genichi; Komeda, Masashi; Takahashi, Takashi

    In field of cardiovascular surgeries, palpation of aorta plays important roles in decision of surgical site.This paper develops palpation simulator of aorta based on a finite element based physical model.The proposed model calculates soft tissue deformation according to the affection of inner pressure and the operation of a surgeon.The proposed method is implemented on a prototype with dual PHANToM device.Experimental results confirmed our model achieves real time simulation of the surgical palpation.

  2. Forces associated with launch into space do not impact bone fracture healing

    NASA Astrophysics Data System (ADS)

    Childress, Paul; Brinker, Alexander; Gong, Cynthia-May S.; Harris, Jonathan; Olivos, David J.; Rytlewski, Jeffrey D.; Scofield, David C.; Choi, Sungshin Y.; Shirazi-Fard, Yasaman; McKinley, Todd O.; Chu, Tien-Min G.; Conley, Carolynn L.; Chakraborty, Nabarun; Hammamieh, Rasha; Kacena, Melissa A.

    2018-02-01

    Segmental bone defects (SBDs) secondary to trauma invariably result in a prolonged recovery with an extended period of limited weight bearing on the affected limb. Soldiers sustaining blast injuries and civilians sustaining high energy trauma typify such a clinical scenario. These patients frequently sustain composite injuries with SBDs in concert with extensive soft tissue damage. For soft tissue injury resolution and skeletal reconstruction a patient may experience limited weight bearing for upwards of 6 months. Many small animal investigations have evaluated interventions for SBDs. While providing foundational information regarding the treatment of bone defects, these models do not simulate limited weight bearing conditions after injury. For example, mice ambulate immediately following anesthetic recovery, and in most cases are normally ambulating within 1-3 days post-surgery. Thus, investigations that combine disuse with bone healing may better test novel bone healing strategies. To remove weight bearing, we have designed a SBD rodent healing study in microgravity (μG) on the International Space Station (ISS) for the Rodent Research-4 (RR-4) Mission, which launched February 19, 2017 on SpaceX CRS-10 (Commercial Resupply Services). In preparation for this mission, we conducted an end-to-end mission simulation consisting of surgical infliction of SBD followed by launch simulation and hindlimb unloading (HLU) studies. In brief, a 2 mm defect was created in the femur of 10 week-old C57BL6/J male mice (n = 9-10/group). Three days after surgery, 6 groups of mice were treated as follows: 1) Vivarium Control (maintained continuously in standard cages); 2) Launch Negative Control (placed in the same spaceflight-like hardware as the Launch Positive Control group but were not subjected to launch simulation conditions); 3) Launch Positive Control (placed in spaceflight-like hardware and also subjected to vibration followed by centrifugation); 4) Launch Positive Experimental (identical to Launch Positive Control group, but placed in qualified spaceflight hardware); 5) Hindlimb Unloaded (HLU, were subjected to HLU immediately after launch simulation tests to simulate unloading in spaceflight); and 6) HLU Control (single housed in identical HLU cages but not suspended). Mice were euthanized 28 days after launch simulation and bone healing was examined via micro-Computed Tomography (μCT). These studies demonstrated that the mice post-surgery can tolerate launch conditions. Additionally, forces and vibrations associated with launch did not impact bone healing (p = .3). However, HLU resulted in a 52.5% reduction in total callus volume compared to HLU Controls (p = .0003). Taken together, these findings suggest that mice having a femoral SBD surgery tolerated the vibration and hypergravity associated with launch, and that launch simulation itself did not impact bone healing, but that the prolonged lack of weight bearing associated with HLU did impair bone healing. Based on these findings, we proceeded with testing the efficacy of FDA approved and novel SBD therapies using the unique spaceflight environment as a novel unloading model on SpaceX CRS-10.

  3. Same-day breast cancer surgery: a qualitative study of women's lived experiences.

    PubMed

    Greenslade, M Victoria; Elliott, Barbara; Mandville-Anstey, Sue Ann

    2010-03-01

    To understand the experiences of women having same-day breast cancer surgery and make recommendations to assist healthcare professionals effect change to enhance quality of care. Thematic analysis of audiotaped interviews. Outpatient departments of two city hospitals on the east coast of Canada. Purposive sample of 13 women who had undergone same-day breast cancer surgery. A constructivist approach with in-depth interviews and comparative analysis to develop and systemically organize data into four major interrelated themes and a connecting essential thread. Women's experiences with same-day breast cancer surgery. The themes of preparation, timing, supports, and community health nursing intervention were of paramount importance for effective coping and recovery. Women who had a positive experience with same-day breast cancer surgery also reported having adequate preparation, appropriate timing of preparation, strong support systems, and sufficient community health nursing intervention. Those reporting a negative experience encountered challenges in one or more of the identified theme areas. Same-day surgery is a sign of the times, and the approach to it is changing. Healthcare systems need to be responsive to such changes. Although same-day surgery for breast cancer is not suitable for every patient, women undergoing this type of surgery should be assessed individually to determine whether it is appropriate for them. Women undergoing breast cancer surgery should be screened for same-day surgery suitability. Those having same-day breast cancer surgery should be prepared adequately with timely education. Most importantly, such women should receive community health nursing follow-up for assessment, continuing education, and psychosocial support.

  4. Computer-aided trauma simulation system with haptic feedback is easy and fast for oral-maxillofacial surgeons to learn and use.

    PubMed

    Schvartzman, Sara C; Silva, Rebeka; Salisbury, Ken; Gaudilliere, Dyani; Girod, Sabine

    2014-10-01

    Computer-assisted surgical (CAS) planning tools have become widely available in craniomaxillofacial surgery, but are time consuming and often require professional technical assistance to simulate a case. An initial oral and maxillofacial (OM) surgical user experience was evaluated with a newly developed CAS system featuring a bimanual sense of touch (haptic). Three volunteer OM surgeons received a 5-minute verbal introduction to the use of a newly developed haptic-enabled planning system. The surgeons were instructed to simulate mandibular fracture reductions of 3 clinical cases, within a 15-minute time limit and without a time limit, and complete a questionnaire to assess their subjective experience with the system. Standard landmarks and linear and angular measurements between the simulated results and the actual surgical outcome were compared. After the 5-minute instruction, all 3 surgeons were able to use the system independently. The analysis of standardized anatomic measurements showed that the simulation results within a 15-minute time limit were not significantly different from those without a time limit. Mean differences between measurements of surgical and simulated fracture reductions were within current resolution limitations in collision detection, segmentation of computed tomographic scans, and haptic devices. All 3 surgeons reported that the system was easy to learn and use and that they would be comfortable integrating it into their daily clinical practice for trauma cases. A CAS system with a haptic interface that capitalizes on touch and force feedback experience similar to operative procedures is fast and easy for OM surgeons to learn and use. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. All rights reserved.

  5. Influence of videogames and musical instruments on performances at a simulator for robotic surgery.

    PubMed

    Moglia, Andrea; Perrone, Vittorio; Ferrari, Vincenzo; Morelli, Luca; Boggi, Ugo; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred

    2017-06-01

    To assess if exposure to videogames, musical instrument playing, or both influence the psychomotor skills level, assessed by a virtual reality simulator for robot-assisted surgery (RAS). A cohort of 57 medical students were recruited: playing musical instruments (group 1), videogames (group 2), both (group 3), and no activity (group 4); all students executed four exercises on a virtual simulator for RAS. Subjects from group 3 achieved the best performances on overall score: 527.09 ± 130.54 vs. 493.73 ± 108.88 (group 2), 472.72 ± 85.31 (group 1), and 403.13 ± 99.83 (group 4). Statistically significant differences (p < .05) between group 3 and group 4 were found for overall score (p = .009) and for time of completion (p = .044). As regards experience with the piano, subjects from group 3 outperformed those from group 1 on overall score (496.98 ± 122.71 vs. 470.25 ± 92.31), but without statistically significant difference (p = .646). The present study suggests that the level of psychomotor skills in subjects exposed to both musical instrument playing and videogames is higher than that in those practicing either one alone. The effect of videogames appears negligible in individuals playing the piano.

  6. Integration of laparoscopic virtual-reality simulation into gynaecology training.

    PubMed

    Burden, C; Oestergaard, J; Larsen, C R

    2011-11-01

    Surgery carries the risk of serious harm, as well as benefit, to patients. For healthcare organisations, theatre time is an expensive commodity and litigation costs for surgical specialities are very high. Advanced laparoscopic surgery, now widely used in gynaecology for improved outcomes and reduced length of stay, involves longer operation times and a higher rate of complications for surgeons in training. Virtual-reality (VR) simulation is a relatively new training method that has the potential to promote surgical skill development before advancing to surgery on patients themselves. VR simulators have now been on the market for more than 10 years and, yet, few countries in the world have fully integrated VR simulation training into their gynaecology surgical training programmes. In this review, we aim to summarise the VR simulators currently available together with evidence of their effectiveness in gynaecology, to understand their limitations and to discuss their incorporation into national training curricula. © 2011 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2011 RCOG.

  7. Simulation of arthroscopic surgery using MRI data

    NASA Technical Reports Server (NTRS)

    Heller, Geoffrey; Genetti, Jon

    1994-01-01

    With the availability of Magnetic Resonance Imaging (MRI) technology in the medical field and the development of powerful graphics engines in the computer world the possibility now exists for the simulation of surgery using data obtained from an actual patient. This paper describes a surgical simulation system which will allow a physician or a medical student to practice surgery on a patient without ever entering an operating room. This could substantially lower the cost of medial training by providing an alternative to the use of cadavers. This project involves the use of volume data acquired by MRI which are converted to polygonal form using a corrected marching cubes algorithm. The data are then colored and a simulation of surface response based on springy structures is performed in real time. Control for the system is obtained through the use of an attached analog-to-digital unit. A remote electronic device is described which simulates an imaginary tool having features in common with both arthroscope and laparoscope.

  8. Advanced virtual endoscopy for endoscopic transsphenoidal pituitary surgery.

    PubMed

    Wolfsberger, Stefan; Neubauer, André; Bühler, Katja; Wegenkittl, Rainer; Czech, Thomas; Gentzsch, Stephan; Böcher-Schwarz, Hans-Gerd; Knosp, Engelbert

    2006-11-01

    Virtual endoscopy (vE) is the navigation of a camera through a virtual anatomical space that is computationally reconstructed from radiological image data. Inside this three-dimensional space, arbitrary movements and adaptations of viewing parameters are possible. Thereby, vE can be used for noninvasive diagnostic purposes and for simulation of surgical tasks. This article describes the development of an advanced system of vE for endoscopic transsphenoidal pituitary surgery and its application to teaching, training, and in the routine clinical setting. The vE system was applied to a series of 35 patients with pituitary pathology (32 adenomas, three Rathke's cleft cysts) operated endoscopically via the transsphenoidal route at the Department of Neurosurgery of the Medical University Vienna between 2004 and 2006. The virtual endoscopic images correlated well with the intraoperative view. For the transsphenoidal approach, vE improved intraoperative orientation by depicting anatomical landmarks and variations. For planning a safe and tailored opening of the sellar floor, transparent visualization of the pituitary adenoma and the normal gland in relation to the internal carotid arteries was useful. According to our experience, vE can be a valuable tool for endoscopic transsphenoidal pituitary surgery for training purposes and preoperative planning. For the novice, it can act as a simulator for endoscopic anatomy and for training surgical tasks. For the experienced pituitary surgeon, vE can depict the individual patient's anatomy, and may, therefore, improve intraoperative orientation. By prospectively visualizing unpredictable anatomical variations, vE may increase the safety of this surgical procedure.

  9. A Qualitative Study of Young Adult Experiences in the Bariatric Healthcare System: Psychosocial Challenges and Developmental Difficulties.

    PubMed

    Taube-Schiff, Marlene; Yufe, Shira; Kastanias, Patti; Weiland, Mary; Sockalingam, Sanjeev

    2017-08-01

    Bariatric surgery is an evidence-based treatment for severe obesity; however, the unique developmental and psychosocial needs of young adults often complicate care and, as yet, are not well understood. We sought to identify themes in young adult patients undergoing bariatric surgery regarding: 1) the psychosocial experiences of obese young adults (18 to 24) seeking bariatric surgery; 2) the experiences during the preoperative bariatric surgery process and 3) the postoperative experiences of young adult patients. In-depth, semistructured individual interviews were conducted with 13 young adult bariatric patients who were seeking or had undergone bariatric surgery within the past 5 years. Interviews were analyzed using a qualitative methodology. We found the following themes in our analyses: 1) the impact of relationships (with families and healthcare providers) on the bariatric healthcare experience; 2) preoperative experiences by young adults prior to undergoing surgery and 3) postoperative reflections and challenges experienced by young adult patients. Results revealed that patients' experiences appear to encompass impact on familial relationships, needs sought to be fulfilled by healthcare providers, and various preoperative and postoperative psychosocial concerns. By understanding the experiences of young adults, healthcare providers might be able to provide better care for these patients. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  10. Integrating viscoelastic mass spring dampers into position-based dynamics to simulate soft tissue deformation in real time

    PubMed Central

    Lu, Yuhua; Liu, Qian

    2018-01-01

    We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications. PMID:29515870

  11. Integrating viscoelastic mass spring dampers into position-based dynamics to simulate soft tissue deformation in real time.

    PubMed

    Xu, Lang; Lu, Yuhua; Liu, Qian

    2018-02-01

    We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications.

  12. Virtual Reality for Pain Management in Cardiac Surgery

    PubMed Central

    Mosso-Vázquez, José Luis; Gao, Kenneth; Wiederhold, Brenda K.

    2014-01-01

    Abstract Surgical anxiety creates psychological and physiological stress, causes complications in surgical procedures, and prolongs recovery. Relaxation of patients in postoperative intensive care units can moderate patient vital signs and reduce discomfort. This experiment explores the use of virtual reality (VR) cybertherapy to reduce postoperative distress in patients that have recently undergone cardiac surgery. Sixty-seven patients were monitored at IMSS La Raza National Medical Center within 24 hours of cardiac surgery. Patients navigated through a 30 minute VR simulation designed for pain management. Results were analyzed through comparison of pre- and postoperative vital signs and Likert scale survey data. A connection was found in several physiological factors with subjective responses from the Likert scale survey. Heavy positive correlation existed between breathing rate and Likert ratings, and a moderate correlation was found between mean arterial pressure and Likert ratings and heart rate and Likert ratings, all of which indicated lower pain and stress within patients. Further study of these factors resulted in the categorization of patients based upon their vital signs and subjective response, providing a context for the effectiveness of the therapy to specific groups of patients. PMID:24892200

  13. Initial evaluation of the "Trauma surgery course"

    PubMed Central

    Tugnoli, Gregorio; Ribaldi, Sergio; Casali, Marco; Calderale, Stefano M; Coletti, Massimo; Alifano, Marco; Parri, Sergio N Forti; Villani, Silvia; Biscardi, Andrea; Giordano, M Chiara; Baldoni, Franco

    2006-01-01

    Background The consequence of the low rate of penetrating injuries in Europe and the increase in non-operative management of blunt trauma is a decrease in surgeons' confidence in managing traumatic injuries has led to the need for new didactic tools. The aim of this retrospective study was to present the Corso di Chirurgia del Politrauma (Trauma Surgery Course), developed as a model for teaching operative trauma techniques, and assess its efficacy. Method the two-day course consisted of theoretical lectures and practical experience on large-sized swine. Data of the first 126 participants were collected and analyzed. Results All of the 126 general surgeons who had participated in the course judged it to be an efficient model to improve knowledge about the surgical treatment of trauma. Conclusion A two-day course, focusing on trauma surgery, with lectures and life-like operation situations, represents a model for simulated training and can be useful to improve surgeons' confidence in managing trauma patients. Cooperation between organizers of similar initiatives would be beneficial and could lead to standardizing and improving such courses. PMID:16759403

  14. A Survey of Patients' Preoperative Need for Information About Postoperative Pain-Effect of Previous Surgery Experience.

    PubMed

    Mavridou, Paraskevi; Manataki, Adamantia; Arnaoutoglou, Elena; Damigos, Dimitrios

    2017-10-01

    The aim of this study was to determine the kind of information patients need preoperatively about postoperative pain (POP) and whether this is affected by previous surgery experience. A descriptive study design using preoperative questionnaires. Questionnaires with fixed questions related to POP and its management were distributed preoperatively to consenting, consecutive surgical patients. Patients were divided into two groups: patients with previous surgery experience (group A) and patients without previous surgery experience (group B). Of the patients who participated in the study, 94.2% wanted information about POP and 77.8% of them believe that they will feel calmer if they get the information they need. The patients' biggest concern relates to pain management issues after discharge. Next, in order of preference is information about the analgesics that they need to take. The patients want to be informed primarily with a personal interview (59.4%). Previous surgery experience has no effect on patients' needs for information. Most of the patients want to be informed about the management of the POP after being discharged. It is remarkable that patients who had previous surgery experience need the same information with those who had no previous surgery. Copyright © 2016 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  15. A comparative analysis and guide to virtual reality robotic surgical simulators.

    PubMed

    Julian, Danielle; Tanaka, Alyssa; Mattingly, Patricia; Truong, Mireille; Perez, Manuela; Smith, Roger

    2018-02-01

    Since the US Food and Drug Administration approved robotically assisted surgical devices for human surgery in 2000, the number of surgeries utilizing this innovative technology has risen. In 2015, approximately 650 000 robot-assisted procedures were performed worldwide. Surgeons must be properly trained to safely transition to using such innovative technology. Multiple virtual reality robotic simulators are now commercially available for educational and training purposes. There is a need for comparative evaluations of these simulators to aid users in selecting an appropriate device for their purposes. We conducted a comparison of the design and capabilities of all dedicated simulators of the da Vinci robot - the da Vinci Skills Simulator (dVSS), dV-Trainer (dVT), Robotic Skills Simulators (RoSS) and the RobotiX Mentor. This paper provides the base specifications of the hardware and software, with an emphasis on the training capabilities of each system. Each simulator contains a large number of training exercises for skills development: dVSS n = 40, dVT n = 65, RoSS n = 52, RobotiX Mentor n = 31. All four offer 3D visual images but use different display technologies. The dVSS leverages the real robotic surgical console to provide visualization, hand controls and foot pedals. The dVT, RoSS and RobotiX Mentor created simulated versions of all of these control systems. Each includes systems management services that allow instructors to collect, export and analyze the scores of students using the simulators. This study provides comparative information on the four simulators' functional capabilities. Each device offers unique advantages and capabilities for training robotic surgeons. Each has been the subject of validation experiments, which have been published in the literature. But those do not provide specific details on the capabilities of the simulators, which are necessary for an understanding sufficient to select the one best suited for an organization's needs. This article provides comparative information to assist with that type of selection. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Computer Simulation Shows the Effect of Communication on Day of Surgery Patient Flow.

    PubMed

    Taaffe, Kevin; Fredendall, Lawrence; Huynh, Nathan; Franklin, Jennifer

    2015-07-01

    To improve patient flow in a surgical environment, practitioners and academicians often use process mapping and simulation as tools to evaluate and recommend changes. We used simulations to help staff visualize the effect of communication and coordination delays that occur on the day of surgery. Perioperative services staff participated in tabletop exercises in which they chose the delays that were most important to eliminate. Using a day-of-surgery computer simulation model, the elimination of delays was tested and the results were shared with the group. This exercise, repeated for multiple groups of staff, provided an understanding of not only the dynamic events taking place, but also how small communication delays can contribute to a significant loss in efficiency and the ability to provide timely care. Survey results confirmed these understandings. Copyright © 2015 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  17. Virtual-Reality Simulator System for Double Interventional Cardiac Catheterization Using Fractional-Order Vascular Access Tracker and Haptic Force Producer

    PubMed Central

    Chen, Guan-Chun; Lin, Chia-Hung; Hsieh, Kai-Sheng; Du, Yi-Chun; Chen, Tainsong

    2015-01-01

    This study proposes virtual-reality (VR) simulator system for double interventional cardiac catheterization (ICC) using fractional-order vascular access tracker and haptic force producer. An endoscope or a catheter for diagnosis and surgery of cardiovascular disease has been commonly used in minimally invasive surgery. It needs specific skills and experiences for young surgeons or postgraduate year (PGY) students to operate a Berman catheter and a pigtail catheter in the inside of the human body and requires avoiding damaging vessels. To improve the training in inserting catheters, a double-catheter mechanism is designed for the ICC procedures. A fractional-order vascular access tracker is used to trace the senior surgeons' consoled trajectories and transmit the frictional feedback and visual feedback during the insertion of catheters. Based on the clinical feeling through the aortic arch, vein into the ventricle, or tortuous blood vessels, haptic force producer is used to mock the elasticity of the vessel wall using voice coil motors (VCMs). The VR establishment with surgeons' consoled vessel trajectories and hand feeling is achieved, and the experimental results show the effectiveness for the double ICC procedures. PMID:26171419

  18. Wrist Arthroscopy: Can We Gain Proficiency Through Knee Arthroscopy Simulation?

    PubMed

    Ode, Gabriella; Loeffler, Bryan; Chadderdon, Robert Christopher; Haines, Nikkole; Scannell, Brian; Patt, Joshua; Gaston, Glenn

    2018-05-02

    Wrist arthroscopy is a challenging discipline with limited training exposure during residency. The purpose of this study was to evaluate the effectiveness of virtual knee arthroscopy simulation training for gaining proficiency in wrist arthroscopy. Participants were recorded performing a cadaveric wrist arthroscopy simulation. The residents then practiced knee arthroscopy on a virtual reality simulator and repeated the wrist arthroscopy simulation. All videos were blinded prior to assessment. Proficiency was graded using the Arthroscopic Surgery Skill Evaluation Tool global rating scale. In addition, participants were asked to complete a survey assessing the value of the virtual reality knee arthroscopy simulator for wrist arthroscopy. Orthopaedic Surgery Residency Program, Carolinas Medical Center, a large, public, nonprofit hospital located in Charlotte, North Carolina. Orthopaedic residents at our center were asked to participate in the simulation training. Participation was voluntary and nonincentivized. All orthopaedic residents at our institution (N = 27) agreed to participate. In total, there were 10 Intern (PGY-0 and PGY-1), 10 Junior (PGY-2 and PGY-3), and 7 Senior (PGY-4 and PGY-5) residents. In addition, a fellowship-trained hand surgeon was recruited to participate in the study, performing the wrist arthoscopy simulation. Two additional fellowship-trained hand surgeons, for a total of 3, assessed the blinded videos. There was a trend toward better wrist Arthroscopic Surgery Skill Evaluation Tool scores by training level, although the difference was not statistically significant. Interns improved by an average of 1.8 points between baseline and postknee simulation tests. Junior and senior residents decreased by 1.6 and 5.0 points, respectively. Knee arthroscopy simulation training did not objectively improve wrist arthroscopy proficiency among residents. A wrist-specific arthroscopy simulation program is needed if measurable competence through simulation is desired. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  19. Ostomate-for-a-Day: A Novel Pedagogy for Teaching Ostomy Care to Baccalaureate Nursing Students.

    PubMed

    Kerr, Noël

    2015-08-01

    The literature describing successful pedagogies for teaching ostomy care to baccalaureate nursing students is limited. This qualitative study investigated the potential benefits of participating in an immersive simulation that allowed baccalaureate nursing students to explore the physical and psychosocial impact of ostomy surgery. Junior-level nursing students attended a 2-hour interactive session during which they learned about preoperative stoma site marking and practiced the maneuvers on a peer. Students then wore an ostomy appliance for the next 24 hours, completed tasks simulating ostomy self-care, and submitted a three- to four-page reflection on the experience. These data were coded using the iterative process of constant comparison described by Glaser. Six major themes were identified: Accommodation for Activities of Daily Living, Coping with Annoyances, Body Image and Feelings, Disclosure, Insights for Teaching, and Empathy. Each participant affirmed the value of the experience. Suggestions for future research studies are discussed. Copyright 2015, SLACK Incorporated.

  20. Mastery-Based Virtual Reality Robotic Simulation Curriculum: The First Step Toward Operative Robotic Proficiency.

    PubMed

    Hogg, Melissa E; Tam, Vernissia; Zenati, Mazen; Novak, Stephanie; Miller, Jennifer; Zureikat, Amer H; Zeh, Herbert J

    Hepatobiliary surgery is a highly complex, low-volume specialty with long learning curves necessary to achieve optimal outcomes. This creates significant challenges in both training and measuring surgical proficiency. We hypothesize that a virtual reality curriculum with mastery-based simulation is a valid tool to train fellows toward operative proficiency. This study evaluates the content and predictive validity of robotic simulation curriculum as a first step toward developing a comprehensive, proficiency-based pathway. A mastery-based simulation curriculum was performed in a virtual reality environment. A pretest/posttest experimental design used both virtual reality and inanimate environments to evaluate improvement. Participants self-reported previous robotic experience and assessed the curriculum by rating modules based on difficulty and utility. This study was conducted at the University of Pittsburgh Medical Center (Pittsburgh, PA), a tertiary care academic teaching hospital. A total of 17 surgical oncology fellows enrolled in the curriculum, 16 (94%) completed. Of 16 fellows who completed the curriculum, 4 fellows (25%) achieved mastery on all 24 modules; on average, fellows mastered 86% of the modules. Following curriculum completion, individual test scores improved (p < 0.0001). An average of 2.4 attempts was necessary to master each module (range: 1-17). Median time spent completing the curriculum was 4.2 hours (range: 1.1-6.6). Total 8 (50%) fellows continued practicing modules beyond mastery. Survey results show that "needle driving" and "endowrist 2" modules were perceived as most difficult although "needle driving" modules were most useful. Overall, 15 (94%) fellows perceived improvement in robotic skills after completing the curriculum. In a cohort of board-certified general surgeons who are novices in robotic surgery, a mastery-based simulation curriculum demonstrated internal validity with overall score improvement. Time to complete the curriculum was manageable. Published by Elsevier Inc.

  1. Eigen-disfigurement model for simulating plausible facial disfigurement after reconstructive surgery.

    PubMed

    Lee, Juhun; Fingeret, Michelle C; Bovik, Alan C; Reece, Gregory P; Skoracki, Roman J; Hanasono, Matthew M; Markey, Mia K

    2015-03-27

    Patients with facial cancers can experience disfigurement as they may undergo considerable appearance changes from their illness and its treatment. Individuals with difficulties adjusting to facial cancer are concerned about how others perceive and evaluate their appearance. Therefore, it is important to understand how humans perceive disfigured faces. We describe a new strategy that allows simulation of surgically plausible facial disfigurement on a novel face for elucidating the human perception on facial disfigurement. Longitudinal 3D facial images of patients (N = 17) with facial disfigurement due to cancer treatment were replicated using a facial mannequin model, by applying Thin-Plate Spline (TPS) warping and linear interpolation on the facial mannequin model in polar coordinates. Principal Component Analysis (PCA) was used to capture longitudinal structural and textural variations found within each patient with facial disfigurement arising from the treatment. We treated such variations as disfigurement. Each disfigurement was smoothly stitched on a healthy face by seeking a Poisson solution to guided interpolation using the gradient of the learned disfigurement as the guidance field vector. The modeling technique was quantitatively evaluated. In addition, panel ratings of experienced medical professionals on the plausibility of simulation were used to evaluate the proposed disfigurement model. The algorithm reproduced the given face effectively using a facial mannequin model with less than 4.4 mm maximum error for the validation fiducial points that were not used for the processing. Panel ratings of experienced medical professionals on the plausibility of simulation showed that the disfigurement model (especially for peripheral disfigurement) yielded predictions comparable to the real disfigurements. The modeling technique of this study is able to capture facial disfigurements and its simulation represents plausible outcomes of reconstructive surgery for facial cancers. Thus, our technique can be used to study human perception on facial disfigurement.

  2. [3-dimensional imaging systems: first experience in planning and documentation of plastic surgery procedures].

    PubMed

    Spanholtz, T A; Leitsch, S; Holzbach, T; Volkmer, E; Engelhardt, T; Giunta, R E

    2012-08-01

    A reproducible 3-dimensional photographic system enables plastic surgeons to perform preoperative planning and helps them to understand the patient's expectations. There are a few systems available that allow a reproducible 3-dimensional scans of the patient with direct simulation of the planned procedure. The Vectra Volumetric 3D Surface Imaging® by Canfield® provides such an option and helps the surgeons to document and compare postoperative changes at different time points. Since January 2011 we are digitally documenting all patients receiving form-modulating procedures in our plastic surgery unit. We present the spectrum of clinical implications and discuss advantages and disadvantages of the system. Furthermore, we have studied the accuracy of the system in comparison to direct measurement in 15 volunteers. The system is especially suited for planning and evaluation of breast augmentation, facial aesthetic and reconstructive surgery as well as volumetric measurements before and after liposuction and lipofilling. Computer-assisted measurements correlate with a median deviation of 2.3% with manually measured distances in the face. We found the user-friendly Vectra® system to be a reliable and reproducible device for planning plastic surgery therapies and for documenting postoperative results. © Georg Thieme Verlag KG Stuttgart · New York.

  3. A review of the available urology skills training curricula and their validation.

    PubMed

    Shepherd, William; Arora, Karan Singh; Abboudi, Hamid; Shamim Khan, Mohammed; Dasgupta, Prokar; Ahmed, Kamran

    2014-01-01

    The transforming field of urological surgery continues to demand development of novel training devices and curricula for its trainees. Contemporary trainees have to balance workplace demands while overcoming the cognitive barriers of acquiring skills in rapidly multiplying and advancing surgical techniques. This article provides a brief review of the process involved in developing a surgical curriculum and the current status of real and simulation-based curricula in the 4 subgroups of urological surgical practice: open, laparoscopic, endoscopic, and robotic. An informal literature review was conducted to provide a snapshot into the variety of simulation training tools available for technical and nontechnical urological surgical skills within all subgroups of urological surgery using the following keywords: "urology, surgery, training, curriculum, validation, non-technical skills, technical skills, LESS, robotic, laparoscopy, animal models." Validated training tools explored in research were tabulated and summarized. A total of 20 studies exploring validated training tools were identified. Huge variation was noticed in the types of validity sought by researchers and suboptimal incorporation of these tools into curricula was noted across the subgroups of urological surgery. The following key recommendations emerge from the review: adoption of simulation-based curricula in training; better integration of dedicated training time in simulated environments within a trainee's working hours; better incentivization for educators and assessors to improvise, research, and deliver teaching using the technologies available; and continued emphasis on developing nontechnical skills in tandem with technical operative skills. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.

  4. Evaluation of Veterinary Student Surgical Skills Preparation for Ovariohysterectomy Using Simulators: A Pilot Study.

    PubMed

    Read, Emma K; Vallevand, Andrea; Farrell, Robin M

    2016-01-01

    This paper describes the development and evaluation of training intended to enhance students' performance on their first live-animal ovariohysterectomy (OVH). Cognitive task analysis informed a seven-page lab manual, 30-minute video, and 46-item OVH checklist (categorized into nine surgery components and three phases of surgery). We compared two spay simulator models (higher-fidelity silicone versus lower-fidelity cloth and foam). Third-year veterinary students were randomly assigned to a training intervention: lab manual and video only; lab manual, video, and $675 silicone-based model; lab manual, video, and $64 cloth and foam model. We then assessed transfer of training to a live-animal OVH. Chi-square analyses determined statistically significant differences between the interventions on four of nine surgery components, all three phases of surgery, and overall score. Odds ratio analyses indicated that training with a spay model improved the odds of attaining an excellent or good rating on 25 of 46 checklist items, six of nine surgery components, all three phases of surgery, and the overall score. Odds ratio analyses comparing the spay models indicated an advantage for the $675 silicon-based model on only 6 of 46 checklist items, three of nine surgery components, and one phase of surgery. Training with a spay model improved performance when compared to training with a manual and video only. Results suggested that training with a lower-fidelity/cost model might be as effective when compared to a higher-fidelity/cost model. Further research is required to investigate simulator fidelity and costs on transfer of training to the operational environment.

  5. Images created in a model eye during simulated cataract surgery can be the basis for images perceived by patients during cataract surgery

    PubMed Central

    Inoue, M; Uchida, A; Shinoda, K; Taira, Y; Noda, T; Ohnuma, K; Bissen-Miyajima, H; Hirakata, A

    2014-01-01

    Purpose To evaluate the images created in a model eye during simulated cataract surgery. Patients and methods This study was conducted as a laboratory investigation and interventional case series. An artificial opaque lens, a clear intraocular lens (IOL), or an irrigation/aspiration (I/A) tip was inserted into the ‘anterior chamber' of a model eye with the frosted posterior surface corresponding to the retina. Video images were recorded of the posterior surface of the model eye from the rear during simulated cataract surgery. The video clips were shown to 20 patients before cataract surgery, and the similarity of their visual perceptions to these images was evaluated postoperatively. Results The images of the moving lens fragments and I/A tip and the insertion of the IOL were seen from the rear. The image through the opaque lens and the IOL without moving objects was the light of the surgical microscope from the rear. However, when the microscope light was turned off after IOL insertion, the images of the microscope and operating room were observed by the room illumination from the rear. Seventy percent of the patients answered that the visual perceptions of moving lens fragments were similar to the video clips and 55% reported similarity with the IOL insertion. Eighty percent of the patients recommended that patients watch the video clip before their scheduled cataract surgery. Conclusions The patients' visual perceptions during cataract surgery can be reproduced in the model eye. Watching the video images preoperatively may help relax the patients during surgery. PMID:24788007

  6. Visuospatial Aptitude Testing Differentially Predicts Simulated Surgical Skill.

    PubMed

    Hinchcliff, Emily; Green, Isabel; Destephano, Christopher; Cox, Mary; Smink, Douglas; Kumar, Amanika; Hokenstad, Erik; Bengtson, Joan; Cohen, Sarah

    2018-02-05

    To determine if visuospatial perception (VSP) testing is correlated to simulated or intraoperative surgical performance as rated by the American College of Graduate Medical Education (ACGME) milestones. Classification II-2 SETTING: Two academic training institutions PARTICIPANTS: 41 residents, including 19 Brigham and Women's Hospital and 22 Mayo Clinic residents from three different specialties (OBGYN, general surgery, urology). Participants underwent three different tests: visuospatial perception testing (VSP), Fundamentals of Laparoscopic Surgery (FLS®) peg transfer, and DaVinci robotic simulation peg transfer. Surgical grading from the ACGME milestones tool was obtained for each participant. Demographic and subject background information was also collected including specialty, year of training, prior experience with simulated skills, and surgical interest. Standard statistical analysis using Student's t test were performed, and correlations were determined using adjusted linear regression models. In univariate analysis, BWH and Mayo training programs differed in both times and overall scores for both FLS® peg transfer and DaVinci robotic simulation peg transfer (p<0.05 for all). Additionally, type of residency training impacted time and overall score on robotic peg transfer. Familiarity with tasks correlated with higher score and faster task completion (p= 0.05 for all except VSP score). There was no difference in VSP scores by program, specialty, or year of training. In adjusted linear regression modeling, VSP testing was correlated only to robotic peg transfer skills (average time p=0.006, overall score p=0.001). Milestones did not correlate to either VSP or surgical simulation testing. VSP score was correlated with robotic simulation skills but not with FLS skills or ACGME milestones. This suggests that the ability of VSP score to predict competence differs between tasks. Therefore, further investigation is required into aptitude testing, especially prior to its integration as an entry examination into a surgical subspecialty. Copyright © 2018. Published by Elsevier Inc.

  7. Validation of a Novel Laparoscopic Adjustable Gastric Band Simulator

    PubMed Central

    Sankaranarayanan, Ganesh; Adair, James D.; Halic, Tansel; Gromski, Mark A.; Lu, Zhonghua; Ahn, Woojin; Jones, Daniel B.; De, Suvranu

    2011-01-01

    Background Morbid obesity accounts for more than 90,000 deaths per year in the United States. Laparoscopic adjustable gastric banding (LAGB) is the second most common weight loss procedure performed in the US and the most common in Europe and Australia. Simulation in surgical training is a rapidly advancing field that has been adopted by many to prepare surgeons for surgical techniques and procedures. Study Aim The aim of our study was to determine face, construct and content validity for a novel virtual reality laparoscopic adjustable gastric band simulator. Methods Twenty-eight subjects were categorized into two groups (Expert and Novice), determined by their skill level in laparoscopic surgery. Experts consisted of subjects who had at least four years of laparoscopic training and operative experience. Novices consisted of subjects with medical training, but with less than four years of laparoscopic training. The subjects performed the virtual reality laparoscopic adjustable band surgery simulator. They were automatically scored, according to various tasks. The subjects then completed a questionnaire to evaluate face and content validity. Results On a 5-point Likert scale (1 – lowest score, 5 – highest score), the mean score for visual realism was 4.00 ± 0.67 and the mean score for realism of the interface and tool movements was 4.07 ± 0.77 [Face Validity]. There were significant differences in the performance of the two subject groups (Expert and Novice), based on total scores (p<0.001) [Construct Validity]. Mean scores for utility of the simulator, as addressed by the Expert group, was 4.50 ± 0.71 [Content Validity]. Conclusion We created a virtual reality laparoscopic adjustable gastric band simulator. Our initial results demonstrate excellent face, construct and content validity findings. To our knowledge, this is the first virtual reality simulator with haptic feedback for training residents and surgeons in the laparoscopic adjustable gastric banding procedure. PMID:20734069

  8. Validation of a novel laparoscopic adjustable gastric band simulator.

    PubMed

    Sankaranarayanan, Ganesh; Adair, James D; Halic, Tansel; Gromski, Mark A; Lu, Zhonghua; Ahn, Woojin; Jones, Daniel B; De, Suvranu

    2011-04-01

    Morbid obesity accounts for more than 90,000 deaths per year in the United States. Laparoscopic adjustable gastric banding (LAGB) is the second most common weight loss procedure performed in the US and the most common in Europe and Australia. Simulation in surgical training is a rapidly advancing field that has been adopted by many to prepare surgeons for surgical techniques and procedures. The aim of our study was to determine face, construct, and content validity for a novel virtual reality laparoscopic adjustable gastric band simulator. Twenty-eight subjects were categorized into two groups (expert and novice), determined by their skill level in laparoscopic surgery. Experts consisted of subjects who had at least 4 years of laparoscopic training and operative experience. Novices consisted of subjects with medical training but with less than 4 years of laparoscopic training. The subjects used the virtual reality laparoscopic adjustable band surgery simulator. They were automatically scored according to various tasks. The subjects then completed a questionnaire to evaluate face and content validity. On a 5-point Likert scale (1 = lowest score, 5 = highest score), the mean score for visual realism was 4.00 ± 0.67 and the mean score for realism of the interface and tool movements was 4.07 ± 0.77 (face validity). There were significant differences in the performances of the two subject groups (expert and novice) based on total scores (p < 0.001) (construct validity). Mean score for utility of the simulator, as addressed by the expert group, was 4.50 ± 0.71 (content validity). We created a virtual reality laparoscopic adjustable gastric band simulator. Our initial results demonstrate excellent face, construct, and content validity findings. To our knowledge, this is the first virtual reality simulator with haptic feedback for training residents and surgeons in the laparoscopic adjustable gastric banding procedure.

  9. "Like a trip to McDonalds": a grounded theory study of patient experiences of day surgery.

    PubMed

    Mottram, Anne

    2011-02-01

    The amount and complexity of (ambulatory) day surgery is rapidly expanding internationally. Nurses have a responsibility to provide quality care for day surgery patients. To do this they must understand all aspects of the patient experience. There is dearth of research into day surgery using a sociological frame of reference. The study investigated patients' experiences of day surgery using a sociological frame of reference. A qualitative study using the grounded theory approach was used. The study was based in two day surgery units in two urban public hospitals in the United Kingdom. 145 patients aged 18-70 years and 100 carers were purposely selected from the orthopaedic, ear nose and throat and general surgical lists. They were all English speaking and were of varied socio-economic background. The data was collected from 2004 to 2006. Semi-structured interviews were conducted on three occasions: before surgery, 48 h following surgery and one month following discharge. Permission was received from the Local Research Ethics Committee. Analysis of the data involved line-by-line analysis, compilation of key words and phrases (codes) and constant comparison of the codes until categories emerged. Patients liked day surgery and placed it within the wider societal context of efficiency and speed. Time was a major issue for them. They wished surgery, like all other aspects of their life to be a speedy process. They likened it to a McDonald's experience with its emphasis on speed, predictability and control. This study throws new light on patient experiences and offers an understanding of day surgery against a western culture which emphasises the importance of speed and efficiency. It is a popular choice for patients but at times it can be seen to be a mechanistic way of providing care. The implications for nurses to provide education and information to add to the quality of the patient experience are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Virtual reality training and assessment in laparoscopic rectum surgery.

    PubMed

    Pan, Jun J; Chang, Jian; Yang, Xiaosong; Liang, Hui; Zhang, Jian J; Qureshi, Tahseen; Howell, Robert; Hickish, Tamas

    2015-06-01

    Virtual-reality (VR) based simulation techniques offer an efficient and low cost alternative to conventional surgery training. This article describes a VR training and assessment system in laparoscopic rectum surgery. To give a realistic visual performance of interaction between membrane tissue and surgery tools, a generalized cylinder based collision detection and a multi-layer mass-spring model are presented. A dynamic assessment model is also designed for hierarchy training evaluation. With this simulator, trainees can operate on the virtual rectum with both visual and haptic sensation feedback simultaneously. The system also offers surgeons instructions in real time when improper manipulation happens. The simulator has been tested and evaluated by ten subjects. This prototype system has been verified by colorectal surgeons through a pilot study. They believe the visual performance and the tactile feedback are realistic. It exhibits the potential to effectively improve the surgical skills of trainee surgeons and significantly shorten their learning curve. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Disparities in Aesthetic Procedures Performed by Plastic Surgery Residents.

