Sample records for surprisingly complex behavior

  1. A Case Study of the De Novo Evolution of a Complex Odometric Behavior in Digital Organisms

    PubMed Central

    Grabowski, Laura M.; Bryson, David M.; Dyer, Fred C.; Pennock, Robert T.; Ofria, Charles

    2013-01-01

    Investigating the evolution of animal behavior is difficult. The fossil record leaves few clues that would allow us to recapitulate the path that evolution took to build a complex behavior, and the large population sizes and long time scales required prevent us from re-evolving such behaviors in a laboratory setting. We present results of a study in which digital organisms–self-replicating computer programs that are subject to mutations and selection–evolved in different environments that required information about past experience for fitness-enhancing behavioral decisions. One population evolved a mechanism for step-counting, a surprisingly complex odometric behavior that was only indirectly related to enhancing fitness. We examine in detail the operation of the evolved mechanism and the evolutionary transitions that produced this striking example of a complex behavior. PMID:23577113

  2. The unforeseeable hammerhead ribozyme

    PubMed Central

    Hammann, Christian

    2009-01-01

    Despite its small size, the complex behavior of the hammerhead ribozyme keeps surprising us, even more than 20 years after its discovery. Here, we summarize recent developments in the field, in particular the discovery of the first split hammerhead ribozyme. PMID:20948624

  3. Altruism: A natural strategy for enhancing survival

    NASA Astrophysics Data System (ADS)

    Rozenfeld, Alejandro F.; Luis Gruver, José; Albano, Ezequiel V.; Havlin, Shlomo

    2006-09-01

    We study the influence of altruistic behavior in a prey-predator model permitting the preys to commit suicide by confronting the predators instead of escaping. Surprising, altruistic behavior at microscopic (local) scale, leads to the emergence of new complex macroscopic (global) phenomena characterized by dramatic changes in the dynamic topology of the prey-predator spatiotemporal distribution, yielding spiral patterns. We show that such dynamics enhances the prey's survivability.

  4. Describing and understanding behavioral responses to multiple stressors and multiple stimuli.

    PubMed

    Hale, Robin; Piggott, Jeremy J; Swearer, Stephen E

    2017-01-01

    Understanding the effects of environmental change on natural ecosystems is a major challenge, particularly when multiple stressors interact to produce unexpected "ecological surprises" in the form of complex, nonadditive effects that can amplify or reduce their individual effects. Animals often respond behaviorally to environmental change, and multiple stressors can have both population-level and community-level effects. However, the individual, not combined, effects of stressors on animal behavior are commonly studied. There is a need to understand how animals respond to the more complex combinations of stressors that occur in nature, which requires a systematic and rigorous approach to quantify the various potential behavioral responses to the independent and interactive effects of stressors. We illustrate a robust, systematic approach for understanding behavioral responses to multiple stressors based on integrating schemes used to quantitatively classify interactions in multiple-stressor research and to qualitatively view interactions between multiple stimuli in behavioral experiments. We introduce and unify the two frameworks, highlighting their conceptual and methodological similarities, and use four case studies to demonstrate how this unification could improve our interpretation of interactions in behavioral experiments and guide efforts to manage the effects of multiple stressors. Our unified approach: (1) provides behavioral ecologists with a more rigorous and systematic way to quantify how animals respond to interactions between multiple stimuli, an important theoretical advance, (2) helps us better understand how animals behave when they encounter multiple, potentially interacting stressors, and (3) contributes more generally to the understanding of "ecological surprises" in multiple stressors research.

  5. Sharper Graph-Theoretical Conditions for the Stabilization of Complex Reaction Networks

    PubMed Central

    Knight, Daniel; Shinar, Guy; Feinberg, Martin

    2015-01-01

    Across the landscape of all possible chemical reaction networks there is a surprising degree of stable behavior, despite what might be substantial complexity and nonlinearity in the governing differential equations. At the same time there are reaction networks, in particular those that arise in biology, for which richer behavior is exhibited. Thus, it is of interest to understand network-structural features whose presence enforces dull, stable behavior and whose absence permits the dynamical richness that might be necessary for life. We present conditions on a network’s Species-Reaction Graph that ensure a high degree of stable behavior, so long as the kinetic rate functions satisfy certain weak and natural constraints. These graph-theoretical conditions are considerably more incisive than those reported earlier. PMID:25600138

  6. Experiential Learning in Rodents: Past Experience Enables Rapid Learning and Localized Encoding in Hippocampus

    ERIC Educational Resources Information Center

    Cox, Conor D.; Palmer, Linda C.; Pham, Danielle T.; Trieu, Brian H.; Gall, Christine M.; Lynch, Gary

    2017-01-01

    Humans routinely use past experience with complexity to deal with novel, challenging circumstances. This fundamental aspect of real-world behavior has received surprisingly little attention in animal studies, and the underlying brain mechanisms are unknown. The present experiments tested for transfer from past experience in rats and then used…

  7. Phase transition of Surprise optimization in community detection

    NASA Astrophysics Data System (ADS)

    Xiang, Ju; Tang, Yan-Ni; Gao, Yuan-Yuan; Liu, Lang; Hao, Yi; Li, Jian-Ming; Zhang, Yan; Chen, Shi

    2018-02-01

    Community detection is one of important issues in the research of complex networks. In literatures, many methods have been proposed to detect community structures in the networks, while they also have the scope of application themselves. In this paper, we investigate an important measure for community detection, Surprise (Aldecoa and Marín, Sci. Rep. 3 (2013) 1060), by focusing on the critical points in the merging and splitting of communities. We firstly analyze the critical behavior of Surprise and give the phase diagrams in community-partition transition. The results show that the critical number of communities for Surprise has a super-exponential increase with the increase of the link-density difference, while it is close to that of Modularity for small difference between inter- and intra-community link densities. By directly optimizing Surprise, we experimentally test the results on various networks, following a series of comparisons with other classical methods, and further find that the heterogeneity of networks could quicken the splitting of communities. On the whole, the results show that Surprise tends to split communities due to various reasons such as the heterogeneity in link density, degree and community size, and it thus exhibits higher resolution than other methods, e.g., Modularity, in community detection. Finally, we provide several approaches for enhancing Surprise.

  8. Coupled disease-behavior dynamics on complex networks: A review

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  9. Video Views and Reviews: Neurulation and the Fashioning of the Vertebrate Central Nervous System

    ERIC Educational Resources Information Center

    Watters, Christopher

    2006-01-01

    The central nervous system (CNS) is the first adult organ system to appear during vertebrate development, and the process of its emergence is commonly called neurulation. Such biological "urgency" is perhaps not surprising given the structural and functional complexity of the CNS and the importance of neural function to adaptive behavior and…

  10. Not Noisy, Just Wrong: The Role of Suboptimal Inference in Behavioral Variability

    PubMed Central

    Beck, Jeffrey M.; Ma, Wei Ji; Pitkow, Xaq; Latham, Peter E.; Pouget, Alexandre

    2015-01-01

    Behavior varies from trial to trial even when the stimulus is maintained as constant as possible. In many models, this variability is attributed to noise in the brain. Here, we propose that there is another major source of variability: suboptimal inference. Importantly, we argue that in most tasks of interest, and particularly complex ones, suboptimal inference is likely to be the dominant component of behavioral variability. This perspective explains a variety of intriguing observations, including why variability appears to be larger on the sensory than on the motor side, and why our sensors are sometimes surprisingly unreliable. PMID:22500627

  11. Coupled disease-behavior dynamics on complex networks: A review.

    PubMed

    Wang, Zhen; Andrews, Michael A; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Actin Out: Regulation of the Synaptic Cytoskeleton

    PubMed Central

    Spence, Erin F.; Soderling, Scott H.

    2015-01-01

    The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during spinogenesis and experience-dependent plasticity. Multiple mutations associated with human neurodevelopmental and psychiatric disorders involve genes that encode regulators of the synaptic cytoskeleton. A major, unresolved question is how the disruption of specific actin filament structures leads to the onset and progression of complex synaptic and behavioral phenotypes. This review will cover established and emerging mechanisms of actin cytoskeletal remodeling and how this influences specific aspects of spine biology that are implicated in disease. PMID:26453304

  13. Evaluating Flight Crew Operator Manual Documentation

    NASA Technical Reports Server (NTRS)

    Sherry, Lance; Feary, Michael

    1998-01-01

    Aviation and cognitive science researchers have identified situations in which the pilot s expectations for the behavior of the avionics are not matched by the actual behavior of the avionics. Researchers have attributed these "automation surprises" to the complexity of the avionics mode logic, the absence of complete training, limitations in cockpit displays, and ad-hoc conceptual models of the avionics. Complete canonical rule-based descriptions of the behavior of the autopilot provide the basis for understanding the perceived complexity of the autopilots, the differences between the pilot s and autopilot s conceptual models, and the limitations in training materials and cockpit displays. This paper compares the behavior of the autopilot Vertical Speed/Flight Path Angle (VS-FPA) mode as described in the Flight Crew Operators Manual (FCOM) and the actual behavior of the VS-FPA mode defined in the autopilot software. This example demonstrates the use of the Operational Procedure Model (OPM) as a method for using the requirements specification for the design of the software logic as information requirements for training.

  14. Evidence for surprise minimization over value maximization in choice behavior

    PubMed Central

    Schwartenbeck, Philipp; FitzGerald, Thomas H. B.; Mathys, Christoph; Dolan, Ray; Kronbichler, Martin; Friston, Karl

    2015-01-01

    Classical economic models are predicated on the idea that the ultimate aim of choice is to maximize utility or reward. In contrast, an alternative perspective highlights the fact that adaptive behavior requires agents’ to model their environment and minimize surprise about the states they frequent. We propose that choice behavior can be more accurately accounted for by surprise minimization compared to reward or utility maximization alone. Minimizing surprise makes a prediction at variance with expected utility models; namely, that in addition to attaining valuable states, agents attempt to maximize the entropy over outcomes and thus ‘keep their options open’. We tested this prediction using a simple binary choice paradigm and show that human decision-making is better explained by surprise minimization compared to utility maximization. Furthermore, we replicated this entropy-seeking behavior in a control task with no explicit utilities. These findings highlight a limitation of purely economic motivations in explaining choice behavior and instead emphasize the importance of belief-based motivations. PMID:26564686

  15. Cyclic Game Dynamics Driven by Iterated Reasoning

    PubMed Central

    Frey, Seth; Goldstone, Robert L.

    2013-01-01

    Recent theories from complexity science argue that complex dynamics are ubiquitous in social and economic systems. These claims emerge from the analysis of individually simple agents whose collective behavior is surprisingly complicated. However, economists have argued that iterated reasoning–what you think I think you think–will suppress complex dynamics by stabilizing or accelerating convergence to Nash equilibrium. We report stable and efficient periodic behavior in human groups playing the Mod Game, a multi-player game similar to Rock-Paper-Scissors. The game rewards subjects for thinking exactly one step ahead of others in their group. Groups that play this game exhibit cycles that are inconsistent with any fixed-point solution concept. These cycles are driven by a “hopping” behavior that is consistent with other accounts of iterated reasoning: agents are constrained to about two steps of iterated reasoning and learn an additional one-half step with each session. If higher-order reasoning can be complicit in complex emergent dynamics, then cyclic and chaotic patterns may be endogenous features of real-world social and economic systems. PMID:23441191

  16. Beyond Contagion: Reality Mining Reveals Complex Patterns of Social Influence.

    PubMed

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2015-01-01

    Contagion, a concept from epidemiology, has long been used to characterize social influence on people's behavior and affective (emotional) states. While it has revealed many useful insights, it is not clear whether the contagion metaphor is sufficient to fully characterize the complex dynamics of psychological states in a social context. Using wearable sensors that capture daily face-to-face interaction, combined with three daily experience sampling surveys, we collected the most comprehensive data set of personality and emotion dynamics of an entire community of work. From this high-resolution data about actual (rather than self-reported) face-to-face interaction, a complex picture emerges where contagion (that can be seen as adaptation of behavioral responses to the behavior of other people) cannot fully capture the dynamics of transitory states. We found that social influence has two opposing effects on states: adaptation effects that go beyond mere contagion, and complementarity effects whereby individuals' behaviors tend to complement the behaviors of others. Surprisingly, these effects can exhibit completely different directions depending on the stable personality or emotional dispositions (stable traits) of target individuals. Our findings provide a foundation for richer models of social dynamics, and have implications on organizational engineering and workplace well-being.

  17. A Toolset for Supporting Iterative Human Automation: Interaction in Design

    NASA Technical Reports Server (NTRS)

    Feary, Michael S.

    2010-01-01

    The addition of automation has greatly extended humans' capability to accomplish tasks, including those that are difficult, complex and safety critical. The majority of Human - Automation Interacton (HAl) results in more efficient and safe operations, ho,,:,ever ertain unpected atomatlon behaviors or "automation surprises" can be frustrating and, In certain safety critical operations (e.g. transporttion, manufacturing control, medicine), may result in injuries or. the loss of life.. (Mellor, 1994; Leveson, 1995; FAA, 1995; BASI, 1998; Sheridan, 2002). This papr describes he development of a design tool that enables on the rapid development and evaluation. of automaton prototypes. The ultimate goal of the work is to provide a design platform upon which automation surprise vulnerability analyses can be integrated.

  18. Behavioral Genetic Toolkits: Toward the Evolutionary Origins of Complex Phenotypes.

    PubMed

    Rittschof, C C; Robinson, G E

    2016-01-01

    The discovery of toolkit genes, which are highly conserved genes that consistently regulate the development of similar morphological phenotypes across diverse species, is one of the most well-known observations in the field of evolutionary developmental biology. Surprisingly, this phenomenon is also relevant for a wide array of behavioral phenotypes, despite the fact that these phenotypes are highly complex and regulated by many genes operating in diverse tissues. In this chapter, we review the use of the toolkit concept in the context of behavior, noting the challenges of comparing behaviors and genes across diverse species, but emphasizing the successes in identifying genetic toolkits for behavior; these successes are largely attributable to the creative research approaches fueled by advances in behavioral genomics. We have two general goals: (1) to acknowledge the groundbreaking progress in this field, which offers new approaches to the difficult but exciting challenge of understanding the evolutionary genetic basis of behaviors, some of the most complex phenotypes known, and (2) to provide a theoretical framework that encompasses the scope of behavioral genetic toolkit studies in order to clearly articulate the research questions relevant to the toolkit concept. We emphasize areas for growth and highlight the emerging approaches that are being used to drive the field forward. Behavioral genetic toolkit research has elevated the use of integrative and comparative approaches in the study of behavior, with potentially broad implications for evolutionary biologists and behavioral ecologists alike. © 2016 Elsevier Inc. All rights reserved.

  19. Complex Ordered Patterns in Mechanical Instability Induced Geometrically Frustrated Triangular Cellular Structures

    NASA Astrophysics Data System (ADS)

    Kang, Sung Hoon; Shan, Sicong; Košmrlj, Andrej; Noorduin, Wim L.; Shian, Samuel; Weaver, James C.; Clarke, David R.; Bertoldi, Katia

    2014-03-01

    Geometrical frustration arises when a local order cannot propagate throughout the space because of geometrical constraints. This phenomenon plays a major role in many systems leading to disordered ground-state configurations. Here, we report a theoretical and experimental study on the behavior of buckling-induced geometrically frustrated triangular cellular structures. To our surprise, we find that buckling induces complex ordered patterns which can be tuned by controlling the porosity of the structures. Our analysis reveals that the connected geometry of the cellular structure plays a crucial role in the generation of ordered states in this frustrated system.

  20. Team play with a powerful and independent agent: operational experiences and automation surprises on the Airbus A-320.

    PubMed

    Sarter, N B; Woods, D D

    1997-12-01

    Research and operational experience have shown that one of the major problems with pilot-automation interaction is a lack of mode awareness (i.e., the current and future status and behavior of the automation). As a result, pilots sometimes experience so-called automation surprises when the automation takes an unexpected action or fails to behave as anticipated. A lack of mode awareness and automation surprises can he viewed as symptoms of a mismatch between human and machine properties and capabilities. Changes in automation design can therefore he expected to affect the likelihood and nature of problems encountered by pilots. Previous studies have focused exclusively on early generation "glass cockpit" aircraft that were designed based on a similar automation philosophy. To find out whether similar difficulties with maintaining mode awareness are encountered on more advanced aircraft, a corpus of automation surprises was gathered from pilots of the Airbus A-320, an aircraft characterized by high levels of autonomy, authority, and complexity. To understand the underlying reasons for reported breakdowns in human-automation coordination, we also asked pilots about their monitoring strategies and their experiences with and attitude toward the unique design of flight controls on this aircraft.

  1. Team play with a powerful and independent agent: operational experiences and automation surprises on the Airbus A-320

    NASA Technical Reports Server (NTRS)

    Sarter, N. B.; Woods, D. D.

    1997-01-01

    Research and operational experience have shown that one of the major problems with pilot-automation interaction is a lack of mode awareness (i.e., the current and future status and behavior of the automation). As a result, pilots sometimes experience so-called automation surprises when the automation takes an unexpected action or fails to behave as anticipated. A lack of mode awareness and automation surprises can he viewed as symptoms of a mismatch between human and machine properties and capabilities. Changes in automation design can therefore he expected to affect the likelihood and nature of problems encountered by pilots. Previous studies have focused exclusively on early generation "glass cockpit" aircraft that were designed based on a similar automation philosophy. To find out whether similar difficulties with maintaining mode awareness are encountered on more advanced aircraft, a corpus of automation surprises was gathered from pilots of the Airbus A-320, an aircraft characterized by high levels of autonomy, authority, and complexity. To understand the underlying reasons for reported breakdowns in human-automation coordination, we also asked pilots about their monitoring strategies and their experiences with and attitude toward the unique design of flight controls on this aircraft.

  2. Adaptive and selective seed abortion reveals complex conditional decision making in plants.

    PubMed

    Meyer, Katrin M; Soldaat, Leo L; Auge, Harald; Thulke, Hans-Hermann

    2014-03-01

    Behavior is traditionally attributed to animals only. Recently, evidence for plant behavior is accumulating, mostly from plant physiological studies. Here, we provide ecological evidence for complex plant behavior in the form of seed abortion decisions conditional on internal and external cues. We analyzed seed abortion patterns of barberry plants exposed to seed parasitism and different environmental conditions. Without abortion, parasite infestation of seeds can lead to loss of all seeds in a fruit. We statistically tested a series of null models with Monte Carlo simulations to establish selectivity and adaptiveness of the observed seed abortion patterns. Seed abortion was more frequent in parasitized fruits and fruits from dry habitats. Surprisingly, seed abortion occurred with significantly greater probability if there was a second intact seed in the fruit. This strategy provides a fitness benefit if abortion can prevent a sibling seed from coinfestation and if nonabortion of an infested but surviving single seed saves resources invested in the fruit coat. Ecological evidence for complex decision making in plants thus includes a structural memory (the second seed), simple reasoning (integration of inner and outer conditions), conditional behavior (abortion), and anticipation of future risks (seed predation).

  3. Selective predation and productivity jointly drive complex behavior in host-parasite systems.

    PubMed

    Hall, Spencer R; Duffy, Meghan A; Cáceres, Carla E

    2005-01-01

    Successful invasion of a parasite into a host population and resulting host-parasite dynamics can depend crucially on other members of a host's community such as predators. We do not fully understand how predation intensity and selectivity shape host-parasite dynamics because the interplay between predator density, predator foraging behavior, and ecosystem productivity remains incompletely explored. By modifying a standard susceptible-infected model, we show how productivity can modulate complex behavior induced by saturating and selective foraging behavior of predators in an otherwise stable host-parasite system. When predators strongly prefer parasitized hosts, the host-parasite system can oscillate, but predators can also create alternative stable states, Allee effects, and catastrophic extinction of parasites. In the latter three cases, parasites have difficulty invading and/or persisting in ecosystems. When predators are intermediately selective, these more complex behaviors become less important, but the host-parasite system can switch from stable to oscillating and then back to stable states along a gradient of predator control. Surprisingly, at higher productivity, predators that neutrally select or avoid parasitized hosts can catalyze extinction of both hosts and parasites. Thus, synergy between two enemies can end disastrously for the host. Such diverse outcomes underscore the crucial importance of the community and ecosystem context in which host-parasite interactions occur.

  4. Temporality of couple conflict and relationship perceptions.

    PubMed

    Johnson, Matthew D; Horne, Rebecca M; Hardy, Nathan R; Anderson, Jared R

    2018-05-03

    Using 5 waves of longitudinal survey data gathered from 3,405 couples, the present study investigates the temporal associations between self-reported couple conflict (frequency and each partner's constructive and withdrawing behaviors) and relationship perceptions (satisfaction and perceived instability). Autoregressive cross-lagged model results revealed couple conflict consistently predicted future relationship perceptions: More frequent conflict and withdrawing behaviors and fewer constructive behaviors foretold reduced satisfaction and conflict frequency and withdrawal heightened perceived instability. Relationship perceptions also shaped future conflict, but in surprising ways: Perceptions of instability were linked with less frequent conflict, and male partner instability predicted fewer withdrawing behaviors for female partners. Higher satisfaction from male partners also predicted more frequent and less constructive conflict behavior in the future. These findings illustrate complex bidirectional linkages between relationship perceptions and couple conflict behaviors in the development of couple relations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Distinct medial temporal networks encode surprise during motivation by reward versus punishment

    PubMed Central

    Murty, Vishnu P.; LaBar, Kevin S.; Adcock, R. Alison

    2016-01-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. PMID:26854903

  6. Distinct medial temporal networks encode surprise during motivation by reward versus punishment.

    PubMed

    Murty, Vishnu P; LaBar, Kevin S; Adcock, R Alison

    2016-10-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Of Fighting Flies, Mice, and Men: Are Some of the Molecular and Neuronal Mechanisms of Aggression Universal in the Animal Kingdom?

    PubMed

    Thomas, Amanda L; Davis, Shaun M; Dierick, Herman A

    2015-08-01

    Aggressive behavior is widespread in the animal kingdom, but the degree of molecular conservation between distantly related species is still unclear. Recent reports suggest that at least some of the molecular mechanisms underlying this complex behavior in flies show remarkable similarities with such mechanisms in mice and even humans. Surprisingly, some aspects of neuronal control of aggression also show remarkable similarity between these distantly related species. We will review these recent findings, address the evolutionary implications, and discuss the potential impact for our understanding of human diseases characterized by excessive aggression.

  8. Of Fighting Flies, Mice, and Men: Are Some of the Molecular and Neuronal Mechanisms of Aggression Universal in the Animal Kingdom?

    PubMed Central

    Dierick, Herman A.

    2015-01-01

    Aggressive behavior is widespread in the animal kingdom, but the degree of molecular conservation between distantly related species is still unclear. Recent reports suggest that at least some of the molecular mechanisms underlying this complex behavior in flies show remarkable similarities with such mechanisms in mice and even humans. Surprisingly, some aspects of neuronal control of aggression also show remarkable similarity between these distantly related species. We will review these recent findings, address the evolutionary implications, and discuss the potential impact for our understanding of human diseases characterized by excessive aggression. PMID:26312756

  9. Effect of homophily on network formation

    NASA Astrophysics Data System (ADS)

    Kim, Kibae; Altmann, Jörn

    2017-03-01

    Although there is much research on network formation based on the preferential attachment rule, the research did not come up with a formula that, on the one hand, can reproduce shapes of cumulative degree distributions of empirical complex networks and, on the other hand, can represent intuitively theories on individual behavior. In this paper, we propose a formula that closes this gap by integrating into the formula for the preferential attachment rule (i.e., a node with higher degree is more likely to gain a new link) a representation of the theory of individual behavior with respect to nodes preferring to connect to other nodes with similar attributes (i.e., homophily). Based on this formula, we simulate the shapes of cumulative degree distributions for different levels of homophily and five different seed networks. Our simulation results suggest that homophily and the preferential attachment rule interact for all five types of seed networks. Surprisingly, the resulting cumulative degree distribution in log-log scale always shifts from a concave shape to a convex shape, as the level of homophily gets larger. Therefore, our formula can explain intuitively why some of the empirical complex networks show a linear cumulative degree distribution in log-log scale while others show either a concave or convex shape. Furthermore, another major finding indicates that homophily makes people of a group richer than people outside this group, which is a surprising and significant finding.

  10. Causal role for the subthalamic nucleus in interrupting behavior

    PubMed Central

    Fife, Kathryn H; Gutierrez-Reed, Navarre A; Zell, Vivien; Bailly, Julie; Lewis, Christina M; Aron, Adam R; Hnasko, Thomas S

    2017-01-01

    Stopping or pausing in response to threats, conflicting information, or surprise is fundamental to behavior. Evidence across species has shown that the subthalamic nucleus (STN) is activated by scenarios involving stopping or pausing, yet evidence that the STN causally implements stops or pauses is lacking. Here we used optogenetics to activate or inhibit mouse STN to test its putative causal role. We first demonstrated that optogenetic stimulation of the STN excited its major projection targets. Next we showed that brief activation of STN projection neurons was sufficient to interrupt or pause a self-initiated bout of licking. Finally, we developed an assay in which surprise was used to interrupt licking, and showed that STN inhibition reduced the disruptive effect of surprise. Thus STN activation interrupts behavior, and blocking the STN blunts the interruptive effect of surprise. These results provide strong evidence that the STN is both necessary and sufficient for such forms of behavioral response suppression. DOI: http://dx.doi.org/10.7554/eLife.27689.001 PMID:28742497

  11. Evolutionary Computation for the Identification of Emergent Behavior in Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Terrile, Richard J.; Guillaume, Alexandre

    2009-01-01

    Over the past several years the Center for Evolutionary Computation and Automated Design at the Jet Propulsion Laboratory has developed a technique based on Evolutionary Computational Methods (ECM) that allows for the automated optimization of complex computationally modeled systems. An important application of this technique is for the identification of emergent behaviors in autonomous systems. Mobility platforms such as rovers or airborne vehicles are now being designed with autonomous mission controllers that can find trajectories over a solution space that is larger than can reasonably be tested. It is critical to identify control behaviors that are not predicted and can have surprising results (both good and bad). These emergent behaviors need to be identified, characterized and either incorporated into or isolated from the acceptable range of control characteristics. We use cluster analysis of automatically retrieved solutions to identify isolated populations of solutions with divergent behaviors.

  12. ALCOHOL AND THE PREFRONTAL CORTEX

    PubMed Central

    Abernathy, Kenneth; Chandler, L. Judson; Woodward, John J.

    2013-01-01

    The prefrontal cortex occupies the anterior portion of the frontal lobes and is thought to be one of the most complex anatomical and functional structures of the mammalian brain. Its major role is to integrate and interpret inputs from cortical and sub-cortical structures and use this information to develop purposeful responses that reflect both present and future circumstances. This includes both action-oriented sequences involved in obtaining rewards and inhibition of behaviors that pose undue risk or harm to the individual. Given the central role in initiating and regulating these often complex cognitive and behavioral responses, it is no surprise that alcohol has profound effects on the function of the prefrontal cortex. In this chapter, we review the basic anatomy and physiology of the prefrontal cortex and discuss what is known about the actions of alcohol on the function of this brain region. This includes a review of both the human and animal literature including information on the electrophysiological and behavioral effects that follow acute and chronic exposure to alcohol. The chapter concludes with a discussion of unanswered questions and areas needing further investigation. PMID:20813246

  13. Synthetic microbial ecology and the dynamic interplay between microbial genotypes.

    PubMed

    Dolinšek, Jan; Goldschmidt, Felix; Johnson, David R

    2016-11-01

    Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.

  14. Effects of brain lesions on moral agency: ethical dilemmas in investigating moral behavior.

    PubMed

    Christen, Markus; Müller, Sabine

    2015-01-01

    Understanding how the "brain produces behavior" is a guiding idea in neuroscience. It is thus of no surprise that establishing an interrelation between brain pathology and antisocial behavior has a long history in brain research. However, interrelating the brain with moral agency--the ability to act in reference to right and wrong--is tricky with respect to therapy and rehabilitation of patients affected by brain lesions. In this contribution, we outline the complexity of the relationship between the brain and moral behavior, and we discuss ethical issues of the neuroscience of ethics and of its clinical consequences. First, we introduce a theory of moral agency and apply it to the issue of behavioral changes caused by brain lesions. Second, we present a typology of brain lesions both with respect to their cause, their temporal development, and the potential for neural plasticity allowing for rehabilitation. We exemplify this scheme with case studies and outline major knowledge gaps that are relevant for clinical practice. Third, we analyze ethical pitfalls when trying to understand the brain-morality relation. In this way, our contribution addresses both researchers in neuroscience of ethics and clinicians who treat patients affected by brain lesions to better understand the complex ethical questions, which are raised by research and therapy of brain lesion patients.

  15. Yb3+ can be much better than Dy3+: SMM properties and controllable self-assembly of novel lanthanide 3,5-dinitrobenzoate-acetylacetonate complexes.

    PubMed

    Gavrikov, Andrey V; Efimov, Nikolay N; Ilyukhin, Andrey B; Dobrokhotova, Zhanna V; Novotortsev, Vladimir M

    2018-05-01

    The first representatives of the binuclear lanthanide 3,5-dinitrobenzoate-acetylacetonate complexes, namely isostructural compounds [Ln(dnbz)(acac)2(H2O)(EtOH)]2 (Ln = Eu (1), Gd (2), Tb (3), Dy (4), Ho (5), Er (6), Tm (7), and Yb (8); dnbz - 3,5-dinitrobenzoate anion; acac - acetylacetonate (pentane-2,4-dionate) anion) were prepared and characterized. The SMM behavior of the Yb compound 8 was shown to be surprisingly less sensitive to the composition of the Yb3+ coordination environment in comparison with that of the Dy derivative. For Yb compound 8, the anisotropy barrier is Δeff/kB = 26 K under the dc field of 2000 Oe. This value is the highest one currently known for binuclear Yb complexes.

  16. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading.

    PubMed

    Lake, Spencer P; Miller, Kristin S; Elliott, Dawn M; Soslowsky, Louis J

    2009-12-01

    Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for investigation due to its complex mechanical environment and corresponding inhomogeneity. In addition, SST injury occurs frequently with limited success in treatment strategies, illustrating the need for a better understanding of SST properties. Therefore, the objective of this study was to quantitatively evaluate the inhomogeneous tensile mechanical properties, fiber organization, and fiber realignment under load of human SST utilizing a novel polarized light technique. Fiber distributions were found to become more aligned under load, particularly during the low stiffness toe-region, suggesting that fiber realignment may be partly responsible for observed nonlinear behavior. Fiber alignment was found to correlate significantly with mechanical parameters, providing evidence for strong structure-function relationships in tendon. Human SST exhibits complex, inhomogeneous mechanical properties and fiber distributions, perhaps due to its complex loading environment. Surprisingly, histological grade of degeneration did not correlate with mechanical properties.

  17. Evidence for an audience effect in mice: male social partners alter the male vocal response to female cues

    PubMed Central

    Seagraves, Kelly M.; Arthur, Ben J.; Egnor, S. E. Roian

    2016-01-01

    ABSTRACT Mice (Mus musculus) form large and dynamic social groups and emit ultrasonic vocalizations in a variety of social contexts. Surprisingly, these vocalizations have been studied almost exclusively in the context of cues from only one social partner, despite the observation that in many social species the presence of additional listeners changes the structure of communication signals. Here, we show that male vocal behavior elicited by female odor is affected by the presence of a male audience – with changes in vocalization count, acoustic structure and syllable complexity. We further show that single sensory cues are not sufficient to elicit this audience effect, indicating that multiple cues may be necessary for an audience to be apparent. Together, these experiments reveal that some features of mouse vocal behavior are only expressed in more complex social situations, and introduce a powerful new assay for measuring detection of the presence of social partners in mice. PMID:27207951

  18. Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans.

    PubMed

    Caminiti, Roberto; Innocenti, Giorgio M; Battaglia-Mayer, Alexandra

    2015-09-01

    The functional organization of the parieto-frontal system is crucial for understanding cognitive-motor behavior and provides the basis for interpreting the consequences of parietal lesions in humans from a neurobiological perspective. The parieto-frontal connectivity defines some main information streams that, rather than being devoted to restricted functions, underlie a rich behavioral repertoire. Surprisingly, from macaque to humans, evolution has added only a few, new functional streams, increasing however their complexity and encoding power. In fact, the characterization of the conduction times of parietal and frontal areas to different target structures has recently opened a new window on cortical dynamics, suggesting that evolution has amplified the probability of dynamic interactions between the nodes of the network, thanks to communication patterns based on temporally-dispersed conduction delays. This might allow the representation of sensory-motor signals within multiple neural assemblies and reference frames, as to optimize sensory-motor remapping within an action space characterized by different and more complex demands across evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Evidence for an audience effect in mice: male social partners alter the male vocal response to female cues.

    PubMed

    Seagraves, Kelly M; Arthur, Ben J; Egnor, S E Roian

    2016-05-15

    Mice (Mus musculus) form large and dynamic social groups and emit ultrasonic vocalizations in a variety of social contexts. Surprisingly, these vocalizations have been studied almost exclusively in the context of cues from only one social partner, despite the observation that in many social species the presence of additional listeners changes the structure of communication signals. Here, we show that male vocal behavior elicited by female odor is affected by the presence of a male audience - with changes in vocalization count, acoustic structure and syllable complexity. We further show that single sensory cues are not sufficient to elicit this audience effect, indicating that multiple cues may be necessary for an audience to be apparent. Together, these experiments reveal that some features of mouse vocal behavior are only expressed in more complex social situations, and introduce a powerful new assay for measuring detection of the presence of social partners in mice. © 2016. Published by The Company of Biologists Ltd.

  20. Probability and surprisal in auditory comprehension of morphologically complex words.

    PubMed

    Balling, Laura Winther; Baayen, R Harald

    2012-10-01

    Two auditory lexical decision experiments document for morphologically complex words two points at which the probability of a target word given the evidence shifts dramatically. The first point is reached when morphologically unrelated competitors are no longer compatible with the evidence. Adapting terminology from Marslen-Wilson (1984), we refer to this as the word's initial uniqueness point (UP1). The second point is the complex uniqueness point (CUP) introduced by Balling and Baayen (2008), at which morphologically related competitors become incompatible with the input. Later initial as well as complex uniqueness points predict longer response latencies. We argue that the effects of these uniqueness points arise due to the large surprisal (Levy, 2008) carried by the phonemes at these uniqueness points, and provide independent evidence that how cumulative surprisal builds up in the course of the word co-determines response latencies. The presence of effects of surprisal, both at the initial uniqueness point of complex words, and cumulatively throughout the word, challenges the Shortlist B model of Norris and McQueen (2008), and suggests that a Bayesian approach to auditory comprehension requires complementation from information theory in order to do justice to the cognitive cost of updating probability distributions over lexical candidates. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Network-induced oscillatory behavior in material flow networks and irregular business cycles

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Lämmer, Stefen; Witt, Ulrich; Brenner, Thomas

    2004-11-01

    Network theory is rapidly changing our understanding of complex systems, but the relevance of topological features for the dynamic behavior of metabolic networks, food webs, production systems, information networks, or cascade failures of power grids remains to be explored. Based on a simple model of supply networks, we offer an interpretation of instabilities and oscillations observed in biological, ecological, economic, and engineering systems. We find that most supply networks display damped oscillations, even when their units—and linear chains of these units—behave in a nonoscillatory way. Moreover, networks of damped oscillators tend to produce growing oscillations. This surprising behavior offers, for example, a different interpretation of business cycles and of oscillating or pulsating processes. The network structure of material flows itself turns out to be a source of instability, and cyclical variations are an inherent feature of decentralized adjustments.

  2. Expectancy and surprise predict neural and behavioral measures of attention to threatening stimuli

    PubMed Central

    Browning, Michael; Harmer, Catherine J.

    2012-01-01

    Attention is preferentially deployed toward those stimuli which are threatening and those which are surprising. The current paper examines the intersection of these phenomena; how do expectations about the threatening nature of stimuli influence the deployment of attention? The predictions tested were that individuals would direct attention toward stimuli which were expected to be threatening (regardless of whether they were or not) and toward stimuli which were surprising. As anxiety has been associated with deficient control of attention to threat, it was additionally predicted that high levels of trait anxiety would be associated with deficits in the use of threat-expectation to guide attention. During fMRI scanning, 29 healthy volunteers completed a simple task in which threat-expectation was manipulated by altering the frequency with which fearful or neutral faces were presented. Individual estimates of threat-expectation and surprise were created using a Bayesian computational model. The degree to which the model derived estimates of threat-expectation and surprise were able to explain both a behavioral measure of attention to the faces and activity in the visual cortex and anterior attentional control areas was then tested. As predicted, increased threat-expectation and surprise were associated with increases in both the behavioral and neuroimaging measures of attention to the faces. Additionally, regions of the orbitofrontal cortex and left amygdala were found to covary with threat-expectation whereas anterior cingulate and lateral prefrontal cortices covaried with surprise. Individuals with higher levels of trait anxiety were less able to modify neuroimaging measures of attention in response to threat-expectation. These results suggest that continuously calculated estimates of the probability of threat may plausibly be used to influence the deployment of visual attention and that use of this information is perturbed in anxious individuals. PMID:21945791

  3. Scaling behavior in the dynamics of citations to scientific journals

    NASA Astrophysics Data System (ADS)

    Picoli, S., Jr.; Mendes, R. S.; Malacarne, L. C.; Lenzi, E. K.

    2006-08-01

    We analyze a database comprising the impact factor (citations per recent items published) of scientific journals for a 13-year period (1992 2004). We find that i) the distribution of impact factors follows asymptotic power law behavior, ii) the distribution of annual logarithmic growth rates has an exponential form, and iii) the width of this distribution decays with the impact factor as a power law with exponent β simeq 0.22. The results ii) and iii) are surprising similar to those observed in the growth dynamics of organizations with complex internal structure suggesting the existence of common mechanisms underlying the dynamics of these systems. We propose a general model for such systems, an extension of the simplest model for firm growth, and compare their predictions with our empirical results.

  4. Widom Lines in Binary Mixtures of Supercritical Fluids.

    PubMed

    Raju, Muralikrishna; Banuti, Daniel T; Ma, Peter C; Ihme, Matthias

    2017-06-08

    Recent experiments on pure fluids have identified distinct liquid-like and gas-like regimes even under supercritical conditions. The supercritical liquid-gas transition is marked by maxima in response functions that define a line emanating from the critical point, referred to as Widom line. However, the structure of analogous state transitions in mixtures of supercritical fluids has not been determined, and it is not clear whether a Widom line can be identified for binary mixtures. Here, we present first evidence for the existence of multiple Widom lines in binary mixtures from molecular dynamics simulations. By considering mixtures of noble gases, we show that, depending on the phase behavior, mixtures transition from a liquid-like to a gas-like regime via distinctly different pathways, leading to phase relationships of surprising complexity and variety. Specifically, we show that miscible binary mixtures have behavior analogous to a pure fluid and the supercritical state space is characterized by a single liquid-gas transition. In contrast, immiscible binary mixture undergo a phase separation in which the clusters transition separately at different temperatures, resulting in multiple distinct Widom lines. The presence of this unique transition behavior emphasizes the complexity of the supercritical state to be expected in high-order mixtures of practical relevance.

  5. Persistence and stochastic periodicity in the intensity dynamics of a fiber laser during the transition to optical turbulence

    NASA Astrophysics Data System (ADS)

    Carpi, Laura; Masoller, Cristina

    2018-02-01

    Many natural systems display transitions among different dynamical regimes, which are difficult to identify when the data are noisy and high dimensional. A technologically relevant example is a fiber laser, which can display complex dynamical behaviors that involve nonlinear interactions of millions of cavity modes. Here we study the laminar-turbulence transition that occurs when the laser pump power is increased. By applying various data analysis tools to empirical intensity time series we characterize their persistence and demonstrate that at the transition temporal correlations can be precisely represented by a surprisingly simple model.

  6. Adults with autism overestimate the volatility of the sensory environment.

    PubMed

    Lawson, Rebecca P; Mathys, Christoph; Rees, Geraint

    2017-09-01

    Insistence on sameness and intolerance of change are among the diagnostic criteria for autism spectrum disorder (ASD), but little research has addressed how people with ASD represent and respond to environmental change. Here, behavioral and pupillometric measurements indicated that adults with ASD are less surprised than neurotypical adults when their expectations are violated, and decreased surprise is predictive of greater symptom severity. A hierarchical Bayesian model of learning suggested that in ASD, a tendency to overlearn about volatility in the face of environmental change drives a corresponding reduction in learning about probabilistically aberrant events, thus putatively rendering these events less surprising. Participant-specific modeled estimates of surprise about environmental conditions were linked to pupil size in the ASD group, thus suggesting heightened noradrenergic responsivity in line with compromised neural gain. This study offers insights into the behavioral, algorithmic and physiological mechanisms underlying responses to environmental volatility in ASD.

  7. Active and Passive Microrheology: Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Zia, Roseanna N.

    2018-01-01

    Microrheological study of complex fluids traces its roots to the work of the botanist Robert Brown in the early nineteenth century. Indeed, passive microrheology and Brownian motion are one and the same. Once thought to reveal a fundamental life force, the phenomenon was ultimately leveraged by Einstein in proof of the atomic nature of matter ( Haw 2006 ). His work simultaneously paved the way for modern-day passive microrheology by connecting observable particle motion—diffusion—to solvent properties—the viscosity—via the well-known Stokes-Einstein relation. Advances in microscopy techniques in the last two decades have prompted extensions of the original model to generalized forms for passive probing of complex fluids. In the last decade, active microrheology has emerged as a means by which to interrogate the nonequilibrium behavior of complex fluids, in particular, the non-Newtonian rheology of dynamically heterogeneous and microscopically small systems. Here we review theoretical and computational approaches and advances in both passive and active microrheology, with a focus on the extent to which these techniques preserve the connection between single-particle motion and flow properties, as well as the rather surprising recovery of non-Newtonian flow behavior observed in bulk rheology.

  8. Analysis of Autopilot Behavior

    NASA Technical Reports Server (NTRS)

    Sherry, Lance; Polson, Peter; Feay, Mike; Palmer, Everett; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    Aviation and cognitive science researchers have identified situations in which the pilot's expectations for behavior of autopilot avionics are not matched by the actual behavior of the avionics. These "automation surprises" have been attributed to differences between the pilot's model of the behavior of the avionics and the actual behavior encoded in the avionics software. A formal technique is described for the analysis and measurement of the behavior of the cruise pitch modes of a modern Autopilot. The analysis characterizes the behavior of the Autopilot as situation-action rules. The behavior of the cruise pitch mode logic for a contemporary modern Autopilot was found to include 177 rules, including Level Change (23), Vertical Speed (16), Altitude Capture (50), and Altitude Hold (88). These rules are determined based on the values of 62 inputs. Analysis of the rule-based model also shed light on the factors cited in the literature as contributors to "automation surprises."

  9. Seeing the world through non rose-colored glasses: anxiety and the amygdala response to blended expressions

    PubMed Central

    Bishop, Sonia J.; Aguirre, Geoffrey K.; Nunez-Elizalde, Anwar O.; Toker, Daniel

    2015-01-01

    Anxious individuals have a greater tendency to categorize faces with ambiguous emotional expressions as fearful (Richards et al., 2002). These behavioral findings might reflect anxiety-related biases in stimulus representation within the human amygdala. Here, we used functional magnetic resonance imaging (fMRI) together with a continuous adaptation design to investigate the representation of faces from three expression continua (surprise-fear, sadness-fear, and surprise-sadness) within the amygdala and other brain regions implicated in face processing. Fifty-four healthy adult participants completed a face expression categorization task. Nineteen of these participants also viewed the same expressions presented using type 1 index 1 sequences while fMRI data were acquired. Behavioral analyses revealed an anxiety-related categorization bias in the surprise-fear continuum alone. Here, elevated anxiety was associated with a more rapid transition from surprise to fear responses as a function of percentage fear in the face presented, leading to increased fear categorizations for faces with a mid-way blend of surprise and fear. fMRI analyses revealed that high trait anxious participants also showed greater representational similarity, as indexed by greater adaptation of the Blood Oxygenation Level Dependent (BOLD) signal, between 50/50 surprise/fear expression blends and faces from the fear end of the surprise-fear continuum in both the right amygdala and right fusiform face area (FFA). No equivalent biases were observed for the other expression continua. These findings suggest that anxiety-related biases in the processing of expressions intermediate between surprise and fear may be linked to differential representation of these stimuli in the amygdala and FFA. The absence of anxiety-related biases for the sad-fear continuum might reflect intermediate expressions from the surprise-fear continuum being most ambiguous in threat-relevance. PMID:25870551

  10. Dissociable effects of surprise and model update in parietal and anterior cingulate cortex

    PubMed Central

    O’Reilly, Jill X.; Schüffelgen, Urs; Cuell, Steven F.; Behrens, Timothy E. J.; Mars, Rogier B.; Rushworth, Matthew F. S.

    2013-01-01

    Brains use predictive models to facilitate the processing of expected stimuli or planned actions. Under a predictive model, surprising (low probability) stimuli or actions necessitate the immediate reallocation of processing resources, but they can also signal the need to update the underlying predictive model to reflect changes in the environment. Surprise and updating are often correlated in experimental paradigms but are, in fact, distinct constructs that can be formally defined as the Shannon information (IS) and Kullback–Leibler divergence (DKL) associated with an observation. In a saccadic planning task, we observed that distinct behaviors and brain regions are associated with surprise/IS and updating/DKL. Although surprise/IS was associated with behavioral reprogramming as indexed by slower reaction times, as well as with activity in the posterior parietal cortex [human lateral intraparietal area (LIP)], the anterior cingulate cortex (ACC) was specifically activated during updating of the predictive model (DKL). A second saccade-sensitive region in the inferior posterior parietal cortex (human 7a), which has connections to both LIP and ACC, was activated by surprise and modulated by updating. Pupillometry revealed a further dissociation between surprise and updating with an early positive effect of surprise and late negative effect of updating on pupil area. These results give a computational account of the roles of the ACC and two parietal saccade regions, LIP and 7a, by which their involvement in diverse tasks can be understood mechanistically. The dissociation of functional roles between regions within the reorienting/reprogramming network may also inform models of neurological phenomena, such as extinction and Balint syndrome, and neglect. PMID:23986499

  11. Open problems in active chaotic flows: Competition between chaos and order in granular materials.

    PubMed

    Ottino, J. M.; Khakhar, D. V.

    2002-06-01

    There are many systems where interaction among the elementary building blocks-no matter how well understood-does not even give a glimpse of the behavior of the global system itself. Characteristic for these systems is the ability to display structure without any external organizing principle being applied. They self-organize as a consequence of synthesis and collective phenomena and the behavior cannot be understood in terms of the systems' constitutive elements alone. A simple example is flowing granular materials, i.e., systems composed of particles or grains. How the grains interact with each other is reasonably well understood; as to how particles move, the governing law is Newton's second law. There are no surprises at this level. However, when the particles are many and the material is vibrated or tumbled, surprising behavior emerges. Systems self-organize in complex patterns that cannot be deduced from the behavior of the particles alone. Self-organization is often the result of competing effects; flowing granular matter displays both mixing and segregation. Small differences in either size or density lead to flow-induced segregation and order; similar to fluids, noncohesive granular materials can display chaotic mixing and disorder. Competition gives rise to a wealth of experimental outcomes. Equilibrium structures, obtained experimentally in quasi-two-dimensional systems, display organization in the presence of disorder, and are captured by a continuum flow model incorporating collisional diffusion and density-driven segregation. Several open issues remain to be addressed. These include analysis of segregating chaotic systems from a dynamical systems viewpoint, and understanding three-dimensional systems and wet granular systems (slurries). General aspects of the competition between chaos-enhanced mixing and properties-induced de-mixing go beyond granular materials and may offer a paradigm for other kinds of physical systems. (c) 2002 American Institute of Physics.

  12. Bayesian theories of conditioning in a changing world.

    PubMed

    Courville, Aaron C; Daw, Nathaniel D; Touretzky, David S

    2006-07-01

    The recent flowering of Bayesian approaches invites the re-examination of classic issues in behavior, even in areas as venerable as Pavlovian conditioning. A statistical account can offer a new, principled interpretation of behavior, and previous experiments and theories can inform many unexplored aspects of the Bayesian enterprise. Here we consider one such issue: the finding that surprising events provoke animals to learn faster. We suggest that, in a statistical account of conditioning, surprise signals change and therefore uncertainty and the need for new learning. We discuss inference in a world that changes and show how experimental results involving surprise can be interpreted from this perspective, and also how, thus understood, these phenomena help constrain statistical theories of animal and human learning.

  13. Experimentation in machine discovery

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Simon, Herbert A.

    1990-01-01

    KEKADA, a system that is capable of carrying out a complex series of experiments on problems from the history of science, is described. The system incorporates a set of experimentation strategies that were extracted from the traces of the scientists' behavior. It focuses on surprises to constrain its search, and uses its strategies to generate hypotheses and to carry out experiments. Some strategies are domain independent, whereas others incorporate knowledge of a specific domain. The domain independent strategies include magnification, determining scope, divide and conquer, factor analysis, and relating different anomalous phenomena. KEKADA represents an experiment as a set of independent and dependent entities, with apparatus variables and a goal. It represents a theory either as a sequence of processes or as abstract hypotheses. KEKADA's response is described to a particular problem in biochemistry. On this and other problems, the system is capable of carrying out a complex series of experiments to refine domain theories. Analysis of the system and its behavior on a number of different problems has established its generality, but it has also revealed the reasons why the system would not be a good experimental scientist.

  14. Phenotypically heterogeneous populations in spatially heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Patra, Pintu; Klumpp, Stefan

    2014-03-01

    The spatial expansion of a population in a nonuniform environment may benefit from phenotypic heterogeneity with interconverting subpopulations using different survival strategies. We analyze the crossing of an antibiotic-containing environment by a bacterial population consisting of rapidly growing normal cells and slow-growing, but antibiotic-tolerant persister cells. The dynamics of crossing is characterized by mean first arrival times and is found to be surprisingly complex. It displays three distinct regimes with different scaling behavior that can be understood based on an analytical approximation. Our results suggest that a phenotypically heterogeneous population has a fitness advantage in nonuniform environments and can spread more rapidly than a homogeneous population.

  15. Abnormal Strain Rate Sensitivity Driven by a Unit Dislocation-Obstacle Interaction in bcc Fe

    NASA Astrophysics Data System (ADS)

    Bai, Zhitong; Fan, Yue

    2018-03-01

    The interaction between an edge dislocation and a sessile vacancy cluster in bcc Fe is investigated over a wide range of strain rates from 108 down to 103 s-1 , which is enabled by employing an energy landscape-based atomistic modeling algorithm. It is observed that, at low strain rates regime less than 105 s-1 , such interaction leads to a surprising negative strain rate sensitivity behavior because of the different intermediate microstructures emerged under the complex interplays between thermal activation and applied strain rate. Implications of our findings regarding the previously established global diffusion model are also discussed.

  16. Interplay between local dynamics and mechanical reinforcement in glassy polymer nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang

    The modification of polymer dynamics in the presence of strongly interacting nanoparticles has been shown to significantly change themacroscopic properties above the glass transition temperature of polymer nanocomposites (PNCs). However, much less attention has been paid to changes in the dynamics of glassy PNCs. Analysis of neutron and light scattering data presented herein reveals a surprising enhancement of local dynamics, e.g., fast picosecond and secondary relaxations, in glassy PNCs accompanied with a strengthening of mechanical modulus. Here we ascribe this counter-intuitive behavior to the complex interplay between chain packing and stretching within the interfacial layer formed at the polymer-nanoparticle interface.

  17. Interplay between local dynamics and mechanical reinforcement in glassy polymer nanocomposites

    DOE PAGES

    Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang; ...

    2017-11-17

    The modification of polymer dynamics in the presence of strongly interacting nanoparticles has been shown to significantly change themacroscopic properties above the glass transition temperature of polymer nanocomposites (PNCs). However, much less attention has been paid to changes in the dynamics of glassy PNCs. Analysis of neutron and light scattering data presented herein reveals a surprising enhancement of local dynamics, e.g., fast picosecond and secondary relaxations, in glassy PNCs accompanied with a strengthening of mechanical modulus. Here we ascribe this counter-intuitive behavior to the complex interplay between chain packing and stretching within the interfacial layer formed at the polymer-nanoparticle interface.

  18. Corrugator activity confirms immediate negative affect in surprise

    PubMed Central

    Topolinski, Sascha; Strack, Fritz

    2015-01-01

    The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes. PMID:25762956

  19. Corrugator activity confirms immediate negative affect in surprise.

    PubMed

    Topolinski, Sascha; Strack, Fritz

    2015-01-01

    The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes.

  20. Novel plasticity rule can explain the development of sensorimotor intelligence

    PubMed Central

    Der, Ralf; Martius, Georg

    2015-01-01

    Grounding autonomous behavior in the nervous system is a fundamental challenge for neuroscience. In particular, self-organized behavioral development provides more questions than answers. Are there special functional units for curiosity, motivation, and creativity? This paper argues that these features can be grounded in synaptic plasticity itself, without requiring any higher-level constructs. We propose differential extrinsic plasticity (DEP) as a new synaptic rule for self-learning systems and apply it to a number of complex robotic systems as a test case. Without specifying any purpose or goal, seemingly purposeful and adaptive rhythmic behavior is developed, displaying a certain level of sensorimotor intelligence. These surprising results require no system-specific modifications of the DEP rule. They rather arise from the underlying mechanism of spontaneous symmetry breaking, which is due to the tight brain body environment coupling. The new synaptic rule is biologically plausible and would be an interesting target for neurobiological investigation. We also argue that this neuronal mechanism may have been a catalyst in natural evolution. PMID:26504200

  1. Prior social experience affects the behavioral and neural responses to acute alcohol in juvenile crayfish.

    PubMed

    Swierzbinski, Matthew E; Lazarchik, Andrew R; Herberholz, Jens

    2017-04-15

    The effects of alcohol on society can be devastating, both as an immediate consequence of acute intoxication and as a powerful drug of abuse. However, the neurocellular mechanisms of alcohol intoxication are still elusive, partly because of the complex interactions between alcohol and nervous system function. We found that juvenile crayfish are behaviorally sensitive to acute alcohol exposure and progress through stages that are strikingly similar to those of most other intoxicated organisms. Most surprisingly, we found that the social history of the animals significantly modified the acute effects of alcohol. Crayfish taken from a rich social environment became intoxicated more rapidly than animals that were socially isolated before alcohol exposure. In addition, we found that the modulation of intoxicated behaviors by prior social experience was paralleled on the level of individual neurons. These results significantly improve our understanding of the mechanisms underlying the interplay between social experience, alcohol intoxication and nervous system function. © 2017. Published by The Company of Biologists Ltd.

  2. An Engineered orco Mutation Produces Aberrant Social Behavior and Defective Neural Development in Ants.

    PubMed

    Yan, Hua; Opachaloemphan, Comzit; Mancini, Giacomo; Yang, Huan; Gallitto, Matthew; Mlejnek, Jakub; Leibholz, Alexandra; Haight, Kevin; Ghaninia, Majid; Huo, Lucy; Perry, Michael; Slone, Jesse; Zhou, Xiaofan; Traficante, Maria; Penick, Clint A; Dolezal, Kelly; Gokhale, Kaustubh; Stevens, Kelsey; Fetter-Pruneda, Ingrid; Bonasio, Roberto; Zwiebel, Laurence J; Berger, Shelley L; Liebig, Jürgen; Reinberg, Danny; Desplan, Claude

    2017-08-10

    Ants exhibit cooperative behaviors and advanced forms of sociality that depend on pheromone-mediated communication. Odorant receptor neurons (ORNs) express specific odorant receptors (ORs) encoded by a dramatically expanded gene family in ants. In most eusocial insects, only the queen can transmit genetic information, restricting genetic studies. In contrast, workers in Harpegnathos saltator ants can be converted into gamergates (pseudoqueens) that can found entire colonies. This feature facilitated CRISPR-Cas9 generation of germline mutations in orco, the gene that encodes the obligate co-receptor of all ORs. orco mutations should significantly impact olfaction. We demonstrate striking functions of Orco in odorant perception, reproductive physiology, and social behavior plasticity. Surprisingly, unlike in other insects, loss of OR functionality also dramatically impairs development of the antennal lobe to which ORNs project. Therefore, the development of genetics in Harpegnathos establishes this ant species as a model organism to study the complexity of eusociality. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. System-level musings about system-level science (Invited)

    NASA Astrophysics Data System (ADS)

    Liu, W.

    2009-12-01

    In teleology, a system has a purpose. In physics, a system has a tendency. For example, a mechanical system has a tendency to lower its potential energy. A thermodynamic system has a tendency to increase its entropy. Therefore, if geospace is seen as a system, what is its tendency? Surprisingly or not, there is no simple answer to this question. Or, to flip the statement, the answer is complex, or complexity. We can understand generally why complexity arises, as the geospace boundary is open to influences from the solar wind and Earth’s atmosphere and components of the system couple to each other in a myriad of ways to make the systemic behavior highly nonlinear. But this still begs the question: What is the system-level approach to geospace science? A reductionist view might assert that as our understanding of a component or subsystem progresses to a certain point, we can couple some together to understand the system on a higher level. However, in practice, a subsystem can almost never been observed in isolation with others. Even if such is possible, there is no guarantee that the subsystem behavior will not change when coupled to others. Hence, there is no guarantee that a subsystem, such as the ring current, has an innate and intrinsic behavior like a hydrogen atom. An absolutist conclusion from this logic can be sobering, as one would have to trace a flash of aurora to the nucleosynthesis in the solar core. The practical answer, however, is more promising; it is a mix of the common sense we call reductionism and awareness that, especially when strongly coupled, subsystems can experience behavioral changes, breakdowns, and catastrophes. If the stock answer to the systemic tendency of geospace is complexity, the objective of the system-level approach to geospace science is to define, measure, and understand this complexity. I will use the example of magnetotail dynamics to illuminate some key points in this talk.

  4. Large-scale structure of randomly jammed spheres

    NASA Astrophysics Data System (ADS)

    Ikeda, Atsushi; Berthier, Ludovic; Parisi, Giorgio

    2017-05-01

    We numerically analyze the density field of three-dimensional randomly jammed packings of monodisperse soft frictionless spherical particles, paying special attention to fluctuations occurring at large length scales. We study in detail the two-point static structure factor at low wave vectors in Fourier space. We also analyze the nature of the density field in real space by studying the large-distance behavior of the two-point pair correlation function, of density fluctuations in subsystems of increasing sizes, and of the direct correlation function. We show that such real space analysis can be greatly improved by introducing a coarse-grained density field to disentangle genuine large-scale correlations from purely local effects. Our results confirm that both Fourier and real space signatures of vanishing density fluctuations at large scale are absent, indicating that randomly jammed packings are not hyperuniform. In addition, we establish that the pair correlation function displays a surprisingly complex structure at large distances, which is however not compatible with the long-range negative correlation of hyperuniform systems but fully compatible with an analytic form for the structure factor. This implies that the direct correlation function is short ranged, as we also demonstrate directly. Our results reveal that density fluctuations in jammed packings do not follow the behavior expected for random hyperuniform materials, but display instead a more complex behavior.

  5. Is management still a science?

    PubMed

    Freedman, D H

    1992-01-01

    New technologies are transforming products, markets, and entire industries. Yet the more science and technology reshape the essence of business, the less useful the concept of management itself as a science seems to be. On reflection, this paradox is not so surprising. The traditional scientific approach to management promised to provide managers with the capacity to analyze, predict, and control the behavior of the complex organizations they led. But the world most managers currently inhabit often appears to be unpredictable, uncertain, and even uncontrollable. In the face of this more volatile business environment, the old-style mechanisms of "scientific management" seem positively counterproductive. And science itself appears less and less relevant to the practical concerns of managers. In this article, science journalist David Freedman argues that the problem lies less in the shortcomings of a scientific approach to management than in managers' understanding of science. What most managers think of as scientific management is based on a conception of science that few current scientists would defend. What's more, just as managers have become more preoccupied with the volatility of the business environment, scientists have also become preoccupied with the inherent volatility--the "chaos" and "complexity"--of nature. They are developing new rules for complex behavior in physical systems that have intriguing parallels to the kind of organizational behaviors companies are trying to encourage. In fact, science, long esteemed by business as a source of technological innovation, may ultimately prove of greatest value to managers as a source of something else: useful ways of looking at the world.

  6. Risky sexual behaviors among sexually active first-year students matriculating at a historically Black college: Is a positive self-image an instigator?

    PubMed

    Ellis, Walter L

    2016-01-01

    A sample of 498 sexually active first-year students matriculating at a historically Black college in North Carolina was used to determine correlates of risky sexual behaviors. In an Ordinary Least Squares regression, the self-esteem element "I take a positive attitude toward myself" (B = 1.12, p = .05), non-condom use because of partner issues (B = .53, p = .05) and being drunk or high (B = 1.20, p = .001), oral sex (B = 1.74, p = .001), anal sex (B = .61, p = .04), and bisexuality (B = .85, p = .03) all increased the number of these behaviors. Higher scores on the condom usage scale (B = -.38, p = .002) were found to decrease the number of risky sexual behaviors. Illicit drug use was an underpinning of the surprisingly positive relationship between positive self-image and risky sexual behaviors. It was concluded that school-based social workers, mental health care professionals, and community-based prevention providers can play a critical role in the training of peer facilitators, development, and supervision of peer-driven risk-reduction programs to address the complex interplay among self-esteem, sex, and substances.

  7. Aiding Vertical Guidance Understanding

    NASA Technical Reports Server (NTRS)

    Feary, Michael; McCrobie, Daniel; Alkin, Martin; Sherry, Lance; Polson, Peter; Palmer, Everett; McQuinn, Noreen

    1998-01-01

    A two-part study was conducted to evaluate modern flight deck automation and interfaces. In the first part, a survey was performed to validate the existence of automation surprises with current pilots. Results indicated that pilots were often surprised by the behavior of the automation. There were several surprises that were reported more frequently than others. An experimental study was then performed to evaluate (1) the reduction of automation surprises through training specifically for the vertical guidance logic, and (2) a new display that describes the flight guidance in terms of aircraft behaviors instead of control modes. The study was performed in a simulator that was used to run a complete flight with actual airline pilots. Three groups were used to evaluate the guidance display and training. In the training, condition, participants went through a training program for vertical guidance before flying the simulation. In the display condition, participants ran through the same training program and then flew the experimental scenario with the new Guidance-Flight Mode Annunciator (G-FMA). Results showed improved pilot performance when given training specifically for the vertical guidance logic and greater improvements when given the training and the new G-FMA. Using actual behavior of the avionics to design pilot training and FMA is feasible, and when the automated vertical guidance mode of the Flight Management System is engaged, the display of the guidance mode and targets yields improved pilot performance.

