Sample records for surrounding brain tissue

  1. Computational analysis of transcranial magnetic stimulation in the presence of deep brain stimulation probes

    NASA Astrophysics Data System (ADS)

    Syeda, F.; Holloway, K.; El-Gendy, A. A.; Hadimani, R. L.

    2017-05-01

    Transcranial Magnetic Stimulation is an emerging non-invasive treatment for depression, Parkinson's disease, and a variety of other neurological disorders. Many Parkinson's patients receive the treatment known as Deep Brain Stimulation, but often require additional therapy for speech and swallowing impairment. Transcranial Magnetic Stimulation has been explored as a possible treatment by stimulating the mouth motor area of the brain. We have calculated induced electric field, magnetic field, and temperature distributions in the brain using finite element analysis and anatomically realistic heterogeneous head models fitted with Deep Brain Stimulation leads. A Figure of 8 coil, current of 5000 A, and frequency of 2.5 kHz are used as simulation parameters. Results suggest that Deep Brain Stimulation leads cause surrounding tissues to experience slightly increased E-field (Δ Emax =30 V/m), but not exceeding the nominal values induced in brain tissue by Transcranial Magnetic Stimulation without leads (215 V/m). The maximum temperature in the brain tissues surrounding leads did not change significantly from the normal human body temperature of 37 °C. Therefore, we ascertain that Transcranial Magnetic Stimulation in the mouth motor area may stimulate brain tissue surrounding Deep Brain Stimulation leads, but will not cause tissue damage.

  2. Metastasis Infiltration: An Investigation of the Postoperative Brain-Tumor Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raore, Bethwel; Schniederjan, Matthew; Prabhu, Roshan

    Purpose: This study aims to evaluate brain infiltration of metastatic tumor cells past the main tumor resection margin to assess the biological basis for the use of stereotactic radiosurgery treatment of the tumor resection cavity and visualized resection edge or clinical target volume. Methods and Materials: Resection margin tissue was obtained after gross total resection of a small group of metastatic lesions from a variety of primary sources. The tissue at the border of the tumor and brain tissue was carefully oriented and processed to evaluate the presence of tumor cells within brain tissue and their distance from the resectionmore » margin. Results: Microscopic assessment of the radially oriented tissue samples showed no tumor cells infiltrating the surrounding brain tissue. Among the positive findings were reactive astrocytosis observed on the brain tissue immediately adjacent to the tumor resection bed margin. Conclusions: The lack of evidence of metastatic tumor cell infiltration into surrounding brain suggests the need to target only a narrow depth of the resection cavity margin to minimize normal tissue injury and prevent treatment size-dependent stereotactic radiosurgery complications.« less

  3. The meningeal lymphatic system: a route for HIV brain migration?

    PubMed

    Lamers, Susanna L; Rose, Rebecca; Ndhlovu, Lishomwa C; Nolan, David J; Salemi, Marco; Maidji, Ekaterina; Stoddart, Cheryl A; McGrath, Michael S

    2016-06-01

    Two innovative studies recently identified functional lymphatic structures in the meninges that may influence the development of HIV-associated neurological disorders (HAND). Until now, blood vessels were assumed to be the sole transport system by which HIV-infected monocytes entered the brain by bypassing a potentially hostile blood-brain barrier through inflammatory-mediated semi-permeability. A cascade of specific chemokine signals promote monocyte migration from blood vessels to surrounding brain tissues via a well-supported endothelium, where the cells differentiate into tissue macrophages capable of productive HIV infection. Lymphatic vessels on the other hand are more loosely organized than blood vessels. They absorb interstitial fluid from bodily tissues where HIV may persist and exchange a variety of immune cells (CD4(+) T cells, monocytes, macrophages, and dendritic cells) with surrounding tissues through discontinuous endothelial junctions. We propose that the newly discovered meningeal lymphatics are key to HIV migration among viral reservoirs and brain tissue during periods of undetectable plasma viral loads due to suppressive combinational antiretroviral therapy, thus redefining the migration process in terms of a blood-lymphatic transport system.

  4. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    PubMed

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  5. Peri-tumoral leakage during intra-tumoral convection-enhanced delivery has implications for efficacy of peri-tumoral infusion before removal of tumor.

    PubMed

    Yang, Xiaoliang; Saito, Ryuta; Nakamura, Taigen; Zhang, Rong; Sonoda, Yukihiko; Kumabe, Toshihiro; Forsayeth, John; Bankiewicz, Krystof; Tominaga, Teiji

    2016-01-01

    In cases of malignant brain tumors, infiltrating tumor cells that exist at the tumor-surrounding brain tissue always escape from cytoreductive surgery and, protected by blood-brain barrier (BBB), survive the adjuvant chemoradiotherapy, eventually leading to tumor recurrence. Local interstitial delivery of chemotherapeutic agents is a promising strategy to target these cells. During our effort to develop effective drug delivery methods by intra-tumoral infusion of chemotherapeutic agents, we found consistent pattern of leakage from the tumor. Here we describe our findings and propose promising strategy to cover the brain tissue surrounding the tumor with therapeutic agents by means of convection-enhanced delivery. First, the intracranial tumor isograft model was used to define patterns of leakage from tumor mass after intra-tumoral infusion of the chemotherapeutic agents. Liposomal doxorubicin, although first distributed inside the tumor, distributed diffusely into the surrounding normal brain once the leakage happen. Trypan blue dye was used to evaluate the distribution pattern of peri-tumoral infusions. When infused intra- or peri-tumorally, infusates distributed robustly into the tumor border. Subsequently, volume of distributions with different infusion scheduling; including intra-tumoral infusion, peri-tumoral infusion after tumor resection, peri-tumoral infusion without tumor removal with or without systemic infusion of steroids, were compared with Evans-blue dye. Peri-tumoral infusion without tumor removal resulted in maximum volume of distribution. Prior use of steroids further increased the volume of distribution. Local interstitial drug delivery targeting tumor surrounding brain tissue before tumor removal should be more effective when targeting the invading cells.

  6. In situ characterization of the brain-microdevice interface using Device Capture Histology

    PubMed Central

    Woolley, Andrew J.; Desai, Himanshi A.; Steckbeck, Mitchell A.; Patel, Neil K.; Otto, Kevin J.

    2011-01-01

    Accurate assessment of brain-implantable microdevice bio-integration remains a formidable challenge. Prevailing histological methods require device extraction prior to tissue processing, often disrupting and removing the tissue of interest which had been surrounding the device. The Device-Capture Histology method, presented here, overcomes many limitations of the conventional Device-Explant Histology method, by collecting the device and surrounding tissue intact for subsequent labeling. With the implant remaining in situ, accurate and precise imaging of the morphologically preserved tissue at the brain/microdevice interface can then be collected and quantified. First, this article presents the Device-Capture Histology method for obtaining and processing the intact, undisturbed microdevice-tissue interface, and images using fluorescent labeling and confocal microscopy. Second, this article gives examples of how to quantify features found in the captured peridevice tissue. We also share histological data capturing 1) the impact of microdevice implantation on tissue, 2) the effects of an experimental anti-inflammatory coating, 3) a dense grouping of cell nuclei encapsulating a long-term implant, and 4) atypical oligodendrocyte organization neighboring a longterm implant. Data sets collected using the Device-Capture Histology method are presented to demonstrate the significant advantages of processing the intact microdevice-tissue interface, and to underscore the utility of the method in understanding the effects of the brain-implantable microdevices on nearby tissue. PMID:21802446

  7. In Silico Neuro-Oncology: Brownian Motion-Based Mathematical Treatment as a Potential Platform for Modeling the Infiltration of Glioma Cells into Normal Brain Tissue.

    PubMed

    Antonopoulos, Markos; Stamatakos, Georgios

    2015-01-01

    Intensive glioma tumor infiltration into the surrounding normal brain tissues is one of the most critical causes of glioma treatment failure. To quantitatively understand and mathematically simulate this phenomenon, several diffusion-based mathematical models have appeared in the literature. The majority of them ignore the anisotropic character of diffusion of glioma cells since availability of pertinent truly exploitable tomographic imaging data is limited. Aiming at enriching the anisotropy-enhanced glioma model weaponry so as to increase the potential of exploiting available tomographic imaging data, we propose a Brownian motion-based mathematical analysis that could serve as the basis for a simulation model estimating the infiltration of glioblastoma cells into the surrounding brain tissue. The analysis is based on clinical observations and exploits diffusion tensor imaging (DTI) data. Numerical simulations and suggestions for further elaboration are provided.

  8. Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity.

    PubMed

    Unhavaithaya, Yingdee; Orr-Weaver, Terry L

    2012-01-01

    Proper development requires coordination in growth of the cell types composing an organ. Many plant and animal cells are polyploid, but how these polyploid tissues contribute to organ growth is not well understood. We found the Drosophila melanogaster subperineurial glia (SPG) to be polyploid, and ploidy is coordinated with brain mass. Inhibition of SPG polyploidy caused rupture of the septate junctions necessary for the blood-brain barrier. Thus, the increased SPG cell size resulting from polyploidization is required to maintain the SPG envelope surrounding the growing brain. Polyploidization likely is a conserved strategy to coordinate tissue growth during organogenesis, with potential vertebrate examples.

  9. Effects of Nd:YAG and CO2 lasers on cerebral microvasculature. Study in normal rabbit brain.

    PubMed

    Kuroiwa, T; Tsuyumu, M; Takei, H; Inaba, Y

    1986-01-01

    The effect of Nd:YAG and CO2 laser beams on cerebral microvasculature was examined in experimental animals. Soft x-ray microangiography and histological examination of the brain after Nd:YAG laser exposure revealed broad avascular or oligovascular zones in the irradiated and the surrounding edematous tissue, in which the surviving vessels were narrowed and tapered without significant leakage of blood. After CO2 laser exposure, a wedge-shaped tissue defect surrounded by layers of charring, coagulation, and edema was observed. The main finding in the surrounding coagulation and edematous layers was dilatation of the vessels. Hemorrhage was sometimes observed, mainly in the edematous layer. These findings seem to explain the effective hemostatic capability of the Nd:YAG laser and the occasional hemorrhage following CO2 laser exposure, especially at high energy output.

  10. Proliferation zones in the axolotl brain and regeneration of the telencephalon

    PubMed Central

    2013-01-01

    Background Although the brains of lower vertebrates are known to exhibit somewhat limited regeneration after incisional or stab wounds, the Urodele brain exhibits extensive regeneration after massive tissue removal. Discovering whether and how neural progenitor cells that reside in the ventricular zones of Urodeles proliferate to mediate tissue repair in response to injury may produce novel leads for regenerative strategies. Here we show that endogenous neural progenitor cells resident to the ventricular zone of Urodeles spontaneously proliferate, producing progeny that migrate throughout the telencephalon before terminally differentiating into neurons. These progenitor cells appear to be responsible for telencephalon regeneration after tissue removal and their activity may be up-regulated by injury through an olfactory cue. Results There is extensive proliferation of endogenous neural progenitor cells throughout the ventricular zone of the adult axolotl brain. The highest levels are observed in the telencephalon, especially the dorsolateral aspect, and cerebellum. Lower levels are observed in the mesencephalon and rhombencephalon. New cells produced in the ventricular zone migrate laterally, dorsally and ventrally into the surrounding neuronal layer. After migrating from the ventricular zone, the new cells primarily express markers of neuronal differentiative fates. Large-scale telencephalic tissue removal stimulates progenitor cell proliferation in the ventricular zone of the damaged region, followed by proliferation in the tissue that surrounds the healing edges of the wound until the telencephalon has completed regeneration. The proliferative stimulus appears to reside in the olfactory system, because telencephalic regeneration does not occur in the brains of olfactory bulbectomized animals in which the damaged neural tissue simply heals over. Conclusion There is a continual generation of neuronal cells from neural progenitor cells located within the ventricular zone of the axolotl brain. Variable rates of proliferation were detected across brain regions. These neural progenitor cells appear to mediate telencephalic tissue regeneration through an injury-induced olfactory cue. Identification of this cue is our future goal. PMID:23327114

  11. Proliferation zones in the axolotl brain and regeneration of the telencephalon.

    PubMed

    Maden, Malcolm; Manwell, Laurie A; Ormerod, Brandi K

    2013-01-17

    Although the brains of lower vertebrates are known to exhibit somewhat limited regeneration after incisional or stab wounds, the Urodele brain exhibits extensive regeneration after massive tissue removal. Discovering whether and how neural progenitor cells that reside in the ventricular zones of Urodeles proliferate to mediate tissue repair in response to injury may produce novel leads for regenerative strategies. Here we show that endogenous neural progenitor cells resident to the ventricular zone of Urodeles spontaneously proliferate, producing progeny that migrate throughout the telencephalon before terminally differentiating into neurons. These progenitor cells appear to be responsible for telencephalon regeneration after tissue removal and their activity may be up-regulated by injury through an olfactory cue. There is extensive proliferation of endogenous neural progenitor cells throughout the ventricular zone of the adult axolotl brain. The highest levels are observed in the telencephalon, especially the dorsolateral aspect, and cerebellum. Lower levels are observed in the mesencephalon and rhombencephalon. New cells produced in the ventricular zone migrate laterally, dorsally and ventrally into the surrounding neuronal layer. After migrating from the ventricular zone, the new cells primarily express markers of neuronal differentiative fates. Large-scale telencephalic tissue removal stimulates progenitor cell proliferation in the ventricular zone of the damaged region, followed by proliferation in the tissue that surrounds the healing edges of the wound until the telencephalon has completed regeneration. The proliferative stimulus appears to reside in the olfactory system, because telencephalic regeneration does not occur in the brains of olfactory bulbectomized animals in which the damaged neural tissue simply heals over. There is a continual generation of neuronal cells from neural progenitor cells located within the ventricular zone of the axolotl brain. Variable rates of proliferation were detected across brain regions. These neural progenitor cells appear to mediate telencephalic tissue regeneration through an injury-induced olfactory cue. Identification of this cue is our future goal.

  12. MRI-induced heating of deep brain stimulation leads

    NASA Astrophysics Data System (ADS)

    Mohsin, Syed A.; Sheikh, Noor M.; Saeed, Usman

    2008-10-01

    The radiofrequency (RF) field used in magnetic resonance imaging is scattered by medical implants. The scattered field of a deep brain stimulation lead can be very intense near the electrodes stimulating the brain. The effect is more pronounced if the lead behaves as a resonant antenna. In this paper, we examine the resonant length effect. We also use the finite element method to compute the near field for (i) the lead immersed in inhomogeneous tissue (fat, muscle, and brain tissues) and (ii) the lead connected to an implantable pulse generator. Electric field, specific absorption rate and induced temperature rise distributions have been obtained in the brain tissue surrounding the electrodes. The worst-case scenario has been evaluated by neglecting the effect of blood perfusion. The computed values are in good agreement with in vitro measurements made in the laboratory.

  13. Mechanisms underlying different onset patterns of focal seizures

    PubMed Central

    Trevelyan, Andrew J; Valentin, Antonio; Alarcon, Gonzalo

    2017-01-01

    Focal seizures are episodes of pathological brain activity that appear to arise from a localised area of the brain. The onset patterns of focal seizure activity have been studied intensively, and they have largely been distinguished into two types—low amplitude fast oscillations (LAF), or high amplitude spikes (HAS). Here we explore whether these two patterns arise from fundamentally different mechanisms. Here, we use a previously established computational model of neocortical tissue, and validate it as an adequate model using clinical recordings of focal seizures. We then reproduce the two onset patterns in their most defining properties and investigate the possible mechanisms underlying the different focal seizure onset patterns in the model. We show that the two patterns are associated with different mechanisms at the spatial scale of a single ECoG electrode. The LAF onset is initiated by independent patches of localised activity, which slowly invade the surrounding tissue and coalesce over time. In contrast, the HAS onset is a global, systemic transition to a coexisting seizure state triggered by a local event. We find that such a global transition is enabled by an increase in the excitability of the “healthy” surrounding tissue, which by itself does not generate seizures, but can support seizure activity when incited. In our simulations, the difference in surrounding tissue excitability also offers a simple explanation of the clinically reported difference in surgical outcomes. Finally, we demonstrate in the model how changes in tissue excitability could be elucidated, in principle, using active stimulation. Taken together, our modelling results suggest that the excitability of the tissue surrounding the seizure core may play a determining role in the seizure onset pattern, as well as in the surgical outcome. PMID:28472032

  14. Modeling Cerebral Vascular Injury

    DTIC Science & Technology

    2016-01-01

    vessels to inform the material response of the surrounding brain tissue. 15. SUBJECT TERMS traumatic brain injury, vasculature, injury biomechanics ...Margulies SS. A fiber-reinforced composite model of the viscoelastic behavior of the brainstem in shear. Journal of Biomechanics . 1999;32:865– 870...RH, McDowell K, Vettel J. High rate computational brain injury biomechanics . ARL Ballistic Technology Workshop; 2010 May 24–26; Herndon, VA. Kraft

  15. Amelioration of ischemic brain damage by peritoneal dialysis

    PubMed Central

    Godino, María del Carmen; Romera, Victor G.; Sánchez-Tomero, José Antonio; Pacheco, Jesus; Canals, Santiago; Lerma, Juan; Vivancos, José; Moro, María Angeles; Torres, Magdalena; Lizasoain, Ignacio; Sánchez-Prieto, José

    2013-01-01

    Ischemic stroke is a devastating condition, for which there is still no effective therapy. Acute ischemic stroke is associated with high concentrations of glutamate in the blood and interstitial brain fluid. The inability of the tissue to retain glutamate within the cells of the brain ultimately provokes neuronal death. Increased concentrations of interstitial glutamate exert further excitotoxic effects on healthy tissue surrounding the infarct zone. We developed a strategy based on peritoneal dialysis to reduce blood glutamate levels, thereby accelerating brain-to-blood glutamate clearance. In a rat model of stroke, this simple procedure reduced the transient increase in glutamate, consequently decreasing the size of the infarct area. Functional magnetic resonance imaging demonstrated that the rescued brain tissue remained functional. Moreover, in patients with kidney failure, peritoneal dialysis significantly decreased glutamate concentrations. Our results suggest that peritoneal dialysis may represent a simple and effective intervention for human stroke patients. PMID:23999426

  16. Biological fiducial point based registration for multiple brain tissues reconstructed from different imaging modalities

    NASA Astrophysics Data System (ADS)

    Wu, Huiqun; Zhou, Gangping; Geng, Xingyun; Zhang, Xiaofeng; Jiang, Kui; Tang, Lemin; Zhou, Guomin; Dong, Jiancheng

    2013-10-01

    With the development of computer aided navigation system, more and more tissues shall be reconstructed to provide more useful information for surgical pathway planning. In this study, we aimed to propose a registration framework for different reconstructed tissues from multi-modalities based on some fiducial points on lateral ventricles. A male patient with brain lesion was admitted and his brain scans were performed by different modalities. Then, the different brain tissues were segmented in different modality with relevant suitable algorithms. Marching cubes were calculated for three dimensional reconstructions, and then the rendered tissues were imported to a common coordinate system for registration. Four pairs of fiducial markers were selected to calculate the rotation and translation matrix using least-square measure method. The registration results were satisfied in a glioblastoma surgery planning as it provides the spatial relationship between tumors and surrounding fibers as well as vessels. Hence, our framework is of potential value for clinicians to plan surgery.

  17. Astrocyte activation and wound healing in intact-skull mouse after focal brain injury.

    PubMed

    Suzuki, Takayuki; Sakata, Honami; Kato, Chiaki; Connor, John A; Morita, Mitsuhiro

    2012-12-01

    Localised brain tissue damage activates surrounding astrocytes, which significantly influences subsequent long-term pathological processes. Most existing focal brain injury models in rodents employ craniotomy to localise mechanical insults. However, the craniotomy procedure itself induces gliosis. To investigate perilesional astrocyte activation under conditions in which the skull is intact, we created focal brain injuries using light exposure through a cranial window made by thinning the skull without inducing gliosis. The lesion size was maximal at ~ 12 h and showed substantial recovery over the subsequent 30 days. Two distinct types of perilesional reactive astrocyte, identified by GFAP upregulation and hypertrophy, were found. In proximal regions the reactive astrocytes proliferated and expressed nestin, whereas in regions distal to the injury core the astrocytes showed increased GFAP expression but did not proliferate, lacked nestin expression, and displayed different morphology. Simply making the window did not induce any of these changes. There were also significant numbers of neurons in the recovering cortical tissue. In the recovery region, reactive astrocytes radially extended processes which appeared to influence the shapes of neuronal nuclei. The proximal reactive astrocytes also formed a cell layer which appeared to serve as a protective barrier, blocking the spread of IgG deposition and migration of microglia from the lesion core to surrounding tissue. The recovery was preceded by perilesional accumulation of leukocytes expressing vascular endothelial growth factor. These results suggest that, under intact skull conditions, focal brain injury is followed by perilesional reactive astrocyte activities that foster cortical tissue protection and recovery. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  18. FDTD analysis of a noninvasive hyperthermia system for brain tumors.

    PubMed

    Yacoob, Sulafa M; Hassan, Noha S

    2012-08-14

    Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40-45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  19. Selective intraarterial gene delivery into a canine meningioma.

    PubMed

    Chauvet, A E; Kesava, P P; Goh, C S; Badie, B

    1998-05-01

    The goal of this study was to evaluate gene delivery to a benign brain tumor. A recombinant adenovirus vector bearing the Escherichia coli beta-galactosidase reporter gene was selectively injected into the vascular supply of a spontaneously occurring canine olfactory groove meningioma. The tumor and a small amount of peritumoral brain tissue were removed 5 days after viral injection and stained with X-Gal to assess gene delivery. The authors noted significant beta-galactosidase gene expression by the tumor, but not by surrounding brain tissue. No obvious viral-related cytotoxicity was noted. The authors found that meningiomas can be successfully transduced by adenovirus vectors by using endovascular techniques.

  20. Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord

    NASA Astrophysics Data System (ADS)

    Ersen, Ali; Elkabes, Stella; Freedman, David S.; Sahin, Mesut

    2015-02-01

    Objective. Microelectrodes implanted in the central nervous system (CNS) often fail in long term implants due to the immunological tissue response caused by tethering forces of the connecting wires. In addition to the tethering effect, there is a mechanical stress that occurs at the device-tissue interface simply because the microelectrode is a rigid body floating in soft tissue and it cannot reshape itself to comply with changes in the surrounding tissue. In the current study we evaluated the scar tissue formation to tetherless devices with two significantly different geometries in the rat brain and spinal cord in order to investigate the effects of device geometry. Approach. One of the implant geometries resembled the wireless, floating microstimulators that we are currently developing in our laboratory and the other was a (shank only) Michigan probe for comparison. Both electrodes were implanted into either the cervical spinal cord or the motor cortices, one on each side. Main results. The most pronounced astroglial and microglial reactions occurred within 20 μm from the device and decreased sharply at larger distances. Both cell types displayed the morphology of non-activated cells past the 100 μm perimeter. Even though the aspect ratios of the implants were different, the astroglial and microglial responses to both microelectrode types were very mild in the brain, stronger and yet limited in the spinal cord. Significance. These observations confirm previous reports and further suggest that tethering may be responsible for most of the tissue response in chronic implants and that the electrode size has a smaller contribution with floating electrodes. The electrode size may be playing primarily an amplifying role to the tethering forces in the brain whereas the size itself may induce chronic response in the spinal cord where the movement of surrounding tissues is more significant.

  1. T cell–derived interleukin (IL)-21 promotes brain injury following stroke in mice

    PubMed Central

    Clarkson, Benjamin D.S.; Ling, Changying; Shi, Yejie; Harris, Melissa G.; Rayasam, Aditya; Sun, Dandan; Salamat, M. Shahriar; Kuchroo, Vijay; Lambris, John D.; Sandor, Matyas

    2014-01-01

    T lymphocytes are key contributors to the acute phase of cerebral ischemia reperfusion injury, but the relevant T cell–derived mediators of tissue injury remain unknown. Using a mouse model of transient focal brain ischemia, we report that IL-21 is highly up-regulated in the injured mouse brain after cerebral ischemia. IL-21–deficient mice have smaller infarcts, improved neurological function, and reduced lymphocyte accumulation in the brain within 24 h of reperfusion. Intracellular cytokine staining and adoptive transfer experiments revealed that brain-infiltrating CD4+ T cells are the predominant IL-21 source. Mice treated with decoy IL-21 receptor Fc fusion protein are protected from reperfusion injury. In postmortem human brain tissue, IL-21 localized to perivascular CD4+ T cells in the area surrounding acute stroke lesions, suggesting that IL-21–mediated brain injury may be relevant to human stroke. PMID:24616379

  2. In situ FTIR microspectroscopy of extravasated blood-damaged brain tissue

    NASA Astrophysics Data System (ADS)

    Wetzel, David L.; Le Vine, Steven M.

    1994-01-01

    Fourier transform infrared (FT-IR) microspectroscopy enables the collection of infrared spectra from microscopic regions of tissue sections. The objectives of this study were to utilize FT-IR microspectroscopy to analyze the spatial distribution of chemical changes that result from the extravasation of blood into the brain and to determine if products of free radical damage are associated with the damaged areas. An animal model that involves the injection of blood into the white matter of rat brains was used. Maps depicting the relative concentrations of chemical functional groups of lesioned sites and surrounding areas were made. Significant decreases were observed for CH2, C equals O, P equals O, and HO-C-H functional groups at the lesioned site and penumbra regions compared to the neighboring normal tissue areas.

  3. Autofluorescence of normal and neoplastic human brain tissue: an aid for intraoperative delineation of tumor resection margins

    NASA Astrophysics Data System (ADS)

    Bottiroli, Giovanni F.; Croce, Anna C.; Locatelli, Donata; Nano, Rosanna; Giombelli, Ermanno; Messina, Alberto; Benericetti, Eugenio

    1998-01-01

    Light-induced autofluorescence measurements were made on normal and tumor brain tissues to assess their spectroscopic properties and to verify the potential of this parameter for an intraoperative delineation of tumor resection margins. Spectrofluorometric analysis was performed both at the microscope on tissue sections from surgical resection, and on patients affected by glioblastoma, during surgical operation. Significant differences in autofluorescence emission properties were found between normal and tumor tissues in both ex vivo and in vivo measurements, indicating that the lesion can be distinguished from the informal surrounding tissues by the signal amplitude and the spectral shape. The non-invasiveness of the technique opens interesting prospects for improving the efficacy of neurosurgical operation, by allowing an intraoperative delimitation of tumor resection margins.

  4. T1-weighted dynamic contrast-enhanced brain magnetic resonance imaging: A preliminary study with low infusion rate in pediatric patients.

    PubMed

    Rochetams, Bruno-Bernard; Marechal, Bénédicte; Cottier, Jean-Philippe; Gaillot, Kathleen; Sembely-Taveau, Catherine; Sirinelli, Dominique; Morel, Baptiste

    2017-10-01

    Background The aim of this preliminary study is to evaluate the results of T1-weighted dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in pediatric patients at 1.5T, with a low peripheral intravenous gadoteric acid injection rate of 1 ml/s. Materials and methods Children with neurological symptoms were examined prospectively with conventional MRI and T1-weighted DCE MRI. An magnetic resonance perfusion analysis method was used to obtain time-concentration curves (persistent pattern, type-I; plateau pattern, type-II; washout pattern, type-III) and to calculate pharmacokinetic parameters. A total of two radiologists manually defined regions of interest (ROIs) in the part of the lesion exhibiting the greatest contrast enhancement and in the surrounding normal or contralateral tissue. Lesion/surrounding tissue or contralateral tissue pharmacokinetic parameter ratios were calculated. Tumors were categorized by grade (I-IV) using the World Health Organization (WHO) Grade. Mann-Whitney testing and receiver-operating characteristic (ROC) curves were performed. Results A total of nine boys and nine girls (mean age 10.5 years) were included. Lesions consisted of 10 brain tumors, 3 inflammatory lesions, 3 arteriovenous malformations and 2 strokes. We obtained analyzable concentration-time curves for all patients (6 type-I, 9 type-II, 3 type-III). K trans between tumor tissue and surrounding or contralateral tissue was significantly different ( p = 0.034). K trans ratios were significantly different between grade I tumors and grade IV tumors ( p = 0.027) and a K trans ratio value superior to 0.63 appeared to be discriminant to determine a grade IV of malignancy. Conclusions Our results confirm the feasibility of pediatric T1-weighted DCE MRI at 1.5T with a low injection rate, which could be of great value in differentiating brain tumor grades.

  5. Microvascular basis for growth of small infarcts following occlusion of single penetrating arterioles in mouse cortex

    PubMed Central

    Taylor, Zachary J; Hui, Edward S; Watson, Ashley N; Nie, Xingju; Deardorff, Rachael L; Jensen, Jens H; Helpern, Joseph A

    2015-01-01

    Small cerebral infarcts, i.e. microinfarcts, are common in the aging brain and linked to vascular cognitive impairment. However, little is known about the acute growth of these minute lesions and their effect on blood flow in surrounding tissues. We modeled microinfarcts in the mouse cortex by inducing photothrombotic clots in single penetrating arterioles. The resultant hemodynamic changes in tissues surrounding the occluded vessel were then studied using in vivo two-photon microscopy. We were able to generate a spectrum of infarct volumes by occluding arterioles that carried a range of blood fluxes. Those resulting from occlusion of high-flux penetrating arterioles (flux of 2 nL/s or higher) exhibited a radial outgrowth that encompassed unusually large tissue volumes. The gradual expansion of these infarcts was propagated by an evolving insufficiency in capillary flow that encroached on territories of neighboring penetrating arterioles, leading to the stagnation and recruitment of their perfusion domains into the final infarct volume. Our results suggest that local collapse of microvascular function contributes to tissue damage incurred by single penetrating arteriole occlusions in mice, and that a similar mechanism may add to pathophysiology induced by microinfarcts of the human brain. PMID:26661182

  6. Proton MRS of the peritumoral brain.

    PubMed

    Chernov, Mikhail F; Kubo, Osami; Hayashi, Motohiro; Izawa, Masahiro; Maruyama, Takashi; Usukura, Masao; Ono, Yuko; Hori, Tomokatsu; Takakura, Kintomo

    2005-02-15

    Long-echo (TR: 2000 ms, TE: 136 ms) proton MRS of the cerebral tissue in the vicinity to intracranial lesion was done in 15 patients, mainly with parenchymal brain tumors. Significant decrease of N-acetylaspartate (NAA) (P<0.001) and more frequent presence of lactate (P<0.01) comparing with distant normal white matter were found in the perilesional brain tissue. The level of NAA in the perilesional brain tissue had negative associations with presence of lactate in the lesion (P<0.05), excess of lactate in the lesion compared to perilesional brain (P<0.01), grade of the perilesional edema (P<0.01) and patient's age (P<0.05). Multivariate analysis disclosed that identification of lactate in the lesion is associated with lower relative NAA content in the perilesional brain tissue, independently on the presence or absence of any other factor, including brain edema (P<0.001). In patients with lobar lesions who had at least one epileptic seizure during course of their disease the relative NAA content in the perilesional brain was significantly lower, comparing with those who were seizure-free (P<0.05). Therefore, lactate diffused from the tumor, or other metabolites secreted by lactate-producing neoplasm, should be considered as important contributors to the neuronal dysfunction in the surrounding brain. Decrease of NAA in the vicinity to intracranial lesions may reflect neuronal alteration responsible for associated epilepsy.

  7. Novel Rat Model for Neurocysticercosis Using Taenia solium

    PubMed Central

    Verastegui, Manuela R.; Mejia, Alan; Clark, Taryn; Gavidia, Cesar M.; Mamani, Javier; Ccopa, Fredy; Angulo, Noelia; Chile, Nancy; Carmen, Rogger; Medina, Roxana; García, Hector H.; Rodriguez, Silvia; Ortega, Ynes; Gilman, Robert H.

    2016-01-01

    Neurocysticercosis is caused by Taenia solium infecting the central nervous system and is the leading cause of acquired epilepsy and convulsive conditions worldwide. Research into the pathophysiology of the disease and appropriate treatment is hindered by lack of cost-effective and physiologically similar animal models. We generated a novel rat neurocysticercosis model using intracranial infection with activated T. solium oncospheres. Holtzman rats were infected in two separate groups: the first group was inoculated extraparenchymally and the second intraparenchymally, with different doses of activated oncospheres. The groups were evaluated at three different ages. Histologic examination of the tissue surrounding T. solium cysticerci was performed. Results indicate that generally infected rats developed cysticerci in the brain tissue after 4 months, and the cysticerci were observed in the parenchymal, ventricle, or submeningeal brain tissue. The route of infection did not have a statistically significant effect on the proportion of rats that developed cysticerci, and there was no dependence on infection dose. However, rat age was crucial to the success of the infection. Epilepsy was observed in 9% of rats with neurocysticercosis. In histologic examination, a layer of collagen tissue, inflammatory infiltrate cells, perivascular infiltrate, angiogenesis, spongy change, and mass effect were observed in the tissue surrounding the cysts. This study presents a suitable animal model for the study of human neurocysticercosis. PMID:26216286

  8. Human brains found in a fire-affected 4000-years old Bronze Age tumulus layer rich in soil alkalines and boron in Kutahya, Western Anatolia.

    PubMed

    Altinoz, M A; Ince, B; Sav, A; Dincer, A; Cengiz, S; Mercan, S; Yazici, Z; Bilgen, M N

    2014-02-01

    Undecomposed human bodies and organs always attracted interest in terms of understanding biological tissue stability and immortality. Amongst these, cases of natural mummification found in glaciers, bog sediments and deserts caused even more attention. In 2010, an archeological excavation of a Bronze Age layer in a tumulus near the Western Anatolia city Kütahya revealed fire affected regions with burnt human skeletons and charred wooden objects. Inside of the cracked skulls, undecomposed brains were discernible. To analyze the burial taphonomy of the rare phenomenon of brain preservation, we analyzed brains, bone, teeth and surrounding soils elements using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). Adipocere formation or saponification of postmortem tissue fat requires high levels of alkalinity and especially potassium. Indeed, ICP-MS analysis of the brain, teeth and bone and also of the surrounding soil revealed high levels of potassium, magnesium, aluminum and boron, which are compatible with the famous role of Kütahya in tile production with its soil containing high level of alkalines and tile-glazing boron. Fatty acid chromatography revealed simultaneous saturation of fats and protection of fragile unsaturated fatty acids consistent with soil-presence of both pro-oxidant and anti-oxidant trace metals. Computerized tomography revealed protection of diencephalic, metencephalic and occipital tissue in one of the best-preserved specimens. Boron was previously found as an intentional preservative of Tutankhamen and Deir el Bahari mummies. Here, in natural soil with its insect-repellant, anti-bacterial and fire-resistance qualities it may be a factor to preserve heat-affected brains as almost bioporcellain specimens. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Feasibility of using diffuse reflectance spectroscopy for the quantification of brain edema

    NASA Astrophysics Data System (ADS)

    Rodriguez, Juan G.; Sisson, Cynthia; Hendricks, Chad; Pattillo, Chris; McWaters, Megan; Hardjasudarma, Mardjohan; Quarles, Chad; Yaroslavsky, Anna N.; Yaroslavsky, Ilya V.; Battarbee, Harold

    2001-05-01

    Many diseased states of the brain can result in the displacement of brain tissues and restrict cerebral blood flow, disrupting function in a life-threatening manner. Clinical examples where displacements are observed include venous thromboses, hematomas, strokes, tumors, abscesses, and, particularly, brain edema. For the latter, the brain tissue swells, displacing the cerebral spinal fluid (CSF) layer that surrounds it, eventually pressing itself against the skull. Under such conditions, catheters are often inserted into the brain's ventricles or the subarachnoid space to monitor increased pressure. These are invasive procedures that incur increased risk of infection and consequently are used reluctantly by clinicians. Recent studies in the field of biomedical optics have suggested that the presence or absence of the CSF layer can lead to dramatic changes in NIR signals obtained from diffuse reflectance measurements around the head. In this study, we consider how this sensitivity of NIR signals to CSF might be exploited to non-invasively monitor the onset and resolution of brain edema.

  10. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    PubMed Central

    2012-01-01

    Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors. PMID:22891953

  11. Bio-heat transfer model of deep brain stimulation-induced temperature changes

    NASA Astrophysics Data System (ADS)

    Elwassif, Maged M.; Kong, Qingjun; Vazquez, Maribel; Bikson, Marom

    2006-12-01

    There is a growing interest in the use of chronic deep brain stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. Fundamental questions remain about the physiologic effects of DBS. Previous basic research studies have focused on the direct polarization of neuronal membranes by electrical stimulation. The goal of this paper is to provide information on the thermal effects of DBS using finite element models to investigate the magnitude and spatial distribution of DBS-induced temperature changes. The parameters investigated include stimulation waveform, lead selection, brain tissue electrical and thermal conductivities, blood perfusion, metabolic heat generation during the stimulation and lead thermal conductivity/heat dissipation through the electrode. Our results show that clinical DBS protocols will increase the temperature of surrounding tissue by up to 0.8 °C depending on stimulation/tissue parameters.

  12. Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue

    PubMed Central

    Chaigneau, Emmanuelle; Wright, Amanda J.; Poland, Simon P.; Girkin, John M.; Silver, R. Angus

    2011-01-01

    Two-photon (2P) microscopy is widely used in neuroscience, but the optical properties of brain tissue are poorly understood. We have investigated the effect of brain tissue on the 2P point spread function (PSF2P) by imaging fluorescent beads through living cortical slices. By combining this with measurements of the mean free path of the excitation light, adaptive optics and vector-based modeling that includes phase modulation and scattering, we show that tissue-induced wavefront distortions are the main determinant of enlargement and distortion of the PSF2P at intermediate imaging depths. Furthermore, they generate surrounding lobes that contain more than half of the 2P excitation. These effects reduce the resolution of fine structures and contrast and they, together with scattering, limit 2P excitation. Our results disentangle the contributions of scattering and wavefront distortion in shaping the cortical PSF2P, thereby providing a basis for improved 2P microscopy. PMID:22109156

  13. Microsurgery Simulator of Cerebral Aneurysm Clipping with Interactive Cerebral Deformation Featuring a Virtual Arachnoid.

    PubMed

    Shono, Naoyuki; Kin, Taichi; Nomura, Seiji; Miyawaki, Satoru; Saito, Toki; Imai, Hideaki; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2018-05-01

    A virtual reality simulator for aneurysmal clipping surgery is an attractive research target for neurosurgeons. Brain deformation is one of the most important functionalities necessary for an accurate clipping simulator and is vastly affected by the status of the supporting tissue, such as the arachnoid membrane. However, no virtual reality simulator implementing the supporting tissue of the brain has yet been developed. To develop a virtual reality clipping simulator possessing interactive brain deforming capability closely dependent on arachnoid dissection and apply it to clinical cases. Three-dimensional computer graphics models of cerebral tissue and surrounding structures were extracted from medical images. We developed a new method for modifiable cerebral tissue complex deformation by incorporating a nonmedical image-derived virtual arachnoid/trabecula in a process called multitissue integrated interactive deformation (MTIID). MTIID made it possible for cerebral tissue complexes to selectively deform at the site of dissection. Simulations for 8 cases of actual clipping surgery were performed before surgery and evaluated for their usefulness in surgical approach planning. Preoperatively, each operative field was precisely reproduced and visualized with the virtual brain retraction defined by users. The clear visualization of the optimal approach to treating the aneurysm via an appropriate arachnoid incision was possible with MTIID. A virtual clipping simulator mainly focusing on supporting tissues and less on physical properties seemed to be useful in the surgical simulation of cerebral aneurysm clipping. To our knowledge, this article is the first to report brain deformation based on supporting tissues.

  14. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain

    PubMed Central

    Zhou, Tao; Hong, Guosong; Fu, Tian-Ming; Yang, Xiao; Schuhmann, Thomas G.; Viveros, Robert D.; Lieber, Charles M.

    2017-01-01

    Implantation of electrical probes into the brain has been central to both neuroscience research and biomedical applications, although conventional probes induce gliosis in surrounding tissue. We recently reported ultraflexible open mesh electronics implanted into rodent brains by syringe injection that exhibit promising chronic tissue response and recording stability. Here we report time-dependent histology studies of the mesh electronics/brain-tissue interface obtained from sections perpendicular and parallel to probe long axis, as well as studies of conventional flexible thin-film probes. Confocal fluorescence microscopy images of the perpendicular and parallel brain slices containing mesh electronics showed that the distribution of astrocytes, microglia, and neurons became uniform from 2–12 wk, whereas flexible thin-film probes yield a marked accumulation of astrocytes and microglia and decrease of neurons for the same period. Quantitative analyses of 4- and 12-wk data showed that the signals for neurons, axons, astrocytes, and microglia are nearly the same from the mesh electronics surface to the baseline far from the probes, in contrast to flexible polymer probes, which show decreases in neuron and increases in astrocyte and microglia signals. Notably, images of sagittal brain slices containing nearly the entire mesh electronics probe showed that the tissue interface was uniform and neurons and neurofilaments penetrated through the mesh by 3 mo postimplantation. The minimal immune response and seamless interface with brain tissue postimplantation achieved by ultraflexible open mesh electronics probes provide substantial advantages and could enable a wide range of opportunities for in vivo chronic recording and modulation of brain activity in the future. PMID:28533392

  15. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain.

    PubMed

    Zhou, Tao; Hong, Guosong; Fu, Tian-Ming; Yang, Xiao; Schuhmann, Thomas G; Viveros, Robert D; Lieber, Charles M

    2017-06-06

    Implantation of electrical probes into the brain has been central to both neuroscience research and biomedical applications, although conventional probes induce gliosis in surrounding tissue. We recently reported ultraflexible open mesh electronics implanted into rodent brains by syringe injection that exhibit promising chronic tissue response and recording stability. Here we report time-dependent histology studies of the mesh electronics/brain-tissue interface obtained from sections perpendicular and parallel to probe long axis, as well as studies of conventional flexible thin-film probes. Confocal fluorescence microscopy images of the perpendicular and parallel brain slices containing mesh electronics showed that the distribution of astrocytes, microglia, and neurons became uniform from 2-12 wk, whereas flexible thin-film probes yield a marked accumulation of astrocytes and microglia and decrease of neurons for the same period. Quantitative analyses of 4- and 12-wk data showed that the signals for neurons, axons, astrocytes, and microglia are nearly the same from the mesh electronics surface to the baseline far from the probes, in contrast to flexible polymer probes, which show decreases in neuron and increases in astrocyte and microglia signals. Notably, images of sagittal brain slices containing nearly the entire mesh electronics probe showed that the tissue interface was uniform and neurons and neurofilaments penetrated through the mesh by 3 mo postimplantation. The minimal immune response and seamless interface with brain tissue postimplantation achieved by ultraflexible open mesh electronics probes provide substantial advantages and could enable a wide range of opportunities for in vivo chronic recording and modulation of brain activity in the future.

  16. Novel rat model for neurocysticercosis using Taenia solium.

    PubMed

    Verastegui, Manuela R; Mejia, Alan; Clark, Taryn; Gavidia, Cesar M; Mamani, Javier; Ccopa, Fredy; Angulo, Noelia; Chile, Nancy; Carmen, Rogger; Medina, Roxana; García, Hector H; Rodriguez, Silvia; Ortega, Ynes; Gilman, Robert H

    2015-08-01

    Neurocysticercosis is caused by Taenia solium infecting the central nervous system and is the leading cause of acquired epilepsy and convulsive conditions worldwide. Research into the pathophysiology of the disease and appropriate treatment is hindered by lack of cost-effective and physiologically similar animal models. We generated a novel rat neurocysticercosis model using intracranial infection with activated T. solium oncospheres. Holtzman rats were infected in two separate groups: the first group was inoculated extraparenchymally and the second intraparenchymally, with different doses of activated oncospheres. The groups were evaluated at three different ages. Histologic examination of the tissue surrounding T. solium cysticerci was performed. Results indicate that generally infected rats developed cysticerci in the brain tissue after 4 months, and the cysticerci were observed in the parenchymal, ventricle, or submeningeal brain tissue. The route of infection did not have a statistically significant effect on the proportion of rats that developed cysticerci, and there was no dependence on infection dose. However, rat age was crucial to the success of the infection. Epilepsy was observed in 9% of rats with neurocysticercosis. In histologic examination, a layer of collagen tissue, inflammatory infiltrate cells, perivascular infiltrate, angiogenesis, spongy change, and mass effect were observed in the tissue surrounding the cysts. This study presents a suitable animal model for the study of human neurocysticercosis. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Elastic light single-scattering spectroscopy for detection of dysplastic tissues

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkçeken, Tuba; Akman, Ayşe.; Alpsoy, Erkan; Tuncer, Recai; Akyüz, Mahmut; Baykara, Mehmet; Yücel, Selçuk; Başsorgun, Ibrahim; ćiftçioǧlu, M. Akif; Gökhan, Güzide Ayşe.; Gürer, ElifInanç; Peştereli, Elif; Karaveli, Šeyda

    2013-11-01

    Elastic light single-scattering spectroscopy (ELSSS) system has been developed and tested in diagnosis of cancerous tissues of different organs. ELSSS system consists of a miniature visible light spectrometer, a single fiber optical probe, a halogen tungsten light source and a laptop. Measurements were performed on excised brain, skin, cervix and prostate tumor specimens and surrounding normal tissues. Single fiber optical probe with a core diameter of 100 μm was used to deliver white light to and from tissue. Single optical fiber probe mostly detects singly scattered light from tissue rather than diffused light. Therefore, measured spectra are sensitive to size of scatters in tissue such as cells, nuclei, mitochondria and other organelles of cells. Usually, nuclei of tumor cells are larger than nuclei of normal cells. Therefore, spectrum of singly scattered light of tumor tissue is different than normal tissue. The spectral slopes were shown to be positive for normal brain, skin and prostate and cervix tissues and negative for the tumors of the same tissues. Signs of the spectral slopes were used as a discrimination parameter to differentiate tumor from normal tissues for the three organ tissues. Sensitivity and specificity of the system in differentiation between tumors from normal tissues were 93% and %100 for brain, 87% and 85% for skin, 93.7% and 46.1% for cervix and 98% and 100% for prostate.

  18. Distribution of AAV-TK following intracranial convection-enhanced delivery into rats.

    PubMed

    Cunningham, J; Oiwa, Y; Nagy, D; Podsakoff, G; Colosi, P; Bankiewicz, K S

    2000-01-01

    Adeno-associated virus (AAV)-based vectors are being tested in animal models as viable treatments for glioma and neurodegenerative disease and could potentially be employed to target a variety of central nervous system disorders. The relationship between dose of injected vector and its resulting distribution in brain tissue has not been previously reported nor has the most efficient method of delivery been determined. Here we report that convection-enhanced delivery (CED) of 2.5 x 10(8), 2.5 x 10(9), or 2.5 x 10(10) particles of AAV-thymidine kinase (AAV-TK) into rat brain revealed a clear dose response. In the high-dose group, a volume of 300 mm3 of brain tissue was partially transduced. Results showed that infusion pump and subcutaneous osmotic pumps were both capable of delivering vector via CED and that total particle number was the most important determining factor in obtaining efficient expression. Results further showed differences in histopathology between the delivery groups. While administration of vector using infusion pump had relatively benign effects, the use of osmotic pumps resulted in notable toxicity to the surrounding brain tissue. To determine tissue distribution of vector following intracranial delivery, PCR analysis was performed on tissues from rats that received high doses of AAV-TK. Three weeks following CED, vector could be detected in both hemispheres of the brain, spinal cord, spleen, and kidney.

  19. Ballistics reviews: mechanisms of bullet wound trauma.

    PubMed

    Maiden, Nicholas

    2009-01-01

    The location of an entrance wound (bullet placement) and the projectile path are the most important factors in causing significant injury or death following a shooting. The head followed by the torso are the most vulnerable areas, with incapacitation resulting from central nervous system (brain or cord) disruption, or massive organ destruction with hemorrhage. Tissue and organ trauma result from the permanent wound cavity caused by direct destruction by the bullet, and also from radial stretching of surrounding tissues causing a temporary wound cavity. The extent of tissue damage is influenced by the type of bullet, its velocity and mass, as well as the physical characteristics of the tissues. The latter includes resistance to strain, physical dimensions of an organ, and the presence or absence of surrounding anatomical constraints. Bullet shape and construction will also affect tissue damage and bullets which display greater yaw will be associated with increased temporary cavitation. Military bullet designs do not include bullets that will expand or flatten as these cause greater wound trauma and are regulated by convention.

  20. Gelatinized Copper–Capillary Alginate Gel Functions as an Injectable Tissue Scaffolding System for Stem Cell Transplants

    PubMed Central

    Willenberg, Bradley Jay; Zheng, Tong; Meng, Fan-Wei; Meneses, Juan Carlos; Rossignol, Candace; Batich, Christopher D.; Terada, Naohiro; Steindler, Dennis A.; Weiss, Michael D.

    2013-01-01

    In severe hypoxic–ischemic brain injury, cellular components such as neurons and astrocytes are injured or destroyed along with the supporting extracellular matrix. This presents a challenge to the field of regenerative medicine since the lack of extracellular matrix and supporting structures makes the transplant milieu inhospitable to the transplanted cells. A potential solution to this problem is the use of a biomaterial to provide the extracellular components needed to keep cells localized in cystic brain regions, allowing the cells to form connections and repair lost brain tissue. Ideally, this biomaterial would be combined with stem cells, which have been proven to have therapeutic potentials, and could be delivered via an injection. To study this approach, we derived a hydrogel biomaterial tissue scaffold from oligomeric gelatin and copper–capillary alginate gel (GCCAG). We then demonstrated that our multipotent astrocytic stem cells (MASCs) could be maintained in GCCAG scaffolds for up to 2 weeks in vitro and that the cells retained their multipotency. We next performed a pilot transplant study in which GCCAG was mixed with MASCs and injected into the brain of a neonatal rat pup. After a week in vivo, our results showed that: the GCCAG biomaterial did not cause a significant reactive gliosis; viable cells were retained within the injected scaffolds; and some delivered cells migrated into the surrounding brain tissue. Therefore, GCCAG tissue scaffolds are a promising, novel injectable system for transplantation of stem cells to the brain. PMID:20699061

  1. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Anand, Suresh; Rossari, Susanna; Sturiale, Alessandro; Giordano, Flavio; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Tonelli, Francesco; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-03-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  2. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Anand, Suresh; Crisci, Alfonso; Giordano, Flavio; Rossari, Susanna; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-07-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  3. Brain Tissue Responses to Neural Implants Impact Signal Sensitivity and Intervention Strategies

    PubMed Central

    2015-01-01

    Implantable biosensors are valuable scientific tools for basic neuroscience research and clinical applications. Neurotechnologies provide direct readouts of neurological signal and neurochemical processes. These tools are generally most valuable when performance capacities extend over months and years to facilitate the study of memory, plasticity, and behavior or to monitor patients’ conditions. These needs have generated a variety of device designs from microelectrodes for fast scan cyclic voltammetry (FSCV) and electrophysiology to microdialysis probes for sampling and detecting various neurochemicals. Regardless of the technology used, the breaching of the blood–brain barrier (BBB) to insert devices triggers a cascade of biochemical pathways resulting in complex molecular and cellular responses to implanted devices. Molecular and cellular changes in the microenvironment surrounding an implant include the introduction of mechanical strain, activation of glial cells, loss of perfusion, secondary metabolic injury, and neuronal degeneration. Changes to the tissue microenvironment surrounding the device can dramatically impact electrochemical and electrophysiological signal sensitivity and stability over time. This review summarizes the magnitude, variability, and time course of the dynamic molecular and cellular level neural tissue responses induced by state-of-the-art implantable devices. Studies show that insertion injuries and foreign body response can impact signal quality across all implanted central nervous system (CNS) sensors to varying degrees over both acute (seconds to minutes) and chronic periods (weeks to months). Understanding the underlying biological processes behind the brain tissue response to the devices at the cellular and molecular level leads to a variety of intervention strategies for improving signal sensitivity and longevity. PMID:25546652

  4. Quantitative Susceptibility Mapping of Human Brain Reflects Spatial Variation in Tissue Composition

    PubMed Central

    Li, Wei; Wu, Bing; Liu, Chunlei

    2011-01-01

    Image phase from gradient echo MRI provides a unique contrast that reflects brain tissue composition variations, such as iron and myelin distribution. Phase imaging is emerging as a powerful tool for the investigation of functional brain anatomy and disease diagnosis. However, the quantitative value of phase is compromised by its nonlocal and orientation dependent properties. There is an increasing need for reliable quantification of magnetic susceptibility, the intrinsic property of tissue. In this study, we developed a novel and accurate susceptibility mapping method that is also phase-wrap insensitive. The proposed susceptibility mapping method utilized two complementary equations: (1) the Fourier relationship of phase and magnetic susceptibility; and (2) the first-order partial derivative of the first equation in the spatial frequency domain. In numerical simulation, this method reconstructed the susceptibility map almost free of streaking artifact. Further, the iterative implementation of this method allowed for high quality reconstruction of susceptibility maps of human brain in vivo. The reconstructed susceptibility map provided excellent contrast of iron-rich deep nuclei and white matter bundles from surrounding tissues. Further, it also revealed anisotropic magnetic susceptibility in brain white matter. Hence, the proposed susceptibility mapping method may provide a powerful tool for the study of brain physiology and pathophysiology. Further elucidation of anisotropic magnetic susceptibility in vivo may allow us to gain more insight into the white matter microarchitectures. PMID:21224002

  5. Effect of alternate energy substrates on mammalian brain metabolism during ischemic events.

    PubMed

    Koppaka, S S; Puchowicz; LaManna, J C; Gatica, J E

    2008-01-01

    Regulation of brain metabolism and cerebral blood flow involves complex control systems with several interacting variables at both cellular and organ levels. Quantitative understanding of the spatially and temporally heterogeneous brain control mechanisms during internal and external stimuli requires the development and validation of a computational (mathematical) model of metabolic processes in brain. This paper describes a computational model of cellular metabolism in blood-perfused brain tissue, which considers the astrocyte-neuron lactate-shuttle (ANLS) hypothesis. The model structure consists of neurons, astrocytes, extra-cellular space, and a surrounding capillary network. Each cell is further compartmentalized into cytosol and mitochondria. Inter-compartment interaction is accounted in the form of passive and carrier-mediated transport. Our model was validated against experimental data reported by Crumrine and LaManna, who studied the effect of ischemia and its recovery on various intra-cellular tissue substrates under standard diet conditions. The effect of ketone bodies on brain metabolism was also examined under ischemic conditions following cardiac resuscitation through our model simulations. The influence of ketone bodies on lactate dynamics on mammalian brain following ischemia is studied incorporating experimental data.