    PubMed

    Silvestre, Jason; Serletti, Joseph M; Chang, Benjamin

    2017-05-01

    Operative experience in aesthetic surgery is an important issue affecting plastic surgery residents. This study addresses the variability of aesthetic surgery experience during plastic surgery residency. National operative case logs of chief residents in independent/combined and integrated plastic surgery residency programs were analyzed (2011-2015). Fold differences between the bottom and top 10th percentiles of residents were calculated for each aesthetic procedure category and training model. The number of residents not achieving case minimums was also calculated. Case logs of 818 plastic surgery residents were analyzed. There was marked variability in craniofacial (range, 6.0-15.0), breast (range, 2.4-5.9), trunk/extremity (range, 3.0-16.0), and miscellaneous (range, 2.7-22.0) procedure categories. In 2015, the bottom 10th percentile of integrated and independent/combined residents did not achieve case minimums for botulinum toxin and dermal fillers. Case minimums were achieved for the other aesthetic procedure categories for all graduating years. Significant variability persists for many aesthetic procedure categories during plastic surgery residency training. Greater efforts may be needed to improve the aesthetic surgery experience of plastic surgery residents. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  12. Learning styles and the prospective ophthalmologist.

    PubMed

    Modi, Neil; Williams, Olayinka; Swampillai, Andrew J; Waqar, Salman; Park, Jonathan; Kersey, Thomas L; Sleep, Tamsin

    2015-04-01

    Understanding the learning styles of individual trainees may enable trainers to tailor an educational program and optimise learning. Surgical trainees have previously been shown to demonstrate a tendency towards particular learning styles. We seek to clarify the relationship between learning style and learned surgical performance using a simulator, prior to surgical training. The Kolb Learning Style Inventory was administered to a group of thirty junior doctors. Participants were then asked to perform a series of tasks using the EyeSi virtual reality cataract surgery simulator (VR Magic, Mannheim, Germany). All completed a standard introductory programme to eliminate learning curve. They then undertook four attempts of level 4 forceps module binocularly. Total score, odometer movement (mm), corneal area injured (mm(2)), lens area injured (mm(2)) and total time taken (seconds) recorded. Mean age was 31.6 years. No significant correlation was found between any learning style and any variable on the EyeSi cataract surgery simulator. There is a predominant learning style amongst surgical residents. There is however no demonstrable learning style that results in a better (or worse) performance on the EyeSi surgery simulator and hence in learning and performing cataract surgery.

  13. New Age Teaching: Beyond Didactics

    PubMed Central

    Vlaovic, Peter D.; McDougall, Elspeth M.

    2006-01-01

    Widespread acceptance of laparoscopic urology techniques has posed many challenges to training urology residents and allowing postgraduate urologists to acquire often difficult new surgical skills. Several factors in surgical training programs are limiting the ability to train residents in the operating room, including limited-hours work weeks, increasing demand for operating room productivity, and general public awareness of medical errors. As such, surgical simulation may provide an opportunity to enhance residency experience and training, and optimize post-graduate acquisition of new skills and maintenance of competency. This review article explains and defines the various levels of validity as it pertains to surgical simulators. The most recently and comprehensively validity tested simulators are outlined and summarized. The potential role of surgical simulation in the formative and summative assessment of surgical trainees, as well as, the certification and recertification process of postgraduate surgeons will be delineated. Surgical simulation will be an important adjunct to the traditional methods of surgical skills training and will allow surgeons to maintain their proficiency in the technically challenging aspects of minimally invasive urologic surgery. PMID:17619704

  14. Operative simulation of anterior clinoidectomy using a rapid prototyping model molded by a three-dimensional printer.

    PubMed

    Okonogi, Shinichi; Kondo, Kosuke; Harada, Naoyuki; Masuda, Hiroyuki; Nemoto, Masaaki; Sugo, Nobuo

    2017-09-01

    As the anatomical three-dimensional (3D) positional relationship around the anterior clinoid process (ACP) is complex, experience of many surgeries is necessary to understand anterior clinoidectomy (AC). We prepared a 3D synthetic image from computed tomographic angiography (CTA) and magnetic resonance imaging (MRI) data and a rapid prototyping (RP) model from the imaging data using a 3D printer. The objective of this study was to evaluate anatomical reproduction of the 3D synthetic image and intraosseous region after AC in the RP model. In addition, the usefulness of the RP model for operative simulation was investigated. The subjects were 51 patients who were examined by CTA and MRI before surgery. The size of the ACP, thickness and length of the optic nerve and artery, and intraosseous length after AC were measured in the 3D synthetic image and RP model, and reproducibility in the RP model was evaluated. In addition, 10 neurosurgeons performed AC in the completed RP models to investigate their usefulness for operative simulation. The RP model reproduced the region in the vicinity of the ACP in the 3D synthetic image, including the intraosseous region, at a high accuracy. In addition, drilling of the RP model was a useful operative simulation method of AC. The RP model of the vicinity of ACP, prepared using a 3D printer, showed favorable anatomical reproducibility, including reproduction of the intraosseous region. In addition, it was concluded that this RP model is useful as a surgical education tool for drilling.

  15. Effect of music on surgical skill during simulated intraocular surgery.

    PubMed

    Kyrillos, Ralph; Caissie, Mathieu

    2017-12-01

    To evaluate the effect of Mozart music compared to silence on anterior segment surgical skill in the context of simulated intraocular surgery. Prospective stratified and randomized noninferiority trial. Fourteen ophthalmologists and 12 residents in ophthalmology. All participants were asked to perform 4 sets of predetermined tasks on the EyeSI surgical simulator (VRmagic, Mannheim, Germany). The participants completed 1 Capsulorhexis task and 1 Anti-Tremor task during 3 separate visits. The first 2 sets determined the basic level on day 1. Then, the participants were stratified by surgical experience and randomized to be exposed to music (Mozart sonata for 2 pianos in D-K448) during either the third or the fourth set of tasks (day 2 or 3). Surgical skill was evaluated using the parameters recorded by the simulator such as "Total score" and "Time" for both tasks and task-specific parameters such as "Out of tolerance percentage" for the Anti-Tremor task and "Deviation of rhexis radius from 2.5 mm," "Roundness," and "Centering" for the Capsulorhexis task. The data were analyzed using the Wilcoxon signed-rank test. No statistically significant differences were noted between exposure and nonexposure for all the Anti-Tremor task parameters as well as most parameters for the Capsulorhexis task. Two parameters for the Capsulorhexis task showed a strong trend for improvement with exposure to music ("Total score" +23.3%, p = 0.025; "Roundness" +33.0%, p = 0.037). Exposure to music did not negatively impact surgical skills. Moreover, a trend for improvement was shown while listening to Mozart music. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  16. Perioperative Nurses' Work Experience With Robotic Surgery: A Focus Group Study.

    PubMed

    Kang, Min Jung; De Gagne, Jennie C; Kang, Hee Sun

    2016-04-01

    The aim of this study was to explore the work experience of perioperative nurses involved in robotic surgery. A qualitative descriptive study was conducted. Participants were 15 nurses who had been on a robotic surgery team at one of five major university hospitals in Seoul, South Korea. Participants were one male and 14 female nurses (mean age, 31.33 [SD, 4.19] years; range, 25-41 years). Their experience as robotic surgery nurses ranged from 8 months to 6 years. Nurses' experiences with robotic surgery were categorized within four main themes: (1) constant checking on patients' safety and the robot's functions; (2) unexpected robotic machine errors or malfunctions; (3) feelings of burden in a robotic surgical team; and (4) need and desire for more information and education. This study showed that there are common concerns about patient safety and the possibility of emergencies related to robot system failure among nurses. Offering more support for nurses involved in robotic surgery should be a priority to empower them to play an extended role in robotic surgery.

  17. Cost analysis of objective resident cataract surgery assessments.

    PubMed

    Nandigam, Kiran; Soh, Jonathan; Gensheimer, William G; Ghazi, Ahmed; Khalifa, Yousuf M

    2015-05-01

    To compare 8 ophthalmology resident surgical training tools to determine which is most cost effective. University of Rochester Medical Center, Rochester, New York, USA. Retrospective evaluation of technology. A cost-analysis model was created to compile all relevant costs in running each tool in a medium-sized ophthalmology program. Quantitative cost estimates were obtained based on cost of tools, cost of time in evaluations, and supply and maintenance costs. For wet laboratory simulation, Eyesi was the least expensive cataract surgery simulation method; however, it is only capable of evaluating simulated cataract surgery rehearsal and requires supplementation with other evaluative methods for operating room performance and for noncataract wet lab training and evaluation. The most expensive training tool was the Eye Surgical Skills Assessment Test (ESSAT). The 2 most affordable methods for resident evaluation in operating room performance were the Objective Assessment of Skills in Intraocular Surgery (OASIS) and Global Rating Assessment of Skills in Intraocular Surgery (GRASIS). Cost-based analysis of ophthalmology resident surgical training tools are needed so residency programs can implement tools that are valid, reliable, objective, and cost effective. There is no perfect training system at this time. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. Virtual Surgery for the Nasal Airway: A Preliminary Report on Decision Support and Technology Acceptance.

    PubMed

    Vanhille, Derek L; Garcia, Guilherme J M; Asan, Onur; Borojeni, Azadeh A T; Frank-Ito, Dennis O; Kimbell, Julia S; Pawar, Sachin S; Rhee, John S

    2018-01-01

    Nasal airway obstruction (NAO) is a common problem that affects patient quality of life. Surgical success for NAO correction is variable. Virtual surgery planning via computational fluid dynamics (CFD) has the potential to improve the success rates of NAO surgery. To elicit surgeon feedback of a virtual surgery planning tool for NAO and to determine if this tool affects surgeon decision making. For this cross-sectional study, 60-minute face-to-face interviews with board-certified otolaryngologists were conducted at a single academic otolaryngology department from September 16, 2016, through October 7, 2016. Virtual surgery methods were introduced, and surgeons were able to interact with the virtual surgery planning tool interface. Surgeons were provided with a patient case of NAO, and open feedback of the platform was obtained, with emphasis on surgical decision making. Likert scale responses and qualitative feedback were collected for the virtual surgery planning tool and its influence on surgeon decision making. Our 9 study participants were all male, board-certified otolaryngologists with a mean (range) 15 (4-28) number of years in practice and a mean (range) number of nasal surgeries per month at 2.2 (0.0-6.0). When examined on a scale of 1 (not at all) to 5 (completely), surgeon mean (SD) score was 3.4 (0.5) for how realistic the virtual models were compared with actual surgery. On the same scale, when asked how much the virtual surgery planning tool changed surgeon decision making, mean (SD) score was 2.6 (1.6). On a scale of 1 (strongly disagree) to 7 (strongly agree), surgeon scores for perceived usefulness of the technology and attitude toward using it were 5.1 (1.1) and 5.7 (0.9), respectively. Our study shows positive surgeon experience with a virtual surgery planning tool for NAO based on CFD simulations. Surgeons felt that future applications and areas of study of the virtual surgery planning tool include its potential role for patient counseling, selecting appropriate surgical candidates, and identifying which anatomical structures should be targeted for surgical correction. NA.

  19. A temperature-compensated optical fiber force sensor for minimally invasive surgeries

    NASA Astrophysics Data System (ADS)

    Mo, Z.; Xu, W.; Broderick, N.; Chen, H.

    2015-12-01

    Force sensing in minimally invasive surgery (MIS) is a chronic problem since it has an intensive magnetic resonance (MR) operation environment, which causes a high influence to traditional electronic force sensors. Optical sensor is a promising choice in this area because it is immune to MR influence. However, the changing temperature introduces a lot of noise signals to them, which is the main obstacle for optical sensing applications in MIS. This paper proposes a miniature temperature-compensated optical force sensor by using Fabry-Perot interference (FPI) principle. It can be integrated into medical tools' tips and the temperature noise is decreased by using a reference FPI temperature sensor. An injection needle with embedded temperature-compensated FPI force sensor has been fabricated and tested. And the comparison between temperature-force simulation results and the temperature-force experiment results has been carried out.

  20. [Haptic tracking control for minimally invasive robotic surgery].

    PubMed

    Xu, Zhaohong; Song, Chengli; Wu, Wenwu

    2012-06-01

    Haptic feedback plays a significant role in minimally invasive robotic surgery (MIRS). A major deficiency of the current MIRS is the lack of haptic perception for the surgeon, including the commercially available robot da Vinci surgical system. In this paper, a dynamics model of a haptic robot is established based on Newton-Euler method. Because it took some period of time in exact dynamics solution, we used a digital PID arithmetic dependent on robot dynamics to ensure real-time bilateral control, and it could improve tracking precision and real-time control efficiency. To prove the proposed method, an experimental system in which two Novint Falcon haptic devices acting as master-slave system has been developed. Simulations and experiments showed proposed methods could give instrument force feedbacks to operator, and bilateral control strategy is an effective method to master-slave MIRS. The proposed methods could be used to tele-robotic system.

  1. Trauma teams and time to early management during in situ trauma team training

    PubMed Central

    Härgestam, Maria; Lindkvist, Marie; Jacobsson, Maritha; Brulin, Christine

    2016-01-01

    Objectives To investigate the association between the time taken to make a decision to go to surgery and gender, ethnicity, years in profession, experience of trauma team training, experience of structured trauma courses and trauma in the trauma team, as well as use of closed-loop communication and leadership styles during trauma team training. Design In situ trauma team training. The patient simulator was preprogrammed to represent a severely injured patient (injury severity score: 25) suffering from hypovolemia due to external trauma. Setting An emergency room in an urban Scandinavian level one trauma centre. Participants A total of 96 participants were divided into 16 trauma teams. Each team consisted of six team members: one surgeon/emergency physician (designated team leader), one anaesthesiologist, one registered nurse anaesthetist, one registered nurse from the emergency department, one enrolled nurse from the emergency department and one enrolled nurse from the operating theatre. Primary outcome HRs with CIs (95% CI) for the time taken to make a decision to go to surgery was computed from a Cox proportional hazards model. Results Three variables remained significant in the final model. Closed-loop communication initiated by the team leader increased the chance of a decision to go to surgery (HR: 3.88; CI 1.02 to 14.69). Only 8 of the 16 teams made the decision to go to surgery within the timeframe of the trauma team training. Conversely, call-outs and closed-loop communication initiated by the team members significantly decreased the chance of a decision to go to surgery, (HR: 0.82; CI 0.71 to 0.96, and HR: 0.23; CI 0.08 to 0.71, respectively). Conclusions Closed-loop communication initiated by the leader appears to be beneficial for teamwork. In contrast, a high number of call-outs and closed-loop communication initiated by team members might lead to a communication overload. PMID:26826152

  2. Developing a National, Simulation-Based, Surgical Skills Bootcamp in General Thoracic Surgery.

    PubMed

    Schieman, Colin; Ujiie, Hideki; Donahoe, Laura; Hanna, Waël; Malthaner, Richard; Turner, Simon; Czarnecka, Kasia; Yasufuku, Kazuhiro

    2017-12-12

    The use surgical simulation across all subspecialties has gained widespread adoption in the last decade. A number of factors, including the small number of trainees, identified gaps in surgical skill training from cross-sectional surveys, increased national collaboration, and support from the national specialty committee identified a need to construct a surgical skills "bootcamp" in thoracic surgery in Canada. The goals of the surgical skills bootcamp, as identified by the residency training program directors and the national specialty committee were to create a national, centralized, simulation-based skills workshop that focused on key foundational procedures within thoracic surgery, particularly those identified as areas of weakness by former residents; to smooth the transition to intraoperative teaching; to provide exposure to important but not necessarily universally available procedures such as advanced endoscopy; to teach non-medical expert competencies, and lastly to provide a venue for networking for residents across the country. The curriculum committee has constructed a 3.5 day curriculum, with a focus on hands-on skills simulation, as well as lectures, on a breadth of topics including benign esophageal disorders, lung cancer staging, minimally invasive lung surgery, crisis management and advanced bronchoscopy and endoscopy. All residents across the country attend as well as faculty from a variety of institutions. The course is hosted centrally at the University of Toronto, Ontario over 3.5 days. A combination of auditorium and both animal and human operating room facilities are utilized. A needs-assessment based on a formal meeting of the program directors, as well feedback from surveys identified the target areas for curriculum development. A committee of interested faculty developed the content as well as the local construct and logistics required. Iterative feedback has evolved the duration and content over the initial 3 years. Through formal resident feedback, national subspecialty committee review, and program director meetings the support for the bootcamp has been overwhelmingly positive. Specific resident feedback for structure, content and specific simulations has been favorable, but has also been used to modify the program. In response to identified weaknesses in training, with the support of the national specialty committee, the residency program directors, and the faculty at the University of Toronto, an intensive simulation based thoracic surgery bootcamp has successfully been created for Canadian thoracic surgery residents. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  3. Adverse Childhood Experiences in a Post-bariatric Surgery Psychiatric Inpatient Sample.

    PubMed

    Fink, Kathryn; Ross, Colin A

    2017-12-01

    Sixty-three inpatients in a psychiatric hospital who had previously undergone bariatric surgery were interviewed by the hospital dietitian. The purpose of the study was to determine the frequency of adverse childhood experiences in this population. Participants completed the Adverse Childhood Experiences (ACE) Scale. The average score on the ACE was 5.4 (3.3); 76% of participants reported childhood emotional neglect, 70% childhood verbal abuse, and 64% childhood sexual abuse; only two participants reported no adverse childhood experiences. The participants in the study reported high levels of adverse childhood experiences compared to the general population, which is consistent with prior literature on rates of childhood trauma in post-bariatric surgery patients. The role of adverse childhood experiences in post-bariatric surgery adaptation should be investigated in future research, including in prospective studies.

  4. Construct validity for eye-hand coordination skill on a virtual reality laparoscopic surgical simulator.

    PubMed

    Yamaguchi, Shohei; Konishi, Kozo; Yasunaga, Takefumi; Yoshida, Daisuke; Kinjo, Nao; Kobayashi, Kiichiro; Ieiri, Satoshi; Okazaki, Ken; Nakashima, Hideaki; Tanoue, Kazuo; Maehara, Yoshihiko; Hashizume, Makoto

    2007-12-01

    This study was carried out to investigate whether eye-hand coordination skill on a virtual reality laparoscopic surgical simulator (the LAP Mentor) was able to differentiate among subjects with different laparoscopic experience and thus confirm its construct validity. A total of 31 surgeons, who were all right-handed, were divided into the following two groups according to their experience as an operator in laparoscopic surgery: experienced surgeons (more than 50 laparoscopic procedures) and novice surgeons (fewer than 10 laparoscopic procedures). The subjects were tested using the eye-hand coordination task of the LAP Mentor, and performance was compared between the two groups. Assessment of the laparoscopic skills was based on parameters measured by the simulator. The experienced surgeons completed the task significantly faster than the novice surgeons. The experienced surgeons also achieved a lower number of movements (NOM), better economy of movement (EOM) and faster average speed of the left instrument than the novice surgeons, whereas there were no significant differences between the two groups for the NOM, EOM and average speed of the right instrument. Eye-hand coordination skill of the nondominant hand, but not the dominant hand, measured using the LAP Mentor was able to differentiate between subjects with different laparoscopic experience. This study also provides evidence of construct validity for eye-hand coordination skill on the LAP Mentor.

  5. Comparison of Complications Rates in Endoscopic Surgery Performed by a Clinical Assistant vs. An Experienced Endoscopic Surgeon

    PubMed Central

    Singhi, Aditi

    2009-01-01

    Study Objectives: (a) To find out the actual incidence of complications during endoscopic surgeries. (b) Comparison of complication rate between an experienced laparoscopic surgeon (> 10 years of experience in endoscopic surgery) and a clinical assistant (> 3 years of experience in endoscopic surgery). (c) How to manage complications in endoscopic surgery. (d) Concrete suggestions to reduce the complication rate. Design: Retrospective study (Canadian Task Force classification ii-2). Setting: Tertiary gynecologic endoscopic unit. Patients: A total of 3204 cases of gynecologic endoscopic surgery out of which 2001 were laparoscopic and 1203 were hysteroscopic surgeries. Interventions: Laparoscopic and hysteroscopic gynecologic surgeries in indicated cases. Measurements and Main Results: The study was carried out between April 2003 and October 2007 at a referral center for endoscopic surgery. A total of 3204 cases of gynecologic endoscopic surgery were studied. There were five significant complications in laparoscopic surgeries and four significant complications in hysteroscopic surgeries seen in four years and six months. All the complications could be managed with no mortality. Conversion to laparotomy was needed in eight cases of laparoscopic surgeries and none in hysteroscopic surgeries. Conclusion: The risk of complication reduces with the experience in endoscopic surgery. However, the proper grooming of a novice in experienced hands, for a sufficient period of time, can minimize the complication rate in the initial learning phase. The complication may be utilized as a stepping-stone to overcome any given situation without panic, but with adequate safety. PMID:22442510

  6. [Virtual surgical education: experience with medicine and surgery students].

    PubMed

    Bonavina, Luigi; Mozzi, Enrico; Peracchia, Alberto

    2003-01-01

    The use of virtual reality simulation is currently being proposed within programs of postgraduate surgical education. The simple tasks that make up an operative procedure can be repeatedly performed until satisfactory execution is achieved, and the errors can be corrected by means of objective assessment. The aim of this study was to evaluate the applicability and the results of structured practice with the LapSim laparoscopic simulator used by undergraduate medical students. A significant reduction in operative time and errors was noted in several tasks (navigation, clipping, etc.). Although the transfer of technical skills to the operating room environment remains to be demonstrated, our research shows that this type of teaching is applicable to undergraduate medical students and in future may become a useful tool for selecting individuals for surgical residency programs.

  7. Using simulation to design a central sterilization department.

    PubMed

    Lin, Feng; Lawley, Mark; Spry, Charlie; McCarthy, Kelly; Coyle-Rogers, Patricia G; Yih, Yuehwern

    2008-10-01

    A simulation project was performed to assist with redesign of the surgery department of a large tertiary hospital and to help administrators make the best decisions about relocating, staffing, and equipping the central sterilization department. A simulation model was created to analyze department configurations, staff schedules, equipment capacities, and cart-washing requirements. Performance measures examined include tray turnaround time, surgery-delay rate, and work-in-process levels. The analysis provides significant insight into how the proposed system will perform, allowing planning for expected patient volume increases. This work illustrates how simulation can facilitate the design of a central sterilization department and improve surgical sterilization operations.

  8. Validation of Robotic Surgery Simulator (RoSS).

    PubMed

    Kesavadas, Thenkurussi; Stegemann, Andrew; Sathyaseelan, Gughan; Chowriappa, Ashirwad; Srimathveeravalli, Govindarajan; Seixas-Mikelus, Stéfanie; Chandrasekhar, Rameella; Wilding, Gregory; Guru, Khurshid

    2011-01-01

    Recent growth of daVinci Robotic Surgical System as a minimally invasive surgery tool has led to a call for better training of future surgeons. In this paper, a new virtual reality simulator, called RoSS is presented. Initial results from two studies - face and content validity, are very encouraging. 90% of the cohort of expert robotic surgeons felt that the simulator was excellent or somewhat close to the touch and feel of the daVinci console. Content validity of the simulator received 90% approval in some cases. These studies demonstrate that RoSS has the potential of becoming an important training tool for the daVinci surgical robot.

  9. [Suture simulator - Cleft palate surgery].

    PubMed

    Devinck, F; Riot, S; Qassemyar, A; Belkhou, A; Wolber, A; Martinot Duquennoy, V; Guerreschi, P

    2017-04-01

    Cleft palate requires surgery in the first years of life, furthermore repairing anatomically the soft and hard palate is complex on a surgical level because of the fine tissues and the local intraoral configuration. It is valuable to train first on simulators before going to the operating room. However, there is no material dedicated to learning how to perform intraoral sutures in cleft palate surgery. We made one, in an artisanal manner, in order to practice before the real surgical gesture. The simulator was designed based on precise anatomical data. A steel pipe, fixed on a rigid base represented the oral cavity. An adapted split spoon represented the palate. All pieces could be removed in order to apply a hydrocellular dressing before training for sutures. Our simulator was tested by 3 senior surgeons in our department in close to real-life conditions in order to evaluate its anatomical accuracy. It is valuable to have a simulator to train on cleft palate sutures within teaching university hospitals that manage this pathology. Our simulator has a very low cost, it is easy to make and is anatomically accurate. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. [Evaluation of the capacity of work using upper limbs after radical latero-cervical surgery].

    PubMed

    Capodaglio, P; Strada, M R; Grilli, C; Lodola, E; Panigazzi, M; Bernardo, G; Bazzini, G

    1998-01-01

    Evaluation of arm work capacity after radical neck surgery. The aim of this paper is to describe an approach for the assessment of work capacity in patients who underwent radical neck surgery, including those treated with radiation therapy. Nine male patients, who underwent radical neck surgery 2 months before being referred to our Unit, participated in the study. In addition to manual muscle strength test, we performed the following functional evaluations: 0-100 Constant scale for shoulder function; maximal shoulder strength in adduction/abduction and intrarotation/extrarotation; instrumental. We measured maximal isokinetic strength (10 repetitions) with a computerized dynamometer (Lido WorkSET) set at 100 degrees/sec. During the rehabilitation phase, the patients' mechanical parameters, the perception of effort, pain or discomfort, and the range of movement were monitored while performing daily/occupational task individually chosen on the simulator (Lido WorkSET) under isotonic conditions. On this basis, patients were encouraged to return to levels of daily physical activities compatible with the individual tolerable work load. The second evaluation at 2 month confirmed that the integrated rehabilitation protocol successfully increased patients' capacities and "trust" in their physical capacity. According to the literature, the use of isokinetic and isotonic exercise programs appears to decrease shoulder rehabilitation time. In our experience an excellent compliance has been noted. One of the advantages of the method proposed is to provide quantitative reports of the functional capacity and therefore to facilitate return-to-work of patients who underwent radical neck surgery.

  11. Economic Evaluation of Bariatric Surgery in Mexico Using Discrete Event Simulation.

    PubMed

    Zanela, Olivo Omar; Cabra, Hermilo Arturo; Meléndez, Guillermo; Anaya, Pablo; Rupprecht, Frederic

    2012-12-01

    Morbid obesity represents high costs to health institutions in controlling associated comorbidities. It has been shown that bariatric surgery resolves or improves comorbidities, thus reducing resource utilization. This analysis estimated the total costs of treating morbid obesity and related comorbidities through conventional treatment compared to bariatric surgery under the Mexican public health system perspective. An economic evaluation model was developed by using discrete event simulation. One hundred fifty patients were created in each arm, with considered comorbidities allocated randomly. Preoperative comorbidity prevalences and bariatric surgery's efficacy for resolving them were obtained from published literature. Comorbidity treatment costs were obtained from the 2007 Mexican Institute of Social Security diagnosis-related group list and publications from the National Institute of Public Health. Only 12 patients were operated each month on the surgical arm. Complications associated with comorbidities were not considered. The considered time frame for simulation was 10 years, with a 4.5% annual discount rate. Return on investment, or cost breakeven point, for bariatric surgery was obtained after 6.8 years. Total costs for the surgical group were 52% less than conventional treatment group costs after 10 years. Bariatric surgery reduced the cost of treating type 2 diabetes, hypertension, and hypercholesterolemia by 59%, 53%, and 65%, respectively. Return on investment for bariatric surgery in patients with type 2 diabetes as the only comorbidity was 4.4 years. Despite conservative assumptions, investment in bariatric surgery is recouped in 6.8 years, generating relevant potential savings in the treatment of morbidly obese patients. In high-risk subpopulations, return on investment time is shorter. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  12. Can surgical simulation be used to train detection and classification of neural networks?

    PubMed

    Zisimopoulos, Odysseas; Flouty, Evangello; Stacey, Mark; Muscroft, Sam; Giataganas, Petros; Nehme, Jean; Chow, Andre; Stoyanov, Danail

    2017-10-01

    Computer-assisted interventions (CAI) aim to increase the effectiveness, precision and repeatability of procedures to improve surgical outcomes. The presence and motion of surgical tools is a key information input for CAI surgical phase recognition algorithms. Vision-based tool detection and recognition approaches are an attractive solution and can be designed to take advantage of the powerful deep learning paradigm that is rapidly advancing image recognition and classification. The challenge for such algorithms is the availability and quality of labelled data used for training. In this Letter, surgical simulation is used to train tool detection and segmentation based on deep convolutional neural networks and generative adversarial networks. The authors experiment with two network architectures for image segmentation in tool classes commonly encountered during cataract surgery. A commercially-available simulator is used to create a simulated cataract dataset for training models prior to performing transfer learning on real surgical data. To the best of authors' knowledge, this is the first attempt to train deep learning models for surgical instrument detection on simulated data while demonstrating promising results to generalise on real data. Results indicate that simulated data does have some potential for training advanced classification methods for CAI systems.

  13. Face and content validity of Xperience™ Team Trainer: bed-side assistant training simulator for robotic surgery.

    PubMed

    Sessa, Luca; Perrenot, Cyril; Xu, Song; Hubert, Jacques; Bresler, Laurent; Brunaud, Laurent; Perez, Manuela

    2018-03-01

    In robotic surgery, the coordination between the console-side surgeon and bed-side assistant is crucial, more than in standard surgery or laparoscopy where the surgical team works in close contact. Xperience™ Team Trainer (XTT) is a new optional component for the dv-Trainer ® platform and simulates the patient-side working environment. We present preliminary results for face, content, and the workload imposed regarding the use of the XTT virtual reality platform for the psychomotor and communication skills training of the bed-side assistant in robot-assisted surgery. Participants were categorized into "Beginners" and "Experts". They tested a series of exercises (Pick & Place Laparoscopic Demo, Pick & Place 2 and Team Match Board 1) and completed face validity questionnaires. "Experts" assessed content validity on another questionnaire. All the participants completed a NASA Task Load Index questionnaire to assess the workload imposed by XTT. Twenty-one consenting participants were included (12 "Beginners" and 9 "Experts"). XTT was shown to possess face and content validity, as evidenced by the rankings given on the simulator's ease of use and realism parameters and on the simulator's usefulness for training. Eight out of nine "Experts" judged the visualization of metrics after the exercises useful. However, face validity has shown some weaknesses regarding interactions and instruments. Reasonable workload parameters were registered. XTT demonstrated excellent face and content validity with acceptable workload parameters. XTT could become a useful tool for robotic surgery team training.

  14. Student perceptions of a simulation-based flipped classroom for the surgery clerkship: A mixed-methods study.

    PubMed

    Liebert, Cara A; Mazer, Laura; Bereknyei Merrell, Sylvia; Lin, Dana T; Lau, James N

    2016-09-01

    The flipped classroom, a blended learning paradigm that uses pre-session online videos reinforced with interactive sessions, has been proposed as an alternative to traditional lectures. This article investigates medical students' perceptions of a simulation-based, flipped classroom for the surgery clerkship and suggests best practices for implementation in this setting. A prospective cohort of students (n = 89), who were enrolled in the surgery clerkship during a 1-year period, was taught via a simulation-based, flipped classroom approach. Students completed an anonymous, end-of-clerkship survey regarding their perceptions of the curriculum. Quantitative analysis of Likert responses and qualitative analysis of narrative responses were performed. Students' perceptions of the curriculum were positive, with 90% rating it excellent or outstanding. The majority reported the curriculum should be continued (95%) and applied to other clerkships (84%). The component received most favorably by the students was the simulation-based skill sessions. Students rated the effectiveness of the Khan Academy-style videos the highest compared with other video formats (P < .001). Qualitative analysis identified 21 subthemes in 4 domains: general positive feedback, educational content, learning environment, and specific benefits to medical students. The students reported that the learning environment fostered accountability and self-directed learning. Specific perceived benefits included preparation for the clinical rotation and the National Board of Medical Examiners shelf exam, decreased class time, socialization with peers, and faculty interaction. Medical students' perceptions of a simulation-based, flipped classroom in the surgery clerkship were overwhelmingly positive. The flipped classroom approach can be applied successfully in a surgery clerkship setting and may offer additional benefits compared with traditional lecture-based curricula. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. "Just-In-Time" Simulation Training Using 3-D Printed Cardiac Models After Congenital Cardiac Surgery.

    PubMed

    Olivieri, Laura J; Su, Lillian; Hynes, Conor F; Krieger, Axel; Alfares, Fahad A; Ramakrishnan, Karthik; Zurakowski, David; Marshall, M Blair; Kim, Peter C W; Jonas, Richard A; Nath, Dilip S

    2016-03-01

    High-fidelity simulation using patient-specific three-dimensional (3D) models may be effective in facilitating pediatric cardiac intensive care unit (PCICU) provider training for clinical management of congenital cardiac surgery patients. The 3D-printed heart models were rendered from preoperative cross-sectional cardiac imaging for 10 patients undergoing congenital cardiac surgery. Immediately following surgical repair, a congenital cardiac surgeon and an intensive care physician conducted a simulation training session regarding postoperative care utilizing the patient-specific 3D model for the PCICU team. After the simulation, Likert-type 0 to 10 scale questionnaire assessed participant perception of impact of the training session. Seventy clinicians participated in training sessions, including 22 physicians, 38 nurses, and 10 ancillary care providers. Average response to whether 3D models were more helpful than standard hand off was 8.4 of 10. Questions regarding enhancement of understanding and clinical ability received average responses of 9.0 or greater, and 90% of participants scored 8 of 10 or higher. Nurses scored significantly higher than other clinicians on self-reported familiarity with the surgery (7.1 vs. 5.8; P = .04), clinical management ability (8.6 vs. 7.7; P = .02), and ability enhancement (9.5 vs. 8.7; P = .02). Compared to physicians, nurses and ancillary providers were more likely to consider 3D models more helpful than standard hand off (8.7 vs. 7.7; P = .05). Higher case complexity predicted greater enhancement of understanding of surgery (P = .04). The 3D heart models can be used to enhance congenital cardiac critical care via simulation training of multidisciplinary intensive care teams. Benefit may be dependent on provider type and case complexity. © The Author(s) 2016.

  16. Variable Operative Experience in Hand Surgery for Plastic Surgery Residents.

    PubMed

    Silvestre, Jason; Lin, Ines C; Levin, Lawrence Scott; Chang, Benjamin

    Efforts to standardize hand surgery training during plastic surgery residency remain challenging. We analyze the variability of operative hand experience at U.S. plastic surgery residency programs. Operative case logs of chief residents in accredited U.S. plastic surgery residency programs were analyzed (2011-2015). Trends in fold differences of hand surgery case volume between the 10th and 90th percentiles of residents were assessed graphically. Percentile data were used to calculate the number of residents achieving case minimums in hand surgery for 2015. Case logs from 818 plastic surgery residents were analyzed of which a minority were from integrated (35.7%) versus independent/combined (64.3%) residents. Trend analysis of fold differences in case volume demonstrated decreasing variability among procedure categories over time. By 2015, fold differences for hand reconstruction, tendon cases, nerve cases, arthroplasty/arthrodesis, amputation, arterial repair, Dupuytren release, and neoplasm cases were below 10-fold. Congenital deformity cases among independent/combined residents was the sole category that exceeded 10-fold by 2015. Percentile data suggested that approximately 10% of independent/combined residents did not meet case minimums for arterial repair and congenital deformity in 2015. Variable operative experience during plastic surgery residency may limit adequate exposure to hand surgery for certain residents. Future studies should establish empiric case minimums for plastic surgery residents to ensure hand surgery competency upon graduation. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  17. Three-Dimensional Blood Vessel Model with Temperature-Indicating Function for Evaluation of Thermal Damage during Surgery

    PubMed Central

    Watanabe, Takafumi; Arai, Fumihito

    2018-01-01

    Surgical simulators have recently attracted attention because they enable the evaluation of the surgical skills of medical doctors and the performance of medical devices. However, thermal damage to the human body during surgery is difficult to evaluate using conventional surgical simulators. In this study, we propose a functional surgical model with a temperature-indicating function for the evaluation of thermal damage during surgery. The simulator is made of a composite material of polydimethylsiloxane and a thermochromic dye, which produces an irreversible color change as the temperature increases. Using this material, we fabricated a three-dimensional blood vessel model using the lost-wax process. We succeeded in fabricating a renal vessel model for simulation of catheter ablation. Increases in the temperature of the materials can be measured by image analysis of their color change. The maximum measurement error of the temperature was approximately −1.6 °C/+2.4 °C within the range of 60 °C to 100 °C. PMID:29370139

  18. Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback.

    PubMed

    Alaraj, Ali; Luciano, Cristian J; Bailey, Daniel P; Elsenousi, Abdussalam; Roitberg, Ben Z; Bernardo, Antonio; Banerjee, P Pat; Charbel, Fady T

    2015-03-01

    With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. To develop and evaluate the usefulness of a new haptic-based virtual reality simulator in the training of neurosurgical residents. A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the ImmersiveTouch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomographic angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-dimensional immersive virtual reality environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from 3 residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Residents thought that the simulation would be useful in preparing for real-life surgery. About two-thirds of the residents thought that the 3-dimensional immersive anatomic details provided a close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They thought the simulation was useful for preoperative surgical rehearsal and neurosurgical training. A third of the residents thought that the technology in its current form provided realistic haptic feedback for aneurysm surgery. Neurosurgical residents thought that the novel immersive VR simulator is helpful in their training, especially because they do not get a chance to perform aneurysm clippings until late in their residency programs.

  19. How do clinical clerkship students experience simulator-based teaching? A qualitative analysis.

    PubMed

    Takayesu, James K; Farrell, Susan E; Evans, Adelaide J; Sullivan, John E; Pawlowski, John B; Gordon, James A

    2006-01-01

    To critically analyze the experience of clinical clerkship students exposed to simulator-based teaching, in order to better understand student perspectives on its utility. A convenience sample of clinical students (n = 95) rotating through an emergency medicine, surgery, or longitudinal patient-doctor clerkship voluntarily participated in a 2-hour simulator-based teaching session. Groups of 3-5 students managed acute scenarios including respiratory failure, myocardial infarction, or multisystem trauma. After the session, students completed a brief written evaluation asking for free text commentary on the strengths and weaknesses of the experience; they also provided simple satisfaction ratings. Using a qualitative research approach, the textual commentary was transcribed and parsed into fragments, coded for emergent themes, and tested for inter-rater agreement. Six major thematic categories emerged from the qualitative analysis: The "Knowledge & Curriculum" domain was described by 35% of respondents, who commented on the opportunity for self-assessment, recall and memory, basic and clinical science learning, and motivation. "Applied Cognition and Critical Thought" was highlighted by 53% of respondents, who commented on the value of decision-making, active thought, clinical integration, and the uniqueness of learning-by-doing. "Teamwork and Communication" and "Procedural/Hands-On Skills" were each mentioned by 12% of subjects. Observations on the "Teaching/Learning Environment" were offered by 80% of students, who commented on the realism, interactivity, safety, and emotionality of the experience; here they also offered feedback on format, logistics, and instructors. Finally, "Suggestions for Use/Place in Undergraduate Medical Education" were provided by 22% of subjects, who primarily recommended more exposure. On a simple rating scale, 94% of students rated the quality of the simulator session as "excellent," whereas 91% felt the exercises should be "mandatory." Full-body simulation promises to address a wide range of pedagogical objectives using a unified educational platform. Students value experiential "practice without risk" and want more exposure to simulation. In this study, students thought that that an integrated simulation exercise could help solidify knowledge across domains, foster critical thought and action, enhance technical-procedural skills, and promote effective teamwork and communication.

  20. Using a videogame to facilitate nursing and medical students' first visit to the operating theatre. A randomized controlled trial.

    PubMed

    Del Blanco, Ángel; Torrente, Javier; Fernández-Manjón, Baltasar; Ruiz, Pedro; Giner, Manuel

    2017-08-01

    First experiences in the operating theatre with real patients are always stressful and intimidating for students. We hypothesized that a game-like simulation could improve perceptions and performance of novices. A videogame was developed, combining pictures and short videos, by which students are interactively instructed on acting at the surgical block. Moreover, the game includes detailed descriptive information. After playing, students are given feedback on their performance. A randomized controlled trial was conducted with 132 nursing and medical students with no previous experience in surgery. Sixty two (47.0%) were allocated to a control group (CG) and 70 (53.0%) to an experimental group (EG). Subjects in EG played the game the day prior to their first experience in the theatre; CG had no access to the application. On the day after their experience at surgery, all students filled in a questionnaire in a 7-point Likert format collecting subjective data about their experience in the surgical block. Four constructs related to students' feelings, emotions and attitudes were measured through self-reported subjective scales, i.e. C1: fear to make mistakes, C2: perceived knowledge on how to behave, C3: perceived errors committed, and C4: attitude/behaviour towards patients and staff. The main research question was formulated as follows: do students show differences in constructs C1-C4 by exposure to the game? EG reported statistically significant higher scores on the four aspects measured than CG (p<0.05; Mann-Whitney U tests; Cohen's d standardized effect size d1=0.30; d2=1.05; d3=0.39; d4=0.49). Results show clear evidence that the exposure to the game-like simulation had a significant positive effect on all the constructs. After their first visit to the theatre, students in EG showed less fear (C1) and also perceived to have committed fewer errors (C3), while they showed higher perceived knowledge (C2) and a more collaborative attitude (C4). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Using an Android application to assess registration strategies in open hepatic procedures: a planning and simulation tool

    NASA Astrophysics Data System (ADS)

    Doss, Derek J.; Heiselman, Jon S.; Collins, Jarrod A.; Weis, Jared A.; Clements, Logan W.; Geevarghese, Sunil K.; Miga, Michael I.

    2017-03-01

    Sparse surface digitization with an optically tracked stylus for use in an organ surface-based image-to-physical registration is an established approach for image-guided open liver surgery procedures. However, variability in sparse data collections during open hepatic procedures can produce disparity in registration alignments. In part, this variability arises from inconsistencies with the patterns and fidelity of collected intraoperative data. The liver lacks distinct landmarks and experiences considerable soft tissue deformation. Furthermore, data coverage of the organ is often incomplete or unevenly distributed. While more robust feature-based registration methodologies have been developed for image-guided liver surgery, it is still unclear how variation in sparse intraoperative data affects registration. In this work, we have developed an application to allow surgeons to study the performance of surface digitization patterns on registration. Given the intrinsic nature of soft-tissue, we incorporate realistic organ deformation when assessing fidelity of a rigid registration methodology. We report the construction of our application and preliminary registration results using four participants. Our preliminary results indicate that registration quality improves as users acquire more experience selecting patterns of sparse intraoperative surface data.