  8. Extension of a suspended soap film: a homogeneous dilatation followed by new film extraction.

    PubMed

    Seiwert, Jacopo; Monloubou, Martin; Dollet, Benjamin; Cantat, Isabelle

    2013-08-30

    Liquid foams are widely used in industry for their high effective viscosity, whose local origin is still unclear. This Letter presents new results on the extension of a suspended soap film, in a configuration mimicking the elementary deformation occurring during foam shearing. We evidence a surprising two-step evolution: the film first extends homogeneously, then its extension stops, and a new thicker film is extracted from the meniscus. The second step is independent of the nature of the surfactant solution, whereas the initial extension is only observed for surfactant solutions with negligible dilatational moduli. We predict this complex behavior using a model based on Frankel's theory and on interface rigidification induced by confinement.

  9. Tinkering With AGCMs To Investigate Atmospheric Behavior

    NASA Astrophysics Data System (ADS)

    Bitz, C. M.

    2014-12-01

    My experience teaching a course in global climate modeling has proven that students (and instructors) with wide-ranging backgrounds in earth-science learn effectively about the complexity of climate by tinker with model components. As an example, I will present a series of experiments in an AGCM with highly simplified geometries for ocean and land to test the response of the atmosphere to variations in basic parameters. The figure below shows an example of how the zonal wind changes with surface roughness and orography. The pinnacle of experiments explored in my course was the outcome of a homework assignment where students reduced the cloud droplet radius by 40% over ocean, and the results surprised students and instructor alike.

  10. Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states

    PubMed Central

    Chandrasekaran, Sriram; Ament, Seth A.; Eddy, James A.; Rodriguez-Zas, Sandra L.; Schatz, Bruce R.; Price, Nathan D.; Robinson, Gene E.

    2011-01-01

    Using brain transcriptomic profiles from 853 individual honey bees exhibiting 48 distinct behavioral phenotypes in naturalistic contexts, we report that behavior-specific neurogenomic states can be inferred from the coordinated action of transcription factors (TFs) and their predicted target genes. Unsupervised hierarchical clustering of these transcriptomic profiles showed three clusters that correspond to three ecologically important behavioral categories: aggression, maturation, and foraging. To explore the genetic influences potentially regulating these behavior-specific neurogenomic states, we reconstructed a brain transcriptional regulatory network (TRN) model. This brain TRN quantitatively predicts with high accuracy gene expression changes of more than 2,000 genes involved in behavior, even for behavioral phenotypes on which it was not trained, suggesting that there is a core set of TFs that regulates behavior-specific gene expression in the bee brain, and other TFs more specific to particular categories. TFs playing key roles in the TRN include well-known regulators of neural and behavioral plasticity, e.g., Creb, as well as TFs better known in other biological contexts, e.g., NF-κB (immunity). Our results reveal three insights concerning the relationship between genes and behavior. First, distinct behaviors are subserved by distinct neurogenomic states in the brain. Second, the neurogenomic states underlying different behaviors rely upon both shared and distinct transcriptional modules. Third, despite the complexity of the brain, simple linear relationships between TFs and their putative target genes are a surprisingly prominent feature of the networks underlying behavior. PMID:21960440

  11. The chorus environment and the shape of communication systems in frogs

    NASA Astrophysics Data System (ADS)

    Marshall, Vince

    2003-04-01

    Many species of frogs breed in dense and structurally complex aggregations of calling males termed choruses. Females entering a chorus are faced with the tasks of recognizing and locating mates on the basis of their advertisement calls. The chorus environment poses particular challenges for communication as signalers and receivers will face high levels of background noise and interference between signals. For females, such conditions may decrease the efficiency of communication, with the consequences of increasing the time required to find a mate or errors in mate choice. For males, it will give rise to intense competition for the attention of females. Additionally, the chorus environment for a species is not static, and will vary over both spatial and temporal scales. This complex and dynamic environment has shaped the signals and signaling behaviors of frogs in sometimes surprising ways. In this talk, some of the implications of the chorus environment for both receivers and signalers is discussed. In particular, examples from North American hylid frogs are drawn upon and research on the role of signal timing in influencing the responses of females and plasticity in aggressive behavior between neighbors in choruses are discussed.

  12. Settlement-Size Scaling among Prehistoric Hunter-Gatherer Settlement Systems in the New World

    PubMed Central

    Haas, W. Randall; Klink, Cynthia J.; Maggard, Greg J.; Aldenderfer, Mark S.

    2015-01-01

    Settlement size predicts extreme variation in the rates and magnitudes of many social and ecological processes in human societies. Yet, the factors that drive human settlement-size variation remain poorly understood. Size variation among economically integrated settlements tends to be heavy tailed such that the smallest settlements are extremely common and the largest settlements extremely large and rare. The upper tail of this size distribution is often formalized mathematically as a power-law function. Explanations for this scaling structure in human settlement systems tend to emphasize complex socioeconomic processes including agriculture, manufacturing, and warfare—behaviors that tend to differentially nucleate and disperse populations hierarchically among settlements. But, the degree to which heavy-tailed settlement-size variation requires such complex behaviors remains unclear. By examining the settlement patterns of eight prehistoric New World hunter-gatherer settlement systems spanning three distinct environmental contexts, this analysis explores the degree to which heavy-tailed settlement-size scaling depends on the aforementioned socioeconomic complexities. Surprisingly, the analysis finds that power-law models offer plausible and parsimonious statistical descriptions of prehistoric hunter-gatherer settlement-size variation. This finding reveals that incipient forms of hierarchical settlement structure may have preceded socioeconomic complexity in human societies and points to a need for additional research to explicate how mobile foragers came to exhibit settlement patterns that are more commonly associated with hierarchical organization. We propose that hunter-gatherer mobility with preferential attachment to previously occupied locations may account for the observed structure in site-size variation. PMID:26536241

  13. A Contrast-Based Computational Model of Surprise and Its Applications.

    PubMed

    Macedo, Luis; Cardoso, Amílcar

    2017-11-19

    We review our work on a contrast-based computational model of surprise and its applications. The review is contextualized within related research from psychology, philosophy, and particularly artificial intelligence. Influenced by psychological theories of surprise, the model assumes that surprise-eliciting events initiate a series of cognitive processes that begin with the appraisal of the event as unexpected, continue with the interruption of ongoing activity and the focusing of attention on the unexpected event, and culminate in the analysis and evaluation of the event and the revision of beliefs. It is assumed that the intensity of surprise elicited by an event is a nonlinear function of the difference or contrast between the subjective probability of the event and that of the most probable alternative event (which is usually the expected event); and that the agent's behavior is partly controlled by actual and anticipated surprise. We describe applications of artificial agents that incorporate the proposed surprise model in three domains: the exploration of unknown environments, creativity, and intelligent transportation systems. These applications demonstrate the importance of surprise for decision making, active learning, creative reasoning, and selective attention. Copyright © 2017 Cognitive Science Society, Inc.

  14. Anisotropic shear stress patterns predict the orientation of convergent tissue movements in the embryonic heart

    PubMed Central

    2017-01-01

    Myocardial contractility and blood flow provide essential mechanical cues for the morphogenesis of the heart. In general, endothelial cells change their migratory behavior in response to shear stress patterns, according to flow directionality. Here, we assessed the impact of shear stress patterns and flow directionality on the behavior of endocardial cells, the specialized endothelial cells of the heart. At the early stages of zebrafish heart valve formation, we show that endocardial cells are converging to the valve-forming area and that this behavior depends upon mechanical forces. Quantitative live imaging and mathematical modeling allow us to correlate this tissue convergence with the underlying flow forces. We predict that tissue convergence is associated with the direction of the mean wall shear stress and of the gradient of harmonic phase-averaged shear stresses, which surprisingly do not match the overall direction of the flow. This contrasts with the usual role of flow directionality in vascular development and suggests that the full spatial and temporal complexity of the wall shear stress should be taken into account when studying endothelial cell responses to flow in vivo. PMID:29183943

  15. Effect of a Surprising Downward Shift in Reinforcer Value on Stimulus Over-Selectivity in a Simultaneous Discrimination Procedure

    ERIC Educational Resources Information Center

    Reynolds, Gemma; Reed, Phil

    2013-01-01

    Stimulus over-selectivity refers to the phenomenon whereby behavior is controlled by a subset of elements in the environment at the expense of other equally salient aspects of the environment. The experiments explored whether this cue interference effect was reduced following a surprising downward shift in reinforcer value. Experiment 1 revealed…

  16. Effects of 3d-4f magnetic exchange interactions on the dynamics of the magnetization of Dy(III)-M(II)-Dy(III) trinuclear clusters.

    PubMed

    Pointillart, Fabrice; Bernot, Kevin; Sessoli, Roberta; Gatteschi, Dante

    2007-01-01

    [{Dy(hfac)(3)}(2){Fe(bpca)(2)}] x CHCl(3) ([Dy(2)Fe]) and [{Dy(hfac)(3)}(2){Ni(bpca)(2)}]CHCl(3) ([Dy(2)Ni]) (in which hfac(-)=1,1,1,5,5,5-hexafluoroacetylacetonate and bpca(-)=bis(2-pyridylcarbonyl)amine anion) were synthesized and characterized. Single-crystal X-ray diffraction shows that [Dy(2)Fe] and [Dy(2)Ni] are linear trinuclear complexes. Static magnetic susceptibility measurements reveal a weak ferromagnetic exchange interaction between Ni(II) and Dy(III) ions in [Dy(2)Ni], whereas the use of the diamagnetic Fe(II) ion leads to the absence of magnetic exchange interaction in [Dy(2)Fe]. Dynamic susceptibility measurements show a thermally activated behavior with the energy barrier of 9.7 and 4.9 K for the [Dy(2)Fe] and [Dy(2)Ni] complexes, respectively. A surprising negative effect of the ferromagnetic exchange interaction has been found and has been attributed to the structural conformation of these trinuclear complexes.

  17. The Role of Co-occurring Emotions and Personality Traits in Anger Expression

    PubMed Central

    Mill, Aire; Kööts-Ausmees, Liisi; Allik, Jüri; Realo, Anu

    2018-01-01

    The main aim of the current study was to examine the role of co-occurring emotions and their interactive effects with the Big Five personality traits in anger expression. Everyday anger expression (“anger-in” and “anger-out” behavior) was studied with the experience-sampling method in a group of 110 participants for 14 consecutive days on 7 random occasions per day. Our results showed that the simultaneously co-occurring emotions that buffer against anger expression are sadness, surprise, disgust, disappointment, and irritation for anger-in behavior, and fear, sadness and disappointment for anger-out reactions. While previous studies have shown that differentiating one's current affect into discrete emotion categories buffers against anger expression (Pond et al., 2012), our study further demonstrated the existence of specific interactive effects between the experience of momentary emotions and personality traits that lead to higher levels of either suppression or expression of anger behavior (or both). For example, the interaction between the trait Openness and co-occurring surprise, in predicting anger-in behavior, indicates that less open people hold their anger back more, and more open people use less anger-in behavior. Co-occurring disgust increases anger-out reactions in people low in Conscientiousness, but decreases anger-out reactions in people high in Conscientiousness. People high in Neuroticism are less likely to engage in anger-in behavior when experiencing disgust, surprise, or irritation alongside anger, but show more anger out in the case of co-occurring contempt. The results of the current study help to further clarify the interactions between the basic personality traits and the experience of momentary co-occurring emotions in determining anger behavior. PMID:29479333

  18. Scaling behavior of sleep-wake transitions across species

    NASA Astrophysics Data System (ADS)

    Lo, Chung-Chuan; Chou, Thomas; Ivanov, Plamen Ch.; Penzel, Thomas; Mochizuki, Takatoshi; Scammell, Thomas; Saper, Clifford B.; Stanley, H. Eugene

    2003-03-01

    Uncovering the mechanisms controlling sleep is a fascinating scientific challenge. It can be viewed as transitions of states of a very complex system, the brain. We study the time dynamics of short awakenings during sleep for three species: humans, rats and mice. We find, for all three species, that wake durations follow a power-law distribution, and sleep durations follow exponential distributions. Surprisingly, all three species have the same power-law exponent for the distribution of wake durations, but the exponential time scale of the distributions of sleep durations varies across species. We suggest that the dynamics of short awakenings are related to species-independent fluctuations of the system, while the dynamics of sleep is related to system-dependent mechanisms which change with species.

  19. Extension of a Suspended Soap Film: A Homogeneous Dilatation Followed by New Film Extraction

    NASA Astrophysics Data System (ADS)

    Seiwert, Jacopo; Monloubou, Martin; Dollet, Benjamin; Cantat, Isabelle

    2013-08-01

    Liquid foams are widely used in industry for their high effective viscosity, whose local origin is still unclear. This Letter presents new results on the extension of a suspended soap film, in a configuration mimicking the elementary deformation occurring during foam shearing. We evidence a surprising two-step evolution: the film first extends homogeneously, then its extension stops, and a new thicker film is extracted from the meniscus. The second step is independent of the nature of the surfactant solution, whereas the initial extension is only observed for surfactant solutions with negligible dilatational moduli. We predict this complex behavior using a model based on Frankel’s theory and on interface rigidification induced by confinement.

  20. Psychology, Psychologists, and Gifted Students

    ERIC Educational Resources Information Center

    Gallagher, James J.

    2015-01-01

    Psychologists show great curiosity about the world and human behavior. They are forever asking Why? Or What? Or How? about various aspects of human behavior. It is no surprise, therefore, that they respond enthusiastically to some of the questions surrounding the behavior of those labeled as gifted and talented in our society. As will be seen in…

  1. Perceiving Group Behavior: Sensitive Ensemble Coding Mechanisms for Biological Motion of Human Crowds

    ERIC Educational Resources Information Center

    Sweeny, Timothy D.; Haroz, Steve; Whitney, David

    2013-01-01

    Many species, including humans, display group behavior. Thus, perceiving crowds may be important for social interaction and survival. Here, we provide the first evidence that humans use ensemble-coding mechanisms to perceive the behavior of a crowd of people with surprisingly high sensitivity. Observers estimated the headings of briefly presented…

  2. Water Touch-and-Bounce from a Soft Viscoelastic Substrate: Wetting, Dewetting, and Rebound on Bitumen.

    PubMed

    Lee, Jae Bong; Dos Santos, Salomé; Antonini, Carlo

    2016-08-16

    Understanding the interaction between liquids and deformable solid surfaces is a fascinating fundamental problem, in which interaction and coupling of capillary and viscoelastic effects, due to solid substrate deformation, give rise to complex wetting mechanisms. Here we investigated as a model case the behavior of water drops on two smooth bitumen substrates with different rheological properties, defined as hard and soft (with complex shear moduli in the order of 10(7) and 10(5) Pa, respectively, at 1 Hz), focusing both on wetting and on dewetting behavior. By means of classical quasi-static contact angle measurements and drop impact tests, we show that the water drop behavior can significantly change from the quasi-static to the dynamic regime on soft viscoelastic surfaces, with the transition being defined by the substrate rheological properties. As a result, we also show that on the hard substrate, where the elastic response is dominant under all investigated conditions, classical quasi-static contact angle measurements provide consistent results that can be used to predict the drop dynamic wetting behavior, such as drop deposition or rebound after impact, as typically observed for nondeformable substrates. Differently, on soft surfaces, the formation of wetting ridges did not allow to define uniquely the substrate intrinsic advancing and receding contact angles. In addition, despite showing a high adhesion to the soft surface in quasi-static measurements, the drop was surprisingly able to rebound and escape from the surface after impact, as it is typically observed for hydrophobic surfaces. These results highlight that measurements of wetting properties for viscoelastic substrates need to be critically used and that wetting behavior of a liquid on viscoelastic surfaces is a function of the characteristic time scales.

  3. Architecture of the Yeast RNA Polymerase II Open Complex and Regulation of Activity by TFIIF

    PubMed Central

    Fishburn, James

    2012-01-01

    To investigate the function and architecture of the open complex state of RNA polymerase II (Pol II), Saccharomyces cerevisiae minimal open complexes were assembled by using a series of heteroduplex HIS4 promoters, TATA binding protein (TBP), TFIIB, and Pol II. The yeast system demonstrates great flexibility in the position of active open complexes, spanning 30 to 80 bp downstream from TATA, consistent with the transcription start site scanning behavior of yeast Pol II. TFIIF unexpectedly modulates the activity of the open complexes, either repressing or stimulating initiation. The response to TFIIF was dependent on the sequence of the template strand within the single-stranded bubble. Mutations in the TFIIB reader and linker region, which were inactive on duplex DNA, were suppressed by the heteroduplex templates, showing that a major function of the TFIIB reader and linker is in the initiation or stabilization of single-stranded DNA. Probing of the architecture of the minimal open complexes with TFIIB-FeBABE [TFIIB–p-bromoacetamidobenzyl–EDTA-iron(III)] derivatives showed that the TFIIB core domain is surprisingly positioned away from Pol II, and the addition of TFIIF repositions the TFIIB core domain to the Pol II wall domain. Together, our results show an unexpected architecture of minimal open complexes and the regulation of activity by TFIIF and the TFIIB core domain. PMID:22025674

  4. Long-term integrated studies show complex and surprising effects of climate change in northern hardwood forests

    Treesearch

    Peter M. Groffman; Lindsey Rustad; Pamela H. Templer; John Campbell; Lynn M. Christenson; Nina K. Lany; Anne M. Socci; Matthew A. Vadeboncoeur; Paul Schaberg; Geoffrey F. Wilson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Christine L. Goodale; Mark B. Green; Steven P. Hamburg; Chris E. Johnson; Myron J. Mitchell; Jennifer L. Morse; Linda H. Pardo; Nicholas L. Rodenhouse

    2012-01-01

    Evaluations of the local effects of global change are often confounded by the interactions of natural and anthropogenic factors that overshadow the effects of climate changes on ecosystems. Long-term watershed and natural elevation gradient studies at the Hubbard Brook Experimental Forest and in the surrounding region show surprising results demonstrating the effects...

  5. orco Mutagenesis Causes Loss of Antennal Lobe Glomeruli and Impaired Social Behavior in Ants.

    PubMed

    Trible, Waring; Olivos-Cisneros, Leonora; McKenzie, Sean K; Saragosti, Jonathan; Chang, Ni-Chen; Matthews, Benjamin J; Oxley, Peter R; Kronauer, Daniel J C

    2017-08-10

    Life inside ant colonies is orchestrated with diverse pheromones, but it is not clear how ants perceive these social signals. It has been proposed that pheromone perception in ants evolved via expansions in the numbers of odorant receptors (ORs) and antennal lobe glomeruli. Here, we generate the first mutant lines in the clonal raider ant, Ooceraea biroi, by disrupting orco, a gene required for the function of all ORs. We find that orco mutants exhibit severe deficiencies in social behavior and fitness, suggesting they are unable to perceive pheromones. Surprisingly, unlike in Drosophila melanogaster, orco mutant ants also lack most of the ∼500 antennal lobe glomeruli found in wild-type ants. These results illustrate that ORs are essential for ant social organization and raise the possibility that, similar to mammals, receptor function is required for the development and/or maintenance of the highly complex olfactory processing areas in the ant brain. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. X-Ray Diffraction on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggert, J H; Wark, J

    2012-02-15

    The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics andmore » techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.« less

  7. Temporal eye movement strategies during naturalistic viewing

    PubMed Central

    Wang, Helena X.; Freeman, Jeremy; Merriam, Elisha P.; Hasson, Uri; Heeger, David J.

    2011-01-01

    The deployment of eye movements to complex spatiotemporal stimuli likely involves a variety of cognitive factors. However, eye movements to movies are surprisingly reliable both within and across observers. We exploited and manipulated that reliability to characterize observers’ temporal viewing strategies. Introducing cuts and scrambling the temporal order of the resulting clips systematically changed eye movement reliability. We developed a computational model that exhibited this behavior and provided an excellent fit to the measured eye movement reliability. The model assumed that observers searched for, found, and tracked a point-of-interest, and that this process reset when there was a cut. The model did not require that eye movements depend on temporal context in any other way, and it managed to describe eye movements consistently across different observers and two movie sequences. Thus, we found no evidence for the integration of information over long time scales (greater than a second). The results are consistent with the idea that observers employ a simple tracking strategy even while viewing complex, engaging naturalistic stimuli. PMID:22262911

  8. Stability of soliton families in nonlinear Schrödinger equations with non-parity-time-symmetric complex potentials

    NASA Astrophysics Data System (ADS)

    Yang, Jianke; Nixon, Sean

    2016-11-01

    Stability of soliton families in one-dimensional nonlinear Schrödinger equations with non-parity-time (PT)-symmetric complex potentials is investigated numerically. It is shown that these solitons can be linearly stable in a wide range of parameter values both below and above phase transition. In addition, a pseudo-Hamiltonian-Hopf bifurcation is revealed, where pairs of purely-imaginary eigenvalues in the linear-stability spectra of solitons collide and bifurcate off the imaginary axis, creating oscillatory instability, which resembles Hamiltonian-Hopf bifurcations of solitons in Hamiltonian systems even though the present system is dissipative and non-Hamiltonian. The most important numerical finding is that, eigenvalues of linear-stability operators of these solitons appear in quartets (λ , - λ ,λ* , -λ*), similar to conservative systems and PT-symmetric systems. This quartet eigenvalue symmetry is very surprising for non- PT-symmetric systems, and it has far-reaching consequences on the stability behaviors of solitons.

  9. Shallow versus deep nature of Mg acceptors in nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Lyons, John; Janotti, Anderson; van de Walle, Chris G.

    2012-02-01

    Although Mg doping is the only known method for achieving p-type conductivity in nitride semiconductors, Mg is not a perfect acceptor. Hydrogen is known to passivate the Mg acceptor, necessitating a post-growth anneal for acceptor activation. Furthermore, the acceptor ionization energy of Mg is relatively large (200 meV) in GaN, thus only a few percent of Mg acceptors are ionized at room temperature. Surprisingly, despite the importance of this impurity, open questions remain regarding the nature of the acceptor. Optical and magnetic resonance measurements on Mg-doped GaN indicate intriguing and complex behavior that depends on the growth, doping level, and thermal treatment of the samples. Motivated by these studies, we have revisited this topic by performing first-principles calculations based on a hybrid functional. We investigate the electrical and optical properties of the isolated Mg acceptor and its complexes with hydrogen in GaN, InN, and AlN. With the help of these advanced techniques we explain the deep or shallow nature of the Mg acceptor and its relation to optical signals often seen in Mg-doped GaN. We also explore the properties of the Mg acceptor in InN and AlN, allowing predictions of the behavior of the Mg dopant in ternary nitride alloys.

  10. Agent Based Study of Surprise Attacks:. Roles of Surveillance, Prompt Reaction and Intelligence

    NASA Astrophysics Data System (ADS)

    Shanahan, Linda; Sen, Surajit

    Defending a confined territory from a surprise attack is seldom possible. We use molecular dynamics and statistical physics inspired agent-based simulations to explore the evolution and outcome of such attacks. The study suggests robust emergent behavior, which emphasizes the importance of accurate surveillance, automated and powerful attack response, building layout, and sheds light on the role of communication restrictions in defending such territories.

  11. Putting the Mind in the Brain: Promoting an Appreciation of the Biological Basis to Understanding Human Behavior

    ERIC Educational Resources Information Center

    Neumann, David L.

    2010-01-01

    A surprising number of students in psychology, behavioral science, and related social science classes fail to appreciate the importance of biological mechanisms to understanding behavior. To help teachers promote this understanding, this paper outlines six sources of evidence. These are (a) phylogenetic, (b) genetic/developmental, (c) clinical,…

  12. Consideration of Culture and Context in School-Wide Positive Behavior Support: A Review of Current Literature

    ERIC Educational Resources Information Center

    Fallon, Lindsay M.; O'Keeffe, Breda V.; Sugai, George

    2012-01-01

    A review of the literature related to culture and student behavior reveals a number of interesting observations that are not surprising. First, culture is a difficult construct to define and has been defined variably over the years. Second, schools are becoming increasingly diverse, and evidence-based behavior management practices have been…

  13. Teaching about Complex Systems Is No Simple Matter: Building Effective Professional Development for Computer-Supported Complex Systems Instruction

    ERIC Educational Resources Information Center

    Yoon, Susan A.; Anderson, Emma; Koehler-Yom, Jessica; Evans, Chad; Park, Miyoung; Sheldon, Josh; Schoenfeld, Ilana; Wendel, Daniel; Scheintaub, Hal; Klopfer, Eric

    2017-01-01

    The recent next generation science standards in the United States have emphasized learning about complex systems as a core feature of science learning. Over the past 15 years, a number of educational tools and theories have been investigated to help students learn about complex systems; but surprisingly, little research has been devoted to…

  14. Prefrontal Cortex and Social Cognition in Mouse and Man

    PubMed Central

    Bicks, Lucy K.; Koike, Hiroyuki; Akbarian, Schahram; Morishita, Hirofumi

    2015-01-01

    Social cognition is a complex process that requires the integration of a wide variety of behaviors, including salience, reward-seeking, motivation, knowledge of self and others, and flexibly adjusting behavior in social groups. Not surprisingly, social cognition represents a sensitive domain commonly disrupted in the pathology of a variety of psychiatric disorders including Autism Spectrum Disorder (ASD) and Schizophrenia (SCZ). Here, we discuss convergent research from animal models to human disease that implicates the prefrontal cortex (PFC) as a key regulator in social cognition, suggesting that disruptions in prefrontal microcircuitry play an essential role in the pathophysiology of psychiatric disorders with shared social deficits. We take a translational perspective of social cognition, and review three key behaviors that are essential to normal social processing in rodents and humans, including social motivation, social recognition, and dominance hierarchy. A shared prefrontal circuitry may underlie these behaviors. Social cognition deficits in animal models of neurodevelopmental disorders like ASD and SCZ have been linked to an altered balance of excitation and inhibition (E/I ratio) within the cortex generally, and PFC specifically. A clear picture of the mechanisms by which altered E/I ratio in the PFC might lead to disruptions of social cognition across a variety of behaviors is not well understood. Future studies should explore how disrupted developmental trajectory of prefrontal microcircuitry could lead to altered E/I balance and subsequent deficits in the social domain. PMID:26635701

  15. Automatic Realistic Real Time Stimulation/Recording in Weakly Electric Fish: Long Time Behavior Characterization in Freely Swimming Fish and Stimuli Discrimination

    PubMed Central

    Forlim, Caroline G.; Pinto, Reynaldo D.

    2014-01-01

    Weakly electric fish are unique model systems in neuroethology, that allow experimentalists to non-invasively, access, central nervous system generated spatio-temporal electric patterns of pulses with roles in at least 2 complex and incompletely understood abilities: electrocommunication and electrolocation. Pulse-type electric fish alter their inter pulse intervals (IPIs) according to different behavioral contexts as aggression, hiding and mating. Nevertheless, only a few behavioral studies comparing the influence of different stimuli IPIs in the fish electric response have been conducted. We developed an apparatus that allows real time automatic realistic stimulation and simultaneous recording of electric pulses in freely moving Gymnotus carapo for several days. We detected and recorded pulse timestamps independently of the fish’s position for days. A stimulus fish was mimicked by a dipole electrode that reproduced the voltage time series of real conspecific according to previously recorded timestamp sequences. We characterized fish behavior and the eletrocommunication in 2 conditions: stimulated by IPIs pre-recorded from other fish and random IPI ones. All stimuli pulses had the exact Gymontus carapo waveform. All fish presented a surprisingly long transient exploratory behavior (more than 8 h) when exposed to a new environment in the absence of electrical stimuli. Further, we also show that fish are able to discriminate between real and random stimuli distributions by changing several characteristics of their IPI distribution. PMID:24400122

  16. The semantics of secrecy: young children's classification of secret content.

    PubMed

    Anagnostaki, Lida; Wright, Michael J; Bourchier-Sutton, Alison J

    2010-01-01

    The authors explored whether young children can distinguish potential secrets from nonsecrets by their content, as can older children, adolescents, and adults. Ninety children, 4, 5, and 6 years old, rated the secrecy of items from an adult-validated list of personal information about an age- and gender-appropriate puppet. Two factors of the children's data corresponded to the adult categories of nonsecrets and secrets, and a third factor corresponded to surprises. All ages rated surprises as significantly more secret than nonsecret items; however, the surprise items contained linguistic cues to secrecy. A tendency to rate nonsecrets as secret decreased with age, but only the 6-year-olds rated secrets other than surprises as significantly more secret than nonsecrets. Thus, children acquire the implicit rules defining secret content from a somewhat later age than that reported for the cognitive or behavioral capacities for secrecy.

  17. Performance of the Space Telescope Imaging Spectrograph after SM4

    NASA Technical Reports Server (NTRS)

    Proffitt, Charles R.; Alosi, A.; Bohlin, R. C.; Bostroen, K. A.; Cox, C. R.; Diaz, R. I.; Dixon, W. V.; Goudfrooij, P.; Hodge, P.; Kaiser, M. E.; hide

    2010-01-01

    On May 17, 2009, during the fourth EVA of SM4, astronauts Michael Good and Mike Massimino replaced the failed LVPS-2 circuit board on the Space Telescope Imaging Spectrograph (STIS), restoring this HST instrument to operation after a nearly 6 year hiatus. STIS after this 2009 repair operates in much the same way as it did during the 2001-2004 period of operations with the Side-2 electronics. Internal and external alignments of the instrument are similar to what they had been in 2004, and most changes in performance are modest. The STIS CCD detector continued to experience radiation damage during the hiatus in operations, leading to decreased charge transfer efficiency (CTE) and an increased number of hot pixels. The sensitivities for most modes are surprisingly close to what was expected from simple extrapolation of the 2003-2004 trends, although the echelle modes show somewhat more complex behavior. The biggest surprise was that the dark count rate for the NUV MAMA detector after SM4 has been much larger than had been expected; it is currently about 2.5 times bigger than it was in 2004 and is only slowly decreasing. We discuss how these changes will affect science with STIS now and in the future.

  18. Coupling News Sentiment with Web Browsing Data Improves Prediction of Intra-Day Price Dynamics.

    PubMed

    Ranco, Gabriele; Bordino, Ilaria; Bormetti, Giacomo; Caldarelli, Guido; Lillo, Fabrizio; Treccani, Michele

    2016-01-01

    The new digital revolution of big data is deeply changing our capability of understanding society and forecasting the outcome of many social and economic systems. Unfortunately, information can be very heterogeneous in the importance, relevance, and surprise it conveys, affecting severely the predictive power of semantic and statistical methods. Here we show that the aggregation of web users' behavior can be elicited to overcome this problem in a hard to predict complex system, namely the financial market. Specifically, our in-sample analysis shows that the combined use of sentiment analysis of news and browsing activity of users of Yahoo! Finance greatly helps forecasting intra-day and daily price changes of a set of 100 highly capitalized US stocks traded in the period 2012-2013. Sentiment analysis or browsing activity when taken alone have very small or no predictive power. Conversely, when considering a news signal where in a given time interval we compute the average sentiment of the clicked news, weighted by the number of clicks, we show that for nearly 50% of the companies such signal Granger-causes hourly price returns. Our result indicates a "wisdom-of-the-crowd" effect that allows to exploit users' activity to identify and weigh properly the relevant and surprising news, enhancing considerably the forecasting power of the news sentiment.

  19. Synchronization in human musical rhythms and mutually interacting complex systems

    PubMed Central

    Hennig, Holger

    2014-01-01

    Though the music produced by an ensemble is influenced by multiple factors, including musical genre, musician skill, and individual interpretation, rhythmic synchronization is at the foundation of musical interaction. Here, we study the statistical nature of the mutual interaction between two humans synchronizing rhythms. We find that the interbeat intervals of both laypeople and professional musicians exhibit scale-free (power law) cross-correlations. Surprisingly, the next beat to be played by one person is dependent on the entire history of the other person’s interbeat intervals on timescales up to several minutes. To understand this finding, we propose a general stochastic model for mutually interacting complex systems, which suggests a physiologically motivated explanation for the occurrence of scale-free cross-correlations. We show that the observed long-term memory phenomenon in rhythmic synchronization can be imitated by fractal coupling of separately recorded or synthesized audio tracks and thus applied in electronic music. Though this study provides an understanding of fundamental characteristics of timing and synchronization at the interbrain level, the mutually interacting complex systems model may also be applied to study the dynamics of other complex systems where scale-free cross-correlations have been observed, including econophysics, physiological time series, and collective behavior of animal flocks. PMID:25114228

  20. Modifying patch-scale connectivity to initiate landscape change: An experimental approach to link scale

    USDA-ARS?s Scientific Manuscript database

    Nonlinear interactions and feedbacks across spatial and temporal scales are common features of biological and physical systems. These emergent behaviors often result in surprises that challenge the ability of scientists to understand and predict system behavior at one scale based on information at f...

  1. Sensitivity to Landscape Features: A Spatial Analysis of Field Geoscientists on the Move

    ERIC Educational Resources Information Center

    Baker, Kathleen M.; Petcovic, L. Heather

    2016-01-01

    Intelligent behavior in everyday contexts may depend on both ability and an individual's disposition toward using that ability. Research into patterns of thinking has identified three logically distinct components necessary for dispositional behavior: ability, inclination, and sensitivity. Surprisingly, sensitivity appears to be the most common…

  2. A Contemporary Behavior Analysis of Anxiety and Avoidance

    ERIC Educational Resources Information Center

    Dymond, Simon; Roche, Bryan

    2009-01-01

    Despite the central status of avoidance in explaining the etiology and maintenance of anxiety disorders, surprisingly little behavioral research has been conducted on human avoidance. In the present paper, first we provide a brief review of the empirical literature on avoidance. Next, we describe the implications of research on derived relational…

  3. A role for relaxed selection in the evolution of the language capacity

    PubMed Central

    Deacon, Terrence W.

    2010-01-01

    Explaining the extravagant complexity of the human language and our competence to acquire it has long posed challenges for natural selection theory. To answer his critics, Darwin turned to sexual selection to account for the extreme development of language. Many contemporary evolutionary theorists have invoked incredibly lucky mutation or some variant of the assimilation of acquired behaviors to innate predispositions in an effort to explain it. Recent evodevo approaches have identified developmental processes that help to explain how complex functional synergies can evolve by Darwinian means. Interestingly, many of these developmental mechanisms bear a resemblance to aspects of Darwin's mechanism of natural selection, often differing only in one respect (e.g., form of duplication, kind of variation, competition/cooperation). A common feature is an interplay between processes of stabilizing selection and processes of relaxed selection at different levels of organism function. These may play important roles in the many levels of evolutionary process contributing to language. Surprisingly, the relaxation of selection at the organism level may have been a source of many complex synergistic features of the human language capacity, and may help explain why so much language information is “inherited” socially. PMID:20445088

  4. Long-Term Memories Bias Sensitivity and Target Selection in Complex Scenes

    PubMed Central

    Patai, Eva Zita; Doallo, Sonia; Nobre, Anna Christina

    2014-01-01

    In everyday situations we often rely on our memories to find what we are looking for in our cluttered environment. Recently, we developed a new experimental paradigm to investigate how long-term memory (LTM) can guide attention, and showed how the pre-exposure to a complex scene in which a target location had been learned facilitated the detection of the transient appearance of the target at the remembered location (Summerfield, Lepsien, Gitelman, Mesulam, & Nobre, 2006; Summerfield, Rao, Garside, & Nobre, 2011). The present study extends these findings by investigating whether and how LTM can enhance perceptual sensitivity to identify targets occurring within their complex scene context. Behavioral measures showed superior perceptual sensitivity (d′) for targets located in remembered spatial contexts. We used the N2pc event-related potential to test whether LTM modulated the process of selecting the target from its scene context. Surprisingly, in contrast to effects of visual spatial cues or implicit contextual cueing, LTM for target locations significantly attenuated the N2pc potential. We propose that the mechanism by which these explicitly available LTMs facilitate perceptual identification of targets may differ from mechanisms triggered by other types of top-down sources of information. PMID:23016670

  5. Integrating Critical Thinking into the Assessment of College Writing

    ERIC Educational Resources Information Center

    McLaughlin, Frost; Moore, Miriam

    2012-01-01

    When writing teachers at any level get together to assess student essays, they often disagree in their evaluations of the writing at hand. This is no surprise as writing is a complex process, and in evaluating it, teachers go through a complex sequence of thoughts before emerging with an overall assessment. Critical thinking, or the complexity of…

  6. A structural study of [CpM(CO)3H] (M = Cr, Mo and W) by single-crystal X-ray diffraction and DFT calculations: sterically crowded yet surprisingly flexible molecules.

    PubMed

    Burchell, Richard P L; Sirsch, Peter; Decken, Andreas; McGrady, G Sean

    2009-08-14

    The single-crystal X-ray structures of the complexes [CpCr(CO)3H] 1, [CpMo(CO)3H] 2 and [CpW(CO)3H] 3 are reported. The results indicate that 1 adopts a structure close to a distorted three-legged piano stool geometry, whereas a conventional four-legged piano stool arrangement is observed for 2 and 3. Further insight into the equilibrium geometries and potential energy surfaces of all three complexes was obtained by DFT calculations. These show that in the gas phase complex 1 also prefers a geometry close to a four-legged piano stool in line with its heavier congeners, and implying strong packing forces at work for 1 in the solid state. Comparison with their isolelectronic group 7 tricarbonyl counterparts [CpM(CO)3] (M = Mn 4 and Re 5) illustrates that 1, 2 and 3 are sterically crowded complexes. However, a surprisingly soft bending potential is evident for the M-H moiety, whose order (1 approximately = 2 < 3) correlates with the M-H bond strength rather than with the degree of congestion at the metal centre, indicating electronic rather than steric control of the potential. The calculations also reveal cooperative motions of the hydride and carbonyl ligands in the M(CO)3H unit, which allow the M-H moiety to move freely, in spite of the closeness of the four basal ligands, helping to explain the surprising flexibility of the crowded coordination sphere observed for this family of high CN complexes.

  7. Sexual and Reproductive Health Behaviors among Teen and Young Adult Men: A Descriptive Portrait. Research Brief. Publication #2008-34

    ERIC Educational Resources Information Center

    Manlove, Jennifer; Terry-Humen, Elizabeth; Ikramullah, Erum; Holcombe, Emily

    2008-01-01

    When it comes to the reproductive health behaviors of teens and young adults, far more public attention has focused on women than on men. That's not surprising. After all, men don't actually have the babies. Yet the importance of understanding men's reproductive health behaviors should not be overlooked, given their potential implications for men…

  8. How Much Do You Know about Teen Sexual Behavior? A True-False Quiz. Fact Sheet. Publication 2008-31

    ERIC Educational Resources Information Center

    Holcombe, Emily; Peterson, Kristen; Manlove, Jennifer

    2008-01-01

    Despite media attention to teen sexual behavior and public concern about its consequences, the public is surprisingly ill-informed or misinformed on the subject. Yet without the facts, it is difficult to develop effective approaches to curb risky sexual behaviors and prevent teen pregnancy and STI transmission. This paper presents a true or false…

  9. Distribution of the Pyruvate Dehydrogenase Complex in Developing Soybean Cotyledons

    USDA-ARS?s Scientific Manuscript database

    The somewhat surprising report that storage proteins and oil are non-uniformly distributed in the cotyledons of developing soybeans prompted us to determine the spatial distribution of the mitochondrial and plastidial forms of the pyruvate dehydrogenase complex (PDC). It has been proposed that pla...

  10. Multiscale Modeling of Gene-Behavior Associations in an Artificial Neural Network Model of Cognitive Development

    ERIC Educational Resources Information Center

    Thomas, Michael S. C.; Forrester, Neil A.; Ronald, Angelica

    2016-01-01

    In the multidisciplinary field of developmental cognitive neuroscience, statistical associations between levels of description play an increasingly important role. One example of such associations is the observation of correlations between relatively common gene variants and individual differences in behavior. It is perhaps surprising that such…

  11. Evaluating musical instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, D. Murray

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians.

  12. Voting behavior, coalitions and government strength through a complex network analysis.

    PubMed

    Dal Maso, Carlo; Pompa, Gabriele; Puliga, Michelangelo; Riotta, Gianni; Chessa, Alessandro

    2014-01-01

    We analyze the network of relations between parliament members according to their voting behavior. In particular, we examine the emergent community structure with respect to political coalitions and government alliances. We rely on tools developed in the Complex Network literature to explore the core of these communities and use their topological features to develop new metrics for party polarization, internal coalition cohesiveness and government strength. As a case study, we focus on the Chamber of Deputies of the Italian Parliament, for which we are able to characterize the heterogeneity of the ruling coalition as well as parties specific contributions to the stability of the government over time. We find sharp contrast in the political debate which surprisingly does not imply a relevant structure based on established parties. We take a closer look to changes in the community structure after parties split up and their effect on the position of single deputies within communities. Finally, we introduce a way to track the stability of the government coalition over time that is able to discern the contribution of each member along with the impact of its possible defection. While our case study relies on the Italian parliament, whose relevance has come into the international spotlight in the present economic downturn, the methods developed here are entirely general and can therefore be applied to a multitude of other scenarios.

  13. Biomacromolecular quantitative structure-activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein-protein binding affinity.

    PubMed

    Zhou, Peng; Wang, Congcong; Tian, Feifei; Ren, Yanrong; Yang, Chao; Huang, Jian

    2013-01-01

    Quantitative structure-activity relationship (QSAR), a regression modeling methodology that establishes statistical correlation between structure feature and apparent behavior for a series of congeneric molecules quantitatively, has been widely used to evaluate the activity, toxicity and property of various small-molecule compounds such as drugs, toxicants and surfactants. However, it is surprising to see that such useful technique has only very limited applications to biomacromolecules, albeit the solved 3D atom-resolution structures of proteins, nucleic acids and their complexes have accumulated rapidly in past decades. Here, we present a proof-of-concept paradigm for the modeling, prediction and interpretation of the binding affinity of 144 sequence-nonredundant, structure-available and affinity-known protein complexes (Kastritis et al. Protein Sci 20:482-491, 2011) using a biomacromolecular QSAR (BioQSAR) scheme. We demonstrate that the modeling performance and predictive power of BioQSAR are comparable to or even better than that of traditional knowledge-based strategies, mechanism-type methods and empirical scoring algorithms, while BioQSAR possesses certain additional features compared to the traditional methods, such as adaptability, interpretability, deep-validation and high-efficiency. The BioQSAR scheme could be readily modified to infer the biological behavior and functions of other biomacromolecules, if their X-ray crystal structures, NMR conformation assemblies or computationally modeled structures are available.

  14. Interaction between Neurogenesis and Hippocampal Memory System: New Vistas

    PubMed Central

    Abrous, Djoher Nora; Wojtowicz, Jan Martin

    2015-01-01

    During the last decade, the questions on the functionality of adult neurogenesis have changed their emphasis from if to how the adult-born neurons participate in a variety of memory processes. The emerging answers are complex because we are overwhelmed by a variety of behavioral tasks that apparently require new neurons to be performed optimally. With few exceptions, the hippocampal memory system seems to use the newly generated neurons for multiple roles. Adult neurogenesis has given the dentate gyrus new capabilities not previously thought possible within the scope of traditional synaptic plasticity. Looking at these new developments from the perspective of past discoveries, the science of adult neurogenesis has emerged from its initial phase of being, first, a surprising oddity and, later, exciting possibility, to the present state of being an integral part of mainstream neuroscience. The answers to many remaining questions regarding adult neurogenesis will come along only with our growing understanding of the functionality of the brain as a whole. This, in turn, will require integration of multiple levels of organization from molecules and cells to circuits and systems, ultimately resulting in comprehension of behavioral outcomes. PMID:26032718

  15. Behaviors of ellipsoidal micro-particles within a two-beam optical levitator

    NASA Astrophysics Data System (ADS)

    Petkov, T.; Yang, M.; Ren, K. F.; Pouligny, B.; Loudet, J.-C.

    2017-07-01

    The two-beam levitator (TBL) is a standard optical setup made of a couple of counter-propagating beams. Note worthily, TBLs allow the manipulation and trapping of particles at long working distances. While much experience has been accumulated in the trapping of single spherical particles in TBLs, the behaviors of asymmetrical particles turn out to be more complex, and even surprising. Here, we report observations with prolate ellipsoidal polystyrene particles, with varying aspect ratio and ratio of the two beam powers. Generalizing the earlier work by Mihiretie et al. in single beam geometries [JQSRT 126, 61 (2013)], we observe that particles may be either static, or permanently oscillating, and that the two-beam geometry produces new particle responses: some of them are static, but non-symmetrical, while others correspond to new types of oscillations. A two-dimensional model based on ray-optics qualitatively accounts for these configurations and for the "primary" oscillations of the particles. Furthermore, levitation powers measured in the experiments are in fair agreement with those computed from GLMT (Generalized Lorentz Mie Theory), MLFMA (Multilevel Fast Multipole Algorithm) and approximate ray-optics methods.

  16. Examples of equilibrium and non-equilibrium behavior in evolutionary systems

    NASA Astrophysics Data System (ADS)

    Soulier, Arne

    With this thesis, we want to shed some light into the darkness of our understanding of simply defined statistical mechanics systems and the surprisingly complex dynamical behavior they exhibit. We will do so by presenting in turn one equilibrium and then one non-equilibrium system with evolutionary dynamics. In part 1, we will present the seceder-model, a newly developed system that cannot equilibrate. We will then study several properties of the system and obtain an idea of the richness of the dynamics of the seceder model, which is particular impressive given the minimal amount of modeling necessary in its setup. In part 2, we will present extensions to the directed polymer in random media problem on a hypercube and its connection to the Eigen model of evolution. Our main interest will be the influence of time-dependent and time-independent changes in the fitness landscape viewed by an evolving population. This part contains the equilibrium dynamics. The stochastic models and the topic of evolution and non-equilibrium in general will allow us to point out similarities to the various lines of thought in game theory.

  17. Resolving coiled shapes reveals new reorientation behaviors in C. elegans

    PubMed Central

    Broekmans, Onno D; Rodgers, Jarlath B; Ryu, William S; Stephens, Greg J

    2016-01-01

    We exploit the reduced space of C. elegans postures to develop a novel tracking algorithm which captures both simple shapes and also self-occluding coils, an important, yet unexplored, component of 2D worm behavior. We apply our algorithm to show that visually complex, coiled sequences are a superposition of two simpler patterns: the body wave dynamics and a head-curvature pulse. We demonstrate the precise Ω-turn dynamics of an escape response and uncover a surprising new dichotomy in spontaneous, large-amplitude coils; deep reorientations occur not only through classical Ω-shaped postures but also through larger postural excitations which we label here as δ-turns. We find that omega and delta turns occur independently, suggesting a distinct triggering mechanism, and are the serpentine analog of a random left-right step. Finally, we show that omega and delta turns occur with approximately equal rates and adapt to food-free conditions on a similar timescale, a simple strategy to avoid navigational bias. DOI: http://dx.doi.org/10.7554/eLife.17227.001 PMID:27644113

  18. Lexical Predictability During Natural Reading: Effects of Surprisal and Entropy Reduction.

    PubMed

    Lowder, Matthew W; Choi, Wonil; Ferreira, Fernanda; Henderson, John M

    2018-06-01

    What are the effects of word-by-word predictability on sentence processing times during the natural reading of a text? Although information complexity metrics such as surprisal and entropy reduction have been useful in addressing this question, these metrics tend to be estimated using computational language models, which require some degree of commitment to a particular theory of language processing. Taking a different approach, this study implemented a large-scale cumulative cloze task to collect word-by-word predictability data for 40 passages and compute surprisal and entropy reduction values in a theory-neutral manner. A separate group of participants read the same texts while their eye movements were recorded. Results showed that increases in surprisal and entropy reduction were both associated with increases in reading times. Furthermore, these effects did not depend on the global difficulty of the text. The findings suggest that surprisal and entropy reduction independently contribute to variation in reading times, as these metrics seem to capture different aspects of lexical predictability. Copyright © 2018 Cognitive Science Society, Inc.

  19. Estimating human cochlear tuning behaviorally via forward masking

    NASA Astrophysics Data System (ADS)

    Oxenham, Andrew J.; Kreft, Heather A.

    2018-05-01

    The cochlea is where sound vibrations are transduced into the initial neural code for hearing. Despite the intervening stages of auditory processing, a surprising number of auditory perceptual phenomena can be explained in terms of the cochlea's biomechanical transformations. The quest to relate perception to these transformations has a long and distinguished history. Given its long history, it is perhaps surprising that something as fundamental as the link between frequency tuning in the cochlea and perception remains a controversial and active topic of investigation. Here we review some recent developments in our understanding of the relationship between cochlear frequency tuning and behavioral measures of frequency selectivity in humans. We show that forward masking using the notched-noise technique can produce reliable estimates of tuning that are in line with predictions from stimulus frequency otoacoustic emissions.

  20. The Trail Less Traveled: Individual Decision-Making and Its Effect on Group Behavior

    PubMed Central

    Lanan, Michele C.; Dornhaus, Anna; Jones, Emily I.; Waser, Andrew; Bronstein, Judith L.

    2012-01-01

    Social insect colonies are complex systems in which the interactions of many individuals lead to colony-level collective behaviors such as foraging. However, the emergent properties of collective behaviors may not necessarily be adaptive. Here, we examine symmetry breaking, an emergent pattern exhibited by some social insects that can lead colonies to focus their foraging effort on only one of several available food patches. Symmetry breaking has been reported to occur in several ant species. However, it is not clear whether it arises as an unavoidable epiphenomenon of pheromone recruitment, or whether it is an adaptive behavior that can be controlled through modification of the individual behavior of workers. In this paper, we used a simulation model to test how symmetry breaking is affected by the degree of non-linearity of recruitment, the specific mechanism used by individuals to choose between patches, patch size, and forager number. The model shows that foraging intensity on different trails becomes increasingly asymmetric as the recruitment response of individuals varies from linear to highly non-linear, supporting the predictions of previous work. Surprisingly, we also found that the direction of the relationship between forager number (i.e., colony size) and asymmetry varied depending on the specific details of the decision rule used by individuals. Limiting the size of the resource produced a damping effect on asymmetry, but only at high forager numbers. Variation in the rule used by individual ants to choose trails is a likely mechanism that could cause variation among the foraging behaviors of species, and is a behavior upon which selection could act. PMID:23112880

  1. Complex Behavior of Aqueous α-Cyclodextrin Solutions. Interfacial Morphologies Resulting from Bulk Aggregation.

    PubMed

    Hernandez-Pascacio, Jorge; Piñeiro, Ángel; Ruso, Juan M; Hassan, Natalia; Campbell, Richard A; Campos-Terán, José; Costas, Miguel

    2016-07-05

    The spontaneous aggregation of α-cyclodextrin (α-CD) molecules in the bulk aqueous solution and the interactions of the resulting aggregates at the liquid/air interface have been studied at 283 K using a battery of techniques: transmission electron microscopy, dynamic light scattering, dynamic surface tensiometry, Brewster angle microscopy, neutron reflectometry, and ellipsometry. We show that α-CD molecules spontaneously form aggregates in the bulk that grow in size with time. These aggregates adsorb to the liquid/air interface with their size in the bulk determining the adsorption rate. The material that reaches the interface coalesces laterally to form two-dimensional domains on the micrometer scale with a layer thickness on the nanometer scale. These processes are affected by the ages of both the bulk and the interface. The interfacial layer formed is not in fast dynamic equilibrium with the subphase as the resulting morphology is locked in a kinetically trapped state. These results reveal a surprising complexity of the parallel physical processes taking place in the bulk and at the interface of what might have seemed initially like a simple system.

  2. Laser ablation of Dbx1 neurons in the pre-Bötzinger complex stops inspiratory rhythm and impairs output in neonatal mice

    PubMed Central

    Wang, Xueying; Hayes, John A; Revill, Ann L; Song, Hanbing; Kottick, Andrew; Vann, Nikolas C; LaMar, M Drew; Picardo, Maria Cristina D; Akins, Victoria T; Funk, Gregory D; Del Negro, Christopher A

    2014-01-01

    To understand the neural origins of rhythmic behavior one must characterize the central pattern generator circuit and quantify the population size needed to sustain functionality. Breathing-related interneurons of the brainstem pre-Bötzinger complex (preBötC) that putatively comprise the core respiratory rhythm generator in mammals are derived from Dbx1-expressing precursors. Here, we show that selective photonic destruction of Dbx1 preBötC neurons in neonatal mouse slices impairs respiratory rhythm but surprisingly also the magnitude of motor output; respiratory hypoglossal nerve discharge decreased and its frequency steadily diminished until rhythm stopped irreversibly after 85±20 (mean ± SEM) cellular ablations, which corresponds to ∼15% of the estimated population. These results demonstrate that a single canonical interneuron class generates respiratory rhythm and contributes in a premotor capacity, whereas these functions are normally attributed to discrete populations. We also establish quantitative cellular parameters that govern network viability, which may have ramifications for respiratory pathology in disease states. DOI: http://dx.doi.org/10.7554/eLife.03427.001 PMID:25027440

  3. Real-Time Measurement of Host Bioenergetics During Mycobacterium Tuberculosis Infection

    DTIC Science & Technology

    2015-05-01

    antimycobacterial drugs on Mtb bioenergetics. We focused on Clofazimine (CFZ, targets Complex I), Bedaquiline (BDQ/TMC207, targets Complex V) and Q203 (targets... Complex III). Firstly we investigated the effect of CFZ and BDQ on the OCR profiles of Mtb mc2 6230 (Figure 3). These experiments were done in...addition with of CFZ. The decrease in OCR is consistent with ETC complex inhibition. BDQ caused a very surprising concentration-depended increase

  4. Visual Prediction Error Spreads Across Object Features in Human Visual Cortex

    PubMed Central

    Summerfield, Christopher; Egner, Tobias

    2016-01-01

    Visual cognition is thought to rely heavily on contextual expectations. Accordingly, previous studies have revealed distinct neural signatures for expected versus unexpected stimuli in visual cortex. However, it is presently unknown how the brain combines multiple concurrent stimulus expectations such as those we have for different features of a familiar object. To understand how an unexpected object feature affects the simultaneous processing of other expected feature(s), we combined human fMRI with a task that independently manipulated expectations for color and motion features of moving-dot stimuli. Behavioral data and neural signals from visual cortex were then interrogated to adjudicate between three possible ways in which prediction error (surprise) in the processing of one feature might affect the concurrent processing of another, expected feature: (1) feature processing may be independent; (2) surprise might “spread” from the unexpected to the expected feature, rendering the entire object unexpected; or (3) pairing a surprising feature with an expected feature might promote the inference that the two features are not in fact part of the same object. To formalize these rival hypotheses, we implemented them in a simple computational model of multifeature expectations. Across a range of analyses, behavior and visual neural signals consistently supported a model that assumes a mixing of prediction error signals across features: surprise in one object feature spreads to its other feature(s), thus rendering the entire object unexpected. These results reveal neurocomputational principles of multifeature expectations and indicate that objects are the unit of selection for predictive vision. SIGNIFICANCE STATEMENT We address a key question in predictive visual cognition: how does the brain combine multiple concurrent expectations for different features of a single object such as its color and motion trajectory? By combining a behavioral protocol that independently varies expectation of (and attention to) multiple object features with computational modeling and fMRI, we demonstrate that behavior and fMRI activity patterns in visual cortex are best accounted for by a model in which prediction error in one object feature spreads to other object features. These results demonstrate how predictive vision forms object-level expectations out of multiple independent features. PMID:27810936

  5. Rethinking Shared Environment as a Source of Variance Underlying Attention-Deficit/Hyperactivity Disorder Symptoms: Comment on Burt (2009)

    ERIC Educational Resources Information Center

    Wood, Alexis C.; Buitelaar, Jan; Rijsdijk, Fruhling; Asherson, Philip; Kuntsi, Jonna

    2010-01-01

    Burt (2009) recently published a meta-analysis of twin studies on behaviors associated with childhood psychopathologies, concluding that the finding that traits associated with attention-deficit/hyperactivity disorder (ADHD) were the only behaviors that did not show a significant influence of shared environment (C) was surprising. We agree,…

  6. Learning Disabilities and Attention Deficit Disorder: A New Approach for the Criminal Justice System

    ERIC Educational Resources Information Center

    Admire, David S.

    2007-01-01

    As a judge, the author was continually confronted with offenders whose behavior was unexpected and surprising. This was observed not only during their criminal activity but during their travel through the criminal process. This behavior did not appear to be intentional, but rather an inappropriate response to the circumstances that existed at the…

  7. MGS TES Measurements of Dust and Ice Aerosol Behaviors

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Wolff, M. J.; Christensen, P. R.

    2000-10-01

    The Thermal Emission Spectrometer (TES, Christensen et al., Science, v279, 1692-1697, 1998) on board the Mars Global Surveyor obtains simultaneous solar band and thermal IR spectral emission-phase-function (EPF) observations with global spatial coverage and continuous seasonal sampling. These measurements allow the first comprehensive study of the coupled visible scattering and thermal IR absorption properties of Mars atmospheric aerosols, a fundamental requirement towards defining opacities, particle sizes, and particle shapes for separable dust and water ice aerosol components. Furthermore, TES limb sounding at solar band and IR wavelengths may be analyzed in the context of these EPF column determinations to constrain the distinctive vertical profile behaviors of dust and ice clouds. We present initial radiative transfer analyses of TES visible and IR EPFs, which indicate surprisingly complex dust and ice aerosol behaviors over all latitudes and seasons. Distinctive backscattering peaks of variable intensity are observed for several types of water ice clouds, along with evidence for ice-coated dust aerosols. We will present a broad spatial and temporal sampling of solar band and spectral IR results for Mars atmospheric ice and dust aerosols observed over the 1998-2000 period. This research is supported by the MGS Participating Scientist and MED Science Data Analysis programs.

  8. Woven into the Fabric of Experience: Residential Adventure Education and Complexity

    ERIC Educational Resources Information Center

    Williams, Randall

    2013-01-01

    Residential adventure education is a surprisingly powerful developmental experience. This paper reports on a mixed-methods study focused on English primary school pupils aged 9-11, which used complexity theory to throw light on the synergistic inter-relationships between the different aspects of that experience. Broadly expressed, the research…

  9. Coupling News Sentiment with Web Browsing Data Improves Prediction of Intra-Day Price Dynamics

    PubMed Central

    Ranco, Gabriele; Bordino, Ilaria; Bormetti, Giacomo; Caldarelli, Guido; Lillo, Fabrizio; Treccani, Michele

    2016-01-01

    The new digital revolution of big data is deeply changing our capability of understanding society and forecasting the outcome of many social and economic systems. Unfortunately, information can be very heterogeneous in the importance, relevance, and surprise it conveys, affecting severely the predictive power of semantic and statistical methods. Here we show that the aggregation of web users’ behavior can be elicited to overcome this problem in a hard to predict complex system, namely the financial market. Specifically, our in-sample analysis shows that the combined use of sentiment analysis of news and browsing activity of users of Yahoo! Finance greatly helps forecasting intra-day and daily price changes of a set of 100 highly capitalized US stocks traded in the period 2012–2013. Sentiment analysis or browsing activity when taken alone have very small or no predictive power. Conversely, when considering a news signal where in a given time interval we compute the average sentiment of the clicked news, weighted by the number of clicks, we show that for nearly 50% of the companies such signal Granger-causes hourly price returns. Our result indicates a “wisdom-of-the-crowd” effect that allows to exploit users’ activity to identify and weigh properly the relevant and surprising news, enhancing considerably the forecasting power of the news sentiment. PMID:26808833

  10. Teasing apart coercion and surprisal: Evidence from eye-movements and ERPs.

    PubMed

    Delogu, Francesca; Crocker, Matthew W; Drenhaus, Heiner

    2017-04-01

    Previous behavioral and electrophysiological studies have presented evidence suggesting that coercion expressions (e.g., began the book) are more difficult to process than control expressions like read the book. While this processing cost has been attributed to a specific coercion operation for recovering an event-sense of the complement (e.g., began reading the book), an alternative view based on the Surprisal Theory of language processing would attribute the cost to the relative unpredictability of the complement noun in the coercion compared to the control condition, with no need to postulate coercion-specific mechanisms. In two experiments, monitoring eye-tracking and event-related potentials (ERPs), respectively, we sought to determine whether there is any evidence for coercion-specific processing cost above-and-beyond the difficulty predicted by surprisal, by contrasting coercing and control expressions with a further control condition in which the predictability of the complement noun was similar to that in the coercion condition (e.g., bought the book). While the eye-tracking study showed significant effects of surprisal and a marginal effect of coercion on late reading measures, the ERP study clearly supported the surprisal account. Overall, our findings suggest that the coercion cost largely reflects the surprisal of the complement noun with coercion specific operations possibly influencing later processing stages. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Autism Spectrum Disorder in Fragile X Syndrome: A Longitudinal Evaluation

    PubMed Central

    Hernandez, R. Nick; Feinberg, Rachel L.; Vaurio, Rebecca; Passanante, Natalie M.; Thompson, Richard E.; Kaufmann, Walter E.

    2009-01-01

    The present study extends our previous work on characterizing the autistic behavior profile of boys with fragile X syndrome (FXS) who meet Diagnostic and Statistical Manual for Mental Disorders, 4th Edition criteria for autism spectrum disorder (ASD) into a longitudinal evaluation of ASD in FXS (FXS+ASD). Specifically, we aimed to determine the stability of the diagnosis and profile of ASD in FXS over time. Through regression models, we also evaluated which autistic and social behaviors and skills were correlates of diagnosis and autistic behavior severity (i.e., Autism Diagnostic Interview-Revised total scores). Finally, we assessed the evolution of cognitive parameters in FXS+ASD. A population of 56 boys (30–88 months at baseline) with FXS was evaluated using measures of autistic, social, and cognitive behaviors and skills at three yearly evaluations. We found that the diagnosis of ASD in FXS was relatively stable over time. Further emphasizing this stability, we found a set of behaviors and skills, particularly those related to peer relationships and adaptive socialization, that differentiated FXS+ASD from the rest of the FXS cohort (FXS+None) and contributed to autistic severity at all time points. Nevertheless, the general improvement in autistic behavior observed in FXS+ASD coupled with the concurrent worsening in FXS+None resulted in less differentiation between the groups over time. Surprisingly, FXS+ASD IQ scores were stable while FXS+None non-verbal IQ scores declined. Our findings indicate that ASD is a distinctive subphenotype in FXS characterized by deficits in complex social interaction, with similarities to ASD in the general population. PMID:19441123

  12. Neural discriminability in rat lateral extrastriate cortex and deep but not superficial primary visual cortex correlates with shape discriminability.