  6. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    PubMed

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Innovative Therapeutic Strategies in the Treatment of Brain Metastases

    PubMed Central

    Caffo, Maria; Barresi, Valeria; Caruso, Gerardo; Cutugno, Mariano; La Fata, Giuseppe; Venza, Mario; Alafaci, Concetta; Tomasello, Francesco

    2013-01-01

    Brain metastases (BM) are the most common intracranial tumors and their incidence is increasing. Untreated brain metastases are associated with a poor prognosis and a poor performance status. Metastasis development involves the migration of a cancer cell from the bulk tumor into the surrounding tissue, extravasation from the blood into tissue elsewhere in the body, and formation of a secondary tumor. In the recent past, important results have been obtained in the management of patients affected by BM, using surgery, radiation therapy, or both. Conventional chemotherapies have generally produced disappointing results, possibly due to their limited ability to penetrate the blood–brain barrier. The advent of new technologies has led to the discovery of novel molecules and pathways that have better depicted the metastatic process. Targeted therapies such as bevacizumab, erlotinib, gefitinib, sunitinib and sorafenib, are all licensed and have demonstrated improved survival in patients with metastatic disease. In this review, we will report current data on targeted therapies. A brief review about brain metastatic process will be also presented. PMID:23340652

  8. Contrast enhancement in EIT imaging of the brain.

    PubMed

    Nissinen, A; Kaipio, J P; Vauhkonen, M; Kolehmainen, V

    2016-01-01

    We consider electrical impedance tomography (EIT) imaging of the brain. The brain is surrounded by the poorly conducting skull which has low conductivity compared to the brain. The skull layer causes a partial shielding effect which leads to weak sensitivity for the imaging of the brain tissue. In this paper we propose an approach based on the Bayesian approximation error approach, to enhance the contrast in brain imaging. With this approach, both the (uninteresting) geometry and the conductivity of the skull are embedded in the approximation error statistics, which leads to a computationally efficient algorithm that is able to detect features such as internal haemorrhage with significantly increased sensitivity and specificity. We evaluate the approach with simulations and phantom data.

  9. In-vivo imaging of the morphology and blood perfusion of brain tumours in rats with UHR-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka; Tan, Bingyao; Fisher, Carl J.; Mason, Erik; Lilge, Lothar D.

    2017-02-01

    Brain tumors are characterized with morphological changes at cellular level such as enlarged, non-spherical nuclei, microcalcifications, cysts, etc., and are highly vascularized. In this study, two research-grade optical coherence tomography (OCT) systems operating at 800 nm and 1060 nm with axial resolution of 0.95 µm and 3.5 µm in biological tissue respectively, were used to image in vivo and ex vivo the structure of brain tumours in rats. Female Fischer 344 rats were used for this study, which has received ethics clearance by the Animal Research Ethics Committees of the University of Waterloo and the University Health Network, Toronto. Brain tumours were induced by injection of rat brain cancer cell line (RG2 glioma) through a small craniotomy. Presence of brain tumours was verified by MRI imaging on day 7 post tumour cells injection. The in vivo OCT imaging session was conducted on day 14 of the study with the 1060 nm OCT system and both morphological OCT, Doppler OCT and OMAG images were acquired from the brain tumour and the surrounding healthy brain tissue. After completion of the imaging procedure, the brains were harvested, fixed in formalin and reimaged after 2 weeks with the 800 nm OCT system. The in vivo and ex vivo OCT morphological images were correlated with H and E histology. Results from this study demonstrate that UHR-OCT can distinguish between healthy and cancerous brain tissue based on differences in structural and vascular pattern.

  10. The adult brain tissue response to hollow fiber membranes of varying surface architecture with or without cotransplanted cells

    NASA Astrophysics Data System (ADS)

    Zhang, Ning

    A variety of biomaterials have been chronically implanted into the central nervous system (CNS) for repair or therapeutic purposes. Regardless of the application, chronic implantation of materials into the CNS induces injury and elicits a wound healing response, eventually leading to the formation of a dense extracellular matrix (ECM)-rich scar tissue that is associated with the segregation of implanted materials from the surrounding normal tissue. Often this reaction results in impaired performance of indwelling CNS devices. In order to enhance the performance of biomaterial-based implantable devices in the CNS, this thesis investigated whether adult brain tissue response to implanted biomaterials could be manipulated by changing biomaterial surface properties or further by utilizing the biology of co-transplanted cells. Specifically, the adult rat brain tissue response to chronically implanted poly(acrylonitrile-vinylchloride) (PAN-PVC) hollow fiber membranes (HFMs) of varying surface architecture were examined temporally at 2, 4, and 12 weeks postimplantation. Significant differences were discovered in the brain tissue response to the PAN-PVC HFMs of varying surface architecture at 4 and 12 weeks. To extend this work, whether the soluble factors derived from a co-transplanted cellular component further affect the brain tissue response to an implanted HFM in a significant way was critically exploited. The cells used were astrocytes, whose ability to influence scar formation process following CNS injury by physical contact with the host tissue had been documented in the literature. Data indicated for the first time that astrocyte-derived soluble factors ameliorate the adult brain tissue reactivity toward HFM implants in an age-dependent manner. While immature astrocytes secreted soluble factors that suppressed the brain tissue reactivity around the implants, mature astrocytes secreted factors that enhanced the gliotic response. These findings prove the feasibility of ameliorating the CNS tissue reactivity toward biomaterials implants by varying biomaterial surface properties or incorporating scar-reductive factors derived from functional cells into implant constructs, therefore, provide guidance in the design of more integrative biomaterial-based implantable devices for CNS repair.

  11. Spontaneous Intracerebral Hemorrhage Image Analysis Methods: A Survey

    NASA Astrophysics Data System (ADS)

    Pérez, Noel; Valdés, Jose; Guevara, Miguel; Silva, Augusto

    Spontaneous intracerebral hemorrhages (ICH) account for 10-30% of all strokes and are a result of acute bleeding into the brain due to ruptures of small penetrating arteries. Despite major advancements in the management of ischemic strokes and other causes of hemorrhagic strokes, such as ruptured aneurysm, arteriovenous malformations (AVMs), or cavernous angioma, during the past several decades, limited progress has been made in the treatment of ICH, and the prognosis for patients who suffer them remains poor. The societal impact of these hemorrhagic strokes is magnified by the fact that affected patients typically are a decade younger than those afflicted with ischemic strokes. The ICH continues to kill or disable most of their victims. Some studies show that those who suffer ICH have a 30-day mortality rate of 35-44% and a 6-month mortality rate approaching 50%. Approximately 700,000 new strokes occur in the United States annually and approximately 15% are hem-orrhagic strokes related to ICH. The poor outcome associated with ICH is related to the extent of brain damage. ICH produces direct destruction and compression of surrounding brain tissue. Direct compression causes poor perfusion and venous drainage to surrounding penumbra at risk, resulting in ischemia to the tissues that most need perfusion [16].

  12. Brain extraction from normal and pathological images: A joint PCA/Image-Reconstruction approach.

    PubMed

    Han, Xu; Kwitt, Roland; Aylward, Stephen; Bakas, Spyridon; Menze, Bjoern; Asturias, Alexander; Vespa, Paul; Van Horn, John; Niethammer, Marc

    2018-08-01

    Brain extraction from 3D medical images is a common pre-processing step. A variety of approaches exist, but they are frequently only designed to perform brain extraction from images without strong pathologies. Extracting the brain from images exhibiting strong pathologies, for example, the presence of a brain tumor or of a traumatic brain injury (TBI), is challenging. In such cases, tissue appearance may substantially deviate from normal tissue appearance and hence violates algorithmic assumptions for standard approaches to brain extraction; consequently, the brain may not be correctly extracted. This paper proposes a brain extraction approach which can explicitly account for pathologies by jointly modeling normal tissue appearance and pathologies. Specifically, our model uses a three-part image decomposition: (1) normal tissue appearance is captured by principal component analysis (PCA), (2) pathologies are captured via a total variation term, and (3) the skull and surrounding tissue is captured by a sparsity term. Due to its convexity, the resulting decomposition model allows for efficient optimization. Decomposition and image registration steps are alternated to allow statistical modeling of normal tissue appearance in a fixed atlas coordinate system. As a beneficial side effect, the decomposition model allows for the identification of potentially pathological areas and the reconstruction of a quasi-normal image in atlas space. We demonstrate the effectiveness of our approach on four datasets: the publicly available IBSR and LPBA40 datasets which show normal image appearance, the BRATS dataset containing images with brain tumors, and a dataset containing clinical TBI images. We compare the performance with other popular brain extraction models: ROBEX, BEaST, MASS, BET, BSE and a recently proposed deep learning approach. Our model performs better than these competing approaches on all four datasets. Specifically, our model achieves the best median (97.11) and mean (96.88) Dice scores over all datasets. The two best performing competitors, ROBEX and MASS, achieve scores of 96.23/95.62 and 96.67/94.25 respectively. Hence, our approach is an effective method for high quality brain extraction for a wide variety of images. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Implanted Miniaturized Antenna for Brain Computer Interface Applications: Analysis and Design

    PubMed Central

    Zhao, Yujuan; Rennaker, Robert L.; Hutchens, Chris; Ibrahim, Tamer S.

    2014-01-01

    Implantable Brain Computer Interfaces (BCIs) are designed to provide real-time control signals for prosthetic devices, study brain function, and/or restore sensory information lost as a result of injury or disease. Using Radio Frequency (RF) to wirelessly power a BCI could widely extend the number of applications and increase chronic in-vivo viability. However, due to the limited size and the electromagnetic loss of human brain tissues, implanted miniaturized antennas suffer low radiation efficiency. This work presents simulations, analysis and designs of implanted antennas for a wireless implantable RF-powered brain computer interface application. The results show that thin (on the order of 100 micrometers thickness) biocompatible insulating layers can significantly impact the antenna performance. The proper selection of the dielectric properties of the biocompatible insulating layers and the implantation position inside human brain tissues can facilitate efficient RF power reception by the implanted antenna. While the results show that the effects of the human head shape on implanted antenna performance is somewhat negligible, the constitutive properties of the brain tissues surrounding the implanted antenna can significantly impact the electrical characteristics (input impedance, and operational frequency) of the implanted antenna. Three miniaturized antenna designs are simulated and demonstrate that maximum RF power of up to 1.8 milli-Watts can be received at 2 GHz when the antenna implanted around the dura, without violating the Specific Absorption Rate (SAR) limits. PMID:25079941

  14. 3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set.

    PubMed

    Popuri, Karteek; Cobzas, Dana; Murtha, Albert; Jägersand, Martin

    2012-07-01

    Brain tumor segmentation is a required step before any radiation treatment or surgery. When performed manually, segmentation is time consuming and prone to human errors. Therefore, there have been significant efforts to automate the process. But, automatic tumor segmentation from MRI data is a particularly challenging task. Tumors have a large diversity in shape and appearance with intensities overlapping the normal brain tissues. In addition, an expanding tumor can also deflect and deform nearby tissue. In our work, we propose an automatic brain tumor segmentation method that addresses these last two difficult problems. We use the available MRI modalities (T1, T1c, T2) and their texture characteristics to construct a multidimensional feature set. Then, we extract clusters which provide a compact representation of the essential information in these features. The main idea in this work is to incorporate these clustered features into the 3D variational segmentation framework. In contrast to previous variational approaches, we propose a segmentation method that evolves the contour in a supervised fashion. The segmentation boundary is driven by the learned region statistics in the cluster space. We incorporate prior knowledge about the normal brain tissue appearance during the estimation of these region statistics. In particular, we use a Dirichlet prior that discourages the clusters from the normal brain region to be in the tumor region. This leads to a better disambiguation of the tumor from brain tissue. We evaluated the performance of our automatic segmentation method on 15 real MRI scans of brain tumor patients, with tumors that are inhomogeneous in appearance, small in size and in proximity to the major structures in the brain. Validation with the expert segmentation labels yielded encouraging results: Jaccard (58%), Precision (81%), Recall (67%), Hausdorff distance (24 mm). Using priors on the brain/tumor appearance, our proposed automatic 3D variational segmentation method was able to better disambiguate the tumor from the surrounding tissue.

  15. Multiscale biomechanics of brain tumours favours cancer invasion by cell softening and tissue stiffening

    NASA Astrophysics Data System (ADS)

    Kas, Josef; Fritsch, Anatol; Grosser, Steffen; Friebe, Sabrina; Reiss-Zimmermann, Martin; Müller, Wolf; Hoffmann, Karl-Titus; Sack, Ingolf

    Cancer progression needs two contradictory mechanical prerequisites. For metastasis individual cancer cells or small clusters have to flow through the microenvironment by overcoming the yield stress exerted by the surrounding. On the other hand a tumour has to behave as a solid to permit cell proliferation and spreading of the tumour mass against its surrounding. We determine that the high mechanical adaptability of cancer cells and the scale controlled viscoelastic properties of tissues reconcile both conflicting properties, fluid and solid, simultaneously in brain tumours. We resolve why different techniques that assess cell and tissue mechanics have produced apparently conflicting results by our finding that tumours generate different viscoelastic behaviours on different length scales, which are in concert optimal for tumour spreading and metastasis. Single cancer cells become very soft in their elastic behavior which promotes cell unjamming. On the level of direct cell-to-cell interactions cells feel their micro-environment as rigid elastic substrate that stimulates cancer on the molecular level. All over a tumour has predominately a stiff elastic character in terms of viscoelastic behaviour caused by a solid backbone. Simultaneously, the tumour mass is characterized by a large local variability in the storage and loss modulus that is caused by areas of a more fluid nature.

  16. Minimally invasive ultrasound thermal therapy with MR thermal monitoring and guidance

    NASA Astrophysics Data System (ADS)

    Diederich, Chris J.; Stafford, R. Jason; Price, Roger E.; Nau, William H.; Tyreus, Per Daniel; Rivera, Belinda; Schomer, Donald; Olsson, Lars; Hazle, John D.

    2001-06-01

    In this study both transurethral and interstitial ultrasound thermal therapy were applied to thermally coagulate targeted portions of the canine prostate or brain and implanted TVT tumors while using MRI-based thermal mapping techniques to monitor the therapy. MRI was also used for target definition, positioning of the applicator, and evaluation of target viability post-therapy. The complex phase-difference mapping technique using an iGE-EPI sequence with lipid suppression was used for determining temperature elevations within the in vivo prostate or brain and surrounding structures. Calculated temperature distributions, thermal dose exposures, T2-wieghted & T1-contrast enhanced images, gross inspection, and histology of sectioned prostates and brains were in good agreement with each other in defining destroyed tissue zones. Interstitial and transurethral ultrasound applicators produce directed zones of thermal coagulation within targeted tissue and implanted tumor, which can be accurately monitored and evaluated by MRI.

  17. Severe blood-brain barrier disruption and surrounding tissue injury.

    PubMed

    Chen, Bo; Friedman, Beth; Cheng, Qun; Tsai, Phil; Schim, Erica; Kleinfeld, David; Lyden, Patrick D

    2009-12-01

    Blood-brain barrier opening during ischemia follows a biphasic time course, may be partially reversible, and allows plasma constituents to enter brain and possibly damage cells. In contrast, severe vascular disruption after ischemia is unlikely to be reversible and allows even further extravasation of potentially harmful plasma constituents. We sought to use simple fluorescent tracers to allow wide-scale visualization of severely damaged vessels and determine whether such vascular disruption colocalized with regions of severe parenchymal injury. Severe vascular disruption and ischemic injury was produced in adult Sprague Dawley rats by transient occlusion of the middle cerebral artery for 1, 2, 4, or 8 hours, followed by 30 minutes of reperfusion. Fluorescein isothiocyanate-dextran (2 MDa) was injected intravenously before occlusion. After perfusion-fixation, brain sections were processed for ultrastructure or fluorescence imaging. We identified early evidence of tissue damage with Fluoro-Jade staining of dying cells. With increasing ischemia duration, greater quantities of high molecular weight dextran-fluorescein isothiocyanate invaded and marked ischemic regions in a characteristic pattern, appearing first in the medial striatum, spreading to the lateral striatum, and finally involving cortex; maximal injury was seen in the mid-parietal areas, consistent with the known ischemic zone in this model. The regional distribution of the severe vascular disruption correlated with the distribution of 24-hour 2,3,5-triphenyltetrazolium chloride pallor (r=0.75; P<0.05) and the cell death marker Fluoro-Jade (r=0.86; P<0.05). Ultrastructural examination showed significantly increased areas of swollen astrocytic foot process and swollen mitochondria in regions of high compared to low leakage, and compared to contralateral homologous regions (ANOVA P<0.01). Dextran extravasation into the basement membrane and surrounding tissue increased significantly from 2 to 8 hours of occlusion duration (Independent samples t test, P<0.05). Severe vascular disruption, as labeled with high-molecular-weight dextran-fluorescein isothiocyanate leakage, is associated with severe tissue injury. This marker of severe vascular disruption may be useful in further studies of the pathoanatomic mechanisms of vascular disruption-mediated tissue injury.

  18. Delayed brain radiation necrosis: pathological review and new molecular targets for treatment.

    PubMed

    Furuse, Motomasa; Nonoguchi, Naosuke; Kawabata, Shinji; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko

    2015-12-01

    Delayed radiation necrosis is a well-known adverse event following radiotherapy for brain diseases and has been studied since the 1930s. The primary pathogenesis is thought to be the direct damage to endothelial and glial cells, particularly oligodendrocytes, which causes vascular hyalinization and demyelination. This primary pathology leads to tissue inflammation and ischemia, inducing various tissue protective responses including angiogenesis. Macrophages and lymphocytes then infiltrate the surrounding areas of necrosis, releasing inflammatory cytokines such as interleukin (IL)-1α, IL-6, and tumor necrosis factor (TNF)-α. Microglia also express these inflammatory cytokines. Reactive astrocytes play an important role in angiogenesis, expressing vascular endothelial growth factor (VEGF). Some chemokine networks, like the CXCL12/CXCR4 axis, are upregulated by tissue inflammation. Hypoxia may mediate the cell-cell interactions among reactive astrocytes, macrophages, and microglial cells around the necrotic core. Recently, bevacizumab, an anti-VEGF antibody, has demonstrated promising results as an alternative treatment for radiation necrosis. The importance of VEGF in the pathophysiology of brain radiation necrosis is being recognized. The discovery of new molecular targets could facilitate novel treatments for radiation necrosis. This literature review will focus on recent work characterizing delayed radiation necrosis in the brain.

  19. Vascular Gene Expression in Nonneoplastic and Malignant Brain

    PubMed Central

    Madden, Stephen L.; Cook, Brian P.; Nacht, Mariana; Weber, William D.; Callahan, Michelle R.; Jiang, Yide; Dufault, Michael R.; Zhang, Xiaoming; Zhang, Wen; Walter-Yohrling, Jennifer; Rouleau, Cecile; Akmaev, Viatcheslav R.; Wang, Clarence J.; Cao, Xiaohong; St. Martin, Thia B.; Roberts, Bruce L.; Teicher, Beverly A.; Klinger, Katherine W.; Stan, Radu-Virgil; Lucey, Brenden; Carson-Walter, Eleanor B.; Laterra, John; Walter, Kevin A.

    2004-01-01

    Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression. PMID:15277233

  20. Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants.

    PubMed

    De Faveri, Sara; Maggiolini, Emma; Miele, Ermanno; De Angelis, Francesco; Cesca, Fabrizia; Benfenati, Fabio; Fadiga, Luciano

    2014-01-01

    The use of implants that allow chronic electrical stimulation and recording in the brain of human patients is currently limited by a series of events that cause the deterioration over time of both the electrode surface and the surrounding tissue. The main reason of failure is the tissue inflammatory reaction that eventually causes neuronal loss and glial encapsulation, resulting in a progressive increase of the electrode-electrolyte impedance. Here, we describe a new method to create bio-inspired electrodes to mimic the mechanical properties and biological composition of the host tissue. This combination has a great potential to increase the implant lifetime by reducing tissue reaction and improving electrical coupling. Our method implies coating the electrode with reprogrammed neural or glial cells encapsulated within a hydrogel layer. We chose fibrin as a hydrogel and primary hippocampal neurons or astrocytes from rat brain as cellular layer. We demonstrate that fibrin coating is highly biocompatible, forms uniform coatings of controllable thickness, does not alter the electrochemical properties of the microelectrode and allows good quality recordings. Moreover, it reduces the amount of host reactive astrocytes - over time - compared to a bare wire and is fully reabsorbed by the surrounding tissue within 7 days after implantation, avoiding the common problem of hydrogels swelling. Both astrocytes and neurons could be successfully grown onto the electrode surface within the fibrin hydrogel without altering the electrochemical properties of the microelectrode. This bio-hybrid device has therefore a good potential to improve the electrical integration at the neuron-electrode interface and support the long-term success of neural prostheses.

  1. HISTOLOGICAL STUDIES OF THE EFFECTS OF CHRONIC IMPLANTATION OF CERAMIC-BASED MICROELECTRODE ARRAYS AND MICRODIALYSIS PROBES IN RAT PREFRONTAL CORTEX

    PubMed Central

    Hascup, Erin R.; Bjerkén, Sara af; Hascup, Kevin N.; Pomerleau, Francois; Huettl, Peter; Strömberg, Ingrid; Gerhardt, Greg A.

    2010-01-01

    Chronic implantation of neurotransmitter measuring devices is essential for awake, behavioral studies occurring over multiple days. Little is known regarding the effects of long term implantation on surrounding brain parenchyma and the resulting alterations in the functional properties of this tissue. We examined the extent of tissue damage produced by chronic implantation of either ceramic microelectrode arrays (MEAs) or microdialysis probes. Histological studies were carried out on fixed tissues using stains for neurons (cresyl violet), astrocytes (GFAP), microglia (Iba-1), glutamatergic nerve fibers (VGLUT1), and the blood-brain barrier (SMI-71). Nissl staining showed pronounced tissue body loss with microdialysis implants compared to MEAs. The MEAs produced mild gliosis extending 50–100 µm from the tracks, with a significant change in the affected areas starting at 3 days. By contrast, the microdialysis probes produced gliosis extending 200–300 µm from the track, which was significant at 3 and 7 days. Markers for microglia and glutamatergic fibers supported that the MEAs produce minimal damage with significant changes occurring only at 3 and 7 days that return to control levels by one month. SMI-71 staining supported integrity of the blood brain barrier out to 1 week for both the microdialysis probes and the MEAs. This data support that the ceramic MEAs small size and biocompatibility are necessary to accurately measure neurotransmitter levels in the intact brain. The minimal invasiveness of the MEAs reduce tissue loss, allowing for long term (>6 month) electrochemical and electrophysiological monitoring of brain activity. PMID:19577548

  2. EphrinB3 restricts endogenous neural stem cell migration after traumatic brain injury.

    PubMed

    Dixon, Kirsty J; Mier, Jose; Gajavelli, Shyam; Turbic, Alisa; Bullock, Ross; Turnley, Ann M; Liebl, Daniel J

    2016-11-01

    Traumatic brain injury (TBI) leads to a series of pathological events that can have profound influences on motor, sensory and cognitive functions. Conversely, TBI can also stimulate neural stem/progenitor cell proliferation leading to increased numbers of neuroblasts migrating outside their restrictive neurogenic zone to areas of damage in support of tissue integrity. Unfortunately, the factors that regulate migration are poorly understood. Here, we examine whether ephrinB3 functions to restrict neuroblasts from migrating outside the subventricular zone (SVZ) and rostral migratory stream (RMS). We have previously shown that ephrinB3 is expressed in tissues surrounding these regions, including the overlying corpus callosum (CC), and is reduced after controlled cortical impact (CCI) injury. Our current study takes advantage of ephrinB3 knockout mice to examine the influences of ephrinB3 on neuroblast migration into CC and cortex tissues after CCI injury. Both injury and/or ephrinB3 deficiency led to increased neuroblast numbers and enhanced migration outside the SVZ/RMS zones. Application of soluble ephrinB3-Fc molecules reduced neuroblast migration into the CC after injury and limited neuroblast chain migration in cultured SVZ explants. Our findings suggest that ephrinB3 expression in tissues surrounding neurogenic regions functions to restrict neuroblast migration outside the RMS by limiting chain migration. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.

  3. Detection of human brain tumor infiltration with multimodal multiscale optical analysis

    NASA Astrophysics Data System (ADS)

    Poulon, Fanny; Metais, Camille; Jamme, Frederic; Zanello, Marc; Varlet, Pascale; Devaux, Bertrand; Refregiers, Matthieu; Abi Haidar, Darine

    2017-02-01

    Brain tumor surgeries are facing major challenges to improve patients' quality of life. The extent of resection while preserving surrounding eloquent brain areas is necessary to equilibrate the onco-functional. A tool able to increase the accuracy of tissue analysis and to deliver an immediate diagnostic on tumor, could drastically improve actual surgeries and patient survival rates. To achieve such performances a complete optical study, ranging from ultraviolet to infrared, of biopsies has been started by our group. Four different contrasts were used: 1) spectral analysis covering the DUV to IR range, 2) two photon fluorescence lifetime imaging and one photon time domain measurement, 3) second harmonic generation imaging and 4) fluorescence imaging using DUV to IR, one and two photon excitation. All these measurements were done on the endogenous fluorescence of tissues to avoid any bias and further clinical complication due to the introduction of external markers. The different modalities are then crossed to build a matrix of criteria to discriminate tumorous tissues. The results of multimodal optical analysis on human biopsies were compared to the gold standard histopathology.

  4. RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies.

    PubMed

    Malhotra, Meenakshi; Toulouse, André; Godinho, Bruno M D C; Mc Carthy, David John; Cryan, John F; O'Driscoll, Caitriona M

    2015-10-01

    Malignant primary brain tumors are aggressive cancerous cells that invade the surrounding tissues of the central nervous system. The current treatment options for malignant brain tumors are limited due to the inability to cross the blood-brain barrier. The advancements in current research has identified and characterized certain molecular markers that are essential for tumor survival, progression, metastasis and angiogenesis. These molecular markers have served as therapeutic targets for the RNAi based therapies, which enable site-specific silencing of the gene responsible for tumor proliferation. However, to bring about therapeutic success, an efficient delivery carrier that can cross the blood-brain barrier and reach the targeted site is essential. The current review focuses on the potential of targeted, non-viral and viral particles containing RNAi therapeutic molecules as delivery strategies specifically for brain tumors.

  5. Tm:fiber laser ablation with real-time temperature monitoring for minimizing collateral thermal damage: ex vivo dosimetry for ovine brain.

    PubMed

    Tunc, Burcu; Gulsoy, Murat

    2013-01-01

    The thermal damage of the surrounding tissue can be an unwanted result of continuous-wave laser irradiations. In order to propose an effective alternative to conventional surgical techniques, photothermal damage must be taken under control by a detailed dose study. Real-time temperature monitoring can be also an effective way to get rid of these negative effects. The aim of the present study is to investigate the potential of a new laser-thermoprobe, which consists of a continuous-wave 1,940-nm Tm:fiber laser and a thermocouple measurement system for brain surgery in an ex vivo study. A laser-thermoprobe was designed for using the near-by tissue temperature as a real-time reference for the applicator. Fresh lamb brain tissues were used for experiments. 320 laser shots were performed on both cortical and subcortical tissue. The relationship between laser parameters, temperature changes, and ablation (removal of tissue) efficiency was determined. The correlation between rate of temperature change and ablation efficiency was calculated. Laser-thermoprobe leads us to understand the basic laser-tissue interaction mechanism in a very cheap and easy way, without making a change in the experimental design. It was also shown that the ablation and coagulation (thermally irreversible damage) diameters could be predicted, and carbonization can be avoided by temperature monitoring. Copyright © 2013 Wiley Periodicals, Inc.

  6. Physical analysis on laser-induced cerebral damage

    NASA Astrophysics Data System (ADS)

    Luo, Xiaosen; Liu, Jiangang; Tao, Chunkan; Lan, Xiufeng; Cao, Lingyan; Pan, Weimin; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2005-01-01

    Experimental investigation on cerebral damage of adult SD rats induced by 532nm CW laser was performed. Tissue heat conductive equation was set up based on two-layered structure model. Finite difference algorithm was utilized to numerically simulate the temperature distribution in the brain tissue. Allowing for tissue response to temperature variation, free boundary model was used to discuss tissue thermal coagulation formation in brain. Experimental observations show that thermal coagulation and necrosis can be caused due to laser light absorption. The result of the calculation shows that the process of the thermal coagulation of the given mode comprises two stages: fast and slow. At the first stage, necrosis domain grows fast. Then necrosis domain growth becomes slower because of the competition between the heat diffusion into the surrounding undamaged tissue and the heat dissipation caused by blood perfusion. At the center of coagulation area no neuron was observed and at the transitional zone few nervous cells were seen by microscope. The research can provide reference data for developing clinical therapy of some kind of encephalic diseases by using 532nm laser, and for making cerebral infarction models in animal experiment.

  7. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion

    PubMed Central

    Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B.; Kaplan, Hilton M.; Kohn, Joachim; Shreiber, David I.; Zahn, Jeffrey D.

    2016-01-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings. PMID:25681971

  8. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion.

    PubMed

    Lo, Meng-chen; Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Shreiber, David I; Zahn, Jeffrey D

    2015-04-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings.

  9. Nuclear microscopy in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Makjanic, Jagoda; Watt, Frank

    1999-04-01

    The elemental composition of the two types of brain lesions which characterise Alzheimer's disease (AD) has been the subject of intense scrutiny over the last decade, ever since it was proposed that inorganic trace elements, particularly aluminium, might be implicated in the pathogenesis of the disease. The major evidence for this involvement was the detection of aluminium in the characteristic lesions of the AD brain; neuritic plaques and neurofibrillary tangles (NFTs). Using the powerful combination of Particle-Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM), it is possible to image and analyse structures in brain sections without recourse to chemical staining. Previous results on elemental composition of senile plaques indicated the absence of aluminium at the 15 parts per million level. We have more recently focused on the analysis of neurofibrillary tangles (NFTs), destructive structural defects within neurons. Imaging and analysis of neurons in brain tissue presented a greater challenge due to the small dimensional size compared with the plaques. We describe the methodology and the results of imaging and analysing neurons in brain tissue sections using Nuclear Microscopy. Our results show that aluminium is not present in either neurons or surrounding tissue in unstained sections at the 20 ppm level, but can be observed in stained sections. We also report elemental concentrations showing significant elevations of phosphorus, sulphur, chlorine, iron and zinc.

  10. Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants

    PubMed Central

    De Faveri, Sara; Maggiolini, Emma; Miele, Ermanno; De Angelis, Francesco; Cesca, Fabrizia; Benfenati, Fabio; Fadiga, Luciano

    2014-01-01

    The use of implants that allow chronic electrical stimulation and recording in the brain of human patients is currently limited by a series of events that cause the deterioration over time of both the electrode surface and the surrounding tissue. The main reason of failure is the tissue inflammatory reaction that eventually causes neuronal loss and glial encapsulation, resulting in a progressive increase of the electrode-electrolyte impedance. Here, we describe a new method to create bio-inspired electrodes to mimic the mechanical properties and biological composition of the host tissue. This combination has a great potential to increase the implant lifetime by reducing tissue reaction and improving electrical coupling. Our method implies coating the electrode with reprogrammed neural or glial cells encapsulated within a hydrogel layer. We chose fibrin as a hydrogel and primary hippocampal neurons or astrocytes from rat brain as cellular layer. We demonstrate that fibrin coating is highly biocompatible, forms uniform coatings of controllable thickness, does not alter the electrochemical properties of the microelectrode and allows good quality recordings. Moreover, it reduces the amount of host reactive astrocytes – over time – compared to a bare wire and is fully reabsorbed by the surrounding tissue within 7 days after implantation, avoiding the common problem of hydrogels swelling. Both astrocytes and neurons could be successfully grown onto the electrode surface within the fibrin hydrogel without altering the electrochemical properties of the microelectrode. This bio-hybrid device has therefore a good potential to improve the electrical integration at the neuron-electrode interface and support the long-term success of neural prostheses. PMID:24782757

  11. Fiber-based tissue identification for electrode placement in deep brain stimulation neurosurgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    DePaoli, Damon T.; Lapointe, Nicolas; Goetz, Laurent; Parent, Martin; Prudhomme, Michel; Cantin, Léo.; Galstian, Tigran; Messaddeq, Younès.; Côté, Daniel C.

    2016-03-01

    Deep brain stimulation's effectiveness relies on the ability of the stimulating electrode to be properly placed within a specific target area of the brain. Optical guidance techniques that can increase the accuracy of the procedure, without causing any additional harm, are therefore of great interest. We have designed a cheap optical fiber-based device that is small enough to be placed within commercially available DBS stimulating electrodes' hollow cores and that is capable of sensing biological information from the surrounding tissue, using low power white light. With this probe we have shown the ability to distinguish white and grey matter as well as blood vessels, in vitro, in human brain samples and in vivo, in rats. We have also repeated the in vitro procedure with the probe inserted in a DBS stimulating electrode and found the results were in good agreement. We are currently validating a second fiber optic device, with micro-optical components, that will result in label free, molecular level sensing capabilities, using CARS spectroscopy. The final objective will be to use this data in real time, during deep brain stimulation neurosurgery, to increase the safety and accuracy of the procedure.

  12. Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex

    PubMed Central

    Linninger, A. A.; Gould, I. G.; Marinnan, T.; Hsu, C.-Y.; Chojecki, M.; Alaraj, A.

    2013-01-01

    The three-dimensional spatial arrangement of the cortical microcirculatory system is critical for understanding oxygen exchange between blood vessels and brain cells. A three-dimensional computer model of a 3 × 3 × 3 mm3 subsection of the human secondary cortex was constructed to quantify oxygen advection in the microcirculation, tissue oxygen perfusion, and consumption in the human cortex. This computer model accounts for all arterial, capillary and venous blood vessels of the cerebral microvascular bed as well as brain tissue occupying the extravascular space. Microvessels were assembled with optimization algorithms emulating angiogenic growth; a realistic capillary bed was built with space filling procedures. The extravascular tissue was modeled as a porous medium supplied with oxygen by advection–diffusion to match normal metabolic oxygen demand. The resulting synthetic computer generated network matches prior measured morphometrics and fractal patterns of the cortical microvasculature. This morphologically accurate, physiologically consistent, multi-scale computer network of the cerebral microcirculation predicts the oxygen exchange of cortical blood vessels with the surrounding gray matter. Oxygen tension subject to blood pressure and flow conditions were computed and validated for the blood as well as brain tissue. Oxygen gradients along arterioles, capillaries and veins agreed with in vivo trends observed recently in imaging studies within experimental tolerances and uncertainty. PMID:23842693

  13. 5-Aminolevulinic Acid Accumulation in a Cerebral Infarction Mimicking High-Grade Glioma.

    PubMed

    Behling, Felix; Hennersdorf, Florian; Bornemann, Antje; Tatagiba, Marcos; Skardelly, Marco

    2016-08-01

    5-Aminolevulinic acid (5-ALA) has become an integral part in the neurosurgical treatment of malignant glioma. Over time, several other tumor entities have been identified to metabolize 5-ALA and show a similar fluorescence pattern during surgical resection. This case report is the first description of 5-ALA accumulation in postischemic cerebral tissue. This evidence questions the assumption that 5-ALA accumulation in glioma is exclusively attributed to tumor infiltration. Instead, 5-ALA accumulation can also occur beyond the tumor borders and may be partially ascribed to inflammatory changes in the surrounding brain tissue. A 64-year old woman presented with episodes of apraxia and a ring-enhancing lesion in postcontrast T1-weighted magnetic resonance sequences suggestive of high grade glioma. Strong fluorescence was observed during 5-ALA-guided resection. However, although the frozen section was inconclusive, the final histopathologic examination revealed a stage II cerebral infarction. 5-ALA accumulation in postischemic cerebral tissue should be considered for intended supramarginal resections near eloquent brain regions. Therefore, sufficient preoperative imaging should regularly include magnetic resonance imaging spectroscopy and perfusion sequences to ascertain the proper diagnosis. Moreover, further research is warranted to determine the role of 5-ALA accumulation in postischemic and inflammatory brain tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Role of Matricellular Proteins in Disorders of the Central Nervous System.

    PubMed

    Jayakumar, A R; Apeksha, A; Norenberg, M D

    2017-03-01

    Matricellular proteins (MCPs) are actively expressed non-structural proteins present in the extracellular matrix, which rapidly turnover and possess regulatory roles, as well as mediate cell-cell interactions. MCPs characteristically contain binding sites for other extracellular proteins, cell surface receptors, growth factors, cytokines and proteases, that provide structural support for surrounding cells. MCPs are present in most organs, including brain, and play a major role in cell-cell interactions and tissue repair. Among the MCPs found in brain include thrombospondin-1/2, secreted protein acidic and rich in cysteine family (SPARC), including Hevin/SC1, Tenascin C and CYR61/Connective Tissue Growth Factor/Nov family of proteins, glypicans, galectins, plasminogen activator inhibitor (PAI-1), autotaxin, fibulin and perisostin. This review summarizes the potential role of MCPs in the pathogenesis of major neurological disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, ischemia, trauma, hepatic encephalopathy, Down's syndrome, autism, multiple sclerosis, brain neoplasms, Parkinson's disease and epilepsy. Potential therapeutic opportunities of MCP's for these disorders are also considered in this review.

  15. Mechanisms of Endogenous Neuroprotective Effects of Astrocytes in Brain Injury

    PubMed Central

    2018-01-01

    Astrocytes, once believed to serve only as “glue” for the structural support of neurons, have been demonstrated to serve critical functions for the maintenance and protection of neurons, especially under conditions of acute or chronic injury. There are at least seven distinct mechanisms by which astrocytes protect neurons from damage; these are (1) protection against glutamate toxicity, (2) protection against redox stress, (3) mediation of mitochondrial repair mechanisms, (4) protection against glucose-induced metabolic stress, (5) protection against iron toxicity, (6) modulation of the immune response in the brain, and (7) maintenance of tissue homeostasis in the presence of DNA damage. Astrocytes support these critical functions through specialized responses to stress or toxic conditions. The detoxifying activities of astrocytes are essential for maintenance of the microenvironment surrounding neurons and in whole tissue homeostasis. Improved understanding of the mechanisms by which astrocytes protect the brain could lead to the development of novel targets for the development of neuroprotective strategies.

  16. Microvascular perfusion during focal vasogenic brain edema: a scanning laser fluorescence microscopy study.

    PubMed

    Lindsberg, P J; Sirén, A L; Hallenbeck, J M

    1997-01-01

    Controversy exists about the effect of tissue edema on cerebral microcirculation. High spatial resolution is required for observation of extravasation and microcirculation during focal vasogenic edema formation. To study the relationship between tissue edema and perfusion, we developed a technique for simultaneous visualization of extravasation and microvessel perfusion in rats. Focal intracortical microvascular injury was generated with a 1-sec Nd-YAG laser pulse. Evans blue albumin (EBA) was infused 30 min before decapitation to study extravasation and FITC-dextran was injected 30 sec prior to decapitation to examine microvessel perfusion. Computerized scanning laser-excited fluorescence microscopy followed by high resolution image analysis permitted quantitative assessment of both parameters on single fresh-frozen brain sections. Studied at 30 min (3.66 +/- 0.15 mm), 2 hr (4.14 +/- 0.08 mm, P < .05), and 8 hr (4.69 +/- 0.18 mm, P < .01) after injury, the diameter of the circular, sharply demarcated zone of EBA-extravasation increased progressively. At 30 min, microvessels at a zone surrounding the area of EBA-extravasation contained 69 +/- 14% (P < .05) more fluorescent FITC-filling than in the control hemisphere, but the density of perfused microvessels was unchanged. At 2 hr, secondary tissue changes had already occurred in a zone surrounding the initial laser lesion. While severe reduction in the density (-76 +/- 13%, P < .05) of perfused microvessels was observed within 400 to 240 microm inside the border of EBA extravasation, perfusion indexes were normal despite the presence of extravasated plasma constituents within 0-80 microm from the border. In a narrow zone (80 microm) outside the border of extravasation, individual microvessels contained 34 +/- 9% (P < .01) less FITC-fluorescence than those in a homologous area of the uninjured contralateral hemisphere. This report demonstrates the feasibility of simultaneous measurement and high-resolution mapping of indices of microvascular perfusion (density, filling) and extravasated plasma constituents in damaged and intact brain areas. In this model, the presence of extravasated plasma constituents the size of proteins did not immediately influence indices of cortical microcirculation. However, microvascular perfusion may be perturbed surrounding such an area of advancing vasogenic edema formation.

  17. Magnetic Resonance Imaging Profile of Blood–Brain Barrier Injury in Patients With Acute Intracerebral Hemorrhage

    PubMed Central

    Aksoy, Didem; Bammer, Roland; Mlynash, Michael; Venkatasubramanian, Chitra; Eyngorn, Irina; Snider, Ryan W.; Gupta, Sandeep N.; Narayana, Rashmi; Fischbein, Nancy; Wijman, Christine A. C.

    2013-01-01

    Background Spontaneous intracerebral hemorrhage (ICH) is associated with blood–brain barrier (BBB) injury, which is a poorly understood factor in ICH pathogenesis, potentially contributing to edema formation and perihematomal tissue injury. We aimed to assess and quantify BBB permeability following human spontaneous ICH using dynamic contrast‐enhanced magnetic resonance imaging (DCE MRI). We also investigated whether hematoma size or location affected the amount of BBB leakage. Methods and Results Twenty‐five prospectively enrolled patients from the Diagnostic Accuracy of MRI in Spontaneous intracerebral Hemorrhage (DASH) study were examined using DCE MRI at 1 week after symptom onset. Contrast agent dynamics in the brain tissue and general tracer kinetic modeling were used to estimate the forward leakage rate (Ktrans) in regions of interest (ROI) in and surrounding the hematoma and in contralateral mirror–image locations (control ROI). In all patients BBB permeability was significantly increased in the brain tissue immediately adjacent to the hematoma, that is, the hematoma rim, compared to the contralateral mirror ROI (P<0.0001). Large hematomas (>30 mL) had higher Ktrans values than small hematomas (P<0.005). Ktrans values of lobar hemorrhages were significantly higher than the Ktrans values of deep hemorrhages (P<0.005), independent of hematoma volume. Higher Ktrans values were associated with larger edema volumes. Conclusions BBB leakage in the brain tissue immediately bordering the hematoma can be measured and quantified by DCE MRI in human ICH. BBB leakage at 1 week is greater in larger hematomas as well as in hematomas in lobar locations and is associated with larger edema volumes. PMID:23709564

  18. Brain infection with Staphylococcus aureus leads to high extracellular levels of glutamate, aspartate, γ-aminobutyric acid, and zinc.

    PubMed

    Hassel, Bjørnar; Dahlberg, Daniel; Mariussen, Espen; Goverud, Ingeborg Løstegaard; Antal, Ellen-Ann; Tønjum, Tone; Maehlen, Jan

    2014-12-01

    Staphylococcal brain infections may cause mental deterioration and epileptic seizures, suggesting interference with normal neurotransmission in the brain. We injected Staphylococcus aureus into rat striatum and found an initial 76% reduction in the extracellular level of glutamate as detected by microdialysis at 2 hr after staphylococcal infection. At 8 hr after staphylococcal infection, however, the extracellular level of glutamate had increased 12-fold, and at 20 hr it had increased >30-fold. The extracellular level of aspartate and γ-aminobutyric acid (GABA) also increased greatly. Extracellular Zn(2+) , which was estimated at ∼2.6 µmol/liter in the control situation, was increased by 330% 1-2.5 hr after staphylococcal infection and by 100% at 8 and 20 hr. The increase in extracellular glutamate, aspartate, and GABA appeared to reflect the degree of tissue damage. The area of tissue damage greatly exceeded the area of staphylococcal infiltration, pointing to soluble factors being responsible for cell death. However, the N-methyl-D-aspartate receptor antagonist MK-801 ameliorated neither tissue damage nor the increase in extracellular neuroactive amino acids, suggesting the presence of neurotoxic factors other than glutamate and aspartate. In vitro staphylococci incubated with glutamine and glucose formed glutamate, so bacteria could be an additional source of infection-related glutamate. We conclude that the dramatic increase in the extracellular concentration of neuroactive amino acids and zinc could interfere with neurotransmission in the surrounding brain tissue, contributing to mental deterioration and a predisposition to epileptic seizures, which are often seen in brain abscess patients. © 2014 Wiley Periodicals, Inc.

  19. Tissue-engineered microenvironment systems for modeling human vasculature.

    PubMed

    Tourovskaia, Anna; Fauver, Mark; Kramer, Gregory; Simonson, Sara; Neumann, Thomas

    2014-09-01

    The high attrition rate of drug candidates late in the development process has led to an increasing demand for test assays that predict clinical outcome better than conventional 2D cell culture systems and animal models. Government agencies, the military, and the pharmaceutical industry have started initiatives for the development of novel in-vitro systems that recapitulate functional units of human tissues and organs. There is growing evidence that 3D cell arrangement, co-culture of different cell types, and physico-chemical cues lead to improved predictive power. A key element of all tissue microenvironments is the vasculature. Beyond transporting blood the microvasculature assumes important organ-specific functions. It is also involved in pathologic conditions, such as inflammation, tumor growth, metastasis, and degenerative diseases. To provide a tool for modeling this important feature of human tissue microenvironments, we developed a microfluidic chip for creating tissue-engineered microenvironment systems (TEMS) composed of tubular cell structures. Our chip design encompasses a small chamber that is filled with an extracellular matrix (ECM) surrounding one or more tubular channels. Endothelial cells (ECs) seeded into the channels adhere to the ECM walls and grow into perfusable tubular tissue structures that are fluidically connected to upstream and downstream fluid channels in the chip. Using these chips we created models of angiogenesis, the blood-brain barrier (BBB), and tumor-cell extravasation. Our angiogenesis model recapitulates true angiogenesis, in which sprouting occurs from a "parent" vessel in response to a gradient of growth factors. Our BBB model is composed of a microvessel generated from brain-specific ECs within an ECM populated with astrocytes and pericytes. Our tumor-cell extravasation model can be utilized to visualize and measure tumor-cell migration through vessel walls into the surrounding matrix. The described technology can be used to create TEMS that recapitulate structural, functional, and physico-chemical elements of vascularized human tissue microenvironments in vitro. © 2014 by the Society for Experimental Biology and Medicine.

  20. Proficiency performance benchmarks for removal of simulated brain tumors using a virtual reality simulator NeuroTouch.

    PubMed

    AlZhrani, Gmaan; Alotaibi, Fahad; Azarnoush, Hamed; Winkler-Schwartz, Alexander; Sabbagh, Abdulrahman; Bajunaid, Khalid; Lajoie, Susanne P; Del Maestro, Rolando F

    2015-01-01

    Assessment of neurosurgical technical skills involved in the resection of cerebral tumors in operative environments is complex. Educators emphasize the need to develop and use objective and meaningful assessment tools that are reliable and valid for assessing trainees' progress in acquiring surgical skills. The purpose of this study was to develop proficiency performance benchmarks for a newly proposed set of objective measures (metrics) of neurosurgical technical skills performance during simulated brain tumor resection using a new virtual reality simulator (NeuroTouch). Each participant performed the resection of 18 simulated brain tumors of different complexity using the NeuroTouch platform. Surgical performance was computed using Tier 1 and Tier 2 metrics derived from NeuroTouch simulator data consisting of (1) safety metrics, including (a) volume of surrounding simulated normal brain tissue removed, (b) sum of forces utilized, and (c) maximum force applied during tumor resection; (2) quality of operation metric, which involved the percentage of tumor removed; and (3) efficiency metrics, including (a) instrument total tip path lengths and (b) frequency of pedal activation. All studies were conducted in the Neurosurgical Simulation Research Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada. A total of 33 participants were recruited, including 17 experts (board-certified neurosurgeons) and 16 novices (7 senior and 9 junior neurosurgery residents). The results demonstrated that "expert" neurosurgeons resected less surrounding simulated normal brain tissue and less tumor tissue than residents. These data are consistent with the concept that "experts" focused more on safety of the surgical procedure compared with novices. By analyzing experts' neurosurgical technical skills performance on these different metrics, we were able to establish benchmarks for goal proficiency performance training of neurosurgery residents. This study furthers our understanding of expert neurosurgical performance during the resection of simulated virtual reality tumors and provides neurosurgical trainees with predefined proficiency performance benchmarks designed to maximize the learning of specific surgical technical skills. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  1. Intraoperative monitoring of brain tissue oxygenation during arteriovenous malformation resection.

    PubMed

    Arikan, Fuat; Vilalta, Jordi; Noguer, Montserrat; Olive, Montserrat; Vidal-Jorge, Marian; Sahuquillo, Juan

    2014-10-01

    In normal perfusion pressure breakthrough (NPPB) it is assumed that following arteriovenous malformation (AVM) resection, vasoparalysis persists in the margins of the lesion and that a sudden increase in cerebral blood flow (CBF) after AVM exclusion leads to brain swelling and postsurgical complications. However, the pathophysiology NPPB remains controversial.The aim of our study was to investigate the oxygenation status in tissue surrounding AVMs and in the distant brain using intraoperative monitoring of cerebral partial pressure of oxygen (PtiO(2)) to achieve a better understanding of NPPB pathophysiology. Patients with supratentorial AVMs were monitored intraoperatively using 2 polarographic Clark-type electrodes. To establish reference values, we also studied PtiO(2) in a group of patients who underwent surgery to treat incidental aneurysms. Twenty-two patients with supratentorial AVMs and 16 patients with incidentally found aneurysms were included. Hypoxic pattern was defined as PtiO(2)≤15 mm Hg and/or PtiO(2)/PaO(2) ratio ≤0.10. Tissue hypoxia was detected in 63.6% of the catheters placed in the perinidal area and in 43.8% of catheters placed in a distant area. AVM excision significantly improved oxygenation both around the AVM and in the distant area. The PtiO(2)/PaO(2) ratio is a better indicator than absolute PtiO(2) in detecting tissue hypoxia in mechanically ventilated patients. Intraoperative monitoring showed tissue hypoxia in the margins of AVMs and in the distant ipsilateral brain as the most common finding. Surgical removal of AVMs induces a significant improvement in the oxygenation status in both areas.

  2. Compression Stiffening of Brain and its Effect on Mechanosensing by Glioma Cells

    NASA Astrophysics Data System (ADS)

    Pogoda, Katarzyna

    The stiffness of tissues, often characterized by their time-dependent elastic properties, is tightly controlled under normal condition and central nervous system tissue is among the softest tissues. Changes in tissue and organ stiffness occur in some physiological conditions and are frequently symptoms of diseases such as fibrosis, cardiovascular disease and many forms of cancer. Primary cells isolated from various tissues often respond to changes in the mechanical properties of their substrates, and the range of stiffness over which these responses occur appear to be limited to the tissue elastic modulus from which they are derived. Our goal was to test the hypotheses that the stiffness of tumors derived from CNS tissue differs from that of normal brain, and that transformed cells derived from such tumors exhibit mechanical responses that differ from those of normal glial cells. Unlike breast and some other cancers where the stroma and the tumor itself is substantially stiffer than the surrounding normal tissue, our data suggest that gliomas can arise without a gross change in the macroscopic tissue stiffness when measured at low strains without compression. However, both normal brain and glioma samples stiffen with compression, but not in elongation and increased shear strains. On the other hand, different classes of immortalized cells derived from human glioblastoma show substantially different responses to the stiffness of substrates in vitrowhen grown on soft polyacrylamide and hyaluronic acid gels. This outcome supports the hypothesis that compression stiffening, which might occur with increased vascularization and interstitial pressure gradients that are characteristic of tumors, effectively stiffens the environment of glioma cells, and that in situ, the elastic resistance these cells sense might be sufficient to trigger the same responses that are activated in vitro by increased substrate stiffness.

  3. International Assessment of Research and Development in Brain-Computer Interfaces. WTEC Panel Report

    DTIC Science & Technology

    2007-10-01

    the quality of life of those affected with CNS-related disabilities (Lebedev and Nicolelis 2006; Schwartz et al. 2006). The future economic impact...abiotic interface and assessing their potential to affect device function. Although the broad brush strokes are in place, significant detail is lacking... affect electrode impedance. The thought is that astrocytes increase extracellular tortuosity in the surrounding tissue, which increases the path length

  4. A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-D MRI.

    PubMed

    Wels, Michael; Carneiro, Gustavo; Aplas, Alexander; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2008-01-01

    In this paper we present a fully automated approach to the segmentation of pediatric brain tumors in multi-spectral 3-D magnetic resonance images. It is a top-down segmentation approach based on a Markov random field (MRF) model that combines probabilistic boosting trees (PBT) and lower-level segmentation via graph cuts. The PBT algorithm provides a strong discriminative observation model that classifies tumor appearance while a spatial prior takes into account the pair-wise homogeneity in terms of classification labels and multi-spectral voxel intensities. The discriminative model relies not only on observed local intensities but also on surrounding context for detecting candidate regions for pathology. A mathematically sound formulation for integrating the two approaches into a unified statistical framework is given. The proposed method is applied to the challenging task of detection and delineation of pediatric brain tumors. This segmentation task is characterized by a high non-uniformity of both the pathology and the surrounding non-pathologic brain tissue. A quantitative evaluation illustrates the robustness of the proposed method. Despite dealing with more complicated cases of pediatric brain tumors the results obtained are mostly better than those reported for current state-of-the-art approaches to 3-D MR brain tumor segmentation in adult patients. The entire processing of one multi-spectral data set does not require any user interaction, and takes less time than previously proposed methods.