  2. Mechatronics Interface for Computer Assisted Prostate Surgery Training

    NASA Astrophysics Data System (ADS)

    Altamirano del Monte, Felipe; Padilla Castañeda, Miguel A.; Arámbula Cosío, Fernando

    2006-09-01

    In this work is presented the development of a mechatronics device to simulate the interaction of the surgeon with the surgical instrument (resectoscope) used during a Transurethral Resection of the Prostate (TURP). Our mechatronics interface is part of a computer assisted system for training in TURP, which is based on a 3D graphics model of the prostate which can be deformed and resected interactively by the user. The mechatronics interface, is the device that the urology residents will manipulate to simulate the movements performed during surgery. Our current prototype has five degrees of freedom, which are enough to have a realistic simulation of the surgery movements. Two of these degrees of freedom are linear, to determinate the linear displacement of the resecting loop and the other three are rotational to determinate three directions and amounts of rotation.

  3. Forces associated with launch into space do not impact bone fracture healing.

    PubMed

    Childress, Paul; Brinker, Alexander; Gong, Cynthia-May S; Harris, Jonathan; Olivos, David J; Rytlewski, Jeffrey D; Scofield, David C; Choi, Sungshin Y; Shirazi-Fard, Yasaman; McKinley, Todd O; Chu, Tien-Min G; Conley, Carolynn L; Chakraborty, Nabarun; Hammamieh, Rasha; Kacena, Melissa A

    2018-02-01

    Segmental bone defects (SBDs) secondary to trauma invariably result in a prolonged recovery with an extended period of limited weight bearing on the affected limb. Soldiers sustaining blast injuries and civilians sustaining high energy trauma typify such a clinical scenario. These patients frequently sustain composite injuries with SBDs in concert with extensive soft tissue damage. For soft tissue injury resolution and skeletal reconstruction a patient may experience limited weight bearing for upwards of 6 months. Many small animal investigations have evaluated interventions for SBDs. While providing foundational information regarding the treatment of bone defects, these models do not simulate limited weight bearing conditions after injury. For example, mice ambulate immediately following anesthetic recovery, and in most cases are normally ambulating within 1-3 days post-surgery. Thus, investigations that combine disuse with bone healing may better test novel bone healing strategies. To remove weight bearing, we have designed a SBD rodent healing study in microgravity (µG) on the International Space Station (ISS) for the Rodent Research-4 (RR-4) Mission, which launched February 19, 2017 on SpaceX CRS-10 (Commercial Resupply Services). In preparation for this mission, we conducted an end-to-end mission simulation consisting of surgical infliction of SBD followed by launch simulation and hindlimb unloading (HLU) studies. In brief, a 2 mm defect was created in the femur of 10 week-old C57BL6/J male mice (n = 9-10/group). Three days after surgery, 6 groups of mice were treated as follows: 1) Vivarium Control (maintained continuously in standard cages); 2) Launch Negative Control (placed in the same spaceflight-like hardware as the Launch Positive Control group but were not subjected to launch simulation conditions); 3) Launch Positive Control (placed in spaceflight-like hardware and also subjected to vibration followed by centrifugation); 4) Launch Positive Experimental (identical to Launch Positive Control group, but placed in qualified spaceflight hardware); 5) Hindlimb Unloaded (HLU, were subjected to HLU immediately after launch simulation tests to simulate unloading in spaceflight); and 6) HLU Control (single housed in identical HLU cages but not suspended). Mice were euthanized 28 days after launch simulation and bone healing was examined via micro-Computed Tomography (µCT). These studies demonstrated that the mice post-surgery can tolerate launch conditions. Additionally, forces and vibrations associated with launch did not impact bone healing (p = .3). However, HLU resulted in a 52.5% reduction in total callus volume compared to HLU Controls (p = .0003). Taken together, these findings suggest that mice having a femoral SBD surgery tolerated the vibration and hypergravity associated with launch, and that launch simulation itself did not impact bone healing, but that the prolonged lack of weight bearing associated with HLU did impair bone healing. Based on these findings, we proceeded with testing the efficacy of FDA approved and novel SBD therapies using the unique spaceflight environment as a novel unloading model on SpaceX CRS-10. Copyright © 2017 The Committee on Space Research (COSPAR). All rights reserved.

  4. Simulated disclosure of a medical error by residents: development of a course in specific communication skills.

    PubMed

    Raper, Steven E; Resnick, Andrew S; Morris, Jon B

    2014-01-01

    Surgery residents are expected to demonstrate the ability to communicate with patients, families, and the public in a wide array of settings on a wide variety of issues. One important setting in which residents may be required to communicate with patients is in the disclosure of medical error. This article details one approach to developing a course in the disclosure of medical errors by residents. Before the development of this course, residents had no education in the skills necessary to disclose medical errors to patients. Residents viewed a Web-based video didactic session and associated slide deck and then were filmed disclosing a wrong-site surgery to a standardized patient (SP). The filmed encounter was reviewed by faculty, who then along with the SP scored each encounter (5-point Likert scale) over 10 domains of physician-patient communication. The residents received individualized written critique, the numerical analysis of their individual scenario, and an opportunity to provide feedback over a number of domains. A mean score of 4.00 or greater was considered satisfactory. Faculty and SP assessments were compared with Student t test. Residents were filmed in a one-on-one scenario in which they had to disclose a wrong-site surgery to a SP in a Simulation Center. A total of 12 residents, shortly to enter the clinical postgraduate year 4, were invited to participate, as they will assume service leadership roles. All were finishing their laboratory experiences, and all accepted the invitation. Residents demonstrated satisfactory competence in 4 of the 10 domains assessed by the course faculty. There were significant differences in the perceptions of the faculty and SP in 5 domains. The residents found this didactic, simulated experience of value (Likert score ≥4 in 5 of 7 domains assessed in a feedback tool). Qualitative feedback from the residents confirmed the realistic feel of the encounter and other impressions. We were able to quantitatively demonstrate both competency and opportunities for improvement across a wide range of domains of interpersonal and communication skills. Residents are expected to communicate effectively with patients, families, and the public, as appropriate, across a broad range of socioeconomic and cultural backgrounds. As academic surgeons, we must be mindful of our roles as teachers, mentors, and coaches by teaching good communication skills to our residents. Courses such as the one described here can help in improving physician-patient communication. The differing perspectives of faculty and SPs regarding resident performance warrants further study. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  5. A National Needs Assessment to Identify Technical Procedures in Vascular Surgery for Simulation Based Training.

    PubMed

    Nayahangan, L J; Konge, L; Schroeder, T V; Paltved, C; Lindorff-Larsen, K G; Nielsen, B U; Eiberg, J P

    2017-04-01

    Practical skills training in vascular surgery is facing challenges because of an increased number of endovascular procedures and fewer open procedures, as well as a move away from the traditional principle of "learning by doing." This change has established simulation as a cornerstone in providing trainees with the necessary skills and competences. However, the development of simulation based programs often evolves based on available resources and equipment, reflecting convenience rather than a systematic educational plan. The objective of the present study was to perform a national needs assessment to identify the technical procedures that should be integrated in a simulation based curriculum. A national needs assessment using a Delphi process was initiated by engaging 33 predefined key persons in vascular surgery. Round 1 was a brainstorming phase to identify technical procedures that vascular surgeons should learn. Round 2 was a survey that used a needs assessment formula to explore the frequency of procedures, the number of surgeons performing each procedure, risk and/or discomfort, and feasibility for simulation based training. Round 3 involved elimination and ranking of procedures. The response rate for round 1 was 70%, with 36 procedures identified. Round 2 had a 76% response rate and resulted in a preliminary prioritised list after exploring the need for simulation based training. Round 3 had an 85% response rate; 17 procedures were eliminated, resulting in a final prioritised list of 19 technical procedures. A national needs assessment using a standardised Delphi method identified a list of procedures that are highly suitable and may provide the basis for future simulation based training programs for vascular surgeons in training. Copyright © 2017 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  6. A radiation-free mixed-reality training environment and assessment concept for C-arm-based surgery.

    PubMed

    Stefan, Philipp; Habert, Séverine; Winkler, Alexander; Lazarovici, Marc; Fürmetz, Julian; Eck, Ulrich; Navab, Nassir

    2018-06-25

    The discrepancy of continuously decreasing opportunities for clinical training and assessment and the increasing complexity of interventions in surgery has led to the development of different training and assessment options like anatomical models, computer-based simulators or cadaver trainings. However, trainees, following training, assessment and ultimately performing patient treatment, still face a steep learning curve. To address this problem for C-arm-based surgery, we introduce a realistic radiation-free simulation system that combines patient-based 3D printed anatomy and simulated X-ray imaging using a physical C-arm. To explore the fidelity and usefulness of the proposed mixed-reality system for training and assessment, we conducted a user study with six surgical experts performing a facet joint injection on the simulator. In a technical evaluation, we show that our system simulates X-ray images accurately with an RMSE of 1.85 mm compared to real X-ray imaging. The participants expressed agreement with the overall realism of the simulation, the usefulness of the system for assessment and strong agreement with the usefulness of such a mixed-reality system for training of novices and experts. In a quantitative analysis, we furthermore evaluated the suitability of the system for the assessment of surgical skills and gather preliminary evidence for validity. The proposed mixed-reality simulation system facilitates a transition to C-arm-based surgery and has the potential to complement or even replace large parts of cadaver training, to provide a safe assessment environment and to reduce the risk for errors when proceeding to patient treatment. We propose an assessment concept and outline the steps necessary to expand the system into a test instrument that provides reliable and justified assessments scores indicative of surgical proficiency with sufficient evidence for validity.

  7. The influence of different training schedules on the learning of psychomotor skills for endoscopic surgery.

    PubMed

    Verdaasdonk, E G G; Stassen, L P S; van Wijk, R P J; Dankelman, J

    2007-02-01

    Psychomotor skills for endoscopic surgery can be trained with virtual reality simulators. Distributed training is more effective than massed training, but it is unclear whether distributed training over several days is more effective than distributed training within 1 day. This study aimed to determine which of these two options is the most effective for training endoscopic psychomotor skills. Students with no endoscopic experience were randomly assigned either to distributed training on 3 consecutive days (group A, n = 10) or distributed training within 1 day (group B, n = 10). For this study the SIMENDO virtual reality simulator for endoscopic skills was used. The training involved 12 repetitions of three different exercises (drop balls, needle manipulation, 30 degree endoscope) in differently distributed training schedules. All the participants performed a posttraining test (posttest) for the trained tasks 7 days after the training. The parameters measured were time, nontarget environment collisions, and instrument path length. There were no significant differences between the groups in the first training session for all the parameters. In the posttest, group A (training over several days) performed 18.7% faster than group B (training on 1 day) (p = 0.013). The collision and path length scores for group A did not differ significantly from the scores for group B. The distributed group trained over several days was faster, with the same number of errors and the same instrument path length used. Psychomotor skill training for endoscopic surgery distributed over several days is superior to training on 1 day.

  8. Virtual Surgical Planning for Correction of Delayed Presentation Scaphocephaly Using a Modified Melbourne Technique.

    PubMed

    Macmillan, Alexandra; Lopez, Joseph; Mundinger, Gerhard S; Major, Melanie; Medina, Miguel A; Dorafshar, Amir H

    2018-02-23

    Late treatment of scaphocephaly presents challenges including need for more complex surgery to achieve desired head shape. Virtual surgical planning for total vault reconstruction may mitigate some of these challenges, but has not been studied in this unique and complex clinical setting. A retrospective chart review was conducted for patients with scaphocephaly who presented to our institution between 2000 and 2014. Patients presenting aged 12 months or older who underwent virtual surgical planning-assisted cranial vault reconstruction were included. Patient demographic, intraoperative data, and postoperative outcomes were recorded. Pre- and postoperative anthropometric measurements were obtained to document the fronto-occipital (FO) and biparietal (BP) distance and calculate cephalic index (CI). Virtual surgical planning predicted, and actual postoperative anthropometric measurements were compared. Five patients were identified who fulfilled inclusion criteria. The mean age was 50.6 months. One patient demonstrated signs of elevated intracranial pressure preoperatively. Postoperatively, all but one needed no revisional surgery (Whitaker score of 1). No patient demonstrated postoperative evidence of bony defects, bossing, or suture restenosis. The mean preoperative, simulated, and actual postoperative FO length was 190.3, 182, and 184.3 mm, respectively. The mean preoperative, simulated, and actual postoperative BP length was 129, 130.7, and 131 mm, respectively. The mean preoperative, simulated, and actual postoperative CI was 66, 72, and 71.3, respectively. Based on our early experience, virtual surgical planning using a modified Melbourne technique for total vault remodeling achieves good results in the management of late presenting scaphocephaly.

  9. Cerebral Aneurysm Clipping Surgery Simulation Using Patient-Specific 3D Printing and Silicone Casting.

    PubMed

    Ryan, Justin R; Almefty, Kaith K; Nakaji, Peter; Frakes, David H

    2016-04-01

    Neurosurgery simulator development is growing as practitioners recognize the need for improved instructional and rehearsal platforms to improve procedural skills and patient care. In addition, changes in practice patterns have decreased the volume of specific cases, such as aneurysm clippings, which reduces the opportunity for operating room experience. The authors developed a hands-on, dimensionally accurate model for aneurysm clipping using patient-derived anatomic data and three-dimensional (3D) printing. Design of the model focused on reproducibility as well as adaptability to new patient geometry. A modular, reproducible, and patient-derived medical simulacrum was developed for medical learners to practice aneurysmal clipping procedures. Various forms of 3D printing were used to develop a geometrically accurate cranium and vascular tree featuring 9 patient-derived aneurysms. 3D printing in conjunction with elastomeric casting was leveraged to achieve a patient-derived brain model with tactile properties not yet available from commercial 3D printing technology. An educational pilot study was performed to gauge simulation efficacy. Through the novel manufacturing process, a patient-derived simulacrum was developed for neurovascular surgical simulation. A follow-up qualitative study suggests potential to enhance current educational programs; assessments support the efficacy of the simulacrum. The proposed aneurysm clipping simulator has the potential to improve learning experiences in surgical environment. 3D printing and elastomeric casting can produce patient-derived models for a dynamic learning environment that add value to surgical training and preparation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Innovations in surgery simulation: a review of past, current and future techniques

    PubMed Central

    Burtt, Karen; Solorzano, Carlos A.; Carey, Joseph N.

    2016-01-01

    As a result of recent work-hours limitations and concerns for patient safety, innovations in extraclinical surgical simulation have become a desired part of residency education. Current simulation models, including cadaveric, animal, bench-top, virtual reality (VR) and robotic simulators are increasingly used in surgical training programs. Advances in telesurgery, three-dimensional (3D) printing, and the incorporation of patient-specific anatomy are paving the way for simulators to become integral components of medical training in the future. Evidence from the literature highlights the benefits of including simulations in surgical training; skills acquired through simulations translate into improvements in operating room performance. Moreover, simulations are rapidly incorporating new medical technologies and offer increasingly high-fidelity recreations of procedures. As a result, both novice and expert surgeons are able to benefit from their use. As dedicated, structured curricula are developed that incorporate simulations into daily resident training, simulated surgeries will strengthen the surgeon’s skill set, decrease hospital costs, and improve patient outcomes. PMID:28090509

  11. Innovations in surgery simulation: a review of past, current and future techniques.

    PubMed

    Badash, Ido; Burtt, Karen; Solorzano, Carlos A; Carey, Joseph N

    2016-12-01

    As a result of recent work-hours limitations and concerns for patient safety, innovations in extraclinical surgical simulation have become a desired part of residency education. Current simulation models, including cadaveric, animal, bench-top, virtual reality (VR) and robotic simulators are increasingly used in surgical training programs. Advances in telesurgery, three-dimensional (3D) printing, and the incorporation of patient-specific anatomy are paving the way for simulators to become integral components of medical training in the future. Evidence from the literature highlights the benefits of including simulations in surgical training; skills acquired through simulations translate into improvements in operating room performance. Moreover, simulations are rapidly incorporating new medical technologies and offer increasingly high-fidelity recreations of procedures. As a result, both novice and expert surgeons are able to benefit from their use. As dedicated, structured curricula are developed that incorporate simulations into daily resident training, simulated surgeries will strengthen the surgeon's skill set, decrease hospital costs, and improve patient outcomes.

  12. Active and Passive Haptic Training Approaches in VR Laparoscopic Surgery Training.

    PubMed

    Marutani, Takafumi; Kato, Toma; Tagawa, Kazuyoshi; Tanaka, Hiromi T; Komori, Masaru; Kurumi, Yoshimasa; Morikawa, Shigehiro

    2016-01-01

    Laparoscopic surgery has become a widely performed surgery as it is one of the most common minimally invasive surgeries. Doctors perform the surgery by manipulating thin and long surgical instruments precisely with the assistance of laparoscopic video with limited field of view. The power control of the instruments' tip is especially very important, because excessive power may damage internal organs. The training of this surgical technique is mainly supervised by an expert in hands-on coaching program. However, it is difficult for the experts to spend sufficient time for coaching. Therefore, we aim to teach the expert's hand movements in laparoscopic surgery to trainees using VR-based simulator, which is equipped with a guidance force display device. To realize the system, we propose two haptic training approaches for transferring the expert's hand movements to the trainee. One is active training, and the other is passive training. The former approach shows the expert's movements only when the trainee makes large errors while the latter shows the expert's movements continuously. In this study, we validate the applicability of these approaches through tasks in VR laparoscopic surgery training simulator, and identify the differences between these approaches.

  13. Numerical analysis for the efficacy of nasal surgery in obstructive sleep apnea hypopnea syndrome

    NASA Astrophysics Data System (ADS)

    Yu, Shen; Liu, Ying-Xi; Sun, Xiu-Zhen; Su, Ying-Feng; Wang, Ying; Gai, Yin-Zhe

    2014-04-01

    In the present study, we reconstructed upper airway and soft palate models of 3 obstructive sleep apnea—hypopnea syndrome (OSAHS) patients with nasal obstruction. The airflow distribution and movement of the soft palate before and after surgery were described by a numerical simulation method. The curative effect of nasal surgery was evaluated for the three patients with OSAHS. The degree of nasal obstruction in the 3 patients was improved after surgery. For 2 patients with mild OSAHS, the upper airway resistance and soft palate displacement were reduced after surgery. These changes contributed to the mitigation of respiratory airflow limitation. For the patient with severe OSAHS, the upper airway resistance and soft palate displacement increased after surgery, which aggravated the airway obstruction. The efficacy of nasal surgery for patients with OSAHS is determined by the degree of improvement in nasal obstruction and whether the effects on the pharynx are beneficial. Numerical simulation results are consistent with the polysomnogram (PSG) test results, chief complaints, and clinical findings, and can indirectly reflect the degree of nasal patency and improvement of snoring symptoms, and further, provide a theoretical basis to solve relevant clinical problems. [Figure not available: see fulltext.

  14. Robotic surgery basic skills training: Evaluation of a pilot multidisciplinary simulation-based curriculum

    PubMed Central

    Foell, Kirsten; Finelli, Antonio; Yasufuku, Kazuhiro; Bernardini, Marcus Q.; Waddell, Thomas K.; Pace, Kenneth T.; Honey, R. John D.’A.; Lee, Jason Y.

    2013-01-01

    Purpose: Simulation-based training improves clinical skills, while minimizing the impact of the educational process on patient care. We present results of a pilot multidisciplinary, simulation-based robotic surgery basic skills training curriculum (BSTC) for robotic novices. Methods: A 4-week, simulation-based, robotic surgery BSTC was offered to the Departments of Surgery and Obstetrics & Gynecology (ObGyn) at the University of Toronto. The course consisted of various instructional strategies: didactic lecture, self-directed online-training modules, introductory hands-on training with the da Vinci robot (dVR) (Intuitive Surgical Inc., Sunnyvale, CA), and dedicated training on the da Vinci Skills Simulator (Intuitive Surgical Inc., Sunnyvale, CA) (dVSS). A third of trainees participated in competency-based dVSS training, all others engaged in traditional time-based training. Pre- and post-course skill testing was conducted on the dVR using 2 standardized skill tasks: ring transfer (RT) and needle passing (NP). Retention of skills was assessed at 5 months post-BSTC. Results: A total of 37 participants completed training. The mean task completion time and number of errors improved significantly post-course on both RT (180.6 vs. 107.4 sec, p < 0.01 and 3.5 vs. 1.3 sec, p < 0.01, respectively) and NP (197.1 vs. 154.1 sec, p < 0.01 and 4.5 vs. 1.8 sec, p = 0.04, respectively) tasks. No significant difference in performance was seen between specialties. Competency-based training was associated with significantly better post-course performance. The dVSS demonstrated excellent face validity. Conclusions: The implementation of a pilot multidisciplinary, simulation-based robotic surgery BSTC revealed significantly improved basic robotic skills among novice trainees, regardless of specialty or level of training. Competency-based training was associated with significantly better acquisition of basic robotic skills. PMID:24381662

  15. Endoscopic sinus surgery dissection courses using a real simulator: the benefits of this training.

    PubMed

    Fortes, Bibiana; Balsalobre, Leonardo; Weber, Raimar; Stamm, Raquel; Stamm, Aldo; Oto, Fernando; Coronel, Nathália

    2016-01-01

    Endonasal surgeries are among the most common procedures performed in otolaryngology. Due to difficulty in cadaver acquisition and the intrinsic risks of training residents during operations on real patients, nasosinusal endoscopic dissection courses utilizing real simulators, such as the Sinus Model Otorhino Neuro Trainer are being developed as a new technique to facilitate the acquisition of better anatomical knowledge and surgical skill. To evaluate the efficacy of nasosinusal endoscopic dissection courses with the Sinus Model Otorhino Neuro Trainer simulator in the training of otolaryngology surgeons. A prospective, longitudinal cohort study was conducted with 111 otolaryngologists who participated in a theoretical and practical course of endoscopic surgery dissection using the Sinus Model Otorhino Neuro Trainer simulator, with application of questionnaires during and after the course. From the ten procedures performed utilizing the simulator, the evaluation revealed mean scores from 3.1 to 4.1 (maximum of 5). Seventy-seven participants answered the questionnaire six months after the end of the course. 93% of them reported that they could perform the procedures more safely following the course, 98% reported an improvement in their anatomical and clinical knowledge, and 85% related an improvement in their surgical ability. After the course, the number of endoscopic surgeries increased in 40% of the respondents. Endoscopic sinus dissection courses using the Sinus Model Otorhino Neuro Trainer simulator proved to be useful in the training of otolaryngologists. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  16. Low Cost Simulator for Heart Surgery Training

    PubMed Central

    Silva, Roberto Rocha e; Lourenção, Artur; Goncharov, Maxim; Jatene, Fabio B.

    2016-01-01

    Objective Introduce the low-cost and easy to purchase simulator without biological material so that any institution may promote extensive cardiovascular surgery training both in a hospital setting and at home without large budgets. Methods A transparent plastic box is placed in a wooden frame, which is held by the edges using elastic bands, with the bottom turned upwards, where an oval opening is made, "simulating" a thoracotomy. For basic exercises in the aorta, the model presented by our service in the 2015 Brazilian Congress of Cardiovascular Surgery: a silicone ice tray, where one can train to make aortic purse-string suture, aortotomy, aortorrhaphy and proximal and distal anastomoses. Simulators for the training of valve replacement and valvoplasty, atrial septal defect repair and aortic diseases were added. These simulators are based on sewage pipes obtained in construction material stores and the silicone trays and ethyl vinyl acetate tissue were obtained in utility stores, all of them at a very low cost. Results The models were manufactured using inert materials easily found in regular stores and do not present contamination risk. They may be used in any environment and maybe stored without any difficulties. This training enabled young surgeons to familiarize and train different surgical techniques, including procedures for aortic diseases. In a subjective assessment, these surgeons reported that the training period led to improved surgical techniques in the surgical field. Conclusion The model described in this protocol is effective and low-cost when compared to existing simulators, enabling a large array of cardiovascular surgery training. PMID:28076623

  17. Virtual skeletal complex model- and landmark-guided orthognathic surgery system.

    PubMed

    Lee, Sang-Jeong; Woo, Sang-Yoon; Huh, Kyung-Hoe; Lee, Sam-Sun; Heo, Min-Suk; Choi, Soon-Chul; Han, Jeong Joon; Yang, Hoon Joo; Hwang, Soon Jung; Yi, Won-Jin

    2016-05-01

    In this study, correction of the maxillofacial deformities was performed by repositioning bone segments to an appropriate location according to the preoperative planning in orthognathic surgery. The surgery was planned using the patient's virtual skeletal models fused with optically scanned three-dimensional dentition. The virtual maxillomandibular complex (MMC) model of the patient's final occlusal relationship was generated by fusion of the maxillary and mandibular models with scanned occlusion. The final position of the MMC was simulated preoperatively by planning and was used as a goal model for guidance. During surgery, the intraoperative registration was finished immediately using only software processing. For accurate repositioning, the intraoperative MMC model was visualized on the monitor with respect to the simulated MMC model, and the intraoperative positions of multiple landmarks were also visualized on the MMC surface model. The deviation errors between the intraoperative and the final positions of each landmark were visualized quantitatively. As a result, the surgeon could easily recognize the three-dimensional deviation of the intraoperative MMC state from the final goal model without manually applying a pointing tool, and could also quickly determine the amount and direction of further MMC movements needed to reach the goal position. The surgeon could also perform various osteotomies and remove bone interference conveniently, as the maxillary tracking tool could be separated from the MMC. The root mean square (RMS) difference between the preoperative planning and the intraoperative guidance was 1.16 ± 0.34 mm immediately after repositioning. After surgery, the RMS differences between the planning and the postoperative computed tomographic model were 1.31 ± 0.28 mm and 1.74 ± 0.73 mm for the maxillary and mandibular landmarks, respectively. Our method provides accurate and flexible guidance for bimaxillary orthognathic surgery based on intraoperative visualization and quantification of deviations for simulated postoperative MMC and landmarks. The guidance using simulated skeletal models and landmarks can complement and improve conventional navigational surgery for bone repositioning in the craniomaxillofacial area. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. Video gaming enhances psychomotor skills but not visuospatial and perceptual abilities in surgical trainees.

    PubMed

    Kennedy, A M; Boyle, E M; Traynor, O; Walsh, T; Hill, A D K

    2011-01-01

    There is considerable interest in the identification and assessment of underlying aptitudes or innate abilities that could potentially predict excellence in the technical aspects of operating. However, before the assessment of innate abilities is introduced for high-stakes assessment (such as competitive selection into surgical training programs), it is essential to determine that these abilities are stable and unchanging and are not influenced by other factors, such as the use of video games. The aim of this study was to investigate whether experience playing video games will predict psychomotor performance on a laparoscopic simulator or scores on tests of visuospatial and perceptual abilities, and to examine the correlation, if any, between these innate abilities. Institutional ethical approval was obtained. Thirty-eight undergraduate medical students with no previous surgical experience were recruited. All participants completed a self-reported questionnaire that asked them to detail their video game experience. They then underwent assessment of their psychomotor, visuospatial, and perceptual abilities using previously validated tests. The results were analyzed using independent samples t tests to compare means and linear regression curves for subsequent analysis. Students who played video games for at least 7 hours per week demonstrated significantly better psychomotor skills than students who did not play video games regularly. However, there was no difference on measures of visuospatial and perceptual abilities. There was no correlation between psychomotor tests and visuospatial or perceptual tests. Regular video gaming correlates positively with psychomotor ability, but it does not seem to influence visuospatial or perceptual ability. This study suggests that video game experience might be beneficial to a future career in surgery. It also suggests that relevant surgical skills may be gained usefully outside the operating room in activities that are not related to surgery. Copyright © 2011 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  19. Catheter for Cleaning Surgical Optics During Surgical Procedures: A Possible Solution for Residue Buildup and Fogging in Video Surgery.

    PubMed

    de Abreu, Igor Renato Louro Bruno; Abrão, Fernando Conrado; Silva, Alessandra Rodrigues; Corrêa, Larissa Teresa Cirera; Younes, Riad Nain

    2015-05-01

    Currently, there is a tendency to perform surgical procedures via laparoscopic or thoracoscopic access. However, even with the impressive technological advancement in surgical materials, such as improvement in quality of monitors, light sources, and optical fibers, surgeons have to face simple problems that can greatly hinder surgery by video. One is the formation of "fog" or residue buildup on the lens, causing decreased visibility. Intracavitary techniques for cleaning surgical optics and preventing fog formation have been described; however, some of these techniques employ the use of expensive and complex devices designed solely for this purpose. Moreover, these techniques allow the cleaning of surgical optics when they becomes dirty, which does not prevent the accumulation of residue in the optics. To solve this problem we have designed a device that allows cleaning the optics with no surgical stops and prevents the fogging and residue accumulation. The objective of this study is to evaluate through experimental testing the effectiveness of a simple device that prevents the accumulation of residue and fogging of optics used in surgical procedures performed through thoracoscopic or laparoscopic access. Ex-vivo experiments were performed simulating the conditions of residue presence in surgical optics during a video surgery. The experiment consists in immersing the optics and catheter set connected to the IV line with crystalloid solution in three types of materials: blood, blood plus fat solution, and 200 mL of distilled water and 1 vial of methylene blue. The optics coupled to the device were immersed in 200 mL of each type of residue, repeating each immersion 10 times for each distinct residue for both thirty and zero degrees optics, totaling 420 experiments. A success rate of 98.1% was observed after the experiments, in these cases the device was able to clean and prevent the residue accumulation in the optics.

  20. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model

    PubMed Central

    Wang, Dong; Gan, Qi; Ye, Jian; Yue, Jian; Wang, Benzhong; Povoski, Stephen P.; Martin, Edward W.; Hitchcock, Charles L.; Yilmaz, Alper; Tweedle, Michael F.; Shao, Pengfei; Xu, Ronald X.

    2016-01-01

    Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)—fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting. PMID:27367051

  1. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model.

    PubMed

    Zhang, Zeshu; Pei, Jing; Wang, Dong; Gan, Qi; Ye, Jian; Yue, Jian; Wang, Benzhong; Povoski, Stephen P; Martin, Edward W; Hitchcock, Charles L; Yilmaz, Alper; Tweedle, Michael F; Shao, Pengfei; Xu, Ronald X

    2016-01-01

    Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)-fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting.

  2. Influence of Effective Communication by Surgery Students on Their Oral Examination Scores.

    ERIC Educational Resources Information Center

    Rowland-Morin, Pamela A.; And Others

    1991-01-01

    Clinical surgery faculty (n=78) evaluated videotaped simulated surgery student oral examinations. Results showed that regardless of the content of students' responses, evaluators were strongly influenced by how well students communicated. Evaluators preferred a moderate response rate and direct eye contact over a slower response rate and indirect…

  3. [Research on adaptive quasi-linear viscoelastic model for nonlinear viscoelastic properties of in vivo soft tissues].

    PubMed

    Wang, Heng; Sang, Yuanjun

    2017-10-01

    The mechanical behavior modeling of human soft biological tissues is a key issue for a large number of medical applications, such as surgery simulation, surgery planning, diagnosis, etc. To develop a biomechanical model of human soft tissues under large deformation for surgery simulation, the adaptive quasi-linear viscoelastic (AQLV) model was proposed and applied in human forearm soft tissues by indentation tests. An incremental ramp-and-hold test was carried out to calibrate the model parameters. To verify the predictive ability of the AQLV model, the incremental ramp-and-hold test, a single large amplitude ramp-and-hold test and a sinusoidal cyclic test at large strain amplitude were adopted in this study. Results showed that the AQLV model could predict the test results under the three kinds of load conditions. It is concluded that the AQLV model is feasible to describe the nonlinear viscoelastic properties of in vivo soft tissues under large deformation. It is promising that this model can be selected as one of the soft tissues models in the software design for surgery simulation or diagnosis.

  4. Reducing Older Driver Motor Vehicle Collisions via Earlier Cataract Surgery

    PubMed Central

    Mennemeyer, Stephen T.; Owsley, Cynthia; McGwin, Gerald

    2013-01-01

    Older adults who undergo cataract extraction have roughly half the rate of motor vehicle collision (MVC) involvement per mile driven compared to cataract patients who do not elect cataract surgery. Currently in the U.S., most insurers do not allow payment for cataract surgery based upon the findings of a vision exam unless accompanied by an individual’s complaint of visual difficulties that seriously interfere with driving or other daily activities and individuals themselves may be slow or reluctant to complain and seek relief. As a consequence, surgery tends to occur after significant vision problems have emerged. We hypothesize that a proactive policy encouraging cataract surgery earlier for a lesser level of complaint would significantly reduce MVCs among older drivers. We used a Monte Carlo model to simulate the MVC experience of the U.S. population from age 60 to 89 under alternative protocols for the timing of cataract surgery which we call “Current Practice” (CP) and “Earlier Surgery” (ES). Our base model finds, from a societal perspective with undiscounted 2010 dollars, that switching to ES from CP reduces by about 21% the average number of MVCs, fatalities, and MVC cost per person. The net effect on total cost – all MVC costs plus cataract surgery expenditures -- is a reduction of about 16%. Quality Adjusted Life Years would increase by about 5%. From the perspective of payers for healthcare, the switch would increase cataract surgery expenditure for ages 65+ by about 8% and for ages 60 to 64 by about 47% but these expenditures are substantially offset after age 65 by reductions in the medical and emergency services component of MVC cost. Similar results occur with discounting at 3% and with various sensitivity analyses. We conclude that a policy of ES would significantly reduce MVCs and their associated consequences. PMID:23369786

  5. Simulation trainer for practicing emergent open thoracotomy procedures.

    PubMed

    Hamilton, Allan J; Prescher, Hannes; Biffar, David E; Poston, Robert S

    2015-07-01

    An emergent open thoracotomy (OT) is a high-risk, low-frequency procedure uniquely suited for simulation training. We developed a cost-effective Cardiothoracic (CT) Surgery trainer and assessed its potential for improving technical and interprofessional skills during an emergent simulated OT. We modified a commercially available mannequin torso with artificial tissue models to create a custom CT Surgery trainer. The trainer's feasibility for simulating emergent OT was tested using a multidisciplinary CT team in three consecutive in situ simulations. Five discretely observable milestones were identified as requisite steps in carrying out an emergent OT; namely (1) diagnosis and declaration of a code situation, (2) arrival of the code cart, (3) arrival of the thoracotomy tray, (4) initiation of the thoracotomy incision, and (5) defibrillation of a simulated heart. The time required for a team to achieve each discrete step was measured by an independent observer over the course of each OT simulation trial and compared. Over the course of the three OT simulation trials conducted in the coronary care unit, there was an average reduction of 29.5% (P < 0.05) in the times required to achieve the five critical milestones. The time required to complete the whole OT procedure improved by 7 min and 31 s from the initial to the final trial-an overall improvement of 40%. In our preliminary evaluation, the CT Surgery trainer appears to be useful for improving team performance during a simulated emergent bedside OT in the coronary care unit. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Development and validation of an artificial wetlab training system for the lumbar discectomy.

    PubMed

    Adermann, Jens; Geissler, Norman; Bernal, Luis E; Kotzsch, Susanne; Korb, Werner

    2014-09-01

    An initial research indicated that realistic haptic simulators with an adapted training concept are needed to enhance the training for spinal surgery. A cognitive task analysis (CTA) was performed to define a realistic and helpful scenario-based simulation. Based on the results a simulator for lumbar discectomy was developed. Additionally, a realistic training operating room was built for a pilot. The results were validated. The CTA showed a need for realistic scenario-based training in spine surgery. The developed simulator consists of synthetic bone structures, synthetic soft tissue and an advanced bleeding system. Due to the close interdisciplinary cooperation of surgeons between engineers and psychologists, the iterative multicentre validation showed that the simulator is visually and haptically realistic. The simulator offers integrated sensors for the evaluation of the traction being used and the compression during surgery. The participating surgeons in the pilot workshop rated the simulator and the training concept as very useful for the improvement of their surgical skills. In the context of the present work a precise definition for the simulator and training concept was developed. The additional implementation of sensors allows the objective evaluation of the surgical training by the trainer. Compared to other training simulators and concepts, the high degree of objectivity strengthens the acceptance of the feedback. The measured data of the nerve root tension and the compression of the dura can be used for intraoperative control and a detailed postoperative evaluation.

  7. Virtual reality based surgery simulation for endoscopic gynaecology.

    PubMed

    Székely, G; Bajka, M; Brechbühler, C; Dual, J; Enzler, R; Haller, U; Hug, J; Hutter, R; Ironmonger, N; Kauer, M; Meier, V; Niederer, P; Rhomberg, A; Schmid, P; Schweitzer, G; Thaler, M; Vuskovic, V; Tröster, G

    1999-01-01

    Virtual reality (VR) based surgical simulator systems offer very elegant possibilities to both enrich and enhance traditional education in endoscopic surgery. However, while a wide range of VR simulator systems have been proposed and realized in the past few years, most of these systems are far from able to provide a reasonably realistic surgical environment. We explore the basic approaches to the current limits of realism and ultimately seek to extend these based on our description and analysis of the most important components of a VR-based endoscopic simulator. The feasibility of the proposed techniques is demonstrated on a first modular prototype system implementing the basic algorithms for VR-training in gynaecologic laparoscopy.

  8. Physiology informed virtual surgical planning: a case study with a virtual airway surgical planner and BioGears

    NASA Astrophysics Data System (ADS)

    Potter, Lucas; Arikatla, Sreekanth; Bray, Aaron; Webb, Jeff; Enquobahrie, Andinet

    2017-03-01

    Stenosis of the upper airway affects approximately 1 in 200,000 adults per year1 , and occurs in neonates as well2 . Its treatment is often dictated by institutional factors and clinicians' experience or preferences 3 . Objective and quantitative methods of evaluating treatment options hold the potential to improve care in stenosis patients. Virtual surgical planning software tools are critically important for this. The Virtual Pediatric Airway Workbench (VPAW) is a software platform designed and evaluated for upper airway stenosis treatment planning. It incorporates CFD simulation and geometric authoring with objective metrics from both that help in informed evaluation and planning. However, this planner currently lacks physiological information which could impact the surgical planning outcomes. In this work, we integrated a lumped parameter, model based human physiological engine called BioGears with VPAW. We demonstrated the use of physiology informed virtual surgical planning platform for patient-specific stenosis treatment planning. The preliminary results show that incorporating patient-specific physiology in the pretreatment plan would play important role in patient-specific surgical trainers and planners in airway surgery and other types of surgery that are significantly impacted by physiological conditions during surgery.

  9. Does strabismus surgery improve quality and mood, and what factors influence this?

    PubMed

    McBain, H B; MacKenzie, K A; Hancox, J; Ezra, D G; Adams, G G W; Newman, S P

    2016-05-01

    AimsTo establish the impact of adult strabismus surgery on clinical and psychosocial well-being and determine who experiences the greatest benefit from surgery and how one could intervene to improve quality of life post-surgery.MethodsA longitudinal study, with measurements taken pre-surgery and at 3 and 6 months post-surgery. All participants completed the AS-20 a disease specific quality of life scale, along with measures of mood, strabismus and appearance-related beliefs and cognitions and perceived social support. Participants also underwent a full orthoptic assessment at their preoperative visit and again 3 months postoperatively. Clinical outcomes of surgery were classified as success, partial success or failure, using the largest angle of deviation, diplopia and requirement for further therapy.Results210 participants took part in the study. Strabismus surgery led to statistically significant improvements in psychosocial and functional quality of life. Those whose surgery was deemed a partial success did however experience a deterioration in quality of life. A combination of clinical variables, high expectations, and negative beliefs about the illness and appearance pre-surgery were significant predictors of change in quality of life from pre- to post-surgery.ConclusionsStrabismus surgery leads to significant improvements in quality of life up to 6 months postoperatively. There are however a group of patients who do not experience these benefits. A series of clinical and psychosocial factors have now been identified, which will enable clinicians to identify patients who may be vulnerable to poorer outcomes post-surgery and allow for the development of interventions to improve quality of life after surgery.

  10. Key textbooks in the development of modern american plastic surgery: the first half of the twentieth century.

    PubMed

    Haddock, Nicholas T; McCarthy, Joseph G

    2013-07-01

    A number of historical texts published during the first half of the twentieth century played a pivotal role in shaping and defining modern plastic surgery in the United States. Blair's Surgery and Diseases of the Mouth and Jaws (1912), John Staige Davis's Plastic Surgery: Its Principles and Practice (1919), Gillies's Plastic Surgery of the Face (1920), Fomon's Surgery of Injury and Plastic Repair (1939), Ivy's Manual of Standard Practice of Plastic and Maxillofacial Surgery, Military Surgery Manuals (1943), Padgett and Stephenson's Plastic and Reconstructive Surgery (1948), and Kazanjian and Converse's The Surgical Treatment of Facial Injuries (1949) were reviewed. These texts were published at a time when plastic surgery was developing as a distinct specialty. Each work represents a different point in this evolution. All were not inclusive of all of plastic surgery, but all had a lasting impact. Four texts were based on clinical experience from World War I; one included experience from World War II; and two included experience from both. One text became a military surgical handbook in World Wars I and II, playing an important role in care for the wounded. History has demonstrated that times of war spark medical/surgical advancements, and these wars had a dramatic impact on the development of reconstructive plastic surgery. Each of these texts documented surgical advancements and provided an intellectual platform that helped shape and create the independent discipline of plastic surgery during peacetime. For many future leaders of plastic surgery, these books served as their introduction to this new field.

  11. Simulator-Based Angiography and Endovascular Neurosurgery Curriculum: A Longitudinal Evaluation of Performance Following Simulator-Based Angiography Training.