    PubMed

    Vermaercke, Ben; Van den Bergh, Gert; Gerich, Florian; Op de Beeck, Hans

    2015-01-01

    Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. It is unknown to what degree this functional organization is related to the well-known hierarchical organization of the visual system in primates. We designed a study in rats that targets one of the hallmarks of the hierarchical object vision pathway in primates: selectivity for behaviorally relevant dimensions. We compared behavioral performance in a visual water maze with neural discriminability in five visual cortical areas. We tested behavioral discrimination in two independent batches of six rats using six pairs of shapes used previously to probe shape selectivity in monkey cortex (Lehky and Sereno, 2007). The relative difficulty (error rate) of shape pairs was strongly correlated between the two batches, indicating that some shape pairs were more difficult to discriminate than others. Then, we recorded in naive rats from five visual areas from primary visual cortex (V1) over areas LM, LI, LL, up to lateral occipito-temporal cortex (TO). Shape selectivity in the upper layers of V1, where the information enters cortex, correlated mostly with physical stimulus dissimilarity and not with behavioral performance. In contrast, neural discriminability in lower layers of all areas was strongly correlated with behavioral performance. These findings, in combination with the results from Vermaercke et al. (2014b), suggest that the functional specialization in rodent lateral visual cortex reflects a processing hierarchy resulting in the emergence of complex selectivity that is related to behaviorally relevant stimulus differences.

  13. Primary Care Practice: Uncertainty and Surprise

    NASA Astrophysics Data System (ADS)

    Crabtree, Benjamin F.

    I will focus my comments on uncertainty and surprise in primary care practices. I am a medical anthropologist by training, and have been a full-time researcher in family medicine for close to twenty years. In this talk I want to look at primary care practices as complex systems, particularly taking the perspective of translating evidence into practice. I am going to discuss briefly the challenges we have in primary care, and in medicine in general, of translating new evidence into the everyday care of patients. To do this, I will look at two studies that we have conducted on family practices, then think about how practices can be best characterized as complex adaptive systems. Finally, I will focus on the implications of this portrayal for disseminating new knowledge into practice.

  14. Learning to live with complexity.

    PubMed

    Sargut, Gökçe; McGrath, Rita Gunther

    2011-09-01

    Business life has always featured the unpredictable, the surprising, and the unexpected. But in today's hyperconnected world, complexity is the norm. Systems that used to be separate are now intertwined and interdependent, and knowing the starting conditions is no guide to predicting outcomes; too many continuously changing interactive elements are in play. Managers looking to navigate these difficulties need to adopt new approaches. They should drop outmoded forecasting tools-for example, ones that rely on averages, which are often less important than outliers. Instead, they should use models that simulate the behavior of the system. They should also make sure that their data include a good amount of future-oriented information. Risk mitigation is crucial as well. Managers should minimize the need to rely on predictions-for instance, they can give users a say in product design. They can decouple elements in a system and build in redundancy to minimize the consequences of a partial system failure, and turn to outside partners to extend their own company's capabilities. They can complement hard analysis with "soft" methods such as storytelling to make potentially important future possibilities more real. And they can make trade-offs that keep early failures small and provide the diversity of thought needed in a nimble organization faced with complexity on virtually every front.

  15. Salience and Attention in Surprisal-Based Accounts of Language Processing.

    PubMed

    Zarcone, Alessandra; van Schijndel, Marten; Vogels, Jorrig; Demberg, Vera

    2016-01-01

    The notion of salience has been singled out as the explanatory factor for a diverse range of linguistic phenomena. In particular, perceptual salience (e.g., visual salience of objects in the world, acoustic prominence of linguistic sounds) and semantic-pragmatic salience (e.g., prominence of recently mentioned or topical referents) have been shown to influence language comprehension and production. A different line of research has sought to account for behavioral correlates of cognitive load during comprehension as well as for certain patterns in language usage using information-theoretic notions, such as surprisal. Surprisal and salience both affect language processing at different levels, but the relationship between the two has not been adequately elucidated, and the question of whether salience can be reduced to surprisal / predictability is still open. Our review identifies two main challenges in addressing this question: terminological inconsistency and lack of integration between high and low levels of representations in salience-based accounts and surprisal-based accounts. We capitalize upon work in visual cognition in order to orient ourselves in surveying the different facets of the notion of salience in linguistics and their relation with models of surprisal. We find that work on salience highlights aspects of linguistic communication that models of surprisal tend to overlook, namely the role of attention and relevance to current goals, and we argue that the Predictive Coding framework provides a unified view which can account for the role played by attention and predictability at different levels of processing and which can clarify the interplay between low and high levels of processes and between predictability-driven expectation and attention-driven focus.

  16. Geometric state space uncertainty as a new type of uncertainty addressing disparity in ';emergent properties' between real and modeled systems

    NASA Astrophysics Data System (ADS)

    Montero, J. T.; Lintz, H. E.; Sharp, D.

    2013-12-01

    Do emergent properties that result from models of complex systems match emergent properties from real systems? This question targets a type of uncertainty that we argue requires more attention in system modeling and validation efforts. We define an ';emergent property' to be an attribute or behavior of a modeled or real system that can be surprising or unpredictable and result from complex interactions among the components of a system. For example, thresholds are common across diverse systems and scales and can represent emergent system behavior that is difficult to predict. Thresholds or other types of emergent system behavior can be characterized by their geometry in state space (where state space is the space containing the set of all states of a dynamic system). One way to expedite our growing mechanistic understanding of how emergent properties emerge from complex systems is to compare the geometry of surfaces in state space between real and modeled systems. Here, we present an index (threshold strength) that can quantify a geometric attribute of a surface in state space. We operationally define threshold strength as how strongly a surface in state space resembles a step or an abrupt transition between two system states. First, we validated the index for application in greater than three dimensions of state space using simulated data. Then, we demonstrated application of the index in measuring geometric state space uncertainty between a real system and a deterministic, modeled system. In particular, we looked at geometric space uncertainty between climate behavior in 20th century and modeled climate behavior simulated by global climate models (GCMs) in the Coupled Model Intercomparison Project phase 5 (CMIP5). Surfaces from the climate models came from running the models over the same domain as the real data. We also created response surfaces from a real, climate data based on an empirical model that produces a geometric surface of predicted values in state space. We used a kernel regression method designed to capture the geometry of real data pattern without imposing shape assumptions a priori on the data; this kernel regression method is known as Non-parametric Multiplicative Regression (NPMR). We found that quantifying and comparing a geometric attribute in more than three dimensions of state space can discern whether the emergent nature of complex interactions in modeled systems matches that of real systems. Further, this method has potentially wider application in contexts where searching for abrupt change or ';action' in any hyperspace is desired.

  17. Skating on a Film of Air: Drops Impacting on a Surface

    NASA Astrophysics Data System (ADS)

    Kolinski, John M.; Rubinstein, Shmuel M.; Mandre, Shreyas; Brenner, Michael P.; Weitz, David A.; Mahadevan, L.

    2012-02-01

    The commonly accepted description of drops impacting on a surface typically ignores the essential role of the air that is trapped between the impacting drop and the surface. Here we describe a new imaging modality that is sensitive to the behavior right at the surface. We show that a very thin film of air, only a few tens of nanometers thick, remains trapped between the falling drop and the surface as the drop spreads. The thin film of air serves to lubricate the drop enabling the fluid to skate on the air film laterally outward at surprisingly high velocities, consistent with theoretical predictions. Eventually this thin film of air breaks down as the fluid wets the surface via a spinodal-like mechanism. Our results show that the dynamics of impacting drops are much more complex than previously thought, with a rich array of unexpected phenomena that require rethinking classic paradigms.

  18. Dissipation processes in the insulating skyrmion compound Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Levatić, I.; Šurija, V.; Berger, H.; Živković, I.

    2014-12-01

    We present a detailed study of the phase diagram surrounding the skyrmion lattice (SkL) phase of Cu2OSe2O3 using high-precision magnetic ac susceptibility measurements. An extensive investigation of transition dynamics around the SkL phase using the imaginary component of the susceptibility revealed that at the conical-to-SkL transition a broad dissipation region exists with a complex frequency dependence. The analysis of the observed behavior within the SkL phase indicates a distribution of relaxation times intrinsically related to SkL. At the SkL-to-paramagnet transition a narrow first-order peak is found that exhibits a strong frequency and magnetic field dependence. Surprisingly, very similar dependence has been discovered for the first-order transition below the SkL phase, i.e., where the system enters the helical and conical state(s), indicating similar processes across the order-disorder transition.

  19. Social-ecological resilience and social conflict: institutions and strategic adaptation in Swedish water management.

    PubMed

    Galaz, Victor

    2005-11-01

    Dealing with uncertainty and complexity in social-ecological systems is profoundly dependent on the ability of natural resource users to learn and adapt from ecological surprises and crises. This paper analyzes why and how learning processes are affected by strategic behavior among natural resource users and how social conflict is affected by social and ecological uncertainty. The claim is that social conflict among natural resource users seriously inhibits the possibilities of learning and adaptation in social-ecological systems. This is done combining insights from political science, experimental economics, and social-psychology and an analytical case study elaborating social conflict and institutional change in Swedish water management institutions. This paper also discusses the crucial role the institutional context plays in defining the outcome of learning processes in Swedish water management institutions and hence highlights previously poorly elaborated political aspects of learning processes and institutional change in social-ecological systems.

  20. Ab Initio Investigations of High-Pressure Melting of Dense Lithium

    NASA Astrophysics Data System (ADS)

    Clay, Raymond; Morales, Miguel; Bonev, Stanimir

    Lithium at ambient conditions is the simplest alkali metal and exhibits textbook nearly-free electron behavior. As the density is increased, however, significant core/valence overlap leads to surprisingly complex chemistry. We have systematically investigated the phase diagram of lithium at pressures ranging between two and six million atmospheres. Through a combination of density functional theory based path-integral and classical molecular dynamics simulations, we have investigated the impact of both nuclear quantum effects and anharmonicity on the melting line and solid phase boundaries. We also investigate how the inclusion of nuclear quantum effects and approximations in the treatment of electronic exchange-correlation impact the robustness of previous predictions of tetrahedral clustering in dense liquid Li. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Response to own name in children: ERP study of auditory social information processing.

    PubMed

    Key, Alexandra P; Jones, Dorita; Peters, Sarika U

    2016-09-01

    Auditory processing is an important component of cognitive development, and names are among the most frequently occurring receptive language stimuli. Although own name processing has been examined in infants and adults, surprisingly little data exist on responses to own name in children. The present ERP study examined spoken name processing in 32 children (M=7.85years) using a passive listening paradigm. Our results demonstrated that children differentiate own and close other's names from unknown names, as reflected by the enhanced parietal P300 response. The responses to own and close other names did not differ between each other. Repeated presentations of an unknown name did not result in the same familiarity as the known names. These results suggest that auditory ERPs to known/unknown names are a feasible means to evaluate complex auditory processing without the need for overt behavioral responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Response to Own Name in Children: ERP Study of Auditory Social Information Processing

    PubMed Central

    Key, Alexandra P.; Jones, Dorita; Peters, Sarika U.

    2016-01-01

    Auditory processing is an important component of cognitive development, and names are among the most frequently occurring receptive language stimuli. Although own name processing has been examined in infants and adults, surprisingly little data exist on responses to own name in children. The present ERP study examined spoken name processing in 32 children (M=7.85 years) using a passive listening paradigm. Our results demonstrated that children differentiate own and close other’s names from unknown names, as reflected by the enhanced parietal P300 response. The responses to own and close other names did not differ between each other. Repeated presentations of an unknown name did not result in the same familiarity as the known names. These results suggest that auditory ERPs to known/unknown names are a feasible means to evaluate complex auditory processing without the need for overt behavioral responses. PMID:27456543

  3. Unbiased free energy estimates in fast nonequilibrium transformations using Gaussian mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procacci, Piero

    2015-04-21

    In this paper, we present an improved method for obtaining unbiased estimates of the free energy difference between two thermodynamic states using the work distribution measured in nonequilibrium driven experiments connecting these states. The method is based on the assumption that any observed work distribution is given by a mixture of Gaussian distributions, whose normal components are identical in either direction of the nonequilibrium process, with weights regulated by the Crooks theorem. Using the prototypical example for the driven unfolding/folding of deca-alanine, we show that the predicted behavior of the forward and reverse work distributions, assuming a combination of onlymore » two Gaussian components with Crooks derived weights, explains surprisingly well the striking asymmetry in the observed distributions at fast pulling speeds. The proposed methodology opens the way for a perfectly parallel implementation of Jarzynski-based free energy calculations in complex systems.« less

  4. Diffusion by one wave and by many waves

    NASA Astrophysics Data System (ADS)

    Albert, J. M.

    2010-03-01

    Radiation belt electrons and chorus waves are an outstanding instance of the important role cyclotron resonant wave-particle interactions play in the magnetosphere. Chorus waves are particularly complex, often occurring with large amplitude, narrowband but drifting frequency and fine structure. Nevertheless, modeling their effect on radiation belt electrons with bounce-averaged broadband quasi-linear theory seems to yield reasonable results. It is known that coherent interactions with monochromatic waves can cause particle diffusion, as well as radically different phase bunching and phase trapping behavior. Here the two formulations of diffusion, while conceptually different, are shown to give identical diffusion coefficients, in the narrowband limit of quasi-linear theory. It is further shown that suitably averaging the monochromatic diffusion coefficients over frequency and wave normal angle parameters reproduces the full broadband quasi-linear results. This may account for the rather surprising success of quasi-linear theory in modeling radiation belt electrons undergoing diffusion by chorus waves.

  5. Computational Social Science: Exciting Progress and Future Challenges

    NASA Astrophysics Data System (ADS)

    Watts, Duncan

    The past 15 years have witnessed a remarkable increase in both the scale and scope of social and behavioral data available to researchers, leading some to herald the emergence of a new field: ``computational social science.'' Against these exciting developments stands a stubborn fact: that in spite of many thousands of published papers, there has been surprisingly little progress on the ``big'' questions that motivated the field in the first place--questions concerning systemic risk in financial systems, problem solving in complex organizations, and the dynamics of epidemics or social movements, among others. In this talk I highlight some examples of research that would not have been possible just a handful of years ago and that illustrate the promise of CSS. At the same time, they illustrate its limitations. I then conclude with some thoughts on how CSS can bridge the gap between its current state and its potential.

  6. Limitations of Medical Research and Evidence at the Patient-Clinician Encounter Scale

    PubMed Central

    Ioannidis, John P. A.

    2013-01-01

    We explore some philosophical and scientific underpinnings of clinical research and evidence at the patient-clinician encounter scale. Insufficient evidence and a common failure to use replicable and sound research methods limit us. Both patients and health care may be, in part, complex nonlinear chaotic systems, and predicting their outcomes is a challenge. When trustworthy (credible) evidence is lacking, making correct clinical choices is often a low-probability exercise. Thus, human (clinician) error and consequent injury to patients appear inevitable. Individual clinician decision-makers operate under the philosophical influence of Adam Smith’s “invisible hand” with resulting optimism that they will eventually make the right choices and cause health benefits. The presumption of an effective “invisible hand” operating in health-care delivery has supported a model in which individual clinicians struggle to practice medicine, as they see fit based on their own intuitions and preferences (and biases) despite the obvious complexity, errors, noise, and lack of evidence pervading the system. Not surprisingly, the “invisible hand” does not appear to produce the desired community health benefits. Obtaining a benefit at the patient-clinician encounter scale requires human (clinician) behavior modification. We believe that serious rethinking and restructuring of the clinical research and care delivery systems is necessary to assure the profession and the public that we continue to do more good than harm. We need to evaluate whether, and how, detailed decision-support tools may enable reproducible clinician behavior and beneficial use of evidence. PMID:23546485

  7. Limitations of medical research and evidence at the patient-clinician encounter scale.

    PubMed

    Morris, Alan H; Ioannidis, John P A

    2013-04-01

    We explore some philosophical and scientific underpinnings of clinical research and evidence at the patient-clinician encounter scale. Insufficient evidence and a common failure to use replicable and sound research methods limit us. Both patients and health care may be, in part, complex nonlinear chaotic systems, and predicting their outcomes is a challenge. When trustworthy (credible) evidence is lacking, making correct clinical choices is often a low-probability exercise. Thus, human (clinician) error and consequent injury to patients appear inevitable. Individual clinician decision-makers operate under the philosophical influence of Adam Smith's "invisible hand" with resulting optimism that they will eventually make the right choices and cause health benefits. The presumption of an effective "invisible hand" operating in health-care delivery has supported a model in which individual clinicians struggle to practice medicine, as they see fit based on their own intuitions and preferences (and biases) despite the obvious complexity, errors, noise, and lack of evidence pervading the system. Not surprisingly, the "invisible hand" does not appear to produce the desired community health benefits. Obtaining a benefit at the patient-clinician encounter scale requires human (clinician) behavior modification. We believe that serious rethinking and restructuring of the clinical research and care delivery systems is necessary to assure the profession and the public that we continue to do more good than harm. We need to evaluate whether, and how, detailed decision-support tools may enable reproducible clinician behavior and beneficial use of evidence.

  8. An information theoretic approach of designing sparse kernel adaptive filters.

    PubMed

    Liu, Weifeng; Park, Il; Principe, José C

    2009-12-01

    This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented.

  9. Exploration and exploitation of Victorian science in Darwin's reading notebooks.

    PubMed

    Murdock, Jaimie; Allen, Colin; DeDeo, Simon

    2017-02-01

    Search in an environment with an uncertain distribution of resources involves a trade-off between exploitation of past discoveries and further exploration. This extends to information foraging, where a knowledge-seeker shifts between reading in depth and studying new domains. To study this decision-making process, we examine the reading choices made by one of the most celebrated scientists of the modern era: Charles Darwin. From the full-text of books listed in his chronologically-organized reading journals, we generate topic models to quantify his local (text-to-text) and global (text-to-past) reading decisions using Kullback-Liebler Divergence, a cognitively-validated, information-theoretic measure of relative surprise. Rather than a pattern of surprise-minimization, corresponding to a pure exploitation strategy, Darwin's behavior shifts from early exploitation to later exploration, seeking unusually high levels of cognitive surprise relative to previous eras. These shifts, detected by an unsupervised Bayesian model, correlate with major intellectual epochs of his career as identified both by qualitative scholarship and Darwin's own self-commentary. Our methods allow us to compare his consumption of texts with their publication order. We find Darwin's consumption more exploratory than the culture's production, suggesting that underneath gradual societal changes are the explorations of individual synthesis and discovery. Our quantitative methods advance the study of cognitive search through a framework for testing interactions between individual and collective behavior and between short- and long-term consumption choices. This novel application of topic modeling to characterize individual reading complements widespread studies of collective scientific behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Interactive effects of pesticide exposure and habitat structure on behavior and predation of a marine larval fish.

    PubMed

    Renick, Violet Compton; Anderson, Todd W; Morgan, Steven G; Cherr, Gary N

    2015-03-01

    Coastal development has generated multiple stressors in marine and estuarine ecosystems, including habitat degradation and pollutant exposure, but the effects of these stressors on the ecology of fishes remain poorly understood. We studied the separate and combined effects of an acute 4 h sublethal exposure of the pyrethroid pesticide esfenvalerate and structural habitat complexity on behavior and predation risk of larval topsmelt (Atherinops affinis). Larvae were exposed to four nominal esfenvalerate concentrations (control, 0.12, 0.59, 1.18 μg/L), before placement into 12 L mesocosms with a three-spine stickleback (Gasterosteus aculeatus) predator. Five treatments of artificial eelgrass included a (1) uniform and (2) patchy distribution of eelgrass at a low density (500 shoots per m(2)), a (3) uniform and (4) patchy distribution of eelgrass at a high density (1,000 shoots per m(2)), and (5) the absence of eelgrass. The capture success of predators and aggregative behavior of prey were observed in each mesocosm for 10 min of each trial, and mortality of prey was recorded after 60 min. Exposure to esfenvalerate increased the proportion of larvae with swimming abnormalities. Surprisingly, prey mortality did not increase linearly with pesticide exposure but increased with habitat structure (density of eelgrass), which may have been a consequence of compensating predator behavior. The degree of prey aggregation decreased with both habitat structure and pesticide exposure, suggesting that anti-predator behaviors by prey may have been hampered by the interactive effects of both of these factors.

  11. Sensitivity of the Autonomic Nervous System to Visual and Auditory Affect Across Social and Non-Social Domains in Williams Syndrome

    PubMed Central

    Järvinen, Anna; Dering, Benjamin; Neumann, Dirk; Ng, Rowena; Crivelli, Davide; Grichanik, Mark; Korenberg, Julie R.; Bellugi, Ursula

    2012-01-01

    Although individuals with Williams syndrome (WS) typically demonstrate an increased appetitive social drive, their social profile is characterized by dissociations, including socially fearless behavior coupled with anxiousness, and distinct patterns of “peaks and valleys” of ability. The aim of this study was to compare the processing of social and non-social visually and aurally presented affective stimuli, at the levels of behavior and autonomic nervous system (ANS) responsivity, in individuals with WS contrasted with a typically developing (TD) group, with the view of elucidating the highly sociable and emotionally sensitive predisposition noted in WS. Behavioral findings supported previous studies of enhanced competence in processing social over non-social stimuli by individuals with WS; however, the patterns of ANS functioning underlying the behavioral performance revealed a surprising profile previously undocumented in WS. Specifically, increased heart rate (HR) reactivity, and a failure for electrodermal activity to habituate were found in individuals with WS contrasted with the TD group, predominantly in response to visual social affective stimuli. Within the auditory domain, greater arousal linked to variation in heart beat period was observed in relation to music stimuli in individuals with WS. Taken together, the findings suggest that the pattern of ANS response in WS is more complex than previously noted, with increased arousal to face and music stimuli potentially underpinning the heightened behavioral emotionality to such stimuli. The lack of habituation may underlie the increased affiliation and attraction to faces characterizing individuals with WS. Future research directions are suggested. PMID:23049519

  12. Disordered eating & cultural diversity: a focus on Arab Muslim women in Israel.

    PubMed

    Feinson, Marjorie C; Meir, Adi

    2014-04-01

    A dearth of data concerning eating problems among adult women from minority population groups leaves substantial knowledge gaps and constrains evidence-based interventions. To examine prevalence and predictors of disordered eating behaviors (DEB) among Arab Muslim women in Israel, whose eating behaviors have not been previously examined and to compare with second generation Israeli-born Jews of European heritage. Community-based study includes sub-samples of Arab Muslims and Israeli-born Jews. DEB is assessed with fourteen DSM-IV related symptoms. Hierarchical regressions examine influence of weight, self-criticism and psychological distress on DEB severity. Relatively high prevalence rates emerge for Muslims (27%) and Jews (20%), a nonsignificant difference. In contrast, regressions reveal substantially different predictor patterns. For Arab Muslims, weight has the strongest association; for Jews, weight is not significant while self-criticism is the strongest predictor. Explained variance also differs considerably: 45% for Muslims and 28% for Jews. Surprising similarities and distinct differences underscore complex patterns of eating disturbances across culturally diverse groups. Culturally sensitive interventions are warranted along with more illuminating explanatory paradigms than 'one size fits all.' Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Teaching at the edge of knowledge: Non-equilibrium statistical physics

    NASA Astrophysics Data System (ADS)

    Schmittmann, Beate

    2007-03-01

    As physicists become increasingly interested in biological problems, we frequently find ourselves confronted with complex open systems, involving many interacting constituents and characterized by non-vanishing fluxes of mass or energy. Faced with the task of predicting macroscopic behaviors from microscopic information for these non-equilibrium systems, the familiar Gibbs-Boltzmann framework fails. The development of a comprehensive theoretical characterization of non-equilibrium behavior is one of the key challenges of modern condensed matter physics. In its absence, several approaches have been developed, from master equations to thermostatted molecular dynamics, which provide key insights into the rich and often surprising phenomenology of systems far from equilibrium. In my talk, I will address some of these methods, selecting those that are most relevant for a broad range of interdisciplinary problems from biology to traffic, finance, and sociology. The ``portability'' of these methods makes them valuable for graduate students from a variety of disciplines. To illustrate how different methods can complement each other when probing a problem from, e.g., the life sciences, I will discuss some recent attempts at modeling translation, i.e., the process by which the genetic information encoded on an mRNA is translated into the corresponding protein.

  14. Macrophages: An Inflammatory Link between Angiogenesis and Lymphangiogenesis

    PubMed Central

    Corliss, Bruce A.; Azimi, Mohammad S.; Munson, Jenny; Peirce, Shayn M.; Murfee, Walter Lee

    2015-01-01

    Angiogenesis and lymphangiogenesis often occur in response to tissue injury or in the presence of pathology (e.g. cancer), and it is these types of environments in which macrophages are activated and increased in number. Moreover, the blood vascular microcirculation and the lymphatic circulation serve as the conduits for entry and exit for monocyte-derived macrophages in nearly every tissue and organ. Macrophages both affect and are affected by the vessels through which they travel. Therefore, it is not surprising that examination of macrophage behaviors in both angiogenesis and lymphangiogenesis has yielded interesting observations that suggest macrophages may be key regulators of these complex growth and remodeling processes. In this review, we will take a closer look at macrophages through the lens of angiogenesis and lymphangiogenesis, examining how their dynamic behaviors may regulate vessel sprouting and function. We present macrophages as a cellular link that spatially and temporally connects angiogenesis with lymphangiogenesis, in both physiological growth and in pathological adaptations, such as tumorigenesis. As such, attempts to therapeutically target macrophages in order to affect these processes may be particularly effective, and studying macrophages in both settings will accelerate the field’s understanding of this important cell type in health and disease. PMID:26614117

  15. Emergence of complex behavior in pili-based motility in early stages of P. aeruginosa surface adaptation

    NASA Astrophysics Data System (ADS)

    Brill-Karniely, Yifat; Jin, Fan; Wong, Gerard C. L.; Frenkel, Daan; Dobnikar, Jure

    2017-04-01

    Pseudomonas aeruginosa move across surfaces by using multiple Type IV Pili (TFP), motorized appendages capable of force generation via linear extension/retraction cycles, to generate surface motions collectively known as twitching motility. Pseudomonas cells arrive at a surface with low levels of piliation and TFP activity, which both progressively increase as the cells sense the presence of a surface. At present, it is not clear how twitching motility emerges from these initial minimal conditions. Here, we build a simple model for TFP-driven surface motility without complications from viscous and solid friction on surfaces. We discover the unanticipated structural requirement that TFP motors need to have a minimal amount of effective angular rigidity in order for cells to perform the various classes of experimentally-observed motions. Moreover, a surprisingly small number of TFP are needed to recapitulate movement signatures associated with twitching: Two TFP can already produce movements reminiscent of recently observed slingshot type motion. Interestingly, jerky slingshot motions characteristic of twitching motility comprise the transition region between different types of observed crawling behavior in the dynamical phase diagram, such as self-trapped localized motion, 2-D diffusive exploration, and super-diffusive persistent motion.

  16. Agonist-Specific Recruitment of Arrestin Isoforms Differentially Modify Delta Opioid Receptor Function

    PubMed Central

    Perroy, Julie; Walwyn, Wendy M.; Smith, Monique L.; Vicente-Sanchez, Ana; Segura, Laura; Bana, Alia; Kieffer, Brigitte L.; Evans, Christopher J.

    2016-01-01

    Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance. In contrast, the low-internalizing delta agonists (ARM390, JNJ20788560) preferentially recruited arrestin 3 with unaltered behavioral effects in arrestin 2 KOs. Surprisingly, arrestin 3 KO revealed an acute tolerance to these low-internalizing agonists, an effect never observed in wild-type animals. Furthermore, we examined delta opioid receptor–Ca2+ channel coupling in dorsal root ganglia desensitized by ARM390 and the rate of resensitization was correspondingly decreased in arrestin 3 KOs. Live-cell imaging in HEK293 cells revealed that delta opioid receptors are in pre-engaged complexes with arrestin 3 at the cell membrane and that ARM390 strengthens this membrane interaction. The disruption of these complexes in arrestin 3 KOs likely accounts for the altered responses to low-internalizing agonists. Together, our results show agonist-selective recruitment of arrestin isoforms and reveal a novel endogenous role of arrestin 3 as a facilitator of resensitization and an inhibitor of tolerance mechanisms. SIGNIFICANCE STATEMENT Agonists that bind to the same receptor can produce highly distinct signaling events and arrestins are a major mediator of this ligand bias. Here, we demonstrate that delta opioid receptor agonists differentially recruit arrestin isoforms. We found that the high-internalizing agonist SNC80 preferentially recruits arrestin 2 and knock-out (KO) of this protein results in increased efficacy of SNC80. In contrast, low-internalizing agonists (ARM390 and JNJ20788560) preferentially recruit arrestin 3 and, surprisingly, KO of arrestin 3 produces acute tolerance and impaired receptor resensitization to these agonists. Arrestin 3 is in pre-engaged complexes with the delta opioid receptor at the cell membrane and low-internalizing agonists promote this interaction. This study reveals a novel role for arrestin 3 as a facilitator of receptor resensitization. PMID:27013682

  17. Salience and Attention in Surprisal-Based Accounts of Language Processing

    PubMed Central

    Zarcone, Alessandra; van Schijndel, Marten; Vogels, Jorrig; Demberg, Vera

    2016-01-01

    The notion of salience has been singled out as the explanatory factor for a diverse range of linguistic phenomena. In particular, perceptual salience (e.g., visual salience of objects in the world, acoustic prominence of linguistic sounds) and semantic-pragmatic salience (e.g., prominence of recently mentioned or topical referents) have been shown to influence language comprehension and production. A different line of research has sought to account for behavioral correlates of cognitive load during comprehension as well as for certain patterns in language usage using information-theoretic notions, such as surprisal. Surprisal and salience both affect language processing at different levels, but the relationship between the two has not been adequately elucidated, and the question of whether salience can be reduced to surprisal / predictability is still open. Our review identifies two main challenges in addressing this question: terminological inconsistency and lack of integration between high and low levels of representations in salience-based accounts and surprisal-based accounts. We capitalize upon work in visual cognition in order to orient ourselves in surveying the different facets of the notion of salience in linguistics and their relation with models of surprisal. We find that work on salience highlights aspects of linguistic communication that models of surprisal tend to overlook, namely the role of attention and relevance to current goals, and we argue that the Predictive Coding framework provides a unified view which can account for the role played by attention and predictability at different levels of processing and which can clarify the interplay between low and high levels of processes and between predictability-driven expectation and attention-driven focus. PMID:27375525

  18. Error and attack tolerance of complex networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; Jeong, Hawoong; Barabási, Albert-László

    2000-07-01

    Many complex systems display a surprising degree of tolerance against errors. For example, relatively simple organisms grow, persist and reproduce despite drastic pharmaceutical or environmental interventions, an error tolerance attributed to the robustness of the underlying metabolic network. Complex communication networks display a surprising degree of robustness: although key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these and other complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. Here we demonstrate that error tolerance is not shared by all redundant systems: it is displayed only by a class of inhomogeneously wired networks, called scale-free networks, which include the World-Wide Web, the Internet, social networks and cells. We find that such networks display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected even by unrealistically high failure rates. However, error tolerance comes at a high price in that these networks are extremely vulnerable to attacks (that is, to the selection and removal of a few nodes that play a vital role in maintaining the network's connectivity). Such error tolerance and attack vulnerability are generic properties of communication networks.

  19. Multiple Health Behavior Change Research: An Introduction and Overview

    PubMed Central

    Prochaska, Judith J.; Spring, Bonnie; Nigg, Claudio R.

    2008-01-01

    In 2002, the Society of Behavioral Medicine’s special interest group on Multiple Health Behavior Change was formed. The group focuses on the interrelationships among health behaviors and interventions designed to promote change in more than one health behavior at a time. Growing evidence suggests the potential for multiple-behavior interventions to have a greater impact on public health than single-behavior interventions. However, there exists surprisingly little understanding of some very basic principles concerning multiple health behavior change (MHBC) research. This paper presents the rationale and need for MHBC research and interventions, briefly reviews the research base, and identifies core conceptual and methodological issues unique to this growing area. The prospects of MHBC for the health of individuals and populations are considerable. PMID:18319098

  20. The Cellular Building Blocks of Breathing

    PubMed Central

    Ramirez, J.M.; Doi, A.; Garcia, A.J.; Elsen, F.P.; Koch, H.; Wei, A.D.

    2013-01-01

    Respiratory brainstem neurons fulfill critical roles in controlling breathing: they generate the activity patterns for breathing and contribute to various sensory responses including changes in O2 and CO2. These complex sensorimotor tasks depend on the dynamic interplay between numerous cellular building blocks that consist of voltage-, calcium-, and ATP-dependent ionic conductances, various ionotropic and metabotropic synaptic mechanisms, as well as neuromodulators acting on G-protein coupled receptors and second messenger systems. As described in this review, the sensorimotor responses of the respiratory network emerge through the state-dependent integration of all these building blocks. There is no known respiratory function that involves only a small number of intrinsic, synaptic, or modulatory properties. Because of the complex integration of numerous intrinsic, synaptic, and modulatory mechanisms, the respiratory network is capable of continuously adapting to changes in the external and internal environment, which makes breathing one of the most integrated behaviors. Not surprisingly, inspiration is critical not only in the control of ventilation, but also in the context of “inspiring behaviors” such as arousal of the mind and even creativity. Far-reaching implications apply also to the underlying network mechanisms, as lessons learned from the respiratory network apply to network functions in general. PMID:23720262

  1. Response of single bacterial cells to stress gives rise to complex history dependence at the population level

    PubMed Central

    Mathis, Roland; Ackermann, Martin

    2016-01-01

    Most bacteria live in ever-changing environments where periods of stress are common. One fundamental question is whether individual bacterial cells have an increased tolerance to stress if they recently have been exposed to lower levels of the same stressor. To address this question, we worked with the bacterium Caulobacter crescentus and asked whether exposure to a moderate concentration of sodium chloride would affect survival during later exposure to a higher concentration. We found that the effects measured at the population level depended in a surprising and complex way on the time interval between the two exposure events: The effect of the first exposure on survival of the second exposure was positive for some time intervals but negative for others. We hypothesized that the complex pattern of history dependence at the population level was a consequence of the responses of individual cells to sodium chloride that we observed: (i) exposure to moderate concentrations of sodium chloride caused delays in cell division and led to cell-cycle synchronization, and (ii) whether a bacterium would survive subsequent exposure to higher concentrations was dependent on the cell-cycle state. Using computational modeling, we demonstrated that indeed the combination of these two effects could explain the complex patterns of history dependence observed at the population level. Our insight into how the behavior of single cells scales up to processes at the population level provides a perspective on how organisms operate in dynamic environments with fluctuating stress exposure. PMID:26960998

  2. Behavioral consequences of dopamine deficiency in the Drosophila central nervous system

    PubMed Central

    Riemensperger, Thomas; Isabel, Guillaume; Coulom, Hélène; Neuser, Kirsa; Seugnet, Laurent; Kume, Kazuhiko; Iché-Torres, Magali; Cassar, Marlène; Strauss, Roland; Preat, Thomas; Hirsh, Jay; Birman, Serge

    2011-01-01

    The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently “masochistic” tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor l-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator. PMID:21187381

  3. Bioprosthetic heart valve heterograft biomaterials: structure, mechanical behavior and computational simulation.

    PubMed

    Sacks, Michael S; Mirnajafi, Ali; Sun, Wei; Schmidt, Paul

    2006-11-01

    The present review surveys significant developments in the biomechanical characterization and computational simulation of biologically derived chemically cross-linked soft tissues, or 'heterograft' biomaterials, used in replacement bioprosthetic heart valve (BHV). A survey of mechanical characterization techniques, relevant mechanical properties and computational simulation approaches is presented for both the source tissues and cross-linked biomaterials. Since durability remains the critical problem with current bioprostheses, changes with the mechanical behavior with fatigue are also presented. Moreover, given the complex nature of the mechanical properties of heterograft biomaterials it is not surprising that most constitutive (stress-strain) models, historically used to characterize their behavior, were oversimplified. Simulations of BHV function utilizing these models have inevitably been inaccurate. Thus, more recent finite element simulations utilizing nonlinear constitutive models, which achieve greater model fidelity, are reviewed. An important conclusion of this review is the need for accurate constitutive models, rigorously validated with appropriate experimental data, in order that the design benefits of computational models can be realized. Finally, for at least the coming 20 years, BHVs fabricated from heterograft biomaterials will continue to be extensively used, and will probably remain as the dominant valve design. We should thus recognize that rational, scientifically based approaches to BHV biomaterial development and design can lead to significantly improved BHV, over the coming decades, which can potentially impact millions of patients worldwide with heart valve disease.

  4. Magnetocapacitance and the physics of solid state interfaces

    NASA Astrophysics Data System (ADS)

    Hebard, Arthur

    2008-10-01

    When Herbert Kroemer stated in his Nobel address [1] that ``the interface is the device,'' he was implicitly acknowledging the importance of understanding the physics of interfaces. If interfaces are to have character traits, then ``impedance'' (or complex capacitance) would be a commonly used descriptor. In this talk I will discuss the use of magnetic fields to probe the ``character'' of a variety of interfaces including planar capacitor structures with magnetic electrodes, simple metal/semiconductor contacts (Schottky barriers) and the interface-dominated competition on microscopic length scales between ferromagnetic metallic and charge-ordered insulating phases in complex oxides. I will show that seeking experimental answers to surprisingly simple questions often leads to striking results that seriously challenge theoretical understanding. Perhaps Herbert Kroemer should have said, ``the interface is the device with a magnetic personality that continually surprises.'' [3pt] [1] Herbert Kroemer, ``Quasielectric fields and band offsets: teaching electron s new tricks,'' Nobel Lecture, December 8, 2000:

  5. Looking at Leadership: Some Neglected Issues

    DTIC Science & Technology

    1977-10-01

    problems. (3) Use of power Using social skills, rewards and punishments to control organizational events. A way to study leaders is to simulate the...conditions managers face. Simulation paradigms allow detailed ex- amination of the complex forces impacting on organizations from without and within...modifying the impacts of other variables. Given this horrendous complexity, it is no surprise that Vaill (in press) has questioned whether it makes much

  6. Pseudo-enantiomeric chiral components and formation of the helical micro- and nanostructures in charge-transfer complexes

    NASA Astrophysics Data System (ADS)

    Langer, Jerzy J.; Hreczycho, Grzegorz

    2018-03-01

    Helical organic micro- and nanostructures are formed by a charge-transfer complex, cinchonidine-TCNQ. These unusual forms result from the chirality, the steric structure and specific interactions of cinchonidine molecules. These materials are semiconductors (10-4 S cm-1), with the typical absorption spectra in IR and UV-vis, but also have a characteristic of CD spectrum. Surprisingly, conductive micro and nano helices are not formed in pseudo-enantiomeric cinchonine, i.e. the complex of cinchonine and TCNQ.

  7. DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli.

    PubMed

    Lemmens, Karen; De Bie, Tijl; Dhollander, Thomas; De Keersmaecker, Sigrid C; Thijs, Inge M; Schoofs, Geert; De Weerdt, Ami; De Moor, Bart; Vanderleyden, Jos; Collado-Vides, Julio; Engelen, Kristof; Marchal, Kathleen

    2009-01-01

    We present DISTILLER, a data integration framework for the inference of transcriptional module networks. Experimental validation of predicted targets for the well-studied fumarate nitrate reductase regulator showed the effectiveness of our approach in Escherichia coli. In addition, the condition dependency and modularity of the inferred transcriptional network was studied. Surprisingly, the level of regulatory complexity seemed lower than that which would be expected from RegulonDB, indicating that complex regulatory programs tend to decrease the degree of modularity.

  8. Does Variation of the Inter-Domain Linker Sequence Modulate the Metal Binding Behaviour of Helix pomatia Cd-Metallothionein?

    PubMed Central

    Gil-Moreno, Selene; Jiménez-Martí, Elena; Palacios, Òscar; Zerbe, Oliver; Dallinger, Reinhard; Capdevila, Mercè; Atrian, Sílvia

    2015-01-01

    Snail metallothioneins (MTs) constitute an ideal model to study structure/function relationships in these metal-binding polypeptides. Helix pomatia harbours three MT isoforms: the highly specific CdMT and CuMT, and an unspecific Cd/CuMT, which represent paralogous proteins with extremely different metal binding preferences while sharing high sequence similarity. Preceding work allowed assessing that, although, the Cys residues are responsible for metal ion coordination, metal specificity or preference is achieved by diversification of the amino acids interspersed between them. The metal-specific MT polypeptides fold into unique, energetically-optimized complexes of defined metal content, when binding their cognate metal ions, while they produce a mixture of complexes, none of them representing a clear energy minimum, with non-cognate metal ions. Another critical, and so far mostly unexplored, region is the stretch linking the individual MT domains, each of which represents an independent metal cluster. In this work, we have designed and analyzed two HpCdMT constructs with substituted linker segments, and determined their coordination behavior when exposed to both cognate and non-cognate metal ions. Results unequivocally show that neither length nor composition of the inter-domain linker alter the features of the Zn(II)- and Cd(II)-complexes, but surprisingly that they influence their ability to bind Cu(I), the non-cognate metal ion. PMID:26703589

  9. The Integration of Social-Ecological Resilience and Law

    EPA Science Inventory

    Growing recognition of the inherent uncertainty associated with the dynamics of ecological systems and their often non-linear and surprising behavior, however, presents a set of problems outside the scope of classic environmental law, and has lead to a fundamental understanding a...

  10. Surprisal analysis characterizes the free energy time course of cancer cells undergoing epithelial-to-mesenchymal transition.

    PubMed

    Zadran, Sohila; Arumugam, Rameshkumar; Herschman, Harvey; Phelps, Michael E; Levine, R D

    2014-09-09

    The epithelial-to-mesenchymal transition (EMT) initiates the invasive and metastatic behavior of many epithelial cancers. Mechanisms underlying EMT are not fully known. Surprisal analysis of mRNA time course data from lung and pancreatic cancer cells stimulated to undergo TGF-β1-induced EMT identifies two phenotypes. Examination of the time course for these phenotypes reveals that EMT reprogramming is a multistep process characterized by initiation, maturation, and stabilization stages that correlate with changes in cell metabolism. Surprisal analysis characterizes the free energy time course of the expression levels throughout the transition in terms of two state variables. The landscape of the free energy changes during the EMT for the lung cancer cells shows a stable intermediate state. Existing data suggest this is the previously proposed maturation stage. Using a single-cell ATP assay, we demonstrate that the TGF-β1-induced EMT for lung cancer cells, particularly during the maturation stage, coincides with a metabolic shift resulting in increased cytosolic ATP levels. Surprisal analysis also characterizes the absolute expression levels of the mRNAs and thereby examines the homeostasis of the transcription system during EMT.

  11. Multiscale Modeling of Gene-Behavior Associations in an Artificial Neural Network Model of Cognitive Development.

    PubMed

    Thomas, Michael S C; Forrester, Neil A; Ronald, Angelica

    2016-01-01

    In the multidisciplinary field of developmental cognitive neuroscience, statistical associations between levels of description play an increasingly important role. One example of such associations is the observation of correlations between relatively common gene variants and individual differences in behavior. It is perhaps surprising that such associations can be detected despite the remoteness of these levels of description, and the fact that behavior is the outcome of an extended developmental process involving interaction of the whole organism with a variable environment. Given that they have been detected, how do such associations inform cognitive-level theories? To investigate this question, we employed a multiscale computational model of development, using a sample domain drawn from the field of language acquisition. The model comprised an artificial neural network model of past-tense acquisition trained using the backpropagation learning algorithm, extended to incorporate population modeling and genetic algorithms. It included five levels of description-four internal: genetic, network, neurocomputation, behavior; and one external: environment. Since the mechanistic assumptions of the model were known and its operation was relatively transparent, we could evaluate whether cross-level associations gave an accurate picture of causal processes. We established that associations could be detected between artificial genes and behavioral variation, even under polygenic assumptions of a many-to-one relationship between genes and neurocomputational parameters, and when an experience-dependent developmental process interceded between the action of genes and the emergence of behavior. We evaluated these associations with respect to their specificity (to different behaviors, to function vs. structure), to their developmental stability, and to their replicability, as well as considering issues of missing heritability and gene-environment interactions. We argue that gene-behavior associations can inform cognitive theory with respect to effect size, specificity, and timing. The model demonstrates a means by which researchers can undertake multiscale modeling with respect to cognition and develop highly specific and complex hypotheses across multiple levels of description. Copyright © 2015 Cognitive Science Society, Inc.

  12. PEGylated and Functionalized Aliphatic Polycarbonate Polyplex Nanoparticles for Intravenous Administration of HDAC5 siRNA in Cancer Therapy.

    PubMed

    Frère, Antoine; Baroni, Alexandra; Hendrick, Elodie; Delvigne, Anne-Sophie; Orange, François; Peulen, Olivier; Dakwar, George R; Diricq, Jérôme; Dubois, Philippe; Evrard, Brigitte; Remaut, Katrien; Braeckmans, Kevin; De Smedt, Stefaan C; Laloy, Julie; Dogné, Jean-Michel; Feller, Georges; Mespouille, Laetitia; Mottet, Denis; Piel, Géraldine

    2017-01-25

    Guanidine and morpholine functionalized aliphatic polycarbonate polymers are able to deliver efficiently histone deacetylase 5 (HDAC5) siRNA into the cytoplasm of cancer cells in vitro leading to a decrease of cell proliferation were previously developed. To allow these biodegradable and biocompatible polyplex nanoparticles to overcome the extracellular barriers and be effective in vivo after an intravenous injection, polyethylene glycol chains (PEG 750 or PEG 2000 ) were grafted on the polymer structure. These nanoparticles showed an average size of about 150 nm and a slightly positive ζ-potential with complete siRNA complexation. Behavior of PEGylated and non-PEGylated polyplexes were investigated in the presence of serum, in terms of siRNA complexation (fluorescence correlation spectroscopy), size (dynamic light scattering and single-particle tracking), interaction with proteins (isothermal titration calorimetry) and cellular uptake. Surprisingly, both PEGylated and non-PEGylated formulations presented relatively good behavior in the presence of fetal bovine serum (FBS). Hemocompatibility tests showed no effect of these polyplexes on hemolysis and coagulation. In vivo biodistribution in mice was performed and showed a better siRNA accumulation at the tumor site for PEGylated polyplexes. However, cellular uptake in protein-rich conditions showed that PEGylated polyplex lost their ability to interact with biological membranes and enter into cells, showing the importance to perform in vitro investigations in physiological conditions closed to in vivo situation. In vitro, the efficiency of PEGylated nanoparticles decreases compared to non-PEGylated particles, leading to the loss of the antiproliferative effect on cancer cells.

  13. Effects of past transgressions in an induced hypocrisy paradigm.

    PubMed

    Fointiat, Valérie; Morisot, Vincent; Pakuszewski, Muriel

    2008-10-01

    Hypocrisy can be considered as a dissonance state expressed as a combination of two factors: commitment (advocating a pronormative position) and mindfulness (being aware of past transgressions). Such inconsistency between what people advocate and their past behaviors is usually reduced by modifying behaviors or behavioral intentions in line with normative advocacy. The aim of this study is to examine the conditions under which this set of behaviors (apparent hypocrisy) can occur. Specifically, the salience of the transgressions was manipulated: participants were led to recall 1 or 4 transgressions varying in severity (serious vs harmless). As expected, recalling 4 transgressions led to greater behavioral change than recalling only 1 transgression. Surprisingly, recalling 4 harmless transgressions induced greater behavioral change than recalling 4 serious transgressions.

  14. Comprehensive machine learning analysis of Hydra behavior reveals a stable basal behavioral repertoire

    PubMed Central

    Taralova, Ekaterina; Dupre, Christophe; Yuste, Rafael

    2018-01-01

    Animal behavior has been studied for centuries, but few efficient methods are available to automatically identify and classify it. Quantitative behavioral studies have been hindered by the subjective and imprecise nature of human observation, and the slow speed of annotating behavioral data. Here, we developed an automatic behavior analysis pipeline for the cnidarian Hydra vulgaris using machine learning. We imaged freely behaving Hydra, extracted motion and shape features from the videos, and constructed a dictionary of visual features to classify pre-defined behaviors. We also identified unannotated behaviors with unsupervised methods. Using this analysis pipeline, we quantified 6 basic behaviors and found surprisingly similar behavior statistics across animals within the same species, regardless of experimental conditions. Our analysis indicates that the fundamental behavioral repertoire of Hydra is stable. This robustness could reflect a homeostatic neural control of "housekeeping" behaviors which could have been already present in the earliest nervous systems. PMID:29589829

  15. Mathematics in the Early Years.

    ERIC Educational Resources Information Center

    Copley, Juanita V., Ed.

    Noting that young children are capable of surprisingly complex forms of mathematical thinking and learning, this book presents a collection of articles depicting children discovering mathematical ideas, teachers fostering students' informal mathematical knowledge, adults asking questions and listening to answers, and researchers examining…

  16. The Importance of Why: An Intelligence Approach for a Multi-Polar World

    DTIC Science & Technology

    2016-04-04

    December 27, 2015). 12. 2 Jupiter Scientific, “Definitions of Important Terms in Chaos Theory ,” Jupiter Scientific website, http...Important Terms in Chaos Theory .” Linearizing a system is approximating a nonlinear system through the application of linear system model. 25...Complexity Theory to Anticipate Strategic Surprise,” 24. 16 M. Mitchell Waldrop, Complexity: The Emerging Science at the Edge of Order and Chaos (New

  17. Virtual Patients in a Behavioral Medicine Massive Open Online Course (MOOC): A Qualitative and Quantitative Analysis of Participants' Perceptions.

    PubMed

    Berman, Anne H; Biguet, Gabriele; Stathakarou, Natalia; Westin-Hägglöf, Beata; Jeding, Kerstin; McGrath, Cormac; Zary, Nabil; Kononowicz, Andrzej A

    2017-10-01

    The purpose of this article is to explore learners' perceptions of using virtual patients in a behavioral medicine Massive Open Online Course (MOOCs) and thereby describe innovative ways of disseminating knowledge in health-related areas. A 5-week MOOC on behavioral medicine was hosted on the edX platform. The authors developed two branched virtual patients consisting of video recordings of a live standardized patient, with multiple clinical decision points and narration unfolding depending on learners' choices. Students interacted with the virtual patients to treat stress and sleep problems. Answers to the exit survey and participant comments from the discussion forum were analyzed qualitatively and quantitatively. In total, 19,236 participants enrolled in the MOOC, out of which 740 received the final certificate. The virtual patients were completed by 2317 and 1640 participants respectively. Among survey respondents (n = 442), 83.1% agreed that the virtual patient exercise was helpful. The qualitative analysis resulted in themes covering what it was like to work with the virtual patient, with subthemes on learner-centered education, emotions/eustress, game comparisons, what the participants learned, what surprised them, how confident participants felt about applying interventions in practice, suggestions for improvement, and previous experiences of virtual patients. Students were enthusiastic about interacting with the virtual patients as a means to apply new knowledge about behavioral medicine interventions. The most common suggestion was to incorporate more interactive cases with various levels of complexity. Further research should include patient outcomes and focus on interprofessional aspects of learning with virtual patients in a MOOC.

  18. Reassessment of the structural basis of the ascending arousal system

    PubMed Central

    Fuller, Patrick M.; Sherman, David; Pedersen, Nigel P.; Saper, Clifford B.; Lu, Jun

    2011-01-01

    The “ascending reticular activating system” theory proposed that neurons in the upper brainstem reticular formation projected to forebrain targets that promoted wakefulness. More recent formulations have emphasized that most neurons at the pontomesencepahlic junction that participate in these pathways are actually in monoaminergic and cholinergic cell groups. However, cell-specific lesions of these cell groups have never been able to reproduce the deep coma seen after acute paramedian midbrain lesions that transect ascending axons at the caudal midbrain level. To determine whether the cortical afferents from the thalamus or the basal forebrain were more important in maintaining arousal, we first place large cell-body specific lesions in these targets. Surprisingly, extensive thalamic lesions had little effect on EEG or behavioral measures of wakefulness or on c-Fos expression by cortical neurons during wakefulness. In contrast, animals with large basal forebrain lesions were behaviorally unresponsive, had a monotonous sub-1 Hz EEG, and little cortical c-Fos expression during continuous gentle handling. We then retrogradely labeled inputs to the basal forebrain from the upper brainstem, and found a substantial input from glutamatergic neurons in the parabrachial nucleus and adjacent pre-coeruleus area. Cell specific lesions of the parabrachial-precoeruleus complex produced behavioral unresponsiveness, a monotonous sub-1Hz cortical EEG, and loss of cortical c-Fos expression during gentle handling. These experiments indicate that in rats the reticulo-thalamo-cortical pathway may play a very limited role in behavioral or electrocortical arousal, while the projection from the parabrachial nucleus and precoeruleus region, relayed by the basal forebrain to the cerebral cortex, may be critical for this process. PMID:21280045

  19. Crack Velocities in Natural Rubber.

    DTIC Science & Technology

    1982-05-01

    vulcanized natural rubber (3). The surprisingly low value for natural rubber was attributed to highly anisotropic elastic behavior at high strains...Dr. R.L. Rabie Hercules Incorporated WX-2, MS-952 Alleghany Ballistic Lab Los Alamos National Lab. P.O. Box 210 P.O. Box 1663 Washington, D.C. 21502

  20. Semantic relation vs. surprise: the differential effects of related and unrelated co-verbal gestures on neural encoding and subsequent recognition.

    PubMed

    Straube, Benjamin; Meyer, Lea; Green, Antonia; Kircher, Tilo

    2014-06-03

    Speech-associated gesturing leads to memory advantages for spoken sentences. However, unexpected or surprising events are also likely to be remembered. With this study we test the hypothesis that different neural mechanisms (semantic elaboration and surprise) lead to memory advantages for iconic and unrelated gestures. During fMRI-data acquisition participants were presented with video clips of an actor verbalising concrete sentences accompanied by iconic gestures (IG; e.g., circular gesture; sentence: "The man is sitting at the round table"), unrelated free gestures (FG; e.g., unrelated up down movements; same sentence) and no gestures (NG; same sentence). After scanning, recognition performance for the three conditions was tested. Videos were evaluated regarding semantic relation and surprise by a different group of participants. The semantic relationship between speech and gesture was rated higher for IG (IG>FG), whereas surprise was rated higher for FG (FG>IG). Activation of the hippocampus correlated with subsequent memory performance of both gesture conditions (IG+FG>NG). For the IG condition we found activation in the left temporal pole and middle cingulate cortex (MCC; IG>FG). In contrast, for the FG condition posterior thalamic structures (FG>IG) as well as anterior and posterior cingulate cortices were activated (FG>NG). Our behavioral and fMRI-data suggest different mechanisms for processing related and unrelated co-verbal gestures, both of them leading to enhanced memory performance. Whereas activation in MCC and left temporal pole for iconic co-verbal gestures may reflect semantic memory processes, memory enhancement for unrelated gestures relies on the surprise response, mediated by anterior/posterior cingulate cortex and thalamico-hippocampal structures. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Conceptualizing prognostic awareness in advanced cancer: a systematic review.

    PubMed

    Applebaum, Allison J; Kolva, Elissa A; Kulikowski, Julia R; Jacobs, Jordana D; DeRosa, Antonio; Lichtenthal, Wendy G; Olden, Megan E; Rosenfeld, Barry; Breitbart, William

    2014-09-01

    This systematic review synthesizes the complex literature on prognostic awareness in cancer. A total of 37 studies examining cancer patients' understanding of their prognosis were included. Prognostic awareness definitions and assessment methods were inconsistent across studies. A surprisingly high percentage of patients (up to 75%) were unaware of their poor prognosis, and in several studies, even their cancer diagnosis (up to 96%), particularly in studies conducted outside of North America. This review highlights surprisingly low rates of prognostic awareness in patients with advanced cancer as well as discrepancies in prognostic awareness assessment, suggesting the need for empirically validated measures of prognostic awareness. © The Author(s) 2013.

  2. Conceptualizing prognostic awareness in advanced cancer: A systematic review

    PubMed Central

    Applebaum, Allison J; Kolva, Elissa A; Kulikowski, Julia R; Jacobs, Jordana D; DeRosa, Antonio; Lichtenthal, Wendy G; Olden, Megan E; Rosenfeld, Barry; Breitbart, William

    2015-01-01

    This systematic review synthesizes the complex literature on prognostic awareness in cancer. A total of 37 studies examining cancer patients’ understanding of their prognosis were included. Prognostic awareness definitions and assessment methods were inconsistent across studies. A surprisingly high percentage of patients (up to 75%) were unaware of their poor prognosis, and in several studies, even their cancer diagnosis (up to 96%), particularly in studies conducted outside of North America. This review highlights surprisingly low rates of prognostic awareness in patients with advanced cancer as well as discrepancies in prognostic awareness assessment, suggesting the need for empirically validated measures of prognostic awareness. PMID:24157936

  3. Cross-system comparisons elucidate disturbance complexities and generalities

    USDA-ARS?s Scientific Manuscript database

    Given that ecological effects of disturbance have been extensively studied in many ecosystems, it is surprising that few quantitative syntheses across diverse ecosystems have been conducted. Building on existing research, we present a conceptual framework and an operational analog to integrate this ...

  4. MECHANISMS OF MALE REPRODUCTIVE TOXICITY: BED, BATH AND BEYOND

    EPA Science Inventory

    Male reproductive function depends upon the integration of a great number of highly complex biological processes and their endocrine support. Therefore it is not surprising that male reproductive health can be impaired by exposures to drugs and environmental toxicants that impact...

  5. Distributed task-specific processing of somatosensory feedback for voluntary motor control

    PubMed Central

    Omrani, Mohsen; Murnaghan, Chantelle D; Pruszynski, J Andrew; Scott, Stephen H

    2016-01-01

    Corrective responses to limb disturbances are surprisingly complex, but the neural basis of these goal-directed responses is poorly understood. Here we show that somatosensory feedback is transmitted to many sensory and motor cortical regions within 25 ms of a mechanical disturbance applied to the monkey’s arm. When limb feedback was salient to an ongoing motor action (task engagement), neurons in parietal area 5 immediately (~25 ms) increased their response to limb disturbances, whereas neurons in other regions did not alter their response until 15 to 40 ms later. In contrast, initiation of a motor action elicited by a limb disturbance (target selection) altered neural responses in primary motor cortex ~65 ms after the limb disturbance, and then in dorsal premotor cortex, with no effect in parietal regions until 150 ms post-perturbation. Our findings highlight broad parietofrontal circuits that provide the neural substrate for goal-directed corrections, an essential aspect of highly skilled motor behaviors. DOI: http://dx.doi.org/10.7554/eLife.13141.001 PMID:27077949

  6. Topographical Control of Ocular Cell Types for Tissue Engineering

    PubMed Central

    McHugh, Kevin J.; Saint-Geniez, Magali; Tao, Sarah L.

    2014-01-01

    Visual impairment affects over 285 million people worldwide and has a major impact on an individual’s quality of life. Tissue engineering has the potential to increase quality of life for many of these patients by preventing vision loss or restoring vision using cell-based therapies. However, these strategies will require an understanding of the microenvironmental factors that influence cell behavior. The eye is a well-organized organ whose structural complexity is essential for proper function. Interactions between ocular cells and their highly ordered extracellular matrix are necessary for maintaining key tissue properties including corneal transparency and retinal lamination. Therefore, it is not surprising that culturing these cells in vitro on traditional flat substrates result in irregular morphology. Instead, topographically patterned biomaterials better mimic native extracellular matrix and have been shown to elicit in vivo-like morphology and gene expression which is essential for tissue engineering. Herein we review multiple methods for producing well-controlled topography and discuss optimal biomaterial scaffold design for cells of the cornea, retina, and lens. PMID:23744715

  7. Genetics of addictive behavior: the example of nicotine dependence.

    PubMed

    Gorwood, Philip; Le Strat, Yann; Ramoz, Nicolas

    2017-09-01

    The majority of addictive disorders have a significant heritability-roughly around 50%. Surprisingly, the most convincing association (a nicotinic acetylcholine receptor CHRNA5-A3-B4 gene cluster in nicotine dependence), with a unique attributable risk of 14%, was detected through a genome-wide association study (GWAS) on lung cancer, although lung cancer has a low heritability. We propose some explanations of this finding, potentially helping to understand how a GWAS strategy can be successful. Many endophenotypes were also assessed as potentially modulating the effect of nicotine, indirectly facilitating the development of nicotine dependence. Challenging the involved phenotype led to the demonstration that other potentially overlapping disorders, such as schizophrenia and Parkinson disease, could also be involved, and further modulated by parent monitoring or the existence of a smoking partner. Such a complex mechanism of action is compatible with a gene-environment interaction, most clearly explained by epigenetic factors, especially as such factors were shown to be, at least partly, genetically driven.

  8. Splicing predictions reliably classify different types of alternative splicing

    PubMed Central

    Busch, Anke; Hertel, Klemens J.

    2015-01-01

    Alternative splicing is a key player in the creation of complex mammalian transcriptomes and its misregulation is associated with many human diseases. Multiple mRNA isoforms are generated from most human genes, a process mediated by the interplay of various RNA signature elements and trans-acting factors that guide spliceosomal assembly and intron removal. Here, we introduce a splicing predictor that evaluates hundreds of RNA features simultaneously to successfully differentiate between exons that are constitutively spliced, exons that undergo alternative 5′ or 3′ splice-site selection, and alternative cassette-type exons. Surprisingly, the splicing predictor did not feature strong discriminatory contributions from binding sites for known splicing regulators. Rather, the ability of an exon to be involved in one or multiple types of alternative splicing is dictated by its immediate sequence context, mainly driven by the identity of the exon's splice sites, the conservation around them, and its exon/intron architecture. Thus, the splicing behavior of human exons can be reliably predicted based on basic RNA sequence elements. PMID:25805853

  9. Ranking protective coatings: Laboratory vs. field experience

    NASA Astrophysics Data System (ADS)

    Conner, Jeffrey A.; Connor, William B.

    1994-12-01

    Environmentally protective coatings are used on a wide range of gas turbine components for survival in the harsh operating conditions of engines. A host of coatings are commercially available to protect hot-section components, ranging from simple aluminides to designer metallic overlays and ceramic thermal barrier coatings. A variety of coating-application processes are available, and they range from simple pack cementation processing to complex physical vapor deposition, which requires multimillion dollar facilities. Detailed databases are available for most coatings and coating/process combinations for a range of laboratory tests. Still, the analysis of components actually used in engines often yields surprises when compared against predicted coating behavior from laboratory testing. This paper highlights recent work to develop new laboratory tests that better simulate engine environments. Comparison of in-flight coating performance as well as industrial and factory engine testing on a range of hardware is presented along with laboratory predictions from standard testing and from recently developed cyclic burner-rig testing.