  5. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy

    PubMed Central

    Butte, Pramod V.; Fang, Qiyin; Jo, Javier A.; Yong, William H.; Pikul, Brian K.; Black, Keith L.; Marcu, Laura

    2010-01-01

    The goal of this study is to determine the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for delineation of brain tumor from surrounding normal tissue in order to assist the neurosurgeon in near-complete tumor excision. A time-domain TR-LIFS prototype apparatus (gated photomultiplier detection, fast digitizer) was used for recording tissue autofluorescence in normal cortex (NC), normal white matter (NWM), and various grades of gliomas intraoperatively. Tissue fluorescence was induced with a pulsed nitrogen laser (337nm, 700ps), and the intensity decay profiles were recorded in the 360-to550-nm spectral range (10-nm interval). Histopathological analysis (hematoxylin & eosin) of the biopsy samples taken from the site of TR-LIFS measurements was used for validation of spectroscopic results. Preliminary results on 17 patients demonstrate that normal cortex (N=16) and normal white matter (N=3) show two peaks of fluorescence emission at 390nm(lifetime=1.8±0.3ns) and 460nm(lifetime=0.8±0.1ns). The 390-nm emission peak is absent in low-grade glioma (N=5; lifetime=1.1ns) and reduced in high-grade glioma (N=9; lifetime=1.7±0.4ns). The emission characteristics at 460nm in all tissues correlated with the nicotinamide adenine dinucleotide fluorescence (peak: 440to460nm; lifetime: 0.8to1.0ns). These findings demonstrate the potential of using TR-LIFS as a tool for enhanced delineation of brain tumors during surgery. In addition, this study evaluates similarities and differences between TR-LIFS signatures of brain tumors obtained in vivo and those previously reported in ex vivo brain tumor specimens. PMID:20459282

  6. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy.

    PubMed

    Butte, Pramod V; Fang, Qiyin; Jo, Javier A; Yong, William H; Pikul, Brian K; Black, Keith L; Marcu, Laura

    2010-01-01

    The goal of this study is to determine the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for delineation of brain tumor from surrounding normal tissue in order to assist the neurosurgeon in near-complete tumor excision. A time-domain TR-LIFS prototype apparatus (gated photomultiplier detection, fast digitizer) was used for recording tissue autofluorescence in normal cortex (NC), normal white matter (NWM), and various grades of gliomas intraoperatively. Tissue fluorescence was induced with a pulsed nitrogen laser (337 nm, 700 ps), and the intensity decay profiles were recorded in the 360- to 550-nm spectral range (10-nm interval). Histopathological analysis (hematoxylin & eosin) of the biopsy samples taken from the site of TR-LIFS measurements was used for validation of spectroscopic results. Preliminary results on 17 patients demonstrate that normal cortex (N=16) and normal white matter (N=3) show two peaks of fluorescence emission at 390 nm (lifetime=1.8+/-0.3 ns) and 460 nm (lifetime=0.8+/-0.1 ns). The 390-nm emission peak is absent in low-grade glioma (N=5; lifetime=1.1 ns) and reduced in high-grade glioma (N=9; lifetime=1.7+/-0.4 ns). The emission characteristics at 460 nm in all tissues correlated with the nicotinamide adenine dinucleotide fluorescence (peak: 440 to 460 nm; lifetime: 0.8 to 1.0 ns). These findings demonstrate the potential of using TR-LIFS as a tool for enhanced delineation of brain tumors during surgery. In addition, this study evaluates similarities and differences between TR-LIFS signatures of brain tumors obtained in vivo and those previously reported in ex vivo brain tumor specimens.

  7. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Butte, Pramod V.; Fang, Qiyin; Jo, Javier A.; Yong, William H.; Pikul, Brian K.; Black, Keith L.; Marcu, Laura

    2010-03-01

    The goal of this study is to determine the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for delineation of brain tumor from surrounding normal tissue in order to assist the neurosurgeon in near-complete tumor excision. A time-domain TR-LIFS prototype apparatus (gated photomultiplier detection, fast digitizer) was used for recording tissue autofluorescence in normal cortex (NC), normal white matter (NWM), and various grades of gliomas intraoperatively. Tissue fluorescence was induced with a pulsed nitrogen laser (337 nm, 700 ps), and the intensity decay profiles were recorded in the 360- to 550-nm spectral range (10-nm interval). Histopathological analysis (hematoxylin & eosin) of the biopsy samples taken from the site of TR-LIFS measurements was used for validation of spectroscopic results. Preliminary results on 17 patients demonstrate that normal cortex (N=16) and normal white matter (N=3) show two peaks of fluorescence emission at 390 nm (lifetime=1.8+/-0.3 ns) and 460 nm (lifetime=0.8+/-0.1 ns). The 390-nm emission peak is absent in low-grade glioma (N=5; lifetime=1.1 ns) and reduced in high-grade glioma (N=9; lifetime=1.7+/-0.4 ns). The emission characteristics at 460 nm in all tissues correlated with the nicotinamide adenine dinucleotide fluorescence (peak: 440 to 460 nm lifetime: 0.8 to 1.0 ns). These findings demonstrate the potential of using TR-LIFS as a tool for enhanced delineation of brain tumors during surgery. In addition, this study evaluates similarities and differences between TR-LIFS signatures of brain tumors obtained in vivo and those previously reported in ex vivo brain tumor specimens.

  8. The Underestimated Role of Mechanical Stimuli in Brain Diseases and the Relate d In Vitro Models.

    PubMed

    Guo, Tingwang; Ren, Peng; Hao, Shilei; Wang, Bochu

    2017-01-01

    Besides the well-documented biochemical and electrophysiological effects, the mechanical stimuli also have prominent roles in the initiation and development of brain diseases but yet have been underestimated. To explore the role of mechanical stimuli and the followed mechanical-biochemical effects in the brain diseases. In this review, we discussed the initiation and effect of mechanical stimuli and the surrounding topography in brain diseases, especially for the intracerebral hemorrhage (ICH), Alzheimer's disease (AD), diffuse axonal injury (DAI) and primary brain tumors. The induced cascades of biological pathways by mechanical stimuli prior to and during the brain diseases were summarized. Strategies aiming to reduce the mechanical stimuli related damages or poor outcomes were also discussed, despite some could only prevent rather than cure. Literatures have indicated mechanical stimuli were the connection between the exogenous mechanotransduction and the inherent biochemical cascades. Therefore, we also reviewed in vitro models in the literatures that simulated the diverse range of mechanical stimuli, which connected the neural network with the tissue engineering, biomaterials and potential therapeutic strategies together. At the microscopic and macroscopic levels, the hydrostatic pressure, tensile/compressive force, shear force, and even the roughness of topography from the physical surrounding exert the influence on the neural network not only by themselves but also through the interaction with other factors, e.g. biochemical or electrophysiological effects. In the clinical management, taking the undervalued mechanical stimuli and the followed mechanical- biochemical effects into consideration are important and inevitable in preventing and treating brain diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Biocompatibility evaluation of a thermoplastic rubber for wireless telemetric intracranial pressure sensor coating

    PubMed Central

    Yang, Jun; Charif, Andrea C.; Puskas, Judit E.; Phillips, Hannah; Shanahan, Kaitlyn J.; Garsed, Jessica; Fleischman, Aaron; Goldman, Ken; Luebbers, Matthew T.; Dombrowski, Stephen M.; Luciano, Mark G.

    2015-01-01

    This study investigated the biocompatibility of the experimental thermoplastic rubber Arbomatrix™ that will be used as the protective coating on a novel intracranial pressure (ICP) sensor silicon chip. Arbomatrix™ was benchmarked against biocompatible commercial silicone rubber shunt tubing in the brain via a rat model with 60-day implant duration. A bare silicon chip was also implanted. The results showed similar cellular distribution in the brain-implant boundary and surrounding tissues. Quantitative analysis of neuron and glia density did not show significant difference between implants. Through histological and immunohistochemical evaluation we conclude that Arbomatrix™ is well tolerated by the brain. Due to its exceptional barrier properties Arbomatrix™ has already been shown to be an excellent protective coating for new ICP monitoring chip. PMID:25688030

  10. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain

    NASA Technical Reports Server (NTRS)

    Hall, Lawrence O.; Bensaid, Amine M.; Clarke, Laurence P.; Velthuizen, Robert P.; Silbiger, Martin S.; Bezdek, James C.

    1992-01-01

    Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms and a supervised computational neural network, a dynamic multilayered perception trained with the cascade correlation learning algorithm. Initial clinical results are presented on both normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. However, for a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed.

  11. Perspectives on biomechanical growth and remodeling mechanisms in glaucoma⋆

    PubMed Central

    Grytz, Rafael; Girkin, Christopher A.; Libertiaux, Vincent; Downs, J. Crawford

    2012-01-01

    Glaucoma is a blinding diseases in which damage to the axons results in loss of retinal ganglion cells. Experimental evidence indicates that chronic intraocular pressure elevation initiates axonal insult at the level of the lamina cribrosa. The lamina cribrosa is a porous collagen structure through which the axons pass on their path from the retina to the brain. Recent experimental studies revealed the extensive structural changes of the lamina cribrosa and its surrounding tissues during the development and progression of glaucoma. In this perspective paper we review the experimental evidence for growth and remodeling mechanisms in glaucoma including adaptation of tissue anisotropy, tissue thickening/thinning, tissue elongation/shortening and tissue migration. We discuss the existing predictive computational approaches that try to elucidate the potential biomechanical basis of theses growth and remodeling mechanisms and highlight open questions, challenges, and avenues for further development. PMID:23109748

  12. Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Grant, Gerald; Li, Jianjun; Zhang, Yan; Hu, Fangyao; Li, Shuqin; Wilson, Christy; Chen, Kui; Bigner, Darell; Vo-Dinh, Tuan

    2011-03-01

    We report the development of a compact point-detection fluorescence spectroscopy system and two data analysis methods to quantify the intrinsic fluorescence redox ratio and diagnose brain cancer in an orthotopic brain tumor rat model. Our system employs one compact cw diode laser (407 nm) to excite two primary endogenous fluorophores, reduced nicotinamide adenine dinucleotide, and flavin adenine dinucleotide. The spectra were first analyzed using a spectral filtering modulation method developed previously to derive the intrinsic fluorescence redox ratio, which has the advantages of insensitivty to optical coupling and rapid data acquisition and analysis. This method represents a convenient and rapid alternative for achieving intrinsic fluorescence-based redox measurements as compared to those complicated model-based methods. It is worth noting that the method can also extract total hemoglobin concentration at the same time but only if the emission path length of fluorescence light, which depends on the illumination and collection geometry of the optical probe, is long enough so that the effect of absorption on fluorescence intensity due to hemoglobin is significant. Then a multivariate method was used to statistically classify normal tissues and tumors. Although the first method offers quantitative tissue metabolism information, the second method provides high overall classification accuracy. The two methods provide complementary capabilities for understanding cancer development and noninvasively diagnosing brain cancer. The results of our study suggest that this portable system can be potentially used to demarcate the elusive boundary between a brain tumor and the surrounding normal tissue during surgical resection.

  13. Non-invasive measurement of brain temperature with microwave radiometry: demonstration in a head phantom and clinical case.

    PubMed

    Stauffer, Paul R; Snow, Brent W; Rodrigues, Dario B; Salahi, Sara; Oliveira, Tiago R; Reudink, Doug; Maccarini, Paolo F

    2014-02-01

    This study characterizes the sensitivity and accuracy of a non-invasive microwave radiometric thermometer intended for monitoring body core temperature directly in brain to assist rapid recovery from hypothermia such as occurs during surgical procedures. To study this approach, a human head model was constructed with separate brain and scalp regions consisting of tissue equivalent liquids circulating at independent temperatures on either side of intact skull. This test setup provided differential surface/deep tissue temperatures for quantifying sensitivity to change in brain temperature independent of scalp and surrounding environment. A single band radiometer was calibrated and tested in a multilayer model of the human head with differential scalp and brain temperature. Following calibration of a 500MHz bandwidth microwave radiometer in the head model, feasibility of clinical monitoring was assessed in a pediatric patient during a 2-hour surgery. The results of phantom testing showed that calculated radiometric equivalent brain temperature agreed within 0.4°C of measured temperature when the brain phantom was lowered 10°C and returned to original temperature (37°C), while scalp was maintained constant over a 4.6-hour experiment. The intended clinical use of this system was demonstrated by monitoring brain temperature during surgery of a pediatric patient. Over the 2-hour surgery, the radiometrically measured brain temperature tracked within 1-2°C of rectal and nasopharynx temperatures, except during rapid cooldown and heatup periods when brain temperature deviated 2-4°C from slower responding core temperature surrogates. In summary, the radiometer demonstrated long term stability, accuracy and sensitivity sufficient for clinical monitoring of deep brain temperature during surgery.

  14. GBM skin metastasis: a case report and review of the literature

    PubMed Central

    Lewis, Gary D; Rivera, Andreana L; Tremont-Lukats, Ivo W; Ballester-Fuentes, Leomar Y; Zhang, Yi Jonathan; Teh, Bin S

    2017-01-01

    Glioblastoma (GBM) is the most common type of malignant tumor found in the brain, and acts very aggressively by quickly and diffusely infiltrating the surrounding brain parenchyma. Despite its aggressive nature, GBM is rarely found to spread extracranially and develop distant metastases. The most common sites of these rare metastases are the lungs, pleura and cervical lymph nodes. There are also a few case reports of skin metastasis. We present the clinical, imaging and pathologic features of a case of a GBM with metastasis to the soft tissue scar and skin near the original craniotomy site. In addition, we discuss the details of this case in the context of the previously reported literature. PMID:28718312

  15. Theoretical Benefits of Dynamic Collimation in Pencil Beam Scanning Proton Therapy for Brain Tumors: Dosimetric and Radiobiological Metrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moignier, Alexandra, E-mail: alexandra-moignier@uiowa.edu; Gelover, Edgar; Wang, Dongxu

    Purpose: To quantify the dosimetric benefit of using a dynamic collimation system (DCS) for penumbra reduction during the treatment of brain tumors by pencil beam scanning proton therapy (PBS PT). Methods and Materials: Collimated and uncollimated brain treatment plans were created for 5 patients previously treated with PBS PT and retrospectively enrolled in an institutional review board–approved study. The in-house treatment planning system, RDX, was used to generate the plans because it is capable of modeling both collimated and uncollimated beamlets. The clinically delivered plans were reproduced with uncollimated plans in terms of target coverage and organ at risk (OAR) sparingmore » to ensure a clinically relevant starting point, and collimated plans were generated to improve the OAR sparing while maintaining target coverage. Physical and biological comparison metrics, such as dose distribution conformity, mean and maximum doses, normal tissue complication probability, and risk of secondary brain cancer, were used to evaluate the plans. Results: The DCS systematically improved the dose distribution conformity while preserving the target coverage. The average reduction of the mean dose to the 10-mm ring surrounding the target and the healthy brain were 13.7% (95% confidence interval [CI] 11.6%-15.7%; P<.0001) and 25.1% (95% CI 16.8%-33.4%; P<.001), respectively. This yielded an average reduction of 24.8% (95% CI 0.8%-48.8%; P<.05) for the brain necrosis normal tissue complication probability using the Flickinger model, and 25.1% (95% CI 16.8%-33.4%; P<.001) for the risk of secondary brain cancer. A general improvement of the OAR sparing was also observed. Conclusion: The lateral penumbra reduction afforded by the DCS increases the normal tissue sparing capabilities of PBS PT for brain cancer treatment while preserving target coverage.« less

  16. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.

    PubMed

    Walckiers, Grégoire; Fuchs, Benjamin; Thiran, Jean-Philippe; Mosig, Juan R; Pollo, Claudio

    2010-01-30

    Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%). (c) 2009 Elsevier B.V. All rights reserved.

  17. Implanting Glioblastoma Spheroids into Rat Brains and Monitoring Tumor Growth by MRI Volumetry.

    PubMed

    Löhr, Mario; Linsenmann, Thomas; Jawork, Anna; Kessler, Almuth F; Timmermann, Nils; Homola, György A; Ernestus, Ralf-Ingo; Hagemann, Carsten

    2017-01-01

    The outcome of patients suffering from glioblastoma multiforme (GBM) remains poor with a median survival of less than 15 months. To establish innovative therapeutical approaches or to analyze the effect of protein overexpression or protein knockdown by RNA interference in vivo, animal models are mandatory. Here, we describe the implantation of C6 glioma spheroids into the rats' brain and how to follow tumor growth by MRI scans. We show that C6 cells grown in Sprague-Dawley rats share several morphologic features of human glioblastoma like pleomorphic cells, areas of necrosis, vascular proliferation, and tumor cell invasion into the surrounding brain tissue. In addition, we describe a method for tumor volumetry utilizing the CISS 3D- or contrast-enhanced T1-weighted 3D sequence and freely available post-processing software.

  18. The electric field distribution in the brain during TTFields therapy and its dependence on tissue dielectric properties and anatomy: a computational study

    NASA Astrophysics Data System (ADS)

    Wenger, Cornelia; Salvador, Ricardo; Basser, Peter J.; Miranda, Pedro C.

    2015-09-01

    Tumor treating fields (TTFields) are a non-invasive, anti-mitotic and approved treatment for recurrent glioblastoma multiforme (GBM) patients. In vitro studies have shown that inhibition of cell division in glioma is achieved when the applied alternating electric field has a frequency in the range of 200 kHz and an amplitude of 1-3 V cm-1. Our aim is to calculate the electric field distribution in the brain during TTFields therapy and to investigate the dependence of these predictions on the heterogeneous, anisotropic dielectric properties used in the computational model. A realistic head model was developed by segmenting MR images and by incorporating anisotropic conductivity values for the brain tissues. The finite element method (FEM) was used to solve for the electric potential within a volume mesh that consisted of the head tissues, a virtual lesion with an active tumour shell surrounding a necrotic core, and the transducer arrays. The induced electric field distribution is highly non-uniform. Average field strength values are slightly higher in the tumour when incorporating anisotropy, by about 10% or less. A sensitivity analysis with respect to the conductivity and permittivity of head tissues shows a variation in field strength of less than 42% in brain parenchyma and in the tumour, for values within the ranges reported in the literature. Comparing results to a previously developed head model suggests significant inter-subject variability. This modelling study predicts that during treatment with TTFields the electric field in the tumour exceeds 1 V cm-1, independent of modelling assumptions. In the future, computational models may be useful to optimize delivery of TTFields.

  19. The electric field distribution in the brain during TTFields therapy and its dependence on tissue dielectric properties and anatomy: a computational study.

    PubMed

    Wenger, Cornelia; Salvador, Ricardo; Basser, Peter J; Miranda, Pedro C

    2015-09-21

    Tumor treating fields (TTFields) are a non-invasive, anti-mitotic and approved treatment for recurrent glioblastoma multiforme (GBM) patients. In vitro studies have shown that inhibition of cell division in glioma is achieved when the applied alternating electric field has a frequency in the range of 200 kHz and an amplitude of 1-3 V cm(-1). Our aim is to calculate the electric field distribution in the brain during TTFields therapy and to investigate the dependence of these predictions on the heterogeneous, anisotropic dielectric properties used in the computational model. A realistic head model was developed by segmenting MR images and by incorporating anisotropic conductivity values for the brain tissues. The finite element method (FEM) was used to solve for the electric potential within a volume mesh that consisted of the head tissues, a virtual lesion with an active tumour shell surrounding a necrotic core, and the transducer arrays. The induced electric field distribution is highly non-uniform. Average field strength values are slightly higher in the tumour when incorporating anisotropy, by about 10% or less. A sensitivity analysis with respect to the conductivity and permittivity of head tissues shows a variation in field strength of less than 42% in brain parenchyma and in the tumour, for values within the ranges reported in the literature. Comparing results to a previously developed head model suggests significant inter-subject variability. This modelling study predicts that during treatment with TTFields the electric field in the tumour exceeds 1 V cm(-1), independent of modelling assumptions. In the future, computational models may be useful to optimize delivery of TTFields.

  20. The electric field distribution in the brain during TTFields therapy and its dependence on tissue dielectric properties and anatomy: a computational study

    PubMed Central

    Wenger, Cornelia; Salvador, Ricardo; Basser, Peter J; Miranda, Pedro C

    2015-01-01

    Tumor Treating Fields (TTFields) are a non-invasive, anti-mitotic and approved treatment for recurrent glioblastoma multiforme (GBM) patients. In vitro studies have shown that inhibition of cell division in glioma is achieved when the applied alternating electric field has a frequency in the range of 200 kHz and an amplitude of 1 - 3 V/cm. Our aim is to calculate the electric field distribution in the brain during TTFields therapy and to investigate the dependence of these predictions on the heterogeneous, anisotropic dielectric properties used in the computational model. A realistic head model was developed by segmenting MR images and by incorporating anisotropic conductivity values for the brain tissues. The finite element method (FEM) was used to solve for the electric potential within a volume mesh that consisted of the head tissues, a virtual lesion with an active tumour shell surrounding a necrotic core, and the transducer arrays. The induced electric field distribution is highly non-uniform. Average field strength values are slightly higher in the tumour when incorporating anisotropy, by about 10% or less. A sensitivity analysis with respect to the conductivity and permittivity of head tissues shows a variation in field strength of less than 42% in brain parenchyma and in the tumour, for values within the ranges reported in the literature. Comparing results to a previously developed head model suggests significant inter-subject variability. This modelling study predicts that during treatment with TTFields the electric field in the tumour exceeds 1 V/cm, independent of modelling assumptions. In the future, computational models may be useful to optimize delivery of TTFields. PMID:26350296

  1. Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications

    PubMed Central

    Torossian, Frédéric; Guerton, Bernadette; Anginot, Adrienne; Alexander, Kylie A.; Desterke, Christophe; Soave, Sabrina; Tseng, Hsu-Wen; Arouche, Nassim; Boutin, Laetitia; Kulina, Irina; Salga, Marjorie; Jose, Beulah; Pettit, Allison R.; Clay, Denis; Vlachos, Erica; Genet, Guillaume; Debaud, Charlotte; Denormandie, Philippe; Genet, François; Sims, Natalie A.; Banzet, Sébastien; Levesque, Jean-Pierre; Lataillade, Jean-Jacques; Le Bousse-Kerdilès, Marie-Caroline

    2017-01-01

    Neurogenic heterotopic ossification (NHO) is the formation of ectopic bone generally in muscles surrounding joints following spinal cord or brain injury. We investigated the mechanisms of NHO formation in 64 patients and a mouse model of spinal cord injury–induced NHO. We show that marrow from human NHOs contains hematopoietic stem cell (HSC) niches, in which mesenchymal stromal cells (MSCs) and endothelial cells provide an environment supporting HSC maintenance, proliferation, and differentiation. The transcriptomic signature of MSCs from NHOs shows a neuronal imprinting associated with a molecular network required for HSC support. We demonstrate that oncostatin M (OSM) produced by activated macrophages promotes osteoblastic differentiation and mineralization of human muscle-derived stromal cells surrounding NHOs. The key role of OSM was confirmed using an experimental model of NHO in mice defective for the OSM receptor (OSMR). Our results provide strong evidence that macrophages contribute to NHO formation through the osteogenic action of OSM on muscle cells within an inflammatory context and suggest that OSM/OSMR could be a suitable therapeutic target. Altogether, the evidence of HSCs in ectopic bones growing at the expense of soft tissue in spinal cord/brain-injured patients indicates that inflammation and muscle contribute to HSC regulation by the brain-bone-blood triad. PMID:29093266

  2. Multimodal optical analysis discriminates freshly extracted human sample of gliomas, metastases and meningiomas from their appropriate controls

    NASA Astrophysics Data System (ADS)

    Zanello, Marc; Poulon, Fanny; Pallud, Johan; Varlet, Pascale; Hamzeh, H.; Abi Lahoud, Georges; Andreiuolo, Felipe; Ibrahim, Ali; Pages, Mélanie; Chretien, Fabrice; di Rocco, Federico; Dezamis, Edouard; Nataf, François; Turak, Baris; Devaux, Bertrand; Abi Haidar, Darine

    2017-02-01

    Delineating tumor margins as accurately as possible is of primordial importance in surgical oncology: extent of resection is associated with survival but respect of healthy surrounding tissue is necessary for preserved quality of life. The real-time analysis of the endogeneous fluorescence signal of brain tissues is a promising tool for defining margins of brain tumors. The present study aims to demonstrate the feasibility of multimodal optical analysis to discriminate fresh samples of gliomas, metastases and meningiomas from their appropriate controls. Tumor samples were studied on an optical fibered endoscope using spectral and fluorescence lifetime analysis and then on a multimodal set-up for acquiring spectral, one and two-photon fluorescence images, second harmonic generation signals and two-photon fluorescence lifetime datasets. The obtained data allowed us to differentiate healthy samples from tumor samples. These results confirmed the possible clinical relevance of this real-time multimodal optical analysis. This technique can be easily applied to neurosurgical procedures for a better delineation of surgical margins.

  3. Advanced magnetic resonance imaging methods for planning and monitoring radiation therapy in patients with high-grade glioma.

    PubMed

    Lupo, Janine M; Nelson, Sarah J

    2014-10-01

    This review explores how the integration of advanced imaging methods with high-quality anatomical images significantly improves the characterization, target definition, assessment of response to therapy, and overall management of patients with high-grade glioma. Metrics derived from diffusion-, perfusion-, and susceptibility-weighted magnetic resonance imaging in conjunction with magnetic resonance spectroscopic imaging, allows us to characterize regions of edema, hypoxia, increased cellularity, and necrosis within heterogeneous tumor and surrounding brain tissue. Quantification of such measures may provide a more reliable initial representation of tumor delineation and response to therapy than changes in the contrast-enhancing or T2 lesion alone and have a significant effect on targeting resection, planning radiation, and assessing treatment effectiveness. In the long term, implementation of these imaging methodologies can also aid in the identification of recurrent tumor and its differentiation from treatment-related confounds and facilitate the detection of radiationinduced vascular injury in otherwise normal-appearing brain tissue.

  4. Biodegradable seeds of holmium don't change neurological function after implant in brain of rats.

    PubMed

    Diniz, Mirla Fiuza; Ferreira, Diogo Milioli; de Lima, Wanderson Geraldo; Pedrosa, Maria Lucia; Silva, Marcelo Eustáquio; de Almeida Araujo, Stanley; Sampaio, Kinulpe Honorato; de Campos, Tarcisio Passos Ribeiro; Siqueira, Savio Lana

    2017-01-01

    To evaluate the surgical procedure and parenchymal abnormalities related to implantation of ceramic seeds with holmium-165 in rats' brain. An effective method of cancer treatment is brachytherapy in which radioactive seeds are implanted in the tumor, generating a high local dose of ionizing radiation that can eliminate tumor cells while protecting the surrounding healthy tissue. Biodegradable Ho 166 -ceramic-seeds have been addressed recently. The experiments in this study were approved by the Ethics Committee on Animal Use at the Federal University of Ouro Preto, protocol number 2012/034. Twenty-one adult Fischer rats were divided into Naive Group, Sham Group and Group for seed implants (ISH). Surgical procedures for implantation of biodegradable seeds were done and 30 days after the implant radiographic examination and biopsy of the brain were performed. Neurological assays were also accomplished to exclude any injury resulting from either surgery or implantation of the seeds. Radiographic examination confirmed the location of the seeds in the brain. Neurological assays showed animals with regular spontaneous activity. The histological analysis showed an increase of inflammatory cells in the brain of the ISH group. Electron microscopy evidenced cytoplasmic organelles to be unchanged. Biochemical analyzes indicate there was neither oxidative stress nor oxidative damage in the ISH brain. CAT activity showed no difference between the groups as well as lipid peroxidation measured by TBARS. The analysis of the data pointed out that the performed procedure is safe as no animal showed alterations of the neurological parameters and the seeds did not promote histological architectural changes in the brain tissue.

  5. Tissue characterization of brain tumors during and after pion radiation therapy.

    PubMed

    Boesiger, P; Greiner, R; Schoepflin, R E; Kann, R; Kuenzi, U

    1990-01-01

    Negative Pi-mesons (pions) are applied at the Paul Scherrer Institute in the radiotherapy of highly malignant gliomas using a dose escalation program. The therapy effects of 7 randomly selected patients were followed up by 62 MRI examinations. The quantification of the effects is based on the relaxation times T1 and T2, which are acquired by a new designed multi-echo multiple saturation recovery imaging technique. As a summary of the results, roughly two reaction types are observed. For both types the relaxation times increase up to two to three months after the radiation therapy. Then in one type (two patients) the T1 and T2 values of the tumors, and of the edemas surrounding the tumors, further increase, indicating an unfavorable prognosis. In the other type (five patients) the relaxation times drop down towards, or even below, their initial values, reflecting the onset of the reparation processes in the tissue. This later behaviour reflects an at least temporary control of the disease; that is, the short term prognosis for these patients is more favorable. It further can be concluded, with respect to our MR parameters, that the radiotolerance of healthy brain tissue is much higher than that of malignant glioma tissue, despite the fact that these tumors are very seldom definitively radiosensible.

  6. Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer.

    PubMed

    Taskar, Kunal S; Rudraraju, Vinay; Mittapalli, Rajendar K; Samala, Ramakrishna; Thorsheim, Helen R; Lockman, Julie; Gril, Brunilde; Hua, Emily; Palmieri, Diane; Polli, Joseph W; Castellino, Stephen; Rubin, Stephen D; Lockman, Paul R; Steeg, Patricia S; Smith, Quentin R

    2012-03-01

    Lapatinib, a small molecule EGFR/HER2 inhibitor, partially inhibits the outgrowth of HER2+ brain metastases in preclinical models and in a subset of CNS lesions in clinical trials of HER2+ breast cancer. We investigated the ability of lapatinib to reach therapeutic concentrations in the CNS following (14)C-lapatinib administration (100 mg/kg p.o. or 10 mg/kg, i.v.) to mice with MDA-MD-231-BR-HER2 brain metastases of breast cancer. Drug concentrations were determined at differing times after administration by quantitative autoradiography and chromatography. (14)C-Lapatinib concentration varied among brain metastases and correlated with altered blood-tumor barrier permeability. On average, brain metastasis concentration was 7-9-fold greater than surrounding brain tissue at 2 and 12 h after oral administration. However, average lapatinib concentration in brain metastases was still only 10-20% of those in peripheral metastases. Only in a subset of brain lesions (17%) did lapatinib concentration approach that of systemic metastases. No evidence was found of lapatinib resistance in tumor cells cultured ex vivo from treated brains. Results show that lapatinib distribution to brain metastases of breast cancer is partially restricted and blood-tumor barrier permeability is a key component of lapatinib therapeutic efficacy which varies between tumors.

  7. Lapatinib Distribution in HER2 Overexpressing Experimental Brain Metastases of Breast Cancer

    PubMed Central

    Taskar, Kunal S.; Rudraraju, Vinay; Mittapalli, Rajendar K.; Samala, Ramakrishna; R. Thorsheim, Helen; Lockman, Julie; Gril, Brunilde; Hua, Emily; Palmieri, Diane; Polli, Joseph W.; Castellino, Stephen; Rubin, Stephen D.; Lockman, Paul R.; Steeg, Patricia S.; Smith, Quentin R.

    2012-01-01

    Purpose Lapatinib, a small molecule EGFR/HER2 inhibitor, has limited effect on outgrowth of HER2+ brain metastases in preclinical and clinical trials. We investigated the ability of lapatinib to reach therapeutic concentrations in the CNS following 14C-lapatinib administration (100 mg/kg p.o. or 10 mg/kg, i.v.) to mice with MDA-MD-231-BR-HER2 brain metastases of breast cancer. Methods Drug concentrations were determined at differing times after administration by quantitative autoradiography and chromatography. Results 14C-Lapatinib concentration varied among brain metastases and correlated with altered blood-tumor barrier permeability. On average, brain metastasis concentration was 7–9-fold greater than surrounding brain tissue at 2 and 12 hours after oral administration. However, average lapatinib concentration in brain metastases was still only 10–20% of those in peripheral metastases. Only in a subset of brain lesions (17%) did lapatinib concentration approach that of systemic metastases. No evidence was found of lapatinib resistance in tumor cells remaining in brain after lapatinib treatment. Conclusions Results show that lapatinib distribution to brain metastases of breast cancer is restricted and blood-tumor barrier permeability is a key component of lapatinib therapeutic efficacy which varies within and between tumors. PMID:22011930

  8. Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface

    NASA Astrophysics Data System (ADS)

    Michelson, Nicholas J.; Vazquez, Alberto L.; Eles, James R.; Salatino, Joseph W.; Purcell, Erin K.; Williams, Jordan J.; Cui, X. Tracy; Kozai, Takashi D. Y.

    2018-06-01

    Objective. Implantable neural electrode devices are important tools for neuroscience research and have an increasing range of clinical applications. However, the intricacies of the biological response after implantation, and their ultimate impact on recording performance, remain challenging to elucidate. Establishing a relationship between the neurobiology and chronic recording performance is confounded by technical challenges related to traditional electrophysiological, material, and histological limitations. This can greatly impact the interpretations of results pertaining to device performance and tissue health surrounding the implant. Approach. In this work, electrophysiological activity and immunohistological analysis are compared after controlling for motion artifacts, quiescent neuronal activity, and material failure of devices in order to better understand the relationship between histology and electrophysiological outcomes. Main results. Even after carefully accounting for these factors, the presence of viable neurons and lack of glial scarring does not convey single unit recording performance. Significance. To better understand the biological factors influencing neural activity, detailed cellular and molecular tissue responses were examined. Decreases in neural activity and blood oxygenation in the tissue surrounding the implant, shift in expression levels of vesicular transporter proteins and ion channels, axon and myelin injury, and interrupted blood flow in nearby capillaries can impact neural activity around implanted neural interfaces. Combined, these tissue changes highlight the need for more comprehensive, basic science research to elucidate the relationship between biology and chronic electrophysiology performance in order to advance neural technologies.

  9. Dual-labeling with 5-aminolevulinic acid and fluorescein for fluorescence-guided resection of high-grade gliomas: technical note.

    PubMed

    Suero Molina, Eric; Wölfer, Johannes; Ewelt, Christian; Ehrhardt, André; Brokinkel, Benjamin; Stummer, Walter

    2018-02-01

    OBJECTIVE Fluorescence guidance with 5-aminolevulinic acid (5-ALA) helps improve resections of malignant gliomas. However, one limitation is the low intensity of blue light for background illumination. Fluorescein has recently been reintroduced into neurosurgery, and novel microscope systems are available for visualizing this fluorochrome, which highlights all perfused tissues but has limited selectivity for tumor detection. Here, the authors investigate a combination of both fluorochromes: 5-ALA for distinguishing tumor and fluorescein for providing tissue fluorescence of adjacent brain tissue. METHODS The authors evaluated 6 patients who harbored cerebral lesions suggestive of high-grade glioma. Patients received 5-ALA (20 mg/kg) orally 4 hours before induction of anesthesia. Low-dose fluorescein (3 mg/kg intravenous) was injected immediately after anesthesia induction. Pentero microscopes (equipped either with Yellow 560 or Blue 400 filters) were used to visualize fluorescence. To simultaneously visualize both fluorochromes, the Yellow 560 module was combined with external blue light illumination (D-light C System). RESULTS Fluorescein-induced fluorescence created a useful background for protoporphyrin IX (PPIX) fluorescence, which appeared orange to red, surrounded by greenly fluorescent normal brain and edematous tissue. Green brain-tissue fluorescence was helpful in augmenting background. Levels of blue illumination that were too strong obscured PPIX fluorescence. Unspecific extravasation of fluorescein was noted at resection margins, which did not interfere with PPIX fluorescence detection. CONCLUSIONS Dual labeling with both PPIX and fluorescein fluorescence is feasible and gives superior background information during fluorescence-guided resections. The authors believe that this technique carries potential as a next step in fluorescence-guided resections if it is completely integrated into the surgical microscope.

  10. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain.

    PubMed

    Hall, L O; Bensaid, A M; Clarke, L P; Velthuizen, R P; Silbiger, M S; Bezdek, J C

    1992-01-01

    Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms, and a supervised computational neural network. Initial clinical results are presented on normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. For a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed, with fuzz-c-means approaches being slightly preferred over feedforward cascade correlation results. Various facets of both approaches, such as supervised versus unsupervised learning, time complexity, and utility for the diagnostic process, are compared.

  11. Glial responses, neuron death and lesion resolution after intracerebral hemorrhage in young vs. aged rats.

    PubMed

    Wasserman, Jason K; Yang, Helen; Schlichter, Lyanne C

    2008-10-01

    Intracerebral hemorrhage (ICH) usually affects older humans but almost no experimental studies have assessed aged animals. We address how aging alters inflammation, neuron death and lesion resolution after a hemorrhage in the rat striatum. In the normal aged brain, microglia displayed a 'dystrophic' phenotype, with shorter cellular processes and large gaps between adjacent cells, and there was more astrocyte reactivity. The ICH injury was monitored as hematoma volume and number of dying neurons at 1 and 3 days, and the volume of the residual lesion, ventricles and lost tissue at 28 days. Inflammation at 1 and 3 days was assessed from densities of microglia with resting vs. activated morphologies, or expressing the lysosomal marker ED1. Despite an initial delay in neuron death in aged animals, by 28 days, there was no difference in neuron density or volume of tissue lost. However, lesion resolution was impaired in aged animals and there was less compensatory ventricular expansion. At 1 day after ICH, there were fewer activated microglia/macrophages in the aged brain, but by 3 days there were more of these cells at the edge of the hematoma and in the surrounding parenchyma. In both age groups a glial limitans had developed by 3 days, but astrocyte reactivity and the spread of activated microglia/macrophages into the surrounding parenchyma was greater in the aged. These findings have important implications for efforts to reduce secondary injury after ICH and to develop anti-inflammatory therapies to treat ICH in aged humans.

  12. Clinical applications of image guided-intensity modulated radiation therapy (IG-IMRT) for conformal avoidance of normal tissue

    NASA Astrophysics Data System (ADS)

    Gutierrez, Alonso Navar

    2007-12-01

    Recent improvements in imaging technology and radiation delivery have led to the development of advanced treatment techniques in radiotherapy which have opened the door for novel therapeutic approaches to improve the efficacy of radiation cancer treatments. Among these advances is image-guided, intensity modulated radiation therapy (IG-IMRT), in which imaging is incorporated to aid in inter-/intra-fractional target localization and to ensure accurate delivery of precise and highly conformal dose distributions. In principle, clinical implementation of IG-IMRT should improve normal tissue sparing and permit effective biological dose escalation thus widening the radiation therapeutic window and lead to increases in survival through improved local control of primary neoplastic diseases. Details of the development of three clinical applications made possible solely with IG-IMRT radiation delivery techniques are presented: (1) Laparoscopically implanted tissue expander radiotherapy (LITE-RT) has been developed to enhance conformal avoidance of normal tissue during the treatment of intra-abdominopelvic cancers. LITE-RT functions by geometrically displacing surrounding normal tissue and isolating the target volume through the interfractional inflation of a custom-shaped tissue expander throughout the course of treatment. (2) The unique delivery geometry of helical tomotherapy, a novel form of IG-IMRT, enables the delivery of composite treatment plan m which whole brain radiotherapy (WBRT) with hippocampal avoidance, hypothesized to reduce the risk of memory function decline and improve the patient's quality of life, and simultaneously integrated boost to multiple brain metastases to improve intracranial tumor control is achieved. (3) Escalation of biological dose to targets through integrated, selective subvolume boosts have been shown to efficiently increase tumor dose without significantly increasing normal tissue dose. Helical tomotherapy was used to investigate the feasibility of delivering a simultaneously integrated subvolume boost to canine nasal tumors and was found to dramatically increase estimated 1-year tumor control probability (TCP) without increasing the dose to the eyes, so as to preserve vision, and to the brain, so as to prevent neuropathy.

  13. Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model.

    PubMed

    Arvanitis, Costas D; Vykhodtseva, Natalia; Jolesz, Ferenc; Livingstone, Margaret; McDannold, Nathan

    2016-05-01

    OBJECT Transcranial MRI-guided focused ultrasound (TcMRgFUS) is an emerging noninvasive alternative to surgery and radiosurgery that is undergoing testing for tumor ablation and functional neurosurgery. The method is currently limited to central brain targets due to skull heating and other factors. An alternative ablative approach combines very low intensity ultrasound bursts and an intravenously administered microbubble agent to locally destroy the vasculature. The objective of this work was to investigate whether it is feasible to use this approach at deep brain targets near the skull base in nonhuman primates. METHODS In 4 rhesus macaques, targets near the skull base were ablated using a clinical TcMRgFUS system operating at 220 kHz. Low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes in conjunction with the ultrasound contrast agent Definity, which was administered as a bolus injection or continuous infusion. The acoustic power level was set to be near the inertial cavitation threshold, which was measured using passive monitoring of the acoustic emissions. The resulting tissue effects were investigated with MRI and with histological analysis performed 3 hours to 1 week after sonication. RESULTS Thirteen targets were sonicated in regions next to the optic tract in the 4 animals. Inertial cavitation, indicated by broadband acoustic emissions, occurred at acoustic pressure amplitudes ranging from 340 to 540 kPa. MRI analysis suggested that the lesions had a central region containing red blood cell extravasations that was surrounded by edema. Blood-brain barrier disruption was observed on contrast-enhanced MRI in the lesions and in a surrounding region corresponding to the prefocal area of the FUS system. In histology, lesions consisting of tissue undergoing ischemic necrosis were found in all regions that were sonicated above the inertial cavitation threshold. Tissue damage in prefocal areas was found in several cases, suggesting that in those cases the sonication exceeded the inertial cavitation threshold in the beam path. CONCLUSIONS It is feasible to use a clinical TcMRgFUS system to ablate skull base targets in nonhuman primates at time-averaged acoustic power levels at least 2 orders of magnitude below what is needed for thermal ablation with this device. The results point to the risks associated with the method if the exposure levels are not carefully controlled to avoid inertial cavitation in the acoustic beam path. If methods can be developed to provide this control, this nonthermal approach could greatly expand the use of TcMRgFUS for precisely targeted ablation to locations across the entire brain.

  14. Carboranylporphyrins and uses thereof

    DOEpatents

    Wu, Haitao; Miura, Michiko

    2006-02-07

    The present invention is directed to low toxicity boronated compounds and methods for their use in the treatment, visualization, and diagnosis of tumors. More specifically, the present invention is directed to low toxicity carborane-containing 5, 10, 15, 20-tetraphenylporphyrin compounds and methods for their use particularly in boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) for the treatment of tumors of the brain, head and neck, and surrounding tissue. The invention is also directed to using these carborane-containing tetraphenyl porphyrin compounds to methods of tumor imaging and/or diagnosis such as MRI, SPECT, or PET.

  15. Carboranylporphyrins and uses thereof

    DOEpatents

    Wu, Haitao; Miura, Michiko

    2006-01-24

    The present invention is directed to low toxicity boronated compounds and methods for their use in the treatment, visualization, and diagnosis of tumors. More specifically, the present invention is directed to low toxicity carborane-containing 5, 10, 15, 20-tetraphenylporphyrin compounds and methods for their use particularly in boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) for the treatment of tumors of the brain, head, neck, and surrounding tissue. The invention is also directed to using these carborane-containing tetraphenyl porphyrin compounds to methods of tumor imaging and/or diagnosis such as MRI, SPECT, or PET.

  16. A survey of MRI-based medical image analysis for brain tumor studies

    NASA Astrophysics Data System (ADS)

    Bauer, Stefan; Wiest, Roland; Nolte, Lutz-P.; Reyes, Mauricio

    2013-07-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines.

  17. 3D brain oxygenation measurements in awake hypertensive mice using two photon phosphorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Lu, Xuecong; Moeini, Mohammad; Li, Baoqiang; Zhang, Cong; Sakadžić, Sava; Lesage, Frédéric

    2018-02-01

    Cardiovascular risk factors, such as hypertension, have been associated with cognitive decline, potentially due to their impact on brain tissue oxygenation. In this study, high spatial resolution imaging in three dimensions was used to understand changes in brain oxygenation with hypertension. Experiments were performed on Young (WT_Y, 3-4 months, n=8), Old (WT_O, 6-7 months, n=8), and Old with hypertension (HP_O, 6-7 months, n=8) C57bL/6 awake mice. Two photon phosphorescence lifetime microscopy using an O2-sensitive phosphorescent dye PtPC343 was employed to measure two dimensional grids of PO2 in capillary beds (400um*400um, 25*25 pixels, acquired in 4 mins) and decays from arterioles. Scans were obtained continuously at depths from 50 um to 300 um under the brain surface. Using 3D measurements and a 250 um depth stack, we removed the compounding effects on brain oxygenation diffusion from surrounding brain vessels. The entire measurement of each vasculature stack required less than 30 minutes. This study indicates that among vascular risk factors, hypertension can reduce oxygen delivery and could potentially contribute to cognition decline.

  18. In-vivo measurement of lithium in the brain and other organs

    DOEpatents

    Vartsky, David; Wielopolski, Lucian; LoMonte, Anthony F.; Ellis, Kenneth J.; Cohn, Stanton H.

    1985-01-01

    The lithium used clinically and distributed in organs such as the brain or idney of humans and other exhaling animals is determined in-vivo by means of neutron radiation and measuring in the exhaled air elemental tritiated hydrogen released from the tritium reaction by the reaction .sup.6 Li(n,.alpha.)T. The tritium atoms so released are transformed in part in the surrounding aqueous solution to form gaseous tritiated hydrogen which has a small solubility in body tissues and liquids and thus appears quickly in the breath. After a recipient fasts and is irradiated with neutrons, the air exhaled in the breath for a given time after irradiation is captured and processed to remove water, isolate hydrogen and measure the tritiated hydrogen with a gaseous organ-methane counter.

  19. The Association between Lifelong Greenspace Exposure and 3-Dimensional Brain Magnetic Resonance Imaging in Barcelona Schoolchildren.

    PubMed

    Dadvand, Payam; Pujol, Jesus; Macià, Dídac; Martínez-Vilavella, Gerard; Blanco-Hinojo, Laura; Mortamais, Marion; Alvarez-Pedrerol, Mar; Fenoll, Raquel; Esnaola, Mikel; Dalmau-Bueno, Albert; López-Vicente, Mónica; Basagaña, Xavier; Jerrett, Michael; Nieuwenhuijsen, Mark J; Sunyer, Jordi

    2018-02-23

    Proponents of the biophilia hypothesis believe that contact with nature, including green spaces, has a crucial role in brain development in children. Currently, however, we are not aware of evidence linking such exposure with potential effects on brain structure. We determined whether lifelong exposure to residential surrounding greenness is associated with regional differences in brain volume based on 3-dimensional magnetic resonance imaging (3D MRI) among children attending primary school. We performed a series of analyses using data from a subcohort of 253 Barcelona schoolchildren from the Brain Development and Air Pollution Ultrafine Particles in School Children (BREATHE) project. We averaged satellite-based normalized difference vegetation index (NDVI) across 100-m buffers around all residential addresses since birth to estimate each participant's lifelong exposure to residential surrounding greenness, and we used high-resolution 3D MRIs of brain anatomy to identify regional differences in voxel-wise brain volume associated with greenness exposure. In addition, we performed a supporting substudy to identify regional differences in brain volume associated with measures of working memory ( d' from computerized n -back tests) and inattentiveness (hit reaction time standard error from the Attentional Network Task instrument) that were repeated four times over one year. We also performed a second supporting substudy to determine whether peak voxel tissue volumes in brain regions associated with residential greenness predicted cognitive function test scores. Lifelong exposure to greenness was positively associated with gray matter volume in the left and right prefrontal cortex and in the left premotor cortex and with white matter volume in the right prefrontal region, in the left premotor region, and in both cerebellar hemispheres. Some of these regions partly overlapped with regions associated with cognitive test scores (prefrontal cortex and cerebellar and premotor white matter), and peak volumes in these regions predicted better working memory and reduced inattentiveness. Our findings from a study population of urban schoolchildren in Barcelona require confirmation, but they suggest that being raised in greener neighborhoods may have beneficial effects on brain development and cognitive function. https://doi.org/10.1289/EHP1876.

  20. Revealing the Penumbra through Imaging Elemental Markers of Cellular Metabolism in an Ischemic Stroke Model.

    PubMed

    Pushie, M Jake; Crawford, Andrew M; Sylvain, Nicole J; Hou, Huishu; Hackett, Mark J; George, Graham N; Kelly, Michael E

    2018-05-16

    Stroke exacts a heavy financial and economic burden, is a leading cause of death, and is the leading cause of long-term disability in those who survive. The penumbra surrounds the ischemic core of the stroke lesion and is composed of cells that are stressed and vulnerable to death, which is due to an altered metabolic, oxidative, and ionic environment within the penumbra. Without therapeutic intervention, many cells within the penumbra will die and become part of the growing infarct, however, there is hope that appropriate therapies may allow potential recovery of cells within this tissue region, or at least slow the rate of cell death, therefore, slowing the spread of the ischemic infarct and minimizing the extent of tissue damage. As such, preserving the penumbra to promote functional brain recovery is a central goal in stroke research. While identification of the ischemic infarct, and the infarct/penumbra boundary is relatively trivial using classical histology and microscopy techniques, accurately assessing the penetration of the penumbra zone into undamaged brain tissue, and evaluating the magnitude of chemical alterations in the penumbra, has long been a major challenge to the stroke research field. In this study, we have used synchrotron-based X-ray fluorescence imaging to visualize the elemental changes in undamaged, penumbra, and infarct brain tissue, following ischemic stroke. We have employed a Gaussian mixture model to cluster tissue areas based on their elemental characteristics. The method separates the core of the infarct from healthy tissue, and also demarcates discrete regions encircling the infarct. These regions of interest can be combined with elemental and metabolic data, as well as with conventional histology. The cell populations defined by clustering provide a reproducible means of visualizing the size and extent of the penumbra at the level of the single cell and provide a critically needed tool to track changes in elemental status and penumbra size.

  1. A physics link between venous stenosis and multiple sclerosis.

    PubMed

    Tucker, Trevor W

    2011-12-01

    This paper hypothesizes that a stenosis or obstruction at a lower extremity of an internal jugular vein (IJV) would, in accordance with the physics of fluid dynamics, cause a standing pressure wave within the vein. This pressure wave would possess regions of large pressure fluctuations and other regions of relatively little fluctuation which also have substantially lower peak pressure values. If the wavelength of the hypothesized pressure wave is comparable to the distance from the obstruction to the venule end of the capillary bed, then a region of high pressure fluctuation would exist at the venules. Depending on the degree of obstruction, the pressure fluctuations at the venules of the capillary bed would be substantially greater than those that would exist in a healthy unobstructed vein. This increase in blood pressure fluctuation located at the venule end of the capillary bed, which would be equivalent to local hypertension, is predicted to reduce the pressure drop across the bed which, in turn, would reduce blood flow through the bed in accordance with Darcy's Law. Such a reduction in blood flow through the bed would be accompanied by a reduction in the transfer of oxygen, glucose and other nutrients into the brain tissue in accordance with Fick's Principle. The reduction in oxygen levels in the brain tissue (i.e. hypoxia), would, in turn, be associated with increased fatigue and decreased mental acuity in the subject patient. Also the deprivation of oxygen in the brain tissue may result in the death of oligodendrocyte cells, which, in turn would result in the deterioration of the myelin surrounding the brain's neural axons. In addition, the paper also predicts that, in cases of extreme obstruction, the predicted localized hypertension at the venule end of the capillary bed may be sufficiently high to cause a localized disruption in the blood-brain barrier. Such a disruption of the blood-brain barrier could then allow the migration of leukocytes (auto-immune attack cells), from the blood into the brain tissue, enabling them to attack myelin, which has degenerated or deteriorated from the reduction in repair function normally provided by oligodendrocyte cells. Such leukocyte attack on myelin has long been associated with multiple sclerosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Visualizing the anatomical-functional correlation of the human brain

    NASA Astrophysics Data System (ADS)

    Chang, YuKuang; Rockwood, Alyn P.; Reiman, Eric M.

    1995-04-01

    Three-dimensional tomographic images obtained from different modalities or from the same modality at different times provide complementary information. For example, while PET shows brain function, images from MRI identify anatomical structures. In this paper, we investigate the problem of displaying available information about structures and function together. Several steps are described to achieve our goal. These include segmentation of the data, registration, resampling, and display. Segmentation is used to identify brain tissue from surrounding tissues, especially in the MRI data. Registration aligns the different modalities as closely as possible. Resampling arises from the registration since two data sets do not usually correspond and the rendering method is most easily achieved if the data correspond to the same grid used in display. We combine several techniques to display the data. MRI data is reconstructed from 2D slices into 3D structures from which isosurfaces are extracted and represented by approximating polygonalizations. These are then displayed using standard graphics pipelines including shaded and transparent images. PET data measures the qualitative rates of cerebral glucose utilization or oxygen consumption. PET image is best displayed as a volume of luminous particles. The combination of both display methods allows the viewer to compare the functional information contained in the PET data with the anatomically more precise MRI data.

  3. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) promotes glioblastoma cell chemotaxis via Lyn activation

    PubMed Central

    Tran, Nhan L.