    PubMed

    Pannell, J Scott; Santiago-Dieppa, David R; Wali, Arvin R; Hirshman, Brian R; Steinberg, Jeffrey A; Cheung, Vincent J; Oveisi, David; Hallstrom, Jon; Khalessi, Alexander A

    2016-08-29

    This study establishes performance metrics for angiography and neuroendovascular surgery procedures based on longitudinal improvement in individual trainees with differing levels of training and experience. Over the course of 30 days, five trainees performed 10 diagnostic angiograms, coiled 10 carotid terminus aneurysms in the setting of subarachnoid hemorrhage, and performed 10 left middle cerebral artery embolectomies on a Simbionix Angio Mentor™ simulator. All procedures were nonconsecutive. Total procedure time, fluoroscopy time, contrast dose, heart rate, blood pressures, medications administered, packing densities, the number of coils used, and the number of stent-retriever passes were recorded. Image quality was rated, and the absolute value of technically unsafe events was recorded. The trainees' device selection, macrovascular access, microvascular access, clinical management, and the overall performance of the trainee was rated during each procedure based on a traditional Likert scale score of 1=fail, 2=poor, 3=satisfactory, 4=good, and 5=excellent. These ordinal values correspond with published assessment scales on surgical technique. After performing five diagnostic angiograms and five embolectomies, all participants demonstrated marked decreases in procedure time, fluoroscopy doses, contrast doses, and adverse technical events; marked improvements in image quality, device selection, access scores, and overall technical performance were additionally observed (p < 0.05). Similarly, trainees demonstrated marked improvement in technical performance and clinical management after five coiling procedures (p < 0.05). However, trainees with less prior experience deploying coils continued to experience intra-procedural ruptures up to the eighth embolization procedure; this observation likely corresponded with less tactile procedural experience to an exertion of greater force than appropriate for coil placement. Trainees across all levels of training and prior experience demonstrated a significant performance improvement after completion of our simulator curriculum consisting of five diagnostic angiograms, five embolectomy cases, and 10 aneurysm coil embolizations.

  12. [Objective surgery -- advanced robotic devices and simulators used for surgical skill assessment].

    PubMed

    Suhánszki, Norbert; Haidegger, Tamás

    2014-12-01

    Robotic assistance became a leading trend in minimally invasive surgery, which is based on the global success of laparoscopic surgery. Manual laparoscopy requires advanced skills and capabilities, which is acquired through tedious learning procedure, while da Vinci type surgical systems offer intuitive control and advanced ergonomics. Nevertheless, in either case, the key issue is to be able to assess objectively the surgeons' skills and capabilities. Robotic devices offer radically new way to collect data during surgical procedures, opening the space for new ways of skill parameterization. This may be revolutionary in MIS training, given the new and objective surgical curriculum and examination methods. The article reviews currently developed skill assessment techniques for robotic surgery and simulators, thoroughly inspecting their validation procedure and utility. In the coming years, these methods will become the mainstream of Western surgical education.

  13. Elasticity of the living abdominal wall in laparoscopic surgery.

    PubMed

    Song, Chengli; Alijani, Afshin; Frank, Tim; Hanna, George; Cuschieri, Alfred

    2006-01-01

    Laparoscopic surgery requires inflation of the abdominal cavity and this offers a unique opportunity to measure the mechanical properties of the living abdominal wall. We used a motion analysis system to study the abdominal wall motion of 18 patients undergoing laparoscopic surgery, and found that the mean Young's modulus was 27.7+/-4.5 and 21.0+/-3.7 kPa for male and female, respectively. During inflation, the abdominal wall changed from a cylinder to a dome shape. The average expansion in the abdominal wall surface was 20%, and a working space of 1.27 x 10(-3)m(3) was created by expansion, reshaping of the abdominal wall and diaphragmatic movement. For the first time, the elasticity of human abdominal wall was obtained from the patients undergoing laparoscopic surgery, and a 3D simulation model of human abdominal wall has been developed to analyse the motion pattern in laparoscopic surgery. Based on this study, a mechanical abdominal wall lift and a surgical simulator for safe/ergonomic port placements are under development.

  14. Simulation-Based Laparoscopic Surgery Crisis Resource Management Training-Predicting Technical and Nontechnical Skills.

    PubMed

    Goldenberg, Mitchell G; Fok, Kai H; Ordon, Michael; Pace, Kenneth T; Lee, Jason Y

    2017-12-19

    To develop a unique simulation-based assessment using a laparoscopic inferior vena cava (IVC) injury scenario that allows for the safe assessment of urology resident's technical and nontechnical skills, and investigate the effect of personality traits performance in a surgical crisis. Urology residents from our institution were recruited to participate in a simulation-based training laparoscopic nephrectomy exercise. Residents completed demographic and multidimensional personality questionnaires and were instructed to play the role of staff urologist. A vasovagal response to pneumoperitoneum and an IVC injury event were scripted into the scenario. Technical and nontechnical skills were assessed by expert laparoscopic surgeons using validated tools (task checklist, GOALS, and NOTSS). Ten junior and five senior urology residents participated. Five residents were unable to complete the exercise safely. Senior residents outperformed juniors on technical (checklist score 15.1 vs 9.9, p < 0.01, GOALS score 18.0 vs 13.3, p < 0.01) and nontechnical performance (NOTSS score 13.8 vs 10.1, p = 0.03). Technical performance scores correlated with NOTSS scores (p < 0.01) and pass/fail rating correlated with technical performance (p < 0.01 for both checklist and GOALS), NOTSS score (p = 0.02), and blood loss (p < 0.01). Only the conscientiousness dimension of the big five inventory correlated with technical score (p = 0.03) and pass/fail rating (p = 0.04). Resident level of training and laparoscopic experience correlated with technical performance during a simulation-based laparoscopic IVC injury crisis management scenario, as well as multiple domains of nontechnical performance. Personality traits of our surgical residents are similar and did not predict technical skill. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  15. Intracavitary ultrasound phased arrays for thermal therapies

    NASA Astrophysics Data System (ADS)

    Hutchinson, Erin

    Currently, the success of hyperthermia and thermal surgery treatments is limited by the technology used in the design and fabrication of clinical heating devices and the completeness of the thermometry systems used for guidance. For both hyperthermia and thermal surgery, electrically focused ultrasound generated by phased arrays provides a means of controlling localized energy deposition in body tissues. Intracavitary applicators can be used to bring the energy source close to a target volume, such as the prostate, thereby minimizing normal tissue damage. The work performed in this study was aimed at improving noninvasive prostate thermal therapies and utilized three research approaches: (1) Acoustic, thermal and optimization simulations, (2) Design and fabrication of multiple phased arrays, (3) Ex vivo and in vivo experimental testing of the heating capabilities of the phased arrays. As part of this study, a novel aperiodic phased array design was developed which resulted in a 30- 45% reduction in grating lobe levels when compared to conventional phased arrays. Measured acoustic fields generated by the constructed aperiodic arrays agreed closely with the fields predicted by the theoretical simulations and covered anatomically appropriate ranges. The power capabilities of these arrays were demonstrated to be sufficient for the purposes of hyperthermia and thermal surgery. The advantage of using phased arrays in place of fixed focus transducers was shown by demonstrating the ability of electronic scanning to increase the size of the necrosed tissue volume while providing a more uniform thermal dose, which can ultimately reduce patient treatment times. A theoretical study on the feasibility of MRI (magnetic resonance imaging) thermometry for noninvasive temperature feedback control was investigated as a means to improve transient and steady state temperature distributions achieved in hyperthermia treatments. MRI guided ex vivo and in vivo experiments demonstrated that the heating capabilities of the constructed phased arrays were adequate for hyperthermia and thermal surgery treatments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)

  16. Theory and experiment in biomedical science

    NASA Astrophysics Data System (ADS)

    Allen, Roland

    2012-10-01

    A physicist might regard a person as a collection of electrons and quarks, and a biologist might regard her as an assemblage of biochemical molecules. But according to some speakers at a recent Welch conference [1] biology is a branch of physics. Then biomedical research is a branch of applied physics. Even if one adopts a more modest perspective, it is still true that physics can contribute strongly to biomedical research. An example on the experimental side is the recent studies of G protein-coupled receptors (targeted by more than 50 percent of therapeutic drugs) using synchrotron radiation and nuclear magnetic resonance. On the theory side, one might classify models as microscopic (e.g., simulations of molecules, ions, or electrons), mesoscopic (e.g., simulations of pathways within a cell), or macroscopic (e.g., calculations of processes involving the whole body). We have recently introduced a new macroscopic method for estimating the biochemical response to pharmaceuticals, surgeries, or other medical interventions, and applied it in a simple model of the response to bariatric surgeries [2]. An amazing effect is that the most widely used bariatric surgery (Roux-en-Y-gastric bypass) usually leads to remission of type 2 diabetes in days, long before there is any significant weight loss (with further beneficial effects in the subsequent months and years). Our results confirm that this effect can be largely explained by the enhanced post-meal excretion of glucagon-like peptide 1 (GLP-1), an incretin that increases insulin secretion from the pancreas, but also suggest that other mechanisms are likely to be involved, possibly including an additional insulin-independent pathway for glucose transport into cells. [4pt] [1] Physical Biology, from Atoms to Medicine, edited by Ahmed H. Zewail (Imperial College Press, London, 2008).[0pt] [2] Roland E. Allen, Tyler D. Hughes, Jia Lerd Ng, Roberto D. Ortiz, Michel Abou Ghantous, Othmane Bouhali, Abdelilah Arredouani, ``Biochemical response and the effects of bariatric surgeries on type 2 diabetes'' (submitted).

  17. [Research progress on real-time deformable models of soft tissues for surgery simulation].

    PubMed

    Xu, Shaoping; Liu, Xiaoping; Zhang, Hua; Luo, Jie

    2010-04-01

    Biological tissues generally exhibit nonlinearity, anisotropy, quasi-incompressibility and viscoelasticity about material properties. Simulating the behaviour of elastic objects in real time is one of the current objectives of virtual surgery simulation which is still a challenge for researchers to accurately depict the behaviour of human tissues. In this paper, we present a classification of the different deformable models that have been developed. We present the advantages and disadvantages of each one. Finally, we make a comparison of deformable models and perform an evaluation of the state of the art and the future of deformable models.

  18. Advanced laparoscopic fellowship and general surgery residency can coexist without detracting from surgical resident operative experience.

    PubMed

    Kothari, Shanu N; Cogbill, Thomas H; O'Heron, Colette T; Mathiason, Michelle A

    2008-01-01

    Concern has been voiced that general surgery residents who train at institutions that also offer advanced laparoscopic fellowships may receive inadequate advanced laparoscopic operative experience. The purpose of our study was to compare the operative experience of general surgery residents who graduated from our institution before initiation of an advanced laparoscopic fellowship with the experience of those who graduated after the fellowship began. Operative case logs of surgery residents who graduated from 2000 through 2007 and of advanced laparoscopic fellows from 2004 through 2007 were reviewed. Surgery resident experience with basic and nonbariatric advanced laparoscopic cases during the 4 years before the fellowship was compared with the experience during the 4 years after the fellowship began. Residents who graduated before 2004 performed a mean of 140.5 +/- 19.4 basic and 77.0 +/- 17.8 advanced laparoscopic cases during their 5-year residency, compared with 193.3 +/- 34.5 basic (p = 0.003) and 113.3 +/- 23.5 advanced cases (p = 0.005) performed by those who graduated in 2004 or later. The number of nonbariatric advanced laparoscopic cases performed by each graduating surgical resident during the chief year ranged from 26 to 47 cases from 2000 to 2003 and from 36 to 69 cases from 2004 to 2007. Fellows reported from 40 to 85 nonbariatric advanced laparoscopic cases annually. General surgery residents did not experience a reduction in the total number of basic and nonbariatric advanced laparoscopic cases with the addition of an advanced laparoscopic fellowship, nor did they perform fewer cases during the chief year. As the result of a cooperative venture between the surgery residency and fellowship directors as well as an expansion of the total number of laparoscopic cases performed at our institution because of changes in clinical practice, surgery residents reported an increase in the number of laparoscopic cases while a successful fellowship was established.

  19. Expectations and patients’ experiences of obesity prior to bariatric surgery: a qualitative study

    PubMed Central

    Homer, Catherine Verity; Thompson, Andrew R; Allmark, Peter; Goyder, Elizabeth

    2016-01-01

    Objectives This study aimed to understand the experiences and expectations of people seeking bariatric surgery in England and identify implications for behavioural and self-management interventions. Design A qualitative study using modified photovoice methods, triangulating photography with semistructured indepth interviews analysed using framework techniques. Setting Areas served by two bariatric surgery multidisciplinary teams in the north of England. Participants 18 adults (14 women and 4 men) who accepted for bariatric surgery, and were aged between 30 and 61 years. Participants were recruited through hospital-based tier 4 bariatric surgery multidisciplinary teams. Results The experiences of participants indicates the nature and extent of the burden of obesity. Problems included stigmatisation, shame, poor health, physical function and reliance on medications. Participants expected surgery to result in major physical and psychological improvement. They described how this expectation was rooted in their experiences of stigma and shame. These feelings were reinforced by previous unsuccessful weight loss attempts. Participants expected extreme and sometimes unrealistic levels of sustained weight loss, as well as improvements to physical and mental health. The overall desire and expectation of bariatric surgery was of ‘normality’. Participants had received previous support from clinicians and in weight management services. However, they reported that their expectations of surgery had not been reviewed by services, and expectations appeared to be unrealistic. Likewise, their experience of stigmatisation had not been addressed. Conclusions The unrealistic expectations identified here may negatively affect postoperative outcomes. The findings indicate the importance of services addressing feelings of shame and stigmatisation, and modifying patient's expectations and goals for the postoperative period. PMID:26857104

  20. Improving Patient Safety with X-Ray and Anesthesia Machine Ventilator Synchronization: A Medical Device Interoperability Case Study

    NASA Astrophysics Data System (ADS)

    Arney, David; Goldman, Julian M.; Whitehead, Susan F.; Lee, Insup

    When a x-ray image is needed during surgery, clinicians may stop the anesthesia machine ventilator while the exposure is made. If the ventilator is not restarted promptly, the patient may experience severe complications. This paper explores the interconnection of a ventilator and simulated x-ray into a prototype plug-and-play medical device system. This work assists ongoing interoperability framework development standards efforts to develop functional and non-functional requirements and illustrates the potential patient safety benefits of interoperable medical device systems by implementing a solution to a clinical use case requiring interoperability.

  1. Planning and simulation of medical robot tasks.

    PubMed

    Raczkowsky, J; Bohner, P; Burghart, C; Grabowski, H

    1998-01-01

    Complex techniques for planning and performing surgery revolutionize medical interventions. In former times preoperative planning of interventions usually took place in the surgeons mind. Today's new computer techniques allow the surgeon to discuss various operation methods for a patient and to visualize them three-dimensionally. The use of computer assisted surgical planning helps to get better results of a treatment and supports the surgeon before and during the surgical intervention. In this paper we are presenting our planning and simulation system for operations in maxillo-facial surgery. All phases of a surgical intervention are supported. Chapter 1 gives a description of the medical motivation for our planning system and its environment. In Chapter 2 the basic components are presented. The planning system is depicted in Chapter 3 and a simulation of a robot assisted surgery can be found in Chapter 4. Chapter 5 concludes the paper and gives a survey about our future work.

  2. Physically Based Virtual Surgery Planning and Simulation Tools for Personal Health Care Systems

    NASA Astrophysics Data System (ADS)

    Dogan, Firat; Atilgan, Yasemin

    The virtual surgery planning and simulation tools have gained a great deal of importance in the last decade in a consequence of increasing capacities at the information technology level. The modern hardware architectures, large scale database systems, grid based computer networks, agile development processes, better 3D visualization and all the other strong aspects of the information technology brings necessary instruments into almost every desk. The last decade’s special software and sophisticated super computer environments are now serving to individual needs inside “tiny smart boxes” for reasonable prices. However, resistance to learning new computerized environments, insufficient training and all the other old habits prevents effective utilization of IT resources by the specialists of the health sector. In this paper, all the aspects of the former and current developments in surgery planning and simulation related tools are presented, future directions and expectations are investigated for better electronic health care systems.

  3. A review of virtual cutting methods and technology in deformable objects.

    PubMed

    Wang, Monan; Ma, Yuzheng

    2018-06-05

    Virtual cutting of deformable objects has been a research topic for more than a decade and has been used in many areas, especially in surgery simulation. We refer to the relevant literature and briefly describe the related research. The virtual cutting method is introduced, and we discuss the benefits and limitations of these methods and explore possible research directions. Virtual cutting is a category of object deformation. It needs to represent the deformation of models in real time as accurately, robustly and efficiently as possible. To accurately represent models, the method must be able to: (1) model objects with different material properties; (2) handle collision detection and collision response; and (3) update the geometry and topology of the deformable model that is caused by cutting. Virtual cutting is widely used in surgery simulation, and research of the cutting method is important to the development of surgery simulation. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Quantifying Turbulent Kinetic Energy in an Aortic Coarctation with Large Eddy Simulation and Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Lantz, Jonas; Ebbers, Tino; Karlsson, Matts

    2012-11-01

    In this study, turbulent kinetic energy (TKE) in an aortic coarctation was studied using both a numerical technique (large eddy simulation, LES) and in vivo measurements using magnetic resonance imaging (MRI). High levels of TKE are undesirable, as kinetic energy is extracted from the mean flow to feed the turbulent fluctuations. The patient underwent surgery to widen the coarctation, and the flow before and after surgery was computed and compared to MRI measurements. The resolution of the MRI was about 7 × 7 voxels in axial cross-section while 50x50 mesh cells with increased resolution near the walls was used in the LES simulation. In general, the numerical simulations and MRI measurements showed that the aortic arch had no or very low levels of TKE, while elevated values were found downstream the coarctation. It was also found that TKE levels after surgery were lowered, indicating that the diameter of the constriction was increased enough to decrease turbulence effects. In conclusion, both the numerical simulation and MRI measurements gave very similar results, thereby validating the simulations and suggesting that MRI measured TKE can be used as an initial estimation in clinical practice, while LES results can be used for detailed quantification and further research of aortic flows.

  5. Gamification in thoracic surgical education: Using competition to fuel performance.

    PubMed

    Mokadam, Nahush A; Lee, Richard; Vaporciyan, Ara A; Walker, Jennifer D; Cerfolio, Robert J; Hermsen, Joshua L; Baker, Craig J; Mark, Rebecca; Aloia, Lauren; Enter, Dan H; Carpenter, Andrea J; Moon, Marc R; Verrier, Edward D; Fann, James I

    2015-11-01

    In an effort to stimulate residents and trainers to increase their use of simulation training and the Thoracic Surgery Curriculum, a gamification strategy was developed in a friendly but competitive environment. "Top Gun." Low-fidelity simulators distributed annually were used for the technical competition. Baseline and final video assessments were performed, and 5 finalists were invited to compete in a live setting from 2013 to 2015. "Jeopardy." A screening examination was devised to test knowledge contained in the Thoracic Surgery Curriculum. The top 6 2-member teams were invited to compete in a live setting structured around the popular game show Jeopardy. "Top Gun." Over 3 years, there were 43 baseline and 34 final submissions. In all areas of assessment, there was demonstrable improvement. There was increasing evidence of simulation as seen by practice and ritualistic behavior. "Jeopardy." Sixty-eight individuals completed the screening examination, and 30 teams were formed. The largest representation came from the second-year residents in traditional programs. Contestants reported an average in-training examination percentile of 72.9. Finalists reported increased use of the Thoracic Surgery Curriculum by an average of 10 hours per week in preparation. The live competition was friendly, engaging, and spirited. This gamification approach focused on technical and cognitive skills, has been successfully implemented, and has encouraged the use of simulators and the Thoracic Surgery Curriculum. This framework may capitalize on the competitive nature of our trainees and can provide recognition of their achievements. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  6. Virtual reality training in laparoscopic surgery: A systematic review & meta-analysis.

    PubMed

    Alaker, Medhat; Wynn, Greg R; Arulampalam, Tan

    2016-05-01

    Laparoscopic surgery requires a different and sometimes more complex skill set than does open surgery. Shortened working hours, less training times, and patient safety issues necessitates that these skills need to be acquired outside the operating room. Virtual reality simulation in laparoscopic surgery is a growing field, and many studies have been published to determine its effectiveness. This systematic review and meta-analysis aims to evaluate virtual reality simulation in laparoscopic abdominal surgery in comparison to other simulation models and to no training. A systematic literature search was carried out until January 2014 in full adherence to PRISMA guidelines. All randomised controlled studies comparing virtual reality training to other models of training or to no training were included. Only studies utilizing objective and validated assessment tools were included. Thirty one randomised controlled trials that compare virtual reality training to other models of training or to no training were included. The results of the meta-analysis showed that virtual reality simulation is significantly more effective than video trainers, and at least as good as box trainers. The use of Proficiency-based VR training, under supervision with prompt instructions and feedback, and the use of haptic feedback, has proven to be the most effective way of delivering the virtual reality training. The incorporation of virtual reality training into surgical training curricula is now necessary. A unified platform of training needs to be established. Further studies to assess the impact on patient outcomes and on hospital costs are necessary. (PROSPERO Registration number: CRD42014010030). Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  7. Virtual Reality Cerebral Aneurysm Clipping Simulation With Real-time Haptic Feedback

    PubMed Central

    Alaraj, Ali; Luciano, Cristian J.; Bailey, Daniel P.; Elsenousi, Abdussalam; Roitberg, Ben Z.; Bernardo, Antonio; Banerjee, P. Pat; Charbel, Fady T.

    2014-01-01

    Background With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. Objective To develop and evaluate the usefulness of a new haptic-based virtual reality (VR) simulator in the training of neurosurgical residents. Methods A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the Immersive Touch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomography angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-D immersive VR environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from three residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Results Residents felt that the simulation would be useful in preparing for real-life surgery. About two thirds of the residents felt that the 3-D immersive anatomical details provided a very close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They believed the simulation is useful for preoperative surgical rehearsal and neurosurgical training. One third of the residents felt that the technology in its current form provided very realistic haptic feedback for aneurysm surgery. Conclusion Neurosurgical residents felt that the novel immersive VR simulator is helpful in their training especially since they do not get a chance to perform aneurysm clippings until very late in their residency programs. PMID:25599200

  8. 3D-printed pediatric endoscopic ear surgery simulator for surgical training.

    PubMed

    Barber, Samuel R; Kozin, Elliott D; Dedmon, Matthew; Lin, Brian M; Lee, Kyuwon; Sinha, Sumi; Black, Nicole; Remenschneider, Aaron K; Lee, Daniel J

    2016-11-01

    Surgical simulators are designed to improve operative skills and patient safety. Transcanal Endoscopic Ear Surgery (TEES) is a relatively new surgical approach with a slow learning curve due to one-handed dissection. A reusable and customizable 3-dimensional (3D)-printed endoscopic ear surgery simulator may facilitate the development of surgical skills with high fidelity and low cost. Herein, we aim to design, fabricate, and test a low-cost and reusable 3D-printed TEES simulator. The TEES simulator was designed in computer-aided design (CAD) software using anatomic measurements taken from anthropometric studies. Cross sections from external auditory canal samples were traced as vectors and serially combined into a mesh construct. A modified tympanic cavity with a modular testing platform for simulator tasks was incorporated. Components were fabricated using calcium sulfate hemihydrate powder and multiple colored infiltrants via a commercial inkjet 3D-printing service. All components of a left-sided ear were printed to scale. Six right-handed trainees completed three trials each. Mean trial time (n = 3) ranged from 23.03 to 62.77 s using the dominant hand for all dissection. Statistically significant differences between first and last completion time with the dominant hand (p < 0.05) and average completion time for junior and senior residents (p < 0.05) suggest construct validity. A 3D-printed simulator is feasible for TEES simulation. Otolaryngology training programs with access to a 3D printer may readily fabricate a TEES simulator, resulting in inexpensive yet high-fidelity surgical simulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Intensity dependence of focused ultrasound lesion position

    NASA Astrophysics Data System (ADS)

    Meaney, Paul M.; Cahill, Mark D.; ter Haar, Gail R.

    1998-04-01

    Knowledge of the spatial distribution of intensity loss from an ultrasonic beam is critical to predicting lesion formation in focused ultrasound surgery. To date most models have used linear propagation models to predict the intensity profiles needed to compute the temporally varying temperature distributions. These can be used to compute thermal dose contours that can in turn be used to predict the extent of thermal damage. However, these simulations fail to adequately describe the abnormal lesion formation behavior observed for in vitro experiments in cases where the transducer drive levels are varied over a wide range. For these experiments, the extent of thermal damage has been observed to move significantly closer to the transducer with increasing transducer drive levels than would be predicted using linear propagation models. The simulations described herein, utilize the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear propagation model with the parabolic approximation for highly focused ultrasound waves, to demonstrate that the positions of the peak intensity and the lesion do indeed move closer to the transducer. This illustrates that for accurate modeling of heating during FUS, nonlinear effects must be considered.

  10. Re-birth after coronary bypass graft surgery: a hermeneutic-phenomenological study.

    PubMed

    Abbasi, Mohammad; Mohammadi, Nooredin; Nasrabadi, Alireza Nikbakht; Fuh, Suh Boudouin; Sadeghi, Tahereh

    2014-03-31

    Although coronary artery bypass graft surgery has significant effects on reducing the symptoms of coronary artery disease, there is not enough knowledge and understanding of lived experience of patients after surgery. Understanding lived experience of this group of patients would be helpful for healthcare staff to provide better services to the patients. The aim of this study was to describe with a deeper understanding, the lived experiences of patients after Coronary Artery Bypass Graft Surgery. Using a hermeneutic phenomenological approach and a Van-Manen analysis method, in-depth semi-structured interviews were conducted with eleven participants who had lived experienced of at least six months post - coronary artery bypass graft surgery. Re-birth was the main theme that emerged in the process of data analysis. This theme was derived from four sub-themes including "feels younger", ''vigorous heart'', ''intrepid life'' and ''oriented to be healthy''. Life after a coronary artery bypass graft surgery is often appreciated as a re-birth by persons with these experiences as surgery did not only provide a feeling of wellness, but also added a sensation of youthfulness and improvement in the quality of life for these participants. In addition, they would actively participate in health promotional activities such as; adherence to medication and diet regimes, changes in lifestyle to maintain their health.

  11. Effects of Technological Advances in Surgical Education on Quantitative Outcomes From Residency Programs.

    PubMed

    Dietl, Charles A; Russell, John C

    2016-01-01

    The purpose of this article is to review the literature on current technology for surgical education and to evaluate the effect of technological advances on the Accreditation Council of Graduate Medical Education (ACGME) Core Competencies, American Board of Surgery In-Training Examination (ABSITE) scores, and American Board of Surgery (ABS) certification. A literature search was obtained from MEDLINE via PubMed.gov, ScienceDirect.com, and Google Scholar on all peer-reviewed studies published since 2003 using the following search queries: technology for surgical education, simulation-based surgical training, simulation-based nontechnical skills (NTS) training, ACGME Core Competencies, ABSITE scores, and ABS pass rate. Our initial search list included the following: 648 on technology for surgical education, 413 on simulation-based surgical training, 51 on simulation-based NTS training, 78 on ABSITE scores, and 33 on ABS pass rate. Further, 42 articles on technological advances for surgical education met inclusion criteria based on their effect on ACGME Core Competencies, ABSITE scores, and ABS certification. Systematic review showed that 33 of 42 and 26 of 42 publications on technological advances for surgical education showed objective improvements regarding patient care and medical knowledge, respectively, whereas only 2 of 42 publications showed improved ABSITE scores, but none showed improved ABS pass rates. Improvements in the other ACGME core competencies were documented in 14 studies, 9 of which were on simulation-based NTS training. Most of the studies on technological advances for surgical education have shown a positive effect on patient care and medical knowledge. However, the effect of simulation-based surgical training and simulation-based NTS training on ABSITE scores and ABS certification has not been assessed. Studies on technological advances in surgical education and simulation-based NTS training showing quantitative evidence that surgery residency program objectives are achieved are still needed. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  12. [Optimization of education for laparoendoscopic technologies in Ukraine].

    PubMed

    Lesovoĭ, V N; Savenkov, V I; Tomin, M S

    2014-09-01

    International experience of training of surgeons, including urologists, in laparoendoscopic technologies, was analyzed. Practical course "The Fundamentals of aparoscopic Surgery" (FLS) and the European program of education for basic laparoscopic urologic skills (E-BLUS), which are used in specialized centers, constitute a standard programs of development of basic endosurgical skills. Such centers in Ukraine are absent. The project of complex system of a simulating education, testing and certification of surgeons, who are trained in endovideosurgical technologies, is proposed. While performing surveying of Ukrainian surgeons there were revealed the problems in a process of their education and introduction of highly technological methods: insufficient equipment with modern apparatuses, absence of a standardized pro- gram of education. The staged program of education was elaborated, taking into account progressive international experience and adopted to our environment and con ditions.

  13. Comparison of oral surgery task performance in a virtual reality surgical simulator and an animal model using objective measures.

    PubMed

    Ioannou, Ioanna; Kazmierczak, Edmund; Stern, Linda

    2015-01-01

    The use of virtual reality (VR) simulation for surgical training has gathered much interest in recent years. Despite increasing popularity and usage, limited work has been carried out in the use of automated objective measures to quantify the extent to which performance in a simulator resembles performance in the operating theatre, and the effects of simulator training on real world performance. To this end, we present a study exploring the effects of VR training on the performance of dentistry students learning a novel oral surgery task. We compare the performance of trainees in a VR simulator and in a physical setting involving ovine jaws, using a range of automated metrics derived by motion analysis. Our results suggest that simulator training improved the motion economy of trainees without adverse effects on task outcome. Comparison of surgical technique on the simulator with the ovine setting indicates that simulator technique is similar, but not identical to real world technique.

  14. Simulated life-threatening emergency during robot-assisted surgery.

    PubMed

    Huser, Anna-Sophia; Müller, Dirk; Brunkhorst, Violeta; Kannisto, Päivi; Musch, Michael; Kröpfl, Darko; Groeben, Harald

    2014-06-01

    With the increasing use of robot-assisted techniques for urologic and gynecologic surgery in patients with severe comorbidities, the risk of a critical incidence during surgery increases. Due to limited access to the patient the start of effective measures to treat a life-threatening emergency could be delayed. Therefore, we tested the management of an acute emergency in an operating room setting with a full-size simulator in six complete teams. A full-size simulator (ISTAN, Meti, CA), modified to hold five trocars, was placed in a regular operating room and connected to a robotic system. Six teams (each with three nurses, one anesthesiologist, two urologists or gynecologists) were introduced to the scenario. Subsequently, myocardial fibrillation occurred. Time to first chest compression, removal of the robot, first defibrillation, and stabilization of circulation were obtained. After 7 weeks the simulation was repeated. The time to the start of chest compressions, removal of the robotic system, and first defibrillation were significantly improved at the second simulation. Time for restoration of stable circulation was improved from 417 ± 125 seconds to 224 ± 37 seconds (P=0.0054). Unexpected delays occurred during the first simulation because trocars had been removed from the patient but not from the robot, thus preventing the robot to be moved. Following proper training, resuscitation can be started within seconds. A repetition of the simulation significantly improved time for all steps of resuscitation. An emergency simulation of a multidisciplinary team in a real operating room setting can be strongly recommended.

  15. Microsurgery Simulator of Cerebral Aneurysm Clipping with Interactive Cerebral Deformation Featuring a Virtual Arachnoid.

    PubMed

    Shono, Naoyuki; Kin, Taichi; Nomura, Seiji; Miyawaki, Satoru; Saito, Toki; Imai, Hideaki; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2018-05-01

    A virtual reality simulator for aneurysmal clipping surgery is an attractive research target for neurosurgeons. Brain deformation is one of the most important functionalities necessary for an accurate clipping simulator and is vastly affected by the status of the supporting tissue, such as the arachnoid membrane. However, no virtual reality simulator implementing the supporting tissue of the brain has yet been developed. To develop a virtual reality clipping simulator possessing interactive brain deforming capability closely dependent on arachnoid dissection and apply it to clinical cases. Three-dimensional computer graphics models of cerebral tissue and surrounding structures were extracted from medical images. We developed a new method for modifiable cerebral tissue complex deformation by incorporating a nonmedical image-derived virtual arachnoid/trabecula in a process called multitissue integrated interactive deformation (MTIID). MTIID made it possible for cerebral tissue complexes to selectively deform at the site of dissection. Simulations for 8 cases of actual clipping surgery were performed before surgery and evaluated for their usefulness in surgical approach planning. Preoperatively, each operative field was precisely reproduced and visualized with the virtual brain retraction defined by users. The clear visualization of the optimal approach to treating the aneurysm via an appropriate arachnoid incision was possible with MTIID. A virtual clipping simulator mainly focusing on supporting tissues and less on physical properties seemed to be useful in the surgical simulation of cerebral aneurysm clipping. To our knowledge, this article is the first to report brain deformation based on supporting tissues.

  16. Post-Surgical Pain, Physical Activity and Satisfaction with the Decision to Undergo Hernia Surgery: A Prospective Qualitative Investigation

    PubMed Central

    Powell, Rachael; McKee, Lorna; King, Peter M.; Bruce, Julie

    2013-01-01

    Surgical repair is a common treatment for inguinal hernias but a substantial number of patients experience chronic pain after surgery. As some patients are pain-free on presentation, it is important to investigate whether patients perceive the treatment to be beneficial. The present study used qualitative methods to explore experiences of pain, activity limitations and satisfaction with treatment as people underwent surgery and recovery. Twenty-nine semi-structured interviews were conducted. Seven participants were interviewed longitudinally: before surgery and two weeks and four months post-surgery. Ten further participants with residual pain four months post-surgery were interviewed once. Semi-structured interviews included experience and perception of pain; activity limitations; reasons for having surgery; satisfaction with the decision to undergo surgery. A thematic analysis was conducted. Pain did not cause concern when perceived as part of the usual surgery and recovery processes. Activity was limited to avoid damage to the hernia site rather than to avoid pain. None of the participants reported dissatisfaction with the decision to have surgery; reducing the risk of life-threatening complications associated with untreated hernias was considered important. These findings suggest that people regarded surgical treatment as worthwhile, despite chronic post-surgical pain. Further research should ascertain whether patients are aware of the actual risk of complications associated with conservative rather than surgical management of inguinal hernia. PMID:26973903

  17. 3D laparoscopic surgery: a prospective clinical trial.

    PubMed

    Agrusa, Antonino; Di Buono, Giuseppe; Buscemi, Salvatore; Cucinella, Gaspare; Romano, Giorgio; Gulotta, Gaspare

    2018-04-03

    Since it's introduction, laparoscopic surgery represented a real revolution in clinical practice. The use of a new generation three-dimensional (3D) HD laparoscopic system can be considered a favorable "hybrid" made by combining two different elements: feasibility and diffusion of laparoscopy and improved quality of vision. In this study we report our clinical experience with use of three-dimensional (3D) HD vision system for laparoscopic surgery. Between 2013 and 2017 a prospective cohort study was conducted at the University Hospital of Palermo. We considered 163 patients underwent to laparoscopic three-dimensional (3D) HD surgery for various indications. This 3D-group was compared to a retrospective-prospective control group of patients who underwent the same surgical procedures. Considerating specific surgical procedures there is no significant difference in term of age and gender. The analysis of all the groups of diseases shows that the laparoscopic procedures performed with 3D technology have a shorter mean operative time than comparable 2D procedures when we consider surgery that require complex tasks. The use of 3D laparoscopic technology is an extraordinary innovation in clinical practice, but the instrumentation is still not widespread. Precisely for this reason the studies in literature are few and mainly limited to the evaluation of the surgical skills to the simulator. This study aims to evaluate the actual benefits of the 3D laparoscopic system integrating it in clinical practice. The three-dimensional view allows advanced performance in particular conditions, such as small and deep spaces and promotes performing complex surgical laparoscopic procedures.

  18. Using virtual reality to control preoperative anxiety in ambulatory surgery patients: A pilot study in maxillofacial and plastic surgery.

    PubMed

    Ganry, L; Hersant, B; Sidahmed-Mezi, M; Dhonneur, G; Meningaud, J P

    2018-01-06

    Preoperative anxiety may lead to medical and surgical complications, behavioral problems and emotional distress. The most common means of prevention are based on using medication and, more recently, hypnosis. The aim of our study was to determine whether a virtual reality (VR) program presenting natural scenes could be part of a new therapy to reduce patients' preoperative anxiety. Our prospective pilot study consisted of a single-blind trial in skin cancer surgery at the Henri-Mondor teaching hospital in France. In the outpatient surgery department, 20 patients with a score of >11 on the Amsterdam preoperative anxiety and information scale (APAIS) were virtually immersed into a natural universe for 5minutes. Their stress levels were assessed before and after this experience by making use of a visual analog scale (VAS), by measuring salivary cortisol levels, and by determining physiological stress based on heart coherence scores. The VAS score was significantly reduced after the simulation (P<0.009) as was the level of salivary cortisol (P<0.04). Heart coherence scores remained unchanged (P=0.056). VR allows patients to be immersed in a relaxing, peaceful environment. It represents a non-invasive way to reduce preoperative stress levels with no side effects and no need for additional medical or paramedical staff. Our results indicate that VR may provide an effective complementary technique to manage stress in surgery patients. Randomized trials are necessary to determine precise methods and benefits. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Computer assisted surgery in preoperative planning of acetabular fracture surgery: state of the art.

    PubMed

    Boudissa, Mehdi; Courvoisier, Aurélien; Chabanas, Matthieu; Tonetti, Jérôme

    2018-01-01

    The development of imaging modalities and computer technology provides a new approach in acetabular surgery. Areas covered: This review describes the role of computer-assisted surgery (CAS) in understanding of the fracture patterns, in the virtual preoperative planning of the surgery and in the use of custom-made plates in acetabular fractures with or without 3D printing technologies. A Pubmed internet research of the English literature of the last 20 years was carried out about studies concerning computer-assisted surgery in acetabular fractures. The several steps for CAS in acetabular fracture surgery are presented and commented by the main author regarding to his personal experience. Expert commentary: Computer-assisted surgery in acetabular fractures is still initial experiences with promising results. Patient-specific biomechanical models considering soft tissues should be developed to allow a more realistic planning.

  20. Realistic soft tissue deformation strategies for real time surgery simulation.

    PubMed

    Shen, Yunhe; Zhou, Xiangmin; Zhang, Nan; Tamma, Kumar; Sweet, Robert

    2008-01-01

    A volume-preserving deformation method (VPDM) is developed in complement with the mass-spring method (MSM) to improve the deformation quality of the MSM to model soft tissue in surgical simulation. This method can also be implemented as a stand-alone model. The proposed VPDM satisfies the Newton's laws of motion by obtaining the resultant vectors form an equilibrium condition. The proposed method has been tested in virtual surgery systems with haptic rendering demands.

  1. Towards open-source, low-cost haptics for surgery simulation.

    PubMed

    Suwelack, Stefan; Sander, Christian; Schill, Julian; Serf, Manuel; Danz, Marcel; Asfour, Tamim; Burger, Wolfgang; Dillmann, Rüdiger; Speidel, Stefanie

    2014-01-01

    In minimally invasive surgery (MIS), virtual reality (VR) training systems have become a promising education tool. However, the adoption of these systems in research and clinical settings is still limited by the high costs of dedicated haptics hardware for MIS. In this paper, we present ongoing research towards an open-source, low-cost haptic interface for MIS simulation. We demonstrate the basic mechanical design of the device, the sensor setup as well as its software integration.

  2. Cancer risk coefficient for patient undergoing kyphoplasty surgery using Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Santos, Felipe A.; Santos, William S.; Galeano, Diego C.; Cavalcante, Fernanda R.; Silva, Ademir X.; Souza, Susana O.; Júnior, Albérico B. Carvalho

    2017-11-01

    Kyphoplasty surgery is widely used for pain relief in patients with vertebral compression fracture (VCF). For this surgery, an X-ray emitter that provides real-time imaging is employed to guide the medical instruments and the surgical cement used to fill and strengthen the vertebra. Equivalent and effective doses related to high temporal resolution equipment has been studied to assess the damage and more recently cancer risk. For this study, a virtual scenario was prepared using MCNPX code and a pair of UF family simulators. Two projections with seven tube voltages for each one were simulated. The organ in the abdominal region were those who had higher cancer risk because they receive the primary beam. The risk of lethal cancer is on average 20% higher in AP projection than in LL projection. This study aims at estimating the risk of cancer in organs and the risk of lethal cancer for patient submitted to kyphoplasty surgery.

  3. Protocol for concomitant temporomandibular joint custom-fitted total joint reconstruction and orthognathic surgery utilizing computer-assisted surgical simulation.

    PubMed

    Movahed, Reza; Teschke, Marcus; Wolford, Larry M

    2013-12-01

    Clinicians who address temporomandibular joint (TMJ) pathology and dentofacial deformities surgically can perform the surgery in 1 stage or 2 separate stages. The 2-stage approach requires the patient to undergo 2 separate operations and anesthesia, significantly prolonging the overall treatment. However, performing concomitant TMJ and orthognathic surgery (CTOS) in these cases requires careful treatment planning and surgical proficiency in the 2 surgical areas. This article presents a new treatment protocol for the application of computer-assisted surgical simulation in CTOS cases requiring reconstruction with patient-fitted total joint prostheses. The traditional and new CTOS protocols are described and compared. The new CTOS protocol helps decrease the preoperative workup time and increase the accuracy of model surgery. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Comparative assessment of physical and cognitive ergonomics associated with robotic and traditional laparoscopic surgeries.