  10. Different requirements of functional telomeres in neural stem cells and terminally differentiated neurons.

    PubMed

    Lobanova, Anastasia; She, Robert; Pieraut, Simon; Clapp, Charlie; Maximov, Anton; Denchi, Eros Lazzerini

    2017-04-01

    Telomeres have been studied extensively in peripheral tissues, but their relevance in the nervous system remains poorly understood. Here, we examine the roles of telomeres at distinct stages of murine brain development by using lineage-specific genetic ablation of TRF2, an essential component of the shelterin complex that protects chromosome ends from the DNA damage response machinery. We found that functional telomeres are required for embryonic and adult neurogenesis, but their uncapping has surprisingly no detectable consequences on terminally differentiated neurons. Conditional knockout of TRF2 in post-mitotic immature neurons had virtually no detectable effect on circuit assembly, neuronal gene expression, and the behavior of adult animals despite triggering massive end-to-end chromosome fusions across the brain. These results suggest that telomeres are dispensable in terminally differentiated neurons and provide mechanistic insight into cognitive abnormalities associated with aberrant telomere length in humans. © 2017 Lobanova et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Uniting functional network topology and oscillations in the fronto-parietal single unit network of behaving primates.

    PubMed

    Dann, Benjamin; Michaels, Jonathan A; Schaffelhofer, Stefan; Scherberger, Hansjörg

    2016-08-15

    The functional communication of neurons in cortical networks underlies higher cognitive processes. Yet, little is known about the organization of the single neuron network or its relationship to the synchronization processes that are essential for its formation. Here, we show that the functional single neuron network of three fronto-parietal areas during active behavior of macaque monkeys is highly complex. The network was closely connected (small-world) and consisted of functional modules spanning these areas. Surprisingly, the importance of different neurons to the network was highly heterogeneous with a small number of neurons contributing strongly to the network function (hubs), which were in turn strongly inter-connected (rich-club). Examination of the network synchronization revealed that the identified rich-club consisted of neurons that were synchronized in the beta or low frequency range, whereas other neurons were mostly non-oscillatory synchronized. Therefore, oscillatory synchrony may be a central communication mechanism for highly organized functional spiking networks.

  12. Chapter 15: Potential Surprises: Compound Extremes and Tipping Elements

    NASA Technical Reports Server (NTRS)

    Kopp, R. E.; Hayhoe, K.; Easterling, D. R.; Hall, T.; Horton, R.; Kunkel, K. E.; LeGrande, A. N.

    2017-01-01

    The Earth system is made up of many components that interact in complex ways across a broad range of temporal and spatial scales. As a result of these interactions the behavior of the system cannot be predicted by looking at individual components in isolation. Negative feedbacks, or self-stabilizing cycles, within and between components of the Earth system can dampen changes (Ch. 2: Physical Drivers of Climate Change). However, their stabilizing effects render such feedbacks of less concern from a risk perspective than positive feedbacks, or self-reinforcing cycles. Positive feedbacks magnify both natural and anthropogenic changes. Some Earth system components, such as arctic sea ice and the polar ice sheets, may exhibit thresholds beyond which these self-reinforcing cycles can drive the component, or the entire system, into a radically different state. Although the probabilities of these state shifts may be difficult to assess, their consequences could be high, potentially exceeding anything anticipated by climate model projections for the coming century.

  13. Dealing With Unexpected Events on the Flight Deck: A Conceptual Model of Startle and Surprise.

    PubMed

    Landman, Annemarie; Groen, Eric L; van Paassen, M M René; Bronkhorst, Adelbert W; Mulder, Max

    2017-12-01

    A conceptual model is proposed in order to explain pilot performance in surprising and startling situations. Today's debate around loss of control following in-flight events and the implementation of upset prevention and recovery training has highlighted the importance of pilots' ability to deal with unexpected events. Unexpected events, such as technical malfunctions or automation surprises, potentially induce a "startle factor" that may significantly impair performance. Literature on surprise, startle, resilience, and decision making is reviewed, and findings are combined into a conceptual model. A number of recent flight incident and accident cases are then used to illustrate elements of the model. Pilot perception and actions are conceptualized as being guided by "frames," or mental knowledge structures that were previously learned. Performance issues in unexpected situations can often be traced back to insufficient adaptation of one's frame to the situation. It is argued that such sensemaking or reframing processes are especially vulnerable to issues caused by startle or acute stress. Interventions should focus on (a) increasing the supply and quality of pilot frames (e.g., though practicing a variety of situations), (b) increasing pilot reframing skills (e.g., through the use of unpredictability in training scenarios), and (c) improving pilot metacognitive skills, so that inappropriate automatic responses to startle and surprise can be avoided. The model can be used to explain pilot behavior in accident cases, to design experiments and training simulations, to teach pilots metacognitive skills, and to identify intervention methods.

  14. Luminescent macrocyclic lanthanide complexes

    DOEpatents

    Raymond, Kenneth N; Corneillie, Todd M; Xu, Jide

    2014-05-20

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  15. DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli

    PubMed Central

    Lemmens, Karen; De Bie, Tijl; Dhollander, Thomas; De Keersmaecker, Sigrid C; Thijs, Inge M; Schoofs, Geert; De Weerdt, Ami; De Moor, Bart; Vanderleyden, Jos; Collado-Vides, Julio; Engelen, Kristof; Marchal, Kathleen

    2009-01-01

    We present DISTILLER, a data integration framework for the inference of transcriptional module networks. Experimental validation of predicted targets for the well-studied fumarate nitrate reductase regulator showed the effectiveness of our approach in Escherichia coli. In addition, the condition dependency and modularity of the inferred transcriptional network was studied. Surprisingly, the level of regulatory complexity seemed lower than that which would be expected from RegulonDB, indicating that complex regulatory programs tend to decrease the degree of modularity. PMID:19265557

  16. A more realistic disc herniation model incorporating compression, flexion and facet-constrained shear: a mechanical and microstructural analysis. Part II: high rate or 'surprise' loading.

    PubMed

    Shan, Zhi; Wade, Kelly R; Schollum, Meredith L; Robertson, Peter A; Thambyah, Ashvin; Broom, Neil D

    2017-10-01

    Part I of this study explored mechanisms of disc failure in a complex posture incorporating physiological amounts of flexion and shear at a loading rate considerably lower than likely to occur in a typical in vivo manual handling situation. Given the strain-rate-dependent mechanical properties of the heavily hydrated disc, loading rate will likely influence the mechanisms of disc failure. Part II investigates the mechanisms of failure in healthy discs subjected to surprise-rate compression while held in the same complex posture. 37 motion segments from 13 healthy mature ovine lumbar spines were compressed in a complex posture intended to simulate the situation arising when bending and twisting while lifting a heavy object at a displacement rate of 400 mm/min. Seven of the 37 samples reached the predetermined displacement prior to a reduction in load and were classified as early stage failures, providing insight to initial areas of disc disruption. Both groups of damaged discs were then analysed microstructurally using light microscopy. The average failure load under high rate complex loading was 6.96 kN (STD 1.48 kN), significantly lower statistically than for low rate complex loading [8.42 kN (STD 1.22 kN)]. Also, unlike simple flexion or low rate complex loading, direct radial ruptures and non-continuous mid-wall tearing in the posterior and posterolateral regions were commonly accompanied by disruption extending to the lateral and anterior disc. This study has again shown that multiple modes of damage are common when compressing a segment in a complex posture, and the load bearing ability, already less than in a neutral or flexed posture, is further compromised with high rate complex loading.

  17. Interplay between morphology and frequency in lexical access: The case of the base frequency effect

    PubMed Central

    Vannest, Jennifer; Newport, Elissa L.; Newman, Aaron J.; Bavelier, Daphne

    2011-01-01

    A major issue in lexical processing concerns storage and access of lexical items. Here we make use of the base frequency effect to examine this. Specifically, reaction time to morphologically complex words (words made up of base and suffix, e.g., agree+able) typically reflects frequency of the base element (i.e., total frequency of all words in which agree appears) rather than surface word frequency (i.e., frequency of agreeable itself). We term these complex words decomposable. However, a class of words termed whole-word do not show such sensitivity to base frequency (e.g., serenity). Using an event-related MRI design, we exploited the fact that processing low-frequency words increases BOLD activity relative to high frequency ones, and examined effects of base frequency on brain activity for decomposable and whole-word items. Morphologically complex words, half high and half low base frequency, were compared to matched high and low frequency simple monomorphemic words using a lexical decision task. Morphologically complex words increased activation in left inferior frontal and left superior temporal cortices versus simple words. The only area to mirror the behavioral distinction between decomposable and whole-word types was the thalamus. Surprisingly, most frequency-sensitive areas failed to show base frequency effects. This variety of responses to frequency and word type across brain areas supports an integrative view of multiple variables during lexical access, rather than a dichotomy between memory-based access and on-line computation. Lexical access appears best captured as interplay of several neural processes with different sensitivities to various linguistic factors including frequency and morphological complexity. PMID:21167136

  18. Channelopathy pathogenesis in autism spectrum disorders.

    PubMed

    Schmunk, Galina; Gargus, J Jay

    2013-11-05

    Autism spectrum disorder (ASD) is a syndrome that affects normal brain development and is characterized by impaired social interaction as well as verbal and non-verbal communication and by repetitive, stereotypic behavior. ASD is a complex disorder arising from a combination of multiple genetic and environmental factors that are independent from racial, ethnic and socioeconomical status. The high heritability of ASD suggests a strong genetic basis for the disorder. Furthermore, a mounting body of evidence implies a role of various ion channel gene defects (channelopathies) in the pathogenesis of autism. Indeed, recent genome-wide association, and whole exome- and whole-genome resequencing studies linked polymorphisms and rare variants in calcium, sodium and potassium channels and their subunits with susceptibility to ASD, much as they do with bipolar disorder, schizophrenia and other neuropsychiatric disorders. Moreover, animal models with these genetic variations recapitulate endophenotypes considered to be correlates of autistic behavior seen in patients. An ion flux across the membrane regulates a variety of cell functions, from generation of action potentials to gene expression and cell morphology, thus it is not surprising that channelopathies have profound effects on brain functions. In the present work, we summarize existing evidence for the role of ion channel gene defects in the pathogenesis of autism with a focus on calcium signaling and its downstream effects.

  19. Somatic genital reflexes in rats with a nod to humans: anatomy, physiology, and the role of the social neuropeptides

    PubMed Central

    Normandin, Joseph J.; Murphy, Anne Z.

    2011-01-01

    Somatic genital reflexes such as ejaculation and vaginocervical contractions are produced through the striated muscles associated with the genitalia. The coordination of these reflexes is surprisingly complex and involves a number of lumbosacral spinal and supraspinal systems. The rat model has proved to be an excellent source of information regarding these mechanisms, and many parallels to research in humans can be drawn. An understanding of the spinal systems involving the lumbosacral spinal cord, both efferent and afferent, has been generated through decades of research. Spinal and supraspinal mechanisms of descending excitation, through a spinal ejaculation generator in the lumbar spinal cord and thalamus, and descending inhibition, through the ventrolateral medulla, have been identified and characterized both anatomically and physiologically. In addition, delineation of the neural circuits whereby ascending genitosensory information regarding the regulation of somatic genital reflexes is relayed supraspinally has also been the topic of recent investigation. Lastly, the importance of the “social neuropeptides” oxytocin and vasopressin in the regulation of somatic genital reflexes, and associated sociosexual behaviors, is emerging. This work not only has implications for understanding how nervous systems generate sexual behavior, but also provides treatment targets for sexual dysfunction in people. PMID:21338605

  20. Channelopathy pathogenesis in autism spectrum disorders

    PubMed Central

    Schmunk, Galina; Gargus, J. Jay

    2013-01-01

    Autism spectrum disorder (ASD) is a syndrome that affects normal brain development and is characterized by impaired social interaction as well as verbal and non-verbal communication and by repetitive, stereotypic behavior. ASD is a complex disorder arising from a combination of multiple genetic and environmental factors that are independent from racial, ethnic and socioeconomical status. The high heritability of ASD suggests a strong genetic basis for the disorder. Furthermore, a mounting body of evidence implies a role of various ion channel gene defects (channelopathies) in the pathogenesis of autism. Indeed, recent genome-wide association, and whole exome- and whole-genome resequencing studies linked polymorphisms and rare variants in calcium, sodium and potassium channels and their subunits with susceptibility to ASD, much as they do with bipolar disorder, schizophrenia and other neuropsychiatric disorders. Moreover, animal models with these genetic variations recapitulate endophenotypes considered to be correlates of autistic behavior seen in patients. An ion flux across the membrane regulates a variety of cell functions, from generation of action potentials to gene expression and cell morphology, thus it is not surprising that channelopathies have profound effects on brain functions. In the present work, we summarize existing evidence for the role of ion channel gene defects in the pathogenesis of autism with a focus on calcium signaling and its downstream effects. PMID:24204377

  1. Shifting Perspectives: Using Complexity Theory to Anticipate Strategic Surprise

    DTIC Science & Technology

    2015-08-08

    Master’s Thesis 3. DATES COVERED (From - To) 21-07-2014 to 11-06-2015 4. TITLE AND SUBTITLE SHIFTING PERSPECTIVES: USING COMPLEXITY THEORY TO...SCA Socio-Cultural Analysis SNA Social Network Analysis TCO Transnational Criminal Organization U.S. United States WMD Weapons of Mass...the 2014 Russian invasion of Ukraine, and the rise of the Islamic State following the war in Iraq. Considering the amount of money , time, and emphasis

  2. The Development of Ada (Trademark) Software for Secure Environments

    DTIC Science & Technology

    1986-05-23

    Telecommunications environment, This paper discusses software socurity and seeks to demostrate how the Ada programming language can be utilizec as a tool...complexity 4 . We use abstraction in our lives every day to control complexity; the principles of abstraction for software engineering are ro different...systems. These features directly sup,) )-t t.ie m odernp software engineering principles d1 s I , , 1 t, thne previous section. This is not surprising

  3. Novel IgE Inhibitors for the Treatment of Food Allergies

    DTIC Science & Technology

    2015-10-01

    currently the only FDA approved monoclonal anti-IgE therapy. We solved the IgE:omalizumab crystal structure to 2.54 Å. This structure elucidates the...Surprisingly, the complex structure shares significant similarity with the disruptive IgE inhibitor E2_79, and provides mechanistic insight into the...efficiency with which disruptive inhibitors are able to bind to, and accelerate FcεRIα dissociation from preformed IgE:FcεRIα complexes. Structural

  4. Surprise Value in Scientific Discourse.

    ERIC Educational Resources Information Center

    Huckin, Thomas N.

    An analysis of journal articles from physics and molecular biology carried out with the help of six specialists in those disciplines reveals that scientists read journal articles by searching for the most newsworthy information, a behavior similar to that of newspaper readers. For this reason the scientific journal article is gradually taking on…

  5. Simple Experiments to Help Students Understand Magnetic Phenomena

    ERIC Educational Resources Information Center

    Browne, Kerry; Jackson, David P.

    2007-01-01

    The principles of magnetism are a common topic in most introductory physics courses, yet curricular materials exploring the behavior of permanent magnets and magnetic materials are surprisingly rare in the literature. We reviewed the literature to see how magnetism is typically covered in introductory textbooks and curricula. We found that while…

  6. Borrowing and Repaying Student Loans

    ERIC Educational Resources Information Center

    Hillman, Nicholas W.

    2015-01-01

    This essay synthesizes the most recent and rigorous research on student loan debt. It focuses on basic questions about who borrows, how much, and whether debt affects behaviors. Answers to these questions are necessary for informing federal student loan policymaking, yet the research findings are surprisingly mixed because of poor data quality,…

  7. Choice in Quail Neonates: The Origins of Generalized Matching

    ERIC Educational Resources Information Center

    Schneider, Susan M.; Lickliter, Robert

    2010-01-01

    Although newborns have surprised scientists with their learning skills, proficiency on concurrent schedules of reinforcement requires (in effect) the ability to integrate and compare behavior-consequence relations over time. Can very young animals obey the quantitative relation that applies to such repeated choices, the generalized matching law?…

  8. Exploring Mirrors, Recreating Science and History, Becoming a Class Community

    ERIC Educational Resources Information Center

    Cavicchi, Elizabeth

    2009-01-01

    A teacher narrates from activities and discussions that arose among undergraduates and herself while doing critical explorations of mirrors. Surprised by light's behaviors, the students responded with curiosity, losing their dependence on answers as the format of school knowledge. Inadequacies in how participants supposed light works emerged in…

  9. On Seeing Human: A Three-Factor Theory of Anthropomorphism

    ERIC Educational Resources Information Center

    Epley, Nicholas; Waytz, Adam; Cacioppo, John T.

    2007-01-01

    Anthropomorphism describes the tendency to imbue the real or imagined behavior of nonhuman agents with humanlike characteristics, motivations, intentions, or emotions. Although surprisingly common, anthropomorphism is not invariant. This article describes a theory to explain when people are likely to anthropomorphize and when they are not, focused…

  10. Social Behavior in Medulloblastoma: Functional Analysis of Tumor-Supporting

    DTIC Science & Technology

    2013-07-01

    our findings in aim 1. In the current year, our lab moved from University of Oregon to University of Virginia to gain access to world -renowned...used MADM to probe into early phases of gliomagenesis, and surprisingly found the lack of overpopulation of mutant NSCs. Among NSC-derived cell types

  11. From self-assessment to frustration, a small step toward autonomy in robotic navigation

    PubMed Central

    Jauffret, Adrien; Cuperlier, Nicolas; Tarroux, Philippe; Gaussier, Philippe

    2013-01-01

    Autonomy and self-improvement capabilities are still challenging in the fields of robotics and machine learning. Allowing a robot to autonomously navigate in wide and unknown environments not only requires a repertoire of robust strategies to cope with miscellaneous situations, but also needs mechanisms of self-assessment for guiding learning and for monitoring strategies. Monitoring strategies requires feedbacks on the behavior's quality, from a given fitness system in order to take correct decisions. In this work, we focus on how a second-order controller can be used to (1) manage behaviors according to the situation and (2) seek for human interactions to improve skills. Following an incremental and constructivist approach, we present a generic neural architecture, based on an on-line novelty detection algorithm that may be able to self-evaluate any sensory-motor strategies. This architecture learns contingencies between sensations and actions, giving the expected sensation from the previous perception. Prediction error, coming from surprising events, provides a measure of the quality of the underlying sensory-motor contingencies. We show how a simple second-order controller (emotional system) based on the prediction progress allows the system to regulate its behavior to solve complex navigation tasks and also succeeds in asking for help if it detects dead-lock situations. We propose that this model could be a key structure toward self-assessment and autonomy. We made several experiments that can account for such properties for two different strategies (road following and place cells based navigation) in different situations. PMID:24115931

  12. Sibling Rivalry in Myxococcus xanthus Is Mediated by Kin Recognition and a Polyploid Prophage.

    PubMed

    Dey, Arup; Vassallo, Christopher N; Conklin, Austin C; Pathak, Darshankumar T; Troselj, Vera; Wall, Daniel

    2016-01-19

    Myxobacteria form complex social communities that elicit multicellular behaviors. One such behavior is kin recognition, in which cells identify siblings via their polymorphic TraA cell surface receptor, to transiently fuse outer membranes and exchange their contents. In addition, outer membrane exchange (OME) regulates behaviors, such as inhibition of wild-type Myxococcus xanthus (DK1622) from swarming. Here we monitored the fate of motile cells and surprisingly found they were killed by nonmotile siblings. The kill phenotype required OME (i.e., was TraA dependent). The genetic basis of killing was traced to ancestral strains used to construct DK1622. Specifically, the kill phenotype mapped to a large "polyploid prophage," Mx alpha. Sensitive strains contained a 200-kb deletion that removed two of three Mx alpha units. To explain these results, we suggest that Mx alpha expresses a toxin-antitoxin cassette that uses the OME machinery of M. xanthus to transfer a toxin that makes the population "addicted" to Mx alpha. Thus, siblings that lost Mx alpha units (no immunity) are killed by cells that harbor the element. To test this, an Mx alpha-harboring laboratory strain was engineered (by traA allele swap) to recognize a closely related species, Myxococcus fulvus. As a result, M. fulvus, which lacks Mx alpha, was killed. These TraA-mediated antagonisms provide an explanation for how kin recognition specificity might have evolved in myxobacteria. That is, recognition specificity is determined by polymorphisms in traA, which we hypothesize were selected for because OME with non-kin leads to lethal outcomes. The transition from single cell to multicellular life is considered a major evolutionary event. Myxobacteria have successfully made this transition. For example, in response to starvation, individual cells aggregate into multicellular fruiting bodies wherein cells differentiate into spores. To build fruits, cells need to recognize their siblings, and in part, this is mediated by the TraA cell surface receptor. Surprisingly, we report that TraA recognition can also involve sibling killing. We show that killing originates from a prophage-like element that has apparently hijacked the TraA system to deliver a toxin to kin. We hypothesize that this killing system has imposed selective pressures on kin recognition, which in turn has resulted in TraA polymorphisms and hence many different recognition groups. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Sibling Rivalry in Myxococcus xanthus Is Mediated by Kin Recognition and a Polyploid Prophage

    PubMed Central

    Dey, Arup; Vassallo, Christopher N.; Conklin, Austin C.; Pathak, Darshankumar T.; Troselj, Vera

    2016-01-01

    ABSTRACT Myxobacteria form complex social communities that elicit multicellular behaviors. One such behavior is kin recognition, in which cells identify siblings via their polymorphic TraA cell surface receptor, to transiently fuse outer membranes and exchange their contents. In addition, outer membrane exchange (OME) regulates behaviors, such as inhibition of wild-type Myxococcus xanthus (DK1622) from swarming. Here we monitored the fate of motile cells and surprisingly found they were killed by nonmotile siblings. The kill phenotype required OME (i.e., was TraA dependent). The genetic basis of killing was traced to ancestral strains used to construct DK1622. Specifically, the kill phenotype mapped to a large “polyploid prophage,” Mx alpha. Sensitive strains contained a 200-kb deletion that removed two of three Mx alpha units. To explain these results, we suggest that Mx alpha expresses a toxin-antitoxin cassette that uses the OME machinery of M. xanthus to transfer a toxin that makes the population “addicted” to Mx alpha. Thus, siblings that lost Mx alpha units (no immunity) are killed by cells that harbor the element. To test this, an Mx alpha-harboring laboratory strain was engineered (by traA allele swap) to recognize a closely related species, Myxococcus fulvus. As a result, M. fulvus, which lacks Mx alpha, was killed. These TraA-mediated antagonisms provide an explanation for how kin recognition specificity might have evolved in myxobacteria. That is, recognition specificity is determined by polymorphisms in traA, which we hypothesize were selected for because OME with non-kin leads to lethal outcomes. IMPORTANCE The transition from single cell to multicellular life is considered a major evolutionary event. Myxobacteria have successfully made this transition. For example, in response to starvation, individual cells aggregate into multicellular fruiting bodies wherein cells differentiate into spores. To build fruits, cells need to recognize their siblings, and in part, this is mediated by the TraA cell surface receptor. Surprisingly, we report that TraA recognition can also involve sibling killing. We show that killing originates from a prophage-like element that has apparently hijacked the TraA system to deliver a toxin to kin. We hypothesize that this killing system has imposed selective pressures on kin recognition, which in turn has resulted in TraA polymorphisms and hence many different recognition groups. PMID:26787762

  14. Investigation of musicality in birdsong.

    PubMed

    Rothenberg, David; Roeske, Tina C; Voss, Henning U; Naguib, Marc; Tchernichovski, Ofer

    2014-02-01

    Songbirds spend much of their time learning, producing, and listening to complex vocal sequences we call songs. Songs are learned via cultural transmission, and singing, usually by males, has a strong impact on the behavioral state of the listeners, often promoting affiliation, pair bonding, or aggression. What is it in the acoustic structure of birdsong that makes it such a potent stimulus? We suggest that birdsong potency might be driven by principles similar to those that make music so effective in inducing emotional responses in humans: a combination of rhythms and pitches-and the transitions between acoustic states-affecting emotions through creating expectations, anticipations, tension, tension release, or surprise. Here we propose a framework for investigating how birdsong, like human music, employs the above "musical" features to affect the emotions of avian listeners. First we analyze songs of thrush nightingales (Luscinia luscinia) by examining their trajectories in terms of transitions in rhythm and pitch. These transitions show gradual escalations and graceful modifications, which are comparable to some aspects of human musicality. We then explore the feasibility of stripping such putative musical features from the songs and testing how this might affect patterns of auditory responses, focusing on fMRI data in songbirds that demonstrate the feasibility of such approaches. Finally, we explore ideas for investigating whether musical features of birdsong activate avian brains and affect avian behavior in manners comparable to music's effects on humans. In conclusion, we suggest that birdsong research would benefit from current advances in music theory by attempting to identify structures that are designed to elicit listeners' emotions and then testing for such effects experimentally. Birdsong research that takes into account the striking complexity of song structure in light of its more immediate function - to affect behavioral state in listeners - could provide a useful animal model for studying basic principles of music neuroscience in a system that is very accessible for investigation, and where developmental auditory and social experience can be tightly controlled. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Investigation of musicality in birdsong

    PubMed Central

    Rothenberg, David; Roeske, Tina C.; Voss, Henning U.; Naguib, Marc; Tchernichovski, Ofer

    2013-01-01

    Songbirds spend much of their time learning, producing, and listening to complex vocal sequences we call songs. Songs are learned via cultural transmission, and singing, usually by males, has a strong impact on the behavioral state of the listeners, often promoting affiliation, pair bonding, or aggression. What is it in the acoustic structure of birdsong that makes it such a potent stimulus? We suggest that birdsong potency might be driven by principles similar to those that make music so effective in inducing emotional responses in humans: a combination of rhythms and pitches —and the transitions between acoustic states—affecting emotions through creating expectations, anticipations, tension, tension release, or surprise. Here we propose a framework for investigating how birdsong, like human music, employs the above “musical” features to affect the emotions of avian listeners. First we analyze songs of thrush nightingales (Luscinia luscinia) by examining their trajectories in terms of transitions in rhythm and pitch. These transitions show gradual escalations and graceful modifications, which are comparable to some aspects of human musicality. We then explore the feasibility of stripping such putative musical features from the songs and testing how this might affect patterns of auditory responses, focusing on fMRI data in songbirds that demonstrate the feasibility of such approaches. Finally, we explore ideas for investigating whether musical features of birdsong activate avian brains and affect avian behavior in manners comparable to music’s effects on humans. In conclusion, we suggest that birdsong research would benefit from current advances in music theory by attempting to identify structures that are designed to elicit listeners’ emotions and then testing for such effects experimentally. Birdsong research that takes into account the striking complexity of song structure in light of its more immediate function – to affect behavioral state in listeners – could provide a useful animal model for studying basic principles of music neuroscience in a system that is very accessible for investigation, and where developmental auditory and social experience can be tightly controlled. PMID:24036130

  16. STEM?!?!

    ERIC Educational Resources Information Center

    Merrill, Jen

    2012-01-01

    The author's son has been an engineer since birth. He never asked "why" as a toddler, it was always "how's it work?" So that he wanted a STEM-based home education was no big surprise. In this article, the author considers what kind of curricula would work best for her complex kid.

  17. Zoology: At Last an Exit for Ctenophores.

    PubMed

    Giribet, Gonzalo

    2016-10-24

    Ctenophores, one of the most basal branches in the tree of life, have been found to have a through-gut, complete with mouth and anus. Basal animals are surprisingly complex and simplification has been rampant in animal evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. When lending a hand depletes the will: The daily costs and benefits of helping.

    PubMed

    Lanaj, Klodiana; Johnson, Russell E; Wang, Mo

    2016-08-01

    Employees help on a regular daily basis while at work, yet surprisingly little is known about how responding to help requests affects helpers. Although recent theory suggests that helping may come at a cost to the helper, the majority of the helping literature has focused on the benefits of helping. The current study addresses the complex nature of helping by simultaneously considering its costs and benefits for helpers. Using daily diary data across 3 consecutive work weeks, we examine the relationship between responding to help requests, perceived prosocial impact of helping, and helpers' regulatory resources. We find that responding to help requests depletes regulatory resources at an increasing rate, yet perceived prosocial impact of helping can replenish resources. We also find that employees' prosocial motivation moderates these within-person relationships, such that prosocial employees are depleted to a larger extent by responding to help requests, and replenished to a lesser extent by the perceived prosocial impact of helping. Understanding the complex relationship of helping with regulatory resources is important because such resources have downstream effects on helpers' behavior in the workplace. We discuss the implications of our findings for both theory and practice. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Epilepsy, cognition, and neuropsychiatry (Epilepsy, Brain, and Mind, part 2)

    PubMed Central

    Korczyn, Amos D.; Schachter, Steven C.; Brodie, Martin J.; Dalal, Sarang S.; Engel, Jerome; Guekht, Alla; Hecimovic, Hrvoje; Jerbi, Karim; Kanner, Andres M.; Landmark, Cecilie Johannessen; Mares, Pavel; Marusic, Petr; Meletti, Stefano; Mula, Marco; Patsalos, Philip N.; Reuber, Markus; Ryvlin, Philippe; Štillová, Klára; Tuchman, Roberto; Rektor, Ivan

    2016-01-01

    Epilepsy is, of course, not one disease but rather a huge number of disorders that can present with seizures. In common, they all reflect brain dysfunction. Moreover, they can affect the mind and, of course, behavior. While animals too may suffer from epilepsy, as far as we know, the electrical discharges are less likely to affect the mind and behavior, which is not surprising. While the epileptic seizures themselves are episodic, the mental and behavioral changes continue, in many cases, interictally. The episodic mental and behavioral manifestations are more dramatic, while the interictal ones are easier to study with anatomical and functional studies. The following extended summaries complement those presented in Part 1. PMID:23764496

  20. A critical role of temporoparietal junction in the integration of top-down and bottom-up attentional control

    PubMed Central

    Wu, Qiong; Chang, Chi-Fu; Xi, Sisi; Huang, I-Wen; Liu, Zuxiang; Juan, Chi-Hung; Wu, Yanhong; Fan, Jin

    2015-01-01

    Information processing can be biased toward behaviorally relevant and salient stimuli by top-down (goal-directed) and bottom-up (stimulus-driven) attentional control processes. However, the neural basis underlying the integration of these processes is not well understood. We employed functional magnetic resonance imaging and transcranial direct-current stimulation (tDCS) in humans to examine the brain mechanisms underlying the interaction between these two processes. We manipulated the cognitive load involved in top-down processing and stimulus surprise involved in bottom-up processing in a factorial design by combining a majority function task and an oddball paradigm. We found that high cognitive load and high surprise level were associated with prolonged reaction time compared to low cognitive load and low surprise level, with a synergistic interaction effect which was accompanied by a greater deactivation of bilateral temporoparietal junction (TPJ). In addition, the TPJ displayed negative functional connectivity with right middle occipital gyrus involved in bottom-up processing (modulated by the interaction effect) and the right frontal eye field (FEF) involved in top-down control. The enhanced negative functional connectivity between the TPJ and right FEF was accompanied by a larger behavioral interaction effect across subjects. Application of cathodal tDCS over the right TPJ eliminated the interaction effect. These results suggest that the TPJ plays a critical role in processing bottom-up information for top-down control of attention. PMID:26308973

  1. Complex damage distribution behaviour in cobalt implanted rutile TiO2 (1 1 0) lattice

    NASA Astrophysics Data System (ADS)

    Joshi, Shalik Ram; Padmanabhan, B.; Chanda, Anupama; Ojha, Sunil; Kanjilal, D.; Varma, Shikha

    2017-11-01

    The present work investigates the radiation damage, amorphization and structural modifications that are produced by ion-solid interactions in TiO2 crystals during 200 keV Cobalt ion implantation. RBS/C and GIXRD have been utilized to evaluate the damage in the host lattice as a function of ion fluence. Multiple scattering formalism has been applied to extract the depth dependent damage distributions in TiO2(1 1 0). The results have been compared with the MC simulations performed using SRIM-2013. RBS/C results delineate a buried amorphous layer at a low fluence. Surprisingly, ion induced dynamic activation produces a recovery in this damage at higher fluences. This improvement interestingly occurs only in deep regions (60-300 nm) where a systematic lowering in damage with fluence is observed. Formation of Co-Ti-O phases and generation of stress in TiO2 lattice can also be responsible for this improvement in deep regions. In contrast, surface region (0-60 nm) indicates a gradual increase in damage with fluence. Such a switch in the damage behavior creates a cross point in damage profiles at 60 nm. Surface region is a sink of vacancies whereas deep layers are interstitial rich. However, these regions are far separated from each other resulting in an intermediate (100-150 nm) region with a significant dip (valley) in damage which can be characterized by enhanced recombination of point defects. The damage profiles thus indicate a very complex behavior. MC simulations, however, present very different results. They depict a damage profile that extends to a depth of only 150 nm, which is only about half of the damage- width observed here via RBS/C. Moreover, MC simulations do not indicate presence of any valley like structure in the damage profile. The complex nature of damage distribution observed here via RBS/C may be related to the high ionic nature of the chemical bonds in the TiO2 lattice.

  2. Slippery Wave Functions

    NASA Astrophysics Data System (ADS)

    Kadanoff, Leo P.

    2013-09-01

    Superfluids and superconductors show a very surprising behavior at low temperatures. As their temperature is reduced, materials of both kinds can abruptly fall into a state in which they will support a persistent, essentially immortal, flow of particles. Unlike anything in classical physics, these flows produce neither friction nor resistance. A major accomplishment of Twentieth Century physics was the development of an understanding of this very surprising behavior via the construction of partially microscopic and partially macroscopic quantum theories of superfluid helium and superconducting metals. Such theories come in two parts: a theory of the motion of particle-like excitations, called quasiparticles, and of the persistent flows itself via a huge coherent excitation, called a condensate. Two people, above all others, were responsible for the construction of the quasiparticle side of the theories of these very special low-temperature behaviors: Lev Landau and John Bardeen. Curiously enough they both partially ignored and partially downplayed the importance of the condensate. In both cases, this neglect of the actual superfluid or superconducting flow interfered with their ability to understand the implications of the theory they had created. They then had difficulty assessing the important advances that occurred immediately after their own great work. Some speculations are offered about the source of this unevenness in the judgments of these two leading scientists.

  3. Time-Resolved and Spatio-Temporal Analysis of Complex Cognitive Processes and their Role in Disorders like Developmental Dyscalculia

    PubMed Central

    Mórocz, István Akos; Janoos, Firdaus; van Gelderen, Peter; Manor, David; Karni, Avi; Breznitz, Zvia; von Aster, Michael; Kushnir, Tammar; Shalev, Ruth

    2012-01-01

    The aim of this article is to report on the importance and challenges of a time-resolved and spatio-temporal analysis of fMRI data from complex cognitive processes and associated disorders using a study on developmental dyscalculia (DD). Participants underwent fMRI while judging the incorrectness of multiplication results, and the data were analyzed using a sequence of methods, each of which progressively provided more a detailed picture of the spatio-temporal aspect of this disease. Healthy subjects and subjects with DD performed alike behaviorally though they exhibited parietal disparities using traditional voxel-based group analyses. Further and more detailed differences, however, surfaced with a time-resolved examination of the neural responses during the experiment. While performing inter-group comparisons, a third group of subjects with dyslexia (DL) but with no arithmetic difficulties was included to test the specificity of the analysis and strengthen the statistical base with overall fifty-eight subjects. Surprisingly, the analysis showed a functional dissimilarity during an initial reading phase for the group of dyslexic but otherwise normal subjects, with respect to controls, even though only numerical digits and no alphabetic characters were presented. Thus our results suggest that time-resolved multi-variate analysis of complex experimental paradigms has the ability to yield powerful new clinical insights about abnormal brain function. Similarly, a detailed compilation of aberrations in the functional cascade may have much greater potential to delineate the core processing problems in mental disorders. PMID:22368322

  4. Containment and Support: Core and Complexity in Spatial Language Learning

    ERIC Educational Resources Information Center

    Landau, Barbara; Johannes, Kristen; Skordos, Dimitrios; Papafragou, Anna

    2017-01-01

    Containment and support have traditionally been assumed to represent universal conceptual foundations for spatial terms. This assumption can be challenged, however: English "in" and "on" are applied across a surprisingly broad range of exemplars, and comparable terms in other languages show significant variation in their…

  5. Comprehensive machine learning analysis of Hydra behavior reveals a stable basal behavioral repertoire.

    PubMed

    Han, Shuting; Taralova, Ekaterina; Dupre, Christophe; Yuste, Rafael

    2018-03-28

    Animal behavior has been studied for centuries, but few efficient methods are available to automatically identify and classify it. Quantitative behavioral studies have been hindered by the subjective and imprecise nature of human observation, and the slow speed of annotating behavioral data. Here, we developed an automatic behavior analysis pipeline for the cnidarian Hydra vulgaris using machine learning. We imaged freely behaving Hydra , extracted motion and shape features from the videos, and constructed a dictionary of visual features to classify pre-defined behaviors. We also identified unannotated behaviors with unsupervised methods. Using this analysis pipeline, we quantified 6 basic behaviors and found surprisingly similar behavior statistics across animals within the same species, regardless of experimental conditions. Our analysis indicates that the fundamental behavioral repertoire of Hydra is stable. This robustness could reflect a homeostatic neural control of "housekeeping" behaviors which could have been already present in the earliest nervous systems. © 2018, Han et al.

  6. Evolution of radiation resistance in a complex microenvironment

    NASA Astrophysics Data System (ADS)

    Kim, So Hyun; Austin, Robert; Mehta, Monal; Kahn, Atif

    2013-03-01

    Radiation treatment responses in brain cancers are typically associated with short progression-free intervals in highly lethal malignancies such as glioblastomas. Even as patients routinely progress through second and third line salvage therapies, which are usually empirically selected, surprisingly little information exists on how cancer cells evolve resistance. We will present experimental results showing how in the presence of complex radiation gradients evolution of resistance to radiation occurs. Sponsored by the NCI/NIH Physical Sciences Oncology Centers

  7. Structural Studies of the pRB Tumor Suppressor Complexed with Human Papillomavirus E7 Proteins.

    DTIC Science & Technology

    1999-06-01

    HAT 1 (yeast histone acetyltransferase 1) and SmAAT ( Serratia marcescens aminoglycoside 3 N-acetyltransferase), implicates the mode of substrate...of PCAF appears to be similar for both free and nuclecsomal histories . Surprisingly, PCAF has also been reported to acetylate noa-histone substrates...FAX +44 1865 267798 OUP SMJ JNLS @009 Cd\\c> s Crystal structurt of th« PCAF-eoenzym« A complex B Fig. 4. Historie ncetyltransferwe active site

  8. From the Bottom-Up: Chemotherapy and Gut-Brain Axis Dysregulation.

    PubMed

    Bajic, Juliana E; Johnston, Ian N; Howarth, Gordon S; Hutchinson, Mark R

    2018-01-01

    The central nervous system and gastrointestinal tract form the primary targets of chemotherapy-induced toxicities. Symptoms associated with damage to these regions have been clinically termed chemotherapy-induced cognitive impairment and mucositis. Whilst extensive literature outlines the complex etiology of each pathology, to date neither chemotherapy-induced side-effect has considered the potential impact of one on the pathogenesis of the other disorder. This is surprising considering the close bidirectional relationship shared between each organ; the gut-brain axis. There are complex multiple pathways linking the gut to the brain and vice versa in both normal physiological function and disease. For instance, psychological and social factors influence motility and digestive function, symptom perception, and behaviors associated with illness and pathological outcomes. On the other hand, visceral pain affects central nociception pathways, mood and behavior. Recent interest highlights the influence of functional gut disorders, such as inflammatory bowel diseases and irritable bowel syndrome in the development of central comorbidities. Gut-brain axis dysfunction and microbiota dysbiosis have served as key portals in understanding the potential mechanisms associated with these functional gut disorders and their effects on cognition. In this review we will present the role gut-brain axis dysregulation plays in the chemotherapy setting, highlighting peripheral-to-central immune signaling mechanisms and their contribution to neuroimmunological changes associated with chemotherapy exposure. Here, we hypothesize that dysregulation of the gut-brain axis plays a major role in the intestinal, psychological and neurological complications following chemotherapy. We pay particular attention to evidence surrounding microbiota dysbiosis, the role of intestinal permeability, damage to nerves of the enteric and peripheral nervous systems and vagal and humoral mediated changes.

  9. A Common Core for Active Conceptual Modeling for Learning from Surprises

    NASA Astrophysics Data System (ADS)

    Liddle, Stephen W.; Embley, David W.

    The new field of active conceptual modeling for learning from surprises (ACM-L) may be helpful in preserving life, protecting property, and improving quality of life. The conceptual modeling community has developed sound theory and practices for conceptual modeling that, if properly applied, could help analysts model and predict more accurately. In particular, we need to associate more semantics with links, and we need fully reified high-level objects and relationships that have a clear, formal underlying semantics that follows a natural, ontological approach. We also need to capture more dynamic aspects in our conceptual models to more accurately model complex, dynamic systems. These concepts already exist, and the theory is well developed; what remains is to link them with the ideas needed to predict system evolution, thus enabling risk assessment and response planning. No single researcher or research group will be able to achieve this ambitious vision alone. As a starting point, we recommend that the nascent ACM-L community agree on a common core model that supports all aspects—static and dynamic—needed for active conceptual modeling in support of learning from surprises. A common core will more likely gain the traction needed to sustain the extended ACM-L research effort that will yield the advertised benefits of learning from surprises.

  10. Dealing With Unexpected Events on the Flight Deck: A Conceptual Model of Startle and Surprise

    PubMed Central

    Landman, Annemarie; Groen, Eric L.; van Paassen, M. M. (René); Bronkhorst, Adelbert W.; Mulder, Max

    2017-01-01

    Objective: A conceptual model is proposed in order to explain pilot performance in surprising and startling situations. Background: Today’s debate around loss of control following in-flight events and the implementation of upset prevention and recovery training has highlighted the importance of pilots’ ability to deal with unexpected events. Unexpected events, such as technical malfunctions or automation surprises, potentially induce a “startle factor” that may significantly impair performance. Method: Literature on surprise, startle, resilience, and decision making is reviewed, and findings are combined into a conceptual model. A number of recent flight incident and accident cases are then used to illustrate elements of the model. Results: Pilot perception and actions are conceptualized as being guided by “frames,” or mental knowledge structures that were previously learned. Performance issues in unexpected situations can often be traced back to insufficient adaptation of one’s frame to the situation. It is argued that such sensemaking or reframing processes are especially vulnerable to issues caused by startle or acute stress. Conclusion: Interventions should focus on (a) increasing the supply and quality of pilot frames (e.g., though practicing a variety of situations), (b) increasing pilot reframing skills (e.g., through the use of unpredictability in training scenarios), and (c) improving pilot metacognitive skills, so that inappropriate automatic responses to startle and surprise can be avoided. Application: The model can be used to explain pilot behavior in accident cases, to design experiments and training simulations, to teach pilots metacognitive skills, and to identify intervention methods. PMID:28777917

  11. The effect of emotionally valenced eye region images on visuocortical processing of surprised faces.

    PubMed

    Li, Shuaixia; Li, Ping; Wang, Wei; Zhu, Xiangru; Luo, Wenbo

    2018-05-01

    In this study, we presented pictorial representations of happy, neutral, and fearful expressions projected in the eye regions to determine whether the eye region alone is sufficient to produce a context effect. Participants were asked to judge the valence of surprised faces that had been preceded by a picture of an eye region. Behavioral results showed that affective ratings of surprised faces were context dependent. Prime-related ERPs with presentation of happy eyes elicited a larger P1 than those for neutral and fearful eyes, likely due to the recognition advantage provided by a happy expression. Target-related ERPs showed that surprised faces in the context of fearful and happy eyes elicited dramatically larger C1 than those in the neutral context, which reflected the modulation by predictions during the earliest stages of face processing. There were larger N170 with neutral and fearful eye contexts compared to the happy context, suggesting faces were being integrated with contextual threat information. The P3 component exhibited enhanced brain activity in response to faces preceded by happy and fearful eyes compared with neutral eyes, indicating motivated attention processing may be involved at this stage. Altogether, these results indicate for the first time that the influence of isolated eye regions on the perception of surprised faces involves preferential processing at the early stages and elaborate processing at the late stages. Moreover, higher cognitive processes such as predictions and attention can modulate face processing from the earliest stages in a top-down manner. © 2017 Society for Psychophysiological Research.

  12. Sea gulls, butterflies, and grasshoppers: A brief history of the butterfly effect in nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Hilborn, Robert C.

    2004-04-01

    The butterfly effect has become a popular metaphor for sensitive dependence on initial conditions—the hallmark of chaotic behavior. I describe how, where, and when this term was conceived in the 1970s. Surprisingly, the butterfly metaphor was predated by more than 70 years by the grasshopper effect.

  13. Rethinking Leisure Services in an Aging Population.

    ERIC Educational Resources Information Center

    Godbey, Geoffrey; And Others

    1982-01-01

    A survey examined fear of crime among an elderly population as it related to leisure behavior and the use of public recreation facilities. Response to the survey showed that, although the elderly population was surprisingly mobile, reasons preventing respondents from using parks and senior centers included: lack of interest, fear of crime, health,…

  14. 3 Crucial Behaviors for Successfully Leading Innovation. White Paper

    ERIC Educational Resources Information Center

    Mitchell, Michael T.

    2017-01-01

    Does innovation matter? In a 2015 survey, the authors asked the Center for Creative Leadership (CCL®) clients about innovation. Not surprisingly, nearly all of them--94%--said that innovation is important. People are living in a time when technology is advancing at a blistering pace, creating new possibilities for individuals and organizations…

  15. Foster Children with Disabilities

    ERIC Educational Resources Information Center

    Waldman, H. Barry; Perlman, Steven P.; Lederman, Cindy S.

    2007-01-01

    Children and youth in foster care are a vulnerable population. They are at risk for abuse, neglect, and permanent separation from birth parents and have a greater incidence of emotional and behavioral difficulties. This is not surprising because these children are abused, neglected, or abandoned by the very people who are supposed to love and care…

  16. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    ERIC Educational Resources Information Center

    Lumetta, Gregg J.; Arcia, Edgar

    2016-01-01

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as…

  17. The Intergenerational Transmission of Low Self-Control

    ERIC Educational Resources Information Center

    Boutwell, Brian B.; Beaver, Kevin M.

    2010-01-01

    There is a vast line of literature showing that antisocial behaviors and personality traits are transmitted across generational lines. Given the ascendancy of Gottfredson and Hirschi's general theory of crime, it is somewhat surprising that no research has examined whether levels of self-control are passed from parent to child. The authors examine…

  18. Community and Campus Crime: A Geospatial Examination of the Clery Act

    ERIC Educational Resources Information Center

    Nobles, Matt R.; Fox, Kathleen A.; Khey, David N.; Lizotte, Alan J.

    2013-01-01

    Despite the provisions of the Clery Act, which requires institutional reporting of crime on college campuses, patterns of campus crime have received surprisingly little research attention to date. Furthermore, few studies have described the extent to which college students engage in criminal behaviors. This study examines the criminality of…

  19. When Child Development Meets Economic Game Theory: An Interdisciplinary Approach to Investigating Social Development

    ERIC Educational Resources Information Center

    Gummerum, Michaela; Hanoch, Yaniv; Keller, Monika

    2008-01-01

    Game theory has been one of the most prominent theories in the social sciences, influencing diverse academic disciplines such as anthropology, biology, economics, and political science. In recent years, economists have employed game theory to investigate behaviors relating to fairness, reciprocity, and trust. Surprisingly, this research has not…

  20. James Madison's Practical Ideals for the 1990s.

    ERIC Educational Resources Information Center

    Delattre, Edwin J.

    This paper examines recent behavior of public officials at various levels of government in the United States, finds a systemic failure to meet ethical standards, and concludes that the wisdom of James Madison has much applicability to current times. Given his keen perception of human nature, Madison would not be too surprised at today's poor…

  1. Adaptive Controller Effects on Pilot Behavior

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2014-01-01

    Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.

  2. Do work relationships matter? Characteristics of workplace interactions that enhance or detract from employee perceptions of well-being and health behaviors.

    PubMed

    Mastroianni, Karen; Storberg-Walker, Julia

    2014-01-01

    This qualitative case study adopted the position that health and health behaviors are complex social constructs influenced by multiple factors. Framed by the social ecological model, the study explored how work interactions enhanced or detracted from the perceptions of well-being and health behaviors. Despite the fact that previous studies indicated that the social workplace environment contributed to employee health, there was little information regarding the characteristics. Specifically, little was known about how employees perceived the connections between workplace interactions and health, or how social interactions enhanced or detracted from well-being and health behaviors. The participants included 19 volunteers recruited from four companies, who shared their experiences of workplace interactions through interviews and journaling assignments. The findings indicated that feelings of well-being were enhanced by work interactions, which were trusting, collaborative, and positive, as well as when participants felt valued and respected. The study also found that interactions detracted from well-being and health behaviors when interactions lacked the aforementioned characteristics, and also included lack of justice and empathy. The enhancing and detracting relationships generated physical symptoms, and influenced sleeping and eating patterns, socializing, exercise, personal relations, careers, and energy. Surprisingly, the study found that regardless of how broadly participants defined health, when they were asked to rate their health, participants uniformly rated theirs on physical attributes alone. The exclusive consideration of physical attributes suggests that participants may have unconsciously adopted the typical western medical view of health - an individually determined and physiologic characteristic. Despite research suggesting health is more than biology, and despite defining health broadly, participants uniformly adopted this traditional view. The study also offers human resource development professionals with evidence supporting interventions aimed at minimizing workplace incivility. Interventions designed to improve employee engagement could minimize financial and human costs of negative interactions. The bottom line is that workplaces should be physically, emotionally, and psychologically safe for well-being and healthy behaviors to flourish.

  3. Do work relationships matter? Characteristics of workplace interactions that enhance or detract from employee perceptions of well-being and health behaviors

    PubMed Central

    Mastroianni, Karen; Storberg-Walker, Julia

    2014-01-01

    This qualitative case study adopted the position that health and health behaviors are complex social constructs influenced by multiple factors. Framed by the social ecological model, the study explored how work interactions enhanced or detracted from the perceptions of well-being and health behaviors. Despite the fact that previous studies indicated that the social workplace environment contributed to employee health, there was little information regarding the characteristics. Specifically, little was known about how employees perceived the connections between workplace interactions and health, or how social interactions enhanced or detracted from well-being and health behaviors. The participants included 19 volunteers recruited from four companies, who shared their experiences of workplace interactions through interviews and journaling assignments. The findings indicated that feelings of well-being were enhanced by work interactions, which were trusting, collaborative, and positive, as well as when participants felt valued and respected. The study also found that interactions detracted from well-being and health behaviors when interactions lacked the aforementioned characteristics, and also included lack of justice and empathy. The enhancing and detracting relationships generated physical symptoms, and influenced sleeping and eating patterns, socializing, exercise, personal relations, careers, and energy. Surprisingly, the study found that regardless of how broadly participants defined health, when they were asked to rate their health, participants uniformly rated theirs on physical attributes alone. The exclusive consideration of physical attributes suggests that participants may have unconsciously adopted the typical western medical view of health – an individually determined and physiologic characteristic. Despite research suggesting health is more than biology, and despite defining health broadly, participants uniformly adopted this traditional view. The study also offers human resource development professionals with evidence supporting interventions aimed at minimizing workplace incivility. Interventions designed to improve employee engagement could minimize financial and human costs of negative interactions. The bottom line is that workplaces should be physically, emotionally, and psychologically safe for well-being and healthy behaviors to flourish. PMID:25750820

  4. Ameloblastic fibroodontoma or complex odontoma: Two faces of the same coin

    PubMed Central

    Singh, Akhilesh Kumar; Kar, Indu Bhusan; Mishra, Niranjan; Sharma, Parikshit

    2016-01-01

    An ameloblastic fibroodontoma (AFO) is a rare odontogenic tumor of mixed dental tissue origin. It exhibits histological features of ameloblastic fibroma and complex odontoma. AFOs are usually found to be asymptomatic and are most often discovered on routine radiography. Sometimes their presence is suspected due to missing permanent dentition. We report a case of an 18-year-old female patient with missing mandibular molars on the left side associated with a giant complex odontoma. Treatment included surgical excision of the tumor followed by reconstruction with iliac crest graft. Histopathological study revealed it as an AFO, to our surprise. PMID:28163488

  5. Fe-Catalyzed Cycloisomerization of Aryl Allenyl Ketones: Access to 3-Arylidene-indan-1-ones.

    PubMed

    Teske, Johannes; Plietker, Bernd

    2018-04-20

    A cycloisomerization of aryl allenyl ketones to 3-arylidene-indan-1-ones using a cationic Fe-complex as a catalyst is reported. The catalyst opens a synthetically interesting reaction pathway to this surprisingly underrepresented class of indanones that are not accessible using alternative catalytic systems.

  6. Computational Thinking in the Wild: Uncovering Complex Collaborative Thinking through Gameplay

    ERIC Educational Resources Information Center

    Berland, Matthew; Duncan, Sean

    2016-01-01

    Surprisingly few empirical studies address how computational thinking works "in the wild" or how games and simulations can support developing computational thinking skills. In this article, the authors report results from a study of computational thinking (CT) as evinced through player discussions around the collaborative board game…

  7. Chinese Summer Schools Sell Quick Credits

    ERIC Educational Resources Information Center

    McMurtrie, Beth; Farrar, Lara

    2013-01-01

    American-style summer programs in China, catering to Chinese-born students, have taken American universities by surprise. They are yet one more player in the complex and often opaque Chinese education industry, an industry in which American colleges are finding themselves increasingly entwined. These programs have become a booming enterprise,…

  8. The Science of Green

    ERIC Educational Resources Information Center

    Cekauskas, Raymond; Hartmann, Mark

    2009-01-01

    When one considers the enormous cost of science laboratory buildings, it is no surprise that the stream of environmental consciousness that has swept through campuses has had a profound effect on the design and engineering of these complex buildings. Advancing technologies, government regulations and rising energy costs all are driving the push to…

  9. Synthesis, Crystal Structures, Magnetic Properties, and Theoretical Investigation of a New Series of NiII-LnIII-WV Heterotrimetallics: Understanding the SMM Behavior of Mixed Polynuclear Complexes.

    PubMed

    Vieru, Veacheslav; Pasatoiu, Traian D; Ungur, Liviu; Suturina, Elizaveta; Madalan, Augustin M; Duhayon, Carine; Sutter, Jean-Pascal; Andruh, Marius; Chibotaru, Liviu F

    2016-12-05

    The polynuclear compounds containing anisotropic metal ions often exhibit efficient barriers for blocking of magnetization at fairly arbitrary geometries. However, at variance with mononuclear complexes, which usually become single-molecule magnets (SMM) under the sole requirement of a highly axial crystal field at the metal ion, the factors influencing the SMM behavior in polynuclear complexes, especially, with weakly axial magnetic ions, still remain largely unrevealed. As an attempt to clarify these conditions, we present here the synthesis, crystal structures, magnetic behavior, and ab initio calculations for a new series of Ni II -Ln III -W V trimetallics, [(CN) 7 W(CN)Ni(H 2 O)(valpn)Ln(H 2 O) 4 ]·H 2 O (Ln = Y 1, Eu 2, Gd 3, Tb 4, Dy 5, Lu 6). The surprising finding is the absence of the magnetic blockage even for compounds involving strongly anisotropic Dy III and Tb III metal ions. This is well explained by ab initio calculations showing relatively large transversal components of the g-tensor in the ground exchange Kramers doublets of 1 and 4 and large intrinsic tunneling gaps in the ground exchange doublets of 3 and 5. In order to get more insight into this behavior, another series of earlier reported compounds with the same trinuclear [W V Ni II Ln III ] core structure, [(CN) 7 W(CN)Ni(dmf)(valdmpn)Ln(dmf) 4 ]·H 2 O (Ln = Gd III 7, Tb III 8a, Dy III 9, Ho III 10), [(CN) 7 W(CN)Ni(H 2 O)(valdmpn)Tb(dmf) 2.5 (H 2 O) 1.5 ]·H 2 O·0.5dmf 8b, and [(CN) 7 W(CN)Ni(H 2 O)(valdmpn)Er(dmf) 3 (H 2 O) 1 ]·H 2 O·0.5dmf 11, has been also investigated theoretically. In this series, only 8b exhibits SMM behavior which is confirmed by the present ab initio calculations. An important feature for the entire series is the strong ferromagnetic coupling between Ni(II) and W(V), which is due to an almost perfect trigonal dodecahedron geometry of the octacyano wolframate fragment. The reason why only 8b is an SMM is explained by positive zero-field splitting on the nickel site, precluding magnetization blocking in complexes with fewer axial Ln ions. Further analysis has shown that, in the absence of ZFS on Ni ion, all compounds in the two series (except those containing Y and Gd) would be SMMs. The same situation arises for perfectly axial ZFS on Ni(II) with the main anisotropy axis parallel to the main magnetic axis of Ln(III) ions. In all other cases the ZFS on Ni(II) will worsen the SMM properties. The general conclusion is that the design of efficient SMMs on the basis of such complexes should involve isotropic or weekly anisotropic metal ions, such as Mn(II), Fe(III), etc., along with strongly axial lanthanides.

  10. The physics of 2 ≠ 1 + 1

    NASA Astrophysics Data System (ADS)

    Shih, Yanhua

    2007-06-01

    One of the most surprising consequences of quantum mechanics is the entanglement of two or more distant particles. In an entangled EPR two-particle system, the value of the momentum (position) for neither single subsystem is determined. However, if one of the subsystems is measured to have a certain momentum (position), the other subsystem is determined to have a unique corresponding value, despite the distance between them. This peculiar behavior of an entangled quantum system has surprisingly been observed experimentally in two-photon temporal and spatial correlation measurements, such as “ghost” interference and “ghost” imaging. This article addresses the fundamental concerns behind these experimental observations and to explore the nonclassical nature of two-photon superposition by emphasizing the physics of 2 ≠ 1 + 1.

  11. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand

    PubMed Central

    2013-01-01

    Physiological resistance and behavioral responses of mosquito vectors to insecticides are critical aspects of the chemical-based disease control equation. The complex interaction between lethal, sub-lethal and excitation/repellent ('excito-repellent’) properties of chemicals is typically overlooked in vector management and control programs. The development of “physiological” resistance, metabolic and/or target site modifications, to insecticides has been well documented in many insect groups and disease vectors around the world. In Thailand, resistance in many mosquito populations has developed to all three classes of insecticidal active ingredients currently used for vector control with a majority being synthetic-derived pyrethroids. Evidence of low-grade insecticide resistance requires immediate countermeasures to mitigate further intensification and spread of the genetic mechanisms responsible for resistance. This can take the form of rotation of a different class of chemical, addition of a synergist, mixtures of chemicals or concurrent mosaic application of different classes of chemicals. From the gathered evidence, the distribution and degree of physiological resistance has been restricted in specific areas of Thailand in spite of long-term use of chemicals to control insect pests and disease vectors throughout the country. Most surprisingly, there have been no reported cases of pyrethroid resistance in anopheline populations in the country from 2000 to 2011. The precise reasons for this are unclear but we assume that behavioral avoidance to insecticides may play a significant role in reducing the selection pressure and thus occurrence and spread of insecticide resistance. The review herein provides information regarding the status of physiological resistance and behavioral avoidance of the primary mosquito vectors of human diseases to insecticides in Thailand from 2000 to 2011. PMID:24294938

  12. Investigation of Hydrological Response of Three Identical Artificial Hillslopes at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Matos, K.; Alves Meira Neto, A.; Troch, P. A. A.; Volkmann, T.

    2017-12-01

    Hydrological processes at the hillslope scale are complex and heterogeneous, but monitoring hillslopes with a large number of sensors or replicate experimental designs is rarely feasible. The Landscape Evolution Observatory (LEO) at Biosphere 2 consists of three replicated, large (330 m2) artificial hillslopes (East, Center and West) packed with 1-m depth of initially homogeneous, basaltic soil. Each landscape contains a spatially dense network of sensors capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture content and water potential, as well as the hillslope-integrated water balance components. A sophisticated irrigation system allows performing controlled forcing experiments. The three hillslopes are thought to be nearly identical, however recent data showed significant differences in discharge and storage behavior. A 45-day periodic-steady-state tracer experiment was conducted in November and December of 2016, where a 3.5-day long, identical irrigation sequence was repeated 15 times. Each sequence's rainfall, runoff, and storage dynamics were recorded, and distributed moisture characteristics were derived using paired moisture content and matric potential data from 496 positions in each hillslope. In order to understand why the three hillslopes behave hydrologically different, we analyzed soil water retention characteristics at various scales ranging from individually paired moisture and matric potential to whole-hillslope soil water retention characteristics. The results confirm the distinct hydrological behavior between the three hillslopes. The East and West hillslopes behave more similar with respect to the release of water. In contrast, the East and Center hillslopes are more similar with respect to their storage behavior. The differences in hillslope behavior arising from three identically built hillslopes are a surprising and beneficial opportunity to explore how differences in small-scale heterogeneity can impact hydrological dynamics at the hillslope scale.

  13. Complete or partial reduction of the Met receptor tyrosine kinase in distinct circuits differentially impacts mouse behavior.

    PubMed

    Thompson, Barbara L; Levitt, Pat

    2015-01-01

    Our laboratory discovered that the gene encoding the receptor tyrosine kinase, MET, contributes to autism risk. Expression of MET is reduced in human postmortem temporal lobe in autism and Rett Syndrome. Subsequent studies revealed a role for MET in human and mouse functional and structural cortical connectivity. To further understand the contribution of Met to brain development and its impact on behavior, we generated two conditional mouse lines in which Met is deleted from select populations of central nervous system neurons. Mice were then tested to determine the consequences of disrupting Met expression. Mating of Emx1 (cre) and Met (fx/fx) mice eliminates receptor signaling from all cells arising from the dorsal pallium. Met (fx/fx) and Nestin (cre) crosses result in receptor signaling elimination from all neural cells. Behavioral tests were performed to assess cognitive, emotional, and social impairments that are observed in multiple neurodevelopmental disorders and that are in part subserved by circuits that express Met. Met (fx/fx) /Emx1 (cre) null mice displayed significant hypoactivity in the activity chamber and in the T-maze despite superior performance on the rotarod. Additionally, these animals showed a deficit in spontaneous alternation. Surprisingly, Met (fx/fx; fx/+) /Nestin (cre) null and heterozygous mice exhibited deficits in contextual fear conditioning, and Met (fx/+) /Nestin (cre) heterozygous mice spent less time in the closed arms of the elevated plus maze. These data suggest a complex contribution of Met in the development of circuits mediating social, emotional, and cognitive behavior. The impact of disrupting developmental Met expression is dependent upon circuit-specific deletion patterns and levels of receptor activity.