    2014-01-01

    The long-term survival of patients with glioblastoma is compromised by the proclivity for local invasion into the surrounding normal brain, escaping surgical resection and contributing to therapeutic resistance. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor superfamily, can stimulate glioma cell invasion via binding to fibroblast growth factor-inducible 14 (Fn14) and subsequent activation of the Rho guanosine triphosphatase family member Rac1. Here, we demonstrate that TWEAK acts as a chemotactic factor for glioma cells, a potential process for driving cell invasion into the surrounding brain tissue. TWEAK exposure induced the activation of Src family kinases (SFKs), and pharmacologic suppression of SFK activity inhibited TWEAK-induced chemotactic migration. We employed a multiplexed Luminex assay and identified Lyn as a candidate SFK activated by TWEAK. Depletion of Lyn suppressed TWEAK-induced chemotaxis and Rac1 activity. Furthermore, Lyn gene expression levels increase with primary glioma tumor grade and inversely correlate with patient survival. These results show that TWEAK-induced glioma cell chemotaxis is dependent upon Lyn kinase function and, thus, provides opportunities for therapeutic targeting of this deadly disease. PMID:23975833

  4. Effect of Flow on Gene Regulation in Smooth Muscle Cells and Macromolecular Transport Across Endothelial Cell Monolayers

    NASA Technical Reports Server (NTRS)

    McIntire, Larry V.; Wagner, John E.; Papadaki, Maria; Whitson, Peggy A.; Eskin, Suzanne G.

    1996-01-01

    Endothelial cells line all of the vessels of the circulatory system, providing a non-thrombogenic conduit for blood flow; they regulate many complex functions in the vasculature, such as coagulation, fibrinolysis, platelet aggregation, vessel tone and growth, and leukocyte traffic; and they form the principal barrier to transport of substances between the blood and the surrounding tissue space. The permeability of endothelial cell changes with environmental stimuli; shear stress, in particular, applied either in vivo, or in vitro, induces changes in protein expression and secretion of vasoactive factors by endothelial cells. The ability to study the effects of shear on the macromolecular permeability of the cerebral vasculature is particularly important, since in no other place is the barrier function of the endothelium more important than in the brain. The endothelial cells of this organ have developed special barrier properties that keep the cerebral system from experiencing any drastic change in composition; together with glial cells, they form the blood brain barrier (BBB). We have studied the effect of flow on bovine BBB using flow chambers and tissue culture systems.

  5. The sinusoidal probe: a new approach to improve electrode longevity

    PubMed Central

    Sohal, Harbaljit S.; Jackson, Andrew; Jackson, Richard; Clowry, Gavin J.; Vassilevski, Konstantin; O’Neill, Anthony; Baker, Stuart N.

    2014-01-01

    Micromotion between the brain and implanted electrodes is a major contributor to the failure of invasive brain–machine interfaces. Movements of the electrode tip cause recording instabilities while spike amplitudes decline over the weeks/months post-implantation due to glial cell activation caused by sustained mechanical trauma. We have designed a sinusoidal probe in order to reduce movement of the recording tip relative to the surrounding neural tissue. The probe was microfabricated from flexible materials and incorporated a sinusoidal shaft to minimize tethering forces and a 3D spheroid tip to anchor the recording site within the brain. Compared to standard microwire electrodes, the signal-to-noise ratio and local field potential power of sinusoidal probe recordings from rabbits was more stable across recording periods up to 678 days. Histological quantification of microglia and astrocytes showed reduced neuronal tissue damage especially for the tip region between 6 and 24 months post-implantation. We suggest that the micromotion-reducing measures incorporated into our design, at least partially, decreased the magnitude of gliosis, resulting in enhanced longevity of recording. PMID:24808859

  6. Modelling glioma invasion using 3D bioprinting and scaffold-free 3D culture.

    PubMed

    van Pel, Derek M; Harada, Kaori; Song, Dandan; Naus, Christian C; Sin, Wun Chey

    2018-06-16

    Glioma is a highly aggressive form of brain cancer, with some subtypes having 5-year survival rates of less than 5%. Tumour cell invasion into the surrounding parenchyma seems to be the primary driver of these poor outcomes, as most gliomas recur within 2 cm of the original surgically-resected tumour. Many current approaches to the development of anticancer therapy attempt to target genetic weaknesses in a particular cancer, but may not take into account the microenvironment experienced by a tumour and the patient-specific genetic differences in susceptibility to treatment. Here we demonstrate the use of complementary approaches, 3D bioprinting and scaffold-free 3D tissue culture, to examine the invasion of glioma cells into neural-like tissue with 3D confocal microscopy. We found that, while both approaches were successful, the use of 3D tissue culture for organoid development offers the advantage of broad accessibility. As a proof-of-concept of our approach, we developed a system in which we could model the invasion of human glioma cells into mouse neural progenitor cell-derived spheroids. We show that we can follow invasion of human tumour cells using cell-tracking dyes and 3D laser scanning confocal microscopy, both in real time and in fixed samples. We validated these results using conventional cryosectioning. Our scaffold-free 3D approach has broad applicability, as we were easily able to examine invasion using different neural progenitor cell lines, thus mimicking differences that might be observed in patient brain tissue. These results, once applied to iPSC-derived cerebral organoids that incorporate the somatic genetic variability of patients, offer the promise of truly personalized treatments for brain cancer.

  7. Pairwise mixture model for unmixing partial volume effect in multi-voxel MR spectroscopy of brain tumour patients

    NASA Astrophysics Data System (ADS)

    Olliverre, Nathan; Asad, Muhammad; Yang, Guang; Howe, Franklyn; Slabaugh, Gregory

    2017-03-01

    Multi-Voxel Magnetic Resonance Spectroscopy (MV-MRS) provides an important and insightful technique for the examination of the chemical composition of brain tissue, making it an attractive medical imaging modality for the examination of brain tumours. MRS, however, is affected by the issue of the Partial Volume Effect (PVE), where the signals of multiple tissue types can be found within a single voxel and provides an obstacle to the interpretation of the data. The PVE results from the low resolution achieved in MV-MRS images relating to the signal to noise ratio (SNR). To counteract PVE, this paper proposes a novel Pairwise Mixture Model (PMM), that extends a recently reported Signal Mixture Model (SMM) for representing the MV-MRS signal as normal, low or high grade tissue types. Inspired by Conditional Random Field (CRF) and its continuous variant the PMM incorporates the surrounding voxel neighbourhood into an optimisation problem, the solution of which provides an estimation to a set of coefficients. The values of the estimated coefficients represents the amount of each tissue type (normal, low or high) found within a voxel. These coefficients can then be visualised as a nosological rendering using a coloured grid representing the MV-MRS image overlaid on top of a structural image, such as a Magnetic Resonance Image (MRI). Experimental results show an accuracy of 92.69% in classifying patient tumours as either low or high grade compared against the histopathology for each patient. Compared to 91.96% achieved by the SMM, the proposed PMM method demonstrates the importance of incorporating spatial coherence into the estimation as well as its potential clinical usage.

  8. Analysis of acute brain slices by electron microscopy: a correlative light-electron microscopy workflow based on Tokuyasu cryo-sectioning.

    PubMed

    Loussert Fonta, Celine; Leis, Andrew; Mathisen, Cliff; Bouvier, David S; Blanchard, Willy; Volterra, Andrea; Lich, Ben; Humbel, Bruno M

    2015-01-01

    Acute brain slices are slices of brain tissue that are kept vital in vitro for further recordings and analyses. This tool is of major importance in neurobiology and allows the study of brain cells such as microglia, astrocytes, neurons and their inter/intracellular communications via ion channels or transporters. In combination with light/fluorescence microscopies, acute brain slices enable the ex vivo analysis of specific cells or groups of cells inside the slice, e.g. astrocytes. To bridge ex vivo knowledge of a cell with its ultrastructure, we developed a correlative microscopy approach for acute brain slices. The workflow begins with sampling of the tissue and precise trimming of a region of interest, which contains GFP-tagged astrocytes that can be visualised by fluorescence microscopy of ultrathin sections. The astrocytes and their surroundings are then analysed by high resolution scanning transmission electron microscopy (STEM). An important aspect of this workflow is the modification of a commercial cryo-ultramicrotome to observe the fluorescent GFP signal during the trimming process. It ensured that sections contained at least one GFP astrocyte. After cryo-sectioning, a map of the GFP-expressing astrocytes is established and transferred to correlation software installed on a focused ion beam scanning electron microscope equipped with a STEM detector. Next, the areas displaying fluorescence are selected for high resolution STEM imaging. An overview area (e.g. a whole mesh of the grid) is imaged with an automated tiling and stitching process. In the final stitched image, the local organisation of the brain tissue can be surveyed or areas of interest can be magnified to observe fine details, e.g. vesicles or gold labels on specific proteins. The robustness of this workflow is contingent on the quality of sample preparation, based on Tokuyasu's protocol. This method results in a reasonable compromise between preservation of morphology and maintenance of antigenicity. Finally, an important feature of this approach is that the fluorescence of the GFP signal is preserved throughout the entire preparation process until the last step before electron microscopy. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Intracranial microcapsule chemotherapy delivery for the localized treatment of rodent metastatic breast adenocarcinoma in the brain.

    PubMed

    Upadhyay, Urvashi M; Tyler, Betty; Patta, Yoda; Wicks, Robert; Spencer, Kevin; Scott, Alexander; Masi, Byron; Hwang, Lee; Grossman, Rachel; Cima, Michael; Brem, Henry; Langer, Robert

    2014-11-11

    Metastases represent the most common brain tumors in adults. Surgical resection alone results in 45% recurrence and is usually accompanied by radiation and chemotherapy. Adequate chemotherapy delivery to the CNS is hindered by the blood-brain barrier. Efforts at delivering chemotherapy locally to gliomas have shown modest increases in survival, likely limited by the infiltrative nature of the tumor. Temozolomide (TMZ) is first-line treatment for gliomas and recurrent brain metastases. Doxorubicin (DOX) is used in treating many types of breast cancer, although its use is limited by severe cardiac toxicity. Intracranially implanted DOX and TMZ microcapsules are compared with systemic administration of the same treatments in a rodent model of breast adenocarcinoma brain metastases. Outcomes were animal survival, quantified drug exposure, and distribution of cleaved caspase 3. Intracranial delivery of TMZ and systemic DOX administration prolong survival more than intracranial DOX or systemic TMZ. Intracranial TMZ generates the more robust induction of apoptotic pathways. We postulate that these differences may be explained by distribution profiles of each drug when administered intracranially: TMZ displays a broader distribution profile than DOX. These microcapsule devices provide a safe, reliable vehicle for intracranial chemotherapy delivery and have the capacity to be efficacious and superior to systemic delivery of chemotherapy. Future work should include strategies to improve the distribution profile. These findings also have broader implications in localized drug delivery to all tissue, because the efficacy of a drug will always be limited by its ability to diffuse into surrounding tissue past its delivery source.

  10. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue.

    PubMed

    Lücker, Adrien; Secomb, Timothy W; Weber, Bruno; Jenny, Patrick

    2017-04-01

    Oxygen transport to parenchymal cells occurs mainly at the microvascular level and depends on convective RBC flux, which is proportional in an individual capillary to the product of capillary hematocrit and RBC velocity. This study investigates the relative influence of these two factors on tissue PO 2 . A simple analytical model is used to quantify the respective influences of hematocrit, RBC velocity, and RBC flow on tissue oxygenation around capillaries. Predicted tissue PO 2 levels are compared with a detailed computational model. Hematocrit is shown to have a larger influence on tissue PO 2 than RBC velocity. The effect of RBC velocity increases with distance from the arterioles. Good agreement between analytical and numerical results is obtained, and the discrepancies are explained. Significant dependence of MTCs on RBC velocity at low hematocrit is demonstrated. For a given RBC flux in a capillary, the PO 2 in the surrounding tissue increases with increasing hematocrit, as a consequence of decreasing IVR to diffusive oxygen transport from RBCs to tissue. These results contribute to understanding the effects of blood flow changes on oxygen transport, such as those that occur in functional hyperemia in the brain. © 2016 John Wiley & Sons Ltd.

  11. A miniaturized neuroprosthesis suitable for implantation into the brain

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Binkley, David; Blalock, Benjamin; Andersen, Richard; Ulshoefer, Norbert; Johnson, Travis; Del Castillo, Linda

    2003-01-01

    This paper presents current research on a miniaturized neuroprosthesis suitable for implantation into the brain. The prosthesis is a heterogeneous integration of a 100-element microelectromechanical system (MEMS) electrode array, front-end complementary metal-oxide-semiconductor (CMOS) integrated circuit for neural signal preamplification, filtering, multiplexing and analog-to-digital conversion, and a second CMOS integrated circuit for wireless transmission of neural data and conditioning of wireless power. The prosthesis is intended for applications where neural signals are processed and decoded to permit the control of artificial or paralyzed limbs. This research, if successful, will allow implantation of the electronics into the brain, or subcutaneously on the skull, and eliminate all external signal and power wiring. The neuroprosthetic system design has strict size and power constraints with each of the front-end preamplifier channels fitting within the 400 x 400-microm pitch of the 100-element MEMS electrode array and power dissipation resulting in less than a 1 degree C temperature rise for the surrounding brain tissue. We describe the measured performance of initial micropower low-noise CMOS preamplifiers for the neuroprosthetic.

  12. Increased CD147 (EMMPRIN) expression in the rat brain following traumatic brain injury.

    PubMed

    Wei, Ming; Li, Hong; Shang, Yanguo; Zhou, Ziwei; Zhang, Jianning

    2014-10-17

    The extracellular matrix metalloproteinase inducer (EMMPRIN), or CD147, has been known to play a key regulatory role in vascular permeability and leukocyte activation by inducing the expression of matrix metalloproteinases (MMPs). The effects of traumatic brain injury on the expression of EMMPRIN remain poorly understood. In this study, we investigated changes in EMMPRIN expression in a rat model of fluid percussion injury (FPI) and examined the potential association between EMMPRIN and MMP-9 expression. Adult male rats were subjected to FPI. EMMPRIN expression was markedly up-regulated in the brain tissue surrounding the injured region 6-48 h after TBI, as measured by immunoblot and immunohistochemistry. EMMPRIN expression was localized to inflammatory cells. The increase in EMMPRIN expression was temporally correlated with an increase in MMP-9 levels. These data demonstrate, for the first time, changes in CD147 and MMP-9 expression following TBI. These data also suggest that CD147 and MMP-9 may play a role in vascular injuries after TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarction core in rat cerebral cortex.

    PubMed

    Demyanenko, S V; Panchenko, S N; Uzdensky, A B

    2015-06-01

    Photodynamic impact on animal cerebral cortex using water-soluble Bengal Rose as a photosensitizer, which does not cross the blood-brain barrier and remains in blood vessels, induces platelet aggregation, vessel occlusion, and brain tissue infarction. This reproduces ischemic stroke. Irreversible cell damage within the infarction core propagates to adjacent tissue and forms a transition zone - the penumbra. Tissue necrosis in the infarction core is too fast (minutes) to be prevented, but much slower penumbral injury (hours) can be limited. We studied the changes in morphology and protein expression profile in penumbra 1 h after local photothrombotic infarction induced by laser irradiation of the cerebral cortex after Bengal Rose administration. Morphological study using standard hematoxylin/eosin staining showed a 3-mm infarct core surrounded by 1.5-2.0 mm penumbra. Morphological changes in the penumbra were lesser and decreased towards its periphery. Antibody microarrays against 224 neuronal and signaling proteins were used for proteomic study. The observed upregulation of penumbra proteins involved in maintaining neurite integrity and guidance (NAV3, MAP1, CRMP2, PMP22); intercellular interactions (N-cadherin); synaptic transmission (glutamate decarboxylase, tryptophan hydroxylase, Munc-18-1, Munc-18-3, and synphilin-1); mitochondria quality control and mitophagy (PINK1 and Parkin); ubiquitin-mediated proteolysis and tissue clearance (UCHL1, PINK1, Parkin, synphilin-1); and signaling proteins (PKBα and ERK5) could be associated with tissue recovery. Downregulation of PKC, PKCβ1/2, and TDP-43 could also reduce tissue injury. These changes in expression of some neuronal proteins were directed mainly to protection and tissue recovery in the penumbra. Some upregulated proteins might serve as markers of protection processes in a penumbra.

  14. Brain Tumor Hyperthermia with Static and Moving Seeds

    NASA Astrophysics Data System (ADS)

    Molloy, Janelle Arlene

    1990-01-01

    Thermodynamic studies are presented for both static and moving ferromagnetic "seeds" imbedded in biological media. These studies were performed in support of the development of a system which delivers localized hyperthermia to deep-seated brain tumors. In this system, a magnetic "seed" of approximately 5 mm dimension (length and diameter) is remotely repositioned within the brain by an externally produced magnetic field. The seed is inductively heated and repositioned throughout the tumor volume. An induction heating system was built for experimental use with tissue phantoms and animals. The maximum level of direct tissue heating produced by this system was measured in vivo in three animals. An upper limit on the power absorption was placed at 0.46 mW cm^{ -3}, a factor of 10^{-4 } below the power density produced in ferromagnetic seeds by the same system. Measurements were made of the temporal and spatial dependence of the temperature rise in the vicinity of a statically placed 6 mm diameter nickel sphere, in vivo in four pigs, and in one which was euthanized. These results were compared to a theroetical model which was based on a point source solution to the thermal diffusion equation and estimates of blood flow rates, tissue thermal conductivity and seed power absorption were found using a parameter estimation algorithm. Studies were also made of the temperature gradients produced by a heated iron ellipsoid of 4.8 mm diameter and 9.6 mm length in a brain tissue phantom. Temperature measurements were made both with the seed statically imbedded in the tissue phantom and with the phantom moving at a constant velocity of 0.11 mm s^{-1 } with respect to the seed. These static and moving data were compared to obtain an estimate for the thermal field and convective cooling of a moving seed. In addition, an exploratory study was performed in which the dependence of seed heating efficiency on material and geometry were tested. A "hybrid" seed was developed consisting of a permanent magnet core surrounded by a non -magnetic spacing material and a 0.5 mm thick ferromagnetic outer sleeve. This seed was designed to accommodate potentially conflicting magnetic force and induction heating requirements.

  15. Increased expression of vascular endothelial growth factor attenuates contusion necrosis without influencing contusion edema after traumatic brain injury in rats.

    PubMed

    Tado, Masahiro; Mori, Tatsuro; Fukushima, Masamichi; Oshima, Hideki; Maeda, Takeshi; Yoshino, Atsuo; Aizawa, Shin; Katayama, Yoichi

    2014-04-01

    To clarify the role of vascular endothelial growth factor (VEGF) in the formation of contusion edema and necrosis after traumatic brain injury, we examined the time course of changes in the VEGF expression (enzyme-linked immunosorbent assay), cerebrovascular permeability (extravasation of Evans blue), and water content (dry-wet weight method) of the contused brain tissue in a cortical impact injury model using rats. In addition, we tested the effects of administration of bevacizumab (VEGF monoclonal antibody) on changes in the cerebrovascular permeability and water content of the contused brain tissue, as well as the neurological deficits (rota rod test) and volume of contusion necrosis. Increased VEGF expression was maximal at 72 h after injury (p<0.003). Increases in cerebrovascular permeability and water content, however, became maximal within 24 h (p<0.001) after injury (p<0.01), respectively. Administration of bevacizumab did not influence these changes in cerebrovascular permeability and water content, but led to a significant rise in the neurological deficits at 72 h-14 days (p<0.05 or 0.01) and the volume of contusion necrosis at 21 days (p<0.001) after injury. These findings suggest that increased expression of VEGF after injury does not contribute to the formation of contusion edema, but attenuates the formation of contusion necrosis. This is probably because of an increased angiogenesis and improved microcirculation in the areas surrounding the core of contusion.

  16. Heart rate sensitive optical coherence angiography

    NASA Astrophysics Data System (ADS)

    Alvarez, Karl; Lopez-Tremoleda, Jordi; Donnan, Rob; Michael-Titus, Adina T.; Tomlins, Peter H.

    2018-02-01

    Optical coherence angiography (OCA) enables visualisation of three-dimensional micro-vasculature from optical coherence tomography data volumes. Typically, various statistical methods are used to discriminate static tissue from blood flow within vessels. In this paper, we introduce a new method that relies upon the beating heart frequency to isolate blood vessels from the surrounding tissue. Vascular blood flow is assumed to be more strongly modulated by the heart-beat compared to surrounding tissue and therefore short-time Fourier transform of sequential measurements can discriminate the two. Furthermore, it is demonstrated that adjacent B-Scans within an OCT data volume can provide the required sampling frequency. As such, the technique can be considered to be a spatially mapped variation of photoplethysmography (PPG), whereby each image voxel operates as a PPG detector. This principle is demonstrated using both a model system and in vivo for monitoring the vascular changes effected by traumatic brain injury in mice. In vivo measurements were acquired at an A-Scan rate of 10kHz to form a 500x500x512 (lateral x lateral x axial) pixel volume, enabling sequential sampling of the mouse heart rate in an expected range of 300-600 bpm. One of the advantages of this new OCA processing method is that it can be used in conjunction with existing algorithms as an additional filter for signal to noise enhancement.

  17. Increased temperature and entropy production in cancer: the role of anti-inflammatory drugs.

    PubMed

    Pitt, Michael A

    2015-02-01

    Some cancers have been shown to have a higher temperature than surrounding normal tissue. This higher temperature is due to heat generated internally in the cancer. The higher temperature of cancer (compared to surrounding tissue) enables a thermodynamic analysis to be carried out. Here I show that there is increased entropy production in cancer compared with surrounding tissue. This is termed excess entropy production. The excess entropy production is expressed in terms of heat flow from the cancer to surrounding tissue and enzymic reactions in the cancer and surrounding tissue. The excess entropy production in cancer drives it away from the stationary state that is characterised by minimum entropy production. Treatments that reduce inflammation (and therefore temperature) should drive a cancer towards the stationary state. Anti-inflammatory agents, such as aspirin, other non-steroidal anti-inflammatory drugs, corticosteroids and also thyroxine analogues have been shown (using various criteria) to reduce the progress of cancer.

  18. Nuclear microscopy of diffuse plaques in the brains of transgenic mice

    NASA Astrophysics Data System (ADS)

    Rajendran, Reshmi; Ren, Minqin; Casadesus, Gemma; Smith, Mark A.; Perry, George; Huang, En; Ong, Wei Yi; Halliwell, Barry; Watt, Frank

    2005-04-01

    Using nuclear microscopy, extracellular diffuse amyloid deposits in fresh unstained brain tissue from Alzheimer's disease transgenic mice Tg2576 have been identified and analyzed for trace element content. Off-axis scanning transmission ion microscopy (STIM) images can be obtained which are similar to the images produced using direct STIM. Since the proton beam current required for off-axis STIM is compatible with PIXE and RBS, we can identify the plaque location and analyze for trace elements simultaneously. Analysis of the diffuse plaques showed an increase in the transition metals iron and zinc compared with the surrounding area of comparable areal density. This supports the theory that redox interactions between Aβ and metals could be at the heart of a pathological feedback system wherein Aβ amyloidosis and oxidative stress promote each other, possibly via Fenton chemistry.

  19. Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python.

    PubMed

    Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri

    2014-01-01

    In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.

  20. Use of EPO as an adjuvant in PDT of brain tumors to reduce damage to normal brain

    NASA Astrophysics Data System (ADS)

    Rendon, Cesar A.; Lilge, Lothar

    2004-10-01

    In order to reduce damage to surrounding normal brain in the treatment of brain tumors with photodynamic therapy (PDT), we have investigated the use of the cytokine erythropoietin (EPO) to exploit its well-established role as a neuroprotective agent. In vitro experiments demonstrated that EPO does not confer protection from PDT to rat glioma cells. In vivo testing of the possibility of EPO protecting normal brain tissue was carried out. The normal brains of Lewis rats were treated with Photofrin mediated PDT (6.25 mg/Kg B.W. 22 hours pre irradiation) and the outcome of the treatment compared between animals that received EPO (5000 U/Kg B.W. 22 hours pre irradiation) and controls. This comparison was made based on the volume of necrosis, as measured with the viability stain 2,3,5- Triphenyl tetrazoium chloride (TTC), and incidence of apoptosis, as measured with in situ end labeling assay (ISEL). Western blotting showed that EPO reaches the normal brain and activates the anti-apoptotic protein PKB/AKT1 within the brain cortex. The comparison based on volume of necrosis showed no statistical significance between the two groups. No clear difference was observed in the ISEL staining between the groups. A possible lack of responsivity in the assays that give rise to these results is discussed and future corrections are described.

  1. Carboranylporphyrins and uses thereof

    DOEpatents

    Miura, Michiko; Renner, Mark W

    2012-10-16

    The present invention is directed to low toxicity boronated compounds and methods for their use in the treatment, visualization, and diagnosis of tumors. More specifically, the present invention is directed to low toxicity carborane-containing porphyrin compounds with halide, amine, or nitro groups and methods for their use particularly in boron neutron capture therapy (BNCT), X-ray radiation therapy (XRT), and photodynamic therapy (PDT) for the treatment of tumors of the brain, head and neck, and surrounding tissue. The invention is also directed to using these carborane-containing porphyrin compounds in methods of tumor imaging and/or diagnosis such as MRI, SPECT, or PET.

  2. Carbonylporphyrins and uses thereof

    DOEpatents

    Miura, Michiko; Renner, Mark W

    2014-03-18

    The present invention is directed to low toxicity boronated compounds and methods for their use in the treatment, visualization, and diagnosis of tumors. More specifically, the present invention is directed to low toxicity carborane-containing porphyrin compounds with halide, amine, or nitro groups and methods for their use particularly in boron neutron capture therapy (BNCT), X-ray radiation therapy (XRT), and photodynamic therapy (PDT) for the treatment of tumors of the brain, head and neck, and surrounding tissue. The invention is also directed to using these carborane-containing porphyrin compounds in methods of tumor imaging and/or diagnosis such as MRI, SPECT, or PET.

  3. Symmetric and asymmetric halogen-containing metallocarboranylporphyrins and uses thereof

    DOEpatents

    Miura, Michiko; Wu, Haitao

    2013-05-21

    The present invention is directed to low toxicity boronated compounds and methods for their use in the treatment, visualization, and diagnosis of tumors. More specifically, the present invention is directed to low toxicity halogenated, carborane-containing 5,10,15,20-tetraphenylporphyrin compounds and methods for their use particularly in boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) for the treatment of tumors of the brain, head and neck, and surrounding tissue. The invention is also directed to using these halogenated, carborane-containing tetraphenylporphyrin compounds in methods of tumor imaging and/or diagnosis such as MRI, SPECT, or PET.

  4. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images.

    PubMed

    Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi

    2015-07-01

    Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Mapping Alterations to the Endogenous Elemental Distribution within the Lateral Ventricles and Choroid Plexus in Brain Disorders Using X-Ray Fluorescence Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lins, Brittney R.; Pushie, Jake M.; Jones, Michael

    The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K +, Cl -, and Ca + distributions unreliable. In the present study, we directly examined themore » distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl - and Fe while K + levels increase further from the ventricle as Cl - levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl - surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. Furthermore, this study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models.« less

  6. On old and new comparative neurological sinners: the evolutionary importance of the membranous parts of the actinopterygian forebrain and their sites of attachment.

    PubMed

    Nieuwenhuys, Rudolf

    2009-09-10

    The forebrain of actinopterygian fishes differs from that of other vertebrates in that it consists of a pair of solid lobes. Lateral ventricles surrounded by nervous tissue are entirely lacking. This peculiar configuration of the actinopterygian forebrain results from an outward bending or eversion of its lateral walls during ontogenesis. Due to this eversion, the telencephalic roof plate is transformed into a wide, membranous structure that surrounds the dorsal and lateral parts of the solid lobes and is attached to their lateral or ventrolateral aspects. Another effect of the eversion is that the ventricular surface of the telencephalic lobes is very extensive, whereas their meningeal surface is small. In many recent publications on the forebrain of actinopterygian fishes, these structures are presented as solid lobes, without any reference to the fact that they are the product of an eversion process, and without any indication concerning the location and extent of their ventricular and meningeal surfaces. It is explained here that, in light of current concepts concerning the histogenesis of the brain, these omissions are intolerable. It is also strongly recommended that the location and extent of these surfaces should always be clearly indicated in brain sections in general, because the simple notion that in the brain of vertebrates the ventricular surface is on the inside and the meningeal surface on the outside has numerous and notable exceptions. Copyright 2009 Wiley-Liss, Inc.

  7. Mapping Alterations to the Endogenous Elemental Distribution within the Lateral Ventricles and Choroid Plexus in Brain Disorders Using X-Ray Fluorescence Imaging

    PubMed Central

    Lins, Brittney R.; Pushie, Jake M.; Jones, Michael; Howard, Daryl L.; Howland, John G.; Hackett, Mark J.

    2016-01-01

    The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K+, Cl−, and Ca+ distributions unreliable. In the present study, we directly examined the distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl− and Fe while K+ levels increase further from the ventricle as Cl− levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl− surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. This study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models. PMID:27351594

  8. Mapping Alterations to the Endogenous Elemental Distribution within the Lateral Ventricles and Choroid Plexus in Brain Disorders Using X-Ray Fluorescence Imaging

    DOE PAGES

    Lins, Brittney R.; Pushie, Jake M.; Jones, Michael; ...

    2016-06-28

    The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K +, Cl -, and Ca + distributions unreliable. In the present study, we directly examined themore » distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl - and Fe while K + levels increase further from the ventricle as Cl - levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl - surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. Furthermore, this study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models.« less

  9. Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis.

    PubMed

    Araya, Claudio; Ward, Laura C; Girdler, Gemma C; Miranda, Miguel

    2016-03-01

    The development of a vertebrate neural epithelium with well-organized apico-basal polarity and a central lumen is essential for its proper function. However, how this polarity is established during embryonic development and the potential influence of surrounding signals and tissues on such organization has remained less understood. In recent years the combined superior transparency and genetics of the zebrafish embryo has allowed for in vivo visualization and quantification of the cellular and molecular dynamics that govern neural tube structure. Here, we discuss recent studies revealing how co-ordinated cell-cell interactions coupled with adjacent tissue dynamics are critical to regulate final neural tissue architecture. Furthermore, new findings show how the spatial regulation and timing of orientated cell division is key in defining precise lumen formation at the tissue midline. In addition, we compare zebrafish neurulation with that of amniotes and amphibians in an attempt to understand the conserved cellular mechanisms driving neurulation and resolve the apparent differences among animals. Zebrafish neurulation not only offers fundamental insights into early vertebrate brain development but also the opportunity to explore in vivo cell and tissue dynamics during complex three-dimensional animal morphogenesis. © 2015 Wiley Periodicals, Inc.

  10. Brain antibodies in the cortex and blood of people with schizophrenia and controls

    PubMed Central

    Glass, L J; Sinclair, D; Boerrigter, D; Naude, K; Fung, S J; Brown, D; Catts, V S; Tooney, P; O'Donnell, M; Lenroot, R; Galletly, C; Liu, D; Weickert, T W; Shannon Weickert, C

    2017-01-01

    The immune system is implicated in the pathogenesis of schizophrenia, with elevated proinflammatory cytokine mRNAs found in the brains of ~40% of individuals with the disorder. However, it is not clear if antibodies (specifically immunoglobulin-γ (IgG)) can be found in the brain of people with schizophrenia and if their abundance relates to brain inflammatory cytokine mRNA levels. Therefore, we investigated the localization and abundance of IgG in the frontal cortex of people with schizophrenia and controls, and the impact of proinflammatory cytokine status on IgG abundance in these groups. Brain IgGs were detected surrounding blood vessels in the human and non-human primate frontal cortex by immunohistochemistry. IgG levels did not differ significantly between schizophrenia cases and controls, or between schizophrenia cases in ‘high’ and ‘low’ proinflammatory cytokine subgroups. Consistent with the existence of IgG in the parenchyma of human brain, mRNA and protein of the IgG transporter (FcGRT) were present in the brain, and did not differ according to diagnosis or inflammatory status. Finally, brain-reactive antibody presence and abundance was investigated in the blood of living people. The plasma of living schizophrenia patients and healthy controls contained antibodies that displayed positive binding to Rhesus macaque cerebellar tissue, and the abundance of these antibodies was significantly lower in patients than controls. These findings suggest that antibodies in the brain and brain-reactive antibodies in the blood are present under normal circumstances. PMID:28786974

  11. Brain antibodies in the cortex and blood of people with schizophrenia and controls.

    PubMed

    Glass, L J; Sinclair, D; Boerrigter, D; Naude, K; Fung, S J; Brown, D; Catts, V S; Tooney, P; O'Donnell, M; Lenroot, R; Galletly, C; Liu, D; Weickert, T W; Shannon Weickert, C

    2017-08-08

    The immune system is implicated in the pathogenesis of schizophrenia, with elevated proinflammatory cytokine mRNAs found in the brains of ~40% of individuals with the disorder. However, it is not clear if antibodies (specifically immunoglobulin-γ (IgG)) can be found in the brain of people with schizophrenia and if their abundance relates to brain inflammatory cytokine mRNA levels. Therefore, we investigated the localization and abundance of IgG in the frontal cortex of people with schizophrenia and controls, and the impact of proinflammatory cytokine status on IgG abundance in these groups. Brain IgGs were detected surrounding blood vessels in the human and non-human primate frontal cortex by immunohistochemistry. IgG levels did not differ significantly between schizophrenia cases and controls, or between schizophrenia cases in 'high' and 'low' proinflammatory cytokine subgroups. Consistent with the existence of IgG in the parenchyma of human brain, mRNA and protein of the IgG transporter (FcGRT) were present in the brain, and did not differ according to diagnosis or inflammatory status. Finally, brain-reactive antibody presence and abundance was investigated in the blood of living people. The plasma of living schizophrenia patients and healthy controls contained antibodies that displayed positive binding to Rhesus macaque cerebellar tissue, and the abundance of these antibodies was significantly lower in patients than controls. These findings suggest that antibodies in the brain and brain-reactive antibodies in the blood are present under normal circumstances.

  12. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

    PubMed Central

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-Xian; Kang, Ting-Guo

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC’s efficacy and mechanism of action. Results: ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions: ARC treatment confers neuroprotection of brain tissue through anti-inflammatory and anti-apoptotic effects in a mouse model of SWI. These results suggest a new strategy for promoting neuronal survival and function after CED to improve long-term patient outcome. PMID:27445818

  13. Magnetic Resonance Fingerprinting of Adult Brain Tumors: Initial Experience

    PubMed Central

    Badve, Chaitra; Yu, Alice; Dastmalchian, Sara; Rogers, Matthew; Ma, Dan; Jiang, Yun; Margevicius, Seunghee; Pahwa, Shivani; Lu, Ziang; Schluchter, Mark; Sunshine, Jeffrey; Griswold, Mark; Sloan, Andrew; Gulani, Vikas

    2016-01-01

    Background Magnetic resonance fingerprinting (MRF) allows rapid simultaneous quantification of T1 and T2 relaxation times. This study assesses the utility of MRF in differentiating between common types of adult intra-axial brain tumors. Methods MRF acquisition was performed in 31 patients with untreated intra-axial brain tumors: 17 glioblastomas, 6 WHO grade II lower-grade gliomas and 8 metastases. T1, T2 of the solid tumor (ST), immediate peritumoral white matter (PW), and contralateral white matter (CW) were summarized within each region of interest. Statistical comparisons on mean, standard deviation, skewness and kurtosis were performed using univariate Wilcoxon rank sum test across various tumor types. Bonferroni correction was used to correct for multiple comparisons testing. Multivariable logistic regression analysis was performed for discrimination between glioblastomas and metastases and area under the receiver operator curve (AUC) was calculated. Results Mean T2 values could differentiate solid tumor regions of lower-grade gliomas from metastases (mean±sd: 172±53ms and 105±27ms respectively, p =0.004, significant after Bonferroni correction). Mean T1 of PW surrounding lower-grade gliomas differed from PW around glioblastomas (mean±sd: 1066±218ms and 1578±331ms respectively, p=0.004, significant after Bonferroni correction). Logistic regression analysis revealed that mean T2 of ST offered best separation between glioblastomas and metastases with AUC of 0.86 (95% CI 0.69–1.00, p<0.0001). Conclusion MRF allows rapid simultaneous T1, T2 measurement in brain tumors and surrounding tissues. MRF based relaxometry can identify quantitative differences between solid-tumor regions of lower grade gliomas and metastases and between peritumoral regions of glioblastomas and lower grade gliomas. PMID:28034994

  14. MR Fingerprinting of Adult Brain Tumors: Initial Experience.

    PubMed

    Badve, C; Yu, A; Dastmalchian, S; Rogers, M; Ma, D; Jiang, Y; Margevicius, S; Pahwa, S; Lu, Z; Schluchter, M; Sunshine, J; Griswold, M; Sloan, A; Gulani, V

    2017-03-01

    MR fingerprinting allows rapid simultaneous quantification of T1 and T2 relaxation times. This study assessed the utility of MR fingerprinting in differentiating common types of adult intra-axial brain tumors. MR fingerprinting acquisition was performed in 31 patients with untreated intra-axial brain tumors: 17 glioblastomas, 6 World Health Organization grade II lower grade gliomas, and 8 metastases. T1, T2 of the solid tumor, immediate peritumoral white matter, and contralateral white matter were summarized within each ROI. Statistical comparisons on mean, SD, skewness, and kurtosis were performed by using the univariate Wilcoxon rank sum test across various tumor types. Bonferroni correction was used to correct for multiple-comparison testing. Multivariable logistic regression analysis was performed for discrimination between glioblastomas and metastases, and area under the receiver operator curve was calculated. Mean T2 values could differentiate solid tumor regions of lower grade gliomas from metastases (mean, 172 ± 53 ms, and 105 ± 27 ms, respectively; P = .004, significant after Bonferroni correction). The mean T1 of peritumoral white matter surrounding lower grade gliomas differed from peritumoral white matter around glioblastomas (mean, 1066 ± 218 ms, and 1578 ± 331 ms, respectively; P = .004, significant after Bonferroni correction). Logistic regression analysis revealed that the mean T2 of solid tumor offered the best separation between glioblastomas and metastases with an area under the curve of 0.86 (95% CI, 0.69-1.00; P < .0001). MR fingerprinting allows rapid simultaneous T1 and T2 measurement in brain tumors and surrounding tissues. MR fingerprinting-based relaxometry can identify quantitative differences between solid tumor regions of lower grade gliomas and metastases and between peritumoral regions of glioblastomas and lower grade gliomas. © 2017 by American Journal of Neuroradiology.

  15. Evaluation of a fiber-optic fluorescence spectroscopy system to assist neurosurgical tumor resections

    NASA Astrophysics Data System (ADS)

    Ilias, Michail A.; Richter, Johan; Westermark, Frida; Brantmark, Martin; Andersson-Engels, Stefan; Wårdell, Karin

    2007-07-01

    The highly malignant brain tumor, glioblastoma multiforme, is difficult to totally resect without aid due to its infiltrative way of growing and its morphological similarities to surrounding functioning brain under direct vision in the operating field. The need for an inexpensive and robust real-time visualizing system for resection guiding in neurosurgery has been formulated by research groups all over the world. The main goal is to develop a system that helps the neurosurgeon to make decisions during the surgical procedure. A compact fiber optic system using fluorescence spectroscopy has been developed for guiding neurosurgical resections. The system is based on a high power light emitting diode at 395 nm and a spectrometer. A fiber bundle arrangement is used to guide the excitation light and fluorescence light between the instrument and the tissue target. The system is controlled through a computer interface and software package especially developed for the application. This robust and simple instrument has been evaluated in vivo both on healthy skin but also during a neurosurgical resection procedure. Before surgery the patient received orally a low dose of 5-aminolevulinic acid, converted to the fluorescence tumor marker protoporphyrin IX in the malignant cells. Preliminary results indicate that PpIX fluorescence and brain tissue autofluorescence can be recorded with the help of the developed system intraoperatively during resection of glioblastoma multiforme.

  16. Aggregation is a critical cause of poor transfer into the brain tissue of intravenously administered cationic PAMAM dendrimer nanoparticles

    PubMed Central

    Kurokawa, Yoshika; Sone, Hideko; Win-Shwe, Tin-Tin; Zeng, Yang; Kimura, Hiroyuki; Koyama, Yosuke; Yagi, Yusuke; Matsui, Yasuto; Yamazaki, Masashi; Hirano, Seishiro

    2017-01-01

    Dendrimers have been expected as excellent nanodevices for brain medication. An amine-terminated polyamidoamine dendrimer (PD), an unmodified plain type of PD, has the obvious disadvantage of cytotoxicity, but still serves as an attractive molecule because it easily adheres to the cell surface, facilitating easy cellular uptake. Single-photon emission computed tomographic imaging of a mouse following intravenous injection of a radiolabeled PD failed to reveal any signal in the intracranial region. Furthermore, examination of the permeability of PD particles across the blood–brain barrier (BBB) in vitro using a commercially available kit revealed poor permeability of the nanoparticles, which was suppressed by an inhibitor of caveolae-mediated endocytosis, but not by an inhibitor of macropinocytosis. Physicochemical analysis of the PD revealed that cationic PDs are likely to aggregate promptly upon mixing with body fluids and that this prompt aggregation is probably driven by non-Derjaguin–Landau– Verwey–Overbeek attractive forces originating from the surrounding divalent ions. Atomic force microscopy observation of a freshly cleaved mica plate soaked in dendrimer suspension (culture media) confirmed prompt aggregation. Our study revealed poor transfer of intravenously administered cationic PDs into the intracranial nervous tissue, and the results of our analysis suggested that this was largely attributable to the reduced BBB permeability arising from the propensity of the particles to promptly aggregate upon mixing with body fluids. PMID:28579780

  17. The Meninges: New Therapeutic Targets For Multiple Sclerosis

    PubMed Central

    Russi, Abigail E.; Brown, Melissa A.

    2014-01-01

    The CNS is largely comprised of non-regenerating cells, including neurons and myelin-producing oligodendrocytes, which are particularly vulnerable to immune cell mediated damage. To protect the CNS, mechanisms exist that normally restrict the transit of peripheral immune cells into the brain and spinal cord, conferring an “immune specialized” status. Thus, there has been a long-standing debate as to how these restrictions are overcome in several inflammatory diseases of the CNS, including multiple sclerosis (MS). In this review, we highlight the role of the meninges, tissues that surround and protect the CNS and enclose the cerebral spinal fluid, in promoting chronic inflammation that leads to neuronal damage. Although the meninges have traditionally been considered structures that provide physical protection for the brain and spinal cord, new data has established these tissues as sites of active immunity. It has been hypothesized that the meninges are important players in normal immunosurveillance of the CNS but also serve as initial sites of anti-myelin immune responses. The resulting robust meningeal inflammation elicits loss of localized blood barrier integrity and facilitates a large-scale influx of immune cells into the CNS parenchyma. We propose that targeting of the cells and molecules mediating these inflammatory responses within the meninges offers promising therapies for MS that are free from the constraints imposed by the blood brain barrier. Importantly, such therapies may avoid the systemic immunosuppression often associated with the existing treatments. PMID:25241937

  18. GCR Transport in the Brain: Assessment of Self-Shielding, Columnar Damage, and Nuclear Reactions on Cell Inactivation Rates

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Atwell, W.; Cucinotta, F. A.; Badhwar, G. D. (Technical Monitor)

    1999-01-01

    Radiation shield design is driven by the need to limit radiation risks while optimizing risk reduction with launch mass/expense penalties. Both limitation and optimization objectives require the development of accurate and complete means for evaluating the effectiveness of various shield materials and body-self shielding. For galactic cosmic rays (GCR), biophysical response models indicate that track structure effects lead to substantially different assessments of shielding effectiveness relative to assessments based on LET-dependent quality factors. Methods for assessing risk to the central nervous system (CNS) from heavy ions are poorly understood at this time. High-energy and charge (HZE) ion can produce tissue events resulting in damage to clusters of cells in a columnar fashion, especially for stopping heavy ions. Grahn (1973) and Todd (1986) have discussed a microlesion concept or model of stochastic tissue events in analyzing damage from HZE's. Some tissues, including the CNS, maybe sensitive to microlesion's or stochastic tissue events in a manner not illuminated by either conventional dosimetry or fluence-based risk factors. HZE ions may also produce important lateral damage to adjacent cells. Fluences of high-energy proton and alpha particles in the GCR are many times higher than HZE ions. Behind spacecraft and body self-shielding the ratio of protons, alpha particles, and neutrons to HZE ions increases several-fold from free-space values. Models of GCR damage behind shielding have placed large concern on the role of target fragments produced from tissue atoms. The self-shielding of the brain reduces the number of heavy ions reaching the interior regions by a large amount and the remaining light particle environment (protons, neutrons, deuterons. and alpha particles) may be the greatest concern. Tracks of high-energy proton produce nuclear reactions in tissue, which can deposit doses of more than 1 Gv within 5 - 10 cell layers. Information on rates of cell killing from GCR, including patterns of cell killing from single particle tracks. can provide useful information on expected differences between proton and HZE tracks and clinical experiences with photon irradiation. To model effects on cells in the brain, it is important that transport models accurately describe changes in the GCR due to interactions in the cranium and proximate tissues. We describe calculations of the attenuated GCR particle fluxes at three dose-points in the brain and associated patterns of cell killing using biophysical models. The effects of the brain self-shielding and bone-tissue interface of the skull in modulating the GCR environment are considered. For each brain dose-point, the mass distribution in the surrounding 4(pi) solid angle is characterized using the CAM model to trace 512 rays. The CAM model describes the self-shielding by converting the tissue distribution to mass-equivalent aluminum, and nominal values of spacecraft shielding is considered. Particle transport is performed with the proton, neutron, and heavy-ion transport code HZETRN with the nuclear fragmentation model QMSFRG. The distribution of cells killed along the path of individual GCR ions is modeled using in vitro cell inactivation data for cells with varying sensitivity. Monte Carlo simulations of arrays of inactivated cells are considered for protons and heavy ions and used to describe the absolute number of cell killing events of various magnitude in the brain from the GCR. Included are simulations of positions of inactivated cells from stopping heavy ions and nuclear stars produced by high-energy ions most importantly, protons and neutrons.

  19. Focal Solute Trapping and Global Glymphatic Pathway Impairment in a Murine Model of Multiple Microinfarcts

    PubMed Central

    Wang, Minghuan; Ding, Fengfei; Deng, SaiYue; Guo, Xuequn; Wang, Wei

    2017-01-01

    Microinfarcts occur commonly in the aging brain as a consequence of diffuse embolic events and are associated with the development of vascular dementia and Alzheimer's disease. However, the manner in which disperse microscopic lesions reduce global cognitive function and increase the risk for Alzheimer's disease is unclear. The glymphatic system, which is a brain-wide perivascular network that supports the recirculation of CSF through the brain parenchyma, facilitates the clearance of interstitial solutes including amyloid β and tau. We investigated whether glymphatic pathway function is impaired in a murine model of multiple microinfarcts induced by intraarterial injection of cholesterol crystals. The analysis showed that multiple microinfarcts markedly impaired global influx of CSF along the glymphatic pathway. Although suppression of global glymphatic function was transient, resolving within 2 weeks of injury, CSF tracers also accumulated within tissue associated with microinfarcts. The effect of diffuse microinfarcts on global glymphatic pathway function was exacerbated in the mice aged 12 months compared with the 2- to 3-month-old mice. These findings indicate that glymphatic function is focally disrupted around microinfarcts and that the aging brain is more vulnerable to this disruption than the young brain. These observations suggest that microlesions may trap proteins and other interstitial solutes within the brain parenchyma, increasing the risk of amyloid plaque formation. SIGNIFICANCE STATEMENT Microinfarcts, small (<1 mm) ischemic lesions, are strongly associated with age-related dementia. However, how these microscopic lesions affect global cognitive function and predispose to Alzheimer's disease is unclear. The glymphatic system is a brain-wide network of channels surrounding brain blood vessels that allows CSF to exchange with interstitial fluid, clearing away cellular wastes such as amyloid β. We observed that, in mice, microinfarcts impaired global glymphatic function and solutes from the CSF became trapped in tissue associated with microinfarcts. These data suggest that small, disperse ischemic lesions can impair glymphatic function across the brain and trapping of solutes in these lesions may promote protein aggregation and neuroinflammation and eventually lead to neurodegeneration, especially in the aging brain. PMID:28188218

  20. Focal Solute Trapping and Global Glymphatic Pathway Impairment in a Murine Model of Multiple Microinfarcts.

    PubMed

    Wang, Minghuan; Ding, Fengfei; Deng, SaiYue; Guo, Xuequn; Wang, Wei; Iliff, Jeffrey J; Nedergaard, Maiken

    2017-03-15

    Microinfarcts occur commonly in the aging brain as a consequence of diffuse embolic events and are associated with the development of vascular dementia and Alzheimer's disease. However, the manner in which disperse microscopic lesions reduce global cognitive function and increase the risk for Alzheimer's disease is unclear. The glymphatic system, which is a brain-wide perivascular network that supports the recirculation of CSF through the brain parenchyma, facilitates the clearance of interstitial solutes including amyloid β and tau. We investigated whether glymphatic pathway function is impaired in a murine model of multiple microinfarcts induced by intraarterial injection of cholesterol crystals. The analysis showed that multiple microinfarcts markedly impaired global influx of CSF along the glymphatic pathway. Although suppression of global glymphatic function was transient, resolving within 2 weeks of injury, CSF tracers also accumulated within tissue associated with microinfarcts. The effect of diffuse microinfarcts on global glymphatic pathway function was exacerbated in the mice aged 12 months compared with the 2- to 3-month-old mice. These findings indicate that glymphatic function is focally disrupted around microinfarcts and that the aging brain is more vulnerable to this disruption than the young brain. These observations suggest that microlesions may trap proteins and other interstitial solutes within the brain parenchyma, increasing the risk of amyloid plaque formation. SIGNIFICANCE STATEMENT Microinfarcts, small (<1 mm) ischemic lesions, are strongly associated with age-related dementia. However, how these microscopic lesions affect global cognitive function and predispose to Alzheimer's disease is unclear. The glymphatic system is a brain-wide network of channels surrounding brain blood vessels that allows CSF to exchange with interstitial fluid, clearing away cellular wastes such as amyloid β. We observed that, in mice, microinfarcts impaired global glymphatic function and solutes from the CSF became trapped in tissue associated with microinfarcts. These data suggest that small, disperse ischemic lesions can impair glymphatic function across the brain and trapping of solutes in these lesions may promote protein aggregation and neuroinflammation and eventually lead to neurodegeneration, especially in the aging brain. Copyright © 2017 the authors 0270-6474/17/372870-08$15.00/0.

  1. Target volume geometric change and/or deviation from the cranium during fractionated stereotactic radiotherapy for brain metastases: potential pitfalls in image guidance based on bony anatomy alignment.

    PubMed

    Ohtakara, Kazuhiro; Hoshi, Hiroaki

    2014-12-01

    This study sought to evaluate the potential geometrical change and/or displacement of the target relative to the cranium during fractionated stereotactic radiotherapy (FSRT) for treating newly developed brain metastases. For 16 patients with 21 lesions treated with image-guided frameless FSRT in 5 or 10 fractions using a 6-degree-of-freedom image guidance system-integrated platform, the unenhanced computed tomography or T2-weighted magnetic resonance images acquired until the completion of FSRT were fused to the planning image datasets for comparison. Significant change was defined as ≥3-mm change in the tumour diameter or displacement of the tumour centroid. FSRT was started 1 day after planning image acquisition. Tumour shrinkage, deviation and both were observed in 2, 1 and 1 of the 21 lesions, respectively, over a period of 7-13 days. Tumour shrinkage or deviation resulted in an increase or decrease in the marginal dose to the tumour, respectively, and a substantial increase in the irradiated volume for the surrounding tissue irrespective of the pattern of alteration. No obvious differences in the clinical and treatment characteristics were noted among the populations with or without significant changes in tumour volume or position. Target deformity and/or deviation can unexpectedly occur even during relatively short-course FSRT, inevitably leading to a gradual discrepancy between the planned and actually delivered doses to the tumour and surrounding tissue. To appropriately weigh the treatment outcome against the planned dose distribution, target deformity and/or deviation should also be considered in addition to the immobilisation accuracy, as image guidance with bony anatomy alignment does not necessarily guarantee accurate target localisation until completion of FSRT. © 2014 The Royal Australian and New Zealand College of Radiologists.

  2. Fabrication of porous chitosan/poly(vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering.

    PubMed

    Shokrgozar, Mohammad Ali; Mottaghitalab, Fatemeh; Mottaghitalab, Vahid; Farokhi, Mehdi

    2011-04-01

    With the ability to form a nano-sized fibrous structure with large pore sizes mimicking the extracellular matrix (ECM), electrospinning was used to fabricate chitosan/poly(vinyl alcohol) nanofibers reinforced by single-walled carbon nanotube (SWNT-CS/PVA) for potential use in neural tissue engineering. Moreover, ultrasonication was performed to fabricate highly dispersed SWNT/CS solution with 7%, 12%, and 17% SWNT content prior to electrospinning process. In the present study, a number of properties of CS/PVA reinforced SWNTs nanocomposites were evaluated. The in vitro biocompatibility of the electrospun fiber mats was also assessed using human brain-derived cells and U373 cell lines. The results have shown that SWNTs as reinforcing phase can augment the morphology, porosity, and structural properties of CS/PVA nanofiber composites and thus benefit the proliferation rate of both cell types. In addition, the cells exhibit their normal morphology while integrating with surrounding fibers. The results confirmed the potential of SWNT-CS/PVA nanocomposites as scaffold for neural tissue engineering.