    PubMed

    Lee, Gyusung I; Lee, Mija R; Clanton, Tameka; Clanton, Tamera; Sutton, Erica; Park, Adrian E; Marohn, Michael R

    2014-02-01

    We conducted this study to investigate how physical and cognitive ergonomic workloads would differ between robotic and laparoscopic surgeries and whether any ergonomic differences would be related to surgeons' robotic surgery skill level. Our hypothesis is that the unique features in robotic surgery will demonstrate skill-related results both in substantially less physical and cognitive workload and uncompromised task performance. Thirteen MIS surgeons were recruited for this institutional review board-approved study and divided into three groups based on their robotic surgery experiences: laparoscopy experts with no robotic experience, novices with no or little robotic experience, and robotic experts. Each participant performed six surgical training tasks using traditional laparoscopy and robotic surgery. Physical workload was assessed by using surface electromyography from eight muscles (biceps, triceps, deltoid, trapezius, flexor carpi ulnaris, extensor digitorum, thenar compartment, and erector spinae). Mental workload assessment was conducted using the NASA-TLX. The cumulative muscular workload (CMW) from the biceps and the flexor carpi ulnaris with robotic surgery was significantly lower than with laparoscopy (p < 0.05). Interestingly, the CMW from the trapezius was significantly higher with robotic surgery than with laparoscopy (p < 0.05), but this difference was only observed in laparoscopic experts (LEs) and robotic surgery novices. NASA-TLX analysis showed that both robotic surgery novices and experts expressed lower global workloads with robotic surgery than with laparoscopy, whereas LEs showed higher global workload with robotic surgery (p > 0.05). Robotic surgery experts and novices had significantly higher performance scores with robotic surgery than with laparoscopy (p < 0.05). This study demonstrated that the physical and cognitive ergonomics with robotic surgery were significantly less challenging. Additionally, several ergonomic components were skill-related. Robotic experts could benefit the most from the ergonomic advantages in robotic surgery. These results emphasize the need for well-structured training and well-defined ergonomics guidelines to maximize the benefits utilizing the robotic surgery.

  5. [How many patient transfer rooms are necessary for my OR suite? : Effect of the number of OR transfer rooms on waiting times and patient throughput in the OR - analysis by simulation].

    PubMed

    Messer, C; Zander, A; Arnolds, I V; Nickel, S; Schuster, M

    2015-12-01

    In most hospitals the operating rooms (OR) are separated from the rest of the hospital by transfer rooms where patients have to pass through for reasons of hygiene. In the OR transfer room patients are placed on the OR table before surgery and returned to the hospital bed after surgery. It could happen that the number of patients who need to pass through a transfer room at a certain point in time exceed the number of available transfer rooms. As a result the transfer rooms become a bottleneck where patients have to wait and which, in turn, may lead to delays in the OR suite. In this study the ability of a discrete event simulation to analyze the effect of the duration of surgery and the number of ORs on the number of OR transfer rooms needed was investigated. This study was based on a discrete event simulation model developed with the simulation software AnyLogic®. The model studied the effects of the number of OR transfer rooms on the processes in an OR suite of a community hospital by varying the number of ORs from one to eight and using different surgical portfolios. Probability distributions for the process duration of induction, surgery and recovery and transfer room processes were calculated on the basis of real data from the community hospital studied. Furthermore, using a generic simulation model the effect of the average duration of surgery on the number of OR transfer rooms needed was examined. The discrete event simulation model enabled the analysis of both quantitative as well as qualitative changes in the OR process and setting. Key performance indicators of the simulation model were patient throughput per day, the probability of waiting and duration of waiting time in front of OR transfer rooms. In the case of a community hospital with 1 transfer room the average proportion of patients waiting before entering the OR was 17.9 % ± 9.7 % with 3 ORs, 37.6 % ± 9.7 % with 5 ORs and 62.9 % ± 9.1 % with 8 ORs. The average waiting time of patients in the setting with 3 ORs was 3.1 ± 2.7 min, with 5 ORs 5.0 ± 5.8 min and with 8 ORs 11.5 ± 12.5 min. Based on this study the community hospital needs a second transfer room starting from 4 ORs so that there is no bottleneck for the subsequent OR processes. The average patient throughput in a setting with 4 ORs increased significantly by 0.3 patients per day when a second transfer room is available. The generic model showed a strong effect of the average duration of surgery on the number of transfer rooms needed. There was no linear correlation between the number of transfer rooms and the number of ORs. The shorter the average duration of surgery, the earlier an additional transfer room is required. Thus, hospitals with shorter duration of surgery and fewer ORs may need the same or more transfer rooms than a hospital with longer duration of surgery and more ORs. However, with respect to an economic analysis, the costs and benefits of installing additional OR transfer rooms need to be calculated using the profit margins of the specific hospital.

  6. Effectiveness of Virtual Reality Training in Orthopaedic Surgery.

    PubMed

    Aïm, Florence; Lonjon, Guillaume; Hannouche, Didier; Nizard, Rémy

    2016-01-01

    The purpose of this study was to conduct a systematic review to determine the effectiveness of virtual reality (VR) training in orthopaedic surgery. A comprehensive systematic review was performed of articles of VR training in orthopaedic surgery published up to November 2014 from MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials databases. We included 10 relevant trials of 91 identified articles, which all reported on training in arthroscopic surgery (shoulder, n = 5; knee, n = 4; undefined, n = 1). A total of 303 participants were involved. Assessment after training was made on a simulator in 9 of the 10 studies, and in one study it took place in the operating room (OR) on a real patient. A total of 32 different outcomes were extracted; 29 of them were about skills assessment. None involved a patient-related outcome. One study focused on anatomic learning, and the other evaluated technical task performance before and after training on a VR simulator. Five studies established construct validity. Three studies reported a statistically significant improvement in technical skills after training on a VR simulator. VR training leads to an improvement of technical skills in orthopaedic surgery. Before its widespread use, additional trials are needed to clarify the transfer of VR training to the OR. Systematic review of Level I through Level IV studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  7. Systematic Review of Patient-Specific Surgical Simulation: Toward Advancing Medical Education.

    PubMed

    Ryu, Won Hyung A; Dharampal, Navjit; Mostafa, Ahmed E; Sharlin, Ehud; Kopp, Gail; Jacobs, William Bradley; Hurlbert, Robin John; Chan, Sonny; Sutherland, Garnette R

    Simulation-based education has been shown to be an effective tool to teach foundational technical skills in various surgical specialties. However, most of the current simulations are limited to generic scenarios and do not allow continuation of the learning curve beyond basic technical skills to prepare for more advanced expertise, such as patient-specific surgical planning. The objective of this study was to evaluate the current medical literature with respect to the utilization and educational value of patient-specific simulations for surgical training. We performed a systematic review of the literature using Pubmed, Embase, and Scopus focusing on themes of simulation, patient-specific, surgical procedure, and education. The study included randomized controlled trials, cohort studies, and case-control studies published between 2005 and 2016. Two independent reviewers (W.H.R. and N.D) conducted the study appraisal, data abstraction, and quality assessment of the studies. The search identified 13 studies that met the inclusion criteria; 7 studies employed computer simulations and 6 studies used 3-dimensional (3D) synthetic models. A number of surgical specialties evaluated patient-specific simulation, including neurosurgery, vascular surgery, orthopedic surgery, and interventional radiology. However, most studies were small in size and primarily aimed at feasibility assessments and early validation. Early evidence has shown feasibility and utility of patient-specific simulation for surgical education. With further development of this technology, simulation-based education may be able to support training of higher-level competencies outside the clinical settingto aid learners in their development of surgical skills. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  8. Identifying Opportunities for Virtual Reality Simulation in Surgical Education: A Review of the Proceedings from the Innovation, Design, and Emerging Alliances in Surgery (IDEAS) Conference: VR Surgery.

    PubMed

    Olasky, Jaisa; Sankaranarayanan, Ganesh; Seymour, Neal E; Magee, J Harvey; Enquobahrie, Andinet; Lin, Ming C; Aggarwal, Rajesh; Brunt, L Michael; Schwaitzberg, Steven D; Cao, Caroline G L; De, Suvranu; Jones, Daniel B

    2015-10-01

    To conduct a review of the state of virtual reality (VR) simulation technology, to identify areas of surgical education that have the greatest potential to benefit from it, and to identify challenges to implementation. Simulation is an increasingly important part of surgical training. VR is a developing platform for using simulation to teach technical skills, behavioral skills, and entire procedures to trainees and practicing surgeons worldwide. Questions exist regarding the science behind the technology and most effective usage of VR simulation. A symposium was held to address these issues. Engineers, educators, and surgeons held a conference in November 2013 both to review the background science behind simulation technology and to create guidelines for its use in teaching and credentialing trainees and surgeons in practice. Several technologic challenges were identified that must be overcome in order for VR simulation to be useful in surgery. Specific areas of student, resident, and practicing surgeon training and testing that would likely benefit from VR were identified: technical skills, team training and decision-making skills, and patient safety, such as in use of electrosurgical equipment. VR simulation has the potential to become an essential piece of surgical education curriculum but depends heavily on the establishment of an agreed upon set of goals. Researchers and clinicians must collaborate to allocate funding toward projects that help achieve these goals. The recommendations outlined here should guide further study and implementation of VR simulation. © The Author(s) 2015.

  9. Identifying Opportunities for Virtual Reality Simulation in Surgical Education: A Review of the Proceedings from the Innovation, Design, and Emerging Alliances in Surgery (IDEAS) Conference: VR Surgery

    PubMed Central

    Olasky, Jaisa; Sankaranarayanan, Ganesh; Seymour, Neal E.; Magee, J. Harvey; Enquobahrie, Andinet; Lin, Ming C.; Aggarwal, Rajesh; Brunt, L. Michael; Schwaitzberg, Steven D.; Cao, Caroline G. L.; De, Suvranu; Jones, Daniel B.

    2015-01-01

    Objectives To conduct a review of the state of virtual reality (VR) simulation technology, to identify areas of surgical education that have the greatest potential to benefit from it, and to identify challenges to implementation. Background Data Simulation is an increasingly important part of surgical training. VR is a developing platform for using simulation to teach technical skills, behavioral skills, and entire procedures to trainees and practicing surgeons worldwide. Questions exist regarding the science behind the technology and most effective usage of VR simulation. A symposium was held to address these issues. Methods Engineers, educators, and surgeons held a conference in November 2013 both to review the background science behind simulation technology and to create guidelines for its use in teaching and credentialing trainees and surgeons in practice. Results Several technologic challenges were identified that must be overcome in order for VR simulation to be useful in surgery. Specific areas of student, resident, and practicing surgeon training and testing that would likely benefit from VR were identified: technical skills, team training and decision-making skills, and patient safety, such as in use of electrosurgical equipment. Conclusions VR simulation has the potential to become an essential piece of surgical education curriculum but depends heavily on the establishment of an agreed upon set of goals. Researchers and clinicians must collaborate to allocate funding toward projects that help achieve these goals. The recommendations outlined here should guide further study and implementation of VR simulation. PMID:25925424

  10. Mixed reality simulation of rasping procedure in artificial cervical disc replacement (ACDR) surgery.

    PubMed

    Halic, Tansel; Kockara, Sinan; Bayrak, Coskun; Rowe, Richard

    2010-10-07

    Until quite recently spinal disorder problems in the U.S. have been operated by fusing cervical vertebrae instead of replacement of the cervical disc with an artificial disc. Cervical disc replacement is a recently approved procedure in the U.S. It is one of the most challenging surgical procedures in the medical field due to the deficiencies in available diagnostic tools and insufficient number of surgical practices For physicians and surgical instrument developers, it is critical to understand how to successfully deploy the new artificial disc replacement systems. Without proper understanding and practice of the deployment procedure, it is possible to injure the vertebral body. Mixed reality (MR) and virtual reality (VR) surgical simulators are becoming an indispensable part of physicians' training, since they offer a risk free training environment. In this study, MR simulation framework and intricacies involved in the development of a MR simulator for the rasping procedure in artificial cervical disc replacement (ACDR) surgery are investigated. The major components that make up the MR surgical simulator with motion tracking system are addressed. A mixed reality surgical simulator that targets rasping procedure in the artificial cervical disc replacement surgery with a VICON motion tracking system was developed. There were several challenges in the development of MR surgical simulator. First, the assembly of different hardware components for surgical simulation development that involves knowledge and application of interdisciplinary fields such as signal processing, computer vision and graphics, along with the design and placements of sensors etc . Second challenge was the creation of a physically correct model of the rasping procedure in order to attain critical forces. This challenge was handled with finite element modeling. The third challenge was minimization of error in mapping movements of an actor in real model to a virtual model in a process called registration. This issue was overcome by a two-way (virtual object to real domain and real domain to virtual object) semi-automatic registration method. The applicability of the VICON MR setting for the ACDR surgical simulator is demonstrated. The main stream problems encountered in MR surgical simulator development are addressed. First, an effective environment for MR surgical development is constructed. Second, the strain and the stress intensities and critical forces are simulated under the various rasp instrument loadings with impacts that are applied on intervertebral surfaces of the anterior vertebrae throughout the rasping procedure. Third, two approaches are introduced to solve the registration problem in MR setting. Results show that our system creates an effective environment for surgical simulation development and solves tedious and time-consuming registration problems caused by misalignments. Further, the MR ACDR surgery simulator was tested by 5 different physicians who found that the MR simulator is effective enough to teach the anatomical details of cervical discs and to grasp the basics of the ACDR surgery and rasping procedure.

  11. Mixed reality simulation of rasping procedure in artificial cervical disc replacement (ACDR) surgery

    PubMed Central

    2010-01-01

    Background Until quite recently spinal disorder problems in the U.S. have been operated by fusing cervical vertebrae instead of replacement of the cervical disc with an artificial disc. Cervical disc replacement is a recently approved procedure in the U.S. It is one of the most challenging surgical procedures in the medical field due to the deficiencies in available diagnostic tools and insufficient number of surgical practices For physicians and surgical instrument developers, it is critical to understand how to successfully deploy the new artificial disc replacement systems. Without proper understanding and practice of the deployment procedure, it is possible to injure the vertebral body. Mixed reality (MR) and virtual reality (VR) surgical simulators are becoming an indispensable part of physicians’ training, since they offer a risk free training environment. In this study, MR simulation framework and intricacies involved in the development of a MR simulator for the rasping procedure in artificial cervical disc replacement (ACDR) surgery are investigated. The major components that make up the MR surgical simulator with motion tracking system are addressed. Findings A mixed reality surgical simulator that targets rasping procedure in the artificial cervical disc replacement surgery with a VICON motion tracking system was developed. There were several challenges in the development of MR surgical simulator. First, the assembly of different hardware components for surgical simulation development that involves knowledge and application of interdisciplinary fields such as signal processing, computer vision and graphics, along with the design and placements of sensors etc . Second challenge was the creation of a physically correct model of the rasping procedure in order to attain critical forces. This challenge was handled with finite element modeling. The third challenge was minimization of error in mapping movements of an actor in real model to a virtual model in a process called registration. This issue was overcome by a two-way (virtual object to real domain and real domain to virtual object) semi-automatic registration method. Conclusions The applicability of the VICON MR setting for the ACDR surgical simulator is demonstrated. The main stream problems encountered in MR surgical simulator development are addressed. First, an effective environment for MR surgical development is constructed. Second, the strain and the stress intensities and critical forces are simulated under the various rasp instrument loadings with impacts that are applied on intervertebral surfaces of the anterior vertebrae throughout the rasping procedure. Third, two approaches are introduced to solve the registration problem in MR setting. Results show that our system creates an effective environment for surgical simulation development and solves tedious and time-consuming registration problems caused by misalignments. Further, the MR ACDR surgery simulator was tested by 5 different physicians who found that the MR simulator is effective enough to teach the anatomical details of cervical discs and to grasp the basics of the ACDR surgery and rasping procedure PMID:20946594

  12. Modeling and optimal design of an optical MEMS tactile sensor for use in robotically assisted surgery

    NASA Astrophysics Data System (ADS)

    Ahmadi, Roozbeh; Kalantari, Masoud; Packirisamy, Muthukumaran; Dargahi, Javad

    2010-06-01

    Currently, Minimally Invasive Surgery (MIS) performs through keyhole incisions using commercially available robotic surgery systems. One of the most famous examples of these robotic surgery systems is the da Vinci surgical system. In the current robotic surgery systems like the da Vinci, surgeons are faced with problems such as lack of tactile feedback during the surgery. Therefore, providing a real-time tactile feedback from interaction between surgical instruments and tissue can help the surgeons to perform MIS more reliably. The present paper proposes an optical tactile sensor to measure the contact force between the bio-tissue and the surgical instrument. A model is proposed for simulating the interaction between a flexible membrane and bio-tissue based on the finite element methods. The tissue is considered as a hyperelastic material with the material properties similar to the heart tissue. The flexible membrane is assumed as a thin layer of silicon which can be microfabricated using the technology of Micro Electro Mechanical Systems (MEMS). The simulation results are used to optimize the geometric design parameters of a proposed MEMS tactile sensor for use in robotic surgical systems to perform MIS.

  13. An acute care surgery rotation contributes significant general surgical operative volume to residency training compared with other rotations.

    PubMed

    Stanley, Matthew D; Davenport, Daniel L; Procter, Levi D; Perry, Jacob E; Kearney, Paul A; Bernard, Andrew C

    2011-03-01

    Surgical resident rotations on trauma services are criticized for little operative experience and heavy workloads. This has resulted in diminished interest in trauma surgery among surgical residents. Acute care surgery (ACS) combines trauma and emergency/elective general surgery, enhancing operative volume and balancing operative and nonoperative effort. We hypothesize that a mature ACS service provides significant operative experience. A retrospective review was performed of ACGME case logs of 14 graduates from a major, academic, Level I trauma center program during a 3-year period. Residency Review Committee index case volumes during the fourth and fifth years of postgraduate training (PGY-4 and PGY-5) ACS rotations were compared with other service rotations: in total and per resident week on service. Ten thousand six hundred fifty-four cases were analyzed for 14 graduates. Mean cases per resident was 432 ± 57 in PGY-4, 330 ± 40 in PGY-5, and 761 ± 67 for both years combined. Mean case volume on ACS for both years was 273 ± 44, which represented 35.8% (273 of 761) of the total experience and exceeded all other services. Residents averaged 8.9 cases per week on the ACS service, which exceeded all other services except private general surgery, gastrointestinal/minimally invasive surgery, and pediatric surgery rotations. Disproportionately more head/neck, small and large intestine, gastric, spleen, laparotomy, and hernia cases occurred on ACS than on other services. Residents gain a large operative experience on ACS. An ACS model is viable in training, provides valuable operative experience, and should not be considered a drain on resident effort. Valuable ACS rotation experiences as a resident may encourage graduates to pursue ACS as a career. Copyright © 2011 by Lippincott Williams & Wilkins

  14. Patient perspectives about bariatric surgery unveil experiences, education, satisfaction, and recommendations for improvement.

    PubMed

    Groller, Karen D; Teel, Cynthia; Stegenga, Kristin H; El Chaar, Maher

    2018-02-17

    Following bariatric surgery, up to 35% of patients struggle with strict regimens and experience weight recidivism within 2 years [1-5]. Accredited weight management centers (WMC) must provide educational programs and support patients in lifestyle changes before and after surgery. Educational programs, however, may not be evidence-based or patient-centered and may vary in curriculum, approach, and educator type [6]. To obtain patient descriptions about the weight loss surgery (WLS) experience, including education, satisfaction, and recommendations for improvement. Participants were recruited from a university hospital-based WMC in Pennsylvania. This qualitative descriptive study used purposive sampling and inductive content analysis. A NEW ME-VERSION 2.0, encompassed themes from semistructured interviews with 11 participants (36% male). Theme 1: Programming and Tools, explained how individuals undergoing WLS found support through educational programming. Theme 2: Updates and Upgrades, identified issues surrounding quality of life and challenges before and after surgery. Theme 3: Lessons Learned and Future Considerations, identified satisfaction levels and recommendations for improving the WLS experience. Participants reported positive experiences, acknowledging educational programs and extensive WMC resources, yet also offered recommendations for improving educational programming. Patient narratives provided evidence about the WLS experience. Achievement of weight goals, adherence to rules, and improved health status contributed to perceptions of WLS success. Participants encouraged educators to identify expected outcomes of educational programming, monitor holistic transformations, foster peer support, and use technology in WMC programming. Results also validated the need for the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program's education requirement (standard 5.1). Future educational research could help develop best practices in WLS patient education and assess associations between education and clinical outcomes. Copyright © 2018 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  15. What determines patient preferences for treating low risk basal cell carcinoma when comparing surgery vs imiquimod? A discrete choice experiment survey from the SINS trial.

    PubMed

    Tinelli, Michela; Ozolins, Mara; Bath-Hextall, Fiona; Williams, Hywel C

    2012-10-04

    The SINS trial (Controlled Clinical Trials ISRCTN48755084; Eudract No. 2004-004506-24) is a randomised controlled trial evaluating long term success of excisional surgery vs. imiquimod 5% cream for low risk nodular and superficial basal cell carcinoma (BCC). The trial included a discrete choice experiment questionnaire to explore patient preferences of a cream versus surgery for the treatment of their skin cancer. The self-completed questionnaire was administered at baseline to 183 participants, measuring patients' strength of preferences when choosing either alternative 'surgery' or 'imiquimod cream' instead of a fixed 'current situation' option (of surgical excision as standard practice in UK). The treatments were described according to: cost, chance of complete clearance, side effects and appearance. Participants had to choose between various scenarios. Analysis was performed using a mixed logit model, which took into account the impact of previous BCC treatment and sample preference variability. The analysis showed that respondents preferred 'imiquimod cream' to their 'current situation' or 'surgery', regardless of previous experience of BCC symptoms and treatment. Respondents were more likely to be worried about their cosmetic outcomes and side effects they might experience over and above their chance of clearance and cost. Those with no experience of surgery (compared with experience) valued more the choice of 'imiquimod cream' (£1013 vs £781). All treatment characteristics were significant determinants of treatment choice, and there was significant variability in the population preferences for all of them. Patients with BCC valued more 'imiquimod cream' than alternative 'surgery' options, and all treatment characteristics were important for their choice of care. Understanding how people with a BCC value alternative interventions may better inform the development of health care interventions.

  16. Technical features of the robot-assisted trans-axillary thyroidectomy.

    PubMed

    Axente, D D; Major, Z Z; Micu, C M; Constantea, N A

    2013-01-01

    Numerous minimally invasive techniques for thyroid surgery have been described in recent years. Technical disadvantages have led to low practicability, although these techniques proved to be safe and to deliver good results. The robotic system was developed to overcome the limits of endoscopic surgery.Recently, based on the advantages of this new technology, robot assisted endoscopic surgery was introduced for minimally invasive thyroid surgery as well. Our experience with robot-assisted transaxillary thyroid surgery begins in November 2010 when we have practiced our first unilateral total lobectomy. From November 2010 to March 2012, 50 patients underwent robot assisted endoscopic thyroid surgery using the transaxillary approach. The aim of this study is to present the technical details and particularities of this procedure, based on our experience.

  17. A multicenter prospective cohort study on camera navigation training for key user groups in minimally invasive surgery.

    PubMed

    Graafland, Maurits; Bok, Kiki; Schreuder, Henk W R; Schijven, Marlies P

    2014-06-01

    Untrained laparoscopic camera assistants in minimally invasive surgery (MIS) may cause suboptimal view of the operating field, thereby increasing risk for errors. Camera navigation is often performed by the least experienced member of the operating team, such as inexperienced surgical residents, operating room nurses, and medical students. The operating room nurses and medical students are currently not included as key user groups in structured laparoscopic training programs. A new virtual reality laparoscopic camera navigation (LCN) module was specifically developed for these key user groups. This multicenter prospective cohort study assesses face validity and construct validity of the LCN module on the Simendo virtual reality simulator. Face validity was assessed through a questionnaire on resemblance to reality and perceived usability of the instrument among experts and trainees. Construct validity was assessed by comparing scores of groups with different levels of experience on outcome parameters of speed and movement proficiency. The results obtained show uniform and positive evaluation of the LCN module among expert users and trainees, signifying face validity. Experts and intermediate experience groups performed significantly better in task time and camera stability during three repetitions, compared to the less experienced user groups (P < .007). Comparison of learning curves showed significant improvement of proficiency in time and camera stability for all groups during three repetitions (P < .007). The results of this study show face validity and construct validity of the LCN module. The module is suitable for use in training curricula for operating room nurses and novice surgical trainees, aimed at improving team performance in minimally invasive surgery. © The Author(s) 2013.

  18. Operative experience of residents in US general surgery programs: a gap between expectation and experience.

    PubMed

    Bell, Richard H; Biester, Thomas W; Tabuenca, Arnold; Rhodes, Robert S; Cofer, Joseph B; Britt, L D; Lewis, Frank R

    2009-05-01

    The purpose of the study was to identify a group of operations which general surgery residency program directors believed residents should be competent to perform by the end of 5 years of training and then ascertain actual resident experience with these procedures during their training. There is concern about the adequacy of training of general surgeons in the United States. The American Board of Surgery and the Association of Program Directors in Surgery undertook a study to determine what operative procedures residency program directors consider to be essential to the practice of general surgery and then we measured the actual operative experience of graduating residents in those procedures, as reported to the Residency Review Committee for Surgery (RRC). An electronic survey was sent to residency program directors at the 254 general surgery programs in the US accredited by the RRC as of spring 2006. The program directors were presented with a list of 300 types of operations. Program directors graded the 300 procedures "A," "B," or "C" using the following criteria: A--graduating general surgery residents should be competent to perform the procedure independently; B--graduating residents should be familiar with the procedure, but not necessarily competent to perform it; and C--graduating residents neither need to be familiar with nor competent to perform the procedure. After ballots were tallied, the actual resident operative experience reported to the RRC by all residents finishing general surgery training in June 2005 was reviewed. One hundred twenty-one of the 300 operations were considered A level procedures by a majority of program directors (PDs). Graduating 2005 US residents (n = 1022) performed only 18 of the 121 A procedures, an average of more than 10 times during residency; 83 of 121 procedures were performed on an average less than 5 times and 31 procedures less than once. For 63 of the 121 procedures, the mode (most commonly reported) experience was 0. In addition, there was significant variation between residents in operative experience for specific procedures. In virtually all cases, the mean reported experience exceeded the mode, suggesting that the mean is a poor measure of typical experience. These data pose important problems for surgical educators. Methods will have to be developed to allow surgeons to reach a basic level of competence in procedures which they are likely to experience only rarely during residency. Even for more commonly performed procedures, the numbers of repetitions are not very robust, stressing the need to determine objectively whether residents are actually achieving basic competency in these operations. Finally, the large variations in experience between individuals in our residency system need to be explored, understood, and remedied.

  19. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review.

    PubMed

    van der Meijden, O A J; Schijven, M P

    2009-06-01

    Virtual reality (VR) as surgical training tool has become a state-of-the-art technique in training and teaching skills for minimally invasive surgery (MIS). Although intuitively appealing, the true benefits of haptic (VR training) platforms are unknown. Many questions about haptic feedback in the different areas of surgical skills (training) need to be answered before adding costly haptic feedback in VR simulation for MIS training. This study was designed to review the current status and value of haptic feedback in conventional and robot-assisted MIS and training by using virtual reality simulation. A systematic review of the literature was undertaken using PubMed and MEDLINE. The following search terms were used: Haptic feedback OR Haptics OR Force feedback AND/OR Minimal Invasive Surgery AND/OR Minimal Access Surgery AND/OR Robotics AND/OR Robotic Surgery AND/OR Endoscopic Surgery AND/OR Virtual Reality AND/OR Simulation OR Surgical Training/Education. The results were assessed according to level of evidence as reflected by the Oxford Centre of Evidence-based Medicine Levels of Evidence. In the current literature, no firm consensus exists on the importance of haptic feedback in performing minimally invasive surgery. Although the majority of the results show positive assessment of the benefits of force feedback, results are ambivalent and not unanimous on the subject. Benefits are least disputed when related to surgery using robotics, because there is no haptic feedback in currently used robotics. The addition of haptics is believed to reduce surgical errors resulting from a lack of it, especially in knot tying. Little research has been performed in the area of robot-assisted endoscopic surgical training, but results seem promising. Concerning VR training, results indicate that haptic feedback is important during the early phase of psychomotor skill acquisition.

  20. Finite element analysis for edge-to-edge technique to treat post-mitral valve repair systolic anterior motion.

    PubMed

    Zhong, Qi; Zeng, Wenhua; Huang, Xiaoyang; Zhao, Xiaojia

    2014-01-01

    Systolic anterior motion of the mitral valve is an uncommon complication of mitral valve repair, which requires immediate supplementary surgical action. Edge-to-edge suture is considered as an effective technique to treat post-mitral valve repair systolic anterior motion by clinical researchers. However, the fundamentals and quantitative analysis are vacant to validate the effectiveness of the additional edge-to-edge surgery to repair systolic anterior motion. In the present work, finite element models were developed to simulate a specific clinical surgery for patients with posterior leaflet prolapse, so as to analyze the edge-to-edge technique quantificationally. The simulated surgery procedure concluded several actions such as quadrangular resection, mitral annuloplasty and edge-to-edge suture. And the simulated results were compared with echocardiography and measurement data of the patients under the mitral valve surgery, which shows good agreement. The leaflets model with additional edge-to-edge suture has a shorter mismatch length than that of the model merely under quadrangular resection and mitral annuloplasty actions at systole, which assures a better coaptation status. The stress on the leaflets after edge-to-edge suture is lessened as well.

  1. Stress response and communication in surgeons undergoing training in endoscopic management of major vessel hemorrhage: a mixed methods study.

    PubMed

    Jukes, Alistair K; Mascarenhas, Annika; Murphy, Jae; Stepan, Lia; Muñoz, Tamara N; Callejas, Claudio A; Valentine, Rowan; Wormald, P J; Psaltis, Alkis J

    2017-06-01

    Major vessel hemorrhage in endoscopic, endonasal skull-base surgery is a rare but potentially fatal event. Surgical simulation models have been developed to train surgeons in the techniques required to manage this complication. This mixed-methods study aims to quantify the stress responses the model induces, determine how realistic the experience is, and how it changes the confidence levels of surgeons in their ability to deal with major vascular injury in an endoscopic setting. Forty consultant surgeons and surgeons in training underwent training on an endoscopic sheep model of jugular vein and carotid artery injury. Pre-course and post-course questionnaires providing demographics, experience level, confidence, and realism scores were taken, based on a 5-point Likert scale. Objective markers of stress response including blood pressure, heart rate, and salivary alpha-amylase levels were measured. Mean "realism" score assessed posttraining showed the model to be perceived as highly realistic by the participants (score 4.02). Difference in participant self-rated pre-course and post-course confidence levels was significant (p < 0.0001): mean pre-course confidence level 1.66 (95% confidence interval [CI], 1.43 to 1.90); mean post-course confidence level 3.42 (95% CI, 3.19 to 3.65). Differences in subjects' heart rates (HRs) and mean arterial blood pressures (MAPs) were significant between injury models (p = 0.0008, p = 0.0387, respectively). No statistically significant difference in salivary alpha-amylase levels pretraining and posttraining was observed. Results from this study indicate that this highly realistic simulation model provides surgeons with an increased level of confidence in their ability to deal with the rare but potentially catastrophic event of major vessel injury in endoscopic skull-base surgery. © 2017 ARS-AAOA, LLC.

  2. Comparative assessment of three standardized robotic surgery training methods.

    PubMed

    Hung, Andrew J; Jayaratna, Isuru S; Teruya, Kara; Desai, Mihir M; Gill, Inderbir S; Goh, Alvin C

    2013-10-01

    To evaluate three standardized robotic surgery training methods, inanimate, virtual reality and in vivo, for their construct validity. To explore the concept of cross-method validity, where the relative performance of each method is compared. Robotic surgical skills were prospectively assessed in 49 participating surgeons who were classified as follows: 'novice/trainee': urology residents, previous experience <30 cases (n = 38) and 'experts': faculty surgeons, previous experience ≥30 cases (n = 11). Three standardized, validated training methods were used: (i) structured inanimate tasks; (ii) virtual reality exercises on the da Vinci Skills Simulator (Intuitive Surgical, Sunnyvale, CA, USA); and (iii) a standardized robotic surgical task in a live porcine model with performance graded by the Global Evaluative Assessment of Robotic Skills (GEARS) tool. A Kruskal-Wallis test was used to evaluate performance differences between novices and experts (construct validity). Spearman's correlation coefficient (ρ) was used to measure the association of performance across inanimate, simulation and in vivo methods (cross-method validity). Novice and expert surgeons had previously performed a median (range) of 0 (0-20) and 300 (30-2000) robotic cases, respectively (P < 0.001). Construct validity: experts consistently outperformed residents with all three methods (P < 0.001). Cross-method validity: overall performance of inanimate tasks significantly correlated with virtual reality robotic performance (ρ = -0.7, P < 0.001) and in vivo robotic performance based on GEARS (ρ = -0.8, P < 0.0001). Virtual reality performance and in vivo tissue performance were also found to be strongly correlated (ρ = 0.6, P < 0.001). We propose the novel concept of cross-method validity, which may provide a method of evaluating the relative value of various forms of skills education and assessment. We externally confirmed the construct validity of each featured training tool. © 2013 BJU International.

  3. A Mobile-Based Surgical Simulation Application: A Comparative Analysis of Efficacy Using a Carpal Tunnel Release Module.

    PubMed

    Amer, Kamil M; Mur, Taha; Amer, Kamal; Ilyas, Asif M

    2017-05-01

    The utilization of surgical simulation continues to grow in medical training. The TouchSurgery application (app) is a new interactive virtual reality smartphone- or tablet-based app that offers a step-by-step tutorial and simulation for the execution of various operations. The purpose of this study was to compare the efficacy of the app versus traditional teaching modalities utilizing the "Carpal Tunnel Surgery" module. We hypothesized that users of the app would score higher than those using the traditional education medium indicating higher understanding of the steps of surgery. A total of 100 medical students were recruited to participate. The control group (n = 50) consisted of students learning about carpal tunnel release surgery using a video lecture utilizing slides. The study group (n = 50) consisted of students learning the procedure through the app. The content covered was identical in both groups but delivered through the different mediums. Outcome measures included comparison of test scores and overall app satisfaction. Test scores in the study group (89.3%) using the app were significantly higher than those in the control group (75.6%). Students in the study group rated the overall content validity, quality of graphics, ease of use, and usefulness to surgery preparation as very high (4.8 of 5). Students utilizing the app performed better on a standardized test examining the steps of a carpal tunnel release than those using a traditional teaching modality. The study findings lend support for the use of the app for medical students to prepare for and learn the steps for various surgical procedures. This study provides useful information on surgical simulation, which can be utilized to educate trainees for new procedures. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  4. A cost-effective junior resident training and assessment simulator for orthopaedic surgical skills via fundamentals of orthopaedic surgery: AAOS exhibit selection.

    PubMed

    Lopez, Gregory; Wright, Rick; Martin, David; Jung, James; Bracey, Daniel; Gupta, Ranjan

    2015-04-15

    Psychomotor testing has been recently incorporated into residency training programs not only to objectively assess a surgeon's abilities but also to address current patient-safety advocacy and medicolegal trends. The purpose of this study was to develop and test a cost-effective psychomotor training and assessment tool-The Fundamentals of Orthopaedic Surgery (FORS)-for junior-level orthopaedic surgery resident education. An orthopaedic skills board was made from supplies purchased at a local hardware store with a total cost of less than $350 so as to assess six different psychomotor skills. The six skills included fracture reduction, three-dimensional drill accuracy, simulated fluoroscopy-guided drill accuracy, depth-of-plunge minimization, drill-by-feel accuracy, and suture speed and quality. Medical students, residents, and attending physicians from three orthopaedic surgery residency programs accredited by the Accreditation Council for Graduate Medical Education participated in the study. Twenty-five medical students were retained for longitudinal training and testing for four weeks. Each training session involved an initial examination followed by thirty minutes of board training. The time to perform each task was measured with accuracy measurements for the appropriate tasks. Statistical analysis was done with one-way analysis of variance, with significance set at p < 0.05. Forty-seven medical students, twenty-nine attending physicians, and fifty-eight orthopaedic surgery residents participated in the study. Stratification among medical students, junior residents, and senior residents and/or attending physicians was found in all tasks. The twenty-five medical students who were retained for longitudinal training improved significantly above junior resident level in four of the six tasks. The FORS is an effective simulator of basic motor skills that translates across a wide variety of operations and has the potential to advance junior-level participants to senior resident skill level. The FORS simulator may serve as a valuable tool for resident education. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  5. Intubation after rapid sequence induction performed by non-medical personnel during space exploration missions: a simulation pilot study in a Mars analogue environment.

    PubMed

    Komorowski, Matthieu; Fleming, Sarah

    2015-01-01

    The question of the safety of anaesthetic procedures performed by non anaesthetists or even by non physicians has long been debated. We explore here this question in the hypothetical context of an exploration mission to Mars. During future interplanetary space missions, the risk of medical conditions requiring surgery and anaesthetic techniques will be significant. On Earth, anaesthesia is generally performed by well accustomed personnel. During exploration missions, onboard medical expertise might be lacking, or the crew doctor could become ill or injured. Telemedical assistance will not be available. In these conditions and as a last resort, personnel with limited medical training may have to perform lifesaving procedures, which could include anaesthesia and surgery. The objective of this pilot study was to test the ability for unassisted personnel with no medical training to perform oro-tracheal intubation after a rapid sequence induction on a simulated deconditioned astronaut in a Mars analogue environment. The experiment made use of a hybrid simulation model, in which the injured astronaut was represented by a torso manikin, whose vital signs and hemodynamic status were emulated using a patient simulator software. Only assisted by an interactive computer tool (PowerPoint(®) presentation), five participants with no previous medical training completed a simplified induction of general anaesthesia with intubation. No major complication occurred during the simulated trials, namely no cardiac arrest, no hypoxia, no cardiovascular collapse and no failure to intubate. The study design was able to reproduce many of the constraints of a space exploration mission. Unassisted personnel with minimal medical training and familiarization with the equipment may be able to perform advanced medical care in a safe and efficient manner. Further studies integrating this protocol into a complete anaesthetic and surgical scenario will provide valuable input in designing health support systems for space exploration missions.

  6. Virtual reality case-specific rehearsal in temporal bone surgery: a preliminary evaluation.

    PubMed

    Arora, Asit; Swords, Chloe; Khemani, Sam; Awad, Zaid; Darzi, Ara; Singh, Arvind; Tolley, Neil

    2014-01-01

    1. To investigate the feasibility of performing case-specific surgical rehearsal using a virtual reality temporal bone simulator. 2. To identify potential clinical applications in temporal bone surgery. Prospective assessment study. St Mary's Hospital, Imperial College NHS Trust, London UK. Sixteen participants consisting of a trainer and trainee group. Twenty-four cadaver temporal bones were CT-scanned and uploaded onto the Voxelman simulator. Sixteen participants performed a 90-min temporal bone dissection on the generic simulation model followed by 3 dissection tasks on the case simulation and cadaver models. Case rehearsal was assessed for feasibility. Clinical applications and usefulness were evaluated using a 5-point Likert-type scale. The upload process required a semi-automated system. Average time for upload was 20 min. Suboptimal reconstruction occurred in 21% of cases arising when the mastoid process and ossicular chain were not captured (n = 2) or when artefact was generated (n = 3). Case rehearsal rated highly (Likert score >4) for confidence (75%), facilitating planning (75%) and training (94%). Potential clinical applications for case rehearsal include ossicular chain surgery, cochlear implantation and congenital anomalies. Case rehearsal of cholesteatoma surgery is not possible on the current platform due to suboptimal soft tissue representation. The process of uploading CT data onto a virtual reality temporal bone simulator to perform surgical rehearsal is feasible using a semi-automated system. Further clinical evaluation is warranted to assess the benefit of performing patient-specific surgical rehearsal in selected procedures. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  7. [Study on the application of value of digital medical technology in the operation on primary liver cancer].

    PubMed

    Fang, Chi-hua; Lu, Chao-min; Huang, Yan-peng; Li, Xiao-feng; Fan, Ying-fang; Yang, Jian; Xiang, Nan; Pan, Jia-hui

    2009-04-01

    To study the clinical application of digital medical in the operation on primary liver cancer. The patients (n=11) with primary hepatic carcinoma treated between February and July 2008, including 9 cases of hepatocellular carcinoma, 2 cases of cholangiocellular carcinoma, were scanned using 64 slices helicon computerized tomography (CT) and the datasets was collected. Segment and three-dimensional (3D) reconstruction of the CT image was carried out by the medical image processing system which was developed. And the 3D moulds were imported to the FreeForm Modeling System for smoothing. Then the hepatectomy in treatment of hepatoma and implanting of catheter were simulated with the force-feedback equipment (PHANToM). Finally, 3D models and results of simulation surgery were used for choosing mode of operation and comparing with the findings during the operation. The reconstructed models were true to life, and their spatial disposition and correlation were shown clearly; Blood supply of primary liver cancer could be seen easily. In the simulation surgery system, the process of virtual partial hepatectomy and implanting of catheter using simulation scalpel and catheter on 3D moulds with PHANToM was consistent with the clinical course of surgery. Life-like could be felt and power feeling can be touched during simulation operation. Digital medical benefited knowing the relationship between primary liver cancer and the intrahepatic pipe. It gave an advantage to complete primary liver cancer resection with more liver volume remained. It can improve the surgical effect and decrease the surgical risk and reduce the complication through demonstrating visualized operation before surgery.

  8. Cardiac surgery productivity and throughput improvements.

    PubMed

    Lehtonen, Juha-Matti; Kujala, Jaakko; Kouri, Juhani; Hippeläinen, Mikko

    2007-01-01

    The high variability in cardiac surgery length--is one of the main challenges for staff managing productivity. This study aims to evaluate the impact of six interventions on open-heart surgery operating theatre productivity. A discrete operating theatre event simulation model with empirical operation time input data from 2603 patients is used to evaluate the effect that these process interventions have on the surgery output and overtime work. A linear regression model was used to get operation time forecasts for surgery scheduling while it also could be used to explain operation time. A forecasting model based on the linear regression of variables available before the surgery explains 46 per cent operating time variance. The main factors influencing operation length were type of operation, redoing the operation and the head surgeon. Reduction of changeover time between surgeries by inducing anaesthesia outside an operating theatre and by reducing slack time at the end of day after a second surgery have the strongest effects on surgery output and productivity. A more accurate operation time forecast did not have any effect on output, although improved operation time forecast did decrease overtime work. A reduction in the operation time itself is not studied in this article. However, the forecasting model can also be applied to discover which factors are most significant in explaining variation in the length of open-heart surgery. The challenge in scheduling two open-heart surgeries in one day can be partly resolved by increasing the length of the day, decreasing the time between two surgeries or by improving patient scheduling procedures so that two short surgeries can be paired. A linear regression model is created in the paper to increase the accuracy of operation time forecasting and to identify factors that have the most influence on operation time. A simulation model is used to analyse the impact of improved surgical length forecasting and five selected process interventions on productivity in cardiac surgery.