  14. Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems.

    PubMed

    Everitt, B J; Parkinson, J A; Olmstead, M C; Arroyo, M; Robledo, P; Robbins, T W

    1999-06-29

    Only recently have the functional implications of the organization of the ventral striatum, amygdala, and related limbic-cortical structures, and their neuroanatomical interactions begun to be clarified. Processes of activation and reward have long been associated with the NAcc and its dopamine innervation, but the precise relationships between these constructs have remained elusive. We have sought to enrich our understanding of the special role of the ventral striatum in coordinating the contribution of different functional subsystems to confer flexibility, as well as coherence and vigor, to goal-directed behavior, through different forms of associative learning. Such appetitive behavior comprises many subcomponents, some of which we have isolated in these experiments to reveal that, not surprisingly, the mechanisms by which an animal sequences responding to reach a goal are complex. The data reveal how the different components, pavlovian approach (or sign-tracking), conditioned reinforcement (whereby pavlovian stimuli control goal-directed action), and also more general response-invigorating processes (often called "activation," "stress," or "drive") may be integrated within the ventral striatum through convergent interactions of the amygdala, other limbic cortical structures, and the mesolimbic dopamine system to produce coherent behavior. The position is probably not far different when considering aversively motivated behavior. Although it may be necessary to employ simplified, even abstract, paradigms for isolating these mechanisms, their concerted action can readily be appreciated in an adaptive, functional setting, such as the responding by rats for intravenous cocaine under a second-order schedule of reinforcement. Here, the interactions of primary reinforcement, psychomotor activation, pavlovian conditioning, and the control that drug cues exert over the integrated drug-seeking response can be seen to operate both serially and concurrently. The power of our analytic techniques for understanding complex motivated behavior has been evident for some time. However, the crucial point is that we are now able to map these components with increasing certainty onto discrete amygdaloid, and other limbic cortical-ventral striatal subsystems. The neural dissection of these mechanisms also serves an important theoretical purpose in helping to validate the various hypothetical constructs and further developing theory. Major challenges remain, not the least of which is an understanding of the operation of the ventral striatum together with its dopaminergic innervation and its interactions with the basolateral amygdala, hippocampal formation, and prefrontal cortex at a more mechanistic, neuronal level.

  15. Anatomy of a new B-cell-specific enhancer.

    PubMed Central

    Koch, W; Benoist, C; Mathis, D

    1989-01-01

    The major histocompatibility complex class II molecules, like the immunoglobulins, are prominent B-lymphocyte markers. Herein, we describe a B-cell-specific enhancer associated with the murine class II gene, Ek alpha. This enhancer has a complex anatomy that suggests interactions between remotely spaced elements. Of particular interest is the finding that two CCAAT boxes spaced one kilobase apart are important for enhancer activity. Somewhat surprisingly, the E alpha and immunoglobulin enhancers seem to show little resemblance. Images PMID:2467189

  16. Expectancy violations promote learning in young children

    PubMed Central

    Stahl, Aimee E.; Feigenson, Lisa

    2018-01-01

    Children, including infants, have expectations about the world around them, and produce reliable responses when these expectations are violated. However, little is known about how such expectancy violations affect subsequent cognition. Here we tested the hypothesis that violations of expectation enhance children’s learning. In four experiments we compared 3- to 6-year-old children’s ability to learn novel words in situations that defied versus accorded with their core knowledge of object behavior. In Experiments 1 and 2 we taught children novel words following one of two types of events. One event violated expectations about the spatiotemporal or featural properties of objects (e.g., an object appeared to magically change locations). The other event was almost identical, but did not violate expectations (e.g., an object was visibly moved from one location to another). In both experiments we found that children robustly learned when taught after the surprising event, but not following the expected event. In Experiment 3 we ruled out two alternative explanations for our results. Finally, in Experiment 4, we asked whether surprise affects children’s learning in a targeted or a diffuse way. We found that surprise only enhanced children’s learning about the entity that had behaved surprisingly, and not about unrelated objects. Together, these experiments show that core knowledge – and violations of expectations generated by core knowledge – shapes new learning. PMID:28254617

  17. The diversity effect of inductive reasoning under segment manipulation of complex cognition.

    PubMed

    Chen, Antao; Li, Hong; Feng, Tingyong; Gao, Xuemei; Zhang, Zhongming; Li, Fuhong; Yang, Dong

    2005-12-01

    The present study proposed the idea of segment manipulation of complex cognition (SMCC), and technically made it possible the quantitative treatment and systematical manipulation on the premise diversity. The segment manipulation of complex cognition divides the previous inductive strengths judgment task into three distinct steps, attempting to particularly distinguish the psychological processes and their rules. The results in Experiment 1 showed that compared with the traditional method, the quantitative treatment and systematical manipulation of SMCC on the diversity did not change the task's nature, and remain rational and a good measurement of inductive strength judgment. The results in Experiment 2 showed that the participants' response rules in the triple-step task were expected from our proposal, and that in Step 2 the "feeling of surprise" (FOS), which seems implausible but predicted from the diversity premises, was measured, and its component might be the critical part that produced the diversity effect. The "feeling of surprise" may reflect the impact of emotion on cognition, representing a strong revision to premise probability principle of pure rational hypothesis proposed by Lo et al., and its roles in the diversity effect are worthy of further research. In this regards were discussed the mistakes that the premise probability principle makes when it takes posterity probability as prior probability.

  18. Low latitude ionospheric TEC responses to dynamical complexity quantifiers during transient events over Nigeria

    NASA Astrophysics Data System (ADS)

    Ogunsua, Babalola

    2018-04-01

    In this study, the values of chaoticity and dynamical complexity parameters for some selected storm periods in the year 2011 and 2012 have been computed. This was done using detrended TEC data sets measured from Birnin-Kebbi, Torro and Enugu global positioning system (GPS) receiver stations in Nigeria. It was observed that the significance of difference (SD) values were mostly greater than 1.96 but surprisingly lower than 1.96 in September 29, 2011. The values of the computed SD were also found to be reduced in most cases just after the geomagnetic storm with immediate recovery a day after the main phase of the storm while the values of Lyapunov exponent and Tsallis entropy remains reduced due to the influence of geomagnetic storms. It was also observed that the value of Lyapunov exponent and Tsallis entropy reveals similar variation pattern during storm period in most cases. Also recorded surprisingly were lower values of these dynamical quantifiers during the solar flare event of August 8th and 9th of the year 2011. The possible mechanisms responsible for these observations were further discussed in this work. However, our observations show that the ionospheric effects of some other possible transient events other than geomagnetic storms can also be revealed by the variation of chaoticity and dynamical complexity.

  19. PKA modulation of Kv4.2-encoded A-type potassium channels requires formation of a supramolecular complex.

    PubMed

    Schrader, Laura A; Anderson, Anne E; Mayne, Amber; Pfaffinger, Paul J; Sweatt, John David

    2002-12-01

    A-type channels, encoded by the pore-forming alpha-subunits of the Kv4.x family, are particularly important in regulating membrane excitability in the CNS and the heart. Given the key role of modulation of A currents by kinases, we sought to investigate the protein structure-function relationships underlying the regulation of these currents by PKA. We have previously shown the existence of two PKA phosphorylation sites in the Kv4.2 sequence; therefore, we focused this study on the Kv4.2 primary subunit. In the present studies we made the surprising finding that PKA phosphorylation of the Kv4.2 alpha-subunit is necessary but not sufficient for channel modulation; channel modulation by PKA required the presence of an ancillary subunit, the K+ channel interacting protein (KChIP3). Therefore, these findings indicate a surprising complexity to kinase regulation of A currents, in that an interaction of two separate molecular events, alpha-subunit phosphorylation and the association of an ancillary subunit (KChIP3), are necessary for phosphorylation-dependent regulation of Kv4.2-encoded A channels by PKA. Overall, our studies indicate that PKA must of necessity act on a supramolecular complex of pore-forming alpha-subunits plus ancillary subunits to alter channel properties.

  20. High resolution study of magnetic ordering at absolute zero.

    PubMed

    Lee, M; Husmann, A; Rosenbaum, T F; Aeppli, G

    2004-05-07

    High resolution pressure measurements in the zero-temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the precision that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.

  1. Effects of Task Complexity on L2 Writing Behaviors and Linguistic Complexity

    ERIC Educational Resources Information Center

    Révész, Andrea; Kourtali, Nektaria-Efstathia; Mazgutova, Diana

    2017-01-01

    This study investigated whether task complexity influences second language (L2) writers' fluency, pausing, and revision behaviors and the cognitive processes underlying these behaviors; whether task complexity affects linguistic complexity of written output; and whether relationships between writing behaviors and linguistic complexity are…

  2. Framework of collagen type I - vasoactive vessels structuring invariant geometric attractor in cancer tissues: insight into biological magnetic field.

    PubMed

    Díaz, Jairo A; Murillo, Mauricio F; Jaramillo, Natalia A

    2009-01-01

    In a previous research, we have described and documented self-assembly of geometric triangular chiral hexagon crystal-like complex organizations (GTCHC) in human pathological tissues. This article documents and gathers insights into the magnetic field in cancer tissues and also how it generates an invariant functional geometric attractor constituted for collider partners in their entangled environment. The need to identify this hierarquic attractor was born out of the concern to understand how the vascular net of these complexes are organized, and to determine if the spiral vascular subpatterns observed adjacent to GTCHC complexes and their assembly are interrelational. The study focuses on cancer tissues and all the macroscopic and microscopic material in which GTCHC complexes are identified, which have been overlooked so far, and are rigorously revised. This revision follows the same parameters that were established in the initial phase of the investigation, but with a new item: the visualization and documentation of external dorsal serous vascular bed areas in spatial correlation with the localization of GTCHC complexes inside the tumors. Following the standard of the electro-optical collision model, we were able to reproduce and replicate collider patterns, that is, pairs of left and right hand spin-spiraled subpatterns, associated with the orientation of the spinning process that can be an expansion or contraction disposition of light particles. Agreement between this model and tumor data is surprisingly close; electromagnetic spiral patterns generated were identical at the spiral vascular arrangement in connection with GTCHC complexes in malignant tumors. These findings suggest that the framework of collagen type 1 - vasoactive vessels that structure geometric attractors in cancer tissues with invariant morphology sets generate collider partners in their magnetic domain with opposite biological behavior. If these principles are incorporated into nanomaterial, biomedical devices, and engineered tissues, new therapeutic strategies could be developed for cancer treatment.

  3. Phase Transitions in Model Active Systems

    NASA Astrophysics Data System (ADS)

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these materials, leading to beautiful and surprising behaviors including the spontaneous generation of topological defect pairs which stream through the system and later annihilate, yielding a complex, seemingly chaotic dynamical steady-state. Here, we describe the emergence of order from this chaos in the form of previously unknown broken-symmetry phases in which the topological defects themselves undergo orientational ordering. We have identified these defect-ordered phases in two realizations of an active nematic: first, a suspension of extensile bundles of microtubules and molecular motor proteins, and second, a computational model of extending hard rods. We will describe the defect-stabilized phases that manifest in these systems, our current understanding of their origins, and discuss whether such phases may be a general feature of extensile active nematics.

  4. Evaluating the Impact of Intimate Partner Violence on the Perpetrator: The Perceived Consequences of Domestic Violence Questionnaire

    ERIC Educational Resources Information Center

    Walker, Denise D.; Neighbors, Clayton; Mbilinyi, Lyungai F.; O'Rourke, Allison; Zegree, Joan; Roffman, Roger A.; Edleson, Jeffrey L.

    2010-01-01

    Surprisingly, little is known about how IPV perpetrators perceive the consequences of their violent behavior. This article describes the development and evaluation of the Perceived Consequences of Domestic Violence Questionnaire (PCDVQ). The PCDVQ is a 27 item self report instrument designed to assess the consequences of intimate partner violence…

  5. Use of Laboratory Animals in Biomedical and Behavioral Research.

    ERIC Educational Resources Information Center

    Ministry of Education, Addis Ababa (Ethiopia).

    The use of animals in scientific research has been a controversial issue for over a hundred years. Research with animals has saved human lives, lessened human suffering, and advanced scientific understanding, yet that same research can cause pain and distress for the animals involved and may result in their death. It is hardly surprising that…

  6. Cyber-Bullying in the Online Classroom: Instructor Perceptions of Aggressive Student Behavior

    ERIC Educational Resources Information Center

    Eskey, Michael T.; Taylor, Cathy L.; Eskey, Michael T., Jr.

    2014-01-01

    The advent of online learning has created the medium for cyber-bullying in the virtual classroom and also by e-mail. Bullying is usually expected in the workplace and between students in the classroom. Most recently, however, faculty members have become surprising targets of online bullying. For many, there are no established policies nor is…

  7. Increased Eye Contact during Conversation Compared to Play in Children with Autism

    ERIC Educational Resources Information Center

    Jones, Rebecca M.; Southerland, Audrey; Hamo, Amarelle; Carberry, Caroline; Bridges, Chanel; Nay, Sarah; Stubbs, Elizabeth; Komarow, Emily; Washington, Clay; Rehg, James M.; Lord, Catherine; Rozga, Agata

    2017-01-01

    Children with autism have atypical gaze behavior but it is unknown whether gaze differs during distinct types of reciprocal interactions. Typically developing children (N = 20) and children with autism (N = 20) (4-13 years) made similar amounts of eye contact with an examiner during a conversation. Surprisingly, there was minimal eye contact…

  8. Integrating the Study of Conformity and Culture in Humans and Nonhuman Animals

    ERIC Educational Resources Information Center

    Claidiere, Nicolas; Whiten, Andrew

    2012-01-01

    Conformity--defined here by the fact that an individual displays a particular behavior because it is the most frequent the individual witnessed in others--has long been recognized by social psychologists as one of the main categories of social influence. Surprisingly, it is only recently that conformity has become an active topic in animal and…

  9. Reversible Ligand Binding Reactions: Why Do Biochemistry Students Have Trouble Connecting the Dots?

    ERIC Educational Resources Information Center

    Sears, Duane W.; Thompson, Scott E.; Saxon, S. Robin

    2007-01-01

    Adaptive chemical behavior is essential for an organism's function and survival, and it is no surprise that biological systems are capable of responding both rapidly and selectively to chemical changes in the environment. To elucidate an organism's biochemistry, its chemical reactions need to be characterized in ways that reflect the normal…

  10. Encouraging Future Helping Behaviors: The Role of Student-Faculty Relationships in Higher Education Marketing

    ERIC Educational Resources Information Center

    Arnett, Dennis B.; Wittmann, C. Michael; Wilson, Bennie J., III

    2003-01-01

    Extant literature on relationship marketing tends to focus on for-profit firms and their relationships with important stakeholders. However, higher education institutions face many of the same intense competitive forces that have made relationship marketing a practical choice for many for-profit firms. Therefore, it is not surprising that many are…

  11. A Multinomial Logit Model of Attrition that Distinguishes between Stopout and Dropout Behavior

    ERIC Educational Resources Information Center

    Stratton, Leslie S.; O'Toole, Dennis M.; Wetzel, James N.

    2004-01-01

    College attrition rates are of substantial concern to policy makers and economists interested in educational attainment and earnings opportunities. This is not surprising since nationwide, almost one-third of all first-time college students fail to return for their sophomore year. There exists a substantial body of literature seeking to model this…

  12. Persistent Complications of Child Sexual Abuse: Sexually Compulsive Behaviors, Attachment, and Emotions.

    PubMed

    Meyer, Dixie; Cohn, Aaron; Robinson, Brittany; Muse, Fatima; Hughes, Rachel

    2017-01-01

    Child sexual abuse has the potential to cause distress for the victim across the lifespan. Romantic relationships may be particularly difficult for victims of child sexual abuse. This retrospective study examined differences in adult romantic attachment, sexually compulsive behaviors, and emotion regulation by history of child sexual abuse in a large, nonclinical sample. Those with a history of child sexual abuse reported more attachment anxiety in romantic relationships and engaged in more sexually compulsive behaviors. Overall, males displayed more sexually compulsive behaviors than females regardless of history of sexual abuse. Males with a history of sexual abuse displayed the greatest number of sexually compulsive behaviors. Surprisingly, no differences were observed in emotion regulation or attachment avoidant behaviors by history of child sexual abuse. Future research should seek to replicate current findings and examine emotion regulation difficulties experienced as a result of trauma.

  13. Fluid-injection and the mechanics of frictional stability of shale-bearing faults

    NASA Astrophysics Data System (ADS)

    Scuderi, Marco Maria; Collettini, Cristiano; Marone, Chris

    2017-04-01

    Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. However, current models of earthquake nucleation, based on rate- and state- friction, imply that stable sliding is favored by the increase of pore fluid pressure. Despite this apparent dilemma, there are a few studies on the role of fluid pressure in frictional stability under controlled, laboratory conditions. Here, we describe laboratory experiments on shale fault gouge, conducted in the double direct shear configuration in a true-triaxial machine. To characterize frictional stability and hydrological properties we performed three types of experiments: 1) stable sliding shear experiment to determine the material failure envelope resulting in fault strength of µ=0.28 and fault zone permeability (k 10-19m2); 2) velocity step experiments to determine the rate- and state- frictional properties, characterized by a velocity strengthening behavior with a negative rate parameter b, indicative of stable aseismic creep; 3) creep experiment to study fault slip evolution with increasing pore-fluid pressure. In these creep experiments fault slip history can be divided in three main stages: a) for low fluid pressure the fault is locked and undergoes compaction; b) with increasing fluid pressurization, we observe aseismic creep (i.e. v=0.0001 µm/s) associated with fault dilation, with maintained low permeability; c) As fluid pressure is further increased and we approach the failure criteria fault begins to accelerate, the dilation rate increases causing an increase in permeability. Following the first acceleration we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Surprisingly, this complex slip behavior is associated with fault zone compaction and permeability increase as opposite to the dilation hardening mechanism that is usually invoked to quench the instability. We relate this complex fault slip behaviour to the interplay between fault weakening induced by fluid pressurization and the strong rate-strengthening behaviour of shales. Our data show that fault rheology and fault stability is controlled by the coupling between fluid pressure and rate- and state- friction parameters suggesting that their comprehensive characterization is fundamental for assessing the role of fluid pressure in natural and human induced earthquakes.

  14. GiveMe Shelter: A People-Centred Design Process for Promoting Independent Inquiry-Led Learning in Engineering

    ERIC Educational Resources Information Center

    Dyer, Mark; Grey, Thomas; Kinnane, Oliver

    2017-01-01

    It has become increasingly common for tasks traditionally carried out by engineers to be undertaken by technicians and technologist with access to sophisticated computers and software that can often perform complex calculations that were previously the responsibility of engineers. Not surprisingly, this development raises serious questions about…

  15. Kinase cogs go forward and reverse in the Wnt signaling machine.

    PubMed

    Dale, Trevor

    2006-01-01

    An important link between Wnt binding at the cell surface and nuclear -catenin-TCF-dependent transcription has been made with the identification of kinases that promote the association of the Wnt receptor and -catenin turnover complexes. Surprisingly, the enzymes implicated had previously been suggested to inhibit rather than promote Wnt signaling.

  16. The Elements of Play: Toward a Philosophy and a Definition of Play

    ERIC Educational Resources Information Center

    Eberle, Scott G.

    2014-01-01

    Scholars conventionally find play difficult to define because the concept is complex and ambiguous. The author proffers a definition of play that takes into consideration its dynamic character, posits six basic elements of play (anticipation, surprise, pleasure, understanding, strength, and poise), and explores some of their emotional, physical,…

  17. TEMPERATURE SENSITIVITY OF SOIL RESPIRATION AND ITS EFFECTS ON ECOSYSTEM CARBON BUDGET: NONLINEARITY BEGETS SURPRISES. (R827676)

    EPA Science Inventory

    Nonlinearity is a salient feature in all complex systems, and it certainly characterizes biogeochemical cycles in ecosystems across a wide range of scales. Soil carbon emission is a major source of uncertainty in estimating the terrestrial carbon budget at the ecosystem level ...

  18. New England Colleges under Stress: Presidential Voices from the Region's Smaller Colleges

    ERIC Educational Resources Information Center

    Halfond, Jay A.; Stokes, Peter

    2013-01-01

    Shifting demography, rising operating expenses, plummeting state and federal support, intensified competition, broken financial models… these are just a few of the complex challenges facing New England higher education institutions. Given these tensions, who would be surprised if college presidents in the region weren't occasionally plagued by…

  19. Developmental Disorders of Language and Literacy: Special Issue

    ERIC Educational Resources Information Center

    Marshall, Chloe R.; Messaoud-Galusi, Souhila

    2010-01-01

    Language and literacy are cognitive skills of exceptional complexity. It is therefore not surprising that they are at risk of impairment either during development or as a result of damage (e.g. stroke) later in life. Impaired language and literacy can arise from a general learning impairment. However, two developmental disorders, specific language…

  20. Playing with Liquid Foams: Learning Physical Chemistry

    ERIC Educational Resources Information Center

    Ritacco, Hernan

    2008-01-01

    Who has never played with soap bubbles? They are so beautiful and amazing, they have a perfect spherical shape and surprising tints. Foams are structures of bubbles of an incredible complexity and they are a perfect system to stimulate students' interest in the chemistry and physics of surface phenomena. In this article I propose a simple…

  1. Science Education in a Secular Age

    ERIC Educational Resources Information Center

    Long, David E.

    2013-01-01

    A college science education instructor tells his students he rejects evolution. What should we think? The scene unfolds in one of the largest urban centers in the world. If we are surprised, why? Expanding on Federica Raia's (2012) first-hand experience with this scenario, I broaden her discussion by considering the complexity of science education…

  2. Cross-system comparisons elucidate disturbance complexities and generalities

    Treesearch

    Debra P.C. Peters; Ariel E. Lugo; F. Stuart Chapin; Steward T.A. Pickett; Michael Duniway; Adrian V. Rocha; Frederick J. Swanson; Christine Laney; Julia Jones

    2011-01-01

    Given that ecological effects of disturbance have been extensively studied in many ecosystems, it is surprising that few quantitative syntheses across diverse ecosystems have been conducted. Multi-system studies tend to be qualitative because they focus on disturbance types that are difficult to measure in an ecologically relevant way. In addition, synthesis of...

  3. A re-examination of the pollinator crisis.

    PubMed

    Martin, Cyrus

    2015-10-05

    Reports of colony collapse disorder in bees and studies showing the toxicity of neonicotinoid pesticides have led to claims that we are experiencing a pollinator crisis. As Cyrus Martin reports, however, the issue is complex with threats to bees being multifold and the status of populations unclear due to a surprising lack of data.

  4. Fresnel diffractograms from pure-phase wave fields under perfect spatio-temporal coherence: Non-linear/non-local aspects and far-field behavior.

    PubMed

    Trost, F; Hahn, S; Müller, Y; Gasilov, S; Hofmann, R; Baumbach, T

    2017-12-18

    Recently, the diffractogram, that is, the Fourier transform of the intensity contrast induced by Fresnel free-space propagation of a given (exit) wave field, was investigated non-perturbatively in the phase-scaling factor S (controlling the strength of phase variation) for the special case of a Gaussian phase of width [Formula: see text]. Surprisingly, an additional low-frequency zero σ *  = σ * (S, F) >0 emerges critically at small Fresnel number F (σ proportional to square of 2D spatial frequency). Here, we study the S-scaling behavior of the entire diffractogram. We identify a valley of maximum S-scaling linearity in the F - σ plane corresponding to a nearly universal physical frequency ξml = (0:143 ± 0.001)w -1/2 . Large values of F (near field) are shown to imply S-scaling linearity for low σ but nowhere else (overdamped non-oscillatory). In contrast, small F values (far field) entail distinct, sizable s-bands of good S-scaling linearity (damped oscillatory). These bands also occur in simulated diffractograms induced by a complex phase map (Lena). The transition from damped oscillatory to overdamped non-oscillatory diffractograms is shown to be a critical phenomenon for the Gaussian case. We also give evidence for the occurrence of this transition in an X-ray imaging experiment. Finally, we show that the extreme far-field limit generates a σ-universal diffractogram under certain requirements on the phase map: information on phase shape then is solely encoded in S-scaling behavior.

  5. Effects of Cd vacancies and unconventional spin dynamics in the Dirac semimetal Cd3As2

    NASA Astrophysics Data System (ADS)

    Koumoulis, Dimitrios; Taylor, Robert E.; McCormick, Jeffrey; Ertas, Yavuz N.; Pan, Lei; Che, Xiaoyu; Wang, Kang L.; Bouchard, Louis-S.

    2017-08-01

    Cd3As2 is a Dirac semimetal that is a 3D analog of graphene. We investigated the local structure and nuclear-spin dynamics in Cd3As2 via 113Cd NMR. The wideline spectrum of the static sample at 295 K is asymmetric and its features are well described by a two-site model with the shielding parameters extracted via Herzfeld-Berger analysis of the magic-angle spinning spectrum. Surprisingly, the 113Cd spin-lattice relaxation time (T1) is extremely long (T1 = 95 s at 295 K), in stark contrast to conductors and the effects of native defects upon semiconductors; but it is similar to that of 13C in graphene (T1 = 110 s). The temperature dependence of 1/T1 revealed a complex bipartite mechanism that included a T2 power-law behavior below 330 K and a thermally activated process above 330 K. In the high-temperature regime, the Arrhenius behavior is consistent with a field-dependent Cd atomic hopping relaxation process. At low temperatures, a T2 behavior consistent with a spin-1/2 Raman-like process provides evidence of a time-dependent spin-rotation magnetic field caused by angular oscillations of internuclear vectors due to lattice vibrations. The observed mechanism does not conform to the conventional two-band model of semimetals, but is instead closer to a mechanism observed in high-Z element ionic solids with large magnetorotation constant [A. J. Vega et al., Phys. Rev. B 74, 214420 (2006)].

  6. Nematode Tango Milonguero - the C. elegans male's search for the hermaphrodite vulva.

    PubMed

    Sherlekar, Amrita L; Lints, Robyn

    2014-09-01

    The vulva search corresponds to the first step of mating in Caenorhabditis elegans wherein the male recognizes a potential mate through contact and commences a systematic, contact-based search of her surface for the vulva. During this 'dance' the male presses his tail genitalia firmly against the hermaphrodite surface and moves backward, modulating tail posture to effect changes in search trajectory. Upon sensing the vulva, the male pauses and the insemination phase of mating begins. External tail sensilla, the rays, induce and guide the male's search by registering hermaphrodite surface cues. C. elegans male mating behavior, like many other animate interactions (such as predator-prey interactions or intrasexual aggression), is performed at close quarters and requires that participants constantly adjust their movement with respect to one another on a moment-by-moment basis. The design features of the supporting circuitry explain simultaneously the robustness, speed and acuity of the male's behavior and its male-specific nature. Processing at all levels of the circuitry appears to be distributed. Cellular components exhibit both partial redundancy (thus conferring robustness in output) and subtle functional differences (predicted to confer acuity). Surprisingly, gender-shared cell types feature prominently in the circuitry. Male-specific components form sensory pathways that render downstream gender-shared circuits responsive to mate cues, while other male cells act to augment gender-shared cell activity. Overall, the attributes of the vulva search circuitry provide insight into principles guiding the design and operation of circuits supporting dynamic social behaviors expressed by more complex and less tractable animal species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest.

    PubMed

    Ometto, Lino; Cestaro, Alessandro; Ramasamy, Sukanya; Grassi, Alberto; Revadi, Santosh; Siozios, Stefanos; Moretto, Marco; Fontana, Paolo; Varotto, Claudio; Pisani, Davide; Dekker, Teun; Wrobel, Nicola; Viola, Roberto; Pertot, Ilaria; Cavalieri, Duccio; Blaxter, Mark; Anfora, Gianfranco; Rota-Stabelli, Omar

    2013-01-01

    Drosophilid fruit flies have provided science with striking cases of behavioral adaptation and genetic innovation. A recent example is the invasive pest Drosophila suzukii, which, unlike most other Drosophila, lays eggs and feeds on undamaged, ripening fruits. This not only poses a serious threat for fruit cultivation but also offers an interesting model to study evolution of behavioral innovation. We developed genome and transcriptome resources for D. suzukii. Coupling analyses of these data with field observations, we propose a hypothesis of the origin of its peculiar ecology. Using nuclear and mitochondrial phylogenetic analyses, we confirm its Asian origin and reveal a surprising sister relationship between the eugracilis and the melanogaster subgroups. Although the D. suzukii genome is comparable in size and repeat content to other Drosophila species, it has the lowest nucleotide substitution rate among the species analyzed in this study. This finding is compatible with the overwintering diapause of D. suzukii, which results in a reduced number of generations per year compared with its sister species. Genome-scale relaxed clock analyses support a late Miocene origin of D. suzukii, concomitant with paleogeological and climatic conditions that suggest an adaptation to temperate montane forests, a hypothesis confirmed by field trapping. We propose a causal link between the ecological adaptations of D. suzukii in its native habitat and its invasive success in Europe and North America.

  8. Borderline Personality Disorder and Oxytocin: Review of Clinical Trials and Future Directions.

    PubMed

    Amad, Ali; Thomas, Pierre; Perez-Rodriguez, M Mercedes

    2015-01-01

    Borderline personality disorder (BPD) is a common mental disorder characterized by a pervasive pattern of emotional Borderline personality disorder (BPD) is a common mental disorder characterized by a pervasive pattern of emotional lability, impulsivity, interpersonal difficulties, identity disturbances, and disturbed cognition. Traditional pharmacotherapies are effective in treating some of these core symptoms but have only modest effects on the domain of interpersonal dysfunction of BPD. Thus there is a need to develop new, neurobiologically informed pharmacological treatments for BPD. This review focuses on the potential use of intranasal oxytocin (OXT), which has key roles in the regulation of complex social cognition and behaviors, to target symptoms of interpersonal dysfunction in BPD. Surprisingly, despite promising data on the prosocial effects of OXT, only 5 trials in BPD have been published to date. These trials show mixed results with on one hand, a decrease of emotional responses to stress and on the other hand, some "paradoxical" reactions with worsened interpersonal anxiety and decreased cooperative behavior. These mixed results are interpreted according to different theoretical models and also in light of some methodological limitations. Further studies are needed to understand the effect of OXT in patients with BPD and ongoing clinical trials will provide some answers to remaining questions on the use of OXT in BPD. Recommendations for future studies are also proposed in this review.

  9. Solving the Credit Assignment Problem With the Prefrontal Cortex

    PubMed Central

    Stolyarova, Alexandra

    2018-01-01

    In naturalistic multi-cue and multi-step learning tasks, where outcomes of behavior are delayed in time, discovering which choices are responsible for rewards can present a challenge, known as the credit assignment problem. In this review, I summarize recent work that highlighted a critical role for the prefrontal cortex (PFC) in assigning credit where it is due in tasks where only a few of the multitude of cues or choices are relevant to the final outcome of behavior. Collectively, these investigations have provided compelling support for specialized roles of the orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal (dlPFC) cortices in contingent learning. However, recent work has similarly revealed shared contributions and emphasized rich and heterogeneous response properties of neurons in these brain regions. Such functional overlap is not surprising given the complexity of reciprocal projections spanning the PFC. In the concluding section, I overview the evidence suggesting that the OFC, ACC and dlPFC communicate extensively, sharing the information about presented options, executed decisions and received rewards, which enables them to assign credit for outcomes to choices on which they are contingent. This account suggests that lesion or inactivation/inhibition experiments targeting a localized PFC subregion will be insufficient to gain a fine-grained understanding of credit assignment during learning and instead poses refined questions for future research, shifting the focus from focal manipulations to experimental techniques targeting cortico-cortical projections. PMID:29636659

  10. Unraveling mysteries of personal performance style; biomechanics of left-hand position changes (shifting) in violin performance

    PubMed Central

    Visentin, Peter; Li, Shiming; Tardif, Guillaume

    2015-01-01

    Instrumental music performance ranks among the most complex of learned human behaviors, requiring development of highly nuanced powers of sensory and neural discrimination, intricate motor skills, and adaptive abilities in a temporal activity. Teaching, learning and performing on the violin generally occur within musico-cultural parameters most often transmitted through aural traditions that include both verbal instruction and performance modeling. In most parts of the world, violin is taught in a manner virtually indistinguishable from that used 200 years ago. The current study uses methods from movement science to examine the “how” and “what” of left-hand position changes (shifting), a movement skill essential during violin performance. In doing so, it begins a discussion of artistic individualization in terms of anthropometry, the performer-instrument interface, and the strategic use of motor behaviors. Results based on 540 shifting samples, a case series of 6 professional-level violinists, showed that some elements of the skill were individualized in surprising ways while others were explainable by anthropometry, ergonomics and entrainment. Remarkably, results demonstrated each violinist to have developed an individualized pacing for shifts, a feature that should influence timing effects and prove foundational to aesthetic outcomes during performance. Such results underpin the potential for scientific methodologies to unravel mysteries of performance that are associated with a performer’s personal artistic style. PMID:26557431

  11. Linking Genomics and Ecology to Investigate the Complex Evolution of an Invasive Drosophila Pest

    PubMed Central

    Ometto, Lino; Cestaro, Alessandro; Ramasamy, Sukanya; Grassi, Alberto; Revadi, Santosh; Siozios, Stefanos; Moretto, Marco; Fontana, Paolo; Varotto, Claudio; Pisani, Davide; Dekker, Teun; Wrobel, Nicola; Viola, Roberto; Pertot, Ilaria; Cavalieri, Duccio; Blaxter, Mark; Anfora, Gianfranco; Rota-Stabelli, Omar

    2013-01-01

    Drosophilid fruit flies have provided science with striking cases of behavioral adaptation and genetic innovation. A recent example is the invasive pest Drosophila suzukii, which, unlike most other Drosophila, lays eggs and feeds on undamaged, ripening fruits. This not only poses a serious threat for fruit cultivation but also offers an interesting model to study evolution of behavioral innovation. We developed genome and transcriptome resources for D. suzukii. Coupling analyses of these data with field observations, we propose a hypothesis of the origin of its peculiar ecology. Using nuclear and mitochondrial phylogenetic analyses, we confirm its Asian origin and reveal a surprising sister relationship between the eugracilis and the melanogaster subgroups. Although the D. suzukii genome is comparable in size and repeat content to other Drosophila species, it has the lowest nucleotide substitution rate among the species analyzed in this study. This finding is compatible with the overwintering diapause of D. suzukii, which results in a reduced number of generations per year compared with its sister species. Genome-scale relaxed clock analyses support a late Miocene origin of D. suzukii, concomitant with paleogeological and climatic conditions that suggest an adaptation to temperate montane forests, a hypothesis confirmed by field trapping. We propose a causal link between the ecological adaptations of D. suzukii in its native habitat and its invasive success in Europe and North America. PMID:23501831

  12. Unraveling mysteries of personal performance style; biomechanics of left-hand position changes (shifting) in violin performance.

    PubMed

    Visentin, Peter; Li, Shiming; Tardif, Guillaume; Shan, Gongbing

    2015-01-01

    Instrumental music performance ranks among the most complex of learned human behaviors, requiring development of highly nuanced powers of sensory and neural discrimination, intricate motor skills, and adaptive abilities in a temporal activity. Teaching, learning and performing on the violin generally occur within musico-cultural parameters most often transmitted through aural traditions that include both verbal instruction and performance modeling. In most parts of the world, violin is taught in a manner virtually indistinguishable from that used 200 years ago. The current study uses methods from movement science to examine the "how" and "what" of left-hand position changes (shifting), a movement skill essential during violin performance. In doing so, it begins a discussion of artistic individualization in terms of anthropometry, the performer-instrument interface, and the strategic use of motor behaviors. Results based on 540 shifting samples, a case series of 6 professional-level violinists, showed that some elements of the skill were individualized in surprising ways while others were explainable by anthropometry, ergonomics and entrainment. Remarkably, results demonstrated each violinist to have developed an individualized pacing for shifts, a feature that should influence timing effects and prove foundational to aesthetic outcomes during performance. Such results underpin the potential for scientific methodologies to unravel mysteries of performance that are associated with a performer's personal artistic style.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Abhinandan; Jana, Swapan Kumar; Datta, Sayanti

    The synthesis of two new lead(II) coordination polymers, [Pb{sub 2}(mpic){sub 4}(H{sub 2}O)]·0.5H{sub 2}O (1) and [Pb{sub 2}(phen){sub 2}(cit)(mes)]·2H{sub 2}O (2) has been reported, where mpic=3-methyl picolinate, phen=o-phenanthroline, H{sub 2}cit=citraconic acid, H{sub 2}mes mesaconic acid. X-ray single crystal diffraction analyses showed that the complexes comprise topologically different 1D polymeric chains stabilized by weak interactions and both containing tetranuclear Pb{sub 4} units connected by carboxylate groups. In compound 1 3-methylpicolinic acid is formed in situ from 3-methyl piconitrile, and mesaconate and citraconate anions were surprisingly formed from itaconic acid during the synthesis of 2. The photoluminescence and thermal properties of the complexesmore » have been studied. - Graphical abstract: Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by X-ray analysis. The luminescence and thermal properties have been studied. Display Omitted - Highlights: • Both the complexes, made up of different ligands, forms topologycally different 1D polymeric chains containing Pb{sub 4} clusters. • The final structures are stabilized by weak interactions (H-bond, π∙∙∙π stacking). • In complex 1, the 3-methylpicolinic acid is generated in situ from 3-methyl piconitrile. • Mesaconate and citraconate anions are surprisingly formed in situ from itaconic acid during the synthesis of complex 2, indicating an exceptional transformation.« less

  14. Shape Matters: Intravital Microscopy Reveals Surprising Geometrical Dependence for Nanoparticles in Tumor Models of Extravasation

    PubMed Central

    Smith, Bryan Ronain; Kempen, Paul; Bouley, Donna; Xu, Alexander; Liu, Zhuang; Melosh, Nicholas; Dai, Hongjie; Sinclair, Robert; Gambhir, Sanjiv Sam

    2012-01-01

    Delivery is one of the most critical obstacles confronting nanoparticle use in cancer diagnosis and therapy. For most oncological applications, nanoparticles must extravasate in order to reach tumor cells and perform their designated task. However, little understanding exists regarding the effect of nanoparticle shape on extravasation. Herein we use real-time intravital microscopic imaging to meticulously examine how two different nanoparticles behave across three different murine tumor models. The study quantitatively demonstrates that high-aspect ratio single-walled carbon nanotubes (SWNTs) display extravasational behavior surprisingly different from, and counterintuitive to, spherical nanoparticles although the nanoparticles have similar surface coatings, area, and charge. This work quantitatively indicates that nanoscale extravasational competence is highly dependent on nanoparticle geometry and is heterogeneous. PMID:22650417

  15. OPTOGENETICS, SEX AND VIOLENCE IN THE BRAIN: IMPLICATIONS FOR PSYCHIATRY

    PubMed Central

    Anderson, David J.

    2012-01-01

    Pathological aggression, and the inability to control aggressive impulses, takes a tremendous toll on society. Yet aggression is a normal component of the innate behavior repertoire of most vertebrate animal species, as well as of many invertebrates. Progress in understanding the etiology of disorders of aggressive behavior, whether genetic or environmental in nature, therefore requires an understanding of the brain circuitry that controls normal aggression. Efforts to understand this circuitry at the level of specific neuronal populations have been constrained by the limited resolution of classical methodologies, such as electrical stimulation and electrolytic lesion. The availability of new, genetically based tools for mapping and manipulating neural circuits at the level of specific, genetically defined neuronal subtypes provides an opportunity to investigate the functional organization of aggression circuitry with cellular resolution. However these technologies are optimally applied in the mouse, where there has been surprisingly little traditional work on the functional neuroanatomy of aggression. Here we discuss recent, initial efforts to apply optogenetics and other state-of-the-art methods to the dissection of aggression circuitry in the mouse. We find, surprisingly, that neurons necessary and sufficient for inter-male aggression are located within the ventrolateral subdivision of the ventromedial hypothalamic nucleus (VMHvl), a structure traditionally associated with reproductive behavior. These neurons are intermingled with neurons activated during male-female mating, with ~20% overlap between the populations. We discuss the significance of these findings with respect to neuroethological and neuroanatomical perspectives on the functional organization of innate behaviors, and their potential implications for psychiatry. PMID:22209636

  16. Widespread Brain Areas Engaged during a Classical Auditory Streaming Task Revealed by Intracranial EEG

    PubMed Central

    Dykstra, Andrew R.; Halgren, Eric; Thesen, Thomas; Carlson, Chad E.; Doyle, Werner; Madsen, Joseph R.; Eskandar, Emad N.; Cash, Sydney S.

    2011-01-01

    The auditory system must constantly decompose the complex mixture of sound arriving at the ear into perceptually independent streams constituting accurate representations of individual sources in the acoustic environment. How the brain accomplishes this task is not well understood. The present study combined a classic behavioral paradigm with direct cortical recordings from neurosurgical patients with epilepsy in order to further describe the neural correlates of auditory streaming. Participants listened to sequences of pure tones alternating in frequency and indicated whether they heard one or two “streams.” The intracranial EEG was simultaneously recorded from sub-dural electrodes placed over temporal, frontal, and parietal cortex. Like healthy subjects, patients heard one stream when the frequency separation between tones was small and two when it was large. Robust evoked-potential correlates of frequency separation were observed over widespread brain areas. Waveform morphology was highly variable across individual electrode sites both within and across gross brain regions. Surprisingly, few evoked-potential correlates of perceptual organization were observed after controlling for physical stimulus differences. The results indicate that the cortical areas engaged during the streaming task are more complex and widespread than has been demonstrated by previous work, and that, by-and-large, correlates of bistability during streaming are probably located on a spatial scale not assessed – or in a brain area not examined – by the present study. PMID:21886615

  17. What should be impossible: resolution of the mononuclear gallium coordination complex, Tris(benzohydroxamato)gallium(III).

    PubMed

    Brumaghim, Julia L; Raymond, Kenneth N

    2003-10-08

    Complexes of Ga3+, a d10 metal ion which lacks ligand-field-stabilization energy, are considered labile. In fact, hexaaquagallium(III) has a ligand exchange rate of 403 s-1, 2.5 times that of the analagous Fe3+ complex (Hugi-Cleary, D.; Helm, L.; Merbach, A. E. J. Am. Chem. Soc. 1987, 109, 4444-4450). Given this lability, resolution of Ga3+ complexes should be impossible. Despite this, we report the resolution of the Lambda and Delta isomers of tris(benzohydroxamate)gallium (III) (1), the first resolution of a mononuclear gallium complex. Not only is resolution possible, but these resolved complexes show remarkable resistance to racemization in aprotic solvents. The unprecedented stability of Lambda- and Delta-1 is a surprise, and as such, alters our understanding of classical coordination chemistry.

  18. Nervousness and Performance Characteristics as Predictors of Peer Behavior Towards Socially Anxious Adolescents

    PubMed Central

    Duvekot, Jorieke; Schalk, Rozemarijn D. F.; Tuinenburg, Eveline M.; Westenberg, P. Michiel

    2009-01-01

    Social anxiety in adolescents has frequently been linked to negative outcomes from social interactions. The present study investigated whether socially anxious adolescents are treated negatively by their classmates and which characteristics of socially anxious adolescents could explain negative social responses. Classroom observations of class behavior were made during oral presentations of 94 students (60% females) in the ages of 13–18 years. Speakers’ social performance, speech quality, and nervousness during the presentation were also rated. Findings showed that the social performance of socially anxious students was a predictor of class behavior, whereas their overt nervousness was not. Surprisingly, the quality of their speech was negatively related to class behavior. Implications of these findings for the treatment of socially anxious adolescents are discussed. PMID:19842023

  19. Spatial nonlinearities: Cascading effects in the earth system

    USGS Publications Warehouse

    Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, Stuart; Havstad, K. M.; Canadell, Josep G.; Pataki, Diane E.; Pitelka, Louis F.

    2006-01-01

    Nonlinear behavior is prevalent in all aspects of the Earth System, including ecological responses to global change (Gallagher and Appenzeller 1999; Steffen et al. 2004). Nonlinear behavior refers to a large, discontinuous change in response to a small change in a driving variable (Rial et al. 2004). In contrast to linear systems where responses are smooth, well-behaved, continuous functions, nonlinear systems often undergo sharp or discontinuous transitions resulting from the crossing of thresholds. These nonlinear responses can result in surprising behavior that makes forecasting difficult (Kaplan and Glass 1995). Given that many system dynamics are nonlinear, it is imperative that conceptual and quantitative tools be developed to increase our understanding of the processes leading to nonlinear behavior in order to determine if forecasting can be improved under future environmental changes (Clark et al. 2001).

  20. Groundwater dynamics in a two-dimensional aquifer

    NASA Astrophysics Data System (ADS)

    Jules, Valentin; Devauchelle, Olivier; Lajeunesse, Eric

    2017-11-01

    During a rain event, water infiltrates into the ground where it flows slowly towards a river. The time scale and the geometry of this flow control the chemical composition and the discharge of the river. We use a tank filled with glass beads to simulate this process in a simplified laboratory experiment. A sprinkler pipe generates rain, which infiltrates into the porous material. Groundwater exits this laboratory aquifer through a side of the tank. Guérin et al. (2014) investigated the case of a quasi-horizontal flow. In nature, however, groundwater often follows non-horizontal flowlines. To create a vertical flow, we place the outlet of our experiment high above its bottom. We find that, during rainfall, the discharge Q increases as the rainfall rate R times the square root of time t (Q Rt 1 / 2). This laboratory aquifer thus responds linearly to the forcing. However, long after the rain has stopped, the discharge decreases as the inverse square of time (Q t-2), although linear systems of finite size typically relax exponentially. We investigate this surprising behavior using a combination of complex analysis and numerical methods.

  1. Water oxidation catalyzed by mononuclear ruthenium complexes with a 2,2'-bipyridine-6,6'-dicarboxylate (bda) ligand: how ligand environment influences the catalytic behavior.

    PubMed

    Staehle, Robert; Tong, Lianpeng; Wang, Lei; Duan, Lele; Fischer, Andreas; Ahlquist, Mårten S G; Sun, Licheng; Rau, Sven

    2014-02-03

    A new water oxidation catalyst [Ru(III)(bda)(mmi)(OH2)](CF3SO3) (2, H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; mmi = 1,3-dimethylimidazolium-2-ylidene) containing an axial N-heterocyclic carbene ligand and one aqua ligand was synthesized and fully characterized. The kinetics of catalytic water oxidation by 2 were measured using stopped-flow technique, and key intermediates in the catalytic cycle were probed by density functional theory calculations. While analogous Ru-bda water oxidation catalysts [Ru(bda)L2] (L = pyridyl ligands) are supposed to catalyze water oxidation through a bimolecular coupling pathway, our study points out that 2, surprisingly, undergoes a single-site water nucleophilic attack (acid-base) pathway. The diversion of catalytic mechanisms is mainly ascribed to the different ligand environments, from nonaqua ligands to an aqua ligand. Findings in this work provide some critical proof for our previous hypothesis about how alternation of ancillary ligands of water oxidation catalysts influences their catalytic efficiency.

  2. Uniting functional network topology and oscillations in the fronto-parietal single unit network of behaving primates

    PubMed Central

    Dann, Benjamin; Michaels, Jonathan A; Schaffelhofer, Stefan; Scherberger, Hansjörg

    2016-01-01

    The functional communication of neurons in cortical networks underlies higher cognitive processes. Yet, little is known about the organization of the single neuron network or its relationship to the synchronization processes that are essential for its formation. Here, we show that the functional single neuron network of three fronto-parietal areas during active behavior of macaque monkeys is highly complex. The network was closely connected (small-world) and consisted of functional modules spanning these areas. Surprisingly, the importance of different neurons to the network was highly heterogeneous with a small number of neurons contributing strongly to the network function (hubs), which were in turn strongly inter-connected (rich-club). Examination of the network synchronization revealed that the identified rich-club consisted of neurons that were synchronized in the beta or low frequency range, whereas other neurons were mostly non-oscillatory synchronized. Therefore, oscillatory synchrony may be a central communication mechanism for highly organized functional spiking networks. DOI: http://dx.doi.org/10.7554/eLife.15719.001 PMID:27525488

  3. A new zinc coordination polymer in (10, 3)-d framework with unusual redox property

    NASA Astrophysics Data System (ADS)

    Huo, Jianqiang; Yan, Shuai; Arulsamy, Navamoney

    2017-11-01

    A new coordination polymer, [Zn(H1dimb)(Cl)]n (1) (H1dimb = 2,5-di (1H-imidazol-1-yl)benzoate), is obtained by hydrothermal synthesis and characterized by single crystal X-ray diffraction data and elemental analysis. Compound 1 crystallizes in the orthorhombic space group Pccn, and its structure exhibits a rarely observed ultimate racemic 3D network with 2-fold interpenetrating (10, 3)-d (or utp) topology due to the presence of alternating arrays of left- and right-handed helices. Thermo-gravimetric analysis (TGA) data for 1 reveals that the metal-organic framework (MOF) is thermally stable up to 350 °C under a N2 atmosphere. Compound 1 also possesses interesting photoluminescent properties as expected for Zn2+ complexes of aromatic ligands. Photoemission spectra measured in the solid state reveal a very strong emission band centered at 417 nm. Cyclic voltammetric data reveal that the compound exhibits quasi reversible two-electron redox process in acidic aqueous solution and the surprising electrochemical behavior is attributed to the Zn/Zn2+ process.

  4. Predicting Individuals' Learning Success from Patterns of Pre-Learning MRI Activity

    PubMed Central

    Vo, Loan T. K.; Walther, Dirk B.; Kramer, Arthur F.; Erickson, Kirk I.; Boot, Walter R.; Voss, Michelle W.; Prakash, Ruchika S.; Lee, Hyunkyu; Fabiani, Monica; Gratton, Gabriele; Simons, Daniel J.; Sutton, Bradley P.; Wang, Michelle Y.

    2011-01-01

    Performance in most complex cognitive and psychomotor tasks improves with training, yet the extent of improvement varies among individuals. Is it possible to forecast the benefit that a person might reap from training? Several behavioral measures have been used to predict individual differences in task improvement, but their predictive power is limited. Here we show that individual differences in patterns of time-averaged T2*-weighted MRI images in the dorsal striatum recorded at the initial stage of training predict subsequent learning success in a complex video game with high accuracy. These predictions explained more than half of the variance in learning success among individuals, suggesting that individual differences in neuroanatomy or persistent physiology predict whether and to what extent people will benefit from training in a complex task. Surprisingly, predictions from white matter were highly accurate, while voxels in the gray matter of the dorsal striatum did not contain any information about future training success. Prediction accuracy was higher in the anterior than the posterior half of the dorsal striatum. The link between trainability and the time-averaged T2*-weighted signal in the dorsal striatum reaffirms the role of this part of the basal ganglia in learning and executive functions, such as task-switching and task coordination processes. The ability to predict who will benefit from training by using neuroimaging data collected in the early training phase may have far-reaching implications for the assessment of candidates for specific training programs as well as the study of populations that show deficiencies in learning new skills. PMID:21264257

  5. Clearance and organ localization of particles and soluble complexes in mice with circulating complexes.

    PubMed Central

    Carter, S D; Brennan, F M; Grace, S A; Elson, C J

    1984-01-01

    The clearance and organ localization of a number of substances cleared by either Fc-dependent or -independent mechanisms was studied in normal mice and in mice with endogenously produced persistent circulating complexes. Clearance of covalent dimers of mouse IgG, chicken IgG and ovalbumin were no different between the two groups of mice. By contrast, hepatic and splenic uptake of dimeric mouse IgG (but not of chicken IgG or ovalbumin dimer) was impaired in the mice with persisting complexes. Surprisingly the rate of clearance of sheep red blood cells (SRBC) was increased in mice with persisting complexes as was hepatic uptake of polyvinyl pyrrolidone. It is suggested that the mononuclear phagocytes of mice with persistent circulating complexes are non-specifically stimulated while their ability to take up soluble complexes by Fc-dependent attachment is selectively impaired. PMID:6746002

  6. Synthesis, Properties, and Light-Emitting Electrochemical Cell (LEEC) Device Fabrication of Cationic Ir(III) Complexes Bearing Electron-Withdrawing Groups on the Cyclometallating Ligands

    PubMed Central

    2016-01-01

    The structure–property relationship study of a series of cationic Ir(III) complexes in the form of [Ir(C^N)2(dtBubpy)]PF6 [where dtBubpy = 4,4′-di-tert-butyl-2,2′-bipyridine and C^N = cyclometallating ligand bearing an electron-withdrawing group (EWG) at C4 of the phenyl substituent, i.e., −CF3 (1), −OCF3 (2), −SCF3 (3), −SO2CF3 (4)] has been investigated. The physical and optoelectronic properties of the four complexes were comprehensively characterized, including by X-ray diffraction analysis. All the complexes exhibit quasireversible dtBubpy-based reductions from −1.29 to −1.34 V (vs SCE). The oxidation processes are likewise quasireversible (metal + C^N ligand) and are between 1.54 and 1.72 V (vs SCE). The relative oxidation potentials follow a general trend associated with the Hammett parameter (σ) of the EWGs. Surprisingly, complex 4 bearing the strongest EWG does not adhere to the expected Hammett behavior and was found to exhibit red-shifted absorption and emission maxima. Nevertheless, the concept of introducing EWGs was found to be generally useful in blue-shifting the emission maxima of the complexes (λem = 484–545 nm) compared to that of the prototype complex [Ir(ppy)2(dtBubpy)]PF6 (where ppy = 2-phenylpyridinato) (λem = 591 nm). The complexes were found to be bright emitters in solution at room temperature (ΦPL = 45–66%) with microsecond excited-state lifetimes (τe = 1.14–4.28 μs). The photophysical properties along with density functional theory (DFT) calculations suggest that the emission of these complexes originates from mixed contributions from ligand-centered (LC) transitions and mixed metal-to-ligand and ligand-to-ligand charge transfer (LLCT/MLCT) transitions, depending on the EWG. In complexes 1, 3, and 4 the 3LC character is prominent over the mixed 3CT character, while in complex 2, the mixed 3CT character is much more pronounced, as demonstrated by DFT calculations and the observed positive solvatochromism effect. Due to the quasireversible nature of the oxidation and reduction waves, fabrication of light-emitting electrochemical cells (LEECs) using these complexes as emitters was possible with the LEECs showing moderate efficiencies. PMID:27681985

  7. Geohydrology and potential for artificial recharge in the western part of the U.S. Marine Corps Base, Twentynine Palms, California, 1982-83

    USGS Publications Warehouse

    Akers, J.P.

    1986-01-01

    A recent gravity survey indicates that sedimentary deposits in the Deadman Lake area of the Twentynine Palms Marine Corps Base, California, are as much as 10,500 feet thick. These deposits fill an ancient valley in the bedrock complex. This valley is alined east-west in the Surprise Spring area and north-south in the Deadman Lake area.Water levels in the Ames Dry Lake area of the Surprise Spring subbasin have changed little between earliest measurements in 1952-53 and in 1982. Water levels in three Marine Corps Base supply wells in the same subbasin near Surprise Spring declined an average of 78 feet during the past 30 years. Water levels in the same timespan in Deadman subbasin and water quality in the base supply wells, drilled in 1952-53 and 1978, have remained virtually unchanged.Ground water in storage, suitable for domestic use, in the top 200 feet of saturated sediments in Surprise Spring subbasin was estimated to be 810,000 acre-feet in the early 1950's. About 60,000 acre-feet of this has been removed, mostly for use at the Marine Corps Base, which leaves about 750,000 acre-feet of recoverable water of good quality still stored in the 200-foot interval considered. For planning purposes, it would be safe to use a conservative figure of 300,000 acre-feet for storage in the Deadman subbasin, which contains water having fluoride concentrations greater than the U.S. Environmental Protection Agency's standards for drinking water.Three sites in the general area of the present well fields seem favorable for recharging the ground-water system in the Surprise Spring subbasin. Further exploration of these sites is suggested.

  8. Coalitional Psychology on the Playground: Reasoning about Indirect Social Consequences in Preschoolers and Adults

    ERIC Educational Resources Information Center

    Pietraszewski, David; German, Tamsin C.

    2013-01-01

    Surprisingly little is known about how relationship information is used predict others' behavior. We examine a key element of this ability--how relationship information is used to anticipate how others will react to events in which they are not directly involved. This requires both using relationship information to modify expected reactions (e.g.,…

  9. Multiple Identification and Risks: Examination of Peer Factors across Multiracial and Single-Race Youth

    ERIC Educational Resources Information Center

    Choi, Yoonsun; He, Michael; Herrenkohl, Todd I.; Catalano, Richard F.; Toumbourou, John W.

    2012-01-01

    Multiracial youth are thought to be more vulnerable to peer-related risk factors than are single-race youth. However, there have been surprisingly few well-designed studies on this topic. This study empirically investigated the extent to which multiracial youth are at higher risk for peer influenced problem behavior. Data are from a representative…

  10. Sensory Processing in Low-Functioning Adults with Autism Spectrum Disorder: Distinct Sensory Profiles and Their Relationships with Behavioral Dysfunction

    ERIC Educational Resources Information Center

    Gonthier, Corentin; Longuépée, Lucie; Bouvard, Martine

    2016-01-01

    Sensory processing abnormalities are relatively universal in individuals with autism spectrum disorder, and can be very disabling. Surprisingly, very few studies have investigated these abnormalities in low-functioning adults with autism. The goals of the present study were (a) to characterize distinct profiles of sensory dysfunction, and (b) to…

  11. Hybrid Cognitive Behavioral Therapy versus Relaxation Training for Co-Occurring Anxiety and Alcohol Disorder: A Randomized Clinical Trial

    ERIC Educational Resources Information Center

    Kushner, Matt G.; Maurer, Eric W.; Thuras, Paul; Donahue, Chris; Frye, Brenda; Menary, Kyle R.; Hobbs, Jennifer; Haeny, Angela M.; Van Demark, Joani

    2013-01-01

    Objective: Treatment for alcohol use disorder (AUD) is far less effective for those with a co-occurring anxiety disorder. Surprisingly, adding an independent anxiety treatment to AUD treatment does not substantially improve the poor alcohol outcomes of these patients. This may reflect the lack of attention from independent treatments to the…

  12. Delays, Scaling and the Acquisition of Motor Skill

    NASA Astrophysics Data System (ADS)

    Cabrera, Juan Luis; Milton, John

    2003-05-01

    Motion analysis in three dimensions reveals a number of surprising features of the neural control of stick balancing at the fingertip, namely, 1) on-off intermittency in the controlled variable, and 2) controlling motor forces that exhibit self-similarity. The growing evidence in support of scaling and critical behaviors in neural motor control necessitates a re-thinking of how the nervous systems works.

  13. Molecular mechanisms of inner ear development.

    PubMed

    Wu, Doris K; Kelley, Matthew W

    2012-08-01

    The inner ear is a structurally complex vertebrate organ built to encode sound, motion, and orientation in space. Given its complexity, it is not surprising that inner ear dysfunction is a relatively common consequence of human genetic mutation. Studies in model organisms suggest that many genes currently known to be associated with human hearing impairment are active during embryogenesis. Hence, the study of inner ear development provides a rich context for understanding the functions of genes implicated in hearing loss. This chapter focuses on molecular mechanisms of inner ear development derived from studies of model organisms.

  14. Weak Links: Stabilizers of Complex Systems from Proteins to Social Networks

    NASA Astrophysics Data System (ADS)

    Csermely, Peter

    Why do women stabilize our societies? Why can we enjoy and understand Shakespeare? Why are fruitflies uniform? Why do omnivorous eating habits aid our survival? Why is Mona Lisa's smile beautiful? -- Is there any answer to these questions? This book shows that the statement: "weak links stabilize complex systems" holds the answers to all of the surprising questions above. The author (recipientof several distinguished science communication prizes) uses weak (low affinity, low probability) interactions as a thread to introduce a vast varietyof networks from proteins to ecosystems.

  15. Blog Attack: New Teaching Strategies to Engage Today's College Students

    ERIC Educational Resources Information Center

    Castro, Denise

    2012-01-01

    The growing need to match pedagogy with the evolving needs of a new generation of learners has stirred and interest in Web 2.0 Blogging can bring a surprisingly rich experience to class projects by increasing collaboration between students and teacher. As a teaching tool, blogging can bring greater complexity to learning that would have otherwise…

  16. Negotiating Meanings and Examining Practice of "Arts across the Curriculum"

    ERIC Educational Resources Information Center

    Buck, Ralph; Snook, Barbara Helen

    2017-01-01

    Examining practice, within education, is complex and never straightforward. It is not a surprise that when we conduct research, we discover new and contrary meanings. For the last 16 months we have been examining different means for supporting teaching and learning of the arts in primary schools. Our aim was to better understand how to teach the…

  17. Shedding Light on Words and Sentences: Near-Infrared Spectroscopy in Language Research

    ERIC Educational Resources Information Center

    Rossi, Sonja; Telkemeyer, Silke; Wartenburger, Isabell; Obrig, Hellmuth

    2012-01-01

    Investigating the neuronal network underlying language processing may contribute to a better understanding of how the brain masters this complex cognitive function with surprising ease and how language is acquired at a fast pace in infancy. Modern neuroimaging methods permit to visualize the evolvement and the function of the language network. The…

  18. Type Theory, Computation and Interactive Theorem Proving

    DTIC Science & Technology

    2015-09-01

    postdoc Cody Roux, to develop new methods of verifying real-valued inequalities automatically. They developed a prototype implementation in Python [8] (an...he has developed new heuristic, geometric methods of verifying real-valued inequalities. A python -based implementation has performed surprisingly...express complex mathematical and computational assertions. In this project, Avigad and Harper developed type-theoretic algorithms and formalisms that

  19. For Grown-Ups Too: The Surprising Depth and Complexity of Children's Literature

    ERIC Educational Resources Information Center

    Lerer, Seth

    2015-01-01

    Children's literature charts the makings of the literate imagination. It shows children finding worlds within the book and books in the world. It addresses the changing environments of family life and human growth, schooling and scholarship, publishing and publicity in which children--at times suddenly, at times subtly--found themselves…

  20. Complex Interplays: Teacher and Students' Co-Construction of New Media Classroom Spaces

    ERIC Educational Resources Information Center

    Rust, Julie

    2013-01-01

    Although increasingly encouraged to incorporate new media into classrooms to prepare students for engaged participation in a digital world, teachers are often taken by surprise when paradigm clashes arise between traditional school expectations and the affordances of these new spaces. Students, at the same time, are faced with making sense of the…

  1. Mycobacterial biofilms: a greasy way to hold it together.

    PubMed

    Zambrano, María Mercedes; Kolter, Roberto

    2005-12-02

    Microorganisms growing on surfaces can form biofilms under certain conditions. In this issue of Cell, Ojha et al. (2005) investigate biofilm formation in mycobacteria. They identify new cell-wall components that are required for the formation of architecturally complex mature biofilms in these bacteria and the surprising involvement of a chaperone protein in this process.