  3. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue

    PubMed Central

    Lücker, Adrien; Secomb, Timothy W.; Weber, Bruno; Jenny, Patrick

    2016-01-01

    Objective Oxygen transport to parenchymal cells occurs mainly at the microvascular level, and depends on convective red blood cell (RBC) flux, which is proportional in an individual capillary to the product of capillary hematocrit and red blood cell velocity. This study investigates the relative influence of these two factors on tissue oxygen partial pressure (Po2). Methods A simple analytical model is used to quantify the respective influences of hematocrit, RBC velocity and flow on tissue oxygenation around capillaries. Predicted tissue Po2 levels are compared with a detailed computational model. Results Hematocrit is shown to have a larger influence on tissue Po2 than RBC velocity. The effect of RBC velocity increases with distance from the arterioles. Good agreement between analytical and numerical results is obtained and the discrepancies are explained. Significant dependence of mass transfer coefficients on RBC velocity at low hematocrit is demonstrated. Conclusions For a given RBC flux in a capillary, the Po2 in the surrounding tissue increases with increasing hematocrit, as a consequence of decreasing intravascular resistance to diffusive oxygen transport from RBCs to tissue. These results contribute to understanding the effects of blood flow changes on oxygen transport, such as occur in functional hyperemia in the brain. PMID:27893186

  4. Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning.

    PubMed

    Spottiswoode, B S; van den Heever, D J; Chang, Y; Engelhardt, S; Du Plessis, S; Nicolls, F; Hartzenberg, H B; Gretschel, A

    2013-01-01

    Neurosurgeons regularly plan their surgery using magnetic resonance imaging (MRI) images, which may show a clear distinction between the area to be resected and the surrounding healthy brain tissue depending on the nature of the pathology. However, this distinction is often unclear with the naked eye during the surgical intervention, and it may be difficult to infer depth and an accurate volumetric interpretation from a series of MRI image slices. In this work, MRI data are used to create affordable patient-specific 3-dimensional (3D) scale models of the brain which clearly indicate the location and extent of a tumour relative to brain surface features and important adjacent structures. This is achieved using custom software and rapid prototyping. In addition, functionally eloquent areas identified using functional MRI are integrated into the 3D models. Preliminary in vivo results are presented for 2 patients. The accuracy of the technique was estimated both theoretically and by printing a geometrical phantom, with mean dimensional errors of less than 0.5 mm observed. This may provide a practical and cost-effective tool which can be used for training, and during neurosurgical planning and intervention. Copyright © 2013 S. Karger AG, Basel.

  5. Missouri University Multi-Plane Imager (MUMPI): A high sensitivity rapid dynamic ECT brain imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, K.W.; Holmes, R.A.

    1984-01-01

    The authors have designed a unique ECT imaging device that can record rapid dynamic images of brain perfusion. The Missouri University Multi-Plane Imager (MUMPI) uses a single crystal detector that produces four orthogonal two-dimensional images simultaneously. Multiple slice images are reconstructed from counts recorded from stepwise or continuous collimator rotation. Four simultaneous 2-d image fields may also be recorded and reviewed. The cylindrical sodium iodide crystal and the rotating collimator concentrically surround the source volume being imaged with the collimator the only moving part. The design and function parameters of MUMPI have been compared to other competitive tomographic head imagingmore » devices. MUMPI's principal advantages are: 1) simultaneous direct acquisition of four two-dimensional images; 2) extremely rapid project set acquisition for ECT reconstruction; and 3) instrument practicality and economy due to single detector design and the absence of heavy mechanical moving components (only collimator rotation is required). MUMPI should be ideal for imaging neutral lipophilic chelates such as Tc-99m-PnAO which passively diffuses across the intact blood-brain-barrier and rapidly clears from brain tissue.« less

  6. Banking brain tissue for research.

    PubMed

    Klioueva, Natasja; Bovenberg, Jasper; Huitinga, Inge

    2017-01-01

    Well-characterized human brain tissue is crucial for scientific breakthroughs in research of the human brain and brain diseases. However, the collection, characterization, management, and accessibility of brain human tissue are rather complex. Well-characterized human brain tissue is often provided from private, sometimes small, brain tissue collections by (neuro)pathologic experts. However, to meet the increasing demand for human brain tissue from the scientific community, many professional brain-banking activities aiming at both neurologic and psychiatric diseases as well as healthy controls are currently being initiated worldwide. Professional biobanks are open-access and in many cases run donor programs. They are therefore costly and need effective business plans to guarantee long-term sustainability. Here we discuss the ethical, legal, managerial, and financial aspects of professional brain banks. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain

    PubMed Central

    Courret, Nathalie; Darche, Sylvie; Sonigo, Pierre; Milon, Geneviève; Buzoni-Gâtel, Dominique; Tardieux, Isabelle

    2006-01-01

    The protozoan parasite Toxoplasma gondii enters hosts through the intestinal mucosa and colonizes distant tissues such as the brain, where its progeny persists for a lifetime. We investigated the role of CD11c- and CD11b-expressing leukocytes in T gondii transport during the early step of parasitism from the mouse small intestine and during subsequent parasite localization in the brain. Following intragastric inoculation of cyst-containing parasites in mice, CD11c+ dendritic cells from the intestinal lamina propria, the Peyer patches, and the mesenteric lymph nodes were parasitized while in the blood, parasites were associated with the CD11c- CD11b+ monocytes. Using adoptive transfer experiments, we demonstrated that these parasitized cells triggered a parasitic process in the brain of naive recipient mice. Ex vivo analysis of parasitized leukocytes showed that single tachyzoites remained at the cell periphery, often surrounded by the host cell plasma membrane, but did not divide. Using either a dye that labels circulating leukocytes or an antibody known to prevent CD11b+ circulating leukocytes from leaving the microvascular bed lumen, and chimeric mice in which the hematopoietic cells expressed the green fluorescent protein, we established that T gondii zoites hijacked CD11b+ leukocytes to reach the brain extravascular space. PMID:16051744

  8. Non-invasive monitoring of hemodynamic changes in orthotropic brain tumor

    NASA Astrophysics Data System (ADS)

    Kashyap, Dheerendra; Sharma, Vikrant; Liu, Hanli

    2007-02-01

    Radio surgical interventions such as Gamma Knife and Cyberknife have become attractive as therapeutic interventions. However, one of the drawbacks of cyberknife is radionecrosis, which is caused by excessive radiation to surrounding normal tissues. Radionecrosis occurs in about 10-15% of cases and could have adverse effects leading to death. Currently available imaging techniques have failed to reliably distinguish radionecrosis from tumor growth. Development of imaging techniques that could provide distinction between tumor growth and radionecrosis would give us ability to monitor effects of radiation therapy non-invasively. This paper investigates the use of near infrared spectroscopy (NIRS) as a new technique to monitor the growth of brain tumors. Brain tumors (9L glioma cell line) were implanted in right caudate nucleus of rats (250-300 gms, Male Fisher C) through a guide screw. A new algorithm was developed, which used broadband steady-state reflectance measurements made using a single source-detector pair, to quantify absolute concentrations of hemoglobin derivatives and reduced scattering coefficients. Preliminary results from the brain tumors indicated decreases in oxygen saturation, oxygenated hemoglobin concentrations and increases in deoxygenated hemoglobin concentrations with tumor growth. The study demonstrates that NIRS technology could provide an efficient, noninvasive means of monitoring vascular oxygenation dynamics of brain tumors and further facilitate investigations of efficacy of tumor treatments.

  9. The value of intraoperative ultrasonography during the resection of relapsed irradiated malignant gliomas in the brain.

    PubMed

    Mursch, Kay; Scholz, Martin; Brück, Wolfgang; Behnke-Mursch, Julianne

    2017-01-01

    The aim of this study was to investigate whether intraoperative ultrasonography (IOUS) helped the surgeon navigate towards the tumor as seen in preoperative magnetic resonance imaging and whether IOUS was able to distinguish between tumor margins and the surrounding tissue. Twenty-five patients suffering from high-grade gliomas who were previously treated by surgery and radiotherapy were included. Intraoperatively, two histopathologic samples were obtained a sample of unequivocal tumor tissue (according to anatomical landmarks and the surgeon's visual and tactile impressions) and a small tissue sample obtained using a navigated needle when the surgeon decided to stop the resection. This specimen was considered to be a boundary specimen, where no tumor tissue was apparent. The decision to take the second sample was not influenced by IOUS. The effect of IOUS was analyzed semi-quantitatively. All 25 samples of unequivocal tumor tissue were histopathologically classified as tumor tissue and were hyperechoic on IOUS. Of the boundary specimens, eight were hypoechoic. Only one harbored tumor tissue (P=0.150). Seventeen boundaries were moderately hyperechoic, and these samples contained all possible histological results (i.e., tumor, infiltration, or no tumor). During surgery performed on relapsed, irradiated, high-grade gliomas, IOUS provided a reliable method of navigating towards the core of the tumor. At borders, it did not reliably distinguish between remnants or tumor-free tissue, but hypoechoic areas seldom contained tumor tissue.

  10. Micro-engineering a platform to reconstruct physiology and functionality of the human brain microvasculature in vitro

    NASA Astrophysics Data System (ADS)

    Daghighi, Yasaman; Heidari, Hossein; Taylor, Hayden

    2018-02-01

    A predominant unsolved challenge in tissue engineering is the need of a robust technique for producing vascular networks, particularly when modeling human brain tissue. The availability of reliable in vitro human brain microvasculature models would advance our understanding of its function and would provide a platform for highthroughput drug screening. Current strategies for modeling vascularized brain tissue suffer from limitations such as (1) culturing non-human cell lines, (2) limited multi-cell co-culture, and (3) the effects of neighboring physiologically unrealistic rigid polymeric surfaces, such as solid membranes. We demonstrate a new micro-engineered platform that can address these shortcomings. Specifically, we have designed and prototyped a molding system to enable the precise casting of 100μm-diameter coaxial hydrogel structures laden with the requisite cells to mimic a vascular lumen. Here we demonstrate that a fine wire with diameter 130 μm or a needle with outer diameter 300 μm can be used as a temporary mold insert, and agarose-collagen composite matrix can be cast around these inserts and thermally gelled. When the wire or needle is retracted under the precise positional control afforded by our system, a microchannel is formed which is then seeded with human microvascular endothelial cells. After seven days of culture these cells produce an apparently confluent monolayer on the channel walls. In principle, this platform could be used to create multilayered cellular structures. By arranging a fine wire and a hollow needle coaxially, three distinct zones could be defined in the model: first, the bulk gel surrounding the needle; then, after needle retraction, a cylindrical shell of matrix; and finally, after retraction of the wire, a lumen. Each zone could be independently cell-seeded. To this end, we have also successfully 3D cultured human astrocytes and SY5Y glial cells in our agarose-collagen matrix. Our approach ultimately promises scalable and repeatable production of vascular structures with physiologically realistic mechanical properties.

  11. High Spatial Resolution Imaging Mass Spectrometry of Human Optic Nerve Lipids and Proteins

    NASA Astrophysics Data System (ADS)

    Anderson, David M. G.; Spraggins, Jeffrey M.; Rose, Kristie L.; Schey, Kevin L.

    2015-06-01

    The human optic nerve carries signals from the retina to the visual cortex of the brain. Each optic nerve is comprised of approximately one million nerve fibers that are organized into bundles of 800-1200 fibers surrounded by connective tissue and supportive glial cells. Damage to the optic nerve contributes to a number of blinding diseases including: glaucoma, neuromyelitis optica, optic neuritis, and neurofibromatosis; however, the molecular mechanisms of optic nerve damage and death are incompletely understood. Herein we present high spatial resolution MALDI imaging mass spectrometry (IMS) analysis of lipids and proteins to define the molecular anatomy of the human optic nerve. The localization of a number of lipids was observed in discrete anatomical regions corresponding to myelinated and unmyelinated nerve regions as well as to supporting connective tissue, glial cells, and blood vessels. A protein fragment from vimentin, a known intermediate filament marker for astrocytes, was observed surrounding nerved fiber bundles in the lamina cribrosa region. S100B was also found in supporting glial cell regions in the prelaminar region, and the hemoglobin alpha subunit was observed in blood vessel areas. The molecular anatomy of the optic nerve defined by MALDI IMS provides a firm foundation to study biochemical changes in blinding human diseases.

  12. Arterial Suture in Acute Radiation Sickness - USSR

    DTIC Science & Technology

    1960-06-30

    was surrounded, in the area of the suture, by abundantly developed cicatrical tissue and was tightly adhered to the surrounding tissue. When there...later, the vascular cicatrix represents solid cicatrical tissue, and, on the side of the vascular lumen, is covered with endothelim, Silk threads were

  13. Association of metallothionein-III with oligodendroglial cytoplasmic inclusions in multiple system atrophy.

    PubMed

    Pountney, D L; Dickson, T C; Power, J H T; Vickers, J C; West, A J; Gai, W P

    2011-01-01

    Multiple system atrophy (MSA) is an adult-onset neurodegenerative disease characterised by Parkinsonian and autonomic symptoms and by widespread intracytoplasmic inclusion bodies in oligodendrocytes. These glial cytoplasmic inclusions (GCIs) are comprised of 9-10 nm filaments rich in the protein alpha-synuclein, also found in neuronal inclusion bodies associated with Parkinson's disease. Metallothioneins (MTs) are a class of low-molecular weight (6-7 kDa), cysteine-rich metal-binding proteins the expression of which is induced by heavy metals, glucocorticoids, cytokines and oxidative stress. Recent studies have shown a role for the ubiquitously expressed MT-I/II isoforms in the brain following a variety of stresses, whereas, the function of the brain-specific MT isoform, MT-III, is less clear. MT-III and MT-I/II immunostaining of post-mortem tissue in MSA and normal control human brains showed that the number of MT-III-positive cells is significantly increased in MSA in visual cortex, whereas MT-I/II isoforms showed no significant difference in the distribution of immunopositive cells in MSA compared to normal tissue. GCIs were immunopositive for MT-III, but were immunonegative for the MT-I/II isoforms. Immunofluorescence double labelling showed the co-localisation of alpha-synuclein and MT-III in GCIs in MSA tissue. In isolated GCIs, transmission electron microscopy demonstrated MT-III immunogold labelling of the amorphous material surrounding alpha-synuclein filaments in GCIs. High-molecular weight MT-III species in addition to MT-III monomer were detected in GCIs by Western analysis of the detergent-solubilised proteins of purified GCIs. These results show that MT-III, but not MT-I/II, is a specific component of GCIs, present in abnormal aggregated forms external to the alpha-synuclein filaments.

  14. Effect of vitro preservation on mechanical properties of brain tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Yi-fan; Liu, Li-fu; Niu, Ying; Ma, Jian-li; Wu, Cheng-wei

    2017-05-01

    To develop the protective devices for preventing traumatic brain injuries, it requires the accurate characterization of the mechanical properties of brain tissue. For this, it necessary to elucidate the effect of vitro preservation on the mechanical performance of brain tissue as usually the measurements are carried out in vitro. In this paper, the thermal behavior of brain tissue preserved for various period of time was first investigated and the mechanical properties were also measured. Both reveals the deterioration with prolonged preservation duration. The observations of brain tissue slices indicates the brain tissue experiences karyorrhexis and karyorrhexis in sequence, which accounts for the deterioration phenomena.

  15. A model for optimizing delivery of targeted radionuclide therapies into resection cavity margins for the treatment of primary brain cancers.

    PubMed

    Raghavan, Raghu; Howell, Roger W; Zalutsky, Michael R

    2017-06-01

    Radionuclides conjugated to molecules that bind specifically to cancer cells are of great interest as a means to increase the specificity of radiotherapy. Currently, the methods to disseminate these targeted radiotherapeutics have been either systemic delivery or by bolus injection into the tumor or tumor resection cavity. Herein we model a potentially more efficient method of delivery, namely pressure-driven fluid flow, called convection-enhanced delivery (CED), where a device infuses the molecules in solution (or suspension) directly into the tissue of interest. In particular, we focus on the setting of primary brain cancer after debulking surgery, where the tissue margins surrounding the surgical resection cavity are infiltrated with tumor cells and the most frequent sites of tumor recurrence. We develop the combination of fluid flow, chemical kinetics, and radiation dose models needed to examine such protocols. We focus on Auger electron-emitting radionuclides (e.g. 67 Ga, 77 Br, 111 In, 125 I, 123 I, 193m Pt, 195m Pt) whose short range makes them ideal for targeted therapy in this setting of small foci of tumor spread within normal tissue. By solving these model equations, we confirm that a CED protocol is promising in allowing sufficient absorbed dose to destroy cancer cells with minimal absorbed dose to normal cells at clinically feasible activity levels. We also show that Auger emitters are ideal for this purpose while the longer range alpha particle emitters fail to meet criteria for effective therapy (as neither would energetic beta particle emitters). The model is used with simplified assumptions on the geometry and homogeneity of brain tissue to allow semi-analytic solutions to be displayed, and with the purpose of a first examination of this new delivery protocol proposed for radionuclide therapy. However, we emphasize that it is immediately extensible to personalized therapy treatment planning as we have previously shown for conventional CED, at the price of requiring a fully numerical computerized approach.

  16. Atherosclerosis of the carotid artery: evaluation by magnetic resonance angiography.

    PubMed

    Wildy, K S; Yuan, C; Tsuruda, J S; Ferguson, M S; Wen, N; Subramaniam, D S; Strandness, D E

    1996-01-01

    Carotid artery atherosclerotic plaques (APs) can lead to brain ischemia, an event shown to correlate with both the degree of stenosis and the composition of the AP. Currently, accurate estimates of stenosis can be obtained by either x-ray angiography or three-dimensional time-of-flight (TOF) magnetic resonance angiography (MRA). Our purpose was to determine whether three-dimensional TOF MRA images could also provide information on plaque location, morphology, and composition. Seven pre-endarterectomy patients underwent three-dimensional TOF MRA. After endarterectomy, plaque histology was evaluated. Three-dimensional TOF MRA images contained sufficient soft tissue contrast to differentiate the plaques from the surrounding tissues in all cases. Estimation of plaque morphology had 80% correlation with histology. Finally, intraplaque hemorrhage and calcification were deplicted as regions of moderately high and very low intensity, respectively. These preliminary results suggest that three-dimensional TOF MRA may be useful in studying the development and progression of carotid atherosclerosis.

  17. Evaluation of mitochondrial NADH and brain functions during retraction using a multiparametric monitoring system

    NASA Astrophysics Data System (ADS)

    Barbiro-Michaely, Efrat; Arnon, Hana; Mayevsky, Avraham

    2008-12-01

    The use of retractors is essential in many neurosurgical procedures however, substantial evidence indicates that the use of retractors induce contusion and infraction of the retracted tissue and adjacent regions. The main effect of retraction involved a clear decreased tissue blood flow and oxygenation and a decrease in energy production. In this study we tested the effects of retraction injury in a rat model related to several aspects. We tested the effect of duration and intensity of retraction as well as compared continuous versus intermittent retraction. In order to evaluate the hemodynamic and metabolic condition of the retracted tissue, a unique multiparametric monitoring probe (MPA) was used. This probe contained optical fibers for microcirculatory blood flow (CBF) monitoring by laser Doppler flowmetry and fibers for NADH fluorometry. Additionally, the MPA contains a Camino probe for intracranial pressure (ICP) monitoring, mini-electrode for K+ extracellular level monitoring surrounded by a DC-potential electrode and ECoG electrodes. Our preliminary results showed that retraction which induced an initial ICP pressure of 25mmHg, yielded only minor and reversible changes in cerebral metabolism whereas a pressure of 50mmHg caused a significant decrease in CBF, elevation of NADH and extracellular level of K+. In the intermittent retraction model the negative effect on the cerebral tissue was significantly larger than that of the single continuous retraction model. In conclusion, the use of the MPA for the evaluation of retraction induce injury, may reveal new insights into the damage developed in the brain.

  18. Diagnosis of meningioma by time-resolved fluorescence spectroscopy.

    PubMed

    Butte, Pramod V; Pikul, Brian K; Hever, Aviv; Yong, William H; Black, Keith L; Marcu, Laura

    2005-01-01

    We investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for the intraoperative rapid evaluation of tumor specimens and delineation of tumor from surrounding normal tissue. Tissue autofluorescence is induced with a pulsed nitrogen laser (337 nm, 1.2 ns) and the intensity decay profiles are recorded in the 370 to 500 nm spectral range with a fast digitizer (0.2 ns resolution). Experiments are conducted on excised specimens (meningioma, dura mater, cerebral cortex) from 26 patients (97 sites). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site are used for tissue characterization. A linear discriminant analysis algorithm is used for tissue classification. Our results reveal that meningioma is characterized by unique fluorescence characteristics that enable discrimination of tumor from normal tissue with high sensitivity (>89%) and specificity (100%). The accuracy of classification is found to increase (92.8% cases in the training set and 91.8% in the cross-validated set correctly classified) when parameters from both the spectral and the time domain are used for discrimination. Our findings establish the feasibility of using TR-LIFS as a tool for the identification of meningiomas and enables further development of real-time diagnostic tools for analyzing surgical tissue specimens of meningioma or other brain tumors.

  19. Diagnosis of meningioma by time-resolved fluorescence spectroscopy

    PubMed Central

    Butte, Pramod V.; Pikul, Brian K.; Hever, Aviv; Yong, William H.; Black, Keith L.; Marcu, Laura

    2010-01-01

    We investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for the intraoperative rapid evaluation of tumor specimens and delineation of tumor from surrounding normal tissue. Tissue autofluorescence is induced with a pulsed nitrogen laser (337 nm, 1.2 ns) and the intensity decay profiles are recorded in the 370 to 500 nm spectral range with a fast digitizer (0.2 ns resolution). Experiments are conducted on excised specimens (meningioma, dura mater, cerebral cortex) from 26 patients (97 sites). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site are used for tissue characterization. A linear discriminant analysis algorithm is used for tissue classification. Our results reveal that meningioma is characterized by unique fluorescence characteristics that enable discrimination of tumor from normal tissue with high sensitivity (>89%) and specificity (100%). The accuracy of classification is found to increase (92.8% cases in the training set and 91.8% in the cross-validated set correctly classified) when parameters from both the spectral and the time domain are used for discrimination. Our findings establish the feasibility of using TR-LIFS as a tool for the identification of meningiomas and enables further development of real-time diagnostic tools for analyzing surgical tissue specimens of meningioma or other brain tumors. PMID:16409091

  20. A New Antigen Retrieval Technique for Human Brain Tissue

    PubMed Central

    Byne, William; Haroutunian, Vahram; García-Villanueva, Mercedes; Rábano, Alberto; García-Amado, María; Prensa, Lucía; Giménez-Amaya, José Manuel

    2008-01-01

    Immunohistochemical staining of tissues is a powerful tool used to delineate the presence or absence of an antigen. During the last 30 years, antigen visualization in human brain tissue has been significantly limited by the masking effect of fixatives. In the present study, we have used a new method for antigen retrieval in formalin-fixed human brain tissue and examined the effectiveness of this protocol to reveal masked antigens in tissues with both short and long formalin fixation times. This new method, which is based on the use of citraconic acid, has not been previously utilized in brain tissue although it has been employed in various other tissues such as tonsil, ovary, skin, lymph node, stomach, breast, colon, lung and thymus. Thus, we reported here a novel method to carry out immunohistochemical studies in free-floating human brain sections. Since fixation of brain tissue specimens in formaldehyde is a commonly method used in brain banks, this new antigen retrieval method could facilitate immunohistochemical studies of brains with prolonged formalin fixation times. PMID:18852880

  1. Volumetric spiral chemical shift imaging of hyperpolarized [2-(13) c]pyruvate in a rat c6 glioma model.

    PubMed

    Park, Jae Mo; Josan, Sonal; Jang, Taichang; Merchant, Milton; Watkins, Ron; Hurd, Ralph E; Recht, Lawrence D; Mayer, Dirk; Spielman, Daniel M

    2016-03-01

    MRS of hyperpolarized [2-(13)C]pyruvate can be used to assess multiple metabolic pathways within mitochondria as the (13)C label is not lost with the conversion of pyruvate to acetyl-CoA. This study presents the first MR spectroscopic imaging of hyperpolarized [2-(13)C]pyruvate in glioma-bearing brain. Spiral chemical shift imaging with spectrally undersampling scheme (1042 Hz) and a hard-pulse excitation was exploited to simultaneously image [2-(13)C]pyruvate, [2-(13)C]lactate, and [5-(13)C]glutamate, the metabolites known to be produced in brain after an injection of hyperpolarized [2-(13)C]pyruvate, without chemical shift displacement artifacts. A separate undersampling scheme (890 Hz) was also used to image [1-(13)C]acetyl-carnitine. Healthy and C6 glioma-implanted rat brains were imaged at baseline and after dichloroacetate administration, a drug that modulates pyruvate dehydrogenase kinase activity. The baseline metabolite maps showed higher lactate and lower glutamate in tumor as compared to normal-appearing brain. Dichloroacetate led to an increase in glutamate in both tumor and normal-appearing brain. Dichloroacetate-induced %-decrease of lactate/glutamate was comparable to the lactate/bicarbonate decrease from hyperpolarized [1-(13)C]pyruvate studies. Acetyl-carnitine was observed in the muscle/fat tissue surrounding the brain. Robust volumetric imaging with hyperpolarized [2-(13)C]pyruvate and downstream products was performed in glioma-bearing rat brains, demonstrating changes in mitochondrial metabolism with dichloroacetate. © 2015 Wiley Periodicals, Inc.

  2. Detection of intracellular lactate with localized diffusion { 1H- 13C}-spectroscopy in rat glioma in vivo

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Lin, Joseph C.; DelaBarre, Lance; Ugurbil, Kamil; Garwood, Michael

    2005-11-01

    The aim of this study was to compare the diffusion characteristic of lactate and alanine in a brain tumor model to that of normal brain metabolites known to be mainly intracellular such as N-acetylaspartate or creatine. The diffusion of 13C-labeled metabolites was measured in vivo with localized NMR spectroscopy at 9.4 T (400 MHz) using a previously described localization and editing pulse sequence known as ACED-STEAM ('adiabatic carbon editing and decoupling'). 13C-labeled glucose was administered and the apparent diffusion coefficients of the glycolytic products, { 1H- 13C}-lactate and { 1H- 13C}-alanine, were determined in rat intracerebral 9L glioma. To obtain insights into { 1H- 13C}-lactate compartmentation (intra- versus extracellular), the pulse sequence used very large diffusion weighting (50 ms/μm 2). Multi-exponential diffusion attenuation of the lactate metabolite signals was observed. The persistence of a lactate signal at very large diffusion weighting provided direct experimental evidence of significant intracellular lactate concentration. To investigate the spatial distribution of lactate and other metabolites, 1H spectroscopic images were also acquired. Lactate and choline-containing compounds were consistently elevated in tumor tissue, but not in necrotic regions and surrounding normal-appearing brain. Overall, these findings suggest that lactate is mainly associated with tumor tissue and that within the time-frame of these experiments at least some of the glycolytic product ([ 13C] lactate) originates from an intracellular compartment.

  3. The meninges: new therapeutic targets for multiple sclerosis.

    PubMed

    Russi, Abigail E; Brown, Melissa A

    2015-02-01

    The central nervous system (CNS) largely comprises nonregenerating cells, including neurons and myelin-producing oligodendrocytes, which are particularly vulnerable to immune cell-mediated damage. To protect the CNS, mechanisms exist that normally restrict the transit of peripheral immune cells into the brain and spinal cord, conferring an "immune-specialized" status. Thus, there has been a long-standing debate as to how these restrictions are overcome in several inflammatory diseases of the CNS, including multiple sclerosis (MS). In this review, we highlight the role of the meninges, tissues that surround and protect the CNS and enclose the cerebral spinal fluid, in promoting chronic inflammation that leads to neuronal damage. Although the meninges have traditionally been considered structures that provide physical protection for the brain and spinal cord, new data have established these tissues as sites of active immunity. It has been hypothesized that the meninges are important players in normal immunosurveillance of the CNS but also serve as initial sites of anti-myelin immune responses. The resulting robust meningeal inflammation elicits loss of localized blood-brain barrier (BBB) integrity and facilitates a large-scale influx of immune cells into the CNS parenchyma. We propose that targeting the cells and molecules mediating these inflammatory responses within the meninges offers promising therapies for MS that are free from the constraints imposed by the BBB. Importantly, such therapies may avoid the systemic immunosuppression often associated with the existing treatments. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. An in vitro toxicity evaluation of gold-, PLLA- and PCL-coated silica nanoparticles in neuronal cells for nanoparticle-assisted laser-tissue soldering.

    PubMed

    Koch, Franziska; Möller, Anja-M; Frenz, Martin; Pieles, Uwe; Kuehni-Boghenbor, Kathrin; Mevissen, Meike

    2014-08-01

    The uptake of silica (Si) and gold (Au) nanoparticles (NPs) engineered for laser-tissue soldering in the brain was investigated using microglial cells and undifferentiated and differentiated SH-SY5Y cells. It is not known what effects NPs elicit once entering the brain. Cellular uptake, cytotoxicity, apoptosis, and the potential induction of oxidative stress by means of depletion of glutathione levels were determined after NP exposure at concentrations of 10(3) and 10(9)NPs/ml. Au-, silica poly (ε-caprolactone) (Si-PCL-) and silica poly-L-lactide (Si-PLLA)-NPs were taken up by all cells investigated. Aggregates and single NPs were found in membrane-surrounded vacuoles and the cytoplasm, but not in the nucleus. Both NP concentrations investigated did not result in cytotoxicity or apoptosis, but reduced glutathione (GSH) levels predominantly at 6 and 24h, but not after 12 h of NP exposure in the microglial cells. NP exposure-induced GSH depletion was concentration-dependent in both cell lines. Si-PCL-NPs induced the strongest effect of GSH depletion followed by Si-PLLA-NPs and Au-NPs. NP size seems to be an important characteristic for this effect. Overall, Au-NPs are most promising for laser-assisted vascular soldering in the brain. Further studies are necessary to further evaluate possible effects of these NPs in neuronal cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Development and characterization of non-resonant multiphoton photoacoustic spectroscopy (NMPPAS) for brain tumor margining

    NASA Astrophysics Data System (ADS)

    Dahal, Sudhir

    During tumor removal surgery, due to the problems associated with obtaining high-resolution, real-time chemical images of where exactly the tumor ends and healthy tissue begins (tumor margining), it is often necessary to remove a much larger volume of tissue than the tumor itself. In the case of brain tumor surgery, however, it is extremely unsafe to remove excess tissue. Therefore, without an accurate image of the tumor margins, some of the tumor's finger-like projections are inevitably left behind in the surrounding parenchyma to grow again. For this reason, the development of techniques capable of providing high-resolution real-time images of tumor margins up to centimeters below the surface of a tissue is ideal for the diagnosis and treatment of tumors, as well as surgical guidance during brain tumor excision. A novel spectroscopic technique, non-resonant multiphoton photoacoustic spectroscopy (NMPPAS), is being developed with the capabilities of obtaining high-resolution subsurface chemical-based images of underlying tumors. This novel technique combines the strengths of multiphoton tissue spectroscopy and photoacoustic spectroscopy into a diagnostic methodology that will, ultimately, provide unparalleled chemical information and images to provide the state of sub-surface tissues. The NMPPAS technique employs near-infrared light (in the diagnostic window) to excite ultraviolet and/or visible light absorbing species deep below the tissue's surface. Once a multiphoton absorption event occurs, non-radiative relaxation processes generates a localized thermal expansion and subsequent acoustic wave that can be detected using a piezoelectric transducer. Since NMPPAS employs an acoustic detection modality, much deeper diagnoses can be performed than that is possible using current state of the art high-resolution chemical imaging techniques such as multiphoton fluorescence spectroscopy. NMPPAS was employed to differentiate between excised brain tumors (astrocytoma III) and healthy tissue with over 99% accuracy. NMPPAS spectral features showed evident differences between tumor and healthy tissues, and ratiometric analysis ensured that only a few wavelengths could be used for excitation instead of using numerous wavelength excitations to create spectra. This process would significantly reduce the analysis time while maintaining the same degree of accuracy. Tissue phantoms were fabricated in order to characterize the properties of NMPPAS. Scattering particles were doped into the phantoms to simulate their light scattering properties to real tissues. This allowed for better control over shape, size, reproducibility and doping in the sample while maintaining the light-tissue interaction properties of real tissue. To make NMPPAS viable for clinical applications, the technique was characterized to determine the spatial (lateral and longitudinal) resolution, depth of penetration and its ability to image in three-dimension through layers of tissue. Both resolutions were determined to be near-cellular level resolution (50-70 microm), obtained initially with the aid of the technique of multiphoton fluorescence, and later verified using NMPPAS imaging. Additionally, the maximum depth of penetration and detection was determined to be about 1.4cm, making the technique extremely suitable to margin tumors from underlying tissues in the brain. The capability of NMPPAS to detect and image layers that lie beneath other structures and blood vessels was also investigated. Three-dimensional images were obtained for the first time using NMPPAS. The images were obtained from different depths and structures were imaged through other layers of existing structures in the sample. This verified that NMPPAS was capable of detecting and imaging structures that lie embedded within the tissues. NMPPAS images of embedded structures were also obtained with the presence of hemoglobin, which is potentially the largest source of background in blood-perfused tissues, thus showing that the technique is capable of detecting and differentiating in blood-perfused samples.

  6. Neuroimaging of the Wernicke–Korsakoff Syndrome

    PubMed Central

    Sullivan, Edith V.; Pfefferbaum, Adolf

    2009-01-01

    Aim: Presented is the neuroradiological signature of acute Wernicke's encephalopathy (WE), derived from different types of magnetic resonance imaging (MRI) sequences. WE results from thiamine depletion, and its most typical antecedent is chronic alcohol dependence. Brain regions observed with in vivo MRI affected in acute WE include the mammillary bodies, periaqueductal and periventricular gray matter, collicular bodies and thalamus. These affected areas are usually edematous and are best visualized and quantified with MRI sequences that highlight such tissue. Following the acute WE phase and resolution of edema and inflammation of affected brain tissue, WE, if not adequately treated with thiamine repletion, can herald Korsakoff's syndrome (KS), with its symptomatic hallmark of global amnesia, that is, the inability to commit newly encountered (episodic) information to memory for later recall or recognition. Methods: Neuropathology of KS detectable with MRI has a different neuroradiological signature from the acute stage and can be observed as tissue shrinkage or atrophy of selective brain structures, including the mammillary bodies and thalamus and ventricular expansion, probably indicative of atrophy of surrounding gray matter nuclei. Quantification of these and additional gray matter structures known to underlie global amnesia reveal substantial bilateral volume deficits in the hippocampus, in addition to the mammillary bodies and thalamus, and modest deficits in the medial septum/diagonal band of Broca. The infratentorium is also affected, exhibiting volume deficits in cerebellar hemispheres, anterior superior vermis and pons, contributing to ataxia of gait and stance. Results: Consideration of WKS structural brain changes in the context of the neuropathology of non-WKS alcoholism revealed a graded pattern of volume deficits, from mild in non-WKS alcoholics to moderate or severe in WKS, in the mammillary bodies, hippocampus, thalamus, cerebellum and pons. The development and resolution of brain structures affected in acute, chronic and treated WE was verified in longitudinal MRI study of rats that modeled of the interaction of extensive alcohol consumption and thiamine depletion and repletion. Conclusions: Thus, neuroradiological examination with MRI is valuable in the diagnosis of acute WE and enables in vivo tracking of the progression of the brain pathology of WE from the acute pathological phase to resolution with thiamine treatment or to progression to KS without treatment. Further, in vivo MRI facilitates translational studies to model antecedent conditions contributing to the development, sequelae and treatment of WE. PMID:19066199

  7. Neuroimaging of the Wernicke-Korsakoff syndrome.

    PubMed

    Sullivan, Edith V; Pfefferbaum, Adolf

    2009-01-01

    Presented is the neuroradiological signature of acute Wernicke's encephalopathy (WE), derived from different types of magnetic resonance imaging (MRI) sequences. WE results from thiamine depletion, and its most typical antecedent is chronic alcohol dependence. Brain regions observed with in vivo MRI affected in acute WE include the mammillary bodies, periaqueductal and periventricular gray matter, collicular bodies and thalamus. These affected areas are usually edematous and are best visualized and quantified with MRI sequences that highlight such tissue. Following the acute WE phase and resolution of edema and inflammation of affected brain tissue, WE, if not adequately treated with thiamine repletion, can herald Korsakoff's syndrome (KS), with its symptomatic hallmark of global amnesia, that is, the inability to commit newly encountered (episodic) information to memory for later recall or recognition. Neuropathology of KS detectable with MRI has a different neuroradiological signature from the acute stage and can be observed as tissue shrinkage or atrophy of selective brain structures, including the mammillary bodies and thalamus and ventricular expansion, probably indicative of atrophy of surrounding gray matter nuclei. Quantification of these and additional gray matter structures known to underlie global amnesia reveal substantial bilateral volume deficits in the hippocampus, in addition to the mammillary bodies and thalamus, and modest deficits in the medial septum/diagonal band of Broca. The infratentorium is also affected, exhibiting volume deficits in cerebellar hemispheres, anterior superior vermis and pons, contributing to ataxia of gait and stance. Consideration of WKS structural brain changes in the context of the neuropathology of non-WKS alcoholism revealed a graded pattern of volume deficits, from mild in non-WKS alcoholics to moderate or severe in WKS, in the mammillary bodies, hippocampus, thalamus, cerebellum and pons. The development and resolution of brain structures affected in acute, chronic and treated WE was verified in longitudinal MRI study of rats that modeled of the interaction of extensive alcohol consumption and thiamine depletion and repletion. Thus, neuroradiological examination with MRI is valuable in the diagnosis of acute WE and enables in vivo tracking of the progression of the brain pathology of WE from the acute pathological phase to resolution with thiamine treatment or to progression to KS without treatment. Further, in vivo MRI facilitates translational studies to model antecedent conditions contributing to the development, sequelae and treatment of WE.

  8. Periventricular Nodular Heterotopia: Detection of Abnormal Microanatomic Fiber Structures with Whole-Brain Diffusion MR Imaging Tractography.

    PubMed

    Farquharson, Shawna; Tournier, J-Donald; Calamante, Fernando; Mandelstam, Simone; Burgess, Rosemary; Schneider, Michal E; Berkovic, Samuel F; Scheffer, Ingrid E; Jackson, Graeme D; Connelly, Alan

    2016-12-01

    Purpose To investigate whether it is possible in patients with periventricular nodular heterotopia (PVNH) to detect abnormal fiber projections that have only previously been reported in the histopathology literature. Materials and Methods Whole-brain diffusion-weighted (DW) imaging data from 14 patients with bilateral PVNH and 14 age- and sex-matched healthy control subjects were prospectively acquired by using 3.0-T magnetic resonance (MR) imaging between August 1, 2008, and December 5, 2012. All participants provided written informed consent. The DW imaging data were processed to generate whole-brain constrained spherical deconvolution (CSD)-based tractography data and super-resolution track-density imaging (TDI) maps. The tractography data were overlaid on coregistered three-dimensional T1-weighted images to visually assess regions of heterotopia. A panel of MR imaging researchers independently assessed each case and indicated numerically (no = 1, yes = 2) as to the presence of abnormal fiber tracks in nodular tissue. The Fleiss κ statistical measure was applied to assess the reader agreement. Results Abnormal fiber tracks emanating from one or more regions of heterotopia were reported by all four readers in all 14 patients with PVNH (Fleiss κ = 1). These abnormal structures were not visible on the tractography data from any of the control subjects and were not discernable on the conventional T1-weighted images of the patients with PVNH. Conclusion Whole-brain CSD-based fiber tractography and super-resolution TDI mapping reveals abnormal fiber projections in nodular tissue suggestive of abnormal organization of white matter (with abnormal fibers both within nodules and projecting to the surrounding white matter) in patients with bilateral PVNH. © RSNA, 2016.

  9. SU-E-T-230: Creating a Large Number of Focused Beams with Variable Patient Head Tilt to Improve Dose Fall-Off for Brain Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, J; Ma, L

    2015-06-15

    Purpose: To develop a treatment delivery and planning strategy by increasing the number of beams to minimize dose to brain tissue surrounding a target, while maximizing dose coverage to the target. Methods: We analyzed 14 different treatment plans via Leksell PFX and 4C. For standardization, single tumor cases were chosen. Original treatment plans were compared with two optimized plans. The number of beams was increased in treatment plans by varying tilt angles of the patient head, while maintaining original isocenter and the beam positions in the x-, y- and z-axes, collimator size, and beam blocking. PFX optimized plans increased beammore » numbers with three pre-set tilt angles, 70, 90, 110, and 4C optimized plans increased beam numbers with tilt angles increasing arbitrarily from range of 30 to 150 degrees. Optimized treatment plans were compared dosimetrically with original treatment plans. Results: Comparing total normal tissue isodose volumes between original and optimized plans, the low-level percentage isodose volumes decreased in all plans. Despite the addition of multiple beams up to a factor of 25, beam-on times for 1 tilt angle versus 3 or more tilt angles were comparable (<1 min.). In 64% (9/14) of the studied cases, the volume percentage decrease by >5%, with the highest value reaching 19%. The addition of more tilt angles correlates to a greater decrease in normal brain irradiated volume. Selectivity and coverage for original and optimized plans remained comparable. Conclusion: Adding large number of additional focused beams with variable patient head tilt shows improvement for dose fall-off for brain radiosurgery. The study demonstrates technical feasibility of adding beams to decrease target volume.« less

  10. Commonness and ecology, but not bigger brains, predict urban living in birds.

    PubMed

    Dale, Svein; Lifjeld, Jan T; Rowe, Melissah

    2015-04-11

    Several life history and ecological variables have been reported to affect the likelihood of species becoming urbanized. Recently, studies have also focused on the role of brain size in explaining ability to adapt to urban environments. In contrast, however, little is known about the effect of colonization pressure from surrounding areas, which may confound conclusions about what makes a species urban. We recorded presence/absence data for birds in 93 urban sites in Oslo (Norway) and compared these with species lists generated from 137 forest and 51 farmland sites surrounding Oslo which may represent source populations for colonization. We found that the frequency (proportion of sites where present) of a species within the city was strongly and positively associated with its frequency in sites surrounding the city, as were both species breeding habitat and nest site location. In contrast, there were generally no significant effects of relative brain mass or migration on urban occupancy. Furthermore, analyses of previously published data showed that urban density of birds in six other European cities was also positively and significantly associated with density in areas outside cities, whereas relative brain mass showed no such relationship. These results suggest that urban bird communities are primarily determined by how frequently species occurred in the surrounding landscapes and by features of ecology (i.e. breeding habitat and nest site location), whereas species' relative brain mass had no significant effects.

  11. Mannitol Improves Brain Tissue Oxygenation in a Model of Diffuse Traumatic Brain Injury.

    PubMed

    Schilte, Clotilde; Bouzat, Pierre; Millet, Anne; Boucheix, Perrine; Pernet-Gallay, Karin; Lemasson, Benjamin; Barbier, Emmanuel L; Payen, Jean-François

    2015-10-01

    Based on evidence supporting a potential relation between posttraumatic brain hypoxia and microcirculatory derangements with cell edema, we investigated the effects of the antiedematous agent mannitol on brain tissue oxygenation in a model of diffuse traumatic brain injury. Experimental study. Neurosciences and physiology laboratories. Adult male Wistar rats. Thirty minutes after diffuse traumatic brain injury (impact-acceleration model), rats were IV administered with either a saline solution (traumatic brain injury-saline group) or 20% mannitol (1 g/kg) (traumatic brain injury-mannitol group). Sham-saline and sham-mannitol groups received no insult. Two series of experiments were conducted 2 hours after traumatic brain injury (or equivalent) to investigate 1) the effect of mannitol on brain edema and oxygenation, using a multiparametric magnetic resonance-based approach (n = 10 rats per group) to measure the apparent diffusion coefficient, tissue oxygen saturation, mean transit time, and blood volume fraction in the cortex and caudoputamen; 2) the effect of mannitol on brain tissue PO2 and on venous oxygen saturation of the superior sagittal sinus (n = 5 rats per group); and 3) the cortical ultrastructural changes after treatment (n = 1 per group, taken from the first experiment). Compared with the sham-saline group, the traumatic brain injury-saline group had significantly lower tissue oxygen saturation, brain tissue PO2, and venous oxygen saturation of the superior sagittal sinus values concomitant with diffuse brain edema. These effects were associated with microcirculatory collapse due to astrocyte swelling. Treatment with mannitol after traumatic brain injury reversed all these effects. In the absence of traumatic brain injury, mannitol had no effect on brain oxygenation. Mean transit time and blood volume fraction were comparable between the four groups of rats. The development of posttraumatic brain edema can limit the oxygen utilization by brain tissue without evidence of brain ischemia. Our findings indicate that an antiedematous agent such as mannitol can improve brain tissue oxygenation, possibly by limiting astrocyte swelling and restoring capillary perfusion.

  12. Neurotrophin-3 provides neuroprotection via TrkC receptor dependent pErk5 activation in a rat surgical brain injury model.

    PubMed

    Akyol, Onat; Sherchan, Prativa; Yilmaz, Gokce; Reis, Cesar; Ho, Wingi Man; Wang, Yuechun; Huang, Lei; Solaroglu, Ihsan; Zhang, John H

    2018-06-05

    Surgical brain injury (SBI) which occurs due to the inadvertent injury inflicted to surrounding brain tissue during neurosurgical procedures can potentiate blood brain barrier (BBB) permeability, brain edema and neurological deficits. This study investigated the role of neurotrophin 3 (NT-3) and tropomyosin related kinase receptor C (TrkC) against brain edema and neurological deficits in a rat SBI model. SBI was induced in male Sprague Dawley rats by partial right frontal lobe resection. Temporal expression of endogenous NT-3 and TrkC was evaluated at 6, 12, 24 and 72 h after SBI. SBI rats received recombinant NT-3 which was directly applied to the brain surgical injury site using gelfoam. Brain edema and neurological function was evaluated at 24 and 72 h after SBI. Small interfering RNA (siRNA) for TrkC and Rap1 was administered via intracerebroventricular injection 24 h before SBI. BBB permeability assay and western blot was performed at 24 h after SBI. Endogenous NT-3 was decreased and TrkC expression increased after SBI. Topical administration of recombinant NT-3 reduced brain edema, BBB permeability and improved neurological function after SBI. Recombinant NT-3 administration increased the expression of phosphorylated Rap1 and Erk5. The protective effect of NT-3 was reversed with TrkC siRNA but not Rap1 siRNA. Topical application of NT-3 reduced brain edema, BBB permeability and improved neurological function after SBI. The protective effect of NT-3 was possibly mediated via TrkC dependent activation of Erk5. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Brain metastasis detection by resonant Raman optical biopsy method

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Cheng, Gangge; Zhou, Lixin; Zhang, Chunyuan; Pu, Yang; Li, Zhongwu; Liu, Yulong; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2014-03-01

    Resonant Raman (RR) spectroscopy provides an effective way to enhance Raman signal from particular bonds associated with key molecules due to changes on a molecular level. In this study, RR is used for detection of human brain metastases of five kinds of primary organs of lung, breast, kidney, rectal and orbital in ex-vivo. The RR spectra of brain metastases cancerous tissues were measured and compared with those of normal brain tissues and the corresponding primary cancer tissues. The differences of five types of brain metastases tissues in key bio-components of carotene, tryptophan, lactate, alanine and methyl/methylene group were investigated. The SVM-KNN classifier was used to categorize a set of RR spectra data of brain metastasis of lung cancerous tissues from normal brain tissue, yielding diagnostic sensitivity and specificity at 100% and 75%, respectively. The RR spectroscopy may provide new moleculebased optical probe tools for diagnosis and classification of brain metastatic of cancers.

  14. [Facial nerve injuries cause changes in central nervous system microglial cells].

    PubMed

    Cerón, Jeimmy; Troncoso, Julieta

    2016-12-01

    Our research group has described both morphological and electrophysiological changes in motor cortex pyramidal neurons associated with contralateral facial nerve injury in rats. However, little is known about those neural changes, which occur together with changes in surrounding glial cells. To characterize the effect of the unilateral facial nerve injury on microglial proliferation and activation in the primary motor cortex. We performed immunohistochemical experiments in order to detect microglial cells in brain tissue of rats with unilateral facial nerve lesion sacrificed at different times after the injury. We caused two types of lesions: reversible (by crushing, which allows functional recovery), and irreversible (by section, which produces permanent paralysis). We compared the brain tissues of control animals (without surgical intervention) and sham-operated animals with animals with lesions sacrificed at 1, 3, 7, 21 or 35 days after the injury. In primary motor cortex, the microglial cells of irreversibly injured animals showed proliferation and activation between three and seven days post-lesion. The proliferation of microglial cells in reversibly injured animals was significant only three days after the lesion. Facial nerve injury causes changes in microglial cells in the primary motor cortex. These modifications could be involved in the generation of morphological and electrophysiological changes previously described in the pyramidal neurons of primary motor cortex that command facial movements.

  15. Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue

    NASA Astrophysics Data System (ADS)

    Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw

    2014-01-01

    We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.

  16. Psychiatric Brain Banking: Three Perspectives on Current Trends and Future Directions

    PubMed Central

    Deep-Soboslay, Amy; Benes, Francine M.; Haroutunian, Vahram; Ellis, Justin K.; Kleinman, Joel E.; Hyde, Thomas M.

    2011-01-01

    Introduction The study of postmortem human brain tissue is central to the advancement of the neurobiological studies of psychiatric illness, particularly for the study of brain-specific isoforms and molecules. Methods The state-of-the-art methods and recommendations for maintaining a successful brain bank for psychiatric disorders are discussed, using the convergence of viewpoints from three brain collections, the National Institute of Mental Health Brain Collection (NIMH), the Harvard Brain Tissue Resource Center (HBTRC), and the Mt. Sinai School of Medicine Brain Bank (MSSM-BB), with diverse research interests and divergent approaches to tissue acquisition. Results While the NIMH obtains donations from medical examiners for its collection, and places particular emphasis on clinical diagnosis, toxicology, and building lifespan control cohorts, the HBTRC is uniquely designed as a repository whose sole purpose is to collect large-volume, high quality brain tissue from community-based donors based on relationships across an expansive nationwide network, and places emphasis on the accessibility of its bank in disseminating tissue and related data to research groups worldwide. The MSSM-BB collection has shown that, with dedication, prospective recruitment is a successful approach to tissue donation, and places particular emphasis on rigorous clinical diagnosis through antemortem contact with donors. The MSSM-BB places great importance on stereological tissue sampling methods for neuroanatomical studies, and frozen tissue sampling approaches that enable multiple assessments (RNA, DNA, protein, enzyme activity, binding, etc.) of the same tissue block. Promising scientific approaches for elucidating the molecular and cellular pathways in brain that may contribute to schizophrenia and/or bipolar disorder, such as cell culture techniques and microarray-based gene expression and genotyping studies are briefly discussed. Conclusions Despite unique perspectives from three established brain collections, there is a consensus that (1) diverse strategies for tissue acquisition, (2) rigor in tissue and diagnostic characterization, (3) the importance of sample accessibility, and (4) continual application of innovative scientific approaches to the study of brain tissue are all integral to the success and future of psychiatric brain banking. The future of neuropsychiatric research depends upon in the availability of high quality brain specimens from large numbers of subjects, including non-psychiatric controls. PMID:20673875

  17. Correlation between the distribution of 3H-labelled enkephalin in rat brain and the anatomical regions involved in enkephalin-induced seizures.

    PubMed

    Haffmans, J; Blankwater, Y J; Ukponmwan, O E; Zijlstra, F J; Vincent, J E; Hespe, W; Dzoljic, M R

    1983-08-01

    The correlation between the distribution of the intraventricularly (i.v.t.) administered delta agonist [3H](D-ala2,D-leu5)-enkephalin ([3H]DADL) and the anatomical regions involved in enkephalin-induced seizures has been studied in rat by using an autoradiographic method and recording of the electromyogram (EMG) and the electroencephalogram (EEG). The results indicate that within 10 min, the radioactivity of the intraventricularly administered drug reached all parts of the ventricular system, including the central canal of the spinal cord. However, within 2.5 min after the intraventricular administration of [3H]DADL, which corresponds to the onset of DADL-induced seizures, the substance appeared mainly in the left lateral ventricle and occasionally in the third ventricle. During the first 2.5 min the substance penetrated regularly into the surrounding periventricular tissue of the striatum, septum and hippocampus to a depth of about 100 microns. The most intensive and long-lasting epileptic discharges, exceeding 30 min were observed in the hippocampus, in contrast to the mild and short-lasting electrophysiological responses of the septum and corpus striatum. The experiments suggest that the short onset of enkephalin-induced excitatory phenomena is due to the rapid distribution and penetration of the substance in the surrounding periventricular tissue. According to these data, it is proposed that activation of delta opiate receptors, localized within the first 100 microns of the periventricular tissue, mainly in the hippocampus, is essential for the triggering of endorphin-induced seizure activity.

  18. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).

    PubMed

    Alam, Mahtab; Truong, Dennis Q; Khadka, Niranjan; Bikson, Marom

    2016-06-21

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability-enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm(2)) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4  ×  1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring's diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation ([Formula: see text] · (σ [Formula: see text] V)  =  0) was solved for cortical electric field, which was interpreted using physiological assumptions to correlate with stimulation and modulation. Cortical field intensity was predicted to increase with increasing ring diameter at the cost of focality while uni-directionality decreased. Additional surrounding ring electrodes increased uni-directionality while lowering cortical field intensity and increasing focality; though, this effect saturated and more than 4 surround electrode would not be justified. Using a range of concentric HD-tDCS montages, we showed that cortical region of influence can be controlled while balancing other design factors such as intensity at the target and uni-directionality. Furthermore, the evaluated concentric HD-tDCS approaches can provide categorical improvements in targeting compared to conventional tDCS. Hypothesis driven clinical trials, based on specific target engagement, would benefit by this more precise method of stimulation that could avoid potentially confounding brain regions.