  9. A Surgical Virtual Reality Simulator Distinguishes Between Expert Gynecologic Laparoscopic Surgeons and Perinatologists

    PubMed Central

    von Dadelszen, Peter; Allaire, Catherine

    2011-01-01

    Background: Concern regarding the quality of surgical training in obstetrics and gynecology residency programs is focusing attention on competency based education. Because open surgical skills cannot necessarily be translated into laparoscopic skills and with minimally invasive surgery becoming standard in operative gynecology, the discrepancy in training between obstetrics and gynecology will widen. Training on surgical simulators with virtual reality may improve surgical skills. However, before incorporation into training programs for gynecology residents the validity of such instruments needs to first be established. We sought to prove the construct validity of a virtual reality laparoscopic simulator, the SurgicalSimTM, by showing its ability to distinguish between surgeons with different laparoscopic experience. Methods: Eleven gynecologic surgeons (experts) and 11 perinatologists (controls) completed 3 tasks on the simulator, and 10 performance parameters were compared. Results: The experts performed faster, more efficiently, and with fewer errors, proving the construct validity of the SurgicalSim. Conclusions: Laparoscopic virtual reality simulators can measure relevant surgical skills and so distinguish between subjects having different skill levels. Hence, these simulators could be integrated into gynecology resident endoscopic training and utilized for objective assessment. Second, the skills required for competency in obstetrics cannot necessarily be utilized for better performance in laparoscopic gynecology. PMID:21985726

  10. A step-by-step development of real-size chest model for simulation of thoracoscopic surgery.

    PubMed

    Morikawa, Toshiaki; Yamashita, Makoto; Odaka, Makoto; Tsukamoto, Yo; Shibasaki, Takamasa; Mori, Shohei; Asano, Hisatoshi; Akiba, Tadashi

    2017-08-01

    For the purpose of simulating thoracoscopic surgery, we have conducted stepwise development of a life-like chest model including thorax and intrathoracic organs. First, CT data of the human chest were obtained. First-generation model: based on the CT data, each component of the chest was made from a 3D printer. A hard resin was used for the bony thorax and a rubber-like resin for the vessels and bronchi. Lung parenchyma, muscles and skin were not created. Second-generation model: in addition to the 3D printer, a cast moulding method was used. Each part was casted using a 3D printed master and then assembled. The vasculature and bronchi were casted using silicon resin. The lung parenchyma and mediastinum organs were casted using urethane foam. Chest wall and bony thorax were also casted using a silicon resin. Third-generation model: foamed polyvinyl alcohol (PVA) was newly developed and casted onto the lung parenchyma. The vasculature and bronchi were developed using a soft resin. A PVA plate was made as the mediastinum, and all were combined. The first-generation model showed real distribution of the vasculature and bronchi; it enabled an understanding of the anatomy within the lung. The second-generation model is a total chest dry model, which enabled observation of the total anatomy of the organs and thorax. The third-generation model is a wet organ model. It allowed for realistic simulation of surgical procedures, such as cutting, suturing, stapling and energy device use. This single-use model achieved realistic simulation of thoracoscopic surgery. As the generation advances, the model provides a more realistic simulation of thoracoscopic surgery. Further improvement of the model is needed. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  11. Effect of Preoperative Warm-up Exercise Before Laparoscopic Gynecological Surgery: A Randomized Trial.

    PubMed

    Polterauer, Stephan; Husslein, Heinrich; Kranawetter, Marlene; Schwameis, Richard; Reinthaller, Alexander; Heinze, Georg; Grimm, Christoph

    2016-01-01

    Laparoscopic surgical procedures require a high level of cognitive and psychomotoric skills. Thus, effective training methods to acquire an adequate level of expertise are crucial. The aim of this study was to investigate the effect of preoperative warm up training on surgeon׳s performance during gynecologic laparoscopic surgery. In this randomized controlled trial, surgeons performed a preoperative warm up training using a virtual reality simulator before laparoscopic unilateral salpingo-oophorectomy. Serving as their own controls, each subject performed 2 pairs of laparoscopic cases, each pair consisting of 1 case with and 1 without warm up before surgery. Surgeries were videotaped and psychomotoric skills were rated using objective structured assessment of technical skills (OSATS) and the generic error rating tool by a masked observer. Perioperative complications were assessed. Statistical analysis was performed using a mixed model, and mean OSATS scores were compared between both the groups. In total, data of 10 surgeons and 17 surgeries were available for analysis. No differences between educational level and surgical experiences were observed between the groups. Mean standard error psychomotoric and task-specific OSATS scores of 19.8 (1.7) and 3.7 (0.2) were observed in the warm up group compared with 18.6 (1.7) and 3.8 (0.2) in the no warm up group, respectively (p = 0.51 and p = 0.29). Using generic error rating tool, the total number of errors was 8.75 (2.15) in the warm up group compared with 10.8 (2.18) in the no warm-up group (p = 0.53). Perioperative complications and operating time did not differ between both the groups. The present study suggests that warm-up before laparoscopic salpingo-oophorectomy does not increase psychomotoric skills during surgery. Moreover, it does not influence operating time and complication rates. (Medical University of Vienna-IRB approval number, 1072/2011, ClinicalTrials.gov number, NCT01712607). Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  12. High-performance C-arm cone-beam CT guidance of thoracic surgery

    NASA Astrophysics Data System (ADS)

    Schafer, Sebastian; Otake, Yoshito; Uneri, Ali; Mirota, Daniel J.; Nithiananthan, Sajendra; Stayman, J. W.; Zbijewski, Wojciech; Kleinszig, Gerhard; Graumann, Rainer; Sussman, Marc; Siewerdsen, Jeffrey H.

    2012-02-01

    Localizing sub-palpable nodules in minimally invasive video-assisted thoracic surgery (VATS) presents a significant challenge. To overcome inherent problems of preoperative nodule tagging using CT fluoroscopic guidance, an intraoperative C-arm cone-beam CT (CBCT) image-guidance system has been developed for direct localization of subpalpable tumors in the OR, including real-time tracking of surgical tools (including thoracoscope), and video-CBCT registration for augmentation of the thoracoscopic scene. Acquisition protocols for nodule visibility in the inflated and deflated lung were delineated in phantom and animal/cadaver studies. Motion compensated reconstruction was implemented to account for motion induced by the ventilated contralateral lung. Experience in CBCT-guided targeting of simulated lung nodules included phantoms, porcine models, and cadavers. Phantom studies defined low-dose acquisition protocols providing contrast-to-noise ratio sufficient for lung nodule visualization, confirmed in porcine specimens with simulated nodules (3-6mm diameter PE spheres, ~100-150HU contrast, 2.1mGy). Nodule visibility in CBCT of the collapsed lung, with reduced contrast according to air volume retention, was more challenging, but initial studies confirmed visibility using scan protocols at slightly increased dose (~4.6-11.1mGy). Motion compensated reconstruction employing a 4D deformation map in the backprojection process reduced artifacts associated with motion blur. Augmentation of thoracoscopic video with renderings of the target and critical structures (e.g., pulmonary artery) showed geometric accuracy consistent with camera calibration and the tracking system (2.4mm registration error). Initial results suggest a potentially valuable role for CBCT guidance in VATS, improving precision in minimally invasive, lungconserving surgeries, avoid critical structures, obviate the burdens of preoperative localization, and improve patient safety.

  13. A fuzzy neural network sliding mode controller for vibration suppression in robotically assisted minimally invasive surgery.

    PubMed

    Sang, Hongqiang; Yang, Chenghao; Liu, Fen; Yun, Jintian; Jin, Guoguang

    2016-12-01

    It is very important for robotically assisted minimally invasive surgery to achieve a high-precision and smooth motion control. However, the surgical instrument tip will exhibit vibration caused by nonlinear friction and unmodeled dynamics, especially when the surgical robot system is attempting low-speed, fine motion. A fuzzy neural network sliding mode controller (FNNSMC) is proposed to suppress vibration of the surgical robotic system. Nonlinear friction and modeling uncertainties are compensated by a Stribeck model, a radial basis function (RBF) neural network and a fuzzy system, respectively. Simulations and experiments were performed on a 3 degree-of-freedom (DOF) minimally invasive surgical robot. The results demonstrate that the FNNSMC is effective and can suppress vibrations at the surgical instrument tip. The proposed FNNSMC can provide a robust performance and suppress the vibrations at the surgical instrument tip, which can enhance the quality and security of surgical procedures. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback to ensure safety and improve transparency in bimanual haptic interaction.

    PubMed

    Meli, Leonardo; Pacchierotti, Claudio; Prattichizzo, Domenico

    2014-04-01

    This study presents a novel approach to force feedback in robot-assisted surgery. It consists of substituting haptic stimuli, composed of a kinesthetic component and a skin deformation, with cutaneous stimuli only. The force generated can then be thought as a subtraction between the complete haptic interaction, cutaneous, and kinesthetic, and the kinesthetic part of it. For this reason, we refer to this approach as sensory subtraction. Sensory subtraction aims at outperforming other nonkinesthetic feedback techniques in teleoperation (e.g., sensory substitution) while guaranteeing the stability and safety of the system. We tested the proposed approach in a challenging 7-DoF bimanual teleoperation task, similar to the Pegboard experiment of the da Vinci Skills Simulator. Sensory subtraction showed improved performance in terms of completion time, force exerted, and total displacement of the rings with respect to two popular sensory substitution techniques. Moreover, it guaranteed a stable interaction in the presence of a communication delay in the haptic loop.

  15. Examining validity evidence for a simulation-based assessment tool for basic robotic surgical skills.

    PubMed

    Havemann, Maria Cecilie; Dalsgaard, Torur; Sørensen, Jette Led; Røssaak, Kristin; Brisling, Steffen; Mosgaard, Berit Jul; Høgdall, Claus; Bjerrum, Flemming

    2018-05-14

    Increasing focus on patient safety makes it important to ensure surgical competency among surgeons before operating on patients. The objective was to gather validity evidence for a virtual-reality simulator test for robotic surgical skills and evaluate its potential as a training tool. Surgeons with varying experience in robotic surgery were recruited: novices (zero procedures), intermediates (1-50), experienced (> 50). Five experienced surgeons rated five exercises on the da Vinci Skills Simulator. Participants were tested using the five exercises. Participants were invited back 3 times and completed a total of 10 attempts per exercise. The outcome was the average simulator performance score for the 5 exercises. 32 participants from 5 surgical specialties were included. 38 participants completed all 4 sessions. A moderate correlation between the average total score and robotic experience was identified for the first attempt (Spearman r = 0.58; p = 0.0004). A difference in average total score was observed between novices and intermediates [median score 61% (IQR 52-66) vs. 83% (IQR 75-91), adjusted p < 0.0001], as well as novices and experienced [median score 61% (IQR 52-66) vs. 80 (IQR 69-85), adjusted p = 0.002]. All three groups improved their performance between the 1st and 10th attempts (p < 0.00). This study describes validity evidence for a virtual-reality simulator for basic robotic surgical skills, which can be used for assessment of basic competency and as a training tool. However, more validity evidence is needed before it can be used for certification or high-stakes assessment.

  16. [Orthognathic surgery, master-piece of maxillo-facial surgery].

    PubMed

    Reychler, H

    2001-01-01

    Orthognathic surgery is this field of the maxillofacial surgery which aims to reposition the jaws or some segments of these jaws when masticatory dysfunctions are evident. This tridimensional repositioning in the craniofacial skeleton allows to restore the masticatory function by means of osteotomies, which must be followed either by preoperative simulated bony displacements or by callus bone distraction. Not only are the functional benefits evident on the dental, articular and neuromuscular levels, but also a facial esthetic harmony can almost be obtained.

  17. Optimal design and uncertainty quantification in blood flow simulations for congenital heart disease

    NASA Astrophysics Data System (ADS)

    Marsden, Alison

    2009-11-01

    Recent work has demonstrated substantial progress in capabilities for patient-specific cardiovascular flow simulations. Recent advances include increasingly complex geometries, physiological flow conditions, and fluid structure interaction. However inputs to these simulations, including medical image data, catheter-derived pressures and material properties, can have significant uncertainties associated with them. For simulations to predict clinically useful and reliable output information, it is necessary to quantify the effects of input uncertainties on outputs of interest. In addition, blood flow simulation tools can now be efficiently coupled to shape optimization algorithms for surgery design applications, and these tools should incorporate uncertainty information. We present a unified framework to systematically and efficient account for uncertainties in simulations using adaptive stochastic collocation. In addition, we present a framework for derivative-free optimization of cardiovascular geometries, and layer these tools to perform optimization under uncertainty. These methods are demonstrated using simulations and surgery optimization to improve hemodynamics in pediatric cardiology applications.

  18. Face validation of the Virtual Electrosurgery Skill Trainer (VEST©).

    PubMed

    Sankaranarayanan, Ganesh; Li, Baichun; Miller, Amie; Wakily, Hussna; Jones, Stephanie B; Schwaitzberg, Steven; Jones, Daniel B; De, Suvranu; Olasky, Jaisa

    2016-02-01

    Electrosurgery is a modality that is widely used in surgery, whose use has resulted in injuries, OR fires and even death. The SAGES has established the FUSE program to address the knowledge gap in the proper and safe usage of electrosurgical devices. Complementing it, we have developed the Virtual Electrosurgery Skill Trainer (VEST(©)), which is designed to train subjects in both cognitive and motor skills necessary to safely operate electrosurgical devices. The objective of this study is to asses the face validity of the VEST(©) simulator. Sixty-three subjects were recruited at the 2014 SAGES Learning Center. They all completed the monopolar electrosurgery module on the VEST(©) simulator. At the end of the study, subjects assessed the face validity with questions that were scored on a 5-point Likert scale. The subjects were divided into two groups; FUSE experience (n = 15) and no FUSE experience (n = 48). The median score for both the groups was 4 or higher on all questions and 5 on questions on effectiveness of VEST(©) in aiding learning electrosurgery fundamentals. Questions on using the simulator in their own skills lab and recommending it to their peers also scored at 5. Mann-Whitney U test showed no significant difference (p > 0.05) indicating a general agreement. 46% of the respondents preferred VEST compared with 52% who preferred animal model and 2% preferred both for training in electrosurgery. This study demonstrated the face validity of the VEST(©) simulator. High scores showed that the simulator was visually realistic and reproduced lifelike tissue effects and the features were adequate enough to provide high realism. The self-learning instructional material was also found to be very useful in learning the fundamentals of electrosurgery. Adding more modules would increase the applicability of the VEST(©) simulator.

  19. Face Validation of the Virtual Electrosurgery Skill Trainer (VEST©)

    PubMed Central

    Sankaranarayanan, Ganesh; Li, Baichun; Miller, Amie; Wakily, Hussna; Jones, Stephanie B.; Schwaitzberg, Steven; Jones, Daniel B.; De, Suvranu; Olasky, Jaisa

    2015-01-01

    Background Electrosurgery is a modality that is widely used in surgery, whose use has resulted in injuries, OR fires and even death. The SAGES has established the FUSE program to address the knowledge gap in the proper and safe usage of electrosurgical devices. Complementing it, we have developed the Virtual Electrosurgery Skill Trainer (VEST©), which is designed to train subjects in both cognitive and motor skills necessary to safely operate electrosurgical devices. The objective of this study is to asses the face validity of the VEST© simulator. Methods Sixty-three subjects were recruited at the 2014 SAGES Learning Center. They all completed the monopolar electrosurgery module on the VEST© simulator. At the end of the study, subjects assessed the face validity with questions that were scored on a 5-point Likert scale. Results The subjects were divided into two groups; FUSE experience (n = 15) and no FUSE experience (n = 48). The median score for both the groups was 4 or higher on all questions and 5 on questions on effectiveness of VEST© in aiding learning electrosurgery fundamentals. Questions on using the simulator in their own skills lab and recommending it to their peers also scored at 5. Mann-Whitney U test showed no significant difference (p > 0.05) indicating a general agreement. 46 % of the respondents preferred VEST compared to 52 % who preferred animal model and 2 % preferred both for training in electrosurgery. Conclusion This study demonstrated the face validity of the VEST © simulator. High scores showed that the simulator was visually realistic and reproduced lifelike tissue effects and the features were adequate enough to provide high realism. The self-learning instructional material was also found to be very useful in learning the fundamentals of electrosurgery. Adding more modules would increase the applicability of the VEST© simulator. PMID:26092003

  20. Endoscopic skull base training using 3D printed models with pre-existing pathology.

    PubMed

    Narayanan, Vairavan; Narayanan, Prepageran; Rajagopalan, Raman; Karuppiah, Ravindran; Rahman, Zainal Ariff Abdul; Wormald, Peter-John; Van Hasselt, Charles Andrew; Waran, Vicknes

    2015-03-01

    Endoscopic base of skull surgery has been growing in acceptance in the recent past due to improvements in visualisation and micro instrumentation as well as the surgical maturing of early endoscopic skull base practitioners. Unfortunately, these demanding procedures have a steep learning curve. A physical simulation that is able to reproduce the complex anatomy of the anterior skull base provides very useful means of learning the necessary skills in a safe and effective environment. This paper aims to assess the ease of learning endoscopic skull base exposure and drilling techniques using an anatomically accurate physical model with a pre-existing pathology (i.e., basilar invagination) created from actual patient data. Five models of a patient with platy-basia and basilar invagination were created from the original MRI and CT imaging data of a patient. The models were used as part of a training workshop for ENT surgeons with varying degrees of experience in endoscopic base of skull surgery, from trainees to experienced consultants. The surgeons were given a list of key steps to achieve in exposing and drilling the skull base using the simulation model. They were then asked to list the level of difficulty of learning these steps using the model. The participants found the models suitable for learning registration, navigation and skull base drilling techniques. All participants also found the deep structures to be accurately represented spatially as confirmed by the navigation system. These models allow structured simulation to be conducted in a workshop environment where surgeons and trainees can practice to perform complex procedures in a controlled fashion under the supervision of experts.

  1. Conventional plate fixation method versus pre-operative virtual simulation and three-dimensional printing-assisted contoured plate fixation method in the treatment of anterior pelvic ring fracture.

    PubMed

    Hung, Chun-Chi; Li, Yuan-Ta; Chou, Yu-Ching; Chen, Jia-En; Wu, Chia-Chun; Shen, Hsain-Chung; Yeh, Tsu-Te

    2018-05-03

    Treating pelvic fractures remains a challenging task for orthopaedic surgeons. We aimed to evaluate the feasibility, accuracy, and effectiveness of three-dimensional (3D) printing technology and computer-assisted virtual surgery for pre-operative planning in anterior ring fractures of the pelvis. We hypothesized that using 3D printing models would reduce operation time and significantly improve the surgical outcomes of pelvic fracture repair. We retrospectively reviewed the records of 30 patients with pelvic fractures treated by anterior pelvic fixation with locking plates (14 patients, conventional locking plate fixation; 16 patients, pre-operative virtual simulation with 3D, printing-assisted, pre-contoured, locking plate fixation). We compared operative time, instrumentation time, blood loss, and post-surgical residual displacements, as evaluated on X-ray films, among groups. Statistical analyses evaluated significant differences between the groups for each of these variables. The patients treated with the virtual simulation and 3D printing-assisted technique had significantly shorter internal fixation times, shorter surgery duration, and less blood loss (- 57 minutes, - 70 minutes, and - 274 ml, respectively; P < 0.05) than patients in the conventional surgery group. However, the post-operative radiological result was similar between groups (P > 0.05). The complication rate was less in the 3D printing group (1/16 patients) than in the conventional surgery group (3/14 patients). The 3D simulation and printing technique is an effective and reliable method for treating anterior pelvic ring fractures. With precise pre-operative planning and accurate execution of the procedures, this time-saving approach can provide a more personalized treatment plan, allowing for a safer orthopaedic surgery.

  2. Mobile Simulation Unit: taking simulation to the surgical trainee.

    PubMed

    Pena, Guilherme; Altree, Meryl; Babidge, Wendy; Field, John; Hewett, Peter; Maddern, Guy

    2015-05-01

    Simulation-based training has become an increasingly accepted part of surgical training. However, simulators are still not widely available to surgical trainees. Some factors that hinder the widespread implementation of simulation-based training are the lack of standardized methods and equipment, costs and time constraints. We have developed a Mobile Simulation Unit (MSU) that enables trainees to access modern simulation equipment tailored to the needs of the learner at the trainee's workplace. From July 2012 to December 2012, the MSU visited six hospitals in South Australia, four in metropolitan and two in rural areas. Resident Medical Officers, surgical trainees, Fellows and International Medical Graduates were invited to voluntarily utilize a variety of surgical simulators on offer. Participants were asked to complete a survey about the accessibility of simulation equipment at their workplace, environment of the MSU, equipment available and instruction received. Utilization data were collected. The MSU was available for a total of 303 h over 52 days. Fifty-five participants were enrolled in the project and each spent on average 118 min utilizing the simulators. The utilization of the total available time was 36%. Participants reported having a poor access to simulation at their workplace and overwhelmingly gave positive feedback regarding their experience in the MSU. The use of the MSU to provide simulation-based education in surgery is feasible and practical. The MSU provides consistent simulation training at the surgical trainee's workplace, regardless of geographic location, and it has the potential to increase participation in simulation programmes. © 2014 Royal Australasian College of Surgeons.

  3. A systematic review of validated sinus surgery simulators.

    PubMed

    Stew, B; Kao, S S-T; Dharmawardana, N; Ooi, E H

    2018-06-01

    Simulation provides a safe and effective opportunity to develop surgical skills. A variety of endoscopic sinus surgery (ESS) simulators has been described in the literature. Validation of these simulators allows for effective utilisation in training. To conduct a systematic review of the published literature to analyse the evidence for validated ESS simulation. Pubmed, Embase, Cochrane and Cinahl were searched from inception of the databases to 11 January 2017. Twelve thousand five hundred and sixteen articles were retrieved of which 10 112 were screened following the removal of duplicates. Thirty-eight full-text articles were reviewed after meeting search criteria. Evidence of face, content, construct, discriminant and predictive validity was extracted. Twenty articles were included in the analysis describing 12 ESS simulators. Eleven of these simulators had undergone validation: 3 virtual reality, 7 physical bench models and 1 cadaveric simulator. Seven of the simulators were shown to have face validity, 7 had construct validity and 1 had predictive validity. None of the simulators demonstrated discriminate validity. This systematic review demonstrates that a number of ESS simulators have been comprehensively validated. Many of the validation processes, however, lack standardisation in outcome reporting, thus limiting a meta-analysis comparison between simulators. © 2017 John Wiley & Sons Ltd.

  4. What is going on in augmented reality simulation in laparoscopic surgery?

    PubMed

    Botden, Sanne M B I; Jakimowicz, Jack J

    2009-08-01

    To prevent unnecessary errors and adverse results of laparoscopic surgery, proper training is of paramount importance. A safe way to train surgeons for laparoscopic skills is simulation. For this purpose traditional box trainers are often used, however they lack objective assessment of performance. Virtual reality laparoscopic simulators assess performance, but lack realistic haptic feedback. Augmented reality (AR) combines a virtual reality (VR) setting with real physical materials, instruments, and feedback. This article presents the current developments in augmented reality laparoscopic simulation. Pubmed searches were performed to identify articles regarding surgical simulation and augmented reality. Identified companies manufacturing an AR laparoscopic simulator received the same questionnaire referring to the features of the simulator. Seven simulators that fitted the definition of augmented reality were identified during the literature search. Five of the approached manufacturers returned a completed questionnaire, of which one simulator appeared to be VR and was therefore not applicable for this review. Several augmented reality simulators have been developed over the past few years and they are improving rapidly. We recommend the development of AR laparoscopic simulators for component tasks of procedural training. AR simulators should be implemented in current laparoscopic training curricula, in particular for laparoscopic suturing training.

  5. Trauma teams and time to early management during in situ trauma team training.

    PubMed

    Härgestam, Maria; Lindkvist, Marie; Jacobsson, Maritha; Brulin, Christine; Hultin, Magnus

    2016-01-29

    To investigate the association between the time taken to make a decision to go to surgery and gender, ethnicity, years in profession, experience of trauma team training, experience of structured trauma courses and trauma in the trauma team, as well as use of closed-loop communication and leadership styles during trauma team training. In situ trauma team training. The patient simulator was preprogrammed to represent a severely injured patient (injury severity score: 25) suffering from hypovolemia due to external trauma. An emergency room in an urban Scandinavian level one trauma centre. A total of 96 participants were divided into 16 trauma teams. Each team consisted of six team members: one surgeon/emergency physician (designated team leader), one anaesthesiologist, one registered nurse anaesthetist, one registered nurse from the emergency department, one enrolled nurse from the emergency department and one enrolled nurse from the operating theatre. HRs with CIs (95% CI) for the time taken to make a decision to go to surgery was computed from a Cox proportional hazards model. Three variables remained significant in the final model. Closed-loop communication initiated by the team leader increased the chance of a decision to go to surgery (HR: 3.88; CI 1.02 to 14.69). Only 8 of the 16 teams made the decision to go to surgery within the timeframe of the trauma team training. Conversely, call-outs and closed-loop communication initiated by the team members significantly decreased the chance of a decision to go to surgery, (HR: 0.82; CI 0.71 to 0.96, and HR: 0.23; CI 0.08 to 0.71, respectively). Closed-loop communication initiated by the leader appears to be beneficial for teamwork. In contrast, a high number of call-outs and closed-loop communication initiated by team members might lead to a communication overload. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Introducing a laparoscopic simulation training and credentialing program in gynaecology: an observational study.

    PubMed

    Janssens, Sarah; Beckmann, Michael; Bonney, Donna

    2015-08-01

    Simulation training in laparoscopic surgery has been shown to improve surgical performance. To describe the implementation of a laparoscopic simulation training and credentialing program for gynaecology registrars. A pilot program consisting of protected, supervised laparoscopic simulation time, a tailored curriculum and a credentialing process, was developed and implemented. Quantitative measures assessing simulated surgical performance were measured over the simulation training period. Laparoscopic procedures requiring credentialing were assessed for both the frequency of a registrar being the primary operator and the duration of surgery and compared to a presimulation cohort. Qualitative measures regarding quality of surgical training were assessed pre- and postsimulation. Improvements were seen in simulated surgical performance in efficiency domains. Operative time for procedures requiring credentialing was reduced by 12%. Primary operator status in the operating theatre for registrars was unchanged. Registrar assessment of training quality improved. The introduction of a laparoscopic simulation training and credentialing program resulted in improvements in simulated performance, reduced operative time and improved registrar assessment of the quality of training. © 2015 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  7. Complications of laryngeal framework surgery (phonosurgery).

    PubMed

    Tucker, H M; Wanamaker, J; Trott, M; Hicks, D

    1993-05-01

    The rising popularity of surgery involving the laryngeal framework (surgical medialization of immobile vocal folds, vocal fold tightening, pitch variation, etc.) has resulted in increasing case experience. Little has appeared in the literature regarding complications or long-term results of this type of surgery. Several years' experience in a major referral center with various types of laryngeal framework surgery has led to a small number of complications. These have included late extrusion of the prosthesis and delayed hemorrhage. A review of these complications and recommendations for modification of technique to minimize them in the future are discussed.

  8. Early treatment of penile fractures: our experience.

    PubMed

    García Gómez, Borja; Romero, Javier; Villacampa, Felipe; Tejido, Angel; Díaz, Rafael

    2012-09-01

    To report our experience in early surgery of penile fractures. We review retrospectively all the cases that underwent surgery at our center from 1989 to 2009, with a total of 24. The cause of the fracture was sexual intercourse in most cases, and in all of them, surgical management was performed according to clinical presentation and physical exploration. In only 7 cases an ultrasound was performed as a complementary test. Early surgery allows prompt resolution of the problem with excellent functional outcomes and little side effects. The prognosis after emergency surgery was excellent in this review.

  9. Robotic Single-Site Surgery for Female-to-Male Transsexuals: Preliminary Experience

    PubMed Central

    Bogliolo, Stefano; Cassani, Chiara; Babilonti, Luciana; Gardella, Barbara; Zanellini, Francesca; Santamaria, Valentina; Nappi, Rossella Elena; Spinillo, Arsenio

    2014-01-01

    Hysterectomy with bilateral salpingo-oophorectomy is a part of gender reassignment surgery for the treatment of female-to-male transsexualism. Over the last years many efforts were made in order to reduce invasiveness of laparoscopic and robotic surgery such as the introduction of single-site approach. We report our preliminary experience on single-site robotic hysterectomy for cross-sex reassignment surgery. Our data suggest that single-site robotic hysterectomy is feasible and safe in female-to-male transsexualism with some benefits in terms of postoperative pain and aesthetic results. PMID:24982976

  10. A Low-Cost Simulator for Training in Endoscopic-Assisted Transaxillary Dual-Plane Breast Augmentation.

    PubMed

    Wang, Chenglong; Chen, Lin; Mu, Dali; Xin, Minqiang; Luan, Jie

    2017-12-01

    Endoscopic-assisted transaxillary dual-plane (EATD) technique is a popular procedure for breast augmentation, especially for Chinese women. However, frustration is often expressed by plastic surgeons when first attempting EATD surgery. Simulation-based teaching is beneficial for EATD training, but it is expensive. This study presents a low-cost simulator to help plastic surgeons exercise psychomotor skills during EATD surgery. The low-cost simulator was invented by Dr Jie Luan (the senior author) and made of some easily available materials including a mannequin, a T-shirt printed the bottom anatomical structure of the chest, the order of dissection, and the potential bleeding spot, and an elastic compression garment printed the upper anatomical structure and the cut-off position to sever the pectoralis major muscle. The first-year residents of plastic surgery assessed their improvement by completing a 5-item evaluation questionnaire at the beginning and at the end of the simulation. Fifty participants enrolled in this study. There was a significant difference (P < 0.05) before and after the training regarding candidate confidence, anatomical awareness, and endoscope control including the dexterity and hand-to-eye coordination. The low-cost and simple maintenance simulator may help plastic surgeons, especially those in developing countries, to improve gradually their EATD breast augmentation skills with no risks in a way. Further randomized controlled trials are needed to test its validity and reliability.

  11. Early experience with open heart surgery in a pioneer private hospital in West Africa: the Biket medical centre experience.

    PubMed

    Onakpoya, Uvie Ufuoma; Adenle, Adebisi David; Adenekan, Anthony Taiwo

    2017-01-01

    More than forty years after the first open heart surgery in Nigeria, all open heart surgeries were carried out in government-owned hospitals before the introduction of such surgeries in 2013 at Biket Medical Centre, a privately owned hospital in Osogbo, South-western Nigeria. The aim of this paper is to review our initial experience with open heart surgery in this private hospital. All patients who underwent open heart surgery between August 2013 and January 2014 were included in this prospective study. The medical records of the patients were examined and data on age, sex, diagnosis, type of surgery, cardiopulmonary bypass details, complications and length of hospital stay were extracted and the data was analysed using SPSS version 16. Eighteen patients comprising of 12 males and 6 females with ages ranging between 8 months and 52 years (mean= of 15.7 +/- 15 years) were studied. Pericardial patch closure of isolated ventricular septal defect was done in 7 patients (38.9%) while total correction of isolated tetralogy of Fallot was carried out in 5 patients (27.8%). Two patients had mitral valve repair for rheumatic mitral regurgitation. Sixty day mortality was 0%. Safe conduct of open heart surgery in the private hospital setting is feasible in Nigeria. It may be our only guarantee of hitch free and sustainable cardiac surgery.

  12. One-Stop Clinic Utilization in Plastic Surgery: Our Local Experience and the Results of a UK-Wide National Survey.

    PubMed

    Gorman, Mark; Coelho, James; Gujral, Sameer; McKay, Alastair

    2015-01-01

    Introduction. "See and treat" one-stop clinics (OSCs) are an advocated NHS initiative to modernise care, reducing cancer treatment waiting times. Little studied in plastic surgery, the existing evidence suggests that though they improve care, they are rarely implemented. We present our experience setting up a plastic surgery OSC for minor skin surgery and survey their use across the UK. Methods. The OSC was evaluated by 18-week wait target compliance, measures of departmental capacity, and patient satisfaction. Data was obtained from 32 of the 47 UK plastic surgery departments to investigate the prevalence of OSCs for minor skin cancer surgery. Results. The OSC improved 18-week waiting times, from a noncompliant mean of 80% to a compliant 95% average. Department capacity increased 15%. 95% of patients were highly satisfied with and preferred the OSC to a conventional service. Only 25% of UK plastic surgery units run OSCs, offering varying reasons for not doing so, 42% having not considered their use. Conclusions. OSCs are underutilised within UK plastic surgery, where a significant proportion of units have not even considered their benefit. This is despite associated improvements in waiting times, department capacity, and levels of high patient satisfaction. We offer our considerations and local experience instituting an OSC service.

  13. One-Stop Clinic Utilization in Plastic Surgery: Our Local Experience and the Results of a UK-Wide National Survey

    PubMed Central

    Gorman, Mark; Coelho, James; Gujral, Sameer; McKay, Alastair

    2015-01-01

    Introduction. “See and treat” one-stop clinics (OSCs) are an advocated NHS initiative to modernise care, reducing cancer treatment waiting times. Little studied in plastic surgery, the existing evidence suggests that though they improve care, they are rarely implemented. We present our experience setting up a plastic surgery OSC for minor skin surgery and survey their use across the UK. Methods. The OSC was evaluated by 18-week wait target compliance, measures of departmental capacity, and patient satisfaction. Data was obtained from 32 of the 47 UK plastic surgery departments to investigate the prevalence of OSCs for minor skin cancer surgery. Results. The OSC improved 18-week waiting times, from a noncompliant mean of 80% to a compliant 95% average. Department capacity increased 15%. 95% of patients were highly satisfied with and preferred the OSC to a conventional service. Only 25% of UK plastic surgery units run OSCs, offering varying reasons for not doing so, 42% having not considered their use. Conclusions. OSCs are underutilised within UK plastic surgery, where a significant proportion of units have not even considered their benefit. This is despite associated improvements in waiting times, department capacity, and levels of high patient satisfaction. We offer our considerations and local experience instituting an OSC service. PMID:26236502

  14. Validation of virtual-reality-based simulations for endoscopic sinus surgery.

    PubMed

    Dharmawardana, N; Ruthenbeck, G; Woods, C; Elmiyeh, B; Diment, L; Ooi, E H; Reynolds, K; Carney, A S

    2015-12-01

    Virtual reality (VR) simulators provide an alternative to real patients for practicing surgical skills but require validation to ensure accuracy. Here, we validate the use of a virtual reality sinus surgery simulator with haptic feedback for training in Otorhinolaryngology - Head & Neck Surgery (OHNS). Participants were recruited from final-year medical students, interns, resident medical officers (RMOs), OHNS registrars and consultants. All participants completed an online questionnaire after performing four separate simulation tasks. These were then used to assess face, content and construct validity. anova with post hoc correlation was used for statistical analysis. The following groups were compared: (i) medical students/interns, (ii) RMOs, (iii) registrars and (iv) consultants. Face validity results had a statistically significant (P < 0.05) difference between the consultant group and others, while there was no significant difference between medical student/intern and RMOs. Variability within groups was not significant. Content validity results based on consultant scoring and comments indicated that the simulations need further development in several areas to be effective for registrar-level teaching. However, students, interns and RMOs indicated that the simulations provide a useful tool for learning OHNS-related anatomy and as an introduction to ENT-specific procedures. The VR simulations have been validated for teaching sinus anatomy and nasendoscopy to medical students, interns and RMOs. However, they require further development before they can be regarded as a valid tool for more advanced surgical training. © 2015 John Wiley & Sons Ltd.

  15. Alice’s Delirium: A Theatre-based Simulation Scenario for Nursing

    PubMed Central

    Posner, Glenn D

    2018-01-01

    As an educational methodology, simulation has been used by nursing education at the academic level for numerous years and has started to gain traction in the onboarding education and professional development of practicing nurses. Simulation allows the learner to apply knowledge and skills in a safe environment where mistakes and learning can happen without an impact on patient safety. The development of a simulation scenario to demonstrate the benefits of simulation education methodologies to a large group of nurse educators was requested by nursing education leadership at The Ottawa Hospital (TOH). Since the demonstration of this scenario in the fall of 2016, there has been significant uptake and adaptation of this particular scenario within the nursing education departments of TOH. Originally written to be used with a simulated patient (SP), “Alice” has since been adapted to be used with a hi-fidelity manikin within an inpatient surgery department continuing professional development (CPD) program for practicing nurses, orientation for nurses to a level 2 trauma unit and at the corporate level of nursing orientation using an SP. Therefore, this scenario is applicable to nurses practicing in an area of inpatient surgery at varying levels, from novice to expert. It could easily be adapted for use with medicine nursing education programs. The case presented in this technical report is of the simulation scenario used for the inpatient surgery CPD program. Varying adaptations of the case are included in the appendices. PMID:29872592

  16. Seven years of clinical experience with teleconsultation in craniomaxillofacial surgery.

    PubMed

    Ewers, Rolf; Schicho, Kurt; Wagner, Arne; Undt, Gerhard; Seemann, Rudolf; Figl, Michael; Truppe, Michael

    2005-10-01

    In this work the experiences from 50 telemedically supported treatments in craniomaxillofacial surgery are summarized and different setups for their technical realization are described. Furthermore, for the first time the innovative UMTS (universal mobile telecommunication system) is applied for the transmission of arthroscopic videos of the temporomandibular joint and other craniomaxillofacial structures. The combination of computer-assisted navigation technology in augmented reality environments with telecommunication is used for execution of interactive stereotaxic teleconsultation. Furthermore, treatments without navigation are telemedically supported. This study is composed of 4 technical system configurations: 1) integrated services digital network (ISDN)-based videoconferencing without remote control of the navigation computer; 2) transmission control protocol/internet protocol (TCP/IP)-based interactive teleconsultation via bundled ISDN lines (including remote control of the navigation computer); 3) TCP/IP-based interactive teleconsultation via network; 4) combination of TCP/IP-connection and ISDN-based videoconferencing. The telemedically supported treatments are: orbitozygomatic osteotomies, positioning of the mandibular condyle in orthognathic surgery, insertion of implants, positioning of the maxilla in orthognathic surgery, distraction osteogenesis, arthroscopies of the temporomandibular joint, and operation simulations on stereolithographic models. The surgical interventions are evaluated on a 5-level system performance scale from the technical point of view. In a separate trial 20 videosequences of arthroscopies of the temporomandibular joint are transmitted via UMTS cellular phones and independently evaluated by 3 experts (ie, a total of 60 streamings) to investigate feasibility of this technology in the field of craniomaxillofacial surgery. In the years from 1996 to 2002 a total of 50 treatments were telemedically supported. All intraoperative applications were successfully finished; 48 of 60 UMTS transmissions were finished without any interruptions in constant quality, slight interruptions were observed in 8 tests, and a complete breakdown was observed during 4 streamings that required a restart of the transmission. Resolution was sufficient to diagnose even tiny anatomic structures inside the temporomandibular joint, but orientation was hardly recognizable. In many applications telecommunication technology can contribute to a quality improvement in cranio- and maxillofacial surgery because of the global availability of specialized knowledge. The required technical expenditure for teleconsultation crucially depends on the infrastructure that is already available at the clinic and the remote site. UMTS is a promising technology with the potential to be valuable in numerous craniomaxillofacial applications.

  17. Surgery accelerates the development of endometriosis in mice.

    PubMed

    Long, Qiqi; Liu, Xishi; Guo, Sun-Wei

    2016-09-01

    Surgery is currently the mainstay treatment for solid tumors and many benign diseases, including endometriosis, and women tend to receive substantially more surgeries than men mainly because of gynecological and cosmetic surgeries. Despite its cosmetic, therapeutic, or even life-saving benefits, surgery is reported to increase the cancer risk and promotes cancer metastasis. Surgery activates adrenergic signaling, which in turn suppresses cell-mediated immunity and promotes angiogenesis and metastasis. Because immunity, angiogenesis, and invasiveness are all involved in the pathophysiology of endometriosis, it is unclear whether surgery may accelerate the development of endometriosis. The objective of the study was to test the hypothesis that surgery activates adrenergic signaling, increases angiogenesis, and accelerates the growth of endometriotic lesions. This was a prospective, randomized experimentation. The first experiment used 42 female adult Balb/C mice, and the second used 90 female adult Balb/C mice. In experiment 1, 3 days after the induction of endometriosis, mice were randomly divided into 3 groups of approximately equal sizes, control, laparotomy, and mastectomy. In experiment 2, propranolol infusion via Alzet pumps was used to forestall the effect of sympathetic nervous system activation by surgery. In both experiments, mice were evaluated 2 weeks after surgery. Lesion size, hotplate latency, and immunohistochemistry analysis of vascular endothelial growth factor, CD31-positive microvessels, proliferating cell nuclear antigen, phosphorylated cyclic adenosine monophosphate-responsive element-binding protein, β2-adrenergic receptor (ADRB)-2, ADRB1, ADRB3, ADRA1, and ADRA2 in ectopic implants. Both mastectomy and laparotomy increased lesion weight and exacerbated hyperalgesia, increased microvessel density and elevated the immunoreactivity against ADRB2, phosphorylated cyclic adenosine monophosphate-responsive element-binding protein, vascular endothelial growth factor, and proliferating cell nuclear antigen but not ADRB1, ADRB3, ADRA1, and ADRA2, suggesting activated adrenergic signaling, increased angiogenesis, and accelerated growth of endometriotic lesions. β-Blockade completely abrogated the facilitory effect of surgery, further underscoring the critical role of β-adrenergic signaling in mediating the effect of surgery. Surgery activates adrenergic signaling, increases angiogenesis, and accelerates the growth of endometriotic lesions in the mouse, but such a facilitory effect of surgery can be completely abrogated by β-blockade. Whether surgery can promote the development of endometriosis in humans warrants further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 1: planning sequence

    PubMed Central

    Xia, J. J.; Gateno, J.; Teichgraeber, J. F.; Yuan, P.; Chen, K.-C.; Li, J.; Zhang, X.; Tang, Z.; Alfi, D. M.