  2. Short-Term Memories in "Drosophila" Are Governed by General and Specific Genetic Systems

    ERIC Educational Resources Information Center

    Zars, Troy

    2010-01-01

    In a dynamic environment, there is an adaptive value in the ability of animals to acquire and express memories. That both simple and complex animals can learn is therefore not surprising. How animals have solved this problem genetically and anatomically probably lies somewhere in a range between a single molecular/anatomical mechanism that applies…

  3. Fluency Heuristic: A Model of How the Mind Exploits a By-Product of Information Retrieval

    ERIC Educational Resources Information Center

    Hertwig, Ralph; Herzog, Stefan M.; Schooler, Lael J.; Reimer, Torsten

    2008-01-01

    Boundedly rational heuristics for inference can be surprisingly accurate and frugal for several reasons. They can exploit environmental structures, co-opt complex capacities, and elude effortful search by exploiting information that automatically arrives on the mental stage. The fluency heuristic is a prime example of a heuristic that makes the…

  4. Behavioral assessment in youth sports: coaching behaviors and children's attitudes.

    PubMed

    Smith, R E; Zane, N W; Smoll, F L; Coppel, D B

    1983-01-01

    To define the characteristics and dimensional patterning of coaching behaviors, 15,449 behaviors of 31 youth basketball coaches were coded in terms of a 10-category system. Post-season attitude and self-esteem data were obtained from players on 23 teams and were related to the behavioral measures. Compared with rates of reinforcement, encouragement, and technical instruction, punitive responses occurred relatively infrequently. Factor analysis of the coaching behaviors indicated that supportive and punitive behavioral dimensions were orthogonal or statistically independent of one another rather than opposite ends of the same dimension. Punitive and instructional categories were part of the same behavior cluster. The relationship between coaching behaviors and the various player attitudes were highly specific in nature. Coaching behaviors accounted for about half of the variance in post-season attitudes toward the coach and the sport, but for significantly less variance in measures of team solidarity and self-esteem. Surprisingly, the rate of positive reinforcement was unrelated to any of the attitudinal measures. Punishment was negatively related to liking for the coach. In general, technical instruction categories were the strongest predictors of basketball player attitudes.

  5. The androgen receptor governs the execution, but not programming, of male sexual and territorial behaviors

    PubMed Central

    Juntti, Scott A; Tollkuhn, Jessica; Wu, Melody V; Fraser, Eleanor J; Soderborg, Taylor; Tan, Stella; Honda, Shin-Ichiro; Harada, Nobuhiro; Shah, Nirao M

    2010-01-01

    SUMMARY Testosterone and estrogen are essential for male behaviors in vertebrates. How these two signaling pathways interact to control masculinization of the brain and behavior remains to be established. Circulating testosterone activates the androgen receptor (AR) and also serves as the source of estrogen in the brain. We have used a genetic strategy to delete AR specifically in the mouse nervous system. This approach permits us to determine the function of AR in sexually dimorphic behaviors in males while maintaining circulating testosterone levels within the normal range. We find that AR mutant males exhibit masculine sexual and territorial displays, but they have striking deficits in specific components of these behaviors. Taken together with the surprisingly limited expression of AR in the developing brain, our findings indicate that testosterone acts as a precursor to estrogen to masculinize the brain and behavior, and signals via AR to control the levels of male behavioral displays. PMID:20435002

  6. Organizational Behavior: A Brief Overview and Safety Orientation.

    PubMed

    Waller, Mary J

    2015-12-01

    Organizational Behavior (OB) is a discipline of social science that seeks explanations for human behavior in organizations. OB draws on core disciplines such as psychology, sociology, anthropology, economics, communication, and law to create and investigate multilevel explanations of why people engage in particular behaviors, and which behaviors under which circumstances lead to better outcomes in organizations. Created using an applied or pragmatic lens and tested with a wide range of both quantitative and qualitative methodologies, most OB theories and research have direct implications for managers and for other organizational participants. Not surprisingly, one focal area of OB research concerns safety in organizations, and a growing body of safety-oriented literature in OB is based on data collected during simulation training across a variety of organizations such as hospitals, airlines, nuclear power plants, and other high reliability organizations. Copyright © 2015 Mosby, Inc. All rights reserved.

  7. Systematic Observation of an Expert Driver's Gaze Strategy—An On-Road Case Study

    PubMed Central

    Lappi, Otto; Rinkkala, Paavo; Pekkanen, Jami

    2017-01-01

    In this paper we present and qualitatively analyze an expert driver's gaze behavior in natural driving on a real road, with no specific experimental task or instruction. Previous eye tracking research on naturalistic tasks has revealed recurring patterns of gaze behavior that are surprisingly regular and repeatable. Lappi (2016) identified in the literature seven “qualitative laws of gaze behavior in the wild”: recurring patterns that tend to go together, the more so the more naturalistic the setting, all of them expected in extended sequences of fully naturalistic behavior. However, no study to date has observed all in a single experiment. Here, we wanted to do just that: present observations supporting all the “laws” in a single behavioral sequence by a single subject. We discuss the laws in terms of unresolved issues in driver modeling and open challenges for experimental and theoretical development. PMID:28496422

  8. Neural Mechanisms of Updating under Reducible and Irreducible Uncertainty.

    PubMed

    Kobayashi, Kenji; Hsu, Ming

    2017-07-19

    Adaptive decision making depends on an agent's ability to use environmental signals to reduce uncertainty. However, because of multiple types of uncertainty, agents must take into account not only the extent to which signals violate prior expectations but also whether uncertainty can be reduced in the first place. Here we studied how human brains of both sexes respond to signals under conditions of reducible and irreducible uncertainty. We show behaviorally that subjects' value updating was sensitive to the reducibility of uncertainty, and could be quantitatively characterized by a Bayesian model where agents ignore expectancy violations that do not update beliefs or values. Using fMRI, we found that neural processes underlying belief and value updating were separable from responses to expectancy violation, and that reducibility of uncertainty in value modulated connections from belief-updating regions to value-updating regions. Together, these results provide insights into how agents use knowledge about uncertainty to make better decisions while ignoring mere expectancy violation. SIGNIFICANCE STATEMENT To make good decisions, a person must observe the environment carefully, and use these observations to reduce uncertainty about consequences of actions. Importantly, uncertainty should not be reduced purely based on how surprising the observations are, particularly because in some cases uncertainty is not reducible. Here we show that the human brain indeed reduces uncertainty adaptively by taking into account the nature of uncertainty and ignoring mere surprise. Behaviorally, we show that human subjects reduce uncertainty in a quasioptimal Bayesian manner. Using fMRI, we characterize brain regions that may be involved in uncertainty reduction, as well as the network they constitute, and dissociate them from brain regions that respond to mere surprise. Copyright © 2017 the authors 0270-6474/17/376972-11$15.00/0.

  9. Neural Mechanisms of Updating under Reducible and Irreducible Uncertainty

    PubMed Central

    2017-01-01

    Adaptive decision making depends on an agent's ability to use environmental signals to reduce uncertainty. However, because of multiple types of uncertainty, agents must take into account not only the extent to which signals violate prior expectations but also whether uncertainty can be reduced in the first place. Here we studied how human brains of both sexes respond to signals under conditions of reducible and irreducible uncertainty. We show behaviorally that subjects' value updating was sensitive to the reducibility of uncertainty, and could be quantitatively characterized by a Bayesian model where agents ignore expectancy violations that do not update beliefs or values. Using fMRI, we found that neural processes underlying belief and value updating were separable from responses to expectancy violation, and that reducibility of uncertainty in value modulated connections from belief-updating regions to value-updating regions. Together, these results provide insights into how agents use knowledge about uncertainty to make better decisions while ignoring mere expectancy violation. SIGNIFICANCE STATEMENT To make good decisions, a person must observe the environment carefully, and use these observations to reduce uncertainty about consequences of actions. Importantly, uncertainty should not be reduced purely based on how surprising the observations are, particularly because in some cases uncertainty is not reducible. Here we show that the human brain indeed reduces uncertainty adaptively by taking into account the nature of uncertainty and ignoring mere surprise. Behaviorally, we show that human subjects reduce uncertainty in a quasioptimal Bayesian manner. Using fMRI, we characterize brain regions that may be involved in uncertainty reduction, as well as the network they constitute, and dissociate them from brain regions that respond to mere surprise. PMID:28626019

  10. Ethanol induces rotational behavior in 6-hydroxydopamine lesioned mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, P.B.

    1987-03-09

    Mice with unilateal striatal lesions created by 6-hydroxydopamine (6HDA) injection were screened for rotational (circling) behavior in response to injection of amphetamine and apomorphine. Those that rotated ipsilaterally in response to amphetamine and contralaterally in response to apomorphine were subsequently challenged with 1 to 3 g/kg (i.p.) ethanol. Surprisingly, ethanol induced dose related contralateral (apomorphine-like) rotation which, despite gross intoxication, was quite marked in most animals. No significant correlation was found between the number of turns made following ethanol and made after apomorphine or amphetamine. 14 references, 2 figures, 1 table.

  11. The transcriptional landscape of αβ T cell differentiation

    PubMed Central

    Mingueneau, Michael; Kreslavsky, Taras; Gray, Daniel; Heng, Tracy; Cruse, Richard; Ericson, Jeffrey; Bendall, Sean; Spitzer, Matt; Nolan, Garry; Kobayashi, Koichi; von Boehmer, Harald; Mathis, Diane; Benoist, Christophe

    2013-01-01

    αβT cell differentiation from thymic precursors is a complex process, explored here with the breadth of ImmGen expression datasets, analyzing how differentiation of thymic precursors gives rise to transcriptomes. After surprisingly gradual changes though early T commitment, transit through the CD4+CD8+ stage involves a shutdown or rare breadth, and correlating tightly with MYC. MHC-driven selection promotes a large-scale transcriptional reactivation. We identify distinct signatures that mark cells destined for positive selection versus apoptotic deletion. Differential expression of surprisingly few genes accompany CD4 or CD8 commitment, a similarity that carries through to peripheral T cells and their activation, revealed by mass cytometry phosphoproteomics. The novel transcripts identified as candidate mediators of key transitions help define the “known unknown” of thymocyte differentiation. PMID:23644507

  12. Surprisal analysis of Glioblastoma Multiform (GBM) microRNA dynamics unveils tumor specific phenotype.

    PubMed

    Zadran, Sohila; Remacle, Francoise; Levine, Raphael

    2014-01-01

    Gliomablastoma multiform (GBM) is the most fatal form of all brain cancers in humans. Currently there are limited diagnostic tools for GBM detection. Here, we applied surprisal analysis, a theory grounded in thermodynamics, to unveil how biomolecule energetics, specifically a redistribution of free energy amongst microRNAs (miRNAs), results in a system deviating from a non-cancer state to the GBM cancer -specific phenotypic state. Utilizing global miRNA microarray expression data of normal and GBM patients tumors, surprisal analysis characterizes a miRNA system response capable of distinguishing GBM samples from normal tissue biopsy samples. We indicate that the miRNAs contributing to this system behavior is a disease phenotypic state specific to GBM and is therefore a unique GBM-specific thermodynamic signature. MiRNAs implicated in the regulation of stochastic signaling processes crucial in the hallmarks of human cancer, dominate this GBM-cancer phenotypic state. With this theory, we were able to distinguish with high fidelity GBM patients solely by monitoring the dynamics of miRNAs present in patients' biopsy samples. We anticipate that the GBM-specific thermodynamic signature will provide a critical translational tool in better characterizing cancer types and in the development of future therapeutics for GBM.

  13. Detection of Bursts and Pauses in Spike Trains

    PubMed Central

    Ko, D.; Wilson, C. J.; Lobb, C. J.; Paladini, C. A.

    2012-01-01

    Midbrain dopaminergic neurons in vivo exhibit a wide range of firing patterns. They normally fire constantly at a low rate, and speed up, firing a phasic burst when reward exceeds prediction, or pause when an expected reward does not occur. Therefore, the detection of bursts and pauses from spike train data is a critical problem when studying the role of phasic dopamine (DA) in reward related learning, and other DA dependent behaviors. However, few statistical methods have been developed that can identify bursts and pauses simultaneously. We propose a new statistical method, the Robust Gaussian Surprise (RGS) method, which performs an exhaustive search of bursts and pauses in spike trains simultaneously. We found that the RGS method is adaptable to various patterns of spike trains recorded in vivo, and is not influenced by baseline firing rate, making it applicable to all in vivo spike trains where baseline firing rates vary over time. We compare the performance of the RGS method to other methods of detecting bursts, such as the Poisson Surprise (PS), Rank Surprise (RS), and Template methods. Analysis of data using the RGS method reveals potential mechanisms underlying how bursts and pauses are controlled in DA neurons. PMID:22939922

  14. Information properties of morphologically complex words modulate brain activity during word reading

    PubMed Central

    Hultén, Annika; Lehtonen, Minna; Lagus, Krista; Salmelin, Riitta

    2018-01-01

    Abstract Neuroimaging studies of the reading process point to functionally distinct stages in word recognition. Yet, current understanding of the operations linked to those various stages is mainly descriptive in nature. Approaches developed in the field of computational linguistics may offer a more quantitative approach for understanding brain dynamics. Our aim was to evaluate whether a statistical model of morphology, with well‐defined computational principles, can capture the neural dynamics of reading, using the concept of surprisal from information theory as the common measure. The Morfessor model, created for unsupervised discovery of morphemes, is based on the minimum description length principle and attempts to find optimal units of representation for complex words. In a word recognition task, we correlated brain responses to word surprisal values derived from Morfessor and from other psycholinguistic variables that have been linked with various levels of linguistic abstraction. The magnetoencephalography data analysis focused on spatially, temporally and functionally distinct components of cortical activation observed in reading tasks. The early occipital and occipito‐temporal responses were correlated with parameters relating to visual complexity and orthographic properties, whereas the later bilateral superior temporal activation was correlated with whole‐word based and morphological models. The results show that the word processing costs estimated by the statistical Morfessor model are relevant for brain dynamics of reading during late processing stages. PMID:29524274

  15. Information properties of morphologically complex words modulate brain activity during word reading.

    PubMed

    Hakala, Tero; Hultén, Annika; Lehtonen, Minna; Lagus, Krista; Salmelin, Riitta

    2018-06-01

    Neuroimaging studies of the reading process point to functionally distinct stages in word recognition. Yet, current understanding of the operations linked to those various stages is mainly descriptive in nature. Approaches developed in the field of computational linguistics may offer a more quantitative approach for understanding brain dynamics. Our aim was to evaluate whether a statistical model of morphology, with well-defined computational principles, can capture the neural dynamics of reading, using the concept of surprisal from information theory as the common measure. The Morfessor model, created for unsupervised discovery of morphemes, is based on the minimum description length principle and attempts to find optimal units of representation for complex words. In a word recognition task, we correlated brain responses to word surprisal values derived from Morfessor and from other psycholinguistic variables that have been linked with various levels of linguistic abstraction. The magnetoencephalography data analysis focused on spatially, temporally and functionally distinct components of cortical activation observed in reading tasks. The early occipital and occipito-temporal responses were correlated with parameters relating to visual complexity and orthographic properties, whereas the later bilateral superior temporal activation was correlated with whole-word based and morphological models. The results show that the word processing costs estimated by the statistical Morfessor model are relevant for brain dynamics of reading during late processing stages. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  16. Gender differences in personality traits across cultures: robust and surprising findings.

    PubMed

    Costa, Paul T; Terracciano, Antonio; McCrae, Robert R

    2001-08-01

    Secondary analyses of Revised NEO Personality Inventory data from 26 cultures (N = 23,031) suggest that gender differences are small relative to individual variation within genders; differences are replicated across cultures for both college-age and adult samples, and differences are broadly consistent with gender stereotypes: Women reported themselves to be higher in Neuroticism, Agreeableness, Warmth, and Openness to Feelings, whereas men were higher in Assertiveness and Openness to Ideas. Contrary to predictions from evolutionary theory, the magnitude of gender differences varied across cultures. Contrary to predictions from the social role model, gender differences were most pronounced in European and American cultures in which traditional sex roles are minimized. Possible explanations for this surprising finding are discussed, including the attribution of masculine and feminine behaviors to roles rather than traits in traditional cultures.

  17. Characterizing complex structural variation in germline and somatic genomes

    PubMed Central

    Quinlan, Aaron R.; Hall, Ira M.

    2011-01-01

    Genome structural variation (SV) is a major source of genetic diversity in mammals and a hallmark of cancer. While SV is typically defined by its canonical forms – duplication, deletion, insertion, inversion and translocation – recent breakpoint mapping studies have revealed a surprising number of “complex” variants that evade simple classification. Complex SVs are defined by clustered breakpoints that arose through a single mutation but cannot be explained by one simple end-joining or recombination event. Some complex variants exhibit profoundly complicated rearrangements between distinct loci from multiple chromosomes, while others involve more subtle alterations at a single locus. These diverse and unpredictable features present a challenge for SV mapping experiments. Here, we review current knowledge of complex SV in mammals, and outline techniques for identifying and characterizing complex variants using next-generation DNA sequencing. PMID:22094265

  18. Structure of nerve growth factor complexed with the shared neurotrophin receptor p75.

    PubMed

    He, Xiao-Lin; Garcia, K Christopher

    2004-05-07

    Neurotrophins are secreted growth factors critical for the development and maintenance of the vertebrate nervous system. Neurotrophins activate two types of cell surface receptors, the Trk receptor tyrosine kinases and the shared p75 neurotrophin receptor. We have determined the 2.4 A crystal structure of the prototypic neurotrophin, nerve growth factor (NGF), complexed with the extracellular domain of p75. Surprisingly, the complex is composed of an NGF homodimer asymmetrically bound to a single p75. p75 binds along the homodimeric interface of NGF, which disables NGF's symmetry-related second p75 binding site through an allosteric conformational change. Thus, neurotrophin signaling through p75 may occur by disassembly of p75 dimers and assembly of asymmetric 2:1 neurotrophin/p75 complexes, which could potentially engage a Trk receptor to form a trimolecular signaling complex.

  19. Surprising stability of neutral interstitial hydrogen in diamond and cubic BN

    DOE PAGES

    Lyons, J. L.; Van de Walle, C. G.

    2016-01-21

    We report that in virtually all semiconductors and insulators, hydrogen interstitials (H i) act as negative-U centers, implying that hydrogen is never stable in the neutral charge state. Using hybrid density functional calculations, we find a different behavior for H i in diamond and cubic BN. In diamond, H i is a very strong positive-U center, and the H 0 icharge state is stable over a Fermi-level range of more than 2 eV. In cubic BN, a III-V compound similar to diamond, we also find positive-U behavior, though over a much smaller Fermi-level range. Finally, these results highlight the uniquemore » behavior of Hi in these covalent wide-band-gap semiconductors.« less

  20. Cannibalism in Tyrannosaurus rex.

    PubMed

    Longrich, Nicholas R; Horner, John R; Erickson, Gregory M; Currie, Philip J

    2010-10-15

    Tyrannosaurus rex was one of the largest terrestrial carnivores of all time, and consequently its ecology and diet have been the focus of much discussion. However, there is little direct evidence of diet or feeding habits in this species. Examination of museum collections has revealed four specimens of Tyrannosaurus rex that bear tooth marks made by large, carnivorous dinosaurs. Because Tyrannosaurus is the only large carnivore known from the Late Maastrichtian of western North America, we infer that Tyrannosaurus made these tooth marks. The marks are interpreted as feeding traces and these fossils therefore record instances of cannibalism. Given that this behavior has a low preservation potential, cannibalism seems to have been a surprisingly common behavior in Tyrannosaurus, and this behavior may have been relatively common in carnivorous dinosaurs.

  1. Investigations of the polarization behavior of quantum cascade lasers by Stokes parameters.

    PubMed

    Janassek, Patrick; Hartmann, Sébastien; Molitor, Andreas; Michel, Florian; Elsäßer, Wolfgang

    2016-01-15

    We experimentally investigate the full polarization behavior of mid-infrared emitting quantum cascade lasers (QCLs) in terms of measuring the complete Stokes parameters, instead of only projecting them on a linear polarization basis. We demonstrate that besides the pre-dominant linear TM polarization of the emitted light as governed by the selection rules of the intersubband transition, small non-TM contributions, e.g., circularly polarized light, are present reflecting the birefringent behavior of the semiconductor quantum well waveguide. Surprisingly unique is the persistence of these polarization properties well below laser threshold. These investigations give further insight into understanding, manipulating, and exploiting the polarization properties of QCLs, both from a laser point of view and with respect toward applications.

  2. Phosphorylation of FMRP and alterations of FMRP complex underlie enhanced mLTD in adult rats triggered by early life seizures.

    PubMed

    Bernard, Paul B; Castano, Anna M; O'Leary, Heather; Simpson, Kameron; Browning, Michael D; Benke, Tim A

    2013-11-01

    Outside of Fragile X syndrome (FXS), the role of Fragile-X Mental Retardation Protein (FMRP) in mediating neuropsychological abnormalities is not clear. FMRP, p70-S6 kinase (S6K) and protein phosphatase 2A (PP2A) are thought to cooperate as a dynamic signaling complex. In our prior work, adult rats have enhanced CA1 hippocampal long-term depression (LTD) following an early life seizure (ELS). We now show that mGluR-mediated LTD (mLTD) is specifically enhanced following ELS, similar to FMRP knock-outs. Total FMRP expression is unchanged but S6K is hyperphosphorylated, consistent with S6K overactivation. We postulated that either disruption of the FMRP-S6K-PP2A complex and/or removal of this complex from synapses could explain our findings. Using subcellular fractionation, we were surprised to find that concentrations of FMRP and PP2A were undisturbed in the synaptosomal compartment but reduced in parallel in the cytosolic compartment. Following ELS FMRP phosphorylation was reduced in the cytosolic compartment and increased in the synaptic compartment, in parallel with the compartmentalization of S6K activation. Furthermore, FMRP and PP2A remain bound following ELS. In contrast, the interaction of S6K with FMRP is reduced by ELS. Blockade of PP2A results in enhanced mLTD; this is occluded by ELS. This suggests a critical role for the location and function of the FMRP-S6K-PP2A signaling complex in limiting the amount of mLTD. Specifically, non-synaptic targeting and the function of the complex may influence the "set-point" for regulating mLTD. Consistent with this, striatal-enriched protein tyrosine phosphatase (STEP), an FMRP "target" which regulates mLTD expression, is specifically increased in the synaptosomal compartment following ELS. Further, we provide behavioral data to suggest that FMRP complex dysfunction may underlie altered socialization, a symptom associated and observed in other rodent models of autism, including FXS. © 2013.

  3. Complex adaptive behavior and dexterous action

    PubMed Central

    Harrison, Steven J.; Stergiou, Nicholas

    2016-01-01

    Dexterous action, as conceptualized by Bernstein in his influential ecological analysis of human behavior, is revealed in the ability to flexibly generate behaviors that are adaptively tailored to the demands of the context in which they are embedded. Conceived as complex adaptive behavior, dexterity depends upon the qualities of robustness and degeneracy, and is supported by the functional complexity of the agent-environment system. Using Bernstein’s and Gibson’s ecological analyses of behavior situated in natural environments as conceptual touchstones, we consider the hypothesis that complex adaptive behavior capitalizes upon general principles of self-organization. Here, we outline a perspective in which the complex interactivity of nervous-system, body, and environment is revealed as an essential resource for adaptive behavior. From this perspective, we consider the implications for interpreting the functionality and dysfunctionality of human behavior. This paper demonstrates that, optimal variability, the topic of this special issue, is a logical consequence of interpreting the functionality of human behavior as complex adaptive behavior. PMID:26375932

  4. Surprise and opportunity for learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    USGS Publications Warehouse

    Melis, Theodore S.; Walters, Carl; Korman, Josh

    2015-01-01

    With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

  5. The Surprisingly Low Motivational Power of Future Rewards: Comparing Conventional Money-Based Measures of Discounting with Motivation-Based Measures

    ERIC Educational Resources Information Center

    Ebert, Jane E. J.

    2010-01-01

    Temporal discount rates are often poor predictors of behaviors that we expect will be motivated by the future. The current research suggests this may be because conventional discounting measures are poor measures of the motivational value of future rewards. In six studies, I develop motivation-based measures of the present value (PV) of future…

  6. Surprising Behavior of Spinning Tops and Eggs on an Inclined Plane

    ERIC Educational Resources Information Center

    Cross, Rod

    2016-01-01

    A spinning top or a spinning hard-boiled egg is fascinating to observe since both objects can remain upright for a relatively long time without falling over. If spun at sufficient speed on a horizontal surface, the spin axis rises to a vertical position and the bottom end tends to remain fixed in position on the surface. If the initial spin is…

  7. Couple Functioning and Posttraumatic Stress in OIF/OEF Veterans and Spouses

    DTIC Science & Technology

    2011-11-17

    firefighters. The very nature of the military lifestyle and the planned deployment separations creates the opportunity for preventive interventions...through these organizations. Statistics are not available for the numbers of cohabitating couples in either heterosexual or homosexual relationships...about behaviors and support that have assisted them to remain successful. We still know surprisingly little about how resilience can be nurtured and

  8. The Relative Power of an Emotion's Facial Expression, Label, and Behavioral Consequence to Evoke Preschoolers' Knowledge of Its Cause

    ERIC Educational Resources Information Center

    Widen, Sherri C.; Russell, James A.

    2004-01-01

    Lay people and scientists alike assume that, especially for young children, facial expressions are a strong cue to another's emotion. We report a study in which children (N=120; 3-4 years) described events that would cause basic emotions (surprise, fear, anger, disgust, sadness) presented as its facial expression, as its label, or as its…

  9. Dynamical behaviour in coronal loops

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.

    1986-01-01

    Rapid variability has been found in two active region coronal loops observed by the X-ray Polychromator (XRP) and the Hard X-ray Imaging Spectrometer (HXIS) onboard the Solar Maximum Mission (SMM). There appear to be surprisingly few observations of the short-time scale behavior of hot loops, and the evidence presented herein lends support to the hypothesis that coronal heating may be impulsive and driven by flaring.

  10. Dynamical behaviour in coronal loops

    NASA Astrophysics Data System (ADS)

    Haisch, Bernhard M.

    Rapid variability has been found in two active region coronal loops observed by the X-ray Polychromator (XRP) and the Hard X-ray Imaging Spectrometer (HXIS) onboard the Solar Maximum Mission (SMM). There appear to be surprisingly few observations of the short-time scale behavior of hot loops, and the evidence presented herein lends support to the hypothesis that coronal heating may be impulsive and driven by flaring.

  11. Off target.

    PubMed

    Hudson, T; Haugh, R; Serb, C

    1999-01-01

    Leave it to the market. It's our collective corrective, the American way of problem-solving. So it's no surprise that we looked to the market to stop runaway health care costs. For awhile, it seemed to work. Medicare HMOs, physician practice management, risk contracting, and other innovations boomed. Then came the setbacks, exposing health care's complexities and contradictions--and reminding us that nothing escapes market discipline.

  12. The Micro-Politics of Micro-Leadership: Exploring the Role of Programme Leader in English Universities

    ERIC Educational Resources Information Center

    Murphy, Mark; Curtis, Will

    2013-01-01

    This study is based on interviews with 25 programme leaders at two universities in England. Programme leadership is ubiquitous and essential to effective university operations, yet there is surprisingly little research on the role. It is an ambiguous and complex form of leadership, existing as it does in the space between standard academic and…

  13. Transforming Your Regional Economy through Uncertainty and Surprise: Learning from Complexity Science, Network Theory and the Field

    NASA Astrophysics Data System (ADS)

    Holley, June

    The field of regional development blossomed in the last decade, as researchers and practitioners increasingly asserted that the region was the most effective geographic unit for supporting the excellence and innovation of entrepreneurs. See, for example, the many studies by the European Union and the work by Michael Porter.

  14. Teaching the Federal Budget, National Debt, and Budget Deficit: Findings from High School Teachers

    ERIC Educational Resources Information Center

    Marri, Anand R.; Ahn, Meesuk; Crocco, Margaret Smith; Grolnick, Maureen; Gaudelli, William; Walker, Erica N.

    2011-01-01

    The issues surrounding the federal budget, national debt, and budget deficit are complex, but not beyond the reach of young students. This study finds scant treatment of the federal budget, national debt, and budget deficit in high schools today. It is hardly surprising that high school teachers spend so little time discussing these topics in…

  15. Reynolds number influences in aeronautics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.; Yip, Long P.; Yao, Chung-Sheng; Lin, John C.; Lawing, Pierce L.; Batina, John T.; Hardin, Jay C.; Horvath, Thomas J.; Fenbert, James W.; Domack, Christopher S.

    1993-01-01

    Reynolds number, a measure of the ratio of inertia to viscous forces, is a fundamental similarity parameter for fluid flows and therefore, would be expected to have a major influence in aerodynamics and aeronautics. Reynolds number influences are generally large, but monatomic, for attached laminar (continuum) flow; however, laminar flows are easily separated, inducing even stronger, non-monatomic, Reynolds number sensitivities. Probably the strongest Reynolds number influences occur in connection with transitional flow behavior. Transition can take place over a tremendous Reynolds number range, from the order of 20 x 10(exp 3) for 2-D free shear layers up to the order of 100 x 10(exp 6) for hypersonic boundary layers. This variability in transition behavior is especially important for complex configurations where various vehicle and flow field elements can undergo transition at various Reynolds numbers, causing often surprising changes in aerodynamics characteristics over wide ranges in Reynolds number. This is further compounded by the vast parameterization associated with transition, in that any parameter which influences mean viscous flow development (e.g., pressure gradient, flow curvature, wall temperature, Mach number, sweep, roughness, flow chemistry, shock interactions, etc.), and incident disturbance fields (acoustics, vorticity, particulates, temperature spottiness, even electro static discharges) can alter transition locations to first order. The usual method of dealing with the transition problem is to trip the flow in the generally lower Reynolds number wind tunnel to simulate the flight turbulent behavior. However, this is not wholly satisfactory as it results in incorrectly scaled viscous region thicknesses and cannot be utilized at all for applications such as turbine blades and helicopter rotors, nacelles, leading edge and nose regions, and High Altitude Long Endurance and hypersonic airbreathers where the transitional flow is an innately critical portion of the problem.

  16. Smoking Behavior and Alcohol Consumption in Individuals With Panic Attacks

    PubMed Central

    Mathew, Amanda R.; Norton, Peter J.; Zvolensky, Michael J.; Buckner, Julia D.; Smits, Jasper A. J.

    2011-01-01

    Individuals with anxiety often report greater smoking and drinking behaviors relative to those without a history of anxiety. In particular, smoking and alcohol use have been directly implicated among individuals experiencing panic attacks, diagnosed with panic disorder, or high on panic-relevant risk factors such as anxiety sensitivity. Less is known, however, about specific features of panic that may differentiate among those who do or do not use cigarettes or alcohol. The purpose of the current study was to replicate previous research findings of an association between panic symptomatology, cigarette smoking, and alcohol consumption, as well as extend findings by examining whether specific symptoms of panic attacks differentiated among those who do or do not use cigarettes or alcohol. Participants (n = 489) completed the Panic Attack Questionnaire-IV, a highly detailed assessment of panic attacks and symptoms, as well as self-report measures of smoking history and alcohol use. Consistent with previous research, participants who reported a history of panic attacks (n = 107) were significantly more likely to report current daily or lifetime daily cigarette smoking, and significantly greater hazardous or harmful alcohol use than participants with no panic history (n = 382). Although smoking and hazardous alcohol use were highly associated regardless of panic status, participants with panic attacks showed elevated hazardous alcohol use after controlling for daily or lifetime smoking. Surprisingly, although participants who reported having had at least one panic attack were more likely to smoke, panic attack symptoms, intensity, or frequency did not differentiate panickers who did or did not smoke. Furthermore, panic-related variables were not shown to differentially relate to problematic drinking among panickers. Implications for understanding the complex relationship between panic attacks and smoking and drinking behaviors are discussed. PMID:21915160

  17. Global adaptation in networks of selfish components: emergent associative memory at the system scale.

    PubMed

    Watson, Richard A; Mills, Rob; Buckley, C L

    2011-01-01

    In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organize into structures that enhance global adaptation, efficiency, or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology, and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalization, and optimization are well understood. Such global functions within a single agent or organism are not wholly surprising, since the mechanisms (e.g., Hebbian learning) that create these neural organizations may be selected for this purpose; but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviors when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g., when they can influence which other agents they interact with), then, in adapting these inter-agent relationships to maximize their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviors as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalize by idealizing stored patterns and/or creating new combinations of subpatterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviors in the same sense, and by the same mechanism, as with the organizational principles familiar in connectionist models of organismic learning.

  18. A Learning-Style Theory for Understanding Autistic Behaviors

    PubMed Central

    Qian, Ning; Lipkin, Richard M.

    2011-01-01

    Understanding autism's ever-expanding array of behaviors, from sensation to cognition, is a major challenge. We posit that autistic and typically developing brains implement different algorithms that are better suited to learn, represent, and process different tasks; consequently, they develop different interests and behaviors. Computationally, a continuum of algorithms exists, from lookup table (LUT) learning, which aims to store experiences precisely, to interpolation (INT) learning, which focuses on extracting underlying statistical structure (regularities) from experiences. We hypothesize that autistic and typical brains, respectively, are biased toward LUT and INT learning, in low- and high-dimensional feature spaces, possibly because of their narrow and broad tuning functions. The LUT style is good at learning relationships that are local, precise, rigid, and contain little regularity for generalization (e.g., the name–number association in a phonebook). However, it is poor at learning relationships that are context dependent, noisy, flexible, and do contain regularities for generalization (e.g., associations between gaze direction and intention, language and meaning, sensory input and interpretation, motor-control signal and movement, and social situation and proper response). The LUT style poorly compresses information, resulting in inefficiency, sensory overload (overwhelm), restricted interests, and resistance to change. It also leads to poor prediction and anticipation, frequent surprises and over-reaction (hyper-sensitivity), impaired attentional selection and switching, concreteness, strong local focus, weak adaptation, and superior and inferior performances on simple and complex tasks. The spectrum nature of autism can be explained by different degrees of LUT learning among different individuals, and in different systems of the same individual. Our theory suggests that therapy should focus on training autistic LUT algorithm to learn regularities. PMID:21886617

  19. Differential regulation of mammalian Period genes and circadian rhythmicity by cryptochromes 1 and 2

    PubMed Central

    Vitaterna, Martha Hotz; Selby, Christopher P.; Todo, Takeshi; Niwa, Hitoshi; Thompson, Carol; Fruechte, Ethan M.; Hitomi, Kenichi; Thresher, Randy J.; Ishikawa, Tomoko; Miyazaki, Junichi; Takahashi, Joseph S.; Sancar, Aziz

    1999-01-01

    Cryptochromes regulate the circadian clock in animals and plants. Humans and mice have two cryptochrome (Cry) genes. A previous study showed that mice lacking the Cry2 gene had reduced sensitivity to acute light induction of the circadian gene mPer1 in the suprachiasmatic nucleus (SCN) and had an intrinsic period 1 hr longer than normal. In this study, Cry1−/− and Cry1−/−Cry2−/− mice were generated and their circadian clocks were analyzed at behavioral and molecular levels. Behaviorally, the Cry1−/− mice had a circadian period 1 hr shorter than wild type and the Cry1−/−Cry2−/− mice were arrhythmic in constant darkness (DD). Biochemically, acute light induction of mPer1 mRNA in the SCN was blunted in Cry1−/− and abolished in Cry1−/−Cry2−/− mice. In contrast, the acute light induction of mPer2 in the SCN was intact in Cry1−/− and Cry1−/−Cry2−/− animals. Importantly, in double mutants, mPer1 expression was constitutively elevated and no rhythmicity was detected in either 12-hr light/12-hr dark or DD, whereas mPer2 expression appeared rhythmic in 12-hr light/12-hr dark, but nonrhythmic in DD with intermediate levels. These results demonstrate that Cry1 and Cry2 are required for the normal expression of circadian behavioral rhythms, as well as circadian rhythms of mPer1 and mPer2 in the SCN. The differential regulation of mPer1 and mPer2 by light in Cry double mutants reveals a surprising complexity in the role of cryptochromes in mammals. PMID:10518585

  20. Social behavior correlates of cortisol activity in child care: gender differences and time-of-day effects.

    PubMed

    Tout, K; de Haan, M; Campbell, E K; Gunnar, M R

    1998-10-01

    The relations between social behavior and daily patterns of a stress-sensitive hormone production were examined in preschool children (N = 75) attending center-based child care. Three behavioral dimensions, shy/anxious/internalizing, angry/aggressive/externalizing, and social competence, were assessed by teacher report and classroom observation, and their relations with 2 measures of cortisol activity, median (or typical) levels and reactivity (quartile range score between second and third quartile values) were explored. Cortisol-behavior relations differed by gender: significant associations were found for boys but not for girls. Specifically, for boys externalizing behavior was positively associated with cortisol reactivity, while internalizing behavior was negatively associated with median cortisol. Time of day of cortisol measurement affected the results. Surprisingly, median cortisol levels rose from morning to afternoon, a pattern opposite to that of the typical circadian rhythm of cortisol. This rise in cortisol over the day was positively correlated with internalizing behavior for boys. The methodological and theoretical implications of these findings for the study of the development of hormone-behavior relations are discussed.

  1. Validating agent based models through virtual worlds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakkaraju, Kiran; Whetzel, Jonathan H.; Lee, Jina

    As the US continues its vigilance against distributed, embedded threats, understanding the political and social structure of these groups becomes paramount for predicting and dis- rupting their attacks. Agent-based models (ABMs) serve as a powerful tool to study these groups. While the popularity of social network tools (e.g., Facebook, Twitter) has provided extensive communication data, there is a lack of ne-grained behavioral data with which to inform and validate existing ABMs. Virtual worlds, in particular massively multiplayer online games (MMOG), where large numbers of people interact within a complex environ- ment for long periods of time provide an alternative sourcemore » of data. These environments provide a rich social environment where players engage in a variety of activities observed between real-world groups: collaborating and/or competing with other groups, conducting battles for scarce resources, and trading in a market economy. Strategies employed by player groups surprisingly re ect those seen in present-day con icts, where players use diplomacy or espionage as their means for accomplishing their goals. In this project, we propose to address the need for ne-grained behavioral data by acquiring and analyzing game data a commercial MMOG, referred to within this report as Game X. The goals of this research were: (1) devising toolsets for analyzing virtual world data to better inform the rules that govern a social ABM and (2) exploring how virtual worlds could serve as a source of data to validate ABMs established for analogous real-world phenomena. During this research, we studied certain patterns of group behavior to compliment social modeling e orts where a signi cant lack of detailed examples of observed phenomena exists. This report outlines our work examining group behaviors that underly what we have termed the Expression-To-Action (E2A) problem: determining the changes in social contact that lead individuals/groups to engage in a particular behavior. Results from our work indicate that virtual worlds have the potential for serving as a proxy in allocating and populating behaviors that would be used within further agent-based modeling studies.« less

  2. Social complexity, modernity and suicide: an assessment of Durkheim's suicide from the perspective of a non-linear analysis of complex social systems.

    PubMed

    Condorelli, Rosalia

    2016-01-01

    Can we share even today the same vision of modernity which Durkheim left us by its suicide analysis? or can society 'surprise us'? The answer to these questions can be inspired by several studies which found that beginning the second half of the twentieth century suicides in western countries more industrialized and modernized do not increase in a constant, linear way as modernization and social fragmentation process increases, as well as Durkheim's theory seems to lead us to predict. Despite continued modernizing process, they found stabilizing or falling overall suicide rate trends. Therefore, a gradual process of adaptation to the stress of modernization associated to low social integration levels seems to be activated in modern society. Assuming this perspective, the paper highlights as this tendency may be understood in the light of the new concept of social systems as complex adaptive systems, systems which are able to adapt to environmental perturbations and generate as a whole surprising, emergent effects due to nonlinear interactions among their components. So, in the frame of Nonlinear Dynamical System Modeling, we formalize the logic of suicide decision-making process responsible for changes at aggregate level in suicide growth rates by a nonlinear differential equation structured in a logistic way, and in so doing we attempt to capture the mechanism underlying the change process in suicide growth rate and to test the hypothesis that system's dynamics exhibits a restrained increase process as expression of an adaptation process to the liquidity of social ties in modern society. In particular, a Nonlinear Logistic Map is applied to suicide data in a modern society such as the Italian one from 1875 to 2010. The analytic results, seeming to confirm the idea of the activation of an adaptation process to the liquidity of social ties, constitutes an opportunity for a more general reflection on the current configuration of modern society, by relating the Durkheimian Theory with the Halbwachs' Theory and most current visions of modernity such as the Baumanian one. Complexity completes the interpretative framework by rooting the generating mechanism of adaptation process in the precondition of a new General Theory of Systems making the non linearity property of social system's interactions and surprise the functioning and evolution rule of social systems.

  3. The paradox of physicians and administrators in health care organizations.

    PubMed

    Peirce, J C

    2000-01-01

    Rapidly changing times in health care challenge both physicians and health care administrators to manage the paradox of providing orderly, high quality, and efficient care while bringing forth innovations to address present unmet problems and surprises that emerge. Health care has grown throughout the past several centuries through differentiation and integration, becoming a highly complex biological system with the hospital as the central attractive force--or "strange attractor"--during this century. The theoretical model of complex adaptive systems promises more effective strategic direction in addressing these chaotic times where the new strange attractor moves beyond the hospital.

  4. Molecular Mechanisms of Inner Ear Development

    PubMed Central

    Wu, Doris K.; Kelley, Matthew W.

    2012-01-01

    The inner ear is a structurally complex vertebrate organ built to encode sound, motion, and orientation in space. Given its complexity, it is not surprising that inner ear dysfunction is a relatively common consequence of human genetic mutation. Studies in model organisms suggest that many genes currently known to be associated with human hearing impairment are active during embryogenesis. Hence, the study of inner ear development provides a rich context for understanding the functions of genes implicated in hearing loss. This chapter focuses on molecular mechanisms of inner ear development derived from studies of model organisms. PMID:22855724

  5. Teleconnections in complex human-Earth system models

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Edmonds, J.

    2017-12-01

    Human systems and physical Earth systems are closely coupled and interact in complex ways that are sometimes surprising. This presentation discusses a few examples of system interactions. We consider the coupled energy-water-land-economy systems. We show how reductions in fossil fuel emissions are inversely coupled to land rents, food prices and deforestation. We discuss how water shortages in one part of the world is propagated to other distant parts of the world. We discuss the sensitivity of international trade patterns to energy and land systems technology and markets, and the potentially unanticipated results that can emerge.

  6. Fighting fire with fire: attacking the complexity of human tumors with armed therapeutic viruses.

    PubMed

    Hermiston, Terry

    2002-08-01

    Cancer gene therapies have centered on the use of a single gene, directed against a particular property or single aspect of tumor biology, to treat neoplastic disease. These therapies have met with limited clinical success. This is, perhaps, not surprising given the complex and heterogeneous nature of solid tumors. Treatments targeted at confronting multiple dimensions of human tumors are needed. Armed therapeutic viruses (oncolytic viruses carrying therapeutic genes) represent a system where the concerted action of multiple therapeutics can be joined into a single agent, and represent a promising avenue for developing future cancer therapies.

  7. Actin Cross-link Assembly and Disassembly Mechanics for α-Actinin and Fascin*

    PubMed Central

    Courson, David S.; Rock, Ronald S.

    2010-01-01

    Self-assembly of complex structures is commonplace in biology but often poorly understood. In the case of the actin cytoskeleton, a great deal is known about the components that include higher order structures, such as lamellar meshes, filopodial bundles, and stress fibers. Each of these cytoskeletal structures contains actin filaments and cross-linking proteins, but the role of cross-linking proteins in the initial steps of structure formation has not been clearly elucidated. We employ an optical trapping assay to investigate the behaviors of two actin cross-linking proteins, fascin and α-actinin, during the first steps of structure assembly. Here, we show that these proteins have distinct binding characteristics that cause them to recognize and cross-link filaments that are arranged with specific geometries. α-Actinin is a promiscuous cross-linker, linking filaments over all angles. It retains this flexibility after cross-links are formed, maintaining a connection even when the link is rotated. Conversely, fascin is extremely selective, only cross-linking filaments in a parallel orientation. Surprisingly, bundles formed by either protein are extremely stable, persisting for over 0.5 h in a continuous wash. However, using fluorescence recovery after photobleaching and fluorescence decay experiments, we find that the stable fascin population can be rapidly competed away by free fascin. We present a simple avidity model for this cross-link dissociation behavior. Together, these results place constraints on how cytoskeletal structures assemble, organize, and disassemble in vivo. PMID:20551315

  8. Episodic memories predict adaptive value-based decision-making

    PubMed Central

    Murty, Vishnu; FeldmanHall, Oriel; Hunter, Lindsay E.; Phelps, Elizabeth A; Davachi, Lila

    2016-01-01

    Prior research illustrates that memory can guide value-based decision-making. For example, previous work has implicated both working memory and procedural memory (i.e., reinforcement learning) in guiding choice. However, other types of memories, such as episodic memory, may also influence decision-making. Here we test the role for episodic memory—specifically item versus associative memory—in supporting value-based choice. Participants completed a task where they first learned the value associated with trial unique lotteries. After a short delay, they completed a decision-making task where they could choose to re-engage with previously encountered lotteries, or new never before seen lotteries. Finally, participants completed a surprise memory test for the lotteries and their associated values. Results indicate that participants chose to re-engage more often with lotteries that resulted in high versus low rewards. Critically, participants not only formed detailed, associative memories for the reward values coupled with individual lotteries, but also exhibited adaptive decision-making only when they had intact associative memory. We further found that the relationship between adaptive choice and associative memory generalized to more complex, ecologically valid choice behavior, such as social decision-making. However, individuals more strongly encode experiences of social violations—such as being treated unfairly, suggesting a bias for how individuals form associative memories within social contexts. Together, these findings provide an important integration of episodic memory and decision-making literatures to better understand key mechanisms supporting adaptive behavior. PMID:26999046

  9. Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels

    PubMed Central

    Phadnis, Nitin

    2017-01-01

    Abstract Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, all nine CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper-activation is performed through the cooption of the polycystic kidney disease 2 (pkd2) Ca2+ channel. The parallels between CatSpers in primates and pkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by > 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper-activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper-activation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior. PMID:28810709

  10. Vocal Generalization Depends on Gesture Identity and Sequence

    PubMed Central

    Sober, Samuel J.

    2014-01-01

    Generalization, the brain's ability to transfer motor learning from one context to another, occurs in a wide range of complex behaviors. However, the rules of generalization in vocal behavior are poorly understood, and it is unknown how vocal learning generalizes across an animal's entire repertoire of natural vocalizations and sequences. Here, we asked whether generalization occurs in a nonhuman vocal learner and quantified its properties. We hypothesized that adaptive error correction of a vocal gesture produced in one sequence would generalize to the same gesture produced in other sequences. To test our hypothesis, we manipulated the fundamental frequency (pitch) of auditory feedback in Bengalese finches (Lonchura striata var. domestica) to create sensory errors during vocal gestures (song syllables) produced in particular sequences. As hypothesized, error-corrective learning on pitch-shifted vocal gestures generalized to the same gestures produced in other sequential contexts. Surprisingly, generalization magnitude depended strongly on sequential distance from the pitch-shifted syllables, with greater adaptation for gestures produced near to the pitch-shifted syllable. A further unexpected result was that nonshifted syllables changed their pitch in the direction opposite from the shifted syllables. This apparently antiadaptive pattern of generalization could not be explained by correlations between generalization and the acoustic similarity to the pitch-shifted syllable. These findings therefore suggest that generalization depends on the type of vocal gesture and its sequential context relative to other gestures and may reflect an advantageous strategy for vocal learning and maintenance. PMID:24741046

  11. Influence of deep sedimentary basins, crustal thining, attenuation, and topography on regional phases: selected examples from theEastern Mediteranean and the Caspian Sea Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, P.; Schultz, C.; Larsen, S.

    1997-07-15

    Monitoring of a CTBT will require transportable seismic identification techniques, especially in regions where there is limited data. Unfortunately, most existing techniques are empirical and can not be used reliably in new regions. Our goal is to help develop transportable regional identification techniques by improving our ability to predict the behavior of regional phases and discriminants in diverse geologic regions and in regions with little or no data. Our approach is to use numerical modeling to understand the physical basis for regional wave propagation phenomena and to use this understanding to help explain observed behavior of regional phases and discriminants.more » In this paper, we focus on results from simulations of data in selected regions and investigate the sensitivity of these regional simulations to various features of the crustal structure. Our initial models use teleseismically estimated source locations, mechanisms, and durations and seismological structures that have been determined by others. We model the Mb 5.9, October 1992, Cairo Egypt earthquake at a station at Ankara Turkey (ANTO) using a two-dimensional crustal model consisting of a water layer over a deep sedimentary basin with a thinning crust beneath the basin. Despite the complex tectonics of the Eastern Mediterranean region, we find surprisingly good agreement between the observed data and synthetics based on this relatively smooth two-dimensional model.« less

  12. Social cognitive conflict resolution: Contributions of domain general and domain specific neural systems

    PubMed Central

    Zaki, Jamil; Hennigan, Kelly; Weber, Jochen; Ochsner, Kevin N.

    2010-01-01

    Cognitive control mechanisms allow individuals to behave adaptively in the face of complex and sometimes conflicting information. While the neural bases of these control mechanisms have been examined in many contexts, almost no attention has been paid to their role in resolving conflicts between competing social cues, which is surprising, given that cognitive conflicts are part of many social interactions. Evidence about the neural processing of social information suggests that two systems—the mirror neuron system (MNS) and mental state attribution system (MSAS)—are specialized for processing nonverbal and contextual social cues, respectively. This could support a model of social cognitive conflict resolution in which competition between social cues would recruit domain-general cognitive control mechanisms, which in turn would bias processing towards the MNS or MSAS. Such biasing could also alter social behaviors, such as inferences made about the internal states of others. We tested this model by scanning participants using fMRI while they drew inferences about social targets' emotional states based on congruent or incongruent nonverbal and contextual social cues. Conflicts between social cues recruited the anterior cingulate and lateral prefrontal cortex, brain areas associated with domain-general control processes. This activation was accompanied by biasing of neural activity towards areas in the MNS or MSAS, which tracked, respectively, with perceivers' behavioral reliance on nonverbal or contextual cues when drawing inferences about targets' emotions. Together, these data provide evidence about both domain general and domain specific mechanisms involved in resolving social cognitive conflicts. PMID:20573895

  13. Complexity in pH-Dependent Ribozyme Kinetics: Dark pKa Shifts and Wavy Rate-pH Profiles.

    PubMed

    Frankel, Erica A; Bevilacqua, Philip C

    2018-02-06

    Charged bases occur in RNA enzymes, or ribozymes, where they play key roles in catalysis. Cationic bases donate protons and perform electrostatic catalysis, while anionic bases accept protons. We previously published simulations of rate-pH profiles for ribozymes in terms of species plots for the general acid and general base that have been useful for understanding how ribozymes respond to pH. In that study, we did not consider interaction between the general acid and general base or interaction with other species on the RNA. Since that report, diverse small ribozyme classes have been discovered, many of which have charged nucleobases or metal ions in the active site that can either directly interact and participate in catalysis or indirectly interact as "influencers". Herein, we simulate experimental rate-pH profiles in terms of species plots in which reverse protonated charged nucleobases interact. These analyses uncover two surprising features of pH-dependent enzyme kinetics. (1) Cooperativity between the general acid and general base enhances population of the functional forms of a ribozyme and manifests itself as hidden or "dark" pK a shifts, real pK a shifts that accelerate the reaction but are not readily observed by standard experimental approaches, and (2) influencers favorably shift the pK a s of proton-transferring nucleobases and manifest themselves as "wavy" rate-pH profiles. We identify parallels with the protein enzyme literature, including reverse protonation and wavelike behavior, while pointing out that RNA is more prone to reverse protonation. The complexities uncovered, which arise from simple pairwise interactions, should aid deconvolution of complex rate-pH profiles for RNA and protein enzymes and suggest veiled catalytic devices for promoting catalysis that can be tested by experiment and calculation.

  14. Pupil size tracks perceptual content and surprise.

    PubMed

    Kloosterman, Niels A; Meindertsma, Thomas; van Loon, Anouk M; Lamme, Victor A F; Bonneh, Yoram S; Donner, Tobias H

    2015-04-01

    Changes in pupil size at constant light levels reflect the activity of neuromodulatory brainstem centers that control global brain state. These endogenously driven pupil dynamics can be synchronized with cognitive acts. For example, the pupil dilates during the spontaneous switches of perception of a constant sensory input in bistable perceptual illusions. It is unknown whether this pupil dilation only indicates the occurrence of perceptual switches, or also their content. Here, we measured pupil diameter in human subjects reporting the subjective disappearance and re-appearance of a physically constant visual target surrounded by a moving pattern ('motion-induced blindness' illusion). We show that the pupil dilates during the perceptual switches in the illusion and a stimulus-evoked 'replay' of that illusion. Critically, the switch-related pupil dilation encodes perceptual content, with larger amplitude for disappearance than re-appearance. This difference in pupil response amplitude enables prediction of the type of report (disappearance vs. re-appearance) on individual switches (receiver-operating characteristic: 61%). The amplitude difference is independent of the relative durations of target-visible and target-invisible intervals and subjects' overt behavioral report of the perceptual switches. Further, we show that pupil dilation during the replay also scales with the level of surprise about the timing of switches, but there is no evidence for an interaction between the effects of surprise and perceptual content on the pupil response. Taken together, our results suggest that pupil-linked brain systems track both the content of, and surprise about, perceptual events. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Two dimensional Blue Native-/SDS-PAGE analysis of SLP family adaptor protein complexes.

    PubMed

    Swamy, Mahima; Kulathu, Yogesh; Ernst, Sandra; Reth, Michael; Schamel, Wolfgang W A

    2006-04-15

    SH2 domain containing leukocyte protein (SLP) adaptor proteins serve a central role in the antigen-mediated activation of lymphocytes by organizing multiprotein signaling complexes. Here, we use two dimensional native-/SDS-gel electrophoresis to study the number, size and relative abundance of protein complexes containing SLP family proteins. In non-stimulated T cells all SLP-76 proteins are in a approximately 400 kDa complex with the small adaptor protein Grb2-like adaptor protein downstream of Shc (Gads), whereas half of Gads is monomeric. This constitutive SLP-76/Gads complex could be reconstituted in Drosophila S2 cells expressing both components, suggesting that it might not contain additional subunits. In contrast, in B cells SLP-65 exists in a 180 kDa complex as well as in monomeric form. Since the complex was not found in S2 cells expressing only SLP-65, it was not di/trimeric SLP-65. Upon antigen-stimulation only the complexed SLP-65 was phosphorylated. Surprisingly, stimulation-induced alteration of SLP complexes could not be detected, suggesting that active signaling complexes form only transiently, and are of low abundance.

  16. Non-intromissive mating stimuli are sufficient to enhance sexual behaviors in ovariectomized female rats.

    PubMed

    Blaustein, Jeffrey D; Farrell, Sara; Ghavami, Gila; Laroche, Julie; Mohan, Govini

    2009-03-01

    When ovariectomized/adrenalectomized female rats, injected with subthreshold doses of estradiol are given copulatory stimulation by a male rat at half hour intervals, the level of lordosis gradually increases over the course of a few hours. We tested the hypothesis that paracopulatory behaviors (behaviors that occur repetitively prior to and between mounts), also generally considered to be heavily dependent on progesterone, are enhanced by this stimulation as well. We have reported previously that the enhancement of copulatory behavior is dependent to a large extent on intromissive stimulation by the male. In the present study, mating stimulation induced high levels of paracopulatory behaviors, as well as lordosis. Surprisingly, though, and in contrast to previous findings, this increase was seen not only in rats receiving intromissive stimulation, but in those receiving non-intromissive stimulation as well. Furthermore, intromissive stimulation induced high levels of rejection behavior. In a subsequent experiment, experimenter-induced, mechanical stimulation increased only rejection behaviors, not copulatory behavior. The results collectively demonstrate that, under the conditions used in these experiments, non-intromissive stimulation is sufficient for inducing both copulatory and paracopulatory behaviors in estradiol-primed rats. However, under the conditions used in these studies, intromissive stimulation increases rejection behaviors.

  17. Kramers degeneracy and relaxation in vanadium, niobium and tantalum clusters

    NASA Astrophysics Data System (ADS)

    Diaz-Bachs, A.; Katsnelson, M. I.; Kirilyuk, A.

    2018-04-01

    In this work we use magnetic deflection of V, Nb, and Ta atomic clusters to measure their magnetic moments. While only a few of the clusters show weak magnetism, all odd-numbered clusters deflect due to the presence of a single unpaired electron. Surprisingly, for the majority of V and Nb clusters an atomic-like behavior is found, which is a direct indication of the absence of spin–lattice interaction. This is in agreement with Kramers degeneracy theorem for systems with a half-integer spin. This purely quantum phenomenon is surprisingly observed for large systems of more than 20 atoms, and also indicates various quantum relaxation processes, via Raman two-phonon and Orbach high-spin mechanisms. In heavier, Ta clusters, the relaxation is always present, probably due to larger masses and thus lower phonon energies, as well as increased spin–orbit coupling.

  18. Long-Lasting Effects of Subliminal Affective Priming from Facial Expressions

    PubMed Central

    Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru; Paller, Ken A.

    2009-01-01

    Unconscious processing of stimuli with emotional content can bias affective judgments. Is this subliminal affective priming merely a transient phenomenon manifested in fleeting perceptual changes, or are long-lasting effects also induced? To address this question, we investigated memory for surprise faces 24 hours after they had been shown with 30-ms fearful, happy, or neutral faces. Surprise faces subliminally primed by happy faces were initially rated as more positive, and were later remembered better, than those primed by fearful or neutral faces. Participants likely to have processed primes supraliminally did not respond differentially as a function of expression. These results converge with findings showing memory advantages with happy expressions, though here the expressions were displayed on the face of a different person, perceived subliminally, and not present at test. We conclude that behavioral biases induced by masked emotional expressions are not ephemeral, but rather can last at least 24 hours. PMID:19695907

  19. Undervaluing Gratitude: Expressers Misunderstand the Consequences of Showing Appreciation.

    PubMed

    Kumar, Amit; Epley, Nicholas

    2018-06-01

    Expressing gratitude improves well-being for both expressers and recipients, but we suggest that an egocentric bias may lead expressers to systematically undervalue its positive impact on recipients in a way that could keep people from expressing gratitude more often in everyday life. Participants in three experiments wrote gratitude letters and then predicted how surprised, happy, and awkward recipients would feel. Recipients then reported how receiving an expression of gratitude actually made them feel. Expressers significantly underestimated how surprised recipients would be about why expressers were grateful, overestimated how awkward recipients would feel, and underestimated how positive recipients would feel. Expected awkwardness and mood were both correlated with participants' willingness to express gratitude. Wise decisions are guided by an accurate assessment of the expected value of action. Underestimating the value of prosocial actions, such as expressing gratitude, may keep people from engaging in behavior that would maximize their own-and others'-well-being.

  20. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises.

    PubMed

    Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang; Adelhelm, Philipp

    2018-01-02

    Mobile and stationary energy storage by rechargeable batteries is a topic of broad societal and economical relevance. Lithium-ion battery (LIB) technology is at the forefront of the development, but a massively growing market will likely put severe pressure on resources and supply chains. Recently, sodium-ion batteries (SIBs) have been reconsidered with the aim of providing a lower-cost alternative that is less susceptible to resource and supply risks. On paper, the replacement of lithium by sodium in a battery seems straightforward at first, but unpredictable surprises are often found in practice. What happens when replacing lithium by sodium in electrode reactions? This review provides a state-of-the art overview on the redox behavior of materials when used as electrodes in lithium-ion and sodium-ion batteries, respectively. Advantages and challenges related to the use of sodium instead of lithium are discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Long-lasting effects of subliminal affective priming from facial expressions.

    PubMed

    Sweeny, Timothy D; Grabowecky, Marcia; Suzuki, Satoru; Paller, Ken A

    2009-12-01

    Unconscious processing of stimuli with emotional content can bias affective judgments. Is this subliminal affective priming merely a transient phenomenon manifested in fleeting perceptual changes, or are long-lasting effects also induced? To address this question, we investigated memory for surprise faces 24 h after they had been shown with 30-ms fearful, happy, or neutral faces. Surprise faces subliminally primed by happy faces were initially rated as more positive, and were later remembered better, than those primed by fearful or neutral faces. Participants likely to have processed primes supraliminally did not respond differentially as a function of expression. These results converge with findings showing memory advantages with happy expressions, though here the expressions were displayed on the face of a different person, perceived subliminally, and not present at test. We conclude that behavioral biases induced by masked emotional expressions are not ephemeral, but rather can last at least 24 h.

  2. The pH-dependent Structures of the Manganese Binding Sites in Oxalate Decarboxylase as Revealed by High-Field Electron Paramagnetic Resonance

    PubMed Central

    Tabares, Leandro C.; Gätjens, Jessica; Hureau, Christelle; Burrell, Matthew R.; Bowater, Laura; Pecoraro, Vincent L.; Bornemann, Stephen; Un, Sun

    2009-01-01

    A high-field electron paramagnetic resonance (HFEPR) study of oxalate decarboxylase (OxdC) is reported. OxdC breaks down oxalate to carbon dioxide and formate and possesses two distinct manganese(II) binding sites, referred to as site-1 and -2. The Mn(II) zero-field interaction was used to probe the electronic state of the metal ion and to examine chemical/mechanistic roles of each of the Mn(II) centers. High magnetic-fields were exploited not only to resolve the two sites, but also to measure accurately the Mn(II) zero-field parameters of each of the sites. The spectra exhibited surprisingly complex behavior as a function of pH. Six different species were identified based on their zero-field interactions, two corresponding to site-1 and four states to site-2. The assignments were verified using a mutant that only affected site-1. The speciation data determined from the HFEPR spectra for site -2 was consistent with a simple triprotic equilibrium model, while the pH dependence of site-1 could be described by a single pKa. This pH dependence was independent of the presence of the His-tag and of whether the preparations contained 1.2 or 1.6 Mn per subunit. Possible structures of the six species are proposed based on spectroscopic data from model complexes and existing protein crystallographic structures obtained at pH 8 are discussed. Although site-1 has been identified as the active site and no role has been assigned to site-2, the pronounced changes in the electronic structure of the latter and its pH behavior, which also matches the pH-dependent activity of this enzyme, suggests that even if the conversion of oxalate to formate is carried out at site-1, site-2 likely plays a catalytically relevant role. PMID:19505123

  3. Combinatorial explosion in model gene networks

    NASA Astrophysics Data System (ADS)

    Edwards, R.; Glass, L.