  19. Science and fate: Lina Stern (1878-1968), a neurophysiologist and biochemist.

    PubMed

    Vein, Alla A

    2008-01-01

    Lina Stern (1878-1968), a neurophysiologist and biochemist, was born in Russia. She studied at the University of Geneva, Switzerland, where, after graduating, she conducted original research in physiology and biochemistry. In 1918, Stern was the first woman to be awarded a professional title at the University of Geneva and headed the department of Physiological Chemistry. She is deservedly considered to be one of the first scientists to entertain the concept of a blood-brain barrier. In 1929, Stern founded the Institute of Physiology in Moscow, of which she was director until 1948, when it was discontinued. Under her leadership, multidisciplinary groups of colleagues worked on the problems of the blood-brain and tissue-brain barriers and homeostasis of the brain. In 1939, Stern was elected full member of the Academy of Sciences and became its first female member ever. Most scientists manage to conduct their research by adjusting to the political and social situations surrounding them. Lina Stern did not follow this path. This small woman of complete devotion to science took the drastic decisions that altered her life. Though destiny was not kind to her, Lina Stern did not compromise. Despite a threat of execution, prolonged imprisonment, and exile she was never broken as a scientist and always maintained her dignity.

  20. EG-08IDH MUTATIONS IN GLIOMAS ASSOCIATED WITH ENCHONDROMATOSIS

    PubMed Central

    Nicholas, M. Kelly; Joseph, Loren; Venneti, Sriram; Daher, Ahmad; Pytel, Peter

    2014-01-01

    The enchondromatoses, Ollier's disease and Maffucci syndrome, are non-heritable developmental disorders characterized by multiple enchondromas (Olllier's) in association with hemangiomas (Maffucci). Glial neoplasms are reported in both disorders but a pathogenic mechanism underlying this association has not been identified. We report a case of anaplastic astrocytoma in a 23 year old man with Maffucci syndrome whose tumor carried a substitution mutation of arginine for cysteine at position 132 (R132C) of the isocitrate dehydrogenase 1 (IDH1) protein. This mutation, commonly found in Maffucci-associated enchondromas and hemangiomas, was not detected on routine immunohistochemical (IHC) analysis of the astrocytoma using the R132H mutation-specific antibody, commonly applied in clinical laboratories. The R132C mutation was detected by polymerase chain reaction (PCR) and subsequently confirmed using a SNaPshot assay. Because somatic mosaic IDH mutations are associated with enchondromas and hemangiomas in Maffucci syndrome, we looked for the R132C mutation in a hemangioma, peripheral blood mononuclear cells (PBMNC) and histologically normal brain surrounding the tumor from this patient. The mutation was present in the hemangioma, absent in PBMNC, and present in 2% of alleles in ‘normal’ brain. The low level in surrounding brain tissue is consistent with tumor cell infiltration, not mosaicism, as a S173T p53 mutation in the tumor showed similar results. Using IHC, we further demonstrated that the mutant IDH1 protein in this glioma functions as an oncometabolite. Two repressive histone trimethylation marks were strongly positive in the tumor, supporting a role for 2-hydroxyglutarate in the inhibition of histone demethylation. Together, these data demonstrate that an IDH1 mutation common in enchodromatoses underlies the association of glial tumors reported in both Ollier's disease and Maffucci syndrome.

  1. Laser applications in neurosurgery

    NASA Astrophysics Data System (ADS)

    Cerullo, Leonard J.

    1985-09-01

    The "false start" of the laser in neurosurgery should not be misconstrued as a denial of the inherent advantages of precision and gentleness in dealing with neural tissue. Rather, early investigators were frustrated by unrealistic expectations, cumbersome equipment, and a general ignorance of microtechnique. By the early 70s, microneurosurgery was well established, surgical laser equipment for free hand and microlinked application had been developed, and a more realistic view of the limitations of the laser had been established. Consequently, the late 70s really heralded the renaissance of the laser in neurosurgery. Since then, there has been an overwhelming acceptance of the tool in a variety of clinical situations, broadly categorized in five groups. 1)|Perhaps the most generally accepted area is in the removal of extra-axial tumors of the brain and spinal cord. These tumors, benign by histology but treacherous by location, do not present until a significant amount of neurological compensation has already occurred. The application of additional trauma to the neural tissue, whether by further tumor growth or surgical manipulation, frequently results in irreversible damage. Here, the ability of the laser to vaporize tissue, in a fairly hemostatic fashion, without mechanical or thermal damage to sensitive surrounding tissues, is essential. 2)|The ability to incise delicate neural tissue with minimal spread of thermal destruction to adjacent functioning tissue makes the laser the ideal instrument when tumors deep under the surface are encountered in the brain or spinal cord. Thus, the second group of applications is in the transgression of normal neural structures to arrive at deeper pathological tissue. 3)|The third area of benefit for the laser in neurosurgery has been in the performance of neuroablative procedures, calling for deliberate destruction of functioning neural tissue in a controlled fashion. Again, the precision and shape confinement of the destructive beam makes the laser superior to all conventional destructive instruments. 4)|The coagulative properties of certain chromophoric lasers has allowed a new attack on certain vascular tumors and malformations of the brain and spinal cord which had been operated only with trepidation or not at all. Early reports are sobering but encouraging. 5)|Finally, the use of the laser with tissue photosensitization, albeit it in its infancy, offers great promise. This is particularly true in the case of primary brain cancer, where the infiltration of tumorous tissue among normal pathways precludes the classical oncologic surgery practice of resection of a "safe margin". The ability to track and destroy these cells, without affecting adjacent cells, may be the greatest single contribution of the laser to neurosurgery in the future. The present applications of the laser are relatively crude by comparison with what is expected. Endoscopic laser surgery, both vascular and subarachnoid, will diminish morbidity and improve results. From the exotic treatment of aneurysms and arteriovenous malformations of the brain to the mundane care of herniated disks of the spine, it is anticipated that the laser will play an important role. The use of a laser, coupled with computerized imagining devices, will allow increasing precision in arrival to and treatment of deep seated lesions of the brain, brainstem, and spinal cord. The use of different wavelengths, perhaps in the X-ray and ultraviolet spectra, will allow increasing precision with decreasing invasion. Manipulation of wavelength, time, and treatment area will allow subcellular surgery, perhaps in the treatment of personality disorders and movement disorders as well as epilepsy. Tissue welding will allow heightened regenerative and recuperative powers to be exploited. The possibility of laser biostimulation must also be considered. In short, it appears that the future of the laser in neurosurgery is limited only by the imagination of the surgeons. Certainly, the opportunity to exploit new wavelengths offered by the FEL is the key to the future.

  2. ADAM13 function is required in the 3 dimensional context of the embryo during cranial neural crest cell migration in Xenopus laevis

    PubMed Central

    Cousin, Hélène; Abbruzzese, Genevieve; McCusker, Catherine; Alfandari, Dominique

    2012-01-01

    The cranial neural crest (CNC) is a population of cells that arises from the lateral part of the developing brain, migrates ventrally and coordinates the entire craniofacial development of vertebrates. Many molecules are involved in CNC migration including the transmembrane metalloproteases ADAM13 and 19. We have previously shown that these ADAMs cleave a number of extracellular proteins and modify the transcription of a number of genes, and that both of these activities are important for cell migration. Here we show that the knock down of ADAM13 inhibits CNC migration in vivo but not in vitro, indicating that ADAM13 function is required in the 3-dimentional context of the embryo. We further show that the migration of CNC that do not express ADAM13 and ADAM19 can be rescued in vivo by co-grafting wild type CNC. Furthermore, the migration of CNC lacking ADAM13 can be rescued by mechanically separating the CNC from the surrounding ectoderm and mesoderm. Finally, we show that ADAM13 function is autonomous to CNC tissue, as the migration of morphant CNC can only be rescued by ADAM13 expression in the CNC and not the surrounding tissues. Together our results suggest that ADAM13 changes CNC interaction with the extracellular environment and that this change is necessary for their migration in vivo. PMID:22683825

  3. Expression of SRY-related HMG Box Transcription Factors (Sox) 2 and 9 in Craniopharyngioma Subtypes and Surrounding Brain Tissue.

    PubMed

    Thimsen, Vivian; John, Nora; Buchfelder, Michael; Flitsch, Jörg; Fahlbusch, Rudolf; Stefanits, Harald; Knosp, Engelbert; Losa, Marco; Buslei, Rolf; Hölsken, Annett

    2017-11-20

    Stem cells have been discovered as key players in the genesis of different neoplasms including craniopharyngioma (CP), a rare tumour entity in the sellar region. Sox2 and Sox9 are well-known stem cell markers involved in pituitary development. In this study we analysed the expression of both transcription factors using immunohistochemistry in a large cohort of 64 adamantinomatous (aCP) and 9 papillary CP (pCP) and quantitative PCR in 26 aCP and 7 pCP. Whereas immunohistochemically Sox2+ cells were verifiable in only five aCP (7.8%) and in 39.1% of the respective surrounding cerebral tissue, pCP specimens appeared always negative. In contrast, Sox9 was detectable in all tumours with a significantly higher expression in aCP compared to pCP (protein, p < 0.0001; mRNA p = 0.0484) This was also true for the respective tumour adjacent CNS where 63 aCP (98.4%) and six pCP (66.7%) showed Sox9+ cells. We further confirmed absence of Sox9 expression in nuclear β-catenin accumulating cells of aCP. Our results point to the conclusion that Sox2 and Sox9, seem to play essential roles not only in the specific formation of aCP, but also in processes involving the cerebral tumour environment, which needs to be illuminated in the future.

  4. Electro-Quasistatic Simulations in Bio-Systems Engineering and Medical Engineering

    NASA Astrophysics Data System (ADS)

    van Rienen, U.; Flehr, J.; Schreiber, U.; Schulze, S.; Gimsa, U.; Baumann, W.; Weiss, D. G.; Gimsa, J.; Benecke, R.; Pau, H.-W.

    2005-05-01

    Slowly varying electromagnetic fields play a key role in various applications in bio-systems and medical engineering. Examples are the electric activity of neurons on neurochips used as biosensors, the stimulating electric fields of implanted electrodes used for deep brain stimulation in patients with Morbus Parkinson and the stimulation of the auditory nerves in deaf patients, respectively. In order to simulate the neuronal activity on a chip it is necessary to couple Maxwell's and Hodgkin-Huxley's equations. First numerical results for a neuron coupling to a single electrode are presented. They show a promising qualitative agreement with the experimentally recorded signals. Further, simulations are presented on electrodes for deep brain stimulation in animal experiments where the question of electrode ageing and energy deposition in the surrounding tissue are of major interest. As a last example, electric simulations for a simple cochlea model are presented comparing the field in the skull bones for different electrode types and stimulations in different positions.

  5. Medical Applications of Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Prezado, Yolanda; Martínez-Rovira, Immaculada

    This chapter describes the state-of-art of synchrotron radiation therapies in the treatment of radioresistant tumors. The tolerance of the surrounding healthy tissue severely limits the achievement of a curative treatment for some brain tumors, like gliomas. This restriction is especially important in children, due to the high risk of complications in the development of the central nervous system. In addition, the treatment of tumors close to an organ at risk, like the spinal cord, is also restrained. One possible solution is the development of new radiotherapy techniques would exploit radically different irradiation modes, as it is the case of synchrotron radiotherapies. Their distinct features allow to modify the biological equivalent doses. In this chapter the three new approaches under development at the European Synchrotron Radiation Facility (ESRF), in Grenoble (France), will be described, namely: stereotactic synchrotron radiation therapy, microbeam radiation therapy and minibeam radiation therapy. The promising results obtained in the treatment of high grade brain tumors in preclinical studies have paved the way to the forthcoming clinical trials, currently in preparation.

  6. Imaging the Perivascular Space as a Potential Biomarker of Neurovascular and Neurodegenerative Diseases.

    PubMed

    Ramirez, Joel; Berezuk, Courtney; McNeely, Alicia A; Gao, Fuqiang; McLaurin, JoAnne; Black, Sandra E

    2016-03-01

    Although the brain lacks conventional lymphatic vessels found in peripheral tissue, evidence suggests that the space surrounding the vasculature serves a similar role in the clearance of fluid and metabolic waste from the brain. With aging, neurodegeneration, and cerebrovascular disease, these microscopic perivascular spaces can become enlarged, allowing for visualization and quantification on structural MRI. The purpose of this review is to: (i) describe some of the recent pre-clinical findings from basic science that shed light on the potential neurophysiological mechanisms driving glymphatic and perivascular waste clearance, (ii) review some of the pathobiological etiologies that may lead to MRI-visible enlarged perivascular spaces (ePVS), (iii) describe the possible clinical implications of ePVS, (iv) evaluate existing qualitative and quantitative techniques used for measuring ePVS burden, and (v) propose future avenues of research that may improve our understanding of this potential clinical neuroimaging biomarker for fluid and metabolic waste clearance dysfunction in neurodegenerative and neurovascular diseases.

  7. Abnormal ventricular development in preterm neonates with visually normal MRIs

    NASA Astrophysics Data System (ADS)

    Shi, Jie; Wang, Yalin; Lao, Yi; Ceschin, Rafael; Mi, Liang; Nelson, Marvin D.; Panigrahy, Ashok; Leporé, Natasha

    2015-12-01

    Children born preterm are at risk for a wide range of neurocognitive and neurobehavioral disorders. Some of these may stem from early brain abnormalities at the neonatal age. Hence, a precise characterization of neonatal neuroanatomy may help inform treatment strategies. In particular, the ventricles are often enlarged in neurocognitive disorders, due to atrophy of surrounding tissues. Here we present a new pipeline for the detection of morphological and relative pose differences in the ventricles of premature neonates compared to controls. To this end, we use a new hyperbolic Ricci flow based mapping of the ventricular surfaces of each subjects to the Poincaré disk. Resulting surfaces are then registered to a template, and a between group comparison is performed using multivariate tensor-based morphometry. We also statistically compare the relative pose of the ventricles within the brain between the two groups, by performing a Procrustes alignment between each subject's ventricles and an average shape. For both types of analyses, differences were found in the left ventricles between the two groups.

  8. Frequency of brain tissue donation for research after suicide.

    PubMed

    Longaray, Vanessa K; Padoan, Carolina S; Goi, Pedro D; da Fonseca, Rodrigo C; Vieira, Daniel C; Oliveira, Francine H de; Kapczinski, Flávio; Magalhães, Pedro V

    2017-01-01

    To describe the frequency of brain tissue donation for research purposes by families of individuals that committed suicide. All requests for brain tissue donation to a brain biorepository made to the families of individuals aged 18-60 years who had committed suicide between March 2014 and February 2016 were included. Cases presenting with brain damage due to acute trauma were excluded. Fifty-six cases of suicide were reported. Of these, 24 fulfilled the exclusion criteria, and 11 others were excluded because no next of kin was found to provide informed consent. Of the 21 remaining cases, brain tissue donation was authorized in nine (tissue fragments in seven and the entire organ in two). Donation of brain tissue from suicide cases for research purposes is feasible. The acceptance rate of 42.8% in our sample is in accordance with international data on such donations, and similar to rates reported for neurodegenerative diseases.

  9. Morphometric analysis of the location and activity of cytokines in the tissue implant response.

    PubMed

    Butler, Kenneth R; Benghuzzi, Hamed A; Tucci, Michelle A; Puckett, Aaron

    2014-01-01

    The objective of this investigation was to evaluate the location and activity of cytokines in the fibrous tissue surrounding tricalcium phosphate (TCP) implants loaded with androgenic hormones. Sixteen animals in four experimental groups (n = 4/group) were implanted with one TCP implant each: Group I (control), Group II (testosterone), Group III (dihydrotestosterone), and Group IV (androstenedione). At 90 days post-implantation, the fibrous tissue surrounding the implants were evaluated following staining with antibodies to IL-1ß, IL-2, IL-6, and TNF?. Data were collected on the presence and distribution of cytokines within the fibrous tissue surrounding all four groups. IL-1ß was primarily found intercellular and associated with fibroblasts and macrophages of Groups I-III. IL-2 was present in the extracellular matrix and was sporadically found on the surface of macrophages in Groups I-III. IL-6 was found primarily concentrated in the fibroblast and collagen rich portions of the fibrous tissue matrix in Groups I-III. TNF-? was present in the extracellular matrix of the fibrous tissue of all four groups and was strongly associated with fibroblast and macrophage rich areas. The results of this study confirm activity of cytokines on target cells and indicate their actions may vary in their effect within the fibrous tissue surrounding TCP implants loaded with androgens.

  10. NMR imaging of cell phone radiation absorption in brain tissue

    PubMed Central

    Gultekin, David H.; Moeller, Lothar

    2013-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293

  11. NMR imaging of cell phone radiation absorption in brain tissue.

    PubMed

    Gultekin, David H; Moeller, Lothar

    2013-01-02

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry.

  12. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms.

    PubMed

    Stewart, Daniel C; Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17-16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.

  13. Where and When to Cut? Fluorescein Guidance for Brain Stem and Spinal Cord Tumor Surgery-Technical Note.

    PubMed

    Molina, Eric Suero; Stummer, Walter

    2017-12-29

    Spinal cord and brain stem lesions require a judicious approach with an optimized trajectory due to a clustering of functions on their surfaces. Intraoperative mapping helps locate function. To confidently locate such lesions, neuronavigation alone lacks the desired accuracy and is of limited use in the spinal cord. To evaluate the clinical value of fluoresceins for initial delineation of such critically located lesions. We evaluated fluorescein guidance in the surgical resection of lesions with blood-brain barrier disruption demonstrating contrast enhancement in magnet resonance imaging in the spinal cord and in the brain stem in 3 different patients. Two patients harbored a diffuse cervical and thoracic spinal cord lesion, respectively. Another patient suffered metastatic lesions in the brain stem and at the floor of the fourth ventricle. Low-dose fluorescein (4 mg/kg body weight) was applied after anesthesia induction and visualized using the Zeiss Pentero 900 Yellow560 filter (Carl Zeiss, Oberkochen, Germany). Fluorescein was helpful for locating lesions and for defining the best possible trajectory. During resection, however, we found unspecific propagation of fluorescein within the brain stem up to 6 mm within 3 h after application. As these lesions were otherwise distinguishable from surrounding tissue, monitoring resection was not an issue. Fluorescein guidance is a feasible tool for defining surgical entry zones when aiming for surgical removal of spinal cord and brain stem lesions. Unselective fluorescein extravasation cautions against using such methodology for monitoring completeness of resection. Providing the right timing, a window of pseudoselectivity could increase fluoresceins' clinical value in these cases. © Congress of Neurological Surgeons 2017.

  14. Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography.

    PubMed

    Guertler, Charlotte A; Okamoto, Ruth J; Schmidt, John L; Badachhape, Andrew A; Johnson, Curtis L; Bayly, Philip V

    2018-03-01

    The mechanical properties of brain tissue in vivo determine the response of the brain to rapid skull acceleration. These properties are thus of great interest to the developers of mathematical models of traumatic brain injury (TBI) or neurosurgical simulations. Animal models provide valuable insight that can improve TBI modeling. In this study we compare estimates of mechanical properties of the Yucatan mini-pig brain in vivo and ex vivo using magnetic resonance elastography (MRE) at multiple frequencies. MRE allows estimations of properties in soft tissue, either in vivo or ex vivo, by imaging harmonic shear wave propagation. Most direct measurements of brain mechanical properties have been performed using samples of brain tissue ex vivo. It has been observed that direct estimates of brain mechanical properties depend on the frequency and amplitude of loading, as well as the time post-mortem and condition of the sample. Using MRE in the same animals at overlapping frequencies, we observe that porcine brain tissue in vivo appears stiffer than porcine brain tissue samples ex vivo at frequencies of 100 Hz and 125 Hz, but measurements show closer agreement at lower frequencies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. In vitro 3D regeneration-like growth of human patient brain tissue.

    PubMed

    Tang-Schomer, M D; Wu, W B; Kaplan, D L; Bookland, M J

    2018-05-01

    In vitro culture of primary neurons is widely adapted with embryonic but not mature brain tissue. Here, we extended a previously developed bioengineered three-dimensional (3D) embryonic brain tissue model to resected normal patient brain tissue in an attempt to regenerate human neurons in vitro. Single cells and small sized (diameter < 100 μm) spheroids from dissociated brain tissue were seeded into 3D silk fibroin-based scaffolds, with or without collagen or Matrigel, and compared with two-dimensional cultures and scaffold-free suspension cultures. Changes of cell phenotypes (neuronal, astroglial, neural progenitor, and neuroepithelial) were quantified with flow cytometry and analyzed with a new method of statistical analysis specifically designed for percentage comparison. Compared with a complete lack of viable cells in conventional neuronal cell culture condition, supplements of vascular endothelial growth factor-containing pro-endothelial cell condition led to regenerative growth of neurons and astroglial cells from "normal" human brain tissue of epilepsy surgical patients. This process involved delayed expansion of Nestin+ neural progenitor cells, emergence of TUJ1+ immature neurons, and Vimentin+ neuroepithelium-like cell sheet formation in prolonged cultures (14 weeks). Micro-tissue spheroids, but not single cells, supported the brain tissue growth, suggesting importance of preserving native cell-cell interactions. The presence of 3D scaffold, but not hydrogel, allowed for Vimentin+ cell expansion, indicating a different growth mechanism than pluripotent cell-based brain organoid formation. The slow and delayed process implied an origin of quiescent neural precursors in the neocortex tissue. Further optimization of the 3D tissue model with primary human brain cells could provide personalized brain disease models. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Pulsed low-dose irradiation of orthotopic glioblastoma multiforme (GBM) in a pre-clinical model: effects on vascularization and tumor control.

    PubMed

    Dilworth, Joshua T; Krueger, Sarah A; Dabjan, Mohamad; Grills, Inga S; Torma, John; Wilson, George D; Marples, Brian

    2013-07-01

    To compare dose-escalated pulsed low-dose radiation therapy (PLRT) and standard radiation therapy (SRT). Intracranial U87MG GBM tumors were established in nude mice. Animals received whole brain irradiation with daily 2-Gy fractions given continuously (SRT) or in ten 0.2-Gy pulses separated by 3-min intervals (PLRT). Tumor response was evaluated using weekly CT and [(18)F]-FDG-PET scans. Brain tissue was subjected to immunohistochemistry and cytokine bead array to assess tumor and normal tissue effects. Median survival for untreated animals was 18 (SE±0.5) days. A significant difference in median survival was seen between SRT (29±1.8days) and PLRT (34.2±1.9days). Compared to SRT, PLRT resulted in a 31% (p<0.01), 38% (p<0.01), and 53% (p=0.01) reduction in normalized tumor volume and a 48% (p<0.01), 51% (p<0.01), and 70% (p<0.01) reduction in tumor growth rate following the administration of 10Gy, 20Gy, and 30Gy, respectively. Compared to untreated tumors, PLRT resulted in similar tumor vascular density, while SRT produced a 40% reduction in tumor vascular density (p=0.05). Compared to SRT, PLRT was associated with a 28% reduction in degenerating neurons in the surrounding brain parenchyma (p=0.05). Compared to SRT, PLRT resulted in greater inhibition of tumor growth and improved survival, which may be attributable to preservation of vascular density. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats

    PubMed Central

    Pong, Alice C.; Jugé, Lauriane; Bilston, Lynne E.; Cheng, Shaokoon

    2017-01-01

    Introduction Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Methods Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Results Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. Conclusions This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly. These results are in contrast with our previous findings in juvenile hydrocephalic rats which had significantly less brain compression (as the brain circumference was able to stretch with the cranium due to the open skull sutures) and had a significant increase in caudate putamen stiffness. These results suggest that change in brain mechanical properties in hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus. PMID:28837671

  18. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    PubMed

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly. These results are in contrast with our previous findings in juvenile hydrocephalic rats which had significantly less brain compression (as the brain circumference was able to stretch with the cranium due to the open skull sutures) and had a significant increase in caudate putamen stiffness. These results suggest that change in brain mechanical properties in hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus.

  19. Optical pathology of human brain metastasis of lung cancer using combined resonance Raman and spatial frequency spectroscopies

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Pu, Yang; Cheng, Gangge; Zhou, Lixin; Chen, Jun; Zhu, Ke; Alfano, Robert R.

    2016-03-01

    Raman spectroscopy has become widely used for diagnostic purpose of breast, lung and brain cancers. This report introduced a new approach based on spatial frequency spectra analysis of the underlying tissue structure at different stages of brain tumor. Combined spatial frequency spectroscopy (SFS), Resonance Raman (RR) spectroscopic method is used to discriminate human brain metastasis of lung cancer from normal tissues for the first time. A total number of thirty-one label-free micrographic images of normal and metastatic brain cancer tissues obtained from a confocal micro- Raman spectroscopic system synchronously with examined RR spectra of the corresponding samples were collected from the identical site of tissue. The difference of the randomness of tissue structures between the micrograph images of metastatic brain tumor tissues and normal tissues can be recognized by analyzing spatial frequency. By fitting the distribution of the spatial frequency spectra of human brain tissues as a Gaussian function, the standard deviation, σ, can be obtained, which was used to generate a criterion to differentiate human brain cancerous tissues from the normal ones using Support Vector Machine (SVM) classifier. This SFS-SVM analysis on micrograph images presents good results with sensitivity (85%), specificity (75%) in comparison with gold standard reports of pathology and immunology. The dual-modal advantages of SFS combined with RR spectroscopy method may open a new way in the neuropathology applications.

  20. Impact of Neurodegenerative Diseases on Drug Binding to Brain Tissues: From Animal Models to Human Samples.

    PubMed

    Ugarte, Ana; Corbacho, David; Aymerich, María S; García-Osta, Ana; Cuadrado-Tejedor, Mar; Oyarzabal, Julen

    2018-04-19

    Drug efficacy in the central nervous system (CNS) requires an additional step after crossing the blood-brain barrier. Therapeutic agents must reach their targets in the brain to modulate them; thus, the free drug concentration hypothesis is a key parameter for in vivo pharmacology. Here, we report the impact of neurodegeneration (Alzheimer's disease (AD) and Parkinson's disease (PD) compared with healthy controls) on the binding of 10 known drugs to postmortem brain tissues from animal models and humans. Unbound drug fractions, for some drugs, are significantly different between healthy and injured brain tissues (AD or PD). In addition, drugs binding to brain tissues from AD and PD animal models do not always recapitulate their binding to the corresponding human injured brain tissues. These results reveal potentially relevant implications for CNS drug discovery.

  1. Increased Expression of Herpes Virus-Encoded hsv1-miR-H18 and hsv2-miR-H9-5p in Cancer-Containing Prostate Tissue Compared to That in Benign Prostate Hyperplasia Tissue

    PubMed Central

    Shinn, Helen Ki; Yan, Chunri; Kim, Tae-Hwan; Kim, Sang Tae; Kim, Won Tae; Lee, Ok-Jun; Moon, Sung-Kwon; Kim, Nam-Hyung; Kim, Jayoung; Cha, Eun-Jong

    2016-01-01

    Purpose: Previously, we reported the presence of virus-encoded microRNAs (miRNAs) in the urine of prostate cancer (CaP) patients. In this study, we investigated the expression of two herpes virus-encoded miRNAs in prostate tissue. Methods: A total of 175 tissue samples from noncancerous benign prostatic hyperplasia (BPH), 248 tissue samples from patients with CaP and BPH, and 50 samples from noncancerous surrounding tissues from these same patients were analyzed for the expression of two herpes virus-encoded miRNAs by real-time polymerase chain reaction (PCR) and immunocytochemistry using nanoparticles as molecular beacons. Results: Real-time reverse transcription-PCR results revealed significantly higher expression of hsv1-miR-H18 and hsv2-miRH9- 5p in surrounding noncancerous and CaP tissues than that in BPH tissue (each comparison, P<0.001). Of note, these miRNA were expressed equivalently in the CaP tissues and surrounding noncancerous tissues. Moreover, immunocytochemistry clearly demonstrated a significant enrichment of both hsv1-miR-H18 and hsv2-miR-H9 beacon-labeled cells in CaP and surrounding noncancerous tissue compared to that in BPH tissue (each comparison, P<0.05 for hsv1-miR-H18 and hsv2- miR-H9). Conclusions: These results suggest that increased expression of hsv1-miR-H18 and hsv2-miR-H95p might be associated with tumorigenesis in the prostate. Further studies will be required to elucidate the role of these miRNAs with respect to CaP and herpes viral infections. PMID:27377944

  2. Increased Expression of Herpes Virus-Encoded hsv1-miR-H18 and hsv2-miR-H9-5p in Cancer-Containing Prostate Tissue Compared to That in Benign Prostate Hyperplasia Tissue.

    PubMed

    Yun, Seok Joong; Jeong, Pildu; Kang, Ho Won; Shinn, Helen Ki; Kim, Ye-Hwan; Yan, Chunri; Choi, Young-Ki; Kim, Dongho; Ryu, Dong Hee; Ha, Yun-Sok; Kim, Tae-Hwan; Kwon, Tae Gyun; Kim, Jung Min; Suh, Sang Heon; Kim, Seon-Kyu; Kim, Seon-Young; Kim, Sang Tae; Kim, Won Tae; Lee, Ok-Jun; Moon, Sung-Kwon; Kim, Nam-Hyung; Kim, Isaac Yi; Kim, Jayoung; Cha, Hee-Jae; Choi, Yung-Hyun; Cha, Eun-Jong; Kim, Wun-Jae

    2016-06-01

    Previously, we reported the presence of virus-encoded microRNAs (miRNAs) in the urine of prostate cancer (CaP) patients. In this study, we investigated the expression of two herpes virus-encoded miRNAs in prostate tissue. A total of 175 tissue samples from noncancerous benign prostatic hyperplasia (BPH), 248 tissue samples from patients with CaP and BPH, and 50 samples from noncancerous surrounding tissues from these same patients were analyzed for the expression of two herpes virus-encoded miRNAs by real-time polymerase chain reaction (PCR) and immunocytochemistry using nanoparticles as molecular beacons. Real-time reverse transcription-PCR results revealed significantly higher expression of hsv1-miR-H18 and hsv2-miRH9- 5p in surrounding noncancerous and CaP tissues than that in BPH tissue (each comparison, P<0.001). Of note, these miRNA were expressed equivalently in the CaP tissues and surrounding noncancerous tissues. Moreover, immunocytochemistry clearly demonstrated a significant enrichment of both hsv1-miR-H18 and hsv2-miR-H9 beacon-labeled cells in CaP and surrounding noncancerous tissue compared to that in BPH tissue (each comparison, P<0.05 for hsv1-miR-H18 and hsv2- miR-H9). These results suggest that increased expression of hsv1-miR-H18 and hsv2-miR-H95p might be associated with tumorigenesis in the prostate. Further studies will be required to elucidate the role of these miRNAs with respect to CaP and herpes viral infections.

  3. Time resolved dosimetry of human brain exposed to low frequency pulsed magnetic fields.

    PubMed

    Paffi, Alessandra; Camera, Francesca; Lucano, Elena; Apollonio, Francesca; Liberti, Micaela

    2016-06-21

    An accurate dosimetry is a key issue to understanding brain stimulation and related interaction mechanisms with neuronal tissues at the basis of the increasing amount of literature revealing the effects on human brain induced by low-level, low frequency pulsed magnetic fields (PMFs). Most literature on brain dosimetry estimates the maximum E field value reached inside the tissue without considering its time pattern or tissue dispersivity. Nevertheless a time-resolved dosimetry, accounting for dispersive tissues behavior, becomes necessary considering that the threshold for an effect onset may vary depending on the pulse waveform and that tissues may filter the applied stimulatory fields altering the predicted stimulatory waveform's size and shape. In this paper a time-resolved dosimetry has been applied on a realistic brain model exposed to the signal presented in Capone et al (2009 J. Neural Transm. 116 257-65), accounting for the broadband dispersivity of brain tissues up to several kHz, to accurately reconstruct electric field and current density waveforms inside different brain tissues. The results obtained by exposing the Duke's brain model to this PMF signal show that the E peak in the brain is considerably underestimated if a simple monochromatic dosimetry is carried out at the pulse repetition frequency of 75 Hz.

  4. Time resolved dosimetry of human brain exposed to low frequency pulsed magnetic fields

    NASA Astrophysics Data System (ADS)

    Paffi, Alessandra; Camera, Francesca; Lucano, Elena; Apollonio, Francesca; Liberti, Micaela

    2016-06-01

    An accurate dosimetry is a key issue to understanding brain stimulation and related interaction mechanisms with neuronal tissues at the basis of the increasing amount of literature revealing the effects on human brain induced by low-level, low frequency pulsed magnetic fields (PMFs). Most literature on brain dosimetry estimates the maximum E field value reached inside the tissue without considering its time pattern or tissue dispersivity. Nevertheless a time-resolved dosimetry, accounting for dispersive tissues behavior, becomes necessary considering that the threshold for an effect onset may vary depending on the pulse waveform and that tissues may filter the applied stimulatory fields altering the predicted stimulatory waveform’s size and shape. In this paper a time-resolved dosimetry has been applied on a realistic brain model exposed to the signal presented in Capone et al (2009 J. Neural Transm. 116 257-65), accounting for the broadband dispersivity of brain tissues up to several kHz, to accurately reconstruct electric field and current density waveforms inside different brain tissues. The results obtained by exposing the Duke’s brain model to this PMF signal show that the E peak in the brain is considerably underestimated if a simple monochromatic dosimetry is carried out at the pulse repetition frequency of 75 Hz.

  5. Temperature-dependent elastic properties of brain tissues measured with the shear wave elastography method.

    PubMed

    Liu, Yan-Lin; Li, Guo-Yang; He, Ping; Mao, Ze-Qi; Cao, Yanping

    2017-01-01

    Determining the mechanical properties of brain tissues is essential in such cases as the surgery planning and surgical training using virtual reality based simulators, trauma research and the diagnosis of some diseases that alter the elastic properties of brain tissues. Here, we suggest a protocol to measure the temperature-dependent elastic properties of brain tissues in physiological saline using the shear wave elastography method. Experiments have been conducted on six porcine brains. Our results show that the shear moduli of brain tissues decrease approximately linearly with a slope of -0.041±0.006kPa/°C when the temperature T increases from room temperature (~23°C) to body temperature (~37°C). A case study has been further conducted which shows that the shear moduli are insensitive to the temperature variation when T is in the range of 37 to 43°C and will increase when T is higher than 43°C. With the present experimental setup, temperature-dependent elastic properties of brain tissues can be measured in a simulated physiological environment and a non-destructive manner. Thus the method suggested here offers a unique tool for the mechanical characterization of brain tissues with potential applications in brain biomechanics research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms

    PubMed Central

    Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S.

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17–16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models. PMID:28582392

  7. Brief Report: The Role of National Brain and Tissue Banks in Research on Autism and Developmental Disorders.

    ERIC Educational Resources Information Center

    Zielke, H. Ronald; And Others

    1996-01-01

    This paper describes the establishment and work of two brain and tissue banks, which collect brain and other tissues from newly deceased individuals with autism and make these tissues available to researchers. Issues in tissue collection are identified, including the importance of advance planning, religious concerns of families, and the need for…

  8. Could Cord Blood Cell Therapy Reduce Preterm Brain Injury?

    PubMed Central

    Li, Jingang; McDonald, Courtney A.; Fahey, Michael C.; Jenkin, Graham; Miller, Suzanne L.

    2014-01-01

    Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP). Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matter of the developing brain. Nearly 90% of preterm infants who later develop spastic CP have evidence of periventricular white matter injury. There are currently no treatments targeted at protecting the immature preterm brain. Umbilical cord blood (UCB) contains a diverse mix of stem and progenitor cells, and is a particularly promising source of cells for clinical applications, due to ethical and practical advantages over other potential therapeutic cell types. Recent studies have documented the potential benefits of UCB cells in reducing brain injury, particularly in rodent models of term neonatal hypoxia–ischemia. These studies indicate that UCB cells act via anti-inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-born infants is less well understood than in term infants, but likely results from episodes of hypoperfusion, hypoxia–ischemia, and/or inflammation over a developmental period of white matter vulnerability. This review will explore current knowledge about the neuroprotective actions of UCB cells and their potential to ameliorate preterm brain injury through neonatal cell administration. We will also discuss the characteristics of UCB-derived from preterm and term infants for use in clinical applications. PMID:25346720

  9. Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model.

    PubMed

    Wang, Fang; Han, Yong; Wang, Bingyu; Peng, Qian; Huang, Xiaoqun; Miller, Karol; Wittek, Adam

    2018-05-12

    In this study, we investigate the effects of modelling choices for the brain-skull interface (layers of tissues between the brain and skull that determine boundary conditions for the brain) and the constitutive model of brain parenchyma on the brain responses under violent impact as predicted using computational biomechanics model. We used the head/brain model from Total HUman Model for Safety (THUMS)-extensively validated finite element model of the human body that has been applied in numerous injury biomechanics studies. The computations were conducted using a well-established nonlinear explicit dynamics finite element code LS-DYNA. We employed four approaches for modelling the brain-skull interface and four constitutive models for the brain tissue in the numerical simulations of the experiments on post-mortem human subjects exposed to violent impacts reported in the literature. The brain-skull interface models included direct representation of the brain meninges and cerebrospinal fluid, outer brain surface rigidly attached to the skull, frictionless sliding contact between the brain and skull, and a layer of spring-type cohesive elements between the brain and skull. We considered Ogden hyperviscoelastic, Mooney-Rivlin hyperviscoelastic, neo-Hookean hyperviscoelastic and linear viscoelastic constitutive models of the brain tissue. Our study indicates that the predicted deformations within the brain and related brain injury criteria are strongly affected by both the approach of modelling the brain-skull interface and the constitutive model of the brain parenchyma tissues. The results suggest that accurate prediction of deformations within the brain and risk of brain injury due to violent impact using computational biomechanics models may require representation of the meninges and subarachnoidal space with cerebrospinal fluid in the model and application of hyperviscoelastic (preferably Ogden-type) constitutive model for the brain tissue.

  10. Expression of Bcl-2 and NF-κB in brain tissue after acute renal ischemia-reperfusion in rats.

    PubMed

    Zhang, Na; Cheng, Gen-Yang; Liu, Xian-Zhi; Zhang, Feng-Jiang

    2014-05-01

    To investigate the effect of acute renal ischemia reperfusion on brain tissue. Fourty eight rats were randomly divided into four groups (n=12): sham operation group, 30 min ischemia 60 min reperfusion group, 60 min ischemia 60 min reperfusion group, and 120 min ischemia 60 min reperfusion group. The brain tissues were taken after the experiment. TUNEL assay was used to detect the brain cell apoptosis, and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors. Renal ischemia-reperfusion induced apoptosis of brain tissues, and the apoptosis increased with prolongation of ischemia time. The detection at the molecular level showed decreased Bcl-2 expression, increased Bax expression, upregulated expression of NF-κB and its downstream factor COX-2/PGE2. Acute renal ischemia-reperfusion can cause brain tissue damage, manifested as induced brain tissues apoptosis and inflammation activation. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  11. HIV-1 Phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues

    PubMed Central

    Lamers, Susanna L.; Gray, Rebecca R.; Salemi, Marco; Huysentruyt, Leanne C.; McGrath, Michael

    2010-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that 1) HIV-1 is clearly capable of migrating out of the brain, 2) the meninges are the most likely primary transport tissues, and 3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. PMID:21055482

  12. Combined Bisulfite Restriction Analysis for brain tissue identification.

    PubMed

    Samsuwan, Jarunya; Muangsub, Tachapol; Yanatatsaneejit, Pattamawadee; Mutirangura, Apiwat; Kitkumthorn, Nakarin

    2018-05-01

    According to the tissue-specific methylation database (doi: 10.1016/j.gene.2014.09.060), methylation at CpG locus cg03096975 in EML2 has been preliminarily proven to be specific to brain tissue. In this study, we enlarged sample size and developed a technique for identifying brain tissue in aged samples. Combined Bisulfite Restriction Analysis-for EML2 (COBRA-EML2) technique was established and validated in various organ samples obtained from 108 autopsies. In addition, this technique was also tested for its reliability, minimal DNA concentration detected, and use in aged samples and in samples obtained from specific brain compartments and spinal cord. COBRA-EML2 displayed 100% sensitivity and specificity for distinguishing brain tissue from other tissues, showed high reliability, was capable of detecting minimal DNA concentration (0.015ng/μl), could be used for identifying brain tissue in aged samples. In summary, COBRA-EML2 is a technique to identify brain tissue. This analysis is useful in criminal cases since it can identify the vital organ tissues from small samples acquired from criminal scenes. The results from this analysis can be counted as a medical and forensic marker supporting criminal investigations, and as one of the evidences in court rulings. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction

    NASA Astrophysics Data System (ADS)

    Wels, Michael; Zheng, Yefeng; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2011-06-01

    We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average Dice coefficients of 0.93 ± 0.03 (WM) and 0.90 ± 0.05 (GM) on simulated mono-spectral and 0.94 ± 0.02 (WM) and 0.92 ± 0.04 (GM) on simulated multi-spectral data from the BrainWeb repository. The scores are 0.81 ± 0.09 (WM) and 0.82 ± 0.06 (GM) and 0.87 ± 0.05 (WM) and 0.83 ± 0.12 (GM) for the two collections of real-world data sets—consisting of 20 and 18 volumes, respectively—provided by the Internet Brain Segmentation Repository.

  14. A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction.

    PubMed

    Wels, Michael; Zheng, Yefeng; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2011-06-07

    We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average Dice coefficients of 0.93 ± 0.03 (WM) and 0.90 ± 0.05 (GM) on simulated mono-spectral and 0.94 ± 0.02 (WM) and 0.92 ± 0.04 (GM) on simulated multi-spectral data from the BrainWeb repository. The scores are 0.81 ± 0.09 (WM) and 0.82 ± 0.06 (GM) and 0.87 ± 0.05 (WM) and 0.83 ± 0.12 (GM) for the two collections of real-world data sets-consisting of 20 and 18 volumes, respectively-provided by the Internet Brain Segmentation Repository.

  15. Characterization of the Expression of Basigin Gene Products Within the Pineal Gland of Mice.

    PubMed

    Tokar, Derek; van Ekeris, Leslie; Linser, Paul J; Ochrietor, Judith D

    2017-08-01

    The expression of Basigin gene products and monocarboxylate transporter-1 (MCT1) has been investigated within the mammalian neural retina and suggests a role for these proteins in cellular metabolism within that tissue. The purpose of the present study was to investigate the expression of these same proteins in the pineal gland of the mouse brain. Mouse pineal gland and neural retina RNA and protein were subjected to quantitative reverse transcription-polymerase chain reaction and immunoblotting analyses. In addition, paraffin-embedded sections of each tissue were analyzed for expression of Basigin gene products and MCT1 via immunohistochemistry. The results indicate that MCT1 and Basigin variant-2, but not Basigin variant-1, are expressed within the mouse pineal gland. The expression of Basigin variant-2 and MCT1 was localized to the capsule surrounding the gland. The position and relative amounts of the gene products suggest that they play a much less prominent role within the pineal gland than in the neural retina.

  16. Ultrastructure of periprosthetic Dacron knee ligament tissue. Two cases of ruptured anterior cruciate ligament reconstruction.

    PubMed

    Salvi, M; Velluti, C; Misasi, M; Bartolozzi, P; Quacci, D; Dell'Orbo, C

    1991-04-01

    Light- and electron-microscopic investigations were performed on two failed Dacron ligaments that had been removed from 2 patients shortly after failure of the implant 2-3 years after reconstruction of the anterior cruciate ligament. Two different cell populations and matrices were correlated with closeness to the Dacron threads. Fibroblasts surrounded by connective tissue with collagen fibrils were located far from the Dacron threads. Roundish cells, appearing to be myofibroblasts surrounded by a more lax connective tissue and elastic fibers, were found close to the Dacron threads. The presence of myofibroblasts and the matrix differentiation could be attributed to the different mechanical forces acting on the Dacron and on the connective tissue because of their different coefficients of elasticity. The sparse occurrence of inflammatory cells in the synovial membrane and in the connective tissue surrounding the Dacron supports the biologic inertness of this artificial material. However, the repair tissue was not structured to resist tension stresses.

  17. In vivo monitoring of nanosphere onsite delivery using fiber optic microprobe

    NASA Astrophysics Data System (ADS)

    Lo, Leu-Wei; Yang, Chung-Shi

    2005-02-01

    To recognize the information of ischemia-induced blood vessel permeability would be valuable to formulate the drugs for optimal local delivery, we constructed an implantable needle type fiber-optic microprobe for the monitoring of in vivo fluorescent substances in anesthetized rats. This fiber-optic microprobe was composed of coaxial optical fibers and catheterized using a thin wall tubing of stainless steel (~400 um O.D. and ~300 um I.D.). The central fiber, with 100 um core diameter and 20 um cladding, coated with a 30 um layer of gold, was surrounded by 10 fibers with 50 um cores. The central fiber carried the light from the 488 nm Argon laser to the tissue while the surrounding fibers collected the emitted fluorescence to the detector. When the fiber-optic microprobe was placed in the solutions containing various concentrations of fluorescent nanospheres (20 nm), either with or without 10% lipofundin as optical phantom, nanosphere concentration-dependent responses of the fluorescence intensity were observed. The microprobe was then implanted into the liver and the brain of anesthetized rats to monitor the in situ extravasation of pre-administered fluorescent nanospheres from vasculature following the ischemic insults. Both the hepatic and cerebral ischemic insults showed immediate increases of the extracellular 20 nm fluorescent nanospheres. The implantable fiber-optic microprobe constructed in present study provides itself as a minimally-invasive technique capable of investigating the vascular permeability for in vivo nanosphere delivery in both ischemic liver and brain.

  18. MR Measurement of Alloy Magnetic Susceptibility: Towards Developing Tissue-Susceptibility Matched Metals

    PubMed Central

    Astary, Garrett W.; Peprah, Marcus K.; Fisher, Charles R.; Stewart, Rachel L.; Carney, Paul R.; Sarntinoranont, Malisa; Meisel, Mark W.; Manuel, Michele V.; Mareci, Thomas H.

    2013-01-01

    Magnetic resonance imaging (MRI) can be used to relate structure to function mapped with high-temporal resolution electrophysiological recordings using metal electrodes. Additionally, MRI may be used to guide the placement of electrodes or conductive cannula in the brain. However, the magnetic susceptibility mismatch between implanted metals and surrounding brain tissue can severely distort MR images and spectra, particularly in high magnetic fields. In this study, we present a modified MR method of characterizing the magnetic susceptibility of materials that can be used to develop biocompatible, metal alloys that match the susceptibility of host tissue in order to eliminate MR distortions proximal to the implant. This method was applied at 4.7 T and 11.1 T to measure the susceptibility of a model solid-solution alloy of Cu and Sn, which is inexpensive but not biocompatible. MR-derived relative susceptibility values of four different compositions of Cu-Sn alloy deviated by less than 3.1% from SQUID magnetometry absolute susceptibility measurements performed up to 7 T. These results demonstrate that the magnetic susceptibility varies linearly with atomic percentage in these solid-solution alloys, but are not simply the weighted average of Cu and Sn magnetic susceptibilities. Therefore susceptibility measurements are necessary when developing susceptibility-matched, solid-solution alloys for the elimination of susceptibility artifacts in MR. This MR method does not require any specialized equipment and is free of geometrical constraints, such as sample shape requirements associated with SQUID magnetometry, so the method can be used at all stages of fabrication to guide the development of a susceptibility matched, biocompatible device. PMID:23727587

  19. TU-EF-304-11: Therapeutic Benefits of Collimation in Spot Scanning Proton Therapy in the Treatment of Brain Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moignier, A; Gelover, E; Wang, D

    Purpose: A dynamic collimation system (DCS) based on two orthogonal pairs of mobile trimmer blades has recently been proposed to reduce the lateral penumbra in spot scanning proton therapy (SSPT). The purpose of this work is to quantify the therapeutic benefit of using the DCS for SSPT of brain cancer by comparing un-collimated and collimated treatment plans. Methods: Un-collimated and collimated brain treatment plans were created for five patients, previously treated with SSPT, using an in-house treatment planning system capable of modeling collimated and un-collimated beamlets. Un-collimated plans reproduced the clinically delivered plans in terms of target coverage and organ-at-riskmore » (OAR) sparing, whereas collimated plans were re-optimized to improve the organ-at-risk sparing while maintaining target coverage. Physical and biological comparison metrics such as dose distribution conformity, mean and maximum doses, normal tissue complication probability (NTCP) and risk of secondary brain cancer were used to evaluate the plans. Results: The DCS systematically improved the dose distribution conformity while preserving the target coverage. The average reduction of the mean dose to the 10-mm ring surrounding the target and the healthy brain were 7.1% (95% CI: 4.2%–9.9%; p<0.01) and 14.3% (95% CI: 7.8%–20.8%; p<0.01), respectively. This yielded an average reduction of 12.0% (95% CI: 8.2%–15.7%; p<0.01) for the brain necrosis NTCP using the Flickinger model, and 14.2% (95% CI: 7.7%–20.8%; p<0.01) for the risk of secondary brain cancer. The average maximum dose reductions for the brainstem, chiasm, optic nerves, cochleae and pituitary gland when comparing un-collimated and collimated plans were 14.3%, 10.4%, 11.2%, 13.0%, 12.9% and 3.4%, respectively. Evaluating individual plans using the Lyman-Kutcher-Burman NTCP model also yielded improvements. Conclusion: The lateral penumbra reduction performed by the DCS increases the normal tissue sparing capabilities of SSPT for brain tumor treatment while preserving the target coverage. This research was financially supported by Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium)« less

  20. Nanodissection of human chromosomes and ultraprecise eye surgery with nanojoule near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Krauss, Oliver; Fritzsche, Wolfgang

    2002-04-01

    Nanojoule and sub-nanojoule 80 MHz femtosecond laser pulses at 750-850 nm of a compact titanium:sapphire laser have been used for highly precise nanoprocessing of DNA as well as of intracellular and intratissue compartments. In particular, a mean power between 15 mW and 100 mW, 170 fs pulse width, submicron distance of illumination spots and microsecond beam dwell times on spots have been used for multiphoton- mediated nanoprocessing of human chromosomes, brain and ocular intrastromal tissue. By focusing the laser beam with high numerical aperture focusing optics of the laser scan system femt-O-cut and of modified multiphoton scanning microscopes to diffraction-limited spots and TW/cm2 light intensities, precise submicron holes and cuts have been processed by single spot exposure and line scans. A minimum FWHM cut size below 70 nm during the partial dissection of the human chromosome 3 was achieved. Complete chromosome dissection could be performed with FWHM cut sizes below 200 nm. Intracellular chromosome dissection was possible. Intratissue processing in depths of 50 - 100micrometers and deeper with a precision of about 1micrometers including cuts through a nuclei of a single intratissue cell without destructive photo-disruption effects to surrounding tissue layers have been demonstrated in brain and eye tissues. The femt-O-cut system includes a diagnostic system for optical tomography with submicron resolution based on multiphoton- excited autofluorescence imaging (MAI) and second harmonic generation. This system was used to localize the intracellular and intratissue targets and to control the effects of nanoprocessing. These studies show, that in contrast to conventional approaches of material processing with amplified femtosecond laser systems and (mu) J pulse energies, nanoprocessing of materials including biotissues can be performed with nJ and sub-nJ high repetition femtosecond laser pulses of turn-key compact lasers without collateral damage. Potential applications include highly precise cell and embryo surgery, gene diagnostics and gene therapy, intrastromal refractive surgery, cancer therapy and brain surgery.

  1. Fetal lamb cerebral blood flow (CBF) and oxygen tensions during hypoxia: a comparison of laser Doppler and microsphere measurements of CBF

    PubMed Central

    Bishai, John M; Blood, Arlin B; Hunter, Christian J; Longo, Lawrence D; Power, Gordon G

    2003-01-01

    This study was undertaken to compare microsphere and laser Doppler flowmetry techniques for the measurement of cerebral blood flow, to assess the effect of probe implantation at the tip of the sensing probe and to measure brain tissue PO2 (tPO2) in response to acute hypoxia. Fetal sheep of ≈131 days gestation (n = 8) were chronically instrumented with bilateral laser Doppler probes in the parietal cortices and catheters for injection of fluorescent microspheres. Five days after surgery fetuses were subjected to 1 h periods of baseline control breathing, hypoxia and recovery. Microspheres were injected 10 min prior to and 10, 30, 50 and 120 min after initiation of hypoxia. Microspheres were counted in four 12 mm3 tissue samples from each hemisphere, the tip of the laser Doppler probe being positioned in the centre of one of the cubes. The cube containing the probe tip was also subdivided into 4 mm3 pieces of tissue. In response to hypoxia, fetal arterial PO2 declined from 21 ± 2 to 12 ± 1 Torr and brain tissue PO2 fell from 10 ± 1 to a nadir of 1 ± 1 Torr. Each method detected a significant increase in CBF that reached a maximum after 30–45 min, although the increase of flow measured by laser Doppler flowmetry was less than that measured by spheres after 10 and 30 min (P < 0.05). Microspheres did not detect altered flow at the probe tip or heterogeneity of flow in surrounding volumes of cortical tissue. In summary, laser Doppler flowmetry is a useful measure of continuous relative changes of CBF in the chronically instrumented fetal sheep. Flow compensations in acute hypoxia are not adequate to sustain O2 delivery, and other compensations, including reduced metabolic rate, are possible. PMID:12563011

  2. Robotic multimodality stereotactic brain tissue identification: work in progress

    NASA Technical Reports Server (NTRS)

    Andrews, R.; Mah, R.; Galvagni, A.; Guerrero, M.; Papasin, R.; Wallace, M.; Winters, J.