    2015-01-01

    The success of craniomaxillofacial (CMF) surgery depends not only on the surgical techniques, but also on an accurate surgical plan. The adoption of computer-aided surgical simulation (CASS) has created a paradigm shift in surgical planning. However, planning an orthognathic operation using CASS differs fundamentally from planning using traditional methods. With this in mind, the Surgical Planning Laboratory of Houston Methodist Research Institute has developed a CASS protocol designed specifically for orthognathic surgery. The purpose of this article is to present an algorithm using virtual tools for planning a double-jaw orthognathic operation. This paper will serve as an operation manual for surgeons wanting to incorporate CASS into their clinical practice. PMID:26573562

  19. Cardiovascular Surgery Residency Program: Training Coronary Anastomosis Using the Arroyo Simulator and UNIFESP Models.

    PubMed

    Maluf, Miguel Angel; Gomes, Walter José; Bras, Ademir Massarico; Araújo, Thiago Cavalcante Vila Nova de; Mota, André Lupp; Cardoso, Caio Cesar; Coutinho, Rafael Viana dos S

    2015-01-01

    Engage the UNIFESP Cardiovascular Surgery residents in coronary anastomosis, assess their skills and certify results, using the Arroyo Anastomosis Simulator and UNIFESP surgical models. First to 6th year residents attended a weekly program of technical training in coronary anastomosis, using 4 simulation models: 1. Arroyo simulator; 2. Dummy with a plastic heart; 3. Dummy with a bovine heart; and 4. Dummy with a beating pig heart. The assessment test was comprised of 10 items, using a scale from 1 to 5 points in each of them, creating a global score of 50 points maximum. The technical performance of the candidate showed improvement in all items, especially manual skill and technical progress, critical sense of the work performed, confidence in the procedure and reduction of the time needed to perform the anastomosis after 12 weeks practice. In response to the multiplicity of factors that currently influence the cardiovascular surgeon training, there have been combined efforts to reform the practices of surgical medical training. 1 - The four models of simulators offer a considerable contribution to the field of cardiovascular surgery, improving the skill and dexterity of the surgeon in training. 2 - Residents have shown interest in training and cooperate in the development of innovative procedures for surgical medical training in the art.

  20. Cardiovascular Surgery Residency Program: Training Coronary Anastomosis Using the Arroyo Simulator and UNIFESP Models

    PubMed Central

    Maluf, Miguel Angel; Gomes, Walter José; Bras, Ademir Massarico; de Araújo, Thiago Cavalcante Vila Nova; Mota, André Lupp; Cardoso, Caio Cesar; Coutinho, Rafael Viana dos S.

    2015-01-01

    OBJECTIVE Engage the UNIFESP Cardiovascular Surgery residents in coronary anastomosis, assess their skills and certify results, using the Arroyo Anastomosis Simulator and UNIFESP surgical models. METHODS First to 6th year residents attended a weekly program of technical training in coronary anastomosis, using 4 simulation models: 1. Arroyo simulator; 2. Dummy with a plastic heart; 3. Dummy with a bovine heart; and 4. Dummy with a beating pig heart. The assessment test was comprised of 10 items, using a scale from 1 to 5 points in each of them, creating a global score of 50 points maximum. RESULTS The technical performance of the candidate showed improvement in all items, especially manual skill and technical progress, critical sense of the work performed, confidence in the procedure and reduction of the time needed to perform the anastomosis after 12 weeks practice. In response to the multiplicity of factors that currently influence the cardiovascular surgeon training, there have been combined efforts to reform the practices of surgical medical training. CONCLUSION 1 - The four models of simulators offer a considerable contribution to the field of cardiovascular surgery, improving the skill and dexterity of the surgeon in training. 2 - Residents have shown interest in training and cooperate in the development of innovative procedures for surgical medical training in the art. PMID:26735604

  1. The use of in-situ simulation to improve safety in the plastic surgery office: a feasibility study.

    PubMed

    Shapiro, Fred E; Pawlowski, John B; Rosenberg, Noah M; Liu, Xiaoxia; Feinstein, David M; Urman, Richard D

    2014-01-01

    Simulation-based interventions and education can potentially contribute to safer and more effective systems of care. We utilized in-situ simulation to highlight safety issues, regulatory requirements, and assess perceptions of safety processes by the plastic surgery office staff. A high-fidelity human patient simulator was brought to an office-based plastic surgery setting to enact a half-day full-scale, multidisciplinary medical emergency. Facilitated group debriefings were conducted after each scenario with special consideration of the principles of team training, communication, crisis management, and adherence to evidence-based protocols and regulatory standards. Abbreviated AHRQ Medical Office Safety Culture Survey was completed by the participants before and after the session. The in-situ simulations had a high degree of acceptance and face validity according to the participants. Areas highlighted by the simulation sessions included rapid communication, delegation of tasks, location of emergency materials, scope of practice, and logistics of transport. The participant survey indicated greater awareness of patient safety issues following participation in simulation and debriefing exercises in 3 areas (P < 0.05): the need to change processes if there is a recognized patient safety issue (100% vs 75%), openness to ideas about improving office processes (100% vs 88%), and the need to discuss ways to prevent errors from recurring (88% vs 62%). Issues of safety and regulatory compliance can be assessed in an office-based setting through the short-term (half-day) use of in-situ simulation with facilitated debriefing and the review of audiovisual recordings by trained facilities inspectors.

  2. The Use of In-Situ Simulation to Improve Safety in the Plastic Surgery Office: A Feasibility Study

    PubMed Central

    Shapiro, Fred E.; Pawlowski, John B.; Rosenberg, Noah M.; Liu, Xiaoxia; Feinstein, David M.; Urman, Richard D.

    2014-01-01

    Objective: Simulation-based interventions and education can potentially contribute to safer and more effective systems of care. We utilized in-situ simulation to highlight safety issues, regulatory requirements, and assess perceptions of safety processes by the plastic surgery office staff. Methods: A high-fidelity human patient simulator was brought to an office-based plastic surgery setting to enact a half-day full-scale, multidisciplinary medical emergency. Facilitated group debriefings were conducted after each scenario with special consideration of the principles of team training, communication, crisis management, and adherence to evidence-based protocols and regulatory standards. Abbreviated AHRQ Medical Office Safety Culture Survey was completed by the participants before and after the session. Results: The in-situ simulations had a high degree of acceptance and face validity according to the participants. Areas highlighted by the simulation sessions included rapid communication, delegation of tasks, location of emergency materials, scope of practice, and logistics of transport. The participant survey indicated greater awareness of patient safety issues following participation in simulation and debriefing exercises in 3 areas (P < 0.05): the need to change processes if there is a recognized patient safety issue (100% vs 75%), openness to ideas about improving office processes (100% vs 88%), and the need to discuss ways to prevent errors from recurring (88% vs 62%). Conclusions: Issues of safety and regulatory compliance can be assessed in an office-based setting through the short-term (half-day) use of in-situ simulation with facilitated debriefing and the review of audiovisual recordings by trained facilities inspectors. PMID:24501616

  3. Simulation-Based Testing of Pager Interruptions During Laparoscopic Cholecystectomy.

    PubMed

    Sujka, Joseph A; Safcsak, Karen; Bhullar, Indermeet S; Havron, William S

    2018-01-30

    To determine if pager interruptions affect operative time, safety, or complications and management of pager issues during a simulated laparoscopic cholecystectomy. Twelve surgery resident volunteers were tested on a Simbionix Lap Mentor II simulator. Each resident performed 6 randomized simulated laparoscopic cholecystectomies; 3 with pager interruptions (INT) and 3 without pager interruptions (NO-INT). The pager interruptions were sent in the form of standardized patient vignettes and timed to distract the resident during dissection of the critical view of safety and clipping of the cystic duct. The residents were graded on a pass/fail scale for eliciting appropriate patient history and management of the pager issue. Data was extracted from the simulator for the following endpoints: operative time, safety metrics, and incidence of operative complications. The Mann-Whitney U test and contingency table analysis were used to compare the 2 groups (INT vs. NO-INT). Level I trauma center; Simulation laboratory. Twelve general surgery residents. There was no significant difference between the 2 groups in any of the operative endpoints as measured by the simulator. However, in the INT group, only 25% of the time did the surgery residents both adequately address the issue and provide effective patient management in response to the pager interruption. Pager interruptions did not affect operative time, safety, or complications during the simulated procedure. However, there were significant failures in the appropriate evaluations and management of pager issues. Consideration for diversion of patient care issues to fellow residents not operating to improve quality and safety of patient care outside the operating room requires further study. Copyright © 2018. Published by Elsevier Inc.

  4. Systematic review on mentoring and simulation in laparoscopic colorectal surgery.

    PubMed

    Miskovic, Danilo; Wyles, Susannah M; Ni, Melody; Darzi, Ara W; Hanna, George B

    2010-12-01

    To identify and evaluate the influence of mentoring and simulated training in laparoscopic colorectal surgery (LCS) and define the key components for learning advanced technical skills. Laparoscopic colorectal surgery is a complex procedure, often being self-taught by senior surgeons. Educational issues such as inadequate training facilities or a shortfall of training fellowships may result in a slow uptake of LCS. The effectiveness of mentored and simulated training, however, remains unclear. We conducted a systematic search, using Ovid databases. Four study categories were identified: mentored versus nonmentored cases, training case selection, simulation, and assessment. We performed a meta-analysis and a mixed model regression on the difference of the main outcome measures (conversion rates, morbidity, and mortality) for mentored trainees and expert surgeons. We also compared conversion rates of mentored and nonmentored. Meta-analysis of risk factors for conversion was performed using published and unpublished data sets requested from various investigators. For studies on simulation, we compared scores of surveys on the perception of different training courses. Thirty-seven studies were included. Pooled weighted outcomes of mentored cases (n = 751) showed a lower conversion rate (13.3% vs 20.5%, P = 0.0332) compared with nonmentored cases (n = 695). Compared to expert case series (n = 5313), there was no difference in conversion (P = 0.2835), anastomotic leak (P = 0.8342), or mortality (P = 0.5680). A meta-analysis of training case selection data (n = 4444) revealed male sex (P < 0.0001), previous abdominal surgery (P = 0.0200), a BMI greater than 30 (P = 0.0050), an ASA of less than 2 (P < 0.0001), colorectal cancer (P < 0.0001) and intra-abdominal fistula (P < 0.0001), but not older than 64 years (P = 0.4800), to significantly increase conversion risk. Participants on cadaveric courses were highly satisfied with the teaching value yet trainees on an animal course gave less positive feedback. Structured assessment for LCS has been partially implemented. This review and meta-analysis supports evidence that trainees can obtain similar clinical results like expert surgeons in laparoscopic colorectal surgery if supervised by an experienced trainer. Cadaveric models currently provide the best value for training in a simulated environment. There remains a need for further research into technical skills assessment and the educational value of simulated training.

  5. Clinical Efficacy of Simulated Vitreoretinal Surgery to Prepare Surgeons for the Upcoming Intervention in the Operating Room

    PubMed Central

    Deuchler, Svenja; Wagner, Clemens; Singh, Pankaj; Müller, Michael; Al-Dwairi, Rami; Benjilali, Rachid; Schill, Markus; Ackermann, Hanns; Bon, Dimitra; Kohnen, Thomas; Schoene, Benjamin; Koss, Michael; Koch, Frank

    2016-01-01

    Purpose To evaluate the efficacy of the virtual reality training simulator Eyesi to prepare surgeons for performing pars plana vitrectomies and its potential to predict the surgeons’ performance. Methods In a preparation phase, four participating vitreoretinal surgeons performed repeated simulator training with predefined tasks. If a surgeon was assigned to perform a vitrectomy for the management of complex retinal detachment after a surgical break of at least 60 hours it was randomly decided whether a warmup training on the simulator was required (n = 9) or not (n = 12). Performance at the simulator was measured using the built-in scoring metrics. The surgical performance was determined by two blinded observers who analyzed the video-recorded interventions. One of them repeated the analysis to check for intra-observer consistency. The surgical performance of the interventions with and without simulator training was compared. In addition, for the surgeries with simulator training, the simulator performance was compared to the performance in the operating room. Results Comparing each surgeon’s performance with and without warmup trainingshowed a significant effect of warmup training onto the final outcome in the operating room. For the surgeries that were preceeded by the warmup procedure, the performance at the simulator was compared with the operating room performance. We found that there is a significant relation. The governing factor of low scores in the simulator were iatrogenic retinal holes, bleedings and lens damage. Surgeons who caused minor damage in the simulation also performed well in the operating room. Conclusions Despite the large variation of conditions, the effect of a warmup training as well as a relation between the performance at the simulator and in the operating room was found with statistical significance. Simulator training is able to serve as a warmup to increase the average performance. PMID:26964040

  6. Does playing video games improve laparoscopic skills?

    PubMed

    Ou, Yanwen; McGlone, Emma Rose; Camm, Christian Fielder; Khan, Omar A

    2013-01-01

    A best evidence topic in surgery was written according to a structured protocol. The question addressed was whether playing video games improves surgical performance in laparoscopic procedures. Altogether 142 papers were found using the reported search, of which seven represented the best evidence to answer the clinical question. The details of the papers were tabulated including relevant outcomes and study weaknesses. We conclude that medical students and experienced laparoscopic surgeons with ongoing video game experience have superior laparoscopic skills for simulated tasks in terms of time to completion, improved efficiency and fewer errors when compared to non-gaming counterparts. There is some evidence that this may be due to better psycho-motor skills in gamers, however further research would be useful to demonstrate whether there is a direct transfer of skills from laparoscopic simulators to the operating table. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  7. Interstitial ablation and imaging of soft tissue using miniaturized ultrasound arrays

    NASA Astrophysics Data System (ADS)

    Makin, Inder R. S.; Gallagher, Laura A.; Mast, T. Douglas; Runk, Megan M.; Faidi, Waseem; Barthe, Peter G.; Slayton, Michael H.

    2004-05-01

    A potential alternative to extracorporeal, noninvasive HIFU therapy is minimally invasive, interstitial ultrasound ablation that can be performed laparoscopically or percutaneously. Research in this area at Guided Therapy Systems and Ethicon Endo-Surgery has included development of miniaturized (~3 mm diameter) linear ultrasound arrays capable of high power for bulk tissue ablation as well as broad bandwidth for imaging. An integrated control system allows therapy planning and automated treatment guided by real-time interstitial B-scan imaging. Image quality, challenging because of limited probe dimensions and channel count, is aided by signal processing techniques that improve image definition and contrast. Simulations of ultrasonic heat deposition, bio-heat transfer, and tissue modification provide understanding and guidance for development of treatment strategies. Results from in vitro and in vivo ablation experiments, together with corresponding simulations, will be described. Using methods of rotational scanning, this approach is shown to be capable of clinically relevant ablation rates and volumes.

  8. Patient-specific surgical simulator for the pre-operative planning of single-incision laparoscopic surgery with bimanual robots.

    PubMed

    Turini, Giuseppe; Moglia, Andrea; Ferrari, Vincenzo; Ferrari, Mauro; Mosca, Franco

    2012-01-01

    The trend of surgical robotics is to follow the evolution of laparoscopy, which is now moving towards single-incision laparoscopic surgery. The main drawback of this approach is the limited maneuverability of the surgical tools. Promising solutions to improve the surgeon's dexterity are based on bimanual robots. However, since both robot arms are completely inserted into the patient's body, issues related to possible unwanted collisions with structures adjacent to the target organ may arise. This paper presents a simulator based on patient-specific data for the positioning and workspace evaluation of bimanual surgical robots in the pre-operative planning of single-incision laparoscopic surgery. The simulator, designed for the pre-operative planning of robotic laparoscopic interventions, was tested by five expert surgeons who evaluated its main functionalities and provided an overall rating for the system. The proposed system demonstrated good performance and usability, and was designed to integrate both present and future bimanual surgical robots.

  9. [Is laparoscopic surgery the technique of choice in nephrectomy?].

    PubMed

    Ribó, J M; García-Aparicio, L; Julià, V; Tarrado, X; Rovira, J; Morales, L

    2003-01-01

    Laparoscopic is performed in adults for the treatment of benign renal diseases. It is widely accepted that laparoscopic surgery has more advantages than open surgery in many procedures such as nephrectomy, but there is no further experience in this technique. In pediatric urology laparoscopy has become an accepted approach for varicocele, non palpable testis, bladder augmentation, adrenalectomy and urinary diversion. We report our experience with 25 laparoscopic nephrectomies in children.

  10. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.

    PubMed

    Idkaidek, Ashraf; Jasiuk, Iwona

    2015-12-01

    We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents.

  11. CURRENT STATUS OF RESIDENCY TRAINING IN LAPAROSCOPIC SURGERY IN BRAZIL: A CRITICAL REVIEW

    PubMed Central

    NÁCUL, Miguel Prestes; CAVAZZOLA, Leandro Totti; de MELO, Marco Cezário

    2015-01-01

    Introduction The surgeon's formation process has changed in recent decades. The increase in medical schools, new specialties and modern technologies induce an overhaul of medical education. Medical residency in surgery has established itself as a key step in the formation of the surgeon, and represents the ideal and natural way for teaching laparoscopy. However, the introduction of laparoscopic surgery in the medical residency programs in surgical specialties is insufficient, creating the need for additional training after its termination. Objective To review the surgical teaching ways used in services that published their results. Methods Survey of relevant publications in books, internet and databases in PubMed, Lilacs and Scielo through july 2014 using the headings: laparoscopy; simulation; education, medical; learning; internship and residency. Results The training method for medical residency in surgery focused on surgical procedures in patients under supervision, has proven successful in the era of open surgery. However, conceptually turns as a process of experimentation in humans. Psychomotor learning must not be developed directly to the patient. Training in laparoscopic surgery requires the acquisition of psychomotor skills through training conducted initially with surgical simulation. Platforms based teaching problem solving as the Fundamentals of Laparoscopic Surgery, developed by the American Society of Gastrointestinal Endoscopic Surgery and the Laparoscopic Surgical Skills proposed by the European Society of Endoscopic Surgery has been widely used both for education and for the accreditation of surgeons worldwide. Conclusion The establishment of a more appropriate pedagogical process for teaching laparoscopic surgery in the medical residency programs is mandatory in order to give a solid surgical education and to determine a structured and safe professional activity. PMID:25861077

  12. Clinical feasibility and efficacy of using virtual surgical planning in bimaxillary orthognathic surgery without intermediate splint.

    PubMed

    Li, Yunfeng; Jiang, Yangmei; Zhang, Nan; Xu, Rui; Hu, Jing; Zhu, Songsong

    2015-03-01

    Computer-aided jaw surgery has been extensively studied recently. The purpose of this study was to determine the clinical feasibility of performing bimaxillary orthognathic surgery without intermediate splint using virtual surgical planning and rapid prototyping technology. Twelve consecutive patients who underwent bimaxillary orthognathic surgery were included. The presented treatment plan here mainly consists of 6 procedures: (1) data acquisition from computed tomography (CT) of the skull and laser scanning of the dentition; (2) reconstruction and fusion of a virtual skull model with accurate dentition; (3) virtual surgery simulation including osteotomy and movement and repositioning of bony segments; (4) final surgical splint fabrication (no intermediate splint) using computer-aided design and rapid prototyping technology; (5) transfer of the virtual surgical plan to the operating room; and (6) comparison of the actual surgical outcome to the virtual surgical plan. All procedures of the treatment were successfully performed on all 12 patients. In quantification of differences between simulated and actual postoperative outcome, we found that the mean linear difference was less than 1.8 mm, and the mean angular difference was less than 2.5 degrees in all evaluated patients. Results from this study suggested that it was feasible to perform bimaxillary orthognathic surgery without intermediate splint. Virtual surgical planning and the guiding splints facilitated the diagnosis, treatment planning, accurate osteotomy, and bony segments repositioning in orthognathic surgery.

  13. Optimizing patient flow in a large hospital surgical centre by means of discrete-event computer simulation models.

    PubMed

    Ferreira, Rodrigo B; Coelli, Fernando C; Pereira, Wagner C A; Almeida, Renan M V R

    2008-12-01

    This study used the discrete-events computer simulation methodology to model a large hospital surgical centre (SC), in order to analyse the impact of increases in the number of post-anaesthetic beds (PABs), of changes in surgical room scheduling strategies and of increases in surgery numbers. The used inputs were: number of surgeries per day, type of surgical room scheduling, anaesthesia and surgery duration, surgical teams' specialty and number of PABs, and the main outputs were: number of surgeries per day, surgical rooms' use rate and blocking rate, surgical teams' use rate, patients' blocking rate, surgery delays (minutes) and the occurrence of postponed surgeries. Two basic strategies were implemented: in the first strategy, the number of PABs was increased under two assumptions: (a) following the scheduling plan actually used by the hospital (the 'rigid' scheduling - surgical rooms were previously assigned and assignments could not be changed) and (b) following a 'flexible' scheduling (surgical rooms, when available, could be freely used by any surgical team). In the second, the same analysis was performed, increasing the number of patients (up to the system 'feasible maximum') but fixing the number of PABs, in order to evaluate the impact of the number of patients over surgery delays. It was observed that the introduction of a flexible scheduling/increase in PABs would lead to a significant improvement in the SC productivity.

  14. Simulation of plastic surgery and microvascular procedures using perfused fresh human cadavers.

    PubMed

    Carey, Joseph N; Rommer, Elizabeth; Sheckter, Clifford; Minneti, Michael; Talving, Peep; Wong, Alex K; Garner, Warren; Urata, Mark M

    2014-02-01

    Surgical simulation models are often limited by their lack of fidelity, which hinders their essential purpose, making a better surgeon. Fresh cadaveric tissue is a superior model of simulation owing to its approximation of live tissue. One major unresolved difference between dead and live tissue is perfusion. Here, we propose a means of enhancing the fidelity of cadaveric simulation through the development of a perfused cadaveric model whereby simulation is further able to approach life-like surgery and teach one of the more technically demanding skills of plastic surgery: microsurgery. Fresh tissue human cadavers were procured according to university protocol. Perfusion was performed via cannulation of large vessels, and arterial and venous pressure was maintained by centrifugal circulation. Skin perfusion was evaluated with incisions in the perfused regions and was evaluated using indocyanine green angiography. Surgical simulations were selected to broadly evaluate applicability to plastic surgical education. Surgical simulation of 38 procedures ranging in complexity from skin excisions to microsurgical cases was performed with high priority given to the accurate simulation of clinical procedures. Flap dissections included perforator flaps, muscle flaps, and fasciocutaneous flaps. Effective perfusion was noted with ICG angiography and notable bleeding vessels. Microsurgical flap transfer was successfully performed. We report the establishment of a high fidelity surgical simulation using a perfused fresh tissue model in a realistic environment akin to the operating room. We anticipate utilization of this model prior to entering the operating room will enhance surgical ability and offer a valuable resource in plastic surgical education. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Integration and Validation of Hysteroscopy Simulation in the Surgical Training Curriculum.

    PubMed

    Elessawy, Mohamed; Skrzipczyk, Moritz; Eckmann-Scholz, Christel; Maass, Nicolai; Mettler, Liselotte; Guenther, Veronika; van Mackelenbergh, Marion; Bauerschlag, Dirk O; Alkatout, Ibrahim

    The primary objective of our study was to test the construct validity of the HystSim hysteroscopic simulator to determine whether simulation training can improve the acquisition of hysteroscopic skills regardless of the previous levels of experience of the participants. The secondary objective was to analyze the performance of a selected task, using specially designed scoring charts to help reduce the learning curve for both novices and experienced surgeons. The teaching of hysteroscopic intervention has received only scant attention, focusing mainly on the development of physical models and box simulators. This encouraged our working group to search for a suitable hysteroscopic simulator module and to test its validation. We decided to use the HystSim hysteroscopic simulator, which is one of the few such simulators that has already completed a validation process, with high ratings for both realism and training capacity. As a testing tool for our study, we selected the myoma resection task. We analyzed the results using the multimetric score system suggested by HystSim, allowing a more precise interpretation of the results. Between June 2014 and May 2015, our group collected data on 57 participants of minimally invasive surgical training courses at the Kiel School of Gynecological Endoscopy, Department of Gynecology and Obstetrics, University Hospitals Schleswig-Holstein, Campus Kiel. The novice group consisted of 42 medical students and residents with no prior experience in hysteroscopy, whereas the expert group consisted of 15 participants with more than 2 years of experience of advanced hysteroscopy operations. The overall results demonstrated that all participants attained significant improvements between their pretest and posttests, independent of their previous levels of experience (p < 0.002). Those in the expert group demonstrated statistically significant, superior scores in the pretest and posttests (p = 0.001, p = 0.006). Regarding visualization and ergonomics, the novices showed a better pretest value than the experts; however, the experts were able to improve significantly during the posttest. These precise findings demonstrated that the multimetric scoring system achieved several important objectives, including clinical relevance, critical relevance, and training motivation. All participants demonstrated improvements in their hysteroscopic skills, proving an adequate construct validation of the HystSim. Using the multimetric scoring system enabled a more accurate analysis of the performance of the participants independent of their levels of experience which could be an important key for streamlining the learning curve. Future studies testing the predictive validation of the simulator and frequency of the training intervals are necessary before the introduction of the simulator into the standard surgical training curriculum. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  16. Principles and advantages of robotics in urologic surgery.

    PubMed

    Renda, Antonio; Vallancien, Guy

    2003-04-01

    Although the available minimally invasive surgical techniques (ie, laparoscopy) have clear advantages, these procedures continue to cause problems for patients. Surgical tools are limited by set axes of movement, restricting the degree of freedom available to the surgeon. In addition, depth perception is lost with the use of two-dimensional viewing systems. As surgeons view a "virtual" target on a television screen, they are hampered by decreased sensory input and a concurrent loss of dexterity. The development of robotic assistance systems in recent years could be the key to overcoming these difficulties. Using robotic systems, surgeons can experience a more natural and ergonomic surgical "feel." Surgical assistance, dexterity and precision enhancement, systems networking, and image-guided therapy are among the benefits offered by surgical robots. In return, the surgeon gains a shorter learning curve, reduced fatigue, and the opportunity to perform complex procedures that would be difficult using conventional laparoscopy. With the development of image-guided technology, robotic systems will become useful tools for surgical training and simulation. Remote surgery is not a routine procedure, but several teams are working on this and experiencing good results. However, economic concerns are the major drawbacks of these systems; before remote surgery becomes routinely feasible, the clinical benefits must be balanced with high investment and running costs.

  17. A qualitative study of regional anaesthesia for vitreo-retinal surgery.

    PubMed

    McCloud, Christine; Harrington, Ann; King, Lindy

    2014-05-01

    The aim of this research was to collect experiential knowledge about regional ocular anaesthesia - an integral component of most vitreo-retinal surgery. Anaesthesia for vitreo-retinal surgery has predominantly used general anaesthesia, because of the length and complexity of the surgical procedure. However, recent advances in surgical instrumentation and techniques have reduced surgical times; this decision has led to the adoption of regional ocular anaesthesia for vitreo-retinal day surgery. Although regional ocular anaesthesia has been studied from several perspectives, knowledge about patients' experience of the procedure is limited. An interpretive qualitative research methodology underpinned by Gadamer's philosophical hermeneutics. Eighteen participants were interviewed in-depth between July 2006-December 2007 following regional ocular anaesthesia. Interview data were thematically analysed by coding and grouping concepts. Four themes were identified: 'not knowing': the time prior to the experience of a regional eye block; 'experiencing': the experience of regional ocular anaesthesia; 'enduring': the capacity participants displayed to endure regional ocular anaesthesia with the hope that their vision would be restored; and 'knowing': when further surgery was required and past experiences were recalled. The experience of regional ocular anaesthesia had the capacity to invoke anxiety in the participants in this study. Many found the experience overwhelming and painful. What became clear was the participant's capacity to stoically 'endure' regional ocular anaesthesia, indicating the value people placed on visual function. © 2013 John Wiley & Sons Ltd.

  18. Can virtual reality simulators be a certification tool for bariatric surgeons?

    PubMed

    Giannotti, Domenico; Patrizi, Gregorio; Casella, Giovanni; Di Rocco, Giorgio; Marchetti, Massimiliano; Frezzotti, Francesca; Bernieri, Maria Giulia; Vestri, Anna Rita; Redler, Adriano

    2014-01-01

    Construct validity of virtual laparoscopic simulators for basic laparoscopic skills has been proposed; however, it is not yet clear whether the simulators can identify the actual experience of surgeons in more complex procedures such as laparoscopic Roux-en-Y gastric bypass. This study tested the ability of the Lap Mentor simulator to recognize the experience in advanced laparoscopic procedures and to assess its role in the certification of bariatric surgeons. Twenty surgeons were divided into two groups according to their experience in laparoscopic and bariatric surgery. The general group included 10 general surgeons performing between 75 and 100 nonbariatric laparoscopic procedures. The bariatric group included 10 bariatric surgeons performing between 50 and 100 laparoscopic bariatric procedures. Participants were tested on the simulator in one basic task (task 1: eye-hand coordination) and in two tasks of the gastric bypass module (task 2: creation of the gastric pouch; task 3: gastrojejunal anastomosis). Comparing the groups, no significant differences were found in task 1. Analyzing the results from the gastric bypass module (bariatric vs. general), in task 2, significant differences (p < 0.05) were found in the median volume of the gastric pouch (21 vs. 48 cm(3)), in the percentage of fundus included in the pouch (8.4 vs. 29.4 %), in the complete dissection at the angle of His (10 vs. 3), and in safety parameters. In task 3, significant differences were found in the size and position of enterotomies. The Lap Mentor may be proposed as a certification tool for bariatric surgeons because it also recognizes their specific skills in the technical details of the procedure that affect long-term results. Furthermore, the possibility of analyzing the performance in detail can help define areas where the surgeon is lacking. These findings indicate a potential role of the Lap Mentor in tailoring the training to maximize improvement.

  19. Catheter Insertion Reference Trajectory Construction Method Using Photoelastic Stress Analysis for Quantification of Respect for Tissue During Endovascular Surgery Simulation

    NASA Astrophysics Data System (ADS)

    Tercero, Carlos; Ikeda, Seiichi; Fukuda, Toshio; Arai, Fumihito; Negoro, Makoto; Takahashi, Ikuo

    2011-10-01

    There is a need to develop quantitative evaluation for simulator based training in medicine. Photoelastic stress analysis can be used in human tissue modeling materials; this enables the development of simulators that measure respect for tissue. For applying this to endovascular surgery, first we present a model of saccular aneurism where stress variation during micro-coils deployment is measured, and then relying on a bi-planar vision system we measure a catheter trajectory and compare it to a reference trajectory considering respect for tissue. New photoelastic tissue modeling materials will expand the applications of this technology to other medical training domains.

  20. [Application of computer-assisted 3D imaging simulation for surgery].

    PubMed

    Matsushita, S; Suzuki, N

    1994-03-01

    This article describes trends in application of various imaging technology in surgical planning, navigation, and computer aided surgery. Imaging information is essential factor for simulation in medicine. It includes three dimensional (3D) image reconstruction, neuro-surgical navigation, creating substantial model based on 3D imaging data and etc. These developments depend mostly on 3D imaging technique, which is much contributed by recent computer technology. 3D imaging can offer new intuitive information to physician and surgeon, and this method is suitable for mechanical control. By utilizing simulated results, we can obtain more precise surgical orientation, estimation, and operation. For more advancement, automatic and high speed recognition of medical imaging is being developed.

  1. Pre-clinical Training for New Notes Procedures: From Ex-vivo Models to Virtual Reality Simulators.

    PubMed

    Gromski, Mark A; Ahn, Woojin; Matthes, Kai; De, Suvranu

    2016-04-01

    Natural orifice transluminal endoscopic surgery (NOTES) is a newer field of endoscopic surgery that allows for scarless treatment of pathologic entities, using novel transluminal approaches. There has been a shift of focus from a clinical and research standpoint from the development and dissemination of "first-generation" NOTES procedures to "new NOTES" procedures that traverse the mucosa of luminal structures, yet do not stray far into the peritoneal cavity. It has been a challenge to find appropriate and effective ways to train gastroenterologists and surgeons in these novel approaches. We review the importance of simulation in training and discuss available simulation options. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Image- and model-based surgical planning in otolaryngology.

    PubMed

    Korves, B; Klimek, L; Klein, H M; Mösges, R

    1995-10-01

    Preoperative evaluation of any operating field is essential for the preparation of surgical procedures. The relationship between pathology and adjacent structures, and anatomically dangerous sites need to be analyzed for the determination of intraoperative action. For the simulation of surgery using three-dimensional imaging or individually manufactured plastic patient models, the authors have worked out different procedures. A total of 481 surgical interventions in the maxillofacial region, paranasal sinuses, orbit, and the anterior and middle skull base, in addition to neurotologic procedures were presurgically simulated using three-dimensional imaging and image manipulation. An intraoperative simulation device, part of the Aachen Computer-Assisted Surgery System, had been applied in 407 of these cases. In seven patients, stereolithography was used to create plastic patient models for the preparation of reconstructive surgery and prostheses fabrication. The disadvantages of this process include time and cost; however, the advantages included (1) a better understanding of the anatomic relationships, (2) the feasibility of presurgical simulation of the prevailing procedure, (3) an improved intraoperative localization accuracy, (4) prostheses fabrication in reconstructive procedures with an approach to more accuracy, (5) permanent recordings for future requirements or reconstructions, and (6) improved residency education.

  3. Current status of robotic simulators in acquisition of robotic surgical skills.

    PubMed

    Kumar, Anup; Smith, Roger; Patel, Vipul R

    2015-03-01

    This article provides an overview of the current status of simulator systems in robotic surgery training curriculum, focusing on available simulators for training, their comparison, new technologies introduced in simulation focusing on concepts of training along with existing challenges and future perspectives of simulator training in robotic surgery. The different virtual reality simulators available in the market like dVSS, dVT, RoSS, ProMIS and SEP have shown face, content and construct validity in robotic skills training for novices outside the operating room. Recently, augmented reality simulators like HoST, Maestro AR and RobotiX Mentor have been introduced in robotic training providing a more realistic operating environment, emphasizing more on procedure-specific robotic training . Further, the Xperience Team Trainer, which provides training to console surgeon and bed-side assistant simultaneously, has been recently introduced to emphasize the importance of teamwork and proper coordination. Simulator training holds an important place in current robotic training curriculum of future robotic surgeons. There is a need for more procedure-specific augmented reality simulator training, utilizing advancements in computing and graphical capabilities for new innovations in simulator technology. Further studies are required to establish its cost-benefit ratio along with concurrent and predictive validity.

  4. OSCE as a Summative Assessment Tool for Undergraduate Students of Surgery-Our Experience.

    PubMed

    Joshi, M K; Srivastava, A K; Ranjan, P; Singhal, M; Dhar, A; Chumber, S; Parshad, R; Seenu, V

    2017-12-01

    Traditional examination has inherent deficiencies. Objective Structured Clinical Examination (OSCE) is considered as a method of assessment that may overcome many such deficits. OSCE is being increasingly used worldwide in various medical specialities for formative and summative assessment. Although it is being used in various disciplines in our country as well, its use in the stream of general surgery is scarce. We report our experience of assessment of undergraduate students appearing in their pre-professional examination in the subject of general surgery by conducting OSCE. In our experience, OSCE was considered a better assessment tool as compared to the traditional method of examination by both faculty and students and is acceptable to students and faculty alike. Conducting OSCE is feasible for assessment of students of general surgery.

  5. Telemanipulation, telepresence, and virtual reality for surgery in the year 2000

    NASA Astrophysics Data System (ADS)

    Satava, Richard M.

    1995-12-01

    The new technologic revolution in medicine is based upon information technologies, and telemanipulation, telepresence and virtual reality are essential components. Telepresence surgery returns the look and feel of `open surgery' to the surgeon and promises enhancement of physical capabilities above normal human performance. Virtual reality provides basic medical education, simulation of surgical procedures, medical forces and disaster medicine practice, and virtual prototyping of medical equipment.

  6. Endoscopic Sinus Surgery Simulator as a teaching tool for anatomy education.

    PubMed

    Solyar, Alla; Cuellar, Hernando; Sadoughi, Babak; Olson, Todd R; Fried, Marvin P

    2008-07-01

    Virtual reality simulators provide an effective learning environment and are widely used. This study evaluated the Endoscopic Sinus Surgery Simulator (ES3; Lockheed Martin) as a tool for anatomic education. Two medical student groups (experimental, n = 8; control, n = 7) studied paranasal sinus anatomy using either the simulator or textbooks. Their knowledge was then tested on the identification of anatomic structures on a view of the nasal cavities. The mean scores were 9.4 +/- 0.5 and 5.1 +/- 3.0 out of 10 for the simulator and textbook groups, respectively (P = .009). Moreover, the simulator group completed the test in a significantly shorter time, 5.9 +/- 1.1 versus 8.3 +/- 2.0 minutes (P = .021). A survey asking the students to rate their respective study modality did not materialize significant differences. The ES3 can be an effective tool in teaching sinonasal anatomy. This study may help shape the future of anatomic education and the development of modern educational tools.

  7. Evaluation of a novel flexible snake robot for endoluminal surgery.

    PubMed

    Patel, Nisha; Seneci, Carlo A; Shang, Jianzhong; Leibrandt, Konrad; Yang, Guang-Zhong; Darzi, Ara; Teare, Julian

    2015-11-01

    Endoluminal therapeutic procedures such as endoscopic submucosal dissection are increasingly attractive given the shift in surgical paradigm towards minimally invasive surgery. This novel three-channel articulated robot was developed to overcome the limitations of the flexible endoscope which poses a number of challenges to endoluminal surgery. The device enables enhanced movement in a restricted workspace, with improved range of motion and with the accuracy required for endoluminal surgery. To evaluate a novel flexible robot for therapeutic endoluminal surgery. Bench-top studies. Research laboratory. Targeting and navigation tasks of the robot were performed to explore the range of motion and retroflexion capabilities. Complex endoluminal tasks such as endoscopic mucosal resection were also simulated. Successful completion, accuracy and time to perform the bench-top tasks were the main outcome measures. The robot ranges of movement, retroflexion and navigation capabilities were demonstrated. The device showed significantly greater accuracy of targeting in a retroflexed position compared to a conventional endoscope. Bench-top study and small study sample. We were able to demonstrate a number of simulated endoscopy tasks such as navigation, targeting, snaring and retroflexion. The improved accuracy of targeting whilst in a difficult configuration is extremely promising and may facilitate endoluminal surgery which has been notoriously challenging with a conventional endoscope.

  8. Three-dimensional surgical simulation.

    PubMed

    Cevidanes, Lucia H C; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2010-09-01

    In this article, we discuss the development of methods for computer-aided jaw surgery, which allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3-dimensional surface models from cone-beam computed tomography, dynamic cephalometry, semiautomatic mirroring, interactive cutting of bone, and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with a computer display showing jaw positions and 3-dimensional positioning guides updated in real time during the surgical procedure. The computer-aided surgery system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training, and assessing the difficulties of the surgical procedures before the surgery. Computer-aided surgery can make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  9. Development of VIPER: a simulator for assessing vision performance of warfighters

    NASA Astrophysics Data System (ADS)

    Familoni, Jide; Thompson, Roger; Moyer, Steve; Mueller, Gregory; Williams, Tim; Nguyen, Hung-Quang; Espinola, Richard L.; Sia, Rose K.; Ryan, Denise S.; Rivers, Bruce A.

    2016-05-01

    Background: When evaluating vision, it is important to assess not just the ability to read letters on a vision chart, but also how well one sees in real life scenarios. As part of the Warfighter Refractive Eye Surgery Program (WRESP), visual outcomes are assessed before and after refractive surgery. A Warfighter's ability to read signs and detect and identify objects is crucial, not only when deployed in a military setting, but also in their civilian lives. Objective: VIPER, a VIsion PERformance simulator was envisioned as actual video-based simulated driving to test warfighters' functional vision under realistic conditions. Designed to use interactive video image controlled environments at daytime, dusk, night, and with thermal imaging vision, it simulates the experience of viewing and identifying road signs and other objects while driving. We hypothesize that VIPER will facilitate efficient and quantifiable assessment of changes in vision and measurement of functional military performance. Study Design: Video images were recorded on an isolated 1.1 mile stretch of road with separate target sets of six simulated road signs and six objects of military interest, separately. The video footage were integrated with customdesigned C++ based software that presented the simulated drive to an observer on a computer monitor at 10, 20 or 30 miles/hour. VIPER permits the observer to indicate when a target is seen and when it is identified. Distances at which the observer recognizes and identifies targets are automatically logged. Errors in recognition and identification are also recorded. This first report describes VIPER's development and a preliminary study to establish a baseline for its performance. In the study, nine soldiers viewed simulations at 10 miles/hour and 30 miles/hour, run in randomized order for each participant seated at 36 inches from the monitor. Relevance: Ultimately, patients are interested in how their vision will affect their ability to perform daily activities. In the military context, in addition to reading road signs, this includes vision with night sensors and identification of objects of military interest. Once completed and validated, VIPER will be used to evaluate functional performance before and after refractive surgery. Results: This initial study was to prove the principle, and its results at the time of this publication were very preliminary. Nine Soldiers viewed visible-day and IR-day VIPER simulations with civilian and military targets, separately, at 10 and 30 miles/hour. Analyses were performed separately for visible and IR, and also aggregated. Only the civilian targets are discussed in this report. At 10 miles/hour, the population detected civilian road signs at an aggregated average of 90.11 +/- 64.20 m, and identified them at 26.93 +/- 22.27m. At 30 miles/hour, the corresponding distances were 103.03 +/- 58.81 and 26.26 +/- 8.55, respectively. Conclusion: This preliminary report proves the principle and suggests that VIPER could be a useful clinical tool in longitudinal assessment of functional vision in warfighters.