    2000-09-01

    The explosive growth in knowledge of the genome of humans and other organisms leaves open the question of how the functioning of genes in interacting networks is coordinated for orderly activity. One approach to this problem is to study mathematical properties of abstract network models that capture the logical structures of gene networks. The principal issue is to understand how particular patterns of activity can result from particular network structures, and what types of behavior are possible. We study idealized models in which the logical structure of the network is explicitly represented by Boolean functions that can be represented by directed graphs on n-cubes, but which are continuous in time and described by differential equations, rather than being updated synchronously via a discrete clock. The equations are piecewise linear, which allows significant analysis and facilitates rapid integration along trajectories. We first give a combinatorial solution to the question of how many distinct logical structures exist for n-dimensional networks, showing that the number increases very rapidly with n. We then outline analytic methods that can be used to establish the existence, stability and periods of periodic orbits corresponding to particular cycles on the n-cube. We use these methods to confirm the existence of limit cycles discovered in a sample of a million randomly generated structures of networks of 4 genes. Even with only 4 genes, at least several hundred different patterns of stable periodic behavior are possible, many of them surprisingly complex. We discuss ways of further classifying these periodic behaviors, showing that small mutations (reversal of one or a few edges on the n-cube) need not destroy the stability of a limit cycle. Although these networks are very simple as models of gene networks, their mathematical transparency reveals relationships between structure and behavior, they suggest that the possibilities for orderly dynamics in such networks are extremely rich and they offer novel ways to think about how mutations can alter dynamics.

  4. Combinatorial explosion in model gene networks.

    PubMed

    Edwards, R.; Glass, L.

    2000-09-01

    The explosive growth in knowledge of the genome of humans and other organisms leaves open the question of how the functioning of genes in interacting networks is coordinated for orderly activity. One approach to this problem is to study mathematical properties of abstract network models that capture the logical structures of gene networks. The principal issue is to understand how particular patterns of activity can result from particular network structures, and what types of behavior are possible. We study idealized models in which the logical structure of the network is explicitly represented by Boolean functions that can be represented by directed graphs on n-cubes, but which are continuous in time and described by differential equations, rather than being updated synchronously via a discrete clock. The equations are piecewise linear, which allows significant analysis and facilitates rapid integration along trajectories. We first give a combinatorial solution to the question of how many distinct logical structures exist for n-dimensional networks, showing that the number increases very rapidly with n. We then outline analytic methods that can be used to establish the existence, stability and periods of periodic orbits corresponding to particular cycles on the n-cube. We use these methods to confirm the existence of limit cycles discovered in a sample of a million randomly generated structures of networks of 4 genes. Even with only 4 genes, at least several hundred different patterns of stable periodic behavior are possible, many of them surprisingly complex. We discuss ways of further classifying these periodic behaviors, showing that small mutations (reversal of one or a few edges on the n-cube) need not destroy the stability of a limit cycle. Although these networks are very simple as models of gene networks, their mathematical transparency reveals relationships between structure and behavior, they suggest that the possibilities for orderly dynamics in such networks are extremely rich and they offer novel ways to think about how mutations can alter dynamics. (c) 2000 American Institute of Physics.

  5. Does the nervous system use equilibrium-point control to guide single and multiple joint movements?

    PubMed

    Bizzi, E; Hogan, N; Mussa-Ivaldi, F A; Giszter, S

    1992-12-01

    The hypothesis that the central nervous system (CNS) generates movement as a shift of the limb's equilibrium posture has been corroborated experimentally in studies involving single- and multijoint motions. Posture may be controlled through the choice of muscle length-tension curve that set agonist-antagonist torque-angle curves determining an equilibrium position for the limb and the stiffness about the joints. Arm trajectories seem to be generated through a control signal defining a series of equilibrium postures. The equilibrium-point hypothesis drastically simplifies the requisite computations for multijoint movements and mechanical interactions with complex dynamic objects in the environment. Because the neuromuscular system is springlike, the instantaneous difference between the arm's actual position and the equilibrium position specified by the neural activity can generate the requisite torques, avoiding the complex "inverse dynamic" problem of computing the torques at the joints. The hypothesis provides a simple, unified description of posture and movement as well as contact control task performance, in which the limb must exert force stably and do work on objects in the environment. The latter is a surprisingly difficult problem, as robotic experience has shown. The prior evidence for the hypothesis came mainly from psychophysical and behavioral experiments. Our recent work has shown that microstimulation of the frog spinal cord's premotoneural network produces leg movements to various positions in the frog's motor space. The hypothesis can now be investigated in the neurophysiological machinery of the spinal cord.

  6. The one number you need to grow.

    PubMed

    Reichheld, Frederick F

    2003-12-01

    Companies spend lots of time and money on complex tools to assess customer satisfaction. But they're measuring the wrong thing. The best predictor of top-line growth can usually be captured in a single survey question: Would you recommend this company to a friend? This finding is based on two years of research in which a variety of survey questions were tested by linking the responses with actual customer behavior--purchasing patterns and referrals--and ultimately with company growth. Surprisingly, the most effective question wasn't about customer satisfaction or even loyalty per se. In most of the industries studied, the percentage of customers enthusiastic enough about a company to refer it to a friend or colleague directly correlated with growth rates among competitors. Willingness to talk up a company or product to friends, family, and colleagues is one of the best indicators of loyalty because of the customer's sacrifice in making the recommendation. When customers act as references, they do more than indicate they've received good economic value from a company; they put their own reputations on the line. And they will risk their reputations only if they feel intense loyalty. The findings point to a new, simpler approach to customer research, one directly linked to a company's results. By substituting a single question--blunt tool though it may appear to be--for the complex black box of the customer satisfaction survey, companies can actually put consumer survey results to use and focus employees on the task of stimulating growth.

  7. Efficient collective swimming by harnessing vortices through deep reinforcement learning.

    PubMed

    Verma, Siddhartha; Novati, Guido; Koumoutsakos, Petros

    2018-06-05

    Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms.

  8. Structural comparison of four different antibodies interacting with human papillomavirus 16 and mechanisms of neutralization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Jian; Bywaters, Stephanie M.; Brendle, Sarah A.

    2015-09-15

    Cryo-electron microscopy (cryo-EM) was used to solve the structures of human papillomavirus type 16 (HPV16) complexed with fragments of antibody (Fab) from three different neutralizing monoclonals (mAbs): H16.1A, H16.14J, and H263.A2. The structure-function analysis revealed predominantly monovalent binding of each Fab with capsid interactions that involved multiple loops from symmetry related copies of the major capsid protein. The residues identified in each Fab-virus interface map to a conformational groove on the surface of the capsomer. In addition to the known involvement of the FG and HI loops, the DE loop was also found to constitute the core of each epitope.more » Surprisingly, the epitope mapping also identified minor contributions by EF and BC loops. Complementary immunological assays included mAb and Fab neutralization. The specific binding characteristics of mAbs correlated with different neutralizing behaviors in pre- and post-attachment neutralization assays. - Highlights: • We present HPV16-Fab complexes from neutralizing mAbs: H16.1A, H16.14J, and H263.A2. • The structure-function analysis revealed predominantly monovalent binding of each mAb. • Capsid–Fab interactions involved multiple loops from symmetry related L1 proteins. • Besides the known FG and HI loops, epitope mapping also identified DE, EF, and BC loops. • Neutralizing assays complement the structures to show multiple neutralization mechanisms.« less

  9. Pathology and failure in the design and implementation of adaptive management

    USGS Publications Warehouse

    Allen, Craig R.; Gunderson, Lance H.

    2011-01-01

    The conceptual underpinnings for adaptive management are simple; there will always be inherent uncertainty and unpredictability in the dynamics and behavior of complex ecological systems as a result non-linear interactions among components and emergence, yet management decisions must still be made. The strength of adaptive management is in the recognition and confrontation of such uncertainty. Rather than ignore uncertainty, or use it to preclude management actions, adaptive management can foster resilience and flexibility to cope with an uncertain future, and develop safe to fail management approaches that acknowledge inevitable changes and surprises. Since its initial introduction, adaptive management has been hailed as a solution to endless trial and error approaches to complex natural resource management challenges. However, its implementation has failed more often than not. It does not produce easy answers, and it is appropriate in only a subset of natural resource management problems. Clearly adaptive management has great potential when applied appropriately. Just as clearly adaptive management has seemingly failed to live up to its high expectations. Why? We outline nine pathologies and challenges that can lead to failure in adaptive management programs. We focus on general sources of failures in adaptive management, so that others can avoid these pitfalls in the future. Adaptive management can be a powerful and beneficial tool when applied correctly to appropriate management problems; the challenge is to keep the concept of adaptive management from being hijacked for inappropriate use.

  10. What if Your Child IS the One Showing Bullying Behavior? PACER Center ACTion Information Sheets. PHP-c109

    ERIC Educational Resources Information Center

    PACER Center, 2015

    2015-01-01

    The word "bullying" often conjures up an image of a schoolyard scene, with a big, intimidating student towering over a small, cowering child. However, that's just one of the many faces of children who bully. Another face of someone who bullies might be that of one's own child. Surprised? Many parents are. Often they have no idea that…

  11. Transient Cooperative Processes in Dewetting Polymer Melts.

    PubMed

    Chandran, Sivasurender; Reiter, Günter

    2016-02-26

    We compare the high velocity dewetting behavior, at elevated temperatures, of atactic polystyrene (aPS) and isotactic polystyrene (iPS) films, with the zero shear bulk viscosity (η_{bulk}) of aPS being approximately ten times larger than iPS. As expected, for aPS the apparent viscosity of the films (η_{f}) derived from high-shear dewetting is less than η_{bulk}, displaying a shear thinning behavior. Surprisingly, for iPS films, η_{f} is always larger than η_{bulk}, even at about 50 °C above the melting point, with η_{f}/η_{bulk} following an Arrhenius behavior. The corresponding activation energy of ∼160±10  kJ/mol for iPS films suggests a cooperative motion of segments which are aligned and agglomerated by fast dewetting.

  12. Cannibalism in Tyrannosaurus rex

    PubMed Central

    Longrich, Nicholas R.; Horner, John R.; Erickson, Gregory M.; Currie, Philip J.

    2010-01-01

    Background Tyrannosaurus rex was one of the largest terrestrial carnivores of all time, and consequently its ecology and diet have been the focus of much discussion. However, there is little direct evidence of diet or feeding habits in this species. Methodology/Principal Findings Examination of museum collections has revealed four specimens of Tyrannosaurus rex that bear tooth marks made by large, carnivorous dinosaurs. Because Tyrannosaurus is the only large carnivore known from the Late Maastrichtian of western North America, we infer that Tyrannosaurus made these tooth marks. Conclusions/Significance The marks are interpreted as feeding traces and these fossils therefore record instances of cannibalism. Given that this behavior has a low preservation potential, cannibalism seems to have been a surprisingly common behavior in Tyrannosaurus, and this behavior may have been relatively common in carnivorous dinosaurs. PMID:20976177

  13. Health psychology meets behavioral economics: introduction to special issue.

    PubMed

    Hanoch, Yaniv; Finkelstein, Eric Andrew

    2013-09-01

    Introduces the special issue of Health Psychology, entitled Health Psychology Meets Behavioral Economics. Psychologists have long been interested in understanding the processes that underlie health behaviors and, based on health behavior models that they have developed, have devised a spectrum of effective prevention and treatment programs. More recently, behavioral economists have also provided evidence of effective behavior change strategies through nonprice mechanisms in a variety of contexts, including smoking cessation, weight loss, and illicit drug use. Yet, although all are addressing similar issues, surprisingly little cross-fertilization has taken place between traditional economists, behavioral economists, and psychologists. This special issue is rooted in the assumption that collaboration between economists and psychologists can promote the development of new methodologies and encourage exploration of novel solutions to enduring health problems. The hope is that readers will be intrigued and inspired by the methodologies used in the different articles and will explore whether they might be applicable to the problems they are addressing. Collaborative efforts, although challenging and at times risky, are a promising way to produce more innovative studies, results, and interventions. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  14. Experimental Analysis and Measurement of Situation Awareness

    DTIC Science & Technology

    1995-11-01

    the participant is interacting that can be characterized uniquely by a set of information, knowledge and response options. However, the concept of a...should receive attention is when the interruption or the surprise creates a statistical interaction between two or more of the other variables of...Awareness in Complex Systems. Daytona Beach, Fl: Embry-Riddle Aeronautical University Press. Sarter, N.B., and Woods, D.D. (1994). Pilot interaction

  15. The search for the elusive companion of EG andromedae

    NASA Technical Reports Server (NTRS)

    Pesce, Joseph E.; Stencel, Robert E.; Oliversen, Nancy A.

    1987-01-01

    Observations are reported at opposite quadratures of the interacting symbiotic binary EG And (HD-4174, Period = 470 d). After correcting for absolute motion at the system, it appears, surprisingly, that many of the nebular lines arise from material that moves with the red giant star. This fact is used to interpret the observed complex line profiles of C IV and He II in the object.

  16. A matter of fried onions.

    PubMed

    Friedman, D B

    1992-12-01

    In the 1946 film 'A Matter of Life and Death', complex partial seizures were portrayed in detail and with surprising accuracy. This study was conducted to determine the nature of the medical collaboration in the preparation of the film as well as the reasons why the creative team of Michael Powell and Emeric Pressburger included these details, but elected to make them invisible to all but those with medical educations.

  17. 417th Brookhaven Lecture

    ScienceCinema

    Huilin Li

    2017-12-09

    Proteins that cleave other proteins using a molecule of water, protease complexes are exquisite macromolecular machines involved in a multitude of physiological and cellular reactions. Our structural studies shed light into the inner workings of multi-protein assemblies, and they reveal a surprisingly common strategy for controlled proteolysis employed by the two drastically different machines. Further research will facilitate rational design of drugs for treating Tb infection and Alzheimer's disease.

  18. Reaction of an Iron(IV) Nitrido Complex with Cyclohexadienes: Cycloaddition and Hydrogen-Atom Abstraction

    PubMed Central

    2015-01-01

    The iron(IV) nitrido complex PhB(MesIm)3Fe≡N reacts with 1,3-cyclohexadiene to yield the iron(II) pyrrolide complex PhB(MesIm)3Fe(η5-C4H4N) in high yield. The mechanism of product formation is proposed to involve sequential [4 + 1] cycloaddition and retro Diels–Alder reactions. Surprisingly, reaction with 1,4-cyclohexadiene yields the same iron-containing product, albeit in substantially lower yield. The proposed reaction mechanism, supported by electronic structure calculations, involves hydrogen-atom abstraction from 1,4-cyclohexadiene to provide the cyclohexadienyl radical. This radical is an intermediate in substrate isomerization to 1,3-cyclohexadiene, leading to formation of the pyrrolide product. PMID:25068927

  19. Mcl-1–Bim complexes accommodate surprising point mutations via minor structural changes

    PubMed Central

    Fire, Emiko; Gullá, Stefano V; Grant, Robert A; Keating, Amy E

    2010-01-01

    Mcl-1 is an antiapoptotic Bcl-2-family protein that protects cells against death. Structures of Mcl-1, and of other anti-apoptotic Bcl-2 proteins, reveal a surface groove into which the α-helical BH3 regions of certain proapoptotic proteins can bind. Despite high overall structural conservation, differences in this groove afford binding specificity that is important for the mechanism of Bcl-2 family function. We report the crystal structure of human Mcl-1 bound to a BH3 peptide derived from human Bim and the structures for three complexes that accommodate large physicochemical changes at conserved Bim sites. The mutations had surprisingly modest effects on complex stability, and the structures show that Mcl-1 can undergo small changes to accommodate the mutant ligands. For example, a shift in a leucine side chain fills a hole left by an isoleucine-to-alanine mutation at the first hydrophobic buried position of Bim BH3. Larger changes are also observed, with shifting of helix α3 accommodating an isoleucine-to-tyrosine mutation at this same position. We surveyed the variation in available Mcl-1 and Bcl-xL structures and observed moderate flexibility that is likely critical for facilitating interactions of diverse BH3-only proteins with Mcl-1. With the antiapoptotic Bcl-2 family members attracting significant attention as therapeutic targets, these structures contribute to our growing understanding of how specificity is achieved and can help to guide the design of novel inhibitors that target Mcl-1. PMID:20066663

  20. Efficiently detecting outlying behavior in video-game players.

    PubMed

    Kim, Young Bin; Kang, Shin Jin; Lee, Sang Hyeok; Jung, Jang Young; Kam, Hyeong Ryeol; Lee, Jung; Kim, Young Sun; Lee, Joonsoo; Kim, Chang Hun

    2015-01-01

    In this paper, we propose a method for automatically detecting the times during which game players exhibit specific behavior, such as when players commonly show excitement, concentration, immersion, and surprise. The proposed method detects such outlying behavior based on the game players' characteristics. These characteristics are captured non-invasively in a general game environment. In this paper, cameras were used to analyze observed data such as facial expressions and player movements. Moreover, multimodal data from the game players (i.e., data regarding adjustments to the volume and the use of the keyboard and mouse) was used to analyze high-dimensional game-player data. A support vector machine was used to efficiently detect outlying behaviors. We verified the effectiveness of the proposed method using games from several genres. The recall rate of the outlying behavior pre-identified by industry experts was approximately 70%. The proposed method can also be used for feedback analysis of various interactive content provided in PC environments.

  1. Efficiently detecting outlying behavior in video-game players

    PubMed Central

    Kim, Young Bin; Kang, Shin Jin; Lee, Sang Hyeok; Jung, Jang Young; Kam, Hyeong Ryeol; Lee, Jung; Kim, Young Sun; Lee, Joonsoo

    2015-01-01

    In this paper, we propose a method for automatically detecting the times during which game players exhibit specific behavior, such as when players commonly show excitement, concentration, immersion, and surprise. The proposed method detects such outlying behavior based on the game players’ characteristics. These characteristics are captured non-invasively in a general game environment. In this paper, cameras were used to analyze observed data such as facial expressions and player movements. Moreover, multimodal data from the game players (i.e., data regarding adjustments to the volume and the use of the keyboard and mouse) was used to analyze high-dimensional game-player data. A support vector machine was used to efficiently detect outlying behaviors. We verified the effectiveness of the proposed method using games from several genres. The recall rate of the outlying behavior pre-identified by industry experts was approximately 70%. The proposed method can also be used for feedback analysis of various interactive content provided in PC environments. PMID:26713250

  2. Zero kinetic energy photoelectron spectroscopy of tryptamine and the dissociation pathway of the singly hydrated cation cluster.

    PubMed

    Gu, Quanli; Knee, J L

    2012-09-14

    The relative ionization energies of tryptamine conformations are determined by zero kinetic energy photoelectron spectroscopy and photoionization efficiency measurements. The relative cationic conformational stabilities are compared to the published results for the neutral molecule. In the cation, the interaction strength changes significantly between amino group and either the phenyl or the pyrrole moiety of the indole chromophore where most of the positive charge is located, leading to different conformational structures and relative conformer energies in the cation. In particular, the measured adiabatic ionization potential of isomer B is 60,928 ± 5 cm(-1), at least 400 cm(-1) higher than any of the 6 other tryptamine isomers which all have ionization potentials within 200 cm(-1) of each other. In addition to the monomer, measurements were made on the A conformer of the tryptamine(+)-H(2)O complex including the ionization threshold and cation dissociation energy measured using a threshold photoionization fragmentation method. The water cluster exhibits an unexpectedly high ionization potential of 60,307 ± 100 cm(-1), close to the conformer A monomer of 60 320 ± 100 cm(-1). It also exhibits surprisingly low dissociation energy of 1750 ± 150 cm(-1) compared to other H-bonding involved cation-H(2)O complexes which are typically several thousands of wavenumbers higher. Quantum chemical calculations indicate that upon ionization the structure of the parent molecule in the water complex remains mostly unchanged due to the rigid intermolecular double hydrogen bonded water molecule bridging the monomer backbone and its side chain thus leading to the high ionization potential in the water cluster. The surprisingly low dissociation energy measured in the cationic water complex is attributed to the formation of a much more stable structural isomer H(+) in the exit channel.

  3. Defining the electronic and geometric structure of one-electron oxidized copper-bis-phenoxide complexes.

    PubMed

    Storr, Tim; Verma, Pratik; Pratt, Russell C; Wasinger, Erik C; Shimazaki, Yuichi; Stack, T Daniel P

    2008-11-19

    The geometric and electronic structure of an oxidized Cu complex ([CuSal](+); Sal = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-(1R,2R)-diamine) with a non-innocent salen ligand has been investigated both in the solid state and in solution. Integration of information from UV-vis-NIR spectroscopy, magnetic susceptibility, electrochemistry, resonance Raman spectroscopy, X-ray crystallography, X-ray absorption spectroscopy, and density functional theory calculations provides critical insights into the nature of the localization/delocalization of the oxidation locus. In contrast to the analogous Ni derivative [NiSal](+) (Storr, T.; et al. Angew. Chem., Int. Ed. 2007, 46, 5198), which exists solely in the Ni(II) ligand-radical form, the locus of oxidation is metal-based for [CuSal](+), affording exclusively a Cu(III) species in the solid state (4-300 K). Variable-temperature solution studies suggest that [CuSal](+) exists in a reversible spin-equilibrium between a ligand-radical species [Cu(II)Sal(*)](+) (S = 1) and the high-valent metal form [Cu(III)Sal](+) (S = 0), indicative of nearly isoenergetic species. It is surprising that a bis-imine-bis-phenolate ligation stabilizes the Cu(III) oxidation state, and even more surprising that in solution a spin equilibrium occurs without a change in coordination number. The oxidized tetrahydrosalen analogue [CuSal(red)](+) (Sal(red) = N,N'-bis(3,5-di- tert-butylhydroxybenzyl)-1,2-cyclohexane-(1R,2R)-diamine) exists as a temperature-invariant Cu(II)-ligand-radical complex in solution, demonstrating that ostensibly simple variations of the ligand structure affect the locus of oxidation in Cu-bis-phenoxide complexes.

  4. Defining the Electronic and Geometric Structure of One-Electron Oxidized Copper–Bis-phenoxide Complexes

    PubMed Central

    Storr, Tim; Verma, Pratik; Pratt, Russell C.; Wasinger, Erik C.; Shimazaki, Yuichi; Stack, T. Daniel P.

    2009-01-01

    The geometric and electronic structure of an oxidized Cu complex ([CuSal]+; Sal = N, N′-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-(1R,2R)-diamine) with a non-innocent salen ligand has been investigated both in the solid state and in solution. Integration of information from UV–vis–NIR spectroscopy, magnetic susceptibility, electrochemistry, resonance Raman spectroscopy, X-ray crystallography, X-ray absorption spectroscopy, and density functional theory calculations provides critical insights into the nature of the localization/delocalization of the oxidation locus. In contrast to the analogous Ni derivative [NiSal]+ (Storr, T.; et al. Angew. Chem., Int. Ed. 2007, 46, 5198), which exists solely in the Ni(II) ligand-radical form, the locus of oxidation is metal-based for [CuSal]+, affording exclusively a Cu(III) species in the solid state (4–300 K). Variable-temperature solution studies suggest that [CuSal]+ exists in a reversible spin-equilibrium between a ligand-radical species [Cu(II)Sal•]+ (S = 1) and the high-valent metal form [Cu(III)Sal]+ (S = 0), indicative of nearly isoenergetic species. It is surprising that a bis-imine–bis-phenolate ligation stabilizes the Cu(III) oxidation state, and even more surprising that in solution a spin equilibrium occurs without a change in coordination number. The oxidized tetrahydrosalen analogue [CuSalred]+ (Salred = N, N′-bis(3,5-di-tert-butylhydroxybenzyl)-1,2-cyclohexane-(1R,2R)-diamine) exists as a temperature-invariant Cu(II)–ligand-radical complex in solution, demonstrating that ostensibly simple variations of the ligand structure affect the locus of oxidation in Cu–bis-phenoxide complexes. PMID:18939830

  5. The stream of experience when watching artistic movies. Dynamic aesthetic effects revealed by the Continuous Evaluation Procedure (CEP).

    PubMed

    Muth, Claudia; Raab, Marius H; Carbon, Claus-Christian

    2015-01-01

    Research in perception and appreciation is often focused on snapshots, stills of experience. Static approaches allow for multidimensional assessment, but are unable to catch the crucial dynamics of affective and perceptual processes; for instance, aesthetic phenomena such as the "Aesthetic-Aha" (the increase in liking after the sudden detection of Gestalt), effects of expectation, or Berlyne's idea that "disorientation" with a "promise of success" elicits interest. We conducted empirical studies on indeterminate artistic movies depicting the evolution and metamorphosis of Gestalt and investigated (i) the effects of sudden perceptual insights on liking; that is, "Aesthetic Aha"-effects, (ii) the dynamics of interest before moments of insight, and (iii) the dynamics of complexity before and after moments of insight. Via the so-called Continuous Evaluation Procedure (CEP) enabling analogous evaluation in a continuous way, participants assessed the material on two aesthetic dimensions blockwise either in a gallery or a laboratory. The material's inherent dynamics were described via assessments of liking, interest, determinacy, and surprise along with a computational analysis on the variable complexity. We identified moments of insight as peaks in determinacy and surprise. Statistically significant changes in liking and interest demonstrated that: (i) insights increase liking, (ii) interest already increases 1500 ms before such moments of insight, supporting the idea that it is evoked by an expectation of understanding, and (iii) insights occur during increasing complexity. We propose a preliminary model of dynamics in liking and interest with regard to complexity and perceptual insight and discuss descriptions of participants' experiences of insight. Our results point to the importance of systematic analyses of dynamics in art perception and appreciation.

  6. A bottom-up model of spatial attention predicts human error patterns in rapid scene recognition.

    PubMed

    Einhäuser, Wolfgang; Mundhenk, T Nathan; Baldi, Pierre; Koch, Christof; Itti, Laurent

    2007-07-20

    Humans demonstrate a peculiar ability to detect complex targets in rapidly presented natural scenes. Recent studies suggest that (nearly) no focal attention is required for overall performance in such tasks. Little is known, however, of how detection performance varies from trial to trial and which stages in the processing hierarchy limit performance: bottom-up visual processing (attentional selection and/or recognition) or top-down factors (e.g., decision-making, memory, or alertness fluctuations)? To investigate the relative contribution of these factors, eight human observers performed an animal detection task in natural scenes presented at 20 Hz. Trial-by-trial performance was highly consistent across observers, far exceeding the prediction of independent errors. This consistency demonstrates that performance is not primarily limited by idiosyncratic factors but by visual processing. Two statistical stimulus properties, contrast variation in the target image and the information-theoretical measure of "surprise" in adjacent images, predict performance on a trial-by-trial basis. These measures are tightly related to spatial attention, demonstrating that spatial attention and rapid target detection share common mechanisms. To isolate the causal contribution of the surprise measure, eight additional observers performed the animal detection task in sequences that were reordered versions of those all subjects had correctly recognized in the first experiment. Reordering increased surprise before and/or after the target while keeping the target and distractors themselves unchanged. Surprise enhancement impaired target detection in all observers. Consequently, and contrary to several previously published findings, our results demonstrate that attentional limitations, rather than target recognition alone, affect the detection of targets in rapidly presented visual sequences.

  7. The effects of alcohol on emotion in social drinkers

    PubMed Central

    Sayette, Michael A.

    2017-01-01

    Understanding why people drink alcohol and in some cases develop drinking problems has long puzzled researchers, clinicians, and patients alike. In the mid-1940s and early 1950s, experimental research began to systematically investigate alcohol’s hedonic properties. Presumably, alcohol consumption would prove reinforcing as a consequence of its capacity either to relieve stress or to brighten positive emotional experiences. This article reviews experimental research through the years examining the impact of alcohol on both the relief of negative affect and the enhancement of positive affect. It covers initial accounts that emphasized direct pharmacological effects of ethanol on the central nervous system. These early studies offered surprisingly tepid support for the premise that alcohol improved emotional states. Next, studies conducted in the 1970s are considered. Informed by social learning theory and employing advances derived from experimental psychology, this research sought to better understand the complex effects of alcohol on emotion. Coverage of this work is followed by discussion of current formulations, which integrate biological and behavioral approaches with the study of cognitive, affective, and social processes. These current perspectives provide insight into the particular conditions under which alcohol can boost emotional experiences. Finally, future research directions and clinical implications are considered. PMID:28110679

  8. Evolution of All-or-None Strategies in Repeated Public Goods Dilemmas

    PubMed Central

    2014-01-01

    Many problems of cooperation involve repeated interactions among the same groups of individuals. When collective action is at stake, groups often engage in Public Goods Games (PGG), where individuals contribute (or not) to a common pool, subsequently sharing the resources. Such scenarios of repeated group interactions materialize situations in which direct reciprocation to groups may be at work. Here we study direct group reciprocity considering the complete set of reactive strategies, where individuals behave conditionally on what they observed in the previous round. We study both analytically and by computer simulations the evolutionary dynamics encompassing this extensive strategy space, witnessing the emergence of a surprisingly simple strategy that we call All-Or-None (AoN). AoN consists in cooperating only after a round of unanimous group behavior (cooperation or defection), and proves robust in the presence of errors, thus fostering cooperation in a wide range of group sizes. The principles encapsulated in this strategy share a level of complexity reminiscent of that found already in 2-person games under direct and indirect reciprocity, reducing, in fact, to the well-known Win-Stay-Lose-Shift strategy in the limit of the repeated 2-person Prisoner's Dilemma. PMID:25393661

  9. Two states or not two states: Single-molecule folding studies of protein L

    NASA Astrophysics Data System (ADS)

    Aviram, Haim Yuval; Pirchi, Menahem; Barak, Yoav; Riven, Inbal; Haran, Gilad

    2018-03-01

    Experimental tools of increasing sophistication have been employed in recent years to study protein folding and misfolding. Folding is considered a complex process, and one way to address it is by studying small proteins, which seemingly possess a simple energy landscape with essentially only two stable states, either folded or unfolded. The B1-IgG binding domain of protein L (PL) is considered a model two-state folder, based on measurements using a wide range of experimental techniques. We applied single-molecule fluorescence resonance energy transfer (FRET) spectroscopy in conjunction with a hidden Markov model analysis to fully characterize the energy landscape of PL and to extract the kinetic properties of individual molecules of the protein. Surprisingly, our studies revealed the existence of a third state, hidden under the two-state behavior of PL due to its small population, ˜7%. We propose that this minority intermediate involves partial unfolding of the two C-terminal β strands of PL. Our work demonstrates that single-molecule FRET spectroscopy can be a powerful tool for a comprehensive description of the folding dynamics of proteins, capable of detecting and characterizing relatively rare metastable states that are difficult to observe in ensemble studies.

  10. Atypical titration curves for GaAl12 Keggin-ions explained by a joint experimental and simulation approach

    NASA Astrophysics Data System (ADS)

    Sulpizi, Marialore; Lützenkirchen, Johannes

    2018-06-01

    Although they have been widely used as models for oxide surfaces, the deprotonation behaviors of the Keggin-ions (MeAl127+) and typical oxide surfaces are very different. On Keggin-ions, the deprotonation occurs over a very narrow pH range at odds with the broad charging curve of larger oxide surfaces. Depending on the Me concentration, the deprotonation curve levels off sooner (high Me concentration) or later (for low Me concentration). The leveling off shows the onset of aggregation before which the Keggin-ions are present as individual units. We show that the atypical titration data previously observed for some GaAl12 solutions in comparison to the originally reported data can be explained by the presence of Ga2Al11 ions. The pKa value of aquo-groups bound to octahedral Ga was determined from ab initio molecular dynamics simulations relative to the pure GaAl12 ions. Using these results within a surface complexation model, the onset of deprotonation of the crude solution is surprisingly well predicted and the ratio between the different species is estimated to be in the proportion 20 (Ga2Al11) : 20 (Al13) : 60 (GaAl12).

  11. Orientation and metacognition in virtual space.

    PubMed

    Tenbrink, Thora; Salwiczek, Lucie H

    2016-05-01

    Cognitive scientists increasingly use virtual reality scenarios to address spatial perception, orientation, and navigation. If based on desktops rather than mobile immersive environments, this involves a discrepancy between the physically experienced static position and the visually perceived dynamic scene, leading to cognitive challenges that users of virtual worlds may or may not be aware of. The frequently reported loss of orientation and worse performance in point-to-origin tasks relate to the difficulty of establishing a consistent reference system on an allocentric or egocentric basis. We address the verbalizability of spatial concepts relevant in this regard, along with the conscious strategies reported by participants. Behavioral and verbal data were collected using a perceptually sparse virtual tunnel scenario that has frequently been used to differentiate between humans' preferred reference systems. Surprisingly, the linguistic data we collected relate to reference system verbalizations known from the earlier literature only to a limited extent, but instead reveal complex cognitive mechanisms and strategies. Orientation in desktop virtual reality appears to pose considerable challenges, which participants react to by conceptualizing the task in individual ways that do not systematically relate to the generic concepts of egocentric and allocentric reference frames. (c) 2016 APA, all rights reserved).

  12. a Theoretical Search for AN Electronic Spectrum of the He-BeO Complex

    NASA Astrophysics Data System (ADS)

    Gardner, Adrian; Heaven, Michael

    2014-06-01

    The surprisingly high dissociation energy of the He-Be bond in the He-BeO complex was first reported 25 years ago. Following which, a number of theoretical studies have investigated similar closed shell helium containing complexes. However, despite these investigations, a complex containing a strong He-X bond has thus far eluded experimental detection. In this work, potential energy surfaces of electronically excited states of the He-BeO complex have been calculated employing high level CASSCF+MRCI+Q methodologies and utilizing extended basis sets. Several excited states show strong interactions between helium and BeO lying in Franck-Condon accessible windows of electronic transitions arising from the vibrationless electronic ground state. It is hoped that the conclusions of this study will result in the observation an electronic spectrum of this long hypothesized strongly bound complex in the near future. W. Koch, J. R. Collins and G. Frenking, Chem. Phys. Lett. 1986, 132 330-333.

  13. Reflection of a polarized light cone

    NASA Astrophysics Data System (ADS)

    Brody, Jed; Weiss, Daniel; Berland, Keith

    2013-01-01

    We introduce a visually appealing experimental demonstration of Fresnel reflection. In this simple optical experiment, a polarized light beam travels through a high numerical-aperture microscope objective, reflects off a glass slide, and travels back through the same objective lens. The return beam is sampled with a polarizing beam splitter and produces a surprising geometric pattern on an observation screen. Understanding the origin of this pattern requires careful attention to geometry and an understanding of the Fresnel coefficients for S and P polarized light. We demonstrate that in addition to a relatively simple experimental implementation, the shape of the observed pattern can be computed both analytically and by using optical modeling software. The experience of working through complex mathematical computations and demonstrating their agreement with a surprising experimental observation makes this a highly educational experiment for undergraduate optics or advanced-lab courses. It also provides a straightforward yet non-trivial system for teaching students how to use optical modeling software.

  14. When will Little Red Riding Hood become scared? Children's attribution of mental states to a story character.

    PubMed

    Ronfard, Samuel; Harris, Paul L

    2014-01-01

    As children listen to a simple action-based narrative, they construct a dynamic representation of the protagonist's movements, visual perspective, and goal-directed thoughts. We examined children's representations of more complex narratives in which the protagonist will encounter an unexpected outcome upon reaching his or her goal. Three studies involving 105 children between 3 and 6 years of age showed that children shifted in the mental states they attributed depending on the distance of the protagonist from the unexpected outcome. Even though children consistently recognized that the protagonist did not know about the surprise at any point, they increasingly attributed feelings and thoughts consistent with the surprise. The studies highlight the degree to which children's mental state attributions are dynamic rather than fixed by their current theory of mind. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Discovery of SCORs: Anciently derived, highly conserved gene-associated repeats in stony corals.

    PubMed

    Qiu, Huan; Zelzion, Ehud; Putnam, Hollie M; Gates, Ruth D; Wagner, Nicole E; Adams, Diane K; Bhattacharya, Debashish

    2017-10-01

    Stony coral (Scleractinia) genomes are still poorly explored and many questions remain about their evolution and contribution to the success and longevity of reefs. We analyzed transcriptome and genome data from Montipora capitata, Acropora digitifera, and transcriptome data from 20 other coral species. To our surprise, we found highly conserved, anciently derived, Scleractinia COral-specific Repeat families (SCORs) that are abundant in all the studied lineages. SCORs form complex secondary structures and are located in untranslated regions and introns, but most abundant in intergenic DNA. These repeat families have undergone frequent duplication and degradation, suggesting a 'boom and bust' cycle of invasion and loss. We speculate that due to their surprisingly high sequence identities across deeply diverged corals, physical association with genes, and dynamic evolution, SCORs might have adaptive functions in corals that need to be explored using population genomic and function-based approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Mitochondrial disease associated with complex I (NADH-CoQ oxidoreductase) deficiency.

    PubMed

    Scheffler, Immo E

    2015-05-01

    Mitochondrial diseases due to a reduced capacity for oxidative phosphorylation were first identified more than 20 years ago, and their incidence is now recognized to be quite significant. In a large proportion of cases the problem can be traced to a complex I (NADH-CoQ oxidoreductase) deficiency (Phenotype MIM #252010). Because the complex consists of 44 subunits, there are many potential targets for pathogenic mutations, both on the nuclear and mitochondrial genomes. Surprisingly, however, almost half of the complex I deficiencies are due to defects in as yet unidentified genes that encode proteins other than the structural proteins of the complex. This review attempts to summarize what we know about the molecular basis of complex I deficiencies: mutations in the known structural genes, and mutations in an increasing number of genes encoding "assembly factors", that is, proteins required for the biogenesis of a functional complex I that are not found in the final complex I. More such genes must be identified before definitive genetic counselling can be applied in all cases of affected families.

  17. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, Gregg J.; Arcia, Edgar

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as how the morphological features of the crystals dictates how the dissolution process proceeds, and how materials can be purified by re-crystallization techniques.

  18. Stress responsiveness and anxiety-like behavior: The early social environment differentially shapes stability over time in a small rodent.

    PubMed

    Sangenstedt, Susanne; Jaljuli, Iman; Sachser, Norbert; Kaiser, Sylvia

    2017-04-01

    The early social environment can profoundly affect behavioral and physiological phenotypes. We investigated how male wild cavy offspring, whose mothers had either lived in a stable (SE) or an unstable social environment (UE) during pregnancy and lactation, differed in their anxiety-like behavior and stress responsiveness. At two different time points in life, we tested the offspring's anxiety-like behavior in a dark-light test and their endocrine reaction to challenge in a cortisol reactivity test. Furthermore, we analyzed whether individual traits remained stable over time. There was no effect of the early social environment on anxiety-like behavior and stress responsiveness. However, at an individual level, anxiety-like behavior was stable over time in UE- but not in SE-sons. Stress responsiveness, in turn, was rather inconsistent in UE-sons and temporally stable in SE-sons. Conclusively, we showed for the first time that the early social environment differentially shapes the stability of behavioral and endocrine traits. At first glance, these results may be surprising, but they can be explained by the different functions anxiety-like behavior and stress responsiveness have. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The Impact of Imitation on Vaccination Behavior in Social Contact Networks

    PubMed Central

    Ndeffo Mbah, Martial L.; Liu, Jingzhou; Bauch, Chris T.; Tekel, Yonas I.; Medlock, Jan; Meyers, Lauren Ancel; Galvani, Alison P.

    2012-01-01

    Previous game-theoretic studies of vaccination behavior typically have often assumed that populations are homogeneously mixed and that individuals are fully rational. In reality, there is heterogeneity in the number of contacts per individual, and individuals tend to imitate others who appear to have adopted successful strategies. Here, we use network-based mathematical models to study the effects of both imitation behavior and contact heterogeneity on vaccination coverage and disease dynamics. We integrate contact network epidemiological models with a framework for decision-making, within which individuals make their decisions either based purely on payoff maximization or by imitating the vaccination behavior of a social contact. Simulations suggest that when the cost of vaccination is high imitation behavior may decrease vaccination coverage. However, when the cost of vaccination is small relative to that of infection, imitation behavior increases vaccination coverage, but, surprisingly, also increases the magnitude of epidemics through the clustering of non-vaccinators within the network. Thus, imitation behavior may impede the eradication of infectious diseases. Calculations that ignore behavioral clustering caused by imitation may significantly underestimate the levels of vaccination coverage required to attain herd immunity. PMID:22511859

  20. The infamous among us: Enhanced reputational memory for uncooperative ingroup members.

    PubMed

    Hechler, Stefanie; Neyer, Franz J; Kessler, Thomas

    2016-12-01

    People remember uncooperative individuals better than cooperative ones. We hypothesize that this is particularly true when uncooperative individuals belong to one's ingroup, as their behavior violates positive expectations. Two studies examined the effect of minimal group categorization on reputational memory of the social behavior of particular ingroup and outgroup members. We manipulated uncooperative behavior as the unfair sharing of resources with ingroup members (Study 1), or as descriptions of cheating (Study 2). Participants evaluated several uncooperative and cooperative (and neutral) ingroup and outgroup members. In a surprise memory test, they had to recognize target faces and recall their behavior. We disentangled face recognition, reputational memory, and guessing biases with multinomial models of source monitoring. The results show enhanced reputational memory for uncooperative ingroup members, but not uncooperative outgroup members. In contrast, guessing behavior indicated that participants assumed more ingroup cooperation than outgroup cooperation. Our findings integrate prior research on memory for uncooperative person behavior and person memory in group contexts. We suggest that the ability to remember the uncooperative amidst the supposedly cooperative ingroup could stabilize intragroup cooperation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Changing the Way We Assess Leadership

    DTIC Science & Technology

    1997-01-01

    article is twofold. The first is to present a theory of leader- ship for the circumstances described above. The second is to provide manag - ers with a...between management and leadership . While both management and leadership are necessary, the change and complexity associated with the future demands that...the leadership role takes precedence over the management role. This concept of managerial leadership in an environment full of surprising, novel, messy

  2. MSIAC Journal. Volume 3, Issue 1, March 2008

    DTIC Science & Technology

    2008-03-01

    Interaction Surprise Risk Suspense Art and Beauty Learning processEntertainment Trainer PreferencesGamer Preferences A review of these preferences...certification level event within a continuous sce- nario for a complex tactical aviation mission that lead to the selection of Steal Beasts for the conduct...visual environment. The avia- tion training school had already purchased an adequate number of Steel Beasts licences and so it was selected as the most

  3. Ontogeny reveals function and evolution of the hadrosaurid dinosaur dental battery.

    PubMed

    LeBlanc, Aaron R H; Reisz, Robert R; Evans, David C; Bailleul, Alida M

    2016-07-28

    Hadrosaurid dinosaurs, dominant Late Cretaceous herbivores, possessed complex dental batteries with up to 300 teeth in each jaw ramus. Despite extensive interest in the adaptive significance of the dental battery, surprisingly little is known about how the battery evolved from the ancestral dinosaurian dentition, or how it functioned in the living organism. We undertook the first comprehensive, tissue-level study of dental ontogeny in hadrosaurids using several intact maxillary and dentary batteries and compared them to sections of other archosaurs and mammals. We used these comparisons to pinpoint shifts in the ancestral reptilian pattern of tooth ontogeny that allowed hadrosaurids to form complex dental batteries. Comparisons of hadrosaurid dental ontogeny with that of other amniotes reveals that the ability to halt normal tooth replacement and functionalize the tooth root into the occlusal surface was key to the evolution of dental batteries. The retention of older generations of teeth was driven by acceleration in the timing and rate of dental tissue formation. The hadrosaurid dental battery is a highly modified form of the typical dinosaurian gomphosis with a unique tooth-to-tooth attachment that permitted constant and perfectly timed tooth eruption along the whole battery. We demonstrate that each battery was a highly dynamic, integrated matrix of living replacement and, remarkably, dead grinding teeth connected by a network of ligaments that permitted fine scale flexibility within the battery. The hadrosaurid dental battery, the most complex in vertebrate evolution, conforms to a surprisingly simple evolutionary model in which ancestral reptilian tissue types were redeployed in a unique manner. The hadrosaurid dental battery thus allows us to follow in great detail the development and extended life history of a particularly complex food processing system, providing novel insights into how tooth development can be altered to produce complex dentitions, the likes of which do not exist in any living vertebrate.

  4. The role of domain expertise and judgment in dealing with unexpected events

    NASA Astrophysics Data System (ADS)

    Kochan, Janeen Adrion

    Unexpected events, particularly those creating surprise, interrupt ongoing mental and behavioral processes, creating an increased potential for unwanted outcomes to the situation. Human reactions to unexpected events vary. One can hypothesize a number of reasons for this variation, including level of domain expertise, previous experience with similar events, emotional connotation, and the contextual surround of the event. Whereas interrupting ongoing activities and focusing attention temporarily on a surprising event may be a useful evolutionary response to a threatening situation, the same process may be maladaptive in today's highly dynamic world. The purpose of this study was to investigate how different aspects of expertise affected one's ability to detect and react to an unexpected event. It was hypothesized that there were two general types of expertise, domain expertise and judgment (Hammond, 2000), which influenced one's performance on dealing with an unexpected event. The goal of the research was to parse out the relative contribution of domain expertise, so the role of judgment could be revealed. The research questions for this study were: (a) Can we identify specific knowledges and skills which enhance one's ability to deal with unexpected events? (b) Are these skills "automatically" included in domain expertise? (c) How does domain expertise improve or deter one's reaction and response to unexpected events? (d) What role does judgment play in responding to surprise? The general hypothesis was that good judgment would influence the process of surprise at different stages and in different ways than would domain expertise. The conclusions from this research indicated that good judgment had a significant positive effect in helping pilots deal with unexpected events. This was most pronounced when domain expertise was low.

  5. Characterization of Non-Innocent Metal Complexes Using Solid-State NMR Spectroscopy: o-Dioxolene Vanadium Complexes

    PubMed Central

    Chatterjee, Pabitra B.; Goncharov-Zapata, Olga; Quinn, Laurence L.; Hou, Guangjin; Hamaed, Hiyam; Schurko, Robert W.; Polenova, Tatyana; Crans, Debbie C.

    2012-01-01

    51V solid-state NMR (SSNMR) studies of a series of non-innocent vanadium(V) catechol complexes have been conducted to evaluate the possibility that 51V NMR observables, quadrupolar and chemical shift anisotropies, and electronic structures of such compounds can be used to characterize these compounds. The vanadium(V) catechol complexes described in these studies have relatively small quadrupolar coupling constants, which cover a surprisingly small range from 3.4 to 4.2 MHz. On the other hand, isotropic 51V NMR chemical shifts cover a wide range from −200 ppm to 400 ppm in solution and from −219 to 530 ppm in the solid state. A linear correlation of 51V NMR isotropic solution and solid-state chemical shifts of complexes containing non-innocent ligands is observed. These experimental results provide the information needed for the application of 51V SSNMR spectroscopy in characterizing the electronic properties of a wide variety of vanadium-containing systems, and in particular those containing non-innocent ligands and that have chemical shifts outside the populated range of −300 ppm to −700 ppm. The studies presented in this report demonstrate that the small quadrupolar couplings covering a narrow range of values reflect the symmetric electronic charge distribution, which is also similar across these complexes. These quadrupolar interaction parameters alone are not sufficient to capture the rich electronic structure of these complexes. In contrast, the chemical shift anisotropy tensor elements accessible from 51V SSNMR experiments are a highly sensitive probe of subtle differences in electronic distribution and orbital occupancy in these compounds. Quantum chemical (DFT) calculations of NMR parameters for [VO(hshed)(Cat)] yield 51V CSA tensor in reasonable agreement with the experimental results, but surprisingly, the calculated quadrupolar coupling constant is significantly greater than the experimental value. The studies demonstrate that substitution of the catechol ligand with electron donating groups results in an increase in the HOMO-LUMO gap and can be directly followed by an upfield shift for the vanadium catechol complex. In contrast, substitution of the catechol ligand with electron withdrawing groups results in a decrease in the HOMO-LUMO gap and can directly be followed by a downfield shift for the complex. The vanadium catechol complexes were used in this work because the 51V is a half-integer quadrupolar nucleus whose NMR observables are highly sensitive to the local environment. However, the results are general and could be extended to other redox active complexes that exhibit similar coordination chemistry as the vanadium catechol complexes. PMID:21842875

  6. Integrated assignment and path planning

    NASA Astrophysics Data System (ADS)

    Murphey, Robert A.

    2005-11-01

    A surge of interest in unmanned systems has exposed many new and challenging research problems across many fields of engineering and mathematics. These systems have the potential of transforming our society by replacing dangerous and dirty jobs with networks of moving machines. This vision is fundamentally separate from the modern view of robotics in that sophisticated behavior is realizable not by increasing individual vehicle complexity, but instead through collaborative teaming that relies on collective perception, abstraction, decision making, and manipulation. Obvious examples where collective robotics will make an impact include planetary exploration, space structure assembly, remote and undersea mining, hazardous material handling and clean-up, and search and rescue. Nonetheless, the phenomenon driving this technology trend is the increasing reliance of the US military on unmanned vehicles, specifically, aircraft. Only a few years ago, following years of resistance to the use of unmanned systems, the military and civilian leadership in the United States reversed itself and have recently demonstrated surprisingly broad acceptance of increasingly pervasive use of unmanned platforms in defense surveillance, and even attack. However, as rapidly as unmanned systems have gained acceptance, the defense research community has discovered the technical pitfalls that lie ahead, especially for operating collective groups of unmanned platforms. A great deal of talent and energy has been devoted to solving these technical problems, which tend to fall into two categories: resource allocation of vehicles to objectives, and path planning of vehicle trajectories. An extensive amount of research has been conducted in each direction, yet, surprisingly, very little work has considered the integrated problem of assignment and path planning. This dissertation presents a framework for studying integrated assignment and path planning and then moves on to suggest an exact mathematical model and solution techniques. The approach adopted is based upon the very flexible New Product Development model but also blends many features from other approaches. Solution methods using branch and bound and construction heuristics are developed and tested on several example problems, including a military scenario featuring unmanned air vehicles.

  7. ChemCam Passive Sky Spectroscopy at Gale Crater, Mars: Interannual Variability in Dust Aerosol Particle Size, Missing Water Vapor, and the Molecular Oxygen Problem

    NASA Astrophysics Data System (ADS)

    McConnochie, T. H.; Smith, M. D.; Wolff, M. J.; Bender, S. C.; Lemmon, M. T.; Wiens, R. C.; Maurice, S.; Gasnault, O.; Lasue, J.; Meslin, P. Y.; Harri, A. M.; Genzer, M.; Kemppinen, O.; Martinez, G.; DeFlores, L. P.; Blaney, D. L.; Johnson, J. R.; Bell, J. F., III; Trainer, M. G.; Lefèvre, F.; Atreya, S. K.; Mahaffy, P. R.; Wong, M. H.; Franz, H. B.; Guzewich, S.; Villanueva, G. L.; Khayat, A. S.

    2017-12-01

    The Mars Science Laboratory's (MSL) ChemCam spectrometer measures atmospheric aerosol properties and gas abundances by operating in passive mode and observing scattered sky light at two different elevation angles. We have previously [e. g. 1, 2] presented the methodology and results of these ChemCam Passive Sky observations. Here we will focus on three of the more surprising results that we have obtained: (1) depletion of the column water vapor at Gale Crater relative to that of the surrounding region combined with a strong enhancement of the local column water vapor relative to pre-dawn in-situ measurements, (2) an interannual change in the effective particle size of dust aerosol during the aphelion season, and (3) apparent seasonal and interannual variability in molecular oxygen that differs significantly from the expected behavior of a non-condensable trace gas and differs significantly from global climate model expectations. The ChemCam passive sky water vapor measurements are quite robust but their interpretation depends on the details of measurements as well as on the types of water vapor vertical distributions that can be produced by climate models. We have a high degree of confidence in the dust particle size changes but since aerosol results in general are subject to a variety of potential systematic effects our particle size results would benefit from confirmation by other techniques [c.f. 3]. For the ChemCam passive sky molecular oxygen results we are still working to constrain the uncertainties well enough to confirm the observed surprising behavior, motivated by similarly surprising atmospheric molecular oxygen variability observed by MSL's Sample Analysis at Mars (SAM) instrument [4]. REFERENCES: [1] McConnochie, et al. (2017), Icarus (submitted). [2] McConnochie, et al. (2017), abstract # 3201, The 6th International Workshop on the Mars Atmosphere: Granada, Spain. [3] Vicente-Retortillo et al. (2017), GRL, 44. [4] Trainer et al. (2017), 2017 AGU Fall Meeting.

  8. Control of collective network chaos.

    PubMed

    Wagemakers, Alexandre; Barreto, Ernest; Sanjuán, Miguel A F; So, Paul

    2014-06-01

    Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of "reduced" ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.

  9. The mysteries of the diffusion region in asymmetric systems

    NASA Astrophysics Data System (ADS)

    Hesse, M.; Aunai, N.; Zenitani, S.; Kuznetsova, M. M.; Birn, J.

    2013-12-01

    Unlike in symmetric systems, where symmetry dictates a comparatively simple structure of the reconnection region, asymmetric systems offer a surprising, much more complex, structure of the diffusion region. Beyond the well-known lack of colocation of flow stagnation and magnetic null, the physical mechanism underpinning the reconnection electric field also appears to be considerably more complex. In this presentation, we will perform a detailed analysis of the reconnection diffusion region in an asymmetric system. We will show that, unlike in symmetric systems, the immediate reconnection electric field is not given by electron pressure tensor nongyrotropies, but by electron inertial contributions. We will further discuss the role of pressure nongyrotropies, and we will study the origin of the complex structures of electron distributions in the central part of the diffusion region.

  10. Iron chelates: a challenge to chemists and Mössbauer spectroscopists

    NASA Astrophysics Data System (ADS)

    Homonnay, Z.; Szilágyi, P. Á.; Vértes, A.; Kuzmann, E.; Sharma, V. K.; Molnár, G.; Bousseksou, A.; Grenèche, J.-M.; Brausam, A.; Meier, R.; van Eldik, R.

    2008-02-01

    The speciation of iron in aqueous solutions containing Fe3 + and selected chelates such as EDTA, EDDA, CDTA and HEDTA has been studied using transmission 57Fe Mössbauer spectrometry in frozen solutions. The protonation of various complexes as well as binuclear complex formation could be detected as a function of pH. Autoreduction of Fe3 + to Fe2 + was observed in several cases. Reaction with hydrogen peroxide proved to be rather different for the four ligands, while the dihapto complex [XFe( η 2-O2)]3 - had surprisingly identical Mössbauer parameters for X = EDTA, CDTA or HEDTA. Paramagnetic spin relaxation observed in the Mössbauer spectra was found to be strongly influenced by the identity of the chelating ligand, despite the basically spin-spin origin of the phenomenon.

  11. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites.

    PubMed

    Chen, Baoyu; Chou, Hui-Ting; Brautigam, Chad A; Xing, Wenmin; Yang, Sheng; Henry, Lisa; Doolittle, Lynda K; Walz, Thomas; Rosen, Michael K

    2017-09-26

    The Rho GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization, which underpins diverse cellular processes. Here we report the structure of a WRC-Rac1 complex determined by cryo-electron microscopy. Surprisingly, Rac1 is not located at the binding site on the Sra1 subunit of the WRC previously identified by mutagenesis and biochemical data. Rather, it binds to a distinct, conserved site on the opposite end of Sra1. Biophysical and biochemical data on WRC mutants confirm that Rac1 binds to both sites, with the newly identified site having higher affinity and both sites required for WRC activation. Our data reveal that the WRC is activated by simultaneous engagement of two Rac1 molecules, suggesting a mechanism by which cells may sense the density of active Rac1 at membranes to precisely control actin assembly.

  12. Effects of environmental complexity and temporary captivity on foraging behavior of wild-caught meadow voles.

    PubMed

    Kozuch, Amaranta E; McPhee, M Elsbeth

    2014-01-01

    Increased housing of wild nonhuman animals in captivity for conservation, research, and rehabilitation has revealed the importance of systematically analyzing effects of the captive environment on behavior. This study focused on the effects of complexity and time held in captivity on foraging behaviors of wild-caught, adult meadow voles (Microtus pennsylvanicus). Forty-six individuals captured from a meadow outside Oshkosh, WI, were assigned to 1 of 4 captive treatment groups: simple/<50 days (SS), simple/>50 days, complex/<50 days, and complex/>50 days. Number of dish visits, proportion foraging, and frequency of nonforaging behaviors recorded during a 15-min foraging trial were measured for all subjects. Kruskal-Wallis and Mann-Whitney U Tests were conducted to analyze 4 different comparisons within this behavioral data. Overall, neither time in captivity or environmental complexity affected nonforaging behaviors. In contrast, foraging behaviors did change with treatment: Voles were less active at food dishes and visited control dishes more in treatment group SS than in the other treatment groups. In addition, sex-related differences in foraging behaviors were maintained when voles were exposed to environmental complexity. This article includes options for wildlife managers to adapt captive environments to meet the welfare and behavioral needs of translocated wild nonhuman mammals.

  13. Mcl-1-Bim complexes accommodate surprising point mutations via minor structural changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fire, Emiko; Gullá, Stefano V.; Grant, Robert A.

    2010-06-25

    Mcl-1 is an antiapoptotic Bcl-2-family protein that protects cells against death. Structures of Mcl-1, and of other anti-apoptotic Bcl-2 proteins, reveal a surface groove into which the {alpha}-helical BH3 regions of certain proapoptotic proteins can bind. Despite high overall structural conservation, differences in this groove afford binding specificity that is important for the mechanism of Bcl-2 family function. We report the crystal structure of human Mcl-1 bound to a BH3 peptide derived from human Bim and the structures for three complexes that accommodate large physicochemical changes at conserved Bim sites. The mutations had surprisingly modest effects on complex stability, andmore » the structures show that Mcl-1 can undergo small changes to accommodate the mutant ligands. For example, a shift in a leucine side chain fills a hole left by an isoleucine-to-alanine mutation at the first hydrophobic buried position of Bim BH3. Larger changes are also observed, with shifting of helix {alpha}3 accommodating an isoleucine-to-tyrosine mutation at this same position. We surveyed the variation in available Mcl-1 and Bcl-x{sub L} structures and observed moderate flexibility that is likely critical for facilitating interactions of diverse BH3-only proteins with Mcl-1. With the antiapoptotic Bcl-2 family members attracting significant attention as therapeutic targets, these structures contribute to our growing understanding of how specificity is achieved and can help to guide the design of novel inhibitors that target Mcl-1.« less

  14. [The 2009 Nobel Prize in Medicine and its surprising message: lifestyle is associated with telomerase activity].

    PubMed

    Falus, András; Marton, István; Borbényi, Erika; Tahy, Adám; Karádi, Pál; Aradi, János; Stauder, Adrienne; Kopp, Mária

    2010-06-13

    The 2009 Nobel Prize in Physiology and Medicine was awarded to three scientists for their pioneer research on telomeres - and the enzyme that forms them - telomerase. Their work highlighted the considerable connection between the length of telomeres and intensive changes in lifestyle and nutrition (Ornish method) as well as behavioral and psychological factors. In this review the various elements of molecular, cell biological, nutritional and lifestyle changes are introduced and discussed.

  15. Generation Rx.com. What are young people really doing online?

    PubMed

    Rideout, Victoria

    2002-01-01

    The Kaiser Family Foundation examined the ways Generation Xers use the Web to find health information and found some surprising results. Not only do young adults access online health information, but they seek it more often than they check sports scores, purchase merchandise, or participate in a chat room. They're also likely to be influenced by what they find online, and many report that they've changed their behavior based on what they've learned.

  16. Gaze Behavior of Children with ASD toward Pictures of Facial Expressions.

    PubMed

    Matsuda, Soichiro; Minagawa, Yasuyo; Yamamoto, Junichi

    2015-01-01

    Atypical gaze behavior in response to a face has been well documented in individuals with autism spectrum disorders (ASDs). Children with ASD appear to differ from typically developing (TD) children in gaze behavior for spoken and dynamic face stimuli but not for nonspeaking, static face stimuli. Furthermore, children with ASD and TD children show a difference in their gaze behavior for certain expressions. However, few studies have examined the relationship between autism severity and gaze behavior toward certain facial expressions. The present study replicated and extended previous studies by examining gaze behavior towards pictures of facial expressions. We presented ASD and TD children with pictures of surprised, happy, neutral, angry, and sad facial expressions. Autism severity was assessed using the Childhood Autism Rating Scale (CARS). The results showed that there was no group difference in gaze behavior when looking at pictures of facial expressions. Conversely, the children with ASD who had more severe autistic symptomatology had a tendency to gaze at angry facial expressions for a shorter duration in comparison to other facial expressions. These findings suggest that autism severity should be considered when examining atypical responses to certain facial expressions.