    1997-01-01

    Real-time identification of tissue would improve procedures such as stereotactic brain biopsy (SBX), functional and implantation neurosurgery, and brain tumor excision. To standard SBX equipment has been added: (1) computer-controlled stepper motors to drive the biopsy needle/probe precisely; (2) multiple microprobes to track tissue density, detect blood vessels and changes in blood flow, and distinguish the various tissues being penetrated; (3) neural net learning programs to allow real-time comparisons of current data with a normative data bank; (4) three-dimensional graphic displays to follow the probe as it traverses brain tissue. The probe can differentiate substances such as pig brain, differing consistencies of the 'brain-like' foodstuff tofu, and gels made to simulate brain, as well as detect blood vessels imbedded in these substances. Multimodality probes should improve the safety, efficacy, and diagnostic accuracy of SBX and other neurosurgical procedures.

  3. Management of brain metastasis in a patient with advanced epithelial ovarian carcinoma by gamma-knife radiosurgery.

    PubMed

    Nikolaoul, Marinos; Stamenković, Srdjan; Stergiou, Christos; Skarleas, Christos; Torrens, Michael

    2015-01-01

    Brain metastases from epithelial ovarian cancer (EOC) are rare events. We present a rare case of single ovarian cancer metastasis to the brain treated with gamma-knife radiosurgery (GKRS). A 65-year-old woman with advanced EOC presented with severe neurologic symptoms. A single brain metastasis of 3.2 cm with surrounding edema in the left parietal lobe was detected by brain magnetic resonance imaging (MRI) scan during the work-up. The decision to perform GKRS was due to a surgical inaccessibility of intracranial lesion. Twelve weeks after the procedure, the MRI scan showed reduction in the diameter of brain metastasis and surrounding edema and the patient returned to good mental and motor performance.The patient survived for 22 months following treatment and died from a progressive intra-abdominal disease. Prognosis of ovarian cancer patients with brain metastases is generally poor regardless of treatment. Our case shows that GKRS as primary treatment modality for the control of ovarian cancer metastases to the brain was effective and can be considered as a treatment of choice if international selection criteria are followed.

  4. Ex vivo human bile duct radiofrequency ablation with a bipolar catheter.

    PubMed

    Atar, Mustafa; Kadayifci, Abdurrahman; Daglilar, Ebubekir; Hagen, Catherine; Fernandez-Del Castillo, Carlos; Brugge, William R

    2018-06-01

    Management of the primary and secondary tumors of the bile ducts still remains as a major clinical challenge. Radiofrequency (RF) ablation (RFA) of these tumors is feasible but the effect of RF energy on the human common bile duct (CBD) and surrounding tissues has not been investigated. This pilot study aimed to determine the relationship between RF energy and the depth of ablation in the normal human CBD. The study was performed on fresh ex vivo human biliary-pancreatic tissue which had been resected for a pancreatic cyst or mass. The study was conducted within 15 min after resection. A bipolar Habib RFA catheter was placed into the middle of the intact CBD, and three different (5, 7, 10 W) power settings were applied over a 90-s period by an RF generator. Gross and histological examinations were performed. The depth of coagulation necrosis in CBD and the effect of RFA on CBD wall and surrounding pancreas tissue were determined by microscopic examination. The study included eight tissue samples. 5 W power was applied to three sites and RFA caused only focal epithelial necrosis limited to the CBD mucosa. 7 and 10 W were applied to five sites and coagulation necrosis occurred in all cases. Microscopically, necrosis was transmural, involved accessory bile duct glands, and extended to the surrounding pancreatic tissue in four of these cases. Macroscopically, RFA resulted in circumferential white-yellowish color change extending approximately 2 cm of the CBD. Bipolar RF energy application with 5 W resulted in limited ablation on CBD wall. However, 7 and 10 W generated tissue necrosis which extended through the CBD wall and into surrounding pancreas tissue. Endoscopic biliary RFA is an effective technique for local biliary tissue ablation but the use of high energy may injure surrounding tissue.

  5. A family of hyperelastic models for human brain tissue

    NASA Astrophysics Data System (ADS)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  6. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.

  7. Effects of Antioxidant N-acetylcysteine Against Paraquat-Induced Oxidative Stress in Vital Tissues of Mice

    PubMed Central

    Ortiz, Maricelly Santiago; Forti, Kevin Muñoz; Suárez Martinez, Edu B.; Muñoz, Lenin Godoy; Husain, Kazim

    2016-01-01

    Paraquat (PQ) is a commonly used herbicide that induces oxidative stress via reactive oxygen species (ROS) generation. This study aimed to investigate the effects of the antioxidant N-acetylcysteine (NAC) against PQ-induced oxidative stress in mice. Male Balb/C mice (24) were randomly divided into 4 groups and treated for 3 weeks: 1) control (saline), 2) NAC (0.5% in diet), 3) PQ (20 mg/kg, IP) and 4) combination (PQ + NAC). Afterwards mice were sacrificed and oxidative stress markers were analyzed. Our data showed no significant change in serum antioxidant capacity. PQ enhanced lipid peroxidation (MDA) levels in liver tissue compared to control whereas NAC decreased MDA levels (p<0.05). NAC significantly increased MDA in brain tissue (p<0.05). PQ significantly depleted glutathione (GSH) levels in liver (p=0.001) and brain tissue (p<0.05) but non-significant GSH depletion in lung tissue. NAC counteracted PQ, showing a moderate increase GSH levels in liver and brain tissues. PQ significantly increased 8-oxodeoxyguanosine (8-OH-dG) levels (p<0.05) in liver tissue compared to control without a significant change in brain tissue. NAC treatment ameliorated PQ-induced oxidative DNA damage in the liver tissue. PQ significantly decreased the relative mtDNA amplification and increased the frequency of lesions in liver and brain tissue (p<0.0001), while NAC restored the DNA polymerase activity in liver tissue but not in brain tissue. In conclusion, PQ induced lipid peroxidation, oxidative nuclear DNA and mtDNA damage in liver tissues and depleted liver and brain GSH levels. NAC supplementation ameliorated the PQ-induced oxidative stress response in liver tissue of mice. PMID:27398384

  8. BECon: a tool for interpreting DNA methylation findings from blood in the context of brain.

    PubMed

    Edgar, R D; Jones, M J; Meaney, M J; Turecki, G; Kobor, M S

    2017-08-01

    Tissue differences are one of the largest contributors to variability in the human DNA methylome. Despite the tissue-specific nature of DNA methylation, the inaccessibility of human brain samples necessitates the frequent use of surrogate tissues such as blood, in studies of associations between DNA methylation and brain function and health. Results from studies of surrogate tissues in humans are difficult to interpret in this context, as the connection between blood-brain DNA methylation is tenuous and not well-documented. Here, we aimed to provide a resource to the community to aid interpretation of blood-based DNA methylation results in the context of brain tissue. We used paired samples from 16 individuals from three brain regions and whole blood, run on the Illumina 450 K Human Methylation Array to quantify the concordance of DNA methylation between tissues. From these data, we have made available metrics on: the variability of cytosine-phosphate-guanine dinucleotides (CpGs) in our blood and brain samples, the concordance of CpGs between blood and brain, and estimations of how strongly a CpG is affected by cell composition in both blood and brain through the web application BECon (Blood-Brain Epigenetic Concordance; https://redgar598.shinyapps.io/BECon/). We anticipate that BECon will enable biological interpretation of blood-based human DNA methylation results, in the context of brain.

  9. Various clinical application of phase contrast X-ray

    NASA Astrophysics Data System (ADS)

    Oh, Chilhwan; Park, Sangyong; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Je, Jungho

    2008-02-01

    In biomedical application study using phase contrast X-ray, both sample thickness or density and absorption difference are very important factors in aspects of contrast enhancement. We present experimental evidence that synchrotron hard X-ray are suitable for radiological imaging of biological samples down to the cellular level. We investigated the potential of refractive index radiology using un-monochromatized synchrotron hard X-rays for the imaging of cell and tissue in various diseases. Material had been adopted various medical field, such as apoE knockout mouse in cardiologic field, specimen from renal and prostatic carcinoma patient in urology, basal cell epithelioma in dermatology, brain tissue from autosy sample of pakinson's disease, artificially induced artilrtis tissue from rabbits and extracted tooth from patients of crack tooth syndrome. Formalin and paraffin fixed tissue blocks were cut in 3 mm thickness for the X-ray radiographic imaging. From adjacent areas, 4 μm thickness sections were also prepared for hematoxylin-eosin staining. Radiographic images of dissected tissues were obtained using the hard X-rays from the 7B2 beamline of the Pohang Light Source (PLS). The technique used for the study was the phase contrast images were compared with the optical microscopic images of corresponding histological slides. Radiographic images of various diseased tissues showed clear histological details of organelles in normal tissues. Most of cancerous lesions were well differentiated from adjacent normal tissues and detailed histological features of each tumor were clearly identified. Also normal microstructures were identifiable by the phase contrast imaging. Tissue in cancer or other disease showed clearly different findings from those of surrounding normal tissue. For the first time we successfully demonstrated that synchrotron hard X-rays can be used for radiological imaging of relatively thick tissue samples with great histological details.

  10. Osthole confers neuroprotection against cortical stab wound injury and attenuates secondary brain injury.

    PubMed

    Xia, Yang; Kong, Liang; Yao, Yingjia; Jiao, Yanan; Song, Jie; Tao, Zhenyu; You, Zhong; Yang, Jingxian

    2015-09-04

    Neuroendoscopy is an innovative technique for neurosurgery that can nonetheless result in traumatic brain injury. The accompanying neuroinflammation may lead to secondary tissue damage, which is the major cause of delayed neuronal death after surgery. The present study investigated the capacity of osthole to prevent secondary brain injury and the underlying mechanism of action in a mouse model of stab wound injury. A mouse model of cortical stab wound injury was established by inserting a needle into the cerebral cortex for 20 min to mimic neuroendoscopy. Mice received an intraperitoneal injection of osthole 30 min after surgery and continued for 14 days. Neurological severity was evaluated 12 h and up to 21 days after the trauma. Brains were collected 3-21 days post-injury for histological analysis, immunocytochemistry, quantitative real-time PCR, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and enzyme-linked immunosorbent assays. Neurological function improved in mice treated with osthole and was accompanied by reduced brain water content and accelerated wound closure relative to untreated mice. Osthole treatment reduced the number of macrophages/microglia and peripheral infiltrating of neutrophils and lowered the level of the proinflammatory cytokines interleukin-6 and tumor necrosis factor α in the lesioned cortex. Osthole-treated mice had fewer TUNEL+ apoptotic neurons surrounding the lesion than controls, indicating increased neuronal survival. Osthole reduced secondary brain damage by suppressing inflammation and apoptosis in a mouse model of stab wound injury. These results suggest a new strategy for promoting neuronal survival and function after neurosurgery to improve long-term patient outcome.

  11. The structure of the perivascular compartment in the old canine brain: a case study.

    PubMed

    Criswell, Theodore P; Sharp, Matthew MacGregor; Dobson, Howard; Finucane, Ciara; Weller, Roy O; Verma, Ajay; Carare, Roxana O

    2017-11-15

    Dilatation of periarteriolar spaces in MRI of the ageing human brains occurs in white matter (WM), basal ganglia and midbrain but not in cerebral cortex. Perivenous collagenous occurs in periventricular but not in subcortical WM.Here we test the hypotheses that (a) the capacity for dilatation of periarteriolar spaces correlates with the anatomical distribution of leptomeningeal cells coating intracerebral arteries and (b) the regional development of perivenous collagenous in the WM correlates with the population of intramural cells in the walls of veins.The anatomical distribution of leptomeningeal and intramural cells related to cerebral blood vessels is best documented by electron microscopy, requiring perfusion-fixed tissue not available in human material. We therefore analysed perfusion-fixed brain from a 12-year-old Beagle dog as the canine brain represents the anatomical arrangement in the human brain. Results showed regional variation in the arrangement of leptomeningeal cells around blood vessels. Arterioles are enveloped by one complete layer of leptomeninges often with a second incomplete layer in the WM. Venules showed incomplete layers of leptomeningeal cells. Intramural cell expression was higher in the post-capillary venules of the subcortical WM when compared with periventricular WM, suggesting that periventricular collagenosis around venules may be due to a lower resistance in the venular walls. It appears that the regional variation in the capacity for dilatation of arteriolar perivascular spaces in the white WM may be related to the number of perivascular leptomeningeal cells surrounding vessels in different areas of the brain. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish.

    PubMed

    Nearing, J; Betka, M; Quinn, S; Hentschel, H; Elger, M; Baum, M; Bai, M; Chattopadyhay, N; Brown, E M; Hebert, S C; Harris, H W

    2002-07-09

    To determine whether calcium polyvalent cation-sensing receptors (CaRs) are salinity sensors in fish, we used a homology-based cloning strategy to isolate a 4.1-kb cDNA encoding a 1,027-aa dogfish shark (Squalus acanthias) kidney CaR. Expression studies in human embryonic kidney cells reveal that shark kidney senses combinations of Ca(2+), Mg(2+), and Na(+) ions at concentrations present in seawater and kidney tubules. Shark kidney is expressed in multiple shark osmoregulatory organs, including specific tubules of the kidney, rectal gland, stomach, intestine, olfactory lamellae, gill, and brain. Reverse transcriptase-PCR amplification using specific primers in two teleost fish, winter flounder (Pleuronectes americanus) and Atlantic salmon (Salmo salar), reveals a similar pattern of CaR tissue expression. Exposure of the lumen of winter flounder urinary bladder to the CaR agonists, Gd(3+) and neomycin, reversibly inhibit volume transport, which is important for euryhaline teleost survival in seawater. Within 24-72 hr after transfer of freshwater-adapted Atlantic salmon to seawater, there are increases in their plasma Ca(2+), Mg(2+), and Na(+) that likely serve as a signal for internal CaRs, i.e., brain, to sense alterations in salinity in the surrounding water. We conclude that CaRs act as salinity sensors in both teleost and elasmobranch fish. Their tissue expression patterns in fish provide insights into CaR functions in terrestrial animals including humans.

  13. How does the motor relearning program improve neurological function of brain ischemia monkeys?☆

    PubMed Central

    Yin, Yong; Gu, Zhen; Pan, Lei; Gan, Lu; Qin, Dongdong; Yang, Bo; Guo, Jin; Hu, Xintian; Wang, Tinghua; Feng, Zhongtang

    2013-01-01

    The motor relearning program can significantly improve various functional disturbance induced by ischemic cerebrovascular diseases. However, its mechanism of action remains poorly understood. In injured brain tissues, glial fibrillary acidic protein and neurofilament protein changes can reflect the condition of injured neurons and astrocytes, while vascular endothelial growth factor and basic fibroblast growth factor changes can indicate angiogenesis. In the present study, we induced ischemic brain injury in the rhesus macaque by electrocoagulation of the M1 segment of the right middle cerebral artery. The motor relearning program was conducted for 60 days from the third day after model establishment. Immunohistochemistry and single-photon emission CT showed that the numbers of glial fibrillary acidic protein-, neurofilament protein-, vascular endothelial growth factor- and basic fibroblast growth factor-positive cells were significantly increased in the infarcted side compared with the contralateral hemisphere following the motor relearning program. Moreover, cerebral blood flow in the infarcted side was significantly improved. The clinical rating scale for stroke was used to assess neurological function changes in the rhesus macaque following the motor relearning program. Results showed that motor function was improved, and problems with consciousness, self-care ability and balance function were significantly ameliorated. These findings indicate that the motor relearning program significantly promoted neuronal regeneration, repair and angiogenesis in the surroundings of the infarcted hemisphere, and improve neurological function in the rhesus macaque following brain ischemia. PMID:25206440

  14. Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia-associated epilepsy.

    PubMed

    Ribierre, Théo; Deleuze, Charlotte; Bacq, Alexandre; Baldassari, Sara; Marsan, Elise; Chipaux, Mathilde; Muraca, Giuseppe; Roussel, Delphine; Navarro, Vincent; Leguern, Eric; Miles, Richard; Baulac, Stéphanie

    2018-04-30

    DEP domain-containing 5 protein (DEPDC5) is a repressor of the recently recognized amino acid-sensing branch of the mTORC1 pathway. So far, its function in the brain remains largely unknown. Germline loss-of-function mutations in DEPDC5 have emerged as a major cause of familial refractory focal epilepsies, with case reports of sudden unexpected death in epilepsy (SUDEP). Remarkably, a fraction of patients also develop focal cortical dysplasia (FCD), a neurodevelopmental cortical malformation. We therefore hypothesized that a somatic second-hit mutation arising during brain development may support the focal nature of the dysplasia. Here, using postoperative human tissue, we provide the proof of concept that a biallelic 2-hit - brain somatic and germline - mutational mechanism in DEPDC5 causes focal epilepsy with FCD. We discovered a mutation gradient with a higher rate of mosaicism in the seizure-onset zone than in the surrounding epileptogenic zone. Furthermore, we demonstrate the causality of a Depdc5 brain mosaic inactivation using CRISPR-Cas9 editing and in utero electroporation in a mouse model recapitulating focal epilepsy with FCD and SUDEP-like events. We further unveil a key role of Depdc5 in shaping dendrite and spine morphology of excitatory neurons. This study reveals promising therapeutic avenues for treating drug-resistant focal epilepsies with mTORC1-targeting molecules.

  15. Toward effective immunotherapy for the treatment of malignant brain tumors.

    PubMed

    Mitchell, Duane A; Sampson, John H

    2009-07-01

    The immunologic treatment of cancer has long been heralded as a targeted molecular therapeutic with the promise of eradicating tumor cells with minimal damage to surrounding normal tissues. However, a demonstrative example of the efficacy of immunotherapy in modulating cancer progression is still lacking for most human cancers. Recent breakthroughs in our understanding of the mechanisms leading to full T-cell activation, and recognition of the importance of overcoming tumor-induced immunosuppressive mechanisms, have shed new light on how to generate effective anti-tumor immune responses in humans, and sparked a renewed and enthusiastic effort to realize the full potential of cancer immunotherapy. The immunologic treatment of invasive malignant brain tumors has not escaped this re-invigorated endeavor, and promising therapies are currently under active investigation in dozens of clinical trials at several institutions worldwide. This review will focus on some of the most important breakthroughs in our understanding of how to generate potent anti-tumor immune responses, and some of the clear challenges that lie ahead in achieving effective immunotherapy for the majority of patients with malignant brain tumors. A review of immunotherapeutic strategies currently under clinical evaluation, as well as an outline of promising novel approaches on the horizon, is included to provide perspective on the active and stalwart progress toward effective immunotherapy for the treatment of malignant brain tumors.

  16. Automatic brain tissue segmentation based on graph filter.

    PubMed

    Kong, Youyong; Chen, Xiaopeng; Wu, Jiasong; Zhang, Pinzheng; Chen, Yang; Shu, Huazhong

    2018-05-09

    Accurate segmentation of brain tissues from magnetic resonance imaging (MRI) is of significant importance in clinical applications and neuroscience research. Accurate segmentation is challenging due to the tissue heterogeneity, which is caused by noise, bias filed and partial volume effects. To overcome this limitation, this paper presents a novel algorithm for brain tissue segmentation based on supervoxel and graph filter. Firstly, an effective supervoxel method is employed to generate effective supervoxels for the 3D MRI image. Secondly, the supervoxels are classified into different types of tissues based on filtering of graph signals. The performance is evaluated on the BrainWeb 18 dataset and the Internet Brain Segmentation Repository (IBSR) 18 dataset. The proposed method achieves mean dice similarity coefficient (DSC) of 0.94, 0.92 and 0.90 for the segmentation of white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) for BrainWeb 18 dataset, and mean DSC of 0.85, 0.87 and 0.57 for the segmentation of WM, GM and CSF for IBSR18 dataset. The proposed approach can well discriminate different types of brain tissues from the brain MRI image, which has high potential to be applied for clinical applications.

  17. Long-Term Implanted cOFM Probe Causes Minimal Tissue Reaction in the Brain

    PubMed Central

    Hochmeister, Sonja; Asslaber, Martin; Kroath, Thomas; Pieber, Thomas R.; Sinner, Frank

    2014-01-01

    This study investigated the histological tissue reaction to long-term implanted cerebral open flow microperfusion (cOFM) probes in the frontal lobe of the rat brain. Most probe-based cerebral fluid sampling techniques are limited in application time due to the formation of a glial scar that hinders substance exchange between brain tissue and the probe. A glial scar not only functions as a diffusion barrier but also alters metabolism and signaling in extracellular brain fluid. cOFM is a recently developed probe-based technique to continuously sample extracellular brain fluid with an intact blood-brain barrier. After probe implantation, a 2 week healing period is needed for blood-brain barrier reestablishment. Therefore, cOFM probes need to stay in place and functional for at least 15 days after implantation to ensure functionality. Probe design and probe materials are optimized to evoke minimal tissue reaction even after a long implantation period. Qualitative and quantitative histological tissue analysis revealed no continuous glial scar formation around the cOFM probe 30 days after implantation and only a minor tissue reaction regardless of perfusion of the probe. PMID:24621608

  18. HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues.

    PubMed

    Lamers, Susanna L; Gray, Rebecca R; Salemi, Marco; Huysentruyt, Leanne C; McGrath, Michael S

    2011-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that (1) HIV-1 is clearly capable of migrating out of the brain, (2) the meninges are the most likely primary transport tissues, and (3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. X-ray absorption fine structure (XAFS) analysis of titanium-implanted soft tissue.

    PubMed

    Uo, Motohiro; Asakura, Kiyotaka; Yokoyama, Atsuro; Ishikawa, Makoto; Tamura, Kazuchika; Totsuka, Yasunori; Akasaka, Tsukasa; Watari, Fumio

    2007-03-01

    Tissues contacting Ti dental implants were subjected to X-ray absorption fine structure (XAFS) analysis to examine the chemical state of Ti transferred from the placed implant into the surrounding tissue. Nine tissues that contacted pure Ti cover screws for several months were excised in a second surgery whereby healing abutments were set. Six tissues that surrounded implants retrieved due to their failure were also excised. Ti distributions in the excised specimens were confirmed by X-ray scanning analytical microscopy (XSAM), and the specimens were subjected to fluorescence XAFS analysis to determine the chemical states of the low concentrations of Ti in the tissues surrounding Ti dental implants. Ti mostly existed in the metallic state and was considered to be debris derived from the abrasion of implant pieces during implant surgery. Oxidized forms of Ti, such as anatase and rutile, were also detected in a few specimens-and existed in either a pure state or mixed state with metallic Ti. It was concluded that the existence of Ti in the tissue did not cause implant failure. Moreover, the usefulness of XAFS for analysis of the chemical states of rarely contained elements in biological tissue was demonstrated.

  20. Effect of Ginkgo biloba extract on apoptosis of brain tissues in rats with acute cerebral infarction and related gene expression.

    PubMed

    Wu, C; Zhao, X; Zhang, X; Liu, S; Zhao, H; Chen, Y

    2015-06-11

    We investigated the effect of Ginkgo biloba extract on apoptosis of brain tissues in rats with acute cerebral infarction and apoptosis-related gene expression. Rat models of acute cerebral infarction were constructed using the suture method, and randomly divided into the control group, model, and treatment groups. In the treatment group, 4 mg/kg G. biloba extract was intravenously injected into the rat tail vein. Phosphate-buffered saline solution was injected in the model group. Seventy-two hours after treatment, rats were euthanized, and brain tissues were removed to analyze the changes in caspase-3, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) mRNA and protein levels, and variation in brain tissue cells' apoptosis indices was measured. Compared with the control group, the model and treatment groups showed significantly upregulated caspase-3, Bcl-2, and Bax mRNA and protein levels in brain tissues, but remarkably downregulated Bcl-2 mRNA and protein levels (P < 0.05). After treatment, in treatment group brain tissues, caspase-3 and Bax mRNA and protein levels were significantly lower than those in the model group, while Bcl-2 mRNA and protein levels were higher than that in the model group (P < 0.05). The model and treatment groups showed increased cell apoptosis indices of brain tissues compared to the control group; after treatment, the apoptosis index in the treatment group was significantly downregulated compared with that in the model group (P < 0.05). In conclusion, G. biloba extract significantly reduced apoptosis in rat brain tissue cells with acute cerebral infarction and thus protected brain tissues.

  1. Vitamin C in Health and Disease: Its Role in the Metabolism of Cells and Redox State in the Brain.

    PubMed

    Figueroa-Méndez, Rodrigo; Rivas-Arancibia, Selva

    2015-01-01

    Ever since Linus Pauling published his studies, the effects of vitamin C have been surrounded by contradictory results. This may be because its effects depend on a number of factors such as the redox state of the body, the dose used, and also on the tissue metabolism. This review deals with vitamin C pharmacokinetics and its participation in neurophysiological processes, as well as its role in the maintenance of redox balance. The distribution and the concentration of vitamin C in the organs depend on the ascorbate requirements of each and on the tissue distribution of sodium-dependent vitamin C transporter 1 and 2 (SVCT1 and SVCT2). This determines the specific distribution pattern of vitamin C in the body. Vitamin C is involved in the physiology of the nervous system, including the support and the structure of the neurons, the processes of differentiation, maturation, and neuronal survival; the synthesis of catecholamine, and the modulation of neurotransmission. This antioxidant interacts with self-recycling mechanisms, including its participation in the endogenous antioxidant system. We conclude that the pharmacokinetic properties of ascorbate are related to the redox state and its functions and effects in tissues.

  2. Vitamin C in Health and Disease: Its Role in the Metabolism of Cells and Redox State in the Brain

    PubMed Central

    Figueroa-Méndez, Rodrigo; Rivas-Arancibia, Selva

    2015-01-01

    Ever since Linus Pauling published his studies, the effects of vitamin C have been surrounded by contradictory results. This may be because its effects depend on a number of factors such as the redox state of the body, the dose used, and also on the tissue metabolism. This review deals with vitamin C pharmacokinetics and its participation in neurophysiological processes, as well as its role in the maintenance of redox balance. The distribution and the concentration of vitamin C in the organs depend on the ascorbate requirements of each and on the tissue distribution of sodium-dependent vitamin C transporter 1 and 2 (SVCT1 and SVCT2). This determines the specific distribution pattern of vitamin C in the body. Vitamin C is involved in the physiology of the nervous system, including the support and the structure of the neurons, the processes of differentiation, maturation, and neuronal survival; the synthesis of catecholamine, and the modulation of neurotransmission. This antioxidant interacts with self-recycling mechanisms, including its participation in the endogenous antioxidant system. We conclude that the pharmacokinetic properties of ascorbate are related to the redox state and its functions and effects in tissues. PMID:26779027

  3. Hydrogel scaffolds promote neural gene expression and structural reorganization in human astrocyte cultures.

    PubMed

    Knight, V Bleu; Serrano, Elba E

    2017-01-01

    Biomaterial scaffolds have the potential to enhance neuronal development and regeneration. Understanding the genetic responses of astrocytes and neurons to biomaterials could facilitate the development of synthetic environments that enable the specification of neural tissue organization with engineered scaffolds. In this study, we used high throughput transcriptomic and imaging methods to determine the impact of a hydrogel, PuraMatrix™, on human glial cells in vitro . Parallel studies were undertaken with cells grown in a monolayer environment on tissue culture polystyrene. When the Normal Human Astrocyte (NHA) cell line is grown in a hydrogel matrix environment, the glial cells adopt a structural organization that resembles that of neuronal-glial cocultures, where neurons form clusters that are distinct from the surrounding glia. Statistical analysis of next generation RNA sequencing data uncovered a set of genes that are differentially expressed in the monolayer and matrix hydrogel environments. Functional analysis demonstrated that hydrogel-upregulated genes can be grouped into three broad categories: neuronal differentiation and/or neural plasticity, response to neural insult, and sensory perception. Our results demonstrate that hydrogel biomaterials have the potential to transform human glial cell identity, and may have applications in the repair of damaged brain tissue.

  4. [The use of the T2-weighted turbo-spin-echo sequence in studying the neurocranium. A comparison with the conventional T2-weighted spin-echo sequence].

    PubMed

    Siewert, C; Hosten, N; Felix, R

    1994-07-01

    T2-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neurocranium. We evaluated fast spin-echo T2-weighted imaging (TT2) of the neurocranium in comparison to conventional spin-echo T2-weighted imaging (T2). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher in TT2 than in T2 (with the exception of gray-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT2, Parkinson patients have to be examined by conventional T2. If these limitations are taken into account, fast spin-echo T2-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T2-weighting achieved in a short acquisition time.

  5. SU-E-T-340: Use of Intensity Modulated Proton Therapy (IMPT) for Reducing the Dose to Cochlea in Craniospinal Irradiation (CSI) of Pediatric Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dormer, J; Kassaee, A; Lin, H

    2014-06-01

    Purpose: To evaluate use of intensity modulated proton therapy (IMPT) and number of beams for sparing cochlea in treatment of whole brain for pediatric medulloblastoma patients. Methods: In our institution, craniospinal irradiation patients are treated in supine position on our proton gantries using pencil beam scanning with each beam uniformly covering the target volume (SFUD). Each treatment plan consists of two opposed lateral whole brain fields and one or two spinal fields. For sparing the cochlea for the whole brain treatment, we created three different plans using IMPT for five pediatric patients. The first plan consisted of two lateral fields,more » the second two lateral fields and a superior-inferior field, and the third two lateral fields and two superior oblique fields. Optimization was performed with heavy weights applied to the eye, lens and cochlea while maintaining a dose prescription of 36 Gy to the whole brain. Results: IMPT plans reduce the dose to the cochlea. Increasing the number of treatment fields was found to lower the average dose to the cochlea: 15.0, 14.5 and 12.5 Gy for the two-field, three-field, and four-field plans respectively. The D95 for the two-field plan was 98.2%, compared to 100.0% for both the three-field and four-field plan. Coverage in the mid-brain was noticeably better in the three- and four-field plans, with more dose conformality surrounding the cochlea. Conclusion: IMPT plans for CSI and the whole brain irradiations are capable of sparing cochlea and reduce the dose considerably without compromising treating brain tissues. The reduction in average dose increases with three and four field plans as compared to traditional two lateral beam plans.« less

  6. A New MRI Masking Technique Based on Multi-Atlas Brain Segmentation in Controls and Schizophrenia: A Rapid and Viable Alternative to Manual Masking.

    PubMed

    Del Re, Elisabetta C; Gao, Yi; Eckbo, Ryan; Petryshen, Tracey L; Blokland, Gabriëlla A M; Seidman, Larry J; Konishi, Jun; Goldstein, Jill M; McCarley, Robert W; Shenton, Martha E; Bouix, Sylvain

    2016-01-01

    Brain masking of MRI images separates brain from surrounding tissue and its accuracy is important for further imaging analyses. We implemented a new brain masking technique based on multi-atlas brain segmentation (MABS) and compared MABS to masks generated using FreeSurfer (FS; version 5.3), Brain Extraction Tool (BET), and Brainwash, using manually defined masks (MM) as the gold standard. We further determined the effect of different masking techniques on cortical and subcortical volumes generated by FreeSurfer. Images were acquired on a 3-Tesla MR Echospeed system General Electric scanner on five control and five schizophrenia subjects matched on age, sex, and IQ. Automated masks were generated from MABS, FS, BET, and Brainwash, and compared to MM using these metrics: a) volume difference from MM; b) Dice coefficients; and c) intraclass correlation coefficients. Mean volume difference between MM and MABS masks was significantly less than the difference between MM and FS or BET masks. Dice coefficient between MM and MABS was significantly higher than Dice coefficients between MM and FS, BET, or Brainwash. For subcortical and left cortical regions, MABS volumes were closer to MM volumes than were BET or FS volumes. For right cortical regions, MABS volumes were closer to MM volumes than were BET volumes. Brain masks generated using FreeSurfer, BET, and Brainwash are rapidly obtained, but are less accurate than manually defined masks. Masks generated using MABS, in contrast, resemble more closely the gold standard of manual masking, thereby offering a rapid and viable alternative. Copyright © 2015 by the American Society of Neuroimaging.

  7. Identification of the boundary between normal brain tissue and ischemia region using two-photon excitation fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Du, Huiping; Wang, Shu; Wang, Xingfu; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2016-10-01

    Ischemic stroke is one of the common neurological diseases, and it is becoming the leading causes of death and permanent disability around the world. Early and accurate identification of the potentially salvageable boundary region of ischemia brain tissues may enable selection of the most appropriate candidates for early stroke therapies. In this work, TPEF microscopy was used to image the microstructures of normal brain tissues, ischemia regions and the boundary region between normal and ischemia brain tissues. The ischemia brain tissues from Sprague-Dawley (SD) rats were subjected to 6 hours of middle cerebral artery occlusion (MCAO). Our study demonstrates that TPEF microscopy has the ability to not only reveal the morphological changes of the neurons but also identify the boundary between normal brain tissue and ischemia region, which correspond well to the hematoxylin and eosin (H and E) stained images. With the development of miniaturized TPEF microscope imaging devices, TPEF microscopy can be developed into an effectively diagnostic and monitoring tool for cerebral ischemia.

  8. Time-course of effects of external beam radiation on [18F]FDG uptake in healthy tissue and bone marrow.

    PubMed

    Kesner, Adam L; Lau, Victoria K; Speiser, Michael; Hsueh, Wei-Ann; Agazaryan, Nzhde; DeMarco, John J; Czernin, Johannes; Silverman, Daniel H S

    2008-06-23

    The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time-course of [18F]FDG uptake in normal tissues using small animal-dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG-PET scans were acquired for each mouse at 0 (pre-radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non-irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time-course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3-12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p < 0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2-8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p = 0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time-course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually.

  9. Time‐course of effects of external beam radiation on [18F]FDG uptake in healthy tissue and bone marrow

    PubMed Central

    Kesner, Adam L; Lau, Victoria K; Speiser, Michael; Hsueh, Wei‐Ann; Agazaryan, Nzhde; DeMarco, John J; Czernin, Johannes

    2008-01-01

    The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time‐course of [18F]FDG uptake in normal tissues using small animal‐dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG‐PET scans were acquired for each mouse at 0 (pre‐radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non‐irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time‐course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3–12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p<0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2–8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p=0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time‐course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually. PACs Number: 87.50.‐a

  10. An advanced computational bioheat transfer model for a human body with an embedded systemic circulation.

    PubMed

    Coccarelli, Alberto; Boileau, Etienne; Parthimos, Dimitris; Nithiarasu, Perumal

    2016-10-01

    In the present work, an elaborate one-dimensional thermofluid model for a human body is presented. By contrast to the existing pure conduction-/perfusion-based models, the proposed methodology couples the arterial fluid dynamics of a human body with a multi-segmental bioheat model of surrounding solid tissues. In the present configuration, arterial flow is included through a network of elastic vessels. More than a dozen solid segments are employed to represent the heat conduction in the surrounding tissues, and each segment is constituted by a multilayered circular cylinder. Such multi-layers allow flexible delineation of the geometry and incorporation of properties of different tissue types. The coupling of solid tissue and fluid models requires subdivision of the arterial circulation into large and small arteries. The heat exchange between tissues and arterial wall occurs by convection in large vessels and by perfusion in small arteries. The core region, including the heart, provides the inlet conditions for the fluid equations. In the proposed model, shivering, sweating, and perfusion changes constitute the basis of the thermoregulatory system. The equations governing flow and heat transfer in the circulatory system are solved using a locally conservative Galerkin approach, and the heat conduction in the surrounding tissues is solved using a standard implicit backward Euler method. To investigate the effectiveness of the proposed model, temperature field evolutions are monitored at different points of the arterial tree and in the surrounding tissue layers. To study the differences due to flow-induced convection effects on thermal balance, the results of the current model are compared against those of the widely used modelling methodologies. The results show that the convection significantly influences the temperature distribution of the solid tissues in the vicinity of the arteries. Thus, the inner convection has a more predominant role in the human body heat balance than previously thought. To demonstrate its capabilities, the proposed new model is used to study different scenarios, including thermoregulation inactivity and variation in surrounding atmospheric conditions.

  11. A computer system to be used with laser-based endoscopy for quantitative diagnosis of early gastric cancer.

    PubMed

    Miyaki, Rie; Yoshida, Shigeto; Tanaka, Shinji; Kominami, Yoko; Sanomura, Yoji; Matsuo, Taiji; Oka, Shiro; Raytchev, Bisser; Tamaki, Toru; Koide, Tetsushi; Kaneda, Kazufumi; Yoshihara, Masaharu; Chayama, Kazuaki

    2015-02-01

    To evaluate the usefulness of a newly devised computer system for use with laser-based endoscopy in differentiating between early gastric cancer, reddened lesions, and surrounding tissue. Narrow-band imaging based on laser light illumination has come into recent use. We devised a support vector machine (SVM)-based analysis system to be used with the newly devised endoscopy system to quantitatively identify gastric cancer on images obtained by magnifying endoscopy with blue-laser imaging (BLI). We evaluated the usefulness of the computer system in combination with the new endoscopy system. We evaluated the system as applied to 100 consecutive early gastric cancers in 95 patients examined by BLI magnification at Hiroshima University Hospital. We produced a set of images from the 100 early gastric cancers; 40 flat or slightly depressed, small, reddened lesions; and surrounding tissues, and we attempted to identify gastric cancer, reddened lesions, and surrounding tissue quantitatively. The average SVM output value was 0.846 ± 0.220 for cancerous lesions, 0.381 ± 0.349 for reddened lesions, and 0.219 ± 0.277 for surrounding tissue, with the SVM output value for cancerous lesions being significantly greater than that for reddened lesions or surrounding tissue. The average SVM output value for differentiated-type cancer was 0.840 ± 0.207 and for undifferentiated-type cancer was 0.865 ± 0.259. Although further development is needed, we conclude that our computer-based analysis system used with BLI will identify gastric cancers quantitatively.

  12. Cold thyroid nodules show a marked increase in proliferation markers.

    PubMed

    Krohn, Knut; Stricker, Ingo; Emmrich, Peter; Paschke, Ralf

    2003-06-01

    Thyroid follicular adenomas and adenomatous thyroid nodules are a frequent finding in geographical areas with iodine deficiency. They occur as hypofunctioning (scintigraphically cold) or hyperfunctioning (scintigraphically hot) nodules. Their predominant clonal origin suggests that they result from clonal expansion of a single cell, which is very likely the result of a prolonged increase in proliferation compared with non-affected surrounding cells. To test whether increased cell proliferation is detectable in cold thyroid nodules, we studied paraffin-embedded tissue from 40 cold thyroid nodules and their surrounding normal thyroid tissue for the occurrence of the proliferating cell nuclear antigen (PCNA) and Ki-67 (MIB-1 antibody) epitopes as markers for cell proliferation. All 40 thyroid nodules were histologically well characterized and have been studied for molecular characteristics before. The labeling index (number of labeled cells versus total cell number) for nodular and surrounding tissue was calculated. In 33 cold thyroid nodules a significant (p < or = 0.05) increase in the labeling index for PCNA was detectable. In 19 cold thyroid nodules a significant (p < or = 0.05) increase in the labeling index for Ki-67 was detectable. Moreover, surrounding tissues with lymphocyte infiltration showed a significantly higher labeling index for both PCNA and Ki-67 compared with normal surrounding tissue. These findings are first evidence that an increased thyroid epithelial cell proliferation is a uniform feature common to most cold nodules. However, the increase of proliferation markers shows a heterogeneity that is not correlated with histopathologic, molecular, or clinical characteristics.

  13. Postmortem changes in the neuroanatomical characteristics of the primate brain: the hippocampal formation

    PubMed Central

    Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L.; Amaral, David G.

    2009-01-01

    Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused, or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger, as compared to perfusion-fixed tissue. Non-phosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well-stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences. PMID:18972553

  14. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation.

    PubMed

    Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L; Amaral, David G

    2009-01-01

    Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger as compared to perfusion-fixed tissue. Nonphosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells, and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences.

  15. Effects of the Variation in Brain Tissue Mechanical Properties on the Intracranial Response of a 6-Year-Old Child.

    PubMed

    Cui, Shihai; Li, Haiyan; Li, Xiangnan; Ruan, Jesse

    2015-01-01

    Brain tissue mechanical properties are of importance to investigate child head injury using finite element (FE) method. However, these properties used in child head FE model normally vary in a large range in published literatures because of the insufficient child cadaver experiments. In this work, a head FE model with detailed anatomical structures is developed from the computed tomography (CT) data of a 6-year-old healthy child head. The effects of brain tissue mechanical properties on traumatic brain response are also analyzed by reconstruction of a head impact on engine hood according to Euro-NCAP testing regulation using FE method. The result showed that the variations of brain tissue mechanical parameters in linear viscoelastic constitutive model had different influences on the intracranial response. Furthermore, the opposite trend was obtained in the predicted shear stress and shear strain of brain tissues caused by the variations of mentioned parameters.

  16. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity

    PubMed Central

    Park, Dae Woo

    2016-01-01

    Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression. PMID:27293476

  17. ¹⁸F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas.

    PubMed

    Hirata, Kenji; Terasaka, Shunsuke; Shiga, Tohru; Hattori, Naoya; Magota, Keiichi; Kobayashi, Hiroyuki; Yamaguchi, Shigeru; Houkin, Kiyohiro; Tanaka, Shinya; Kuge, Yuji; Tamaki, Nagara

    2012-05-01

    Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and its prognosis is significantly poorer than those of less malignant gliomas. Pathologically, necrosis is one of the most important characteristics that differentiate GBM from lower grade gliomas; therefore, we hypothesized that (18)F fluoromisonidazole (FMISO), a radiotracer for hypoxia imaging, accumulates in GBM but not in lower grade gliomas. We aimed to evaluate the diagnostic value of FMISO positron emission tomography (PET) for the differential diagnosis of GBM from lower grade gliomas. This prospective study included 23 patients with pathologically confirmed gliomas. All of the patients underwent FMISO PET and (18)F-fluorodeoxyglucose (FDG) PET within a week. FMISO images were acquired 4 h after intravenous administration of 400 MBq of FMISO. Tracer uptake in the tumor was visually assessed. Lesion to normal tissue ratios and FMISO uptake volume were calculated. Of the 23 glioma patients, 14 were diagnosed as having GBM (grade IV glioma in the 2007 WHO classification), and the others were diagnosed as having non-GBM (5 grade III and 4 grade II). In visual assessment, all GBM patients showed FMISO uptake in the tumor greater than that in the surrounding brain tissues, whereas all the non-GBM patients showed FMISO uptake in the tumor equal to that in the surrounding brain tissues (p ≤ 0.001). One GBM patient was excluded from FDG PET study because of hyperglycemia. All GBM patients and three of the nine (33%) non-GBM patients showed FDG uptake greater than or equal to that in the gray matter. The sensitivity and specificity for diagnosing GBM were 100 and 100% for FMISO, and 100 and 66% for FDG, respectively. The lesion to cerebellum ratio of FMISO uptake was higher in GBM patients (2.74 ± 0.60, range 1.71-3.81) than in non-GBM patients (1.22 ± 0.06, range 1.09-1.29, p ≤ 0.001) with no overlap between the groups. The lesion to gray matter ratio of FDG was also higher in GBM patients (1.46 ± 0.75, range 0.91-3.79) than in non-GBM patients (1.07 ± 0.62, range 0.66-2.95, p ≤ 0.05); however, overlap of the ranges did not allow clear differentiation between GBM and non-GBM. The uptake volume of FMISO was larger in GBM (27.18 ± 10.46%, range 14.02-46.67%) than in non-GBM (6.07 ± 2.50%, range 2.12-9.22%, p ≤ 0.001). These preliminary data suggest that FMISO PET may distinguish GBM from lower grade gliomas.

  18. Multimodality Instrument for Tissue Characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2000-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip is discussed. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network, program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration.

  19. The Importance of Brain Banks for Molecular Neuropathological Research: The New South Wales Tissue Resource Centre Experience

    PubMed Central

    Dedova, Irina; Harding, Antony; Sheedy, Donna; Garrick, Therese; Sundqvist, Nina; Hunt, Clare; Gillies, Juliette; Harper, Clive G.

    2009-01-01

    New developments in molecular neuropathology have evoked increased demands for postmortem human brain tissue. The New South Wales Tissue Resource Centre (TRC) at The University of Sydney has grown from a small tissue collection into one of the leading international brain banking facilities, which operates with best practice and quality control protocols. The focus of this tissue collection is on schizophrenia and allied disorders, alcohol use disorders and controls. This review highlights changes in TRC operational procedures dictated by modern neuroscience, and provides examples of applications of modern molecular techniques to study the neuropathogenesis of many different brain disorders. PMID:19333451

  20. Different modes of herpes simplex virus type 1 spread in brain and skin tissues.

    PubMed

    Tsalenchuck, Yael; Tzur, Tomer; Steiner, Israel; Panet, Amos

    2014-02-01

    Herpes simplex virus type 1 (HSV-1) initially infects the skin and subsequently spreads to the nervous system. To investigate and compare HSV-1 mode of propagation in the two clinically relevant tissues, we have established ex vivo infection models, using native tissues of mouse and human skin, as well as mouse brain, maintained in organ cultures. HSV-1, which is naturally restricted to the human, infects and spreads in the mouse and human skin tissues in a similar fashion, thus validating the mouse model. The spread of HSV-1 in the skin was concentric to form typical plaques of limited size, predominantly of cytopathic cells. By contrast, HSV-1 spread in the brain tissue was directed along specific neuronal networks with no apparent cytopathic effect. Two additional differences were noted following infection of the skin and brain tissues. First, only a negligible amount of extracellular progeny virus was produced of the infected brain tissues, while substantial quantity of infectious progeny virus was released to the media of the infected skin. Second, antibodies against HSV-1, added following the infection, effectively restricted viral spread in the skin but have no effect on viral spread in the brain tissue. Taken together, these results reveal that HSV-1 spread within the brain tissue mostly by direct transfer from cell to cell, while in the skin the progeny extracellular virus predominates, thus facilitating the infection to new individuals.

  1. MO-F-CAMPUS-T-02: Optimizing Orientations of Hundreds of Intensity-Modulated Beams to Treat Multiple Brain Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, L; Dong, P; Larson, D

    Purpose: To investigate a new modulated beam orientation optimization (MBOO) approach maximizing treatment planning quality for the state-of-the-art flattening filter free (FFF) beam that has enabled rapid treatments of multiple brain targets. Methods: MBOO selects and optimizes a large number of intensity-modulated beams (400 or more) from all accessible beam angles surrounding a patient’s skull. The optimization algorithm was implemented on a standalone system that interfaced with the 3D Dicom images and structure sets. A standard published data set that consisted of 1 to 12 metastatic brain tumor combinations was selected for MBOO planning. The planning results from various coplanarmore » and non-coplanar configurations via MBOO were then compared with the results obtained from a clinical volume modulated arc therapy (VMAT) delivery system (Truebeam RapidArc, Varian Oncology). Results: When planning a few number of targets (n<4), MBOO produced results equivalent to non-coplanar multi-arc VMAT planning in terms of target volume coverage and normal tissue sparing. For example, the 12-Gy and 4-Gy normal brain volumes for the 3-target plans differed by less than 1 mL ( 3.0 mLvs 3.8 mL; and 35.2 mL vs 36.3 mL, respectively) for MBOO versus VMAT. However, when planning a larger number of targets (n≥4), MBOO significantly reduced the dose to the normal brain as compared to VMAT, though the target volume coverage was equivalent. For example, the 12-Gy and 4-Gy normal brain volumes for the 12-target plans were 10.8 mL vs. 18.0 mL and 217.9 mL vs. 390.0 mL, respectively for the non-coplanar MBOO versus the non-coplanar VMAT treatment plans, yielding a reduction in volume of more than 60% for the case. Conclusion: MBOO is a unique approach for maximizing normal tissue sparing when treating a large number (n≥4) of brain tumors with FFF linear accelerators. Dr Ma and Dr Sahgal are currently on the board of international society of stereotactic radiosurgery. Dr Sahgal has received support for educational presentations from Elekta company.« less

  2. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments

    NASA Astrophysics Data System (ADS)

    Giannoni, Luca; Lange, Frédéric; Tachtsidis, Ilias

    2018-04-01

    Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.

  3. A study on the antioxidant effect of Coriolus versicolor polysaccharide in rat brain tissues.

    PubMed

    Chen, Jiayu; Jin, Xiaoyan; Zhang, Liting; Yang, Linjun

    2013-01-01

    The objective of the study was to investigate the antioxidant effect of Chinese medicine Coriolus versicolor polysaccharide on brain tissue and its mechanism in rats. SOD, MDA and GSH-Px levels in rat brain tissues were determined with SD rats as the animal model. The results showed that Coriolus versicolor polysaccharide can reduce the lipid peroxidation level in brain tissues during exhaustive exercise in rats, and can accelerate the removal of free radicals. The study concluded that its antioxidant effect is relatively apparent.

  4. CSF smear (image)

    MedlinePlus

    ... is a clear fluid that circulates in the space surrounding the spinal cord and brain. CSF protects the brain and spinal cord from injury by acting like a liquid cushion. CSF is usually obtained through a lumbar ...

  5. Lumbar puncture (image)

    MedlinePlus

    ... is a clear fluid that circulates in the space surrounding the spinal cord and brain. CSF protects the brain and spinal cord from injury by acting like a liquid cushion. CSF is usually obtained through a lumbar ...

  6. CSF chemistry (image)

    MedlinePlus

    ... is a clear fluid that circulates in the space surrounding the spinal cord and brain. CSF protects the brain and spinal cord from injury by acting like a liquid cushion. CSF is usually obtained through a lumbar ...

  7. Clinical feasibility of simultaneous multi-slice imaging with blipped-CAIPI for diffusion-weighted imaging and diffusion-tensor imaging of the brain.

    PubMed

    Yokota, Hajime; Sakai, Koji; Tazoe, Jun; Goto, Mariko; Imai, Hiroshi; Teramukai, Satoshi; Yamada, Kei

    2017-12-01

    Background Simultaneous multi-slice (SMS) imaging is starting to be used in clinical situation, although evidence of clinical feasibility is scanty. Purpose To prospectively assess the clinical feasibility of SMS diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) with blipped-controlled aliasing in parallel imaging for brain lesions. Material and Methods The institutional review board approved this study. This study included 156 hyperintense lesions on DWI from 32 patients. A slice acceleration factor of 2 was applied for SMS scans, which allowed shortening of the scan time by 41.3%. The signal-to-noise ratio (SNR) was calculated for brain tissue of a selected slice. The contrast-to-noise ratio (CNR), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) were calculated in 36 hyperintense lesions with a diameter of three pixels or more. Visual assessment was performed for all 156 lesions. Tractography of the corticospinal tract of 29 patients was evaluated. The number of tracts and averaged tract length were used for quantitative analysis, and visual assessment was evaluated by grading. Results The SMS scan showed no bias and acceptable 95% limits of agreement compared to conventional scans in SNR, CNR, and ADC on Bland-Altman analyses. Only FA of the lesions was higher in the SMS scan by 9% ( P = 0.016), whereas FA of the surrounding tissues was similar. Quantitative analysis of tractography showed similar values. Visual assessment of DWI hyperintense lesions and tractography also resulted in comparable evaluation. Conclusion SMS imaging was clinically feasible for imaging quality and quantitative values compared with conventional DWI and DTI.

  8. PET imaging in ischemic cerebrovascular disease: current status and future directions.

    PubMed

    Heiss, Wolf-Dieter

    2014-10-01

    Cerebrovascular diseases are caused by interruption or significant impairment of the blood supply to the brain, which leads to a cascade of metabolic and molecular alterations resulting in functional disturbance and morphological damage. These pathophysiological changes can be assessed by positron emission tomography (PET), which permits the regional measurement of physiological parameters and imaging of the distribution of molecular markers. PET has broadened our understanding of the flow and metabolic thresholds critical for the maintenance of brain function and morphology: in this application, PET has been essential in the transfer of the concept of the penumbra (tissue with perfusion below the functional threshold but above the threshold for the preservation of morphology) to clinical stroke and thereby has had great impact on developing treatment strategies. Radioligands for receptors can be used as early markers of irreversible neuronal damage and thereby can predict the size of the final infarcts; this is also important for decisions concerning invasive therapy in large ("malignant") infarctions. With PET investigations, the reserve capacity of blood supply to the brain can be tested in obstructive arteriosclerosis of the supplying arteries, and this again is essential for planning interventions. The effect of a stroke on the surrounding and contralateral primarily unaffected tissue can be investigated, and these results help to understand the symptoms caused by disturbances in functional networks. Chronic cerebrovascular disease causes vascular cognitive disorders, including vascular dementia. PET permits the detection of the metabolic disturbances responsible for cognitive impairment and dementia, and can differentiate vascular dementia from degenerative diseases. It may also help to understand the importance of neuroinflammation after stroke and its interaction with amyloid deposition in the development of dementia. Although the clinical application of PET investigations is limited, this technology had and still has a great impact on research into cerebrovascular diseases.