  10. Design and Validation of an Augmented Reality System for Laparoscopic Surgery in a Real Environment

    PubMed Central

    López-Mir, F.; Naranjo, V.; Fuertes, J. J.; Alcañiz, M.; Bueno, J.; Pareja, E.

    2013-01-01

    Purpose. This work presents the protocol carried out in the development and validation of an augmented reality system which was installed in an operating theatre to help surgeons with trocar placement during laparoscopic surgery. The purpose of this validation is to demonstrate the improvements that this system can provide to the field of medicine, particularly surgery. Method. Two experiments that were noninvasive for both the patient and the surgeon were designed. In one of these experiments the augmented reality system was used, the other one was the control experiment, and the system was not used. The type of operation selected for all cases was a cholecystectomy due to the low degree of complexity and complications before, during, and after the surgery. The technique used in the placement of trocars was the French technique, but the results can be extrapolated to any other technique and operation. Results and Conclusion. Four clinicians and ninety-six measurements obtained of twenty-four patients (randomly assigned in each experiment) were involved in these experiments. The final results show an improvement in accuracy and variability of 33% and 63%, respectively, in comparison to traditional methods, demonstrating that the use of an augmented reality system offers advantages for trocar placement in laparoscopic surgery. PMID:24236293

  11. [The advantages of implementing an e-learning platform for laparoscopic liver surgery].

    PubMed

    Furcea, L; Graur, F; Scurtu, L; Plitea, N; Pîslă, D; Vaida, C; Deteşan, O; Szilaghy, A; Neagoş, H; Mureşan, A; Vlad, L

    2011-01-01

    The rapid expansion of laparoscopic surgery has led to the development of training methods for acquiring technical skills. The importance and complexity of laparoscopic liver surgery are arguments for developing a new integrated system of teaching, learning and evaluation, based on modern educational principles, on flexibility allowing wide accessibility among surgeons. This paper presents the development of e-learning platform designed for training in laparoscopic liver surgery and pre-planning of the operation in a virtual environment. E-learning platform makes it possible to simulate laparoscopic liver surgery remotely via internet connection. The addressability of this e-learning platform is large, being represented by young surgeons who are mainly preoccupied by laparoscopic liver surgery, as well as experienced surgeons interested in obtaining a competence in the hepatic minimally invasive surgery.

  12. Team-based simulations for new surgeons: Does early and often make a difference?

    PubMed

    AbdelFattah, Kareem R; Spalding, M Chance; Leshikar, David; Gardner, Aimee K

    2018-04-01

    Current work hour restrictions and the expansion of requirements for surgery residents has led to decreased time on high-acuity rotations such as trauma and acute care surgery. In an effort to improve resident competency, we examined the efficacy of a new team-based trauma curriculum for postgraduate year 1 (PGY1) residents. After completing required Advanced Trauma Life Support certification, PGY1s participated in a series of trauma simulations in 3-person teams from June to August. Scenarios were created to develop skills related to trauma management, teamwork, and communication. Each simulation was followed by video-based debriefing with a faculty facilitator. Clinical performance on a 1-month trauma rotation during the year was assessed by trauma faculty using a 24-item evaluation assessing management of acutely ill patients, leadership, communication, cooperation, and professionalism on a 1 (poor) to 5 (very effective) scale. Performance metrics of this intern class were compared with 2 years of previous cohorts who had not participated in any trauma-focused simulation curricula. One-way analysis of variance was used to examine differences in performance ratings across groups. The 2015 intern class (n = 30) each participated in 6 scenarios during their first 2 months in residency. Trauma as intended specialty and performance on preinternship Advanced Trauma Life Support course were similar across 2013, 2014, and 2015 cohorts. Average performance on the trauma rotation was 3.55 ± 0.56 for the 2013 cohort (n = 11), 3.50 ± 0.57 for the 2014 cohort (n = 11), and 4.35 ± 0.68 for the 2015 cohort (n = 12). Post hoc analyses indicated no difference between means of the 2013 and 2014 cohort. However, the mean of the 2015 cohort was statistically significantly better than both the 2013 cohort (P < .01) and the 2014 cohort (P < .01). Trauma-focused simulation improved PGY1 faculty ratings of performance in the clinical setting compared with previous cohorts with no such simulation experience. Adoption of these curricula is both feasible and beneficial. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Endoscopic Transsphenoidal Surgery Outcomes in 331 Nonfunctioning Pituitary Adenoma Cases After a Single Surgeon Learning Curve.

    PubMed

    Kim, Jung Hee; Lee, Jung Hyun; Lee, Ji Hyun; Hong, A Ram; Kim, Yoon Ji; Kim, Yong Hwy

    2018-01-01

    The outcomes of recent endoscopic surgery of nonfunctioning pituitary adenomas (NFPAs) are controversial when compared with traditional microscopic surgery. We aimed to assess the outcomes of endoscopic transsphenoidal surgeries performed by 1 surgeon with 7 years of experience and elucidate the predictive factors for surgical outcomes for NFPAs. We included 331 patients (155 men and 176 women) with clinical NFPAs who underwent transsphenoidal surgery because of visual symptoms by a single surgeon in Seoul National University Hospital from March 2010 to May 2016. We assessed the tumor removal rate, hormonal outcomes, visual outcomes, and complications. The gross total resection rate of endoscopic transsphenoidal surgery for NFPAs by a single surgeon was 74.9%. Cavernous sinus invasion, a high Knosp grade, large tumor size, previous surgery, and lack of surgical experience in the neurosurgeon elevated the risk for residual tumors. Visual deficits were improved in 73.4% of the patients, which was associated with tumor size, preoperative visual impairment score, previous radiation, and surgical experience. Hormonal status was improved in 15.4% and aggravated in 32.9% after surgery. There were no predictors for hormonal recovery. Transient diabetes insipidus (DI) was the most common complication (9.1%), and among these patients, 3.0% had persistent DI. Endoscopic transsphenoidal surgery by a well-experienced surgeon was an effective and safe treatment for NFPAs, but the hormonal outcomes were not changed compared with previous reports of microscopic surgery. Large tumor size and cavernous sinus invasion were still the barriers for achieving total resection. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Microvascular Reconstructive Surgery in Operations Iraqi and Enduring Freedom: the US Military Experience Performing Free Flaps in a Combat Zone

    DTIC Science & Technology

    2013-01-01

    Microvascular reconstructive surgery in Operations Iraqi and Enduring Freedom: The US military experience performing free flaps in a combat zone...usually must undergo reconstructive surgery in the combat zone. While the use of microvascular free-tissue transfer (free flaps) for traumatic... reconstruction iswell documented in the literature, various complicating factors exist when these intricate surgical procedures are performed in a theater of

  15. Cost and logistics of implementing a tissue-based American College of Surgeons/Association of Program Directors in Surgery surgical skills curriculum for general surgery residents of all clinical years.

    PubMed

    Henry, Brandon; Clark, Philip; Sudan, Ranjan

    2014-02-01

    The cost and logistics of deploying the American College of Surgeons (ACS)/Association of Program Directors in Surgery (APDS) National Technical Skills Curriculum across all training years are not known. This information is essential for residency programs choosing to adopt similar curricula. A task force evaluated the authors' institution's existing simulation curriculum and enhanced it by implementing the ACS/APDS modules. A 35-module curriculum was administered to 35 general surgery residents across all 5 clinical years. The costs and logistics were noted, and resident satisfaction was assessed. The annual operational cost was $110,300 ($3,150 per resident). Cost per module, per resident was $940 for the cadaveric module compared with $220 and $240 for dry simulation and animal tissue-based modules, respectively. Resident satisfaction improved from 2.45 to 4.78 on a 5-point, Likert-type scale after implementing the ACS/APDS modules. The ACS/APDS skills curriculum was implemented successfully across all clinical years. Cadaveric modules were the most expensive. Animal and dry simulation modules were equivalent in cost. The addition of tissue-based modules was associated with high satisfaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The preoperative reaction and decision-making process regarding colostomy surgery among Chinese rectal cancer patients.

    PubMed

    Zhang, Jun-E; Wong, Frances Kam Yuet; Zheng, Mei-Chun

    2017-06-01

    Patients with rectal cancer have issues in adjusting to their permanent colostomy after surgery, and support is required to help them resume normal life. However, few studies have explored the experience and factors that affect a patient's decision-making and maladjustment prior to colostomy surgery. The aim of this study was to explore the experience of rectal cancer patients who have to undergo colostomy surgery. A descriptive, qualitative design was used. We studied a purposive sample of 18 patients who had received a diagnosis of primary rectal cancer and were expecting permanent colostomy surgery. The thematic analysis approach was used to analyze the data collected using semi-structured, open-ended questions. The overriding theme that emerged was 'stoma dilemma: a hard decision-making process'. From this main theme, three themes were derived: the resistance stage, the hesitation stage, and the acquiescence stage. It is hard for preoperative rectal patients to choose to undergo stoma surgery or a sphincter-saving operation. From the initial stage of definitive diagnosis to the final consent to stoma surgery, most patients experience the resistance and hesitation stages before reaching the acquiescence stage. Arriving at a decision is a process that nurses can facilitate by eliminating unnecessary misunderstanding surrounding colostomy surgery and by fully respecting patients' right to choose at the various stages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The role of computer-aided 3D surgery and stereolithographic modelling for vector orientation in premaxillary and trans-sinusoidal maxillary distraction osteogenesis.

    PubMed

    Varol, Altan; Basa, Selçuk

    2009-06-01

    Maxillary distraction osteogenesis is a challenging procedure when it is performed with internal submerged distractors due to obligation of setting accurate distraction vectors. Five patients with severe maxillary retrognathy were planned with Mimics 10.01 CMF and Simplant 10.01 software. Distraction vectors and rods of distractors were arranged in 3D environment and on STL models. All patients were operated under general anaesthesia and complete Le Fort I downfracture was performed. All distractions were performed according to orientated vectors. All patients achieved stable occlusion and satisfactory aesthetic outcome at the end of the treatment period. Preoperative bending of internal maxillary distractors prevents significant loss of operation time. 3D computer-aided surgical simulation and model surgery provide accurate orientation of distraction vectors for premaxillary and internal trans-sinusoidal maxillary distraction. Combination of virtual surgical simulation and stereolithographic models surgery can be validated as an effective method of preoperative planning for complicated maxillofacial surgery cases.

  18. Self-learning computers for surgical planning and prediction of postoperative alignment.

    PubMed

    Lafage, Renaud; Pesenti, Sébastien; Lafage, Virginie; Schwab, Frank J

    2018-02-01

    In past decades, the role of sagittal alignment has been widely demonstrated in the setting of spinal conditions. As several parameters can be affected, identifying the driver of the deformity is the cornerstone of a successful treatment approach. Despite the importance of restoring sagittal alignment for optimizing outcome, this task remains challenging. Self-learning computers and optimized algorithms are of great interest in spine surgery as in that they facilitate better planning and prediction of postoperative alignment. Nowadays, computer-assisted tools are part of surgeons' daily practice; however, the use of such tools remains to be time-consuming. NARRATIVE REVIEW AND RESULTS: Computer-assisted methods for the prediction of postoperative alignment consist of a three step analysis: identification of anatomical landmark, definition of alignment objectives, and simulation of surgery. Recently, complex rules for the prediction of alignment have been proposed. Even though this kind of work leads to more personalized objectives, the number of parameters involved renders it difficult for clinical use, stressing the importance of developing computer-assisted tools. The evolution of our current technology, including machine learning and other types of advanced algorithms, will provide powerful tools that could be useful in improving surgical outcomes and alignment prediction. These tools can combine different types of advanced technologies, such as image recognition and shape modeling, and using this technique, computer-assisted methods are able to predict spinal shape. The development of powerful computer-assisted methods involves the integration of several sources of information such as radiographic parameters (X-rays, MRI, CT scan, etc.), demographic information, and unusual non-osseous parameters (muscle quality, proprioception, gait analysis data). In using a larger set of data, these methods will aim to mimic what is actually done by spine surgeons, leading to real tailor-made solutions. Integrating newer technology can change the current way of planning/simulating surgery. The use of powerful computer-assisted tools that are able to integrate several parameters and learn from experience can change the traditional way of selecting treatment pathways and counseling patients. However, there is still much work to be done to reach a desired level as noted in other orthopedic fields, such as hip surgery. Many of these tools already exist in non-medical fields and their adaptation to spine surgery is of considerable interest.

  19. The only girl in the room: how paradigmatic trajectories deter female students from surgical careers.

    PubMed

    Hill, Elspeth; Vaughan, Suzanne

    2013-06-01

    Over 60% of UK medical students are female, yet only 33% of applicants to surgical training are women. Role modelling, differing educational experiences and disidentification in female medical students have been implicated in this disparity. We are yet to fully understand the mechanisms that link students' experiences with national trends in career choices. We employ a hitherto unused concept from the theory of communities of practice: paradigmatic trajectories. These are visible career paths provided by a community and are cited by Wenger as potentially the most influential factors shaping the learning of newcomers. We pioneer the use of this theoretical tool in answering the research question: How do paradigmatic trajectories shape female medical students' experiences of surgery and subsequent career intentions? This qualitative study comprised a secondary analysis of data sourced from 19 clinical medical students. During individual, in-depth, semi-structured interviews, we explored these students' experiences at medical school. We carried out thematic analysis using sensitising concepts from communities of practice theory, notably that of 'paradigmatic trajectories'. Female students' experiences of surgery were strongly gendered; they were positioned as 'other' in the surgical domain. Four key processes--seeing, hearing, doing and imagining--facilitated the formation of paradigmatic trajectories, on which students could draw when making career decisions. Female students were unable to see or identify with other women in surgery. They heard about challenges to being a female surgeon, lacked experiences of participation, and struggled to imagine a future in which they would be successful surgeons. Thus, based on paradigmatic trajectories constructed from exposure to surgery, they self-selected out of surgical careers. By contrast, male students had experiences of 'hands-in' participation and were not marginalised by paradigmatic trajectories. The concept of the paradigmatic trajectory is a useful theoretical tool with which to understand how students' experiences shape career decisions. Paradigmatic trajectories within surgery deter female students from embarking on careers in surgery. © 2013 John Wiley & Sons Ltd.

  20. Surgeon-authored Virtual Laparoscopic Adrenalectomy Module is Judged Effective and Preferred over Traditional Teaching Tools

    PubMed Central

    Kurenov, Sergei; Cendan, Juan; Dindar, Sahel; Attwood, Kristopher; Hassett, James; Nawotniak, Ruth; Cherr, Gregory; Cance, William G.; Peters, Jörg

    2018-01-01

    Objective The study assesses user acceptance and effectiveness of a surgeon-authored virtual reality training module authored by surgeons using the Toolkit for Illustration Procedures in Surgery (TIPS). Methods Laparoscopic adrenalectomy was selected to test the TIPS framework on an unusual and complex procedure. No commercial simulation module exists to teach this procedure. A specialist surgeon authored the module, including force-feedback interactive simulation and designed a quiz to test knowledge of the key procedural steps. Five practicing surgeons with 15 to 24 years of experience peer-reviewed and tested the module. Fourteen residents and nine fellows trained with the module and answered the quiz, pre-use and post-use. Participants received an overview during Surgical Grand Rounds session and a 20-minute one- on-one tutorial followed by a 30 minute of instruction in addition to a force-feedback interactive simulation session. Additionally, in answering questionnaires, the trainees reflected on their learning experience and their experience with the TIPS framework. Results Correct quiz response rates on procedural steps improved significantly post-use over pre-use. In the questionnaire, 96% of the respondents stated that the TIPS module prepares them well or very well for the adrenalectomy, and 87% indicated that the module successfully teaches the steps of the procedure. All subjects indicated that they preferred the module compare to training using purely physical props, one-on-one teaching, medical atlases, and video recordings. Conclusions Improved quiz scores and endorsement by the participants of the TIPS adrenalectomy module establish the viability of surgeons authoring virtual reality training. PMID:27758896

  1. Real-time mandibular angle reduction surgical simulation with haptic rendering.

    PubMed

    Wang, Qiong; Chen, Hui; Wu, Wen; Jin, Hai-Yang; Heng, Pheng-Ann

    2012-11-01

    Mandibular angle reduction is a popular and efficient procedure widely used to alter the facial contour. The primary surgical instruments, the reciprocating saw and the round burr, employed in the surgery have a common feature: operating at a high-speed. Generally, inexperienced surgeons need a long-time practice to learn how to minimize the risks caused by the uncontrolled contacts and cutting motions in manipulation of instruments with high-speed reciprocation or rotation. A virtual reality-based surgical simulator for the mandibular angle reduction was designed and implemented on a CUDA-based platform in this paper. High-fidelity visual and haptic feedbacks are provided to enhance the perception in a realistic virtual surgical environment. The impulse-based haptic models were employed to simulate the contact forces and torques on the instruments. It provides convincing haptic sensation for surgeons to control the instruments under different reciprocation or rotation velocities. The real-time methods for bone removal and reconstruction during surgical procedures have been proposed to support realistic visual feedbacks. The simulated contact forces were verified by comparing against the actual force data measured through the constructed mechanical platform. An empirical study based on the patient-specific data was conducted to evaluate the ability of the proposed system in training surgeons with various experiences. The results confirm the validity of our simulator.

  2. Trauma and emergency surgery: an evolutionary direction for trauma surgeons.

    PubMed

    Scherer, Lynette A; Battistella, Felix D

    2004-01-01

    The success of nonoperative management of injuries has diminished the operative experience of trauma surgeons. To enhance operative experience, our trauma surgeons began caring for all general surgery emergencies. Our objective was to characterize and compare the experience of our trauma surgeons with that of our general surgeons. We reviewed records to determine case diversity, complexity, time of operation, need for intensive care unit care, and payor mix for patients treated by the trauma and emergency surgery (TES) surgeons and elective practice general surgery (ELEC) surgeons over a 1-year period. TES and ELEC surgeons performed 253 +/- 83 and 234 +/- 40 operations per surgeon, respectively (p = 0.59). TES surgeons admitted more patients and performed more after-hours operations than their ELEC colleagues. Both groups had a mix of cases that was diverse and complex. Combining the care of patients with trauma and general surgery emergencies resulted in a breadth and scope of practice for TES surgeons that compared well with that of ELEC surgeons.

  3. Coronary artery surgery: indications and recent experience.

    PubMed Central

    Robinson, P. S.; Coltart, D. J.; Jenkins, B. S.; Webb-Peploe, M. M.; Braimbridge, M. V.; Williams, B. T.

    1978-01-01

    The comprehensive experience of coronary artery surgery in a Cardiothoracic Unit over a 31-month period is reviewed. Hospital mortality for elective bypass grafting was 3.9% overall and 2.5% in those with good pre-operative left ventricular function. Major influences on hospital mortality were pre-operative left ventricular function, extent of coronary artery disease and extent of the surgical procedure undertaken in terms of number of aortocoronary grafts inserted, coronary endarterectomy and particularly concomitant valve surgery or aneurysm resection. Follow-up experience shows 74% of grafted patients to be symptom-free and 85% symptomatically improved one year after surgery with 70% symptom-free and 80% improved at two years. Early post-operative deaths appear related to early graft closure and recurrence of symptoms postoperatively to late graft closure or progression of coronary disease in the native circulation. The study provides a guide to the relative risks of coronary artery surgery for symptomatic coronary artery disease and expected symptomatic results in the early follow-up period. PMID:310999

  4. Virtual reality simulators and training in laparoscopic surgery.

    PubMed

    Yiannakopoulou, Eugenia; Nikiteas, Nikolaos; Perrea, Despina; Tsigris, Christos

    2015-01-01

    Virtual reality simulators provide basic skills training without supervision in a controlled environment, free of pressure of operating on patients. Skills obtained through virtual reality simulation training can be transferred on the operating room. However, relative evidence is limited with data available only for basic surgical skills and for laparoscopic cholecystectomy. No data exist on the effect of virtual reality simulation on performance on advanced surgical procedures. Evidence suggests that performance on virtual reality simulators reliably distinguishes experienced from novice surgeons Limited available data suggest that independent approach on virtual reality simulation training is not different from proctored approach. The effect of virtual reality simulators training on acquisition of basic surgical skills does not seem to be different from the effect the physical simulators. Limited data exist on the effect of virtual reality simulation training on the acquisition of visual spatial perception and stress coping skills. Undoubtedly, virtual reality simulation training provides an alternative means of improving performance in laparoscopic surgery. However, future research efforts should focus on the effect of virtual reality simulation on performance in the context of advanced surgical procedure, on standardization of training, on the possibility of synergistic effect of virtual reality simulation training combined with mental training, on personalized training. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Web-Based Simulation in Psychiatry Residency Training: A Pilot Study

    ERIC Educational Resources Information Center

    Gorrindo, Tristan; Baer, Lee; Sanders, Kathy M.; Birnbaum, Robert J.; Fromson, John A.; Sutton-Skinner, Kelly M.; Romeo, Sarah A.; Beresin, Eugene V.

    2011-01-01

    Background: Medical specialties, including surgery, obstetrics, anesthesia, critical care, and trauma, have adopted simulation technology for measuring clinical competency as a routine part of their residency training programs; yet, simulation technologies have rarely been adapted or used for psychiatry training. Objective: The authors describe…

  6. An advanced simulator for orthopedic surgical training.

    PubMed

    Cecil, J; Gupta, Avinash; Pirela-Cruz, Miguel

    2018-02-01

    The purpose of creating the virtual reality (VR) simulator is to facilitate and supplement the training opportunities provided to orthopedic residents. The use of VR simulators has increased rapidly in the field of medical surgery for training purposes. This paper discusses the creation of the virtual surgical environment (VSE) for training residents in an orthopedic surgical process called less invasive stabilization system (LISS) surgery which is used to address fractures of the femur. The overall methodology included first obtaining an understanding of the LISS plating process through interactions with expert orthopedic surgeons and developing the information centric models. The information centric models provided a structured basis to design and build the simulator. Subsequently, the haptic-based simulator was built. Finally, the learning assessments were conducted in a medical school. The results from the learning assessments confirm the effectiveness of the VSE for teaching medical residents and students. The scope of the assessment was to ensure (1) the correctness and (2) the usefulness of the VSE. Out of 37 residents/students who participated in the test, 32 showed improvements in their understanding of the LISS plating surgical process. A majority of participants were satisfied with the use of teaching Avatars and haptic technology. A paired t test was conducted to test the statistical significance of the assessment data which showed that the data were statistically significant. This paper demonstrates the usefulness of adopting information centric modeling approach in the design and development of the simulator. The assessment results underscore the potential of using VR-based simulators in medical education especially in orthopedic surgery.

  7. Simulation-based interpersonal communication skills training for neurosurgical residents.

    PubMed

    Harnof, Sagi; Hadani, Moshe; Ziv, Amitai; Berkenstadt, Haim

    2013-09-01

    Communication skills are an important component of the neurosurgery residency training program. We developed a simulation-based training module for neurosurgery residents in which medical, communication and ethical dilemmas are presented by role-playing actors. To assess the first national simulation-based communication skills training for neurosurgical residents. Eight scenarios covering different aspects of neurosurgery were developed by our team: (1) obtaining informed consent for an elective surgery, (2) discharge of a patient following elective surgery, (3) dealing with an unsatisfied patient, (4) delivering news of intraoperative complications, (5) delivering news of a brain tumor to parents of a 5 year old boy, (6) delivering news of brain death to a family member, (7) obtaining informed consent for urgent surgery from the grandfather of a 7 year old boy with an epidural hematoma, and (8) dealing with a case of child abuse. Fifteen neurosurgery residents from all major medical centers in Israel participated in the training. The session was recorded on video and was followed by videotaped debriefing by a senior neurosurgeon and communication expert and by feedback questionnaires. All trainees participated in two scenarios and observed another two. Participants largely agreed that the actors simulating patients represented real patients and family members and that the videotaped debriefing contributed to the teaching of professional skills. Simulation-based communication skill training is effective, and together with thorough debriefing is an excellent learning and practical method for imparting communication skills to neurosurgery residents. Such simulation-based training will ultimately be part of the national residency program.

  8. Early illness experiences related to unexpected heart surgery: A qualitative descriptive study.

    PubMed

    Chang, Yu-Ling; Tsai, Yun-Fang

    2017-09-01

    Most studies on patients' experiences following emergency cardiac surgery focus on evaluation of patients after their discharge. Few studies have evaluated patients' experiences after being transferred from intensive care and before being discharged. This study aimed to describe patients' experiences in the early stages of recovery following emergency heart surgery. For this exploratory qualitative descriptive study, 13 patients were recruited from a medical centre in northern Taiwan. Participants had undergone emergency heart surgery and had resided in the cardiothoracic surgical ward for ≥6 days following transfer from the ICU; all expected to be discharged from the hospital within 3 days. Semi-structured, face-to-face interviews were conducted in private after the patients had been transferred to the cardiothoracic surgical wards. Audiotaped interviews were transcribed and analysed using content analysis. Data analysis identified four themes, which represented different recovery stages: sudden and serious symptoms, nightmares and vivid dreams, physical and emotional disturbances, and establishing a new life after emergency surgery. A fifth theme, support for a new lifestyle, occurred between the four stages. Participants experienced symptoms of physical and psychological stress during the early recovery stages following emergency heart surgery. A lack of understanding of the process of recovery increased these difficulties; participants wanted and needed multidisciplinary care and education. Emergency heart surgery does not allow healthcare professionals to inform patients of what to expect post-surgery. Our findings suggest that rather than waiting until discharge to offer disease information and treatment plans, multidisciplinary care should be initiated as soon as possible to facilitate recovery. Copyright © 2017 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.

  9. [Guided maxillofacial surgery: Simulation and surgery aided by stereolithographic guides and custom-made miniplates.

    PubMed

    Philippe, B

    2013-08-05

    We present a new model of guided surgery, exclusively using computer assistance, from the preoperative planning of osteotomies to the actual surgery with the aid of stereolithographic cutting guides and osteosynthetic miniplates designed and made preoperatively, using custom-made titanium miniplates thanks to direct metal laser sintering. We describe the principles that guide the designing and industrial manufacturing of this new type of osteosynthesis miniplates. The surgical procedure is described step-by-step using several representative cases of dento-maxillofacial dysmorphosis. The encouraging short-term results demonstrate the wide range of application of this new technology for cranio-maxillofacial surgery, whatever the type of osteotomy performed, and for plastic reconstructive surgery. Copyright © 2013. Published by Elsevier Masson SAS.

  10. The McGill simulator for endoscopic sinus surgery (MSESS): a validation study.

    PubMed

    Varshney, Rickul; Frenkiel, Saul; Nguyen, Lily H P; Young, Meredith; Del Maestro, Rolando; Zeitouni, Anthony; Saad, Elias; Funnell, W Robert J; Tewfik, Marc A

    2014-10-24

    Endoscopic sinus surgery (ESS) is a technically challenging procedure, associated with a significant risk of complications. Virtual reality simulation has demonstrated benefit in many disciplines as an important educational tool for surgical training. Within the field of rhinology, there is a lack of ESS simulators with appropriate validity evidence supporting their integration into residency education. The objectives of this study are to evaluate the acceptability, perceived realism and benefit of the McGill Simulator for Endoscopic Sinus Surgery (MSESS) among medical students, otolaryngology residents and faculty, and to present evidence supporting its ability to differentiate users based on their level of training through the performance metrics. 10 medical students, 10 junior residents, 10 senior residents and 3 expert sinus surgeons performed anterior ethmoidectomies, posterior ethmoidectomies and wide sphenoidotomies on the MSESS. Performance metrics related to quality (e.g. percentage of tissue removed), efficiency (e.g. time, path length, bimanual dexterity, etc.) and safety (e.g. contact with no-go zones, maximum applied force, etc.) were calculated. All users completed a post-simulation questionnaire related to realism, usefulness and perceived benefits of training on the MSESS. The MSESS was found to be realistic and useful for training surgical skills with scores of 7.97 ± 0.29 and 8.57 ± 0.69, respectively on a 10-point rating scale. Most students and residents (29/30) believed that it should be incorporated into their curriculum. There were significant differences between novice surgeons (10 medical students and 10 junior residents) and senior surgeons (10 senior residents and 3 sinus surgeons) in performance metrics related to quality (p < 0.05), efficiency (p < 0.01) and safety (p < 0.05). The MSESS demonstrated initial evidence supporting its use for residency education. This simulator may be a potential resource to help fill the void in endoscopic sinus surgery training.

  11. Learning to perceive haptic distance-to-break in the presence of friction.

    PubMed

    Altenhoff, Bliss M; Pagano, Christopher C; Kil, Irfan; Burg, Timothy C

    2017-02-01

    Two experiments employed attunement and calibration training to investigate whether observers are able to identify material break points in compliant materials through haptic force application. The task required participants to attune to a recently identified haptic invariant, distance-to-break (DTB), rather than haptic stimulation not related to the invariant, including friction. In the first experiment participants probed simulated force-displacement relationships (materials) under 3 levels of friction with the aim of pushing as far as possible into the materials without breaking them. In a second experiment a different set of participants pulled on the materials. Results revealed that participants are sensitive to DTB for both pushing and pulling, even in the presence of varying levels of friction, and this sensitivity can be improved through training. The results suggest that the simultaneous presence of friction may assist participants in perceiving DTB. Potential applications include the development of haptic training programs for minimally invasive (laparoscopic) surgery to reduce accidental tissue damage. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Residency training in aesthetic surgery: maximizing the residents' experience.

    PubMed

    Stadelmann, W K; Rapaport, D P; Payne, W; Shons, A R; Krizek, T J

    1998-06-01

    Plastic surgery residency programs often rely on a residents' aesthetic clinic to help train residents in aesthetic surgery. The television media may be used to help boost interest in such clinics. We report our experience with a local television station in helping to produce a "health segment" broadcast that chronicled the experience of an aesthetic patient in the residents' aesthetic clinic. As a result of this broadcast, approximately 150 people responded by telephone and subsequently attended a series of seminars designed to screen patients and educate the audience about the aesthetic clinic. A total of 121 patients (112 women and 9 men) signed up for personal consultations. The age distribution and requested procedures are presented. From the data, we conclude that there is a healthy demand for reduced-fee plastic surgery procedures performed by residents in plastic surgery. The number and variety of cases generated are sufficiently diverse to provide a well-rounded operative experience. The pursuit of media coverage of a not-for-profit clinic has the potential for generating large patient volume. Such efforts, although very attractive, are not without their own risks, which must be taken into consideration before engaging the media in the public interest arena.

  13. Virtual operating room for team training in surgery.

    PubMed

    Abelson, Jonathan S; Silverman, Elliott; Banfelder, Jason; Naides, Alexandra; Costa, Ricardo; Dakin, Gregory

    2015-09-01

    We proposed to develop a novel virtual reality (VR) team training system. The objective of this study was to determine the feasibility of creating a VR operating room to simulate a surgical crisis scenario and evaluate the simulator for construct and face validity. We modified ICE STORM (Integrated Clinical Environment; Systems, Training, Operations, Research, Methods), a VR-based system capable of modeling a variety of health care personnel and environments. ICE STORM was used to simulate a standardized surgical crisis scenario, whereby participants needed to correct 4 elements responsible for loss of laparoscopic visualization. The construct and face validity of the environment were measured. Thirty-three participants completed the VR simulation. Attendings completed the simulation in less time than trainees (271 vs 201 seconds, P = .032). Participants felt the training environment was realistic and had a favorable impression of the simulation. All participants felt the workload of the simulation was low. Creation of a VR-based operating room for team training in surgery is feasible and can afford a realistic team training environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Creation and Global Deployment of a Mobile, Application-Based Cognitive Simulator for Cardiac Surgical Procedures.

    PubMed

    Brewer, Zachary E; Ogden, William David; Fann, James I; Burdon, Thomas A; Sheikh, Ahmad Y

    Several modern learning frameworks (eg, cognitive apprenticeship, anchored instruction, and situated cognition) posit the utility of nontraditional methods for effective experiential learning. Thus, development of novel educational tools emphasizing the cognitive framework of operative sequences may be of benefit to surgical trainees. We propose the development and global deployment of an effective, mobile cognitive cardiac surgical simulator. In methods, 16 preclinical medical students were assessed. Overall, 4 separate surgical modules (sternotomy, cannulation, decannulation, and sternal closure) were created utilizing the Touch Surgery (London, UK) platform. Modules were made available to download free of charge for use on mobile devices. Usage data were collected over a 6-month period. Educational efficacy of the modules was evaluated by randomizing a cohort of medical students to either module usage or traditional, reading-based self-study, followed by a multiple-choice learning assessment tool. In results, downloads of the simulator achieved global penetrance, with highest usage in the USA, Brazil, Italy, UK, and India. Overall, 5368 unique users conducted a total of 1971 hours of simulation. Evaluation of the medical student cohort revealed significantly higher assessment scores in those randomized to module use versus traditional reading (75% ± 9% vs 61% ± 7%, respectively; P < 0.05). In conclusion, this study represents the first effort to create a mobile, interactive cognitive simulator for cardiac surgery. Simulators of this type may be effective for the training and assessment of surgical students. We investigated whether an interactive, mobile-computing-based cognitive task simulator for cardiac surgery could be developed, deployed, and validated. Our findings suggest that such simulators may be a useful learning tool. Copyright © 2016. Published by Elsevier Inc.

  15. A virtual reality endoscopic simulator augments general surgery resident cancer education as measured by performance improvement.

    PubMed

    White, Ian; Buchberg, Brian; Tsikitis, V Liana; Herzig, Daniel O; Vetto, John T; Lu, Kim C

    2014-06-01

    Colorectal cancer is the second most common cause of death in the USA. The need for screening colonoscopies, and thus adequately trained endoscopists, particularly in rural areas, is on the rise. Recent increases in required endoscopic cases for surgical resident graduation by the Surgery Residency Review Committee (RRC) further emphasize the need for more effective endoscopic training during residency to determine if a virtual reality colonoscopy simulator enhances surgical resident endoscopic education by detecting improvement in colonoscopy skills before and after 6 weeks of formal clinical endoscopic training. We conducted a retrospective review of prospectively collected surgery resident data on an endoscopy simulator. Residents performed four different clinical scenarios on the endoscopic simulator before and after a 6-week endoscopic training course. Data were collected over a 5-year period from 94 different residents performing a total of 795 colonoscopic simulation scenarios. Main outcome measures included time to cecal intubation, "red out" time, and severity of simulated patient discomfort (mild, moderate, severe, extreme) during colonoscopy scenarios. Average time to intubation of the cecum was 6.8 min for those residents who had not undergone endoscopic training versus 4.4 min for those who had undergone endoscopic training (p < 0.001). Residents who could be compared against themselves (pre vs. post-training), cecal intubation times decreased from 7.1 to 4.3 min (p < 0.001). Post-endoscopy rotation residents caused less severe discomfort during simulated colonoscopy than pre-endoscopy rotation residents (4 vs. 10%; p = 0.004). Virtual reality endoscopic simulation is an effective tool for both augmenting surgical resident endoscopy cancer education and measuring improvement in resident performance after formal clinical endoscopic training.

  16. Open surgical simulation--a review.

    PubMed

    Davies, Jennifer; Khatib, Manaf; Bello, Fernando

    2013-01-01

    Surgical simulation has benefited from a surge in interest over the last decade as a result of the increasing need for a change in the traditional apprentice model of teaching surgery. However, despite the recent interest in surgical simulation as an adjunct to surgical training, most of the literature focuses on laparoscopic, endovascular, and endoscopic surgical simulation with very few studies scrutinizing open surgical simulation and its benefit to surgical trainees. The aim of this review is to summarize the current standard of available open surgical simulators and to review the literature on the benefits of open surgical simulation. Open surgical simulators currently used include live animals, cadavers, bench models, virtual reality, and software-based computer simulators. In the current literature, there are 18 different studies (including 6 randomized controlled trials and 12 cohort studies) investigating the efficacy of open surgical simulation using live animal, bench, and cadaveric models in many surgical specialties including general, cardiac, trauma, vascular, urologic, and gynecologic surgery. The current open surgical simulation studies show, in general, a significant benefit of open surgical simulation in developing the surgical skills of surgical trainees. However, these studies have their limitations including a low number of participants, variable assessment standards, and a focus on short-term results often with no follow-up assessment. The skills needed for open surgical procedures are the essential basis that a surgical trainee needs to grasp before attempting more technical procedures such as laparoscopic procedures. In this current climate of medical practice with reduced hours of surgical exposure for trainees and where the patient's safety and outcome is key, open surgical simulation is a promising adjunct to modern surgical training, filling the void between surgeons being trained in a technique and a surgeon achieving fluency in that open surgical procedure. Better quality research is needed into the benefits of open surgical simulation, and this would hopefully stimulate further development of simulators with more accurate and objective assessment tools. © 2013 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  17. Robotics applied in laparoscopic kidney surgery: the Yonsei University experience of 127 cases.

    PubMed

    Lorenzo, Enrique Ian S; Jeong, Wooju; Oh, Cheol Kyu; Chung, Byung Ha; Choi, Young Deuk; Rha, Koon Ho

    2011-01-01

    We report our experience on 127 kidney surgeries with the da Vinci surgical system and show the feasibility of a robotics application in a variety of kidney surgeries by both a laparoscopically-trained and a laparoscopically-naïve surgeon. Clinical data of patients who underwent kidney surgery with the da Vinci surgical system from September 2006 to April 2009 were reviewed. Data acquired from medical records included patient demographics, operative time, estimated blood loss (EBL), incidence of intraoperative complication, duration of hospital stay, blood transfusion rate, oncological outcomes, and follow-up results. One-hundred twenty-seven kidney surgeries have been conducted with the da Vinci surgical system at our institution. Three urologists--1 with formal endourology training, 1 with laparoscopic experience, and 1 laparoscopically naïve--have used it for a variety of procedures involving the kidney. The cases include 65 partial nephrectomies (RPN), 38 radical nephrectomies (RRN), and 24 nephroureterectomies with bladder cuff (RNU). Results on operative time, EBL, incidence of intraoperative injury, duration of hospital stay, and blood transfusion rate are comparable with contemporary studies. Robotics application in kidney surgery is a viable option for various procedures. Our experience shows it can be safely and effectively conducted by both laparoscopically-trained and laparoscopically-naïve surgeons once they are accustomed to the robotics system. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Night firing range performance following photorefractive keratectomy and laser in situ keratomileusis.

    PubMed

    Bower, Kraig S; Burka, Jenna M; Subramanian, Prem S; Stutzman, Richard D; Mines, Michael J; Rabin, Jeff C

    2006-06-01

    To investigate the effect of laser refractive surgery on night weapons firing. Firing range performance was measured at baseline and postoperatively following photorefractive keratectomy and laser in situ keratomileusis. Subjects fired the M-16A2 rifle with night vision goggles (NVG) at starlight, and with iron sight (simulated dusk). Scores, before and after surgery, were compared for both conditions. No subject was able to acquire the target using iron sight without correction before surgery. After surgery, the scores without correction (95.9 +/- 4.7) matched the preoperative scores with correction (94.3 +/- 4.0; p = 0.324). Uncorrected NVG scores after surgery (96.4 +/- 3.1) exceeded the corrected scores before surgery (91.4 +/- 10.2), but this trend was not statistically significant (p = 0.063). Night weapon firing with both the iron sight and the NVG sight improved after surgery. This study supports the operational benefits of refractive surgery in the military.

  19. [A new concept in digestive surgery: the computer assisted surgical procedure, from virtual reality to telemanipulation].

    PubMed

    Marescaux, J; Clément, J M; Nord, M; Russier, Y; Tassetti, V; Mutter, D; Cotin, S; Ayache, N

    1997-11-01

    Surgical simulation increasingly appears to be an essential aspect of tomorrow's surgery. The development of a hepatic surgery simulator is an advanced concept calling for a new writing system which will transform the medical world: virtual reality. Virtual reality extends the perception of our five senses by representing more than the real state of things by the means of computer sciences and robotics. It consists of three concepts: immersion, navigation and interaction. Three reasons have led us to develop this simulator: the first is to provide the surgeon with a comprehensive visualisation of the organ. The second reason is to allow for planning and surgical simulation that could be compared with the detailed flight-plan for a commercial jet pilot. The third lies in the fact that virtual reality is an integrated part of the concept of computer assisted surgical procedure. The project consists of a sophisticated simulator which has to include five requirements: visual fidelity, interactivity, physical properties, physiological properties, sensory input and output. In this report we will describe how to get a realistic 3D model of the liver from bi-dimensional 2D medical images for anatomical and surgical training. The introduction of a tumor and the consequent planning and virtual resection is also described, as are force feedback and real-time interaction.

  20. Patient-specific simulation of the intrastromal ring segment implantation in corneas with keratoconus.

    PubMed

    Lago, M A; Rupérez, M J; Monserrat, C; Martínez-Martínez, F; Martínez-Sanchis, S; Larra, E; Díez-Ajenjo, M A; Peris-Martínez, C

    2015-11-01

    The purpose of this study was the simulation of the implantation of intrastromal corneal-ring segments for patients with keratoconus. The aim of the study was the prediction of the corneal curvature recovery after this intervention. Seven patients with keratoconus diagnosed and treated by implantation of intrastromal corneal-ring segments were enrolled in the study. The 3D geometry of the cornea of each patient was obtained from its specific topography and a hyperelastic model was assumed to characterize its mechanical behavior. To simulate the intervention, the intrastromal corneal-ring segments were modeled and placed at the same location at which they were placed in the surgery. The finite element method was then used to obtain a simulation of the deformation of the cornea after the ring segment insertion. Finally, the predicted curvature was compared with the real curvature after the intervention. The simulation of the ring segment insertion was validated comparing the curvature change with the data after the surgery. Results showed a flattening of the cornea which was in consonance with the real improvement of the corneal curvature. The mean difference obtained was of 0.74 mm using properties of healthy corneas. For the first time, a patient-specific model of the cornea has been used to predict the outcomes of the surgery after the intrastromal corneal-ring segments implantation in real patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

Top