  17. Gaze Behavior of Children with ASD toward Pictures of Facial Expressions

    PubMed Central

    Matsuda, Soichiro; Minagawa, Yasuyo; Yamamoto, Junichi

    2015-01-01

    Atypical gaze behavior in response to a face has been well documented in individuals with autism spectrum disorders (ASDs). Children with ASD appear to differ from typically developing (TD) children in gaze behavior for spoken and dynamic face stimuli but not for nonspeaking, static face stimuli. Furthermore, children with ASD and TD children show a difference in their gaze behavior for certain expressions. However, few studies have examined the relationship between autism severity and gaze behavior toward certain facial expressions. The present study replicated and extended previous studies by examining gaze behavior towards pictures of facial expressions. We presented ASD and TD children with pictures of surprised, happy, neutral, angry, and sad facial expressions. Autism severity was assessed using the Childhood Autism Rating Scale (CARS). The results showed that there was no group difference in gaze behavior when looking at pictures of facial expressions. Conversely, the children with ASD who had more severe autistic symptomatology had a tendency to gaze at angry facial expressions for a shorter duration in comparison to other facial expressions. These findings suggest that autism severity should be considered when examining atypical responses to certain facial expressions. PMID:26090223

  18. Sorting of a multi-subunit ubiquitin ligase complex in the endolysosome system

    PubMed Central

    Yang, Xi; Arines, Felichi Mae; Zhang, Weichao

    2018-01-01

    The yeast Dsc E3 ligase complex has long been recognized as a Golgi-specific protein ubquitination system. It shares a striking sequence similarity to the Hrd1 complex that plays critical roles in the ER-associated degradation pathway. Using biochemical purification and mass spectrometry, we identified two novel Dsc subunits, which we named as Gld1 and Vld1. Surprisingly, Gld1 and Vld1 do not coexist in the same complex. Instead, they compete with each other to form two functionally independent Dsc subcomplexes. The Vld1 subcomplex takes the AP3 pathway to reach the vacuole membrane, whereas the Gld1 subcomplex travels through the VPS pathway and is cycled between Golgi and endosomes by the retromer. Thus, instead of being Golgi-specific, the Dsc complex can regulate protein levels at three distinct organelles, namely Golgi, endosome, and vacuole. Our study provides a novel model of achieving multi-tasking for transmembrane ubiquitin ligases with interchangeable trafficking adaptors. PMID:29355480

  19. HIV-1 Tat protein promotes formation of more-processive elongation complexes.

    PubMed Central

    Marciniak, R A; Sharp, P A

    1991-01-01

    The Tat protein of HIV-1 trans-activates transcription in vitro in a cell-free extract of HeLa nuclei. Quantitative analysis of the efficiency of elongation revealed that a majority of the elongation complexes generated by the HIV-1 promoter were not highly processive and terminated within the first 500 nucleotides. Tat trans-activation of transcription from the HIV-1 promoter resulted from an increase in processive character of the elongation complexes. More specifically, the analysis suggests that there exist two classes of elongation complexes initiating from the HIV promoter: a less-processive form and a more-processive form. Addition of purified Tat protein was found to increase the abundance of the more-processive class of elongation complex. The purine nucleoside analog, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) inhibits transcription in this reaction by decreasing the efficiency of elongation. Surprisingly, stimulation of transcription elongation by Tat was preferentially inhibited by the addition of DRB. Images PMID:1756726

  20. Consumers' various and surprising responses to direct-to-consumer advertisements in magazine print.

    PubMed

    Arney, Jennifer; Street, Richard L; Naik, Aanand D

    2013-01-01

    Direct-to-consumer advertising (DTCA) is ubiquitous in media outlets, but little is known about the ways in which consumers' values, needs, beliefs, and biases influence the perceived meaning and value of DTCA. This article aims to identify the taxonomy of readership categories that reflect the complexity of how health care consumers interact with DTCA, with particular focus on individuals' perceptions of print DTCA in popular magazines. Respondent-driven sampling was used to recruit 18 male and female magazine readers and 18 male and female prescription medication users aged 18-71 years. Semi-structured, in-depth interviews with consumers about their attentiveness, motivations, perceived value, and behavioral responses to DTCA were conducted. The analyses were guided by principles of grounded theory analysis; four categories that vary in consumers' attentiveness, motivations, perceived value, and behavioral responses to DTCA were identified. Two categories - the lay physician and the informed shopper - see value in information from DTCA and are likely to seek medical care based on the information. One category - the voyeur - reads DTCA, but is not likely to approach a clinician regarding advertised information. The fourth category - the evader - ignores DTCA and is not likely to approach a clinician with DTCA information. Responses to DTCA vary considerably among consumers, and physicians should view patients' understanding and response to DTCA within the context of their health-related needs. Patients' comments related to DTCA may be used as an opportunity to engage and understand patients' perspectives about illness and medication use. Clinicians may use information about these categories to facilitate shared understanding and improve communication within the doctor-patient relationship.

  1. Exploring the relationship between nanoscale dynamics and macroscopic rheology in natural polymer gums

    DOE PAGES

    Grein-Iankovski, Aline; Riegel-Vidotti, Izabel C.; Simas-Tosin, Fernanda F.; ...

    2016-11-02

    Here, we report a study connecting the nanoscale and macroscale structure and dynamics of Acacia mearnsii gum as probed by small-angle x-ray scattering (SAXS), x-ray photon correlation spectroscopy (XPCS) and rheology. Acacia gum, in general, is a complex polysaccharide used extensively in industry. Over the analyzed concentration range (15 to 30 wt%) the A. mearnsii gum is found to have a gel-like linear rheology and to exhibit shear thinning flow behavior under steady shear. The gum exhibited a steadily increasing elastic modulus with increasing time after they were prepared and also the emergence of shear thickening events within the shearmore » thinning behavior, characteristic of associative polymers. XPCS measurements using gold nanoparticles as tracers were used to explore the microscopic dynamics within the biopolymer gels and revealed a two-step relaxation process with a partial decay at inaccessibly short times, suggesting caged motion of the nanoparticles, followed by a slow decay at later delay times. Non-diffusive motion evidenced by a compressed exponential line shape and an inverse relationship between relaxation time and wave vector characterizes the slow dynamics of A. mearnsii gum gels. Surprisingly, we have determined that the nanometer-scale mean square displacement of the nanoparticles showed a close relationship to the values predicted from the macroscopic elastic properties of the material, obtained through the rheology experiments. Our results demonstrate the potential applicability of the XPCS technique in the natural polymers field to connect their macroscale properties with their nanoscale structure and dynamics.« less

  2. Exploring the relationship between nanoscale dynamics and macroscopic rheology in natural polymer gums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grein-Iankovski, Aline; Riegel-Vidotti, Izabel C.; Simas-Tosin, Fernanda F.

    Here, we report a study connecting the nanoscale and macroscale structure and dynamics of Acacia mearnsii gum as probed by small-angle x-ray scattering (SAXS), x-ray photon correlation spectroscopy (XPCS) and rheology. Acacia gum, in general, is a complex polysaccharide used extensively in industry. Over the analyzed concentration range (15 to 30 wt%) the A. mearnsii gum is found to have a gel-like linear rheology and to exhibit shear thinning flow behavior under steady shear. The gum exhibited a steadily increasing elastic modulus with increasing time after they were prepared and also the emergence of shear thickening events within the shearmore » thinning behavior, characteristic of associative polymers. XPCS measurements using gold nanoparticles as tracers were used to explore the microscopic dynamics within the biopolymer gels and revealed a two-step relaxation process with a partial decay at inaccessibly short times, suggesting caged motion of the nanoparticles, followed by a slow decay at later delay times. Non-diffusive motion evidenced by a compressed exponential line shape and an inverse relationship between relaxation time and wave vector characterizes the slow dynamics of A. mearnsii gum gels. Surprisingly, we have determined that the nanometer-scale mean square displacement of the nanoparticles showed a close relationship to the values predicted from the macroscopic elastic properties of the material, obtained through the rheology experiments. Our results demonstrate the potential applicability of the XPCS technique in the natural polymers field to connect their macroscale properties with their nanoscale structure and dynamics.« less

  3. Gravitropism in Arabidopsis thaliana: Root-specific action of the EHB gene and violation of the resultant law.

    PubMed

    Dümmer, Michaela; Forreiter, Christoph; Galland, Paul

    2015-09-15

    Gravitropic bending of seedlings of Arabidopsis thaliana in response to centrifugal accelerations was determined in a range between 0.0025 and 4×g to revisit and validate the so-called resultant law, which claims that centrifugation causes gravitropic organs to orient parallel to the resultant stimulus vector. We show here for seedlings of A. thaliana that this empirical law holds for hypocotyls but surprisingly fails for roots. While the behavior of hypocotyls could be modeled by an arc tangent function predicted by the resultant law, roots displayed a sharp maximum at 1.8×g that substantially overshoots the predicted value and that represents a novel phenomenon, diagravitropism elicited by centrifugal acceleration. The gravitropic bending critically depended on the orientation of the seedling relative to the centrifugal acceleration. If the centrifugal vector pointed toward the cotyledons, gravitropic bending of hypocotyls and roots was substantially enhanced. The complex behavior of Arabidopsis seedlings provides strong evidence that gravitropic bending entails a cosine component (longitudinal stimulus) to which the seedlings were more sensitive than to the classical sine component. The absolute gravitropic thresholds of hypocotyls and roots were determined in a clinostat-centrifuge and found to be below 0.015×g. A tropism mutant lacking the EHB1 protein, which interacts with ARF-GAP (ARF GTPase-activating protein) and thus indirectly with a small ARF-type G protein, displayed a lower gravitropic threshold for roots and also enhanced bending, while the responses of the hypocotyls remained nearly unaffected. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels.

    PubMed

    Cooper, Jacob C; Phadnis, Nitin

    2017-07-01

    Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, all nine CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper-activation is performed through the cooption of the polycystic kidney disease 2 (pkd2) Ca2+ channel. The parallels between CatSpers in primates and pkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by > 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper-activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper-activation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Chronic Ampakine Treatments Stimulate Dendritic Growth and Promote Learning in Middle-Aged Rats.

    PubMed

    Lauterborn, Julie C; Palmer, Linda C; Jia, Yousheng; Pham, Danielle T; Hou, Bowen; Wang, Weisheng; Trieu, Brian H; Cox, Conor D; Kantorovich, Svetlana; Gall, Christine M; Lynch, Gary

    2016-02-03

    Positive allosteric modulators of AMPA-type glutamate receptors (ampakines) have been shown to rescue synaptic plasticity and reduce neuropathology in rodent models of cognitive disorders. Here we tested whether chronic ampakine treatment offsets age-related dendritic retraction in middle-aged (MA) rats. Starting at 10 months of age, rats were housed in an enriched environment and given daily treatment with a short half-life ampakine or vehicle for 3 months. Dendritic branching and spine measures were collected from 3D reconstructions of Lucifer yellow-filled CA1 pyramidal cells. There was a substantial loss of secondary branches, relative to enriched 2.5-month-old rats, in apical and basal dendritic fields of vehicle-treated, but not ampakine-treated, 13-month-old rats. Baseline synaptic responses in CA1 were only subtly different between the two MA groups, but long-term potentiation was greater in ampakine-treated rats. Unsupervised learning of a complex environment was used to assess treatment effects on behavior. Vehicle- and drug-treated rats behaved similarly during a first 30 min session in the novel environment but differed markedly on subsequent measures of long-term memory. Markov sequence analysis uncovered a clear increase in the predictability of serial movements between behavioral sessions 2 and 3 in the ampakine, but not vehicle, group. These results show that a surprising degree of dendritic retraction occurs by middle age and that this can be mostly offset by pharmacological treatments without evidence for unwanted side effects. The functional consequences of rescue were prominent with regard to memory but also extended to self-organization of behavior. Brain aging is characterized by a progressive loss of dendritic arbors and the emergence of impairments to learning-related synaptic plasticity. The present studies show that dendritic losses are evident by middle age despite housing in an enriched environment and can be mostly reversed by long-term, oral administration of a positive allosteric modulator of AMPA-type glutamate receptors. Dendritic recovery was accompanied by improvements to both synaptic plasticity and the encoding of long-term memory of a novel, complex environment. Because the short half-life compound had no evident negative effects, the results suggest a plausible strategy for treating age-related neuronal deterioration. Copyright © 2016 the authors 0270-6474/16/361636-11$15.00/0.

  6. Chronic Ampakine Treatments Stimulate Dendritic Growth and Promote Learning in Middle-Aged Rats

    PubMed Central

    Lauterborn, Julie C.; Palmer, Linda C.; Jia, Yousheng; Pham, Danielle T.; Hou, Bowen; Wang, Weisheng; Trieu, Brian H.; Cox, Conor D.; Kantorovich, Svetlana

    2016-01-01

    Positive allosteric modulators of AMPA-type glutamate receptors (ampakines) have been shown to rescue synaptic plasticity and reduce neuropathology in rodent models of cognitive disorders. Here we tested whether chronic ampakine treatment offsets age-related dendritic retraction in middle-aged (MA) rats. Starting at 10 months of age, rats were housed in an enriched environment and given daily treatment with a short half-life ampakine or vehicle for 3 months. Dendritic branching and spine measures were collected from 3D reconstructions of Lucifer yellow-filled CA1 pyramidal cells. There was a substantial loss of secondary branches, relative to enriched 2.5-month-old rats, in apical and basal dendritic fields of vehicle-treated, but not ampakine-treated, 13-month-old rats. Baseline synaptic responses in CA1 were only subtly different between the two MA groups, but long-term potentiation was greater in ampakine-treated rats. Unsupervised learning of a complex environment was used to assess treatment effects on behavior. Vehicle- and drug-treated rats behaved similarly during a first 30 min session in the novel environment but differed markedly on subsequent measures of long-term memory. Markov sequence analysis uncovered a clear increase in the predictability of serial movements between behavioral sessions 2 and 3 in the ampakine, but not vehicle, group. These results show that a surprising degree of dendritic retraction occurs by middle age and that this can be mostly offset by pharmacological treatments without evidence for unwanted side effects. The functional consequences of rescue were prominent with regard to memory but also extended to self-organization of behavior. SIGNIFICANCE STATEMENT Brain aging is characterized by a progressive loss of dendritic arbors and the emergence of impairments to learning-related synaptic plasticity. The present studies show that dendritic losses are evident by middle age despite housing in an enriched environment and can be mostly reversed by long-term, oral administration of a positive allosteric modulator of AMPA-type glutamate receptors. Dendritic recovery was accompanied by improvements to both synaptic plasticity and the encoding of long-term memory of a novel, complex environment. Because the short half-life compound had no evident negative effects, the results suggest a plausible strategy for treating age-related neuronal deterioration. PMID:26843645

  7. Attitudes and defaults save lives and protect the environment jointly and compensatorily: understanding the behavioral efficacy of nudges and other structural interventions.

    PubMed

    Kaiser, Florian G; Arnold, Oliver; Otto, Siegmar

    2014-09-01

    A better understanding of when and why nudges (e.g., defaults, visibility or accessibility alterations) and other structural behavior-change measures work or fail can help avoid subsequent surprises such as unexpected political opposition. In this paper, we challenge the unilateral focus on structural interventions-which seemingly control people's behavioral decisions-as such a focus ignores the flipside-namely, attitudes or, as they are called in economics, preferences. We argue for a conceptual understanding of individual behavior that views personal attitudes and behavioral costs as its two separate compensatorily effective determinants. This classical understanding was reintroduced into attitude research as the Campbell paradigm. In the logic of the Campbell paradigm, a person's attitude becomes obvious in the face of the behavioral costs the person surmounts. Technically, individual attitudes reveal themselves in a set of cost-dependent transitively ordered performances. Behavioral costs in turn reflect the structural boundary conditions that are relevant as obstructive and/or supportive environmental forces that generically affect a specific behavior. So far, our research on people's attitudes toward environmental protection has demonstrated that the Campbell paradigm-and thus its conceptual account of individual behavior-holds true for approximately 95% of the people in a given society.

  8. Thermotronics: Towards Nanocircuits to Manage Radiative Heat Flux

    NASA Astrophysics Data System (ADS)

    Ben-Abdallah, Philippe; Biehs, Svend-Age

    2017-02-01

    The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20th century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.

  9. Creating 3, 4, 6 and 10-dimensional spacetime from W3 symmetry

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Watabiki, Y.

    2017-07-01

    We describe a model where breaking of W3 symmetry will lead to the emergence of time and subsequently of space. Surprisingly the simplest such models which lead to higher dimensional spacetimes are based on the four ;magical; Jordan algebras of 3 × 3 Hermitian matrices with real, complex, quaternion and octonion entries, respectively. The simplest symmetry breaking leads to universes with spacetime dimensions 3, 4, 6, and 10.

  10. Synthesis and antibacterial studies of rhodium and iridium complexes comprising of dipyridyl hydrazones

    NASA Astrophysics Data System (ADS)

    Aradhyula, Basava Punna Rao; Joshi, Nidhi; Poluri, Krishna Mohan; Kollipara, Mohan Rao

    2018-07-01

    Reactions of Cp*Rh and Cp*Ir dimers with the dipyridyl hydrazones such as picolinic (L1), nicotinic (L2) and isonicotinic (L3) have been reported here with the formulations [Cp*MClL3](PF6) {where M = Rh (5) and Ir (6)}, [(Cp*MCl)2L1](PF6) {where M = Rh (7) and Ir (8)}, [(Cp*MCl)2L2Cl](PF6) {where M = Rh(9) and Ir(10)}, and [(Cp*MCl)2L3Cl](PF6) {where M = Rh (11) and Ir (12)} which resulted in a series of mono- and di-nuclear cationic complexes. The complexes have been characterized by various spectroscopic techniques. The solid-state structures of three complexes (5, 6 and 8) have been determined by single-crystal X-ray diffraction studies. These cationic complexes have been evaluated for the preliminary antibacterial activity towards four bacterial strains viz., Staphylococcus aureus; Bacillus thuringiensis; Escherichia coli and Pseudomonas aeruginosa by agar well diffusion method. Complexes have exhibited zone of inhibition over Bacillus thuringiensis; Escherichia coli and Pseudomonas aeruginosa strains while Staphylococcus aureus strain is resistant to the complexes 9-12. Surprisingly, these complexes are di-nuclear and trichloride complexes.

  11. Neuronal prediction of opponent's behavior during cooperative social interchange in primates.

    PubMed

    Haroush, Keren; Williams, Ziv M

    2015-03-12

    A cornerstone of successful social interchange is the ability to anticipate each other's intentions or actions. While generating these internal predictions is essential for constructive social behavior, their single neuronal basis and causal underpinnings are unknown. Here, we discover specific neurons in the primate dorsal anterior cingulate that selectively predict an opponent's yet unknown decision to invest in their common good or defect and distinct neurons that encode the monkey's own current decision based on prior outcomes. Mixed population predictions of the other was remarkably near optimal compared to behavioral decoders. Moreover, disrupting cingulate activity selectively biased mutually beneficial interactions between the monkeys but, surprisingly, had no influence on their decisions when no net-positive outcome was possible. These findings identify a group of other-predictive neurons in the primate anterior cingulate essential for enacting cooperative interactions and may pave a way toward the targeted treatment of social behavioral disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Can cognitive processes help explain the success of instructional techniques recommended by behavior analysts?

    NASA Astrophysics Data System (ADS)

    Markovits, Rebecca A.; Weinstein, Yana

    2018-01-01

    The fields of cognitive psychology and behavior analysis have undertaken separate investigations into effective learning strategies. These studies have led to several recommendations from both fields regarding teaching techniques that have been shown to enhance student performance. While cognitive psychology and behavior analysis have studied student performance independently from their different perspectives, the recommendations they make are remarkably similar. The lack of discussion between the two fields, despite these similarities, is surprising. The current paper seeks to remedy this oversight in two ways: first, by reviewing two techniques recommended by behavior analysts—guided notes and response cards—and comparing them to their counterparts in cognitive psychology that are potentially responsible for their effectiveness; and second, by outlining some other areas of overlap that could benefit from collaboration. By starting the discussion with the comparison of two specific recommendations for teaching techniques, we hope to galvanize a more extensive collaboration that will not only further the progression of both fields, but also extend the practical applications of the ensuing research.

  13. Testosterone reduces conscious detection of signals serving social correction: implications for antisocial behavior.

    PubMed

    van Honk, Jack; Schutter, Dennis J L G

    2007-08-01

    Elevated levels of testosterone have repeatedly been associated with antisocial behavior, but the psychobiological mechanisms underlying this effect are unknown. However, testosterone is evidently capable of altering the processing of facial threat, and facial signals of fear and anger serve sociality through their higher-level empathy-provoking and socially corrective properties. We investigated the hypothesis that testosterone predisposes people to antisocial behavior by reducing conscious recognition of facial threat. In a within-subjects design, testosterone (0.5 mg) or placebo was administered to 16 female volunteers. Afterward, a task with morphed stimuli indexed their sensitivity for consciously recognizing the facial expressions of threat (disgust, fear, and anger) and nonthreat (surprise, sadness, and happiness). Testosterone induced a significant reduction in the conscious recognition of facial threat overall. Separate analyses for the three categories of threat faces indicated that this effect was reliable for angry facial expressions exclusively. This testosterone-induced impairment in the conscious detection of the socially corrective facial signal of anger may predispose individuals to antisocial behavior.

  14. Personality correlates of the Five-Factor Model for a sample of business owners/managers: associations with scores on Self-Monitoring, Type A Behavior, Locus of Control, and Subjective Well-being.

    PubMed

    Morrison, K A

    1997-02-01

    Bivariate relationships were examined between scores on the Five-Factor Model of personality and four personality dimensions including Self-monitoring, Locus of Control, Type A Behavior, and Subjective Well-being. Data were collected from 307 franchise business owner/managers from four different industries. Scores for Self-monitoring were positively related to those on Extraversion; Self-monitoring was the only personality measure significantly correlated with scores on Openness to Experience. Scores for Type A Behavior, measured by the Jenkins Activity Survey, were negatively correlated with Agreeableness and positively correlated with those for Extraversion. Somewhat surprisingly, the score for Type A Behavior had a relatively low correlation with the score for Conscientiousness. Scores for Subjective Well-being and Locus of Control were most strongly correlated with the positive pole of Neuroticism (Emotional Stability), Conscientiousness, and Extraversion. Possible explanations for the observed relationships are discussed.

  15. Hierarchical chemosensory regulation of male-male social interactions in Drosophila

    PubMed Central

    Wang, Liming; Han, Xiaoqing; Mehren, Jennifer; Hiroi, Makoto; Billeter, Jean-Christophe; Miyamoto, Tetsuya; Amrein, Hubert; Levine, Joel D.; Anderson, David J.

    2011-01-01

    Pheromones regulate male social behaviors in Drosophila, but the identities and behavioral role(s) of these chemosensory signals, and how they interact, are incompletely understood. Here we show that (Z)-7-tricosene (7-T), a male-enriched cuticular hydrocarbon (CH) previously shown to inhibit male-male courtship, is also essential for normal levels of aggression. The opposite influences of 7-T on aggression and courtship are independent, but both require the gustatory receptor Gr32a. Surprisingly, sensitivity to 7-T is required for the aggression-promoting effect of 11-cis-vaccenyl acetate (cVA), an olfactory pheromone, but 7-T sensitivity is independent of cVA. 7-T and cVA therefore regulate aggression in a hierarchical manner. Furthermore, the increased courtship caused by depletion of male CHs is suppressed by a mutation in the olfactory receptor Or47b. Thus, male social behaviors are controlled by gustatory pheromones that promote and suppress aggression and courtship, respectively, and whose influences are dominant to olfactory pheromones that enhance these behaviors. PMID:21516101

  16. Pathway-Specific Striatal Substrates for Habitual Behavior.

    PubMed

    O'Hare, Justin K; Ade, Kristen K; Sukharnikova, Tatyana; Van Hooser, Stephen D; Palmeri, Mark L; Yin, Henry H; Calakos, Nicole

    2016-02-03

    The dorsolateral striatum (DLS) is implicated in habit formation. However, the DLS circuit mechanisms underlying habit remain unclear. A key role for DLS is to transform sensorimotor cortical input into firing of output neurons that project to the mutually antagonistic direct and indirect basal ganglia pathways. Here we examine whether habit alters this input-output function. By imaging cortically evoked firing in large populations of pathway-defined striatal projection neurons (SPNs), we identify features that strongly correlate with habitual behavior on a subject-by-subject basis. Habitual behavior correlated with strengthened DLS output to both pathways as well as a tendency for action-promoting direct pathway SPNs to fire before indirect pathway SPNs. In contrast, habit suppression correlated solely with a weakened direct pathway output. Surprisingly, all effects were broadly distributed in space. Together, these findings indicate that the striatum imposes broad, pathway-specific modulations of incoming activity to render learned motor behaviors habitual. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Collective Behavior of Amoebae in Thin Films

    NASA Astrophysics Data System (ADS)

    Bae, Albert

    2005-03-01

    We have discovered new aspects of social behavior in Dictyostelium discoideum by culturing high density colonies in liquid media depleted of nutrients in confined geometries by using three different preparations: I. thin (15-40um thick) and II. ultrathin (<3um) films of liquid media with a mineral oil overlayer, and III. microfluidic chambers fabricated in PDMS (˜7um tall). We find greatly reduced, if not eliminated, cell on cell layering in the microfluidic system when compared to the wetting layer preparations. The ultrathin films reveal robust behavior of cells despite flattening that increased their areas by over an order of magnitude. We also observed that the earliest synchronized response of cells following the onset of starvation, a precursor to aggregation, was hastened by reducing the thickness of the aqueous culture layer. We were surprised to find that the threshold concentration for aggregation was raised by thin film confinement when compared to bulk behavior. Finally, both the ultra thin and microfluidic preparations reveal, with new clarity, vortex states of aggregation.

  18. Shear thinning in soft particle suspensions

    NASA Astrophysics Data System (ADS)

    Voudouris, Panayiotis; van der Zanden, Berco; Florea, Daniel; Fahimi, Zahra; Wyss, Hans

    2012-02-01

    Suspensions of soft deformable particles are encountered in a wide range of food and biological materials. Examples are biological cells, micelles, vesicles or microgel particles. While the behavior of suspenions of hard spheres - the classical model system of colloid science - is reasonably well understood, a full understanding of these soft particle suspensions remains elusive. The relation between single particle properties and macroscopic mechanical behavior still remains poorly understood in these materials. Here we examine the surprising shear thinning behavior that is observed in soft particle suspensions as a function of particle softness. We use poly-N-isopropylacrylamide (p-NIPAM) microgel particles as a model system to study this effect in detail. These soft spheres show significant shear thinning even at very large Peclet numbers, where this would not be observed for hard particles. The degree of shear thinning is directly related to the single particle elastic properties, which we characterize by the recently developed Capillary Micromechanics technique. We present a simple model that qualitatively accounts for the observed behavior.

  19. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs.

    PubMed

    Papes, Fabio; Logan, Darren W; Stowers, Lisa

    2010-05-14

    Potential predators emit uncharacterized chemosignals that warn receiving species of danger. Neurons that sense these stimuli remain unknown. Here we show that detection and processing of fear-evoking odors emitted from cat, rat, and snake require the function of sensory neurons in the vomeronasal organ. To investigate the molecular nature of the sensory cues emitted by predators, we isolated the salient ligands from two species using a combination of innate behavioral assays in naive receiving animals, calcium imaging, and c-Fos induction. Surprisingly, the defensive behavior-promoting activity released by other animals is encoded by species-specific ligands belonging to the major urinary protein (Mup) family, homologs of aggression-promoting mouse pheromones. We show that recombinant Mup proteins are sufficient to activate sensory neurons and initiate defensive behavior similarly to native odors. This co-option of existing sensory mechanisms provides a molecular solution to the difficult problem of evolving a variety of species-specific molecular detectors. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  20. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs

    PubMed Central

    Papes, Fabio; Logan, Darren W.; Stowers, Lisa

    2010-01-01

    Summary Potential predators emit uncharacterized chemosignals that warn receiving species of danger. Neurons that sense these stimuli remain unknown. Here we show that detection and processing of fear-evoking odors emitted from cat, rat, and snake require the function of sensory neurons in the vomeronasal organ. To investigate the molecular nature of the sensory cues emitted by predators, we isolated the salient ligands from two species using a combination of innate behavioral assays in naïve receiving animals, calcium imaging, and cFos induction. Surprisingly, the defensive behavior-promoting activity released by other animals is encoded by species-specific ligands belonging to the major urinary protein (Mup) family, homologs of aggression-promoting mouse pheromones. We show that recombinant Mup proteins are sufficient to activate sensory neurons and initiate defensive behavior similar to native odors. This co-option of existing sensory mechanisms provides a molecular solution to the difficult problem of evolving a variety of species-specific molecular detectors. PMID:20478258

  1. "The mind is willing, but the flesh is weak": the effects of mind-body dualism on health behavior.

    PubMed

    Forstmann, Matthias; Burgmer, Pascal; Mussweiler, Thomas

    2012-10-01

    Beliefs in mind-body dualism--that is, perceiving one's mind and body as two distinct entities--are evident in virtually all human cultures. Despite their prevalence, surprisingly little is known about the psychological implications of holding such beliefs. In the research reported here, we investigated the relationship between dualistic beliefs and health behaviors. We theorized that holding dualistic beliefs leads people to perceive their body as a mere "shell" and, thus, to neglect it. Supporting this hypothesis, our results showed that participants who were primed with dualism reported less engagement in healthy behaviors and less positive attitudes toward such behaviors than did participants primed with physicalism. Additionally, we investigated the bidirectionality of this link. Activating health-related concepts affected participants' subsequently reported metaphysical beliefs in mind-body dualism. A final set of studies demonstrated that participants primed with dualism make real-life decisions that may ultimately compromise their physical health (e.g., consuming unhealthy food). These findings have potential implications for health interventions.

  2. A Framework for Modeling Human-Machine Interactions

    NASA Technical Reports Server (NTRS)

    Shafto, Michael G.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Modern automated flight-control systems employ a variety of different behaviors, or modes, for managing the flight. While developments in cockpit automation have resulted in workload reduction and economical advantages, they have also given rise to an ill-defined class of human-machine problems, sometimes referred to as 'automation surprises'. Our interest in applying formal methods for describing human-computer interaction stems from our ongoing research on cockpit automation. In this area of aeronautical human factors, there is much concern about how flight crews interact with automated flight-control systems, so that the likelihood of making errors, in particular mode-errors, is minimized and the consequences of such errors are contained. The goal of the ongoing research on formal methods in this context is: (1) to develop a framework for describing human interaction with control systems; (2) to formally categorize such automation surprises; and (3) to develop tests for identification of these categories early in the specification phase of a new human-machine system.

  3. Microhydrodynamics of deformable particles: surprising responses of drops and vesicles to uniform electric field or shear flow

    NASA Astrophysics Data System (ADS)

    Vlahovska, Petia

    2015-11-01

    Particle motion in a viscous fluid is a classic problem that continues to surprise researchers. In this talk, I will discuss some intriguing, experimentally-observed behaviors of droplets and giant vesicles (cell-size lipid membrane sacs) in electric or flow fields. In a uniform electric field, a droplet deforms into an ellipsoid that can either be steadily tilted relative to the applied field direction or undergo unsteady motions (periodic shape oscillations or irregular flipping); a spherical vesicle can adopt a transient square shape or reversibly porate. In a steady shear flow, a vesicle can tank-tread, tumble or swing. Theoretical models show that the nonlinear drop dynamics originates from the interplay of Quincke rotation and interface deformation, while the vesicle dynamics stems from the membrane inextensibility. The practical motivation for this research lies in an improved understanding of technologies that rely on the manipulation of drops and cells by flow or electric fields.

  4. Brain oscillations and BIS/BAS (behavioral inhibition/activation system) effects on processing masked emotional cues. ERS/ERD and coherence measures of alpha band.

    PubMed

    Balconi, Michela; Mazza, Guido

    2009-11-01

    Alpha brain oscillation modulation was analyzed in response to masked emotional facial expressions. In addition, behavioural activation (BAS) and behavioural inhibition systems (BIS) were considered as an explicative factor to verify the effect of motivational significance on cortical activity. Nineteen subjects were submitted to an ample range of facial expressions of emotions (anger, fear, surprise, disgust, happiness, sadness, and neutral). The results demonstrated that anterior frontal sites were more active than central and posterior sites in response to facial stimuli. Moreover, right-side responses varied as a function of emotional types, with an increased right-frontal activity for negative emotions. Finally, whereas higher BIS subjects generated a more right hemisphere activation for some negative emotions (such as fear, anger, and surprise), Reward-BAS subjects were more responsive to positive emotion (happiness) within the left hemisphere. Valence and potential threatening power of facial expressions were considered to elucidate these cortical differences.

  5. Anatomical basis of sun compass navigation II: the neuronal composition of the central complex of the monarch butterfly.

    PubMed

    Heinze, Stanley; Florman, Jeremy; Asokaraj, Surainder; El Jundi, Basil; Reppert, Steven M

    2013-02-01

    Each fall, eastern North American monarch butterflies in their northern range undergo a long-distance migration south to their overwintering grounds in Mexico. Migrants use a time-compensated sun compass to determine directionality during the migration. This compass system uses information extracted from sun-derived skylight cues that is compensated for time of day and ultimately transformed into the appropriate motor commands. The central complex (CX) is likely the site of the actual sun compass, because neurons in this brain region are tuned to specific skylight cues. To help illuminate the neural basis of sun compass navigation, we examined the neuronal composition of the CX and its associated brain regions. We generated a standardized version of the sun compass neuropils, providing reference volumes, as well as a common frame of reference for the registration of neuron morphologies. Volumetric comparisons between migratory and nonmigratory monarchs substantiated the proposed involvement of the CX and related brain areas in migratory behavior. Through registration of more than 55 neurons of 34 cell types, we were able to delineate the major input pathways to the CX, output pathways, and intrinsic neurons. Comparison of these neural elements with those of other species, especially the desert locust, revealed a surprising degree of conservation. From these interspecies data, we have established key components of a conserved core network of the CX, likely complemented by species-specific neurons, which together may comprise the neural substrates underlying the computations performed by the CX. Copyright © 2012 Wiley Periodicals, Inc.

  6. Loss of laminin alpha 1 results in multiple structural defects and divergent effects on adhesion during vertebrate optic cup morphogenesis

    PubMed Central

    Bryan, Chase D.; Chien, Chi-Bin; Kwan, Kristen M.

    2016-01-01

    The vertebrate eye forms via a complex set of morphogenetic events. The optic vesicle evaginates and undergoes transformative shape changes to form the optic cup, in which neural retina and retinal pigmented epithelium enwrap the lens. It has long been known that a complex, glycoprotein-rich extracellular matrix layer surrounds the developing optic cup throughout the process, yet the functions of the matrix and its specific molecular components have remained unclear. Previous work established a role for laminin extracellular matrix in particular steps of eye development, including optic vesicle evagination, lens differentiation, and retinal ganglion cell polarization, yet it is unknown what role laminin might play in the early process of optic cup formation subsequent to the initial step of optic vesicle evagination. Here, we use the zebrafish lama1 mutant (lama1UW1) to determine the function of laminin during optic cup morphogenesis. Using live imaging, we find, surprisingly, that loss of laminin leads to divergent effects on focal adhesion assembly in a spatiotemporally-specific manner, and that laminin is required for multiple steps of optic cup morphogenesis, including optic stalk constriction, invagination, and formation of a spherical lens. Laminin is not required for single cell behaviors and changes in cell shape. Rather, in lama1UW1 mutants, loss of epithelial polarity and altered adhesion lead to defective tissue architecture and formation of a disorganized retina. These results demonstrate that the laminin extracellular matrix plays multiple critical roles regulating adhesion and polarity to establish and maintain tissue structure during optic cup morphogenesis. PMID:27339294

  7. Lentiviral and targeted cellular barcoding reveals ongoing clonal dynamics of cell lines in vitro and in vivo

    PubMed Central

    2014-01-01

    Background Cell lines are often regarded as clonal, even though this simplifies what is known about mutagenesis, transformation and other processes that destabilize them over time. Monitoring these clonal dynamics is important for multiple areas of biomedical research, including stem cell and cancer biology. Tracking the contributions of individual cells to large populations, however, has been constrained by limitations in sensitivity and complexity. Results We utilize cellular barcoding methods to simultaneously track the clonal contributions of tens of thousands of cells. We demonstrate that even with optimal culturing conditions, common cell lines including HeLa, K562 and HEK-293 T exhibit ongoing clonal dynamics. Starting a population with a single clone diminishes but does not eradicate this phenomenon. Next, we compare lentiviral and zinc-finger nuclease barcode insertion approaches, finding that the zinc-finger nuclease protocol surprisingly results in reduced clonal diversity. We also document the expected reduction in clonal complexity when cells are challenged with genotoxic stress. Finally, we demonstrate that xenografts maintain clonal diversity to a greater extent than in vitro culturing of the human non-small-cell lung cancer cell line HCC827. Conclusions We demonstrate the feasibility of tracking and quantifying the clonal dynamics of entire cell populations within multiple cultured cell lines. Our results suggest that cell heterogeneity should be considered in the design and interpretation of in vitro culture experiments. Aside from clonal cell lines, we propose that cellular barcoding could prove valuable in modeling the clonal behavior of heterogeneous cell populations over time, including tumor populations treated with chemotherapeutic agents. PMID:24886633

  8. Neuropathology and Animal Models of Autism: Genetic and Environmental Factors

    PubMed Central

    Gadad, Bharathi S.; Young, Keith A.; German, Dwight C.

    2013-01-01

    Autism is a heterogeneous behaviorally defined neurodevelopmental disorder. It is defined by the presence of marked social deficits, specific language abnormalities, and stereotyped repetitive patterns of behavior. Because of the variability in the behavioral phenotype of the disorder among patients, the term autism spectrum disorder has been established. In the first part of this review, we provide an overview of neuropathological findings from studies of autism postmortem brains and identify the cerebellum as one of the key brain regions that can play a role in the autism phenotype. We review research findings that indicate possible links between the environment and autism including the role of mercury and immune-related factors. Because both genes and environment can alter the structure of the developing brain in different ways, it is not surprising that there is heterogeneity in the behavioral and neuropathological phenotypes of autism spectrum disorders. Finally, we describe animal models of autism that occur following insertion of different autism-related genes and exposure to environmental factors, highlighting those models which exhibit both autism-like behavior and neuropathology. PMID:24151553

  9. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors.

    PubMed

    Rothwell, Patrick E; Fuccillo, Marc V; Maxeiner, Stephan; Hayton, Scott J; Gokce, Ozgun; Lim, Byung Kook; Fowler, Stephen C; Malenka, Robert C; Südhof, Thomas C

    2014-07-03

    In humans, neuroligin-3 mutations are associated with autism, whereas in mice, the corresponding mutations produce robust synaptic and behavioral changes. However, different neuroligin-3 mutations cause largely distinct phenotypes in mice, and no causal relationship links a specific synaptic dysfunction to a behavioral change. Using rotarod motor learning as a proxy for acquired repetitive behaviors in mice, we found that different neuroligin-3 mutations uniformly enhanced formation of repetitive motor routines. Surprisingly, neuroligin-3 mutations caused this phenotype not via changes in the cerebellum or dorsal striatum but via a selective synaptic impairment in the nucleus accumbens/ventral striatum. Here, neuroligin-3 mutations increased rotarod learning by specifically impeding synaptic inhibition onto D1-dopamine receptor-expressing but not D2-dopamine receptor-expressing medium spiny neurons. Our data thus suggest that different autism-associated neuroligin-3 mutations cause a common increase in acquired repetitive behaviors by impairing a specific striatal synapse and thereby provide a plausible circuit substrate for autism pathophysiology. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The Importance of Demonstratively Restoring Order

    PubMed Central

    Keizer, Kees; Lindenberg, Siegwart; Steg, Linda

    2013-01-01

    Contrary to what is often assumed, order is not the strongest context for encouraging normative behavior. The strongest context effect on normative behavior comes from cues that clearly convey other people’s respect for norms. Ironically, this show of respect necessitates some contrasting disrespect that is being restored. Using civic virtues (such as helping behavior) as a prototype of normative behavior, the three field experiments described in this paper reveal the impact of normative cues on civic virtues. Results show that the strongest effect on making people follow prosocial norms in public places emanates from seeing order being restored, rather than just order being present. The robust and surprisingly large effects show that observing other people’s respect for one particular norm (as evidenced in their restoring physical order) makes it more likely that the onlooker follows other norms as well. This implies that prosocial behavior has the highest chance of spreading when people observe order being restored. There are clear policy implications: create low cost “normative respect cues” wherever it is desirable to increase conformity to norms. PMID:23755182

  11. Advances in Autism

    PubMed Central

    Geschwind, Daniel H.

    2013-01-01

    Autism is a common childhood neurodevelopmental disorder with strong genetic liability. It is not a unitary entity but a clinical syndrome, with variable deficits in social behavior and language, restrictive interests, and repetitive behaviors. Recent advances in the genetics of autism emphasize its etiological heterogeneity, with each genetic susceptibility locus accounting for only a small fraction of cases or having a small effect. Therefore, it is not surprising that no unifying structural or neuropathological features have been conclusively identified. Given the heterogeneity of autism spectrum disorder (ASD), approaches based on studying heritable components of the disorder, or endophenotypes, such as language or social cognition, provide promising avenues for genetic and neurobiological investigations. Early intensive behavioral and cognitive interventions are efficacious in many cases, but autism does not remit in the majority of children. Therefore, development of targeted therapies based on pathophysiologically and etiologically defined subtypes of ASD remains an important and achievable goal of current research. PMID:19630577

  12. Negotiating the maze: risk factors for suicidal behavior in chronic pain patients.

    PubMed

    Newton-John, Toby R O

    2014-09-01

    Chronic pain disorders can exert major negative effects on virtually every aspect of an individual's life. It is not surprising then that many chronic pain sufferers find themselves at a point of emotional fragility where they experience thoughts of ending their life. Suicidal behavior encompasses a spectrum of experience, from "life weariness" or passive suicidal ideation, to more active suicidal intent and suicide completion. A range of risk factors for suicidal behavior in the general population have been identified, and these apply equally to the chronic pain population: a family history of mental illness, past history of suicide attempts, and the presence of comorbid depression. With regard specifically to chronic pain patients, elevated suicide risk is also associated with severe or recurrent headache, ambiguous diagnoses (psychogenic pain, abdominal pain), and medicolegal issues related to the pain. A number of suggestions for clinicians managing chronic pain patients with regards to managing suicide risk are given.

  13. Micro- and nanotechnology in cardiovascular tissue engineering.

    PubMed

    Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-12-09

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  14. Software Schedules Missions, Aids Project Management

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA missions require advanced planning, scheduling, and management, and the Space Agency has worked extensively to develop the programs and software suites necessary to facilitate these complex missions. These enormously intricate undertakings have hundreds of active components that need constant management and monitoring. It is no surprise, then, that the software developed for these tasks is often applicable in other high-stress, complex environments, like in government or industrial settings. NASA work over the past few years has resulted in a handful of new scheduling, knowledge-management, and research tools developed under contract with one of NASA s partners. These tools have the unique responsibility of supporting NASA missions, but they are also finding uses outside of the Space Program.

  15. Making RISC.

    PubMed

    Kawamata, Tomoko; Tomari, Yukihide

    2010-07-01

    It is well established that 20- to 30-nt small RNAs, including small interfering RNAs, microRNAs and Piwi-interacting RNAs, play crucial roles in regulating gene expression and control a surprisingly diverse array of biological processes. These small RNAs cannot work alone: they must form effector ribonucleoprotein complexes - RNA-induced silencing complexes (RISCs) - to exert their function. Thus, RISC assembly is a key process in small RNA-mediated silencing. Recent biochemical analyses of RISC assembly, together with new structural studies of Argonaute, the core protein component of RISC, suggest a revised view of how mature RISC, which contains single-stranded guide RNA, is built from small RNAs that are born double-stranded. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Galileo Galilei's vision of the senses.

    PubMed

    Piccolino, Marco; Wade, Nicholas J

    2008-11-01

    Neuroscientists have become increasingly aware of the complexities and subtleties of sensory processing. This applies particularly to the complex elaborations of nerve signals that occur in the sensory circuits, sometimes at the very initial stages of sensory pathways. Sensory processing is now known to be very different from a simple neural copy of the physical signal present in the external world, and this accounts for the intricacy of neural organization that puzzled great investigators of neuroanatomy such as Santiago Ramón Y Cajal a century ago. It will surprise present-day sensory neuroscientists, applying their many modern methods, that the conceptual basis of the contemporary approach to sensory function had been recognized four centuries ago by Galileo Galilei.

  17. The closed MTIP-MyosinA-tail complex from the malaria parasite invasion machinery

    PubMed Central

    Bosch, Jürgen; Turley, Stewart; Roach, Claudia M.; Daly, Thomas M.; Bergman, Lawrence W.; Hol, Wim G. J.

    2009-01-01

    The Myosin A-tail Interacting Protein (MTIP) of the malaria parasite links the actomyosin motor of the host cell invasion machinery to its inner membrane complex. We report here that at neutral pH Plasmodium falciparum MTIP in complex with Myosin A adopts a compact conformation, with its two domains completely surrounding the Myosin A-tail helix, dramatically different from previously observed extended MTIP structures. Crystallographic and mutagenesis studies show that H810 and K813 of Myosin A are key players in the formation of the compact MTIP:Myosin A complex. Only the unprotonated state of Myosin A-H810 is compatible with the compact complex. Most surprisingly, every side chain atom of Myosin A-K813 is engaged in contacts with MTIP. While this side chain was previously considered to prevent a compact conformation of MTIP with Myosin A, it actually appears to be essential for the formation of the compact complex. The hydrophobic pockets and adaptability seen in the available series of MTIP structures bodes well for the discovery of inhibitors of cell invasion by malaria parasites. PMID:17628590

  18. Dependent personality features in a complex case of borderline personality disorder.

    PubMed

    Nirestean, Tudor; Lukacs, Emese; Nirestean, Aurel; Gabos Grecu, Iosif

    2016-11-01

    Borderline personality disorder is a complex disease model as it encompasses a diversity of pathological personality traits and psychopathological symptoms. It is not surprising, therefore, that it is often manifested by personality disorders across all three clusters and accompanied by other mental (Axis I) disorders. This melange makes both psychological treatment and pharmacotherapy especially challenging, and this paper describes the case of a particularly complex case of a 33-year-old Romanian patient, who has a history of severe deprivation in childhood, mood and substance use disorder in association with borderline pathology. In the course of treatment from many sources and interventions, it has become clear that dependence is a key component of the pathology and has been rewarded with a degree of success in management. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. The general mitochondrial processing peptidase from potato is an integral part of cytochrome c reductase of the respiratory chain.

    PubMed Central

    Braun, H P; Emmermann, M; Kruft, V; Schmitz, U K

    1992-01-01

    The major mitochondrial processing activity removing presequences from nuclear encoded precursor proteins is present in the soluble fraction of fungal and mammalian mitochondria. We found that in potato, this activity resides in the inner mitochondrial membrane. Surprisingly, the proteolytic activity co-purifies with cytochrome c reductase, a protein complex of the respiratory chain. The purified complex is bifunctional, as it has the ability to transfer electrons from ubiquinol to cytochrome c and to cleave off the presequences of mitochondrial precursor proteins. In contrast to the nine subunit fungal complex, cytochrome c reductase from potato comprises 10 polypeptides. Protein sequencing of peptides from individual subunits and analysis of corresponding cDNA clones reveals that subunit III of cytochrome c reductase (51 kDa) represents the general mitochondrial processing peptidase. Images PMID:1324169

  20. Effect of confinements: Bending in Paramecium

    NASA Astrophysics Data System (ADS)

    Eddins, Aja; Yang, Sung; Spoon, Corrie; Jung, Sunghwan

    2012-02-01

    Paramecium is a unicellular eukaryote which by coordinated beating of cilia, generates metachronal waves which causes it to execute a helical trajectory. We investigate the swimming parameters of the organism in rectangular PDMS channels and try to quantify its behavior. Surprisingly a swimming Paramecium in certain width of channels executes a bend of its flexible body (and changes its direction of swimming) by generating forces using the cilia. Considering a simple model of beam constrained between two walls, we predict the bent shapes of the organism and the forces it exerts on the walls. Finally we try to explain how bending (by sensing) can occur in channels by conducting experiments in thin film of fluid and drawing analogy to swimming behavior observed in different cases.

  1. Stacking Faults and Mechanical Behavior beyond the Elastic Limit of an Imidazole-Based Metal Organic Framework: ZIF-8.

    PubMed

    Hegde, Vinay I; Tan, Jin-Chong; Waghmare, Umesh V; Cheetham, Anthony K

    2013-10-17

    We determine the nonlinear mechanical behavior of a prototypical zeolitic imidazolate framework (ZIF-8) along two modes of mechanical failure in response to tensile and shear forces using first-principles simulations. Our generalized stacking fault energy surface reveals an intrinsic stacking fault of surprisingly low energy comparable to that in copper, though the energy barrier associated with its formation is much higher. The lack of vibrational spectroscopic evidence for such faults in experiments can be explained with the structural instability of the barrier state to form a denser and disordered state of ZIF-8 seen in our analysis, that is, large shear leads to its amorphization rather than formation of faults.

  2. Molecular modeling of polycarbonate materials: Glass transition and mechanical properties

    NASA Astrophysics Data System (ADS)

    Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim

    2017-09-01

    Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.

  3. Generating and Describing Affective Eye Behaviors

    NASA Astrophysics Data System (ADS)

    Mao, Xia; Li, Zheng

    The manner of a person's eye movement conveys much about nonverbal information and emotional intent beyond speech. This paper describes work on expressing emotion through eye behaviors in virtual agents based on the parameters selected from the AU-Coded facial expression database and real-time eye movement data (pupil size, blink rate and saccade). A rule-based approach to generate primary (joyful, sad, angry, afraid, disgusted and surprise) and intermediate emotions (emotions that can be represented as the mixture of two primary emotions) utilized the MPEG4 FAPs (facial animation parameters) is introduced. Meanwhile, based on our research, a scripting tool, named EEMML (Emotional Eye Movement Markup Language) that enables authors to describe and generate emotional eye movement of virtual agents, is proposed.

  4. Prestress Strengthens the Shell of Norwalk Virus Nanoparticles

    PubMed Central

    Baclayon, Marian; Shoemaker, Glen K.; Uetrecht, Charlotte; Crawford, Sue E.; Estes, Mary K.; Prasad, B. V. Venkataram; Heck, Albert J. R.; Wuite, Gijs J. L.; Roos, Wouter H.

    2014-01-01

    We investigated the influence of the protruding domain of Norwalk virus-like particles (NVLP) on its overall structural and mechanical stability. Deletion of the protruding domain yields smooth mutant particles and our AFM nanoindentation measurements show a surprisingly altered indentation response of these particles. Notably, the brittle behavior of the NVLP as compared to the plastic behavior of the mutant reveals that the protruding domain drastically changes the capsid’s material properties. We conclude that the protruding domain introduces prestress, thereby increasing the stiffness of the NVLP and effectively stabilizing the viral nanoparticles. Our results exemplify the variety of methods that nature has explored to improve the mechanical properties of viral capsids, which in turn provides new insights for developing rationally designed, self-assembled nanodevices. PMID:21967663

  5. Attitudes and Defaults Save Lives and Protect the Environment Jointly and Compensatorily: Understanding the Behavioral Efficacy of Nudges and Other Structural Interventions

    PubMed Central

    Kaiser, Florian G.; Arnold, Oliver; Otto, Siegmar

    2014-01-01

    A better understanding of when and why nudges (e.g., defaults, visibility or accessibility alterations) and other structural behavior-change measures work or fail can help avoid subsequent surprises such as unexpected political opposition. In this paper, we challenge the unilateral focus on structural interventions—which seemingly control people's behavioral decisions—as such a focus ignores the flipside—namely, attitudes or, as they are called in economics, preferences. We argue for a conceptual understanding of individual behavior that views personal attitudes and behavioral costs as its two separate compensatorily effective determinants. This classical understanding was reintroduced into attitude research as the Campbell paradigm. In the logic of the Campbell paradigm, a person's attitude becomes obvious in the face of the behavioral costs the person surmounts. Technically, individual attitudes reveal themselves in a set of cost-dependent transitively ordered performances. Behavioral costs in turn reflect the structural boundary conditions that are relevant as obstructive and/or supportive environmental forces that generically affect a specific behavior. So far, our research on people’s attitudes toward environmental protection has demonstrated that the Campbell paradigm—and thus its conceptual account of individual behavior—holds true for approximately 95% of the people in a given society. PMID:25379277

  6. Panic attacks. Psychologic response or medical illness?

    PubMed

    Katerndahl, D A

    1984-06-01

    Panic attacks are surprisingly common in the United States, costing our economy more than $100 million per year in disability benefits and health care expenses. However, diagnosis is difficult and consequently many patients are treated for other conditions. When an underlying disorder is determined to be present, treatment of that disorder may ameliorate attacks. If none is present, panic symptoms will respond to a variety of drugs. Behavioral therapy may be necessary in severe cases or as adjunctive therapy after attacks abate.

  7. Phase Memory Preserving Harmonics from Abruptly Autofocusing Beams.

    PubMed

    Koulouklidis, Anastasios D; Papazoglou, Dimitris G; Fedorov, Vladimir Yu; Tzortzakis, Stelios

    2017-12-01

    We demonstrate both theoretically and experimentally that the harmonics from abruptly autofocusing ring-Airy beams present a surprising property: They preserve the phase distribution of the fundamental beam. Consequently, this "phase memory" imparts to the harmonics the abrupt autofocusing behavior, while, under certain conditions, their foci coincide in space with the one of the fundamental. Experiments agree well with our theoretical estimates and detailed numerical calculations. Our findings open the way for the use of such beams and their harmonics in strong field science.

  8. Modeling of Habitat and Foraging Behavior of Beaked Whales in the Southern California Bight

    DTIC Science & Technology

    2012-09-30

    patterns of beaked whale echolocation signals in the North Pacific over 26 sites (Figure 3) (Baumann-Pickering et al., 2012a) revealed that Wake Atoll ... Atoll are not considered typical territory for this species and would be a surprising finding. BW43 signal encounters were restricted to the...Roch, M. A., Schnitzler, H. U., and Hildebrand, J. A. (2010). "Echolocation signals of a beaked whale at Palmyra Atoll ," J. Acoust. Soc. Am. 127

  9. Testing primates with joystick-based automated apparatus - Lessons from the Language Research Center's Computerized Test System

    NASA Technical Reports Server (NTRS)

    Washburn, David A.; Rumbaugh, Duane M.

    1992-01-01

    Nonhuman primates provide useful models for studying a variety of medical, biological, and behavioral topics. Four years of joystick-based automated testing of monkeys using the Language Research Center's Computerized Test System (LRC-CTS) are examined to derive hints and principles for comparable testing with other species - including humans. The results of multiple parametric studies are reviewed, and reliability data are presented to reveal the surprises and pitfalls associated with video-task testing of performance.

  10. Experimental determination of the effective strong coupling constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandre Deur; Volker Burkert; Jian-Ping Chen

    2007-07-01

    We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  11. Dissecting the hypothalamic pathways that underlie innate behaviors.

    PubMed

    Zha, Xi; Xu, Xiaohong

    2015-12-01

    Many complex behaviors that do not require learning are displayed and are termed innate. Although traditionally the subject matter of ethology, innate behaviors offer a unique entry point for neuroscientists to dissect the physiological mechanisms governing complex behaviors. Since the last century, converging evidence has implicated the hypothalamus as the central brain area that controls innate behaviors. Recent studies using cutting-edge tools have revealed that genetically-defined populations of neurons residing in distinct hypothalamic nuclei and their associated neural pathways regulate the initiation and maintenance of diverse behaviors including feeding, sleep, aggression, and parental care. Here, we review the newly-defined hypothalamic pathways that regulate each innate behavior. In addition, emerging general principles of the neural control of complex behaviors are discussed.

  12. The influence of location of local anesthesia and complexity/duration of restorative treatment on children's behavior during dental treatment.

    PubMed

    Davidovich, Esti; Wated, Alham; Shapira, Joseph; Ram, Diana

    2013-01-01

    The purpose of this study was to investigate whether the region of local anesthetic injection and the complexity and duration of restorative treatment were associated with children's behavior during and immediately after dental treatment. This study examined 90 children, divided into two age groups (2-3.5 years old and >3.5-5.5 years old), who underwent dental treatment while lightly sedated. The region of local anesthesia (maxillary infiltration or mandibular block), complexity and duration of treatment, and behavior during and after treatment were assessed. Children's behavior during and after dental treatment, within and between age groups, was not found to be associated with the region of local anesthesia or complexity of treatment. For both age groups, more children exhibited negative behaviors during treatment when procedures exceeded 30 minutes. For younger children, more negative behaviors were also observed after longer vs shorter procedures. Treatment duration, not the region of local anesthesia or complexity of treatment, was associated with children's behavior during and after dental procedures.

  13. What Behavioral and Psychological Symptoms of Dementia Affect Caregiver Burnout?

    PubMed

    Hiyoshi-Taniguchi, Kazuko; Becker, Carl B; Kinoshita, Ayae

    2018-01-01

    Patients' irritability and aggression have been linked to caregiver depression, but the behaviors that most burden caregivers are not yet definitively identified. This study examines the connection between behavioral and psychological symptoms of dementia (BPSD) and the burnout of caregivers caring for home-dwelling elders with dementia symptoms in Japan. 80 Japanese rural and urban family caregivers completed detailed questionnaires about their experiences in caring for demented family members. We statistically analyzed the results for correlations between types of dementia, Pines Burnout, and Caregiver Distress. BPSD symptom severity significantly correlated with caregiver distress. The dementia symptoms most strongly correlated with caregiver burnout were: aggression, irritability, abnormal motor behavior, and hallucinations. Among the commonest symptoms, apathy, anxiety, and depression did not seriously aggravate caregiver burnout. Caregivers displayed higher burnout facing agitation/aggression, irritability, aberrant motor behavior, and hallucinations. Caregivers' reported distress was surprisingly dissimilar to their burnout scores; patients' delusions and anxiety led to higher distress reporting but not to burnout. Advance diagnosis of BPSD symptoms should be helpful to support nurses and caregivers of dementia patients. Particular support should be considered for caregivers and nurses of patients expressing aggression, irritability, abnormal motor behavior, and hallucination.

  14. Conformity does not perpetuate suboptimal traditions in a wild population of songbirds

    PubMed Central

    Aplin, Lucy M.; Sheldon, Ben C.; McElreath, Richard

    2017-01-01

    Social learning is important to the life history of many animals, helping individuals to acquire new adaptive behavior. However despite long-running debate, it remains an open question whether a reliance on social learning can also lead to mismatched or maladaptive behavior. In a previous study, we experimentally induced traditions for opening a bidirectional door puzzle box in replicate subpopulations of the great tit Parus major. Individuals were conformist social learners, resulting in stable cultural behaviors. Here, we vary the rewards gained by these techniques to ask to what extent established behaviors are flexible to changing conditions. When subpopulations with established foraging traditions for one technique were subjected to a reduced foraging payoff, 49% of birds switched their behavior to a higher-payoff foraging technique after only 14 days, with younger individuals showing a faster rate of change. We elucidated the decision-making process for each individual, using a mechanistic learning model to demonstrate that, perhaps surprisingly, this population-level change was achieved without significant asocial exploration and without any evidence for payoff-biased copying. Rather, by combining conformist social learning with payoff-sensitive individual reinforcement (updating of experience), individuals and populations could both acquire adaptive behavior and track environmental change. PMID:28739943

  15. Phototactic personality in fruit flies and its suppression by serotonin and white.

    PubMed

    Kain, Jamey S; Stokes, Chris; de Bivort, Benjamin L

    2012-11-27

    Drosophila typically move toward light (phototax positively) when startled. The various species of Drosophila exhibit some variation in their respective mean phototactic behaviors; however, it is not clear to what extent genetically identical individuals within each species behave idiosyncratically. Such behavioral individuality has indeed been observed in laboratory arthropods; however, the neurobiological factors underlying individual-to-individual behavioral differences are unknown. We developed "FlyVac," a high-throughput device for automatically assessing phototaxis in single animals in parallel. We observed surprising variability within every species and strain tested, including identically reared, isogenic strains. In an extreme example, a domesticated strain of Drosophila simulans harbored both strongly photopositive and strongly photonegative individuals. The particular behavior of an individual fly is not heritable and, because it persists for its lifetime, constitutes a model system for elucidating the molecular mechanisms of personality. Although all strains assayed had greater than expected variation (assuming binomial sampling), some had more than others, implying a genetic basis. Using genetics and pharmacology, we identified the metabolite transporter White and white-dependent serotonin as suppressors of phototactic personality. Because we observed behavioral idiosyncrasy in all experimental groups, we suspect it is present in most behaviors of most animals.

  16. Infrastructure Tsunami Could Easily Dwarf Climate Change

    NASA Astrophysics Data System (ADS)

    Lansing, Stephen

    Compared to the physical and biological sciences, so far complexity has had far less impact on mainstream social science. This is not surprising, but it is alarming because we find ourselves in the midst of a planetary-scale transition from the Holocene to the Anthropocene. We have already breached some planetary boundaries for sustainability, but those tipping points are nearly invisible from the perspective of the linear equilibrium models that continue to hold sway in social science...

  17. Well Conditioned Formulations for Open Surface Scattering

    DTIC Science & Technology

    2008-08-01

    region on the negative real half of the com- plex plane and tend to cluster about a few points. With few exceptions12, the eigenvalues have converged...a relatively small region on the negative real half of the complex plane and they tend to cluster about a few points. We were surprised, however, to...theory and the results from a numerical implementation. We also discuss a 2d extension of the Poincare -Bertrand identity could be used to develop an

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubser, Steven S.; van der Schee, Wilke

    At strong coupling holographic studies have shown that heavy ion collisions do not obey normal boost invariance. Here we study a modified boost invariance through a complex shift in time, and show that this leads to surprisingly good agreement with numerical holographic computations. When including perturbations the agreement becomes even better, both in the hydrodynamic and the far-from-equilibrium regime. Finally, one of the main advantages is an analytic formulation of the stress-energy tensor of the longitudinal dynamics of holographic heavy ion collisions.

  19. The implications of Big Five standing for the distribution of trait manifestation in behavior: fifteen experience-sampling studies and a meta-analysis.

    PubMed

    Fleeson, William; Gallagher, Patrick

    2009-12-01

    One of the fundamental questions in personality psychology is whether and how strongly trait standing relates to the traits that people actually manifest in their behavior when faced with real pressures and real consequences of their actions. One reason this question is fundamental is the common belief that traits do not predict how individuals behave, which leads to the reasonable conclusion that traits are not important to study. However, this conclusion is surprising given that there is almost no data on the ability of traits to predict distributions of naturally occurring, representative behaviors of individuals (and that there are many studies showing that traits do indeed predict specific behaviors). The authors describe a meta-analysis of 15 experience-sampling studies, conducted over the course of 8 years, amassing over 20,000 reports of trait manifestation in behavior. Participants reported traits on typical self-report questionnaires, then described their current behavior multiple times per day for several days as the behavior was occurring. Results show that traits, contrary to expectations, were strongly predictive of individual differences in trait manifestation in behavior, predicting average levels with correlations between .42 and .56 (approaching .60 for stringently restricted studies). Several other ways of summarizing trait manifestation in behavior were also predicted from traits. These studies provide evidence that traits are powerful predictors of actual manifestation of traits in behavior.

  20. Surprise beyond prediction error

    PubMed Central

    Chumbley, Justin R; Burke, Christopher J; Stephan, Klaas E; Friston, Karl J; Tobler, Philippe N; Fehr, Ernst

    2014-01-01

    Surprise drives learning. Various neural “prediction error” signals are believed to underpin surprise-based reinforcement learning. Here, we report a surprise signal that reflects reinforcement learning but is neither un/signed reward prediction error (RPE) nor un/signed state prediction error (SPE). To exclude these alternatives, we measured surprise responses in the absence of RPE and accounted for a host of potential SPE confounds. This new surprise signal was evident in ventral striatum, primary sensory cortex, frontal poles, and amygdala. We interpret these findings via a normative model of surprise. PMID:24700400

Top