  9. M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia

    PubMed Central

    2013-01-01

    Background Microglia are the primary immune cells of the brain whose phenotype largely depends on their surrounding micro-environment. Microglia respond to a multitude of soluble molecules produced by a variety of brain cells. Macrophage colony-stimulating factor (M-CSF) is a cytokine found in the brain whose receptor is expressed by microglia. Previous studies suggest a critical role for M-CSF in brain development and normal functioning as well as in several disease processes involving neuroinflammation. Methods Using biopsy tissue from patients with intractable temporal epilepsy and autopsy tissue, we cultured primary adult human microglia to investigate their response to M-CSF. Mixed glial cultures were treated with 25 ng/ml M-CSF for 96 hours. Proliferation and phagocytosis assays, and high through-put immunocytochemistry, microscopy and image analysis were performed to investigate microglial phenotype and function. Results We found that the phenotype of primary adult human microglia was markedly changed following exposure to M-CSF. A greater number of microglia were present in the M-CSF- treated cultures as the percentage of proliferating (BrdU and Ki67-positive) microglia was greatly increased. A number of changes in protein expression occurred following M-CSF treatment, including increased transcription factors PU.1 and C/EBPβ, increased DAP12 adaptor protein, increased M-CSF receptor (CSF-1R) and IGF-1 receptor, and reduced HLA-DP, DQ, DR antigen presentation protein. Furthermore, a distinct morphological change was observed with elongation of microglial processes. These changes in phenotype were accompanied by a functional increase in phagocytosis of Aβ1-42 peptide. Conclusions We show here that the cytokine M-CSF dramatically influences the phenotype of adult human microglia. These results pave the way for future investigation of M-CSF-related targets for human therapeutic benefit. PMID:23866312

  10. Effects of ischaemia and hypoxia on the development of the nervous system in acardiac foetus.

    PubMed

    Laure-Kamionowska, Milena; Maślińska, Danuta; Deregowski, Krzysztof; Piekarski, Paweł; Raczkowska, Barbara

    2004-01-01

    The twin-reversed arterial perfusion (TRAP) sequence and development of an acardius are rare and severe complications in monozygotic twin pregnancy. Haemodynamic disturbances in placental perfusion via abnormal vascular anastomoses allow inter-twin transfusion to occur. Because of blood perfusion, one of the twins is poorly oxygenated and contains metabolic waste products. Retrograde placental perfusion leads to the formation of a non-viable malformed acardiac foetus. We studied the effects of haemodynamic disturbances in acardiac foetus on the development of the nervous system. The acardius was a product of a 32-weeks pregnancy. Caesarean section yielded a skin covered ovoid mass (size, 10 x 8 cm; weight, 220 g). The dissection of the acardiac twin showed a skin with hair and appendages, rudimentary lower limbs, vertebral column and brain mass. The rudimentary brain tissue was considerably disorganised structurally. We distinguished two main morphological forms of various appearances. In the centre, we observed a scarcely vascularised mass of tissue containing mature and immature neurones, glial cells and randomly distributed fibres. The mass of tissue appeared poorly differentiated, although there were some arrangements reminiscent of cerebral structures. Clusters of neurones provided a slight suggestion of nuclear or fibre structure. The cerebellar cortex was the only well recognisable structure. In the other fragment of the tissue, we found a slit cavity with ependymal outline and well-developed choroid plexus, which seemed to represent the 3rd ventricle. The scarcely vascularised disorganised tissue was surrounded by the highly vascularised one. It included many thin-walled sinusoid vessels. In some places, they were so concentrated that they resembled cavernous haemangioma. The spinal cord appeared comparatively well organised with a slightly dilated central canal. The morphological picture of the rudimentary brain tissue was similar to the picture of the cerebrovasculosa area. The effect of ischaemia in the presented case is the anomalous formation of the cerebral structures. The morphological features imply that the failure occurred after neurulation and before the prosencephalic began to grow. The failure of neural tube formation occurred on the 22nd-25th day of gestation. The malformed formation of the nervous system might be caused by impaired induction due to altered gene expression or to the interference of exogenous agents that interrupt normal development. The haemodynamic abnormal placental circulation, which induced lack of oxygen supply and nutritional deficiency, implies the morphological pattern of the anomaly.

  11. Segmentation and visualization of tissues surrounding the airway in children via MRI

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Udupa, Jayaram K.; Odhner, Dewey; McDonough, Joseph M.; Arens, Raanan

    2003-05-01

    Continuing with our previous work of the segmentation and delineation of upper airway, the purpose of this work is to segment and delineate soft tissue organs surrounding the upper airway, such as adenoid, tonsils, fat pads and tongue, with the further goal of studying the relationship among the architectures of these structures, for understanding upper airway disorders in children. We use two MRI protocols, Axial T2 (used for adenoid, tonsil, and fat pads) and sagittal T1 (for tongue), to gather information about different aspects of the tissues. MR images are first corrected for background intensity variation and then the intensities are standardized. All segmentations are achieved via fuzzy connectedness algorithms with only limited operator interaction. A smooth 3D rendition of the upper airway and its surrounding tissues is displayed. The system has been tested utilizing 20 patient data sets. The tests indicate a 95% or better precision and accuracy for segmentation. The mean time taken per study is about 15 minutes including operator interaction time and processing time for all operations. This method provides a robust and fast means of assessing sizes, shapes, and the architecture of the tissues surrounding the upper airway, as well as providing data sets suitable for use in modeling studies of airflow and mechanics.

  12. Differentiation of cancerous and normal brain tissue using label free fluorescence and Stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.

    2016-03-01

    In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.

  13. Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2010-02-01

    Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.

  14. The Relationship of Three-Dimensional Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies

    PubMed Central

    Badachhape, Andrew A.; Okamoto, Ruth J.; Durham, Ramona S.; Efron, Brent D.; Nadell, Sam J.; Johnson, Curtis L.; Bayly, Philip V.

    2017-01-01

    In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is an imaging technique developed for noninvasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations during magnetic resonance imaging (MRI); however, skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull–brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin “phantom,” displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull–brain interface will be valuable in the parameterization and validation of computer models of TBI. PMID:28267188

  15. The Relationship of Three-Dimensional Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies.

    PubMed

    Badachhape, Andrew A; Okamoto, Ruth J; Durham, Ramona S; Efron, Brent D; Nadell, Sam J; Johnson, Curtis L; Bayly, Philip V

    2017-05-01

    In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is an imaging technique developed for noninvasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations during magnetic resonance imaging (MRI); however, skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull-brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin "phantom," displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull-brain interface will be valuable in the parameterization and validation of computer models of TBI.

  16. Type 2 diabetes mellitus BALB/c mice are more susceptible to granulomatous amoebic encephalitis: Immunohistochemical study.

    PubMed

    Omaña-Molina, Maritza; Sanchez-Rocha, Raquel; Hernandez-Martinez, Dolores; Romero Grijalva, Miriam; Salinas-Lara, Citlaltepetl; Rodriguez-Sosa, Miriam; Juarez-Avelar, Imelda; Salazar-Villatoro, Lizbeth; Gonzalez-Robles, Arturo; Mendez-Cruz, Adolfo Rene; Aley-Medina, Patricia; Espinosa-Villanueva, Jesus; Castelan-Ramirez, Ismael; Lorenzo-Morales, Jacob

    2017-12-01

    Granulomatous amoebic encephalitis (GAE) is a chronic, difficult to resolve infection caused by amphizoic amoebae of the genus Acanthamoeba, which in most cases occurs in immunosuppressed persons or with chronic diseases such as diabetes. In this study, we describe the early events of A. culbertsoni infection of GAE in diabetic mice model. Diabetes was induced in male BALB/c mice, with a dose of streptozotocin (130 mg/kg). Healthy and diabetic mice were inoculated via intranasal with 1 × 10 6 trophozoites of A. culbertsoni. Then were sacrificed and fixed by perfusion at 24, 48, 72 and 96 h post-inoculation, the brains and nasopharyngeal meatus were processed to immunohistochemical analysis. Invasion of trophozoites in diabetic mice was significantly greater with respect to inoculated healthy mice. Trophozoites and scarce cysts were immunolocalized in respiratory epithelial adjacent bone tissue, olfactory nerve packets, Schwann cells and the epineurium base since early 24 h post-inoculation. After 48 h, trophozoites were observed in the respiratory epithelium, white matter of the brain, subcortical central cortex and nasopharyngeal associated lymphoid tissue (NALT). At 72 h, cysts and trophozoites were immunolocalized in the olfactory bulb with the presence of a low inflammatory infiltrate characterized by polymorphonuclear cells. Scarce amoebae were observed in the granular layer of the cerebellum without evidence of inflammation or tissue damage. No amoebas were observed at 96 h after inoculation, suggesting penetration to other tissues at this time. In line with this, no inflammatory infiltrate was observed in the surrounding tissues where the amoebae were immunolocalized, which could contribute to the rapid spread of infection, particularly in diabetic mice. All data suggest that trophozoites invade the tissues by separating the superficial cells, penetrating between the junctions without causing cytolytic effect in the adjacent cells and subsequently reaching the CNS, importantly, diabetes increases the susceptibility to amoebae infection, which could favor the GAE development. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. High-sensitivity terahertz imaging of traumatic brain injury in a rat model

    NASA Astrophysics Data System (ADS)

    Zhao, Hengli; Wang, Yuye; Chen, Linyu; Shi, Jia; Ma, Kang; Tang, Longhuang; Xu, Degang; Yao, Jianquan; Feng, Hua; Chen, Tunan

    2018-03-01

    We demonstrated that different degrees of experimental traumatic brain injury (TBI) can be differentiated clearly in fresh slices of rat brain tissues using transmission-type terahertz (THz) imaging system. The high absorption region in THz images corresponded well with the injured area in visible images and magnetic resonance imaging results. The THz image and absorption characteristics of dehydrated paraffin-embedded brain slices and the hematoxylin and eosin (H&E)-stained microscopic images were investigated to account for the intrinsic differences in the THz images for the brain tissues suffered from different degrees of TBI and normal tissue aside from water. The THz absorption coefficients of rat brain tissues showed an increase in the aggravation of brain damage, particularly in the high-frequency range, whereas the cell density decreased as the order of mild, moderate, and severe TBI tissues compared with the normal tissue. Our results indicated that the different degrees of TBI were distinguishable owing to the different water contents and probable hematoma components distribution rather than intrinsic cell intensity. These promising results suggest that THz imaging has great potential as an alternative method for the fast diagnosis of TBI.

  18. Primary Central Nervous System Fibrosarcoma.

    PubMed

    Vinodh, V P; Harun, Rahmat; Sellamuthu, Pulivendhan; Kandasamy, Regunath

    2017-08-01

    We report a rare case of a young female with primary brain fibrosarcoma, and to the best of our knowledge, we believe that only <50 cases have been reported or described worldwide so far. Fibrosarcoma is a malignant neoplasm, in which histologically the predominant cells are fibroblasts that divide excessively without cellular control and they can invade local tissues or metastasize. Primary central nervous system fibrosarcomas are very aggressive neoplasms and generally have a poor prognosis. This tumor is either from sarcomatous transformation of a meningioma or arises de novo within the brain parenchyma. Our patient, a 48-year-old woman, who presented with progressive speech disorder over the period of 4 months, showed a left temporoparietal lesion with surrounding edema and local mass effect. Total surgical resection was achieved. Histopathology revealed classical fibrosarcoma features and secondary screening revealed no other distant lesion as diagnosis of primary brain fibrosarcoma was established. This case is deemed to be extremely rare because most reports claim that recurrence is within 6 months with poor prognosis; however, this patient is currently recurrence-free at 3 years. This would suggest of the possibility for a relook into this disease's course and recurrence rate when complete excision is achieved. Due to extreme rarity of these tumors, more comparative studies will be needed to improve the disease outcome.

  19. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS)

    NASA Astrophysics Data System (ADS)

    Alam, Mahtab; Truong, Dennis Q.; Khadka, Niranjan; Bikson, Marom

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability—enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm2) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4  ×  1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring’s diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation (\

  20. Neuroanatomy of the Vestimentiferan Tubeworm Lamellibrachia satsuma Provides Insights into the Evolution of the Polychaete Nervous System

    PubMed Central

    Miyamoto, Norio; Shinozaki, Ayuta; Fujiwara, Yoshihiro

    2013-01-01

    Vestimentiferan tubeworms are marine invertebrates that inhabit chemosynthetic environments, and although recent molecular phylogenetic analyses have suggested that vestimentiferan tubeworms are derived from polychaete annelids, they show some morphological features that are different from other polychaetes. For example, vestimentiferans lack a digestive tract and have less body segments and comparative neuroanatomy can provide essential insight into the vestimentiferan body plan and its evolution. In the present study, we investigated the adult nervous system in the vestimentiferan Lamellibrachia satsuma using antibodies against synapsin, serotonin, FMRMamide and acetylated α-tubulin. We also examined the expressions of neural marker genes, elav and synaptotagmin to reveal the distribution of neuronal cell bodies. Brain anatomy shows simple organization in Lamellibrachia compared to other polychaetes. This simplification is probably due to the loss of the digestive tract, passing through the body between the brain and the subesophageal ganglion. In contrast, the ventral nerve cord shows a repeated organizational structure as in the other polychaetes, despite the absence of the multiple segmentation of the trunk. These results suggest that the brain anatomy is variable depending on the function and the condition of surrounding tissues, and that the formation of the rope ladder-like nervous system of the ventral nerve cord is independent from segmentation in polychaetes. PMID:23372830

  1. A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue.

    PubMed

    Menzel, M; Michielsen, K; De Raedt, H; Reckfort, J; Amunts, K; Axer, M

    2015-10-06

    The neuroimaging technique three-dimensional polarized light imaging (3D-PLI) provides a high-resolution reconstruction of nerve fibres in human post-mortem brains. The orientations of the fibres are derived from birefringence measurements of histological brain sections assuming that the nerve fibres—consisting of an axon and a surrounding myelin sheath—are uniaxial birefringent and that the measured optic axis is oriented in the direction of the nerve fibres (macroscopic model). Although experimental studies support this assumption, the molecular structure of the myelin sheath suggests that the birefringence of a nerve fibre can be described more precisely by multiple optic axes oriented radially around the fibre axis (microscopic model). In this paper, we compare the use of the macroscopic and the microscopic model for simulating 3D-PLI by means of the Jones matrix formalism. The simulations show that the macroscopic model ensures a reliable estimation of the fibre orientations as long as the polarimeter does not resolve structures smaller than the diameter of single fibres. In the case of fibre bundles, polarimeters with even higher resolutions can be used without losing reliability. When taking the myelin density into account, the derived fibre orientations are considerably improved. © 2015 The Author(s).

  2. Effects of high-pressure oxygen therapy on brain tissue water content and AQP4 expression in rabbits with cerebral hemorrhage.

    PubMed

    Wu, Jing; Chen, Jiong; Guo, Hua; Peng, Fang

    2014-12-01

    To investigate the effects of different atmosphere absolutes (ATA) of high-pressure oxygen (HPO) on brain tissue water content and Aquaporin-4 (AQP4) expression in rabbits with cerebral hemorrhage. 180 New Zealand white rabbits were selected and randomly divided into normal group (n = 30), control group (n = 30) and cerebral hemorrhage group (n = 120), and cerebral hemorrhage group was divided into group A, B, C and D with 30 rabbits in each group. The groups received 1.0, 1.8, 2.0 and 2.2 ATA of HPO treatments, respectively. Ten rabbits in each group were killed at first, third and fifth day to detect the brain tissue water content and change of AQP4 expression. In cerebral hemorrhage group, brain tissue water content and AQP4 expression after model establishment were first increased, then decreased and reached the maximum on third day (p < 0.05). Brain tissue water content and AQP4 expression in control group and cerebral hemorrhage group were significantly higher than normal group at different time points (p < 0.05). In contrast, brain tissue water content and AQP4 expression in group C were significantly lower than in group A, group B, group D and control group (p < 0.05). In control group, AQP4-positive cells significantly increased after model establishment, which reached maximum on third day, and positive cells in group C were significantly less than in group A, group B and group D. We also found that AQP4 expression were positively correlated with brain tissue water content (r = 0.719, p < 0.05) demonstrated by significantly increased AQP4 expression along with increased brain tissue water content. In conclusion, HPO can decrease AQP4 expression in brain tissue of rabbits with cerebral hemorrhage to suppress the progression of brain edema and promote repairing of injured tissue. 2.0 ATA HPO exerts best effects, which provides an experimental basis for ATA selection of HPO in treating cerebral hemorrhage.

  3. Assessment of rat optic nerve damage due to microbeam radiation therapy in the treatment of glioblastomas.

    PubMed

    Mohamed, A; Worobec, S; Schultke, E

    2008-01-01

    Glioblastomas are the most common and aggressive subtype of human primary brain tumors. Due to their uncontrolled cellular proliferation, intense invasion, and lack of apoptosis, they are extremely difficult to treat. Currently, different approaches such as surgery, chemotherapy and radiation therapy have been employed as possible treatments however thus far; these treatments are not curative. Currently, microbeam radiation therapy (MRT) is being trialed in animal models of malignant brain tumors (rats) to aid in treatment. Some of the protocols tested have been shown to significantly increase survival rates. However, due to the high x-ray doses uses in MRT, the surrounding tissue of the targeted Glioblastomas may be irreversibly damaged. In previous studies, lens damage and clouding of the cornea have been observed in microbeam exposed eyes. However, to date no studies have assessed optic nerve damage. Therefore, this study examines the potential rat optic nerve damage following exposure to microbeam radiation therapy in the treatment of Glioblastomas. Although there appears to be no significant damage to the optic nerve, slight inflammation was observed within the extra ocular muscle.

  4. Monitoring brain temperature by time-resolved near-infrared spectroscopy: pilot study

    NASA Astrophysics Data System (ADS)

    Bakhsheshi, Mohammad Fazel; Diop, Mamadou; St. Lawrence, Keith; Lee, Ting-Yim

    2014-05-01

    Mild hypothermia (HT) is an effective neuroprotective strategy for a variety of acute brain injuries. However, the wide clinical adaptation of HT has been hampered by the lack of a reliable noninvasive method for measuring brain temperature, since core measurements have been shown to not always reflect brain temperature. The goal of this work was to develop a noninvasive optical technique for measuring brain temperature that exploits both the temperature dependency of water absorption and the high concentration of water in brain (80%-90%). Specifically, we demonstrate the potential of time-resolved near-infrared spectroscopy (TR-NIRS) to measure temperature in tissue-mimicking phantoms (in vitro) and deep brain tissue (in vivo) during heating and cooling, respectively. For deep brain tissue temperature monitoring, experiments were conducted on newborn piglets wherein hypothermia was induced by gradual whole body cooling. Brain temperature was concomitantly measured by TR-NIRS and a thermocouple probe implanted in the brain. Our proposed TR-NIRS method was able to measure the temperature of tissue-mimicking phantoms and brain tissues with a correlation of 0.82 and 0.66 to temperature measured with a thermometer, respectively. The mean difference between the TR-NIRS and thermometer measurements was 0.15°C±1.1°C for the in vitro experiments and 0.5°C±1.6°C for the in vivo measurements.

  5. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain.

    PubMed

    Taoka, Toshiaki; Naganawa, Shinji

    2018-04-10

    After Kanda's first report in 2014 on gadolinium (Gd) deposition in brain tissue, a considerable number of studies have investigated the explanation for the observation. Gd deposition in brain tissue after repeated administration of gadolinium-based contrast medium (GBCM) has been histologically proven, and chelate stability has been shown to affect the deposition. However, the mechanism for this deposition has not been fully elucidated. Recently, a hypothesis was introduced that involves the 'glymphatic system', which is a coined word that combines 'gl' for glia cell and 'lymphatic' system. According to this hypothesis, the perivascular space functions as a conduit for cerebrospinal fluid to flow into the brain parenchyma. The perivascular space around the arteries allows cerebrospinal fluid to enter the interstitial space of the brain tissue through water channels controlled by aquaporin 4. The cerebrospinal fluid entering the interstitial space clears waste proteins from the tissue. It then flows into the perivascular space around the vein and is discharged outside the brain. In addition to the hypothesis regarding the glymphatic system, some reports have described that after GBCM administration, some of the GBCM distributes through systemic blood circulation and remains in other compartments including the cerebrospinal fluid. It is thought that the GBCM distributed into the cerebrospinal fluid cavity via the glymphatic system may remain in brain tissue for a longer duration compared to the GBCM in systemic circulation. Glymphatic system may of course act as a clearance system for GBCM from brain tissue. Based on these findings, the mechanism for Gd deposition in the brain will be discussed in this review. The authors speculate that the glymphatic system may be the major contributory factor to the deposition and clearance of gadolinium in brain tissue.

  6. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain

    PubMed Central

    Taoka, Toshiaki; Naganawa, Shinji

    2018-01-01

    After Kanda’s first report in 2014 on gadolinium (Gd) deposition in brain tissue, a considerable number of studies have investigated the explanation for the observation. Gd deposition in brain tissue after repeated administration of gadolinium-based contrast medium (GBCM) has been histologically proven, and chelate stability has been shown to affect the deposition. However, the mechanism for this deposition has not been fully elucidated. Recently, a hypothesis was introduced that involves the ‘glymphatic system’, which is a coined word that combines ‘gl’ for glia cell and ‘lymphatic’ system. According to this hypothesis, the perivascular space functions as a conduit for cerebrospinal fluid to flow into the brain parenchyma. The perivascular space around the arteries allows cerebrospinal fluid to enter the interstitial space of the brain tissue through water channels controlled by aquaporin 4. The cerebrospinal fluid entering the interstitial space clears waste proteins from the tissue. It then flows into the perivascular space around the vein and is discharged outside the brain. In addition to the hypothesis regarding the glymphatic system, some reports have described that after GBCM administration, some of the GBCM distributes through systemic blood circulation and remains in other compartments including the cerebrospinal fluid. It is thought that the GBCM distributed into the cerebrospinal fluid cavity via the glymphatic system may remain in brain tissue for a longer duration compared to the GBCM in systemic circulation. Glymphatic system may of course act as a clearance system for GBCM from brain tissue. Based on these findings, the mechanism for Gd deposition in the brain will be discussed in this review. The authors speculate that the glymphatic system may be the major contributory factor to the deposition and clearance of gadolinium in brain tissue. PMID:29367513

  7. Mathematical modelling of blood-brain barrier failure and edema

    NASA Astrophysics Data System (ADS)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  8. Responses of the Human Brain to Mild Dehydration and Rehydration Explored In Vivo by 1H-MR Imaging and Spectroscopy.

    PubMed

    Biller, A; Reuter, M; Patenaude, B; Homola, G A; Breuer, F; Bendszus, M; Bartsch, A J

    2015-12-01

    As yet, there are no in vivo data on tissue water changes and associated morphometric changes involved in the osmo-adaptation of normal brains. Our aim was to evaluate osmoadaptive responses of the healthy human brain to osmotic challenges of de- and rehydration by serial measurements of brain volume, tissue fluid, and metabolites. Serial T1-weighted and (1)H-MR spectroscopy data were acquired in 15 healthy individuals at normohydration, on 12 hours of dehydration, and during 1 hour of oral rehydration. Osmotic challenges were monitored by serum measures, including osmolality and hematocrit. MR imaging data were analyzed by using FreeSurfer and LCModel. On dehydration, serum osmolality increased by 0.67% and brain tissue fluid decreased by 1.63%, on average. MR imaging morphometry demonstrated corresponding decreases of cortical thickness and volumes of the whole brain, cortex, white matter, and hypothalamus/thalamus. These changes reversed during rehydration. Continuous fluid ingestion of 1 L of water for 1 hour within the scanner lowered serum osmolality by 0.96% and increased brain tissue fluid by 0.43%, on average. Concomitantly, cortical thickness and volumes of the whole brain, cortex, white matter, and hypothalamus/thalamus increased. Changes in brain tissue fluid were related to volume changes of the whole brain, the white matter, and hypothalamus/thalamus. Only volume changes of the hypothalamus/thalamus significantly correlated with serum osmolality. This is the first study simultaneously evaluating changes in brain tissue fluid, metabolites, volume, and cortical thickness. Our results reflect cellular volume regulatory mechanisms at a macroscopic level and emphasize that it is essential to control for hydration levels in studies on brain morphometry and metabolism in order to avoid confounding the findings. © 2015 by American Journal of Neuroradiology.

  9. Suppression of SRC Signaling Is Effective in Reducing Synergy between Glioblastoma and Stromal Cells.

    PubMed

    Calgani, Alessia; Vignaroli, Giulia; Zamperini, Claudio; Coniglio, Federica; Festuccia, Claudio; Di Cesare, Ernesto; Gravina, Giovanni Luca; Mattei, Claudia; Vitale, Flora; Schenone, Silvia; Botta, Maurizio; Angelucci, Adriano

    2016-07-01

    Glioblastoma cells efficiently interact with and infiltrate the surrounding normal tissue, rendering surgical resection and adjuvant chemo/radiotherapy ineffective. New therapeutic targets, able to interfere with glioblastoma's capacity to synergize with normal brain tissue, are currently under investigation. The compound Si306, a pyrazolo[3,4-d]pyrimidine derivative, selected for its favorable activity against SRC, was tested in vitro and in vivo on glioblastoma cell lines. In vivo, combination treatment with Si306 and radiotherapy was strongly active in reducing U-87 xenograft growth with respect to control and single treatments. The histology revealed a significant difference in the stromal compartment of tumoral tissue derived from control or radiotherapy-treated samples with respect to Si306-treated samples, showing in the latter a reduced presence of collagen and α-SMA-positive cells. This effect was paralleled in vitro by the capacity of Si306 to interfere with myofibroblastic differentiation of normal fibroblasts induced by U-87 cells. In the presence of Si306, TGF-β released by U-87 cells, mainly in hypoxia, was ineffective in upregulating α-SMA and β-PDGFR in fibroblasts. Si306 efficiently reached the brain and significantly prolonged the survival of mice orthotopically injected with U-87 cells. Drugs that target SRC could represent an effective therapeutic strategy in glioblastoma, able to block positive paracrine loop with stromal cells based on the β-PDGFR axis and the formation of a tumor-promoting microenvironment. This approach could be important in combination with conventional treatments in the effort to reduce tumor resistance to therapy. Mol Cancer Ther; 15(7); 1535-44. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. Ultrasonic Apparatus and Technique to Measure Changes in Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    2002-01-01

    Changes in intracranial pressure can be measured dynamically and non-invasively by monitoring one or more cerebrospinal fluid pulsatile components. Pulsatile components such as systolic and diastolic blood pressures are partially transferred to the cerebrospinal fluid by way of blood vessels contained in the surrounding brain tissue and membrane. As intracranial pressure varies these cerebrospinal fluid pulsatile components also vary. Thus, intracranial pressure can be dynamically measured. Furthermore, use of acoustics allows the measurement to be completely non-invasive. In the preferred embodiment, phase comparison of a reflected acoustic signal to a reference signal using a constant frequency pulsed phase-locked-loop ultrasonic device allows the pulsatile components to be monitored. Calibrating the device by inducing a known change in intracranial pressure allows conversion to changes in intracranial pressure.

  11. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractionsmore » from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.« less

  12. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging.

    PubMed

    Bhaskar, Sonu; Tian, Furong; Stoeger, Tobias; Kreyling, Wolfgang; de la Fuente, Jesús M; Grazú, Valeria; Borm, Paul; Estrada, Giovani; Ntziachristos, Vasilis; Razansky, Daniel

    2010-03-03

    Nanotechnology has brought a variety of new possibilities into biological discovery and clinical practice. In particular, nano-scaled carriers have revolutionalized drug delivery, allowing for therapeutic agents to be selectively targeted on an organ, tissue and cell specific level, also minimizing exposure of healthy tissue to drugs. In this review we discuss and analyze three issues, which are considered to be at the core of nano-scaled drug delivery systems, namely functionalization of nanocarriers, delivery to target organs and in vivo imaging. The latest developments on highly specific conjugation strategies that are used to attach biomolecules to the surface of nanoparticles (NP) are first reviewed. Besides drug carrying capabilities, the functionalization of nanocarriers also facilitate their transport to primary target organs. We highlight the leading advantage of nanocarriers, i.e. their ability to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells surrounding the brain that prevents high-molecular weight molecules from entering the brain. The BBB has several transport molecules such as growth factors, insulin and transferrin that can potentially increase the efficiency and kinetics of brain-targeting nanocarriers. Potential treatments for common neurological disorders, such as stroke, tumours and Alzheimer's, are therefore a much sought-after application of nanomedicine. Likewise any other drug delivery system, a number of parameters need to be registered once functionalized NPs are administered, for instance their efficiency in organ-selective targeting, bioaccumulation and excretion. Finally, direct in vivo imaging of nanomaterials is an exciting recent field that can provide real-time tracking of those nanocarriers. We review a range of systems suitable for in vivo imaging and monitoring of drug delivery, with an emphasis on most recently introduced molecular imaging modalities based on optical and hybrid contrast, such as fluorescent protein tomography and multispectral optoacoustic tomography. Overall, great potential is foreseen for nanocarriers in medical diagnostics, therapeutics and molecular targeting. A proposed roadmap for ongoing and future research directions is therefore discussed in detail with emphasis on the development of novel approaches for functionalization, targeting and imaging of nano-based drug delivery systems, a cutting-edge technology poised to change the ways medicine is administered.

  13. The organ transplantation act and recent trends in Korea.

    PubMed

    Joo, Ho No

    2013-03-01

    The Organ Transplantation Act, including transplantation of organs from brain-dead donors, entered into force in Korea on February 9, 2000. This article introduces the Organ Transplantation Act, focusing on scope of the Act, determination of brain death, removal of organs from brain-dead or deceased donors, removal from living donors, organ allocation, and prohibition of trade in human organs. Especially, some primary ethical dilemmas surrounding organ allocation arise from the shortage of available organs. The primary ethical problems surrounding organ allocation are as follows. A key purpose of the organ donation incentive system is to increase the number of organ transplants from brain-dead donors. In particular, the priority for kidney patient was allowed in consideration of doctor's strong desire to increase the brain-dead donors. Also, the organ allocation criteria based on the organ donation incentive system appear unfair, especially for the kidney patient, because the criteria do not fit the principles of distributive justice. In the future, the organ donation incentive system itself may need to be reexamined.

  14. Fluid Mechanics of the Vascular Basement Membrane in the Brain

    NASA Astrophysics Data System (ADS)

    Coloma, Mikhail; Hui, Jonathan; Chiarot, Paul; Huang, Peter; Carare, Roxana; McLeod, Kenneth; Schaffer, David

    2013-11-01

    Beta-amyloid is a normal product of brain metabolic function and is found within the interstitial fluid of the brain. Failure of the clearance of beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. The vascular basement membrane (VBM) within the walls of cerebral arteries surrounds the spirally arranged smooth muscle cells and represents an essential pathway for removal of beta-amyloid from the brain. This process fails with the stiffening of arterial walls associated with aging. In this study we hypothesize that the deformation of the VBM associated with arterial pulsations drives the interstitial fluid to drain in the direction opposite of the arterial blood flow. This hypothesis is theoretically investigated by modeling the VBM as a thin, coaxial, fluid-filled porous medium surrounding a periodically deforming cylindrical tube. Flow and boundary conditions required to achieve such a backward clearance are derived through a control volume analysis of mass, momentum, and energy.

  15. Perivascular Spaces--MRI Marker of Inflammatory Activity in the Brain?

    ERIC Educational Resources Information Center

    Wuerfel, Jens; Haertle, Mareile; Waiczies, Helmar; Tysiak, Eva; Bechmann, Ingo; Wernecke, Klaus D.; Zipp, Frauke; Paul, Friedemann

    2008-01-01

    The Virchow-Robin spaces (VRS), perivascular compartments surrounding small blood vessels as they penetrate the brain parenchyma, are increasingly recognized for their role in leucocyte trafficking as well as for their potential to modulate immune responses. In the present study, we investigated VRS numbers and volumes in different brain regions…

  16. Effects of the Variation in Brain Tissue Mechanical Properties on the Intracranial Response of a 6-Year-Old Child

    PubMed Central

    Cui, Shihai; Li, Haiyan; Li, Xiangnan; Ruan, Jesse

    2015-01-01

    Brain tissue mechanical properties are of importance to investigate child head injury using finite element (FE) method. However, these properties used in child head FE model normally vary in a large range in published literatures because of the insufficient child cadaver experiments. In this work, a head FE model with detailed anatomical structures is developed from the computed tomography (CT) data of a 6-year-old healthy child head. The effects of brain tissue mechanical properties on traumatic brain response are also analyzed by reconstruction of a head impact on engine hood according to Euro-NCAP testing regulation using FE method. The result showed that the variations of brain tissue mechanical parameters in linear viscoelastic constitutive model had different influences on the intracranial response. Furthermore, the opposite trend was obtained in the predicted shear stress and shear strain of brain tissues caused by the variations of mentioned parameters. PMID:26495031

  17. Brain cancer probed by native fluorescence and stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; He, Yong; Pu, Yang; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2012-12-01

    Optical biopsy spectroscopy was applied to diagnosis human brain cancer in vitro. The spectra of native fluorescence, Stokes shift and excitation spectra were obtained from malignant meningioma, benign, normal meningeal tissues and acoustic neuroma benign tissues. The wide excitation wavelength ranges were used to establish the criterion for distinguishing brain diseases. The alteration of fluorescence spectra between normal and abnormal brain tissues were identified by the characteristic fluorophores under the excitation with UV to visible wavelength range. It was found that the ratios of the peak intensities and peak position in both spectra of fluorescence and Stokes shift may be used to diagnose human brain meninges diseases. The preliminary analysis of fluorescence spectral data from cancer and normal meningeal tissues by basic biochemical component analysis model (BBCA) and Bayes classification model based on statistical methods revealed the changes of components, and classified the difference between cancer and normal human brain meningeal tissues in a predictions accuracy rate is 0.93 in comparison with histopathology and immunohistochemistry reports (gold standard).

  18. On the temperature control in self-controlling hyperthermia therapy

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Mahyar

    2016-10-01

    In self-controlling hyperthermia therapy, once the desired temperature is reached, the heat generation ceases and overheating is prevented. In order to design a system that generates sufficient heat without thermal ablation of surrounding healthy tissue, a good understanding of temperature distribution and its change with time is imperative. This study is conducted to extend our understanding about the heat generation and transfer, temperature distribution and temperature rise pattern in the tumor and surrounding tissue during self-controlling magnetic hyperthermia. A model consisting of two concentric spheres that represents the tumor and its surrounding tissue is considered and temperature change pattern and temperature distribution in tumor and surrounding tissue are studied. After describing the model and its governing equations and constants precisely, a typical numerical solution of the model is presented. Then it is showed that how different parameters like Curie temperature of nanoparticles, magnetic field amplitude and nanoparticles concentration can affect the temperature change pattern during self-controlling magnetic hyperthermia. The model system herein discussed can be useful to gain insight on the self-controlling magnetic hyperthermia while applied to cancer treatment in real scenario and can be useful for treatment strategy determination.

  19. Simultaneous infield boost with helical tomotherapy for patients with 1 to 3 brain metastases.

    PubMed

    Bauman, Glenn; Yartsev, Slav; Fisher, Barb; Kron, Tomas; Laperriere, Normand; Heydarian, Mostafa; VanDyk, Jake

    2007-02-01

    We sought to model the feasibility of a simultaneous in field boost (SIB) to individual brain metastases during a course of whole brain radiotherapy (WBXRT) using helical tomotherapy (HT) intensity-modulated radiation therapy. Planning computed tomography data from 14 patients with 1 to 3 brain metastases were used to model an intralesional SIB delivery that yielded a total intralesional dose of 60 Gy with a surrounding whole brain dose of 30 Gy (designed to be isoeffective to WBXRT of 30 Gy with an 18 Gy in 1 fraction radiosurgery boost). Accuracy of treatment of a phantom on the HT unit was measured. Comparisons of HT delivery versus a conventional stereotactic radiotherapy technique for a particularly challenging simulated anatomy were made. In all cases, SIB to 60 Gy with WBXRT to 30 Gy was possible while maintaining critical structures below assigned dose limits. Estimated radiation delivery time for the SIB treatment was approximately 10 minutes per fraction. Planning and treatment of the head phantom was associated with an overall accuracy of 2 mm. Comparison to conventional noncoplanar arc fractionated stereotactic radiotherapy plan demonstrated similar target coverage and improved critical tissue sparing even for a challenging anatomy with multiple lesions in the same plane as the optic apparatus. Based on this study, use of an image guided SIB using HT seemed feasible and a phase I trial initiated at our institution is described. Potential advantages of this approach include frameless stereotaxis through daily megavoltage computed tomography localization, more efficient use of resources and exploitation of radiobiologic advantages of fractionation.

  20. The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus.

    PubMed

    Yamazaki, Fumiyoshi; Møller, Morten; Fu, Cong; Clokie, Samuel J; Zykovich, Artem; Coon, Steven L; Klein, David C; Rath, Martin F

    2015-01-01

    Lhx9 is a member of the LIM homeobox gene family. It is expressed during mammalian embryogenesis in the brain including the pineal gland. Deletion of Lhx9 results in sterility due to failure of gonadal development. The current study was initiated to investigate Lhx9 biology in the pineal gland. Lhx9 is highly expressed in the developing pineal gland of the rat with transcript abundance peaking early in development; transcript levels decrease postnatally to nearly undetectable levels in the adult, a temporal pattern that is generally similar to that reported for Lhx9 expression in other brain regions. Studies with C57BL/6J Lhx9(-/-) mutant mice revealed marked alterations in brain and pineal development. Specifically, the superficial pineal gland is hypoplastic, being reduced to a small cluster of pinealocytes surrounded by meningeal and vascular tissue. The deep pineal gland and the pineal stalk are also reduced in size. Although the brains of neonatal Lhx9(-/-) mutant mice appear normal, severe hydrocephalus develops in about 70% of the Lhx9(-/-) mice at 5-8 weeks of age; these observations are the first to document that deletion of Lhx9 results in hydrocephalus and as such indicate that Lhx9 contributes to the maintenance of normal brain structure. Whereas hydrocephalus is absent in neonatal Lhx9(-/-)mutant mice, the neonatal pineal gland in these animals is hypoplastic. Accordingly, it appears that Lhx9 is essential for early development of the mammalian pineal gland and that this effect is not secondary to hydrocephalus.

  1. The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus

    PubMed Central

    Yamazaki, Fumiyoshi; Møller, Morten; Fu, Cong; Clokie, Samuel J.; Zykovich, Artem; Coon, Steven L.; Klein, David C.; Rath, Martin F.

    2014-01-01

    Lhx9 is a member of the LIM homeobox gene family. It is expressed during mammalian embryogenesis in the brain including the pineal gland. Deletion of Lhx9 results in sterility due to failure of gonadal development. The current study was initiated to investigate Lhx9 biology in the pineal gland. Lhx9 is highly expressed in the developing pineal gland of the rat with transcript abundance peaking early in development; transcript levels decrease postnatally to nearly undetectable levels in the adult, a temporal pattern that is generally similar to that reported for Lhx9 expression in other brain regions. Studies with C57BL/6J Lhx9−/− mutant mice revealed marked alterations in brain and pineal development. Specifically, the superficial pineal gland is hypoplastic, being reduced to a small cluster of pinealocytes surrounded by meningeal and vascular tissue. The deep pineal gland and the pineal stalk are also reduced in size. Although the brains of neonatal Lhx9−/− mutant mice appear normal, severe hydrocephalus develops in about 70 % of the Lhx9−/− mice at 5–8 weeks of age; these observations are the first to document that deletion of Lhx9 results in hydrocephalus and as such indicate that Lhx9 contributes to the maintenance of normal brain structure. Whereas hydrocephalus is absent in neonatal Lhx9−/−mutant mice, the neonatal pineal gland in these animals is hypoplastic. Accordingly, it appears that Lhx9 is essential for early development of the mammalian pineal gland and that this effect is not secondary to hydrocephalus. PMID:24647753

  2. S. aureus-dependent microglial activation is selectively attenuated by the cyclopentenone prostaglandin 15-deoxy-Delta12,14- prostaglandin J2 (15d-PGJ2).

    PubMed

    Kielian, Tammy; McMahon, Meredith; Bearden, Edward D; Baldwin, Aaron C; Drew, Paul D; Esen, Nilufer

    2004-09-01

    Microglial activation is a hallmark of brain abscess. The continual release of proinflammatory mediators by microglia following bacterial challenge may contribute, in part, to the destruction of surrounding normal tissue characteristic of brain abscess. Therefore, attenuating chronic microglial activation during the course of CNS bacterial infections may have therapeutic benefits. The purpose of this study was to evaluate the ability of the natural peroxisome proliferator-activated receptor (PPAR)-gamma agonist 15-deoxy-Delta12,14- prostaglandin J2 (15d-PGJ2) to modulate microglial activation in response to Staphylococcus aureus, one of the main etiologic agents of brain abscess in humans. 15d-PGJ2 was a potent inhibitor of proinflammatory cytokine (IL-1beta, TNF-alpha, IL-12 p40) and CC chemokine (MIP-1beta, MCP-1) production in primary microglia, but had no effect upon the expression of select CXC chemokines (MIP-2, KC). 15d-PGJ2 also selectively inhibited the S. aureus-dependent increase in microglial TLR2, CD14, MHC class II, and CD40 expression, whereas it had no effect on the co-stimulatory molecules CD80 and CD86. Microarray analysis revealed additional inflammatory mediators modulated by 15d-PGJ2 in primary microglia following S. aureus exposure, the majority of which were chemokines. These results suggest that suppressing microglial activation through the use of 15d-PGJ2 may lead to the sparing of damage to normal brain parenchyma that often results from brain abscess. Copyright 2004 International Society for Neurochemistry

  3. Apixaban decreases brain thrombin activity in a male mouse model of acute ischemic stroke.

    PubMed

    Bushi, Doron; Chapman, Joab; Wohl, Anton; Stein, Efrat Shavit; Feingold, Ekaterina; Tanne, David

    2018-05-14

    Factor Xa (FXa) plays a critical role in the coagulation cascade by generation of thrombin. During focal ischemia thrombin levels increase in the brain tissue and cause neural damage. This study examined the hypothesis that administration of the FXa inhibitor, apixaban, following focal ischemic stroke may have therapeutic potential by decreasing brain thrombin activity and infarct volume. Male mice were divided into a treated groups that received different doses of apixaban (2, 20, 100 mg/kg administered I.P.) or saline (controls) immediately after blocking the middle cerebral artery (MCA). Thrombin activity was measured by a fluorescence assay on fresh coronal slices taken from the mice brains 24 hr following the MCA occlusion. Infarct volume was assessed using triphenyltetrazolium chloride staining. A high dose of apixaban (100 mg/kg) significantly decreased thrombin activity levels in the ipsilateral hemisphere compared to the control group (Slice#5, p = .016; Slice#6, p = .016; Slice#7, p = .016; Slice#8, p = .036; by the nonparametric Mann-Whitney test). In addition, treatment with apixaban doses of both 100 mg/kg (32 ± 8% vs. 76 ± 7% in the treatment vs. control groups respectively; p = .005 by the nonparametric Mann-Whitney test) and 20 mg/kg (43 ± 7% vs. 76 ± 7% in the treatment vs. control groups respectively; p = .019 by the nonparametric Mann-Whitney test) decreased infarct volumes in areas surrounding the ischemic core (Slices #3 and #8). No brain hemorrhages were observed either in the treated or control groups. In summary, I.P. administration of high dose of apixaban immediately after MCA occlusion decreases brain thrombin activity and reduces infarct size. © 2018 Wiley Periodicals, Inc.

  4. Development and Implementation of a Corriedale Ovine Brain Atlas for Use in Atlas-Based Segmentation.

    PubMed

    Liyanage, Kishan Andre; Steward, Christopher; Moffat, Bradford Armstrong; Opie, Nicholas Lachlan; Rind, Gil Simon; John, Sam Emmanuel; Ronayne, Stephen; May, Clive Newton; O'Brien, Terence John; Milne, Marjorie Eileen; Oxley, Thomas James

    2016-01-01

    Segmentation is the process of partitioning an image into subdivisions and can be applied to medical images to isolate anatomical or pathological areas for further analysis. This process can be done manually or automated by the use of image processing computer packages. Atlas-based segmentation automates this process by the use of a pre-labelled template and a registration algorithm. We developed an ovine brain atlas that can be used as a model for neurological conditions such as Parkinson's disease and focal epilepsy. 17 female Corriedale ovine brains were imaged in-vivo in a 1.5T (low-resolution) MRI scanner. 13 of the low-resolution images were combined using a template construction algorithm to form a low-resolution template. The template was labelled to form an atlas and tested by comparing manual with atlas-based segmentations against the remaining four low-resolution images. The comparisons were in the form of similarity metrics used in previous segmentation research. Dice Similarity Coefficients were utilised to determine the degree of overlap between eight independent, manual and atlas-based segmentations, with values ranging from 0 (no overlap) to 1 (complete overlap). For 7 of these 8 segmented areas, we achieved a Dice Similarity Coefficient of 0.5-0.8. The amygdala was difficult to segment due to its variable location and similar intensity to surrounding tissues resulting in Dice Coefficients of 0.0-0.2. We developed a low resolution ovine brain atlas with eight clinically relevant areas labelled. This brain atlas performed comparably to prior human atlases described in the literature and to intra-observer error providing an atlas that can be used to guide further research using ovine brains as a model and is hosted online for public access.

  5. High extracellular concentration of excitatory amino acids glutamate and aspartate in human brain abscess.

    PubMed

    Dahlberg, Daniel; Ivanovic, Jugoslav; Hassel, Bjørnar

    2014-04-01

    Brain abscesses often cause symptoms of brain dysfunction, including seizures, suggesting interference with normal neurotransmission. We determined the concentration of extracellular neuroactive amino acids in brain abscesses from 16 human patients. Glutamate was present at 3.6 mmol/L (median value, range 0.5-10.8), aspartate at 1.0 mmol/L (range 0.09-6.8). For comparison, in cerebroventricular fluid glutamate was ∼0.6 μmol/L, and aspartate was not different from zero. The total concentration of amino acids was higher in eight patients with seizures: 66 mmol/L (median value, range 19-109) vs. 21 mmol/L (range 4-52) in eight patients without seizures (p=0.026). The concentration of aspartate and essential amino acids tryptophan, phenylalanine, tyrosine, leucine, and isoleucine was higher in pus from patients with seizures (p⩽0.040), whereas that of glutamate was not (p=0.095). The median concentration of the non-proteinogenic, inhibitory amino acid taurine was similar in the two groups, 0.7-0.8 mmol/L (range 0.1-6.1). GABA could not be detected in pus. The patient groups did not differ with respect to abscess volume, the cerebral lobe affected, age, or time from symptom onset to surgery. Seven patients with extracerebral, intracranial abscesses had significantly lower pus concentration of glutamate (352 μmol/L, range 83-1368) and aspartate (71 μmol/L, range 22-330) than intracerebral abscesses (p<0.001). We conclude that excitatory amino acids glutamate and aspartate may reach very high concentrations in brain abscesses, probably contributing to symptoms through activation of glutamate receptors in the surrounding brain tissue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Studies of pathological dynamics after microvascular injury using nonlinear optical methods

    NASA Astrophysics Data System (ADS)

    Rosidi, Nathanael L.

    Microvascular lesions are a common feature in the aging brain and clinical evidence has correlated microvascular pathology with the development of neurodegenerative diseases such as Alzheimer's disease and dementia. Traditional animal models that replicate hemorrhagic and ischemic lesions in the brain typically affect large regions in the cortex and do not reproduce the small-scale lesions linked to neurodegeneration that likely stem from injuries to single microvessels. Due in part to this lack of small-scale injury animal models, there remains an incomplete understanding of the cellular and pathophysiological dynamics following small-scale vascular lesions, making progress on therapeutic strategies difficult. We used tightly focused femtosecond laser pulses to injure single penetrating arterioles (PA) (i.e., arterioles that plunge into the brain) in the cortex of live anesthetized rodents and used two-photon excited fluorescence (2PEF) imaging to quantify blood flow changes and to determine the time course of pathological consequences in the brain after injury. We find that after ischemic occlusion of a PA, nearby pial and penetrating arterioles do not actively compensate for the reduction of blood flow observed near the occluded blood vessel. We find that capillaries connected downstream to the clotted vessel dilate but other capillaries in the vicinity do not, suggesting that any compensatory signal that results in a physiological response travels vascularly. We ruptured individual PAs to induce microhemorrhages that resulted in extravasation of blood into the parenchyma. We find that tissue compression due to the hematoma does not collapse capillaries and cause acute ischemia. 2PEF imaging of mice expressing yellow fluorescent protein (YFP) in a subset of cortical neurons revealed no dendrite degeneration out to seven days after microhemorrhage. However, we did observe an inflammatory response by microglia/macrophages as quickly as 1.5-hrs after microhemorrhage which persisted past seven days. Lastly, we looked at spine (i.e., post-synaptic terminals on dendrites) dynamics on GFP fluorescent cortical dendrites and found a higher rate of spine loss and gain after a nearby microhemorrhage out to 14 days. This higher rate of spine turnover may help provide an understanding of the development of symptomatic dysfunction due to consequences in neuronal rewiring after a microhemorrhage. The work presented in this dissertation provides quantification of pathological consequences after both ischemic and hemorrhagic injury to a single blood vessel in the brain. We see that after a small-scale ischemic lesion, surrounding blood vessels do not elicit an active response to compensate for a lack of blood flow in the targeted blood vessel and surrounding tissue. After a hemorrhage to a single blood vessel, we do not observe any neuronal degeneration or death. These hemorrhagic lesions, however, do result in an inflammatory reaction that may lead to subtle changes in neuronal rewiring or seed the development of neurodegenerative diseases. The work presented in this dissertation can help provide new insights for the development of novel stroke therapeutics as well as provide cell specific observations about the development of pathological consequences in both ischemic and hemorrhagic lesions in the brain.

  7. Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer's disease.

    PubMed

    Sharoar, M G; Shi, Q; Ge, Y; He, W; Hu, X; Perry, G; Zhu, X; Yan, R

    2016-09-01

    Pathological features in Alzheimer's brains include mitochondrial dysfunction and dystrophic neurites (DNs) in areas surrounding amyloid plaques. Using a mouse model that overexpresses reticulon 3 (RTN3) and spontaneously develops age-dependent hippocampal DNs, here we report that DNs contain both RTN3 and REEPs, topologically similar proteins that can shape tubular endoplasmic reticulum (ER). Importantly, ultrastructural examinations of such DNs revealed gradual accumulation of tubular ER in axonal termini, and such abnormal tubular ER inclusion is found in areas surrounding amyloid plaques in biopsy samples from Alzheimer's disease (AD) brains. Functionally, abnormally clustered tubular ER induces enhanced mitochondrial fission in the early stages of DN formation and eventual mitochondrial degeneration at later stages. Furthermore, such DNs are abrogated when RTN3 is ablated in aging and AD mouse models. Hence, abnormally clustered tubular ER can be pathogenic in brain regions: disrupting mitochondrial integrity, inducing DNs formation and impairing cognitive function in AD and aging brains.

  8. Backscatter and attenuation properties of mammalian brain tissues

    NASA Astrophysics Data System (ADS)

    Wijekularatne, Pushpani Vihara

    Traumatic Brain Injury (TBI) is a common category of brain injuries, which contributes to a substantial number of deaths and permanent disability all over the world. Ultrasound technology plays a major role in tissue characterization due to its low cost and portability that could be used to bridge a wide gap in the TBI diagnostic process. This research addresses the ultrasonic properties of mammalian brain tissues focusing on backscatter and attenuation. Orientation dependence and spatial averaging of data were analyzed using the same method resulting from insertion of tissue sample between a transducer and a reference reflector. Apparent backscatter transfer function (ABTF) at 1 to 10 MHz, attenuation coefficient and backscatter coefficient (BSC) at 1 to 5 MHz frequency ranges were measured on ovine brain tissue samples. The resulting ABTF was a monotonically decreasing function of frequency and the attenuation coefficient and BSC generally were increasing functions of frequency, results consistent with other soft tissues such as liver, blood and heart.

  9. A Dense Poly(ethylene glycol) Coating Improves Penetration of Large Polymeric Nanoparticles within Brain Tissue

    PubMed Central

    Nance, Elizabeth A.; Woodworth, Graeme F.; Sailor, Kurt A.; Shih, Ting-Yu; Xu, Qingguo; Swaminathan, Ganesh; Xiang, Dennis; Eberhart, Charles; Hanes, Justin

    2013-01-01

    Prevailing opinion suggests that only substances up to 64 nm in diameter can move at appreciable rates through the brain extracellular space (ECS). This size range is large enough to allow diffusion of signaling molecules, nutrients, and metabolic waste products, but too small to allow efficient penetration of most particulate drug delivery systems and viruses carrying therapeutic genes, thereby limiting effectiveness of many potential therapies. We analyzed the movements of nanoparticles of various diameters and surface coatings within fresh human and rat brain tissue ex vivo and mouse brain in vivo. Nanoparticles as large as 114-nm in diameter diffused within the human and rat brain, but only if they were densely coated with poly(ethylene glycol) (PEG). Using these minimally adhesive PEG-coated particles, we estimated that human brain tissue ECS has some pores larger than 200 nm, and that more than one-quarter of all pores are ≥100 nm. These findings were confirmed in vivo in mice, where 40- and 100-nm, but not 200-nm, nanoparticles, spread rapidly within brain tissue, only if densely coated with PEG. Similar results were observed in rat brain tissue with paclitaxel-loaded biodegradable nanoparticles of similar size (85 nm) and surface properties. The ability to achieve brain penetration with larger nanoparticles is expected to allow more uniform, longer-lasting, and effective delivery of drugs within the brain, and may find use in the treatment of brain tumors, stroke, neuroinflammation, and other brain diseases where the blood-brain barrier is compromised or where local delivery strategies are feasible. PMID:22932224

  10. Determination of friction coefficient in unconfined compression of brain tissue.

    PubMed

    Rashid, Badar; Destrade, Michel; Gilchrist, Michael D

    2012-10-01

    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient μ of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that μ was equal to 0.09±0.03, 0.18±0.04, 0.18±0.04 and 0.20±0.02 at strain rates of 1, 30, 60 and 90/s, respectively. Additional tests were also performed to analyze brain tissue under lubricated and bonded conditions, with and without initial contact of the top platen with the brain tissue, with different specimen aspect ratios and with different lubricants (Phosphate Buffer Saline (PBS), Polytetrafluoroethylene (PTFE) and Silicone). The test conditions (lubricant used, biological tissue, loading velocity) adopted in this study were similar to the studies conducted by other research groups. This study will help to understand the amount of friction generated during unconfined compression of brain tissue for strain rates of up to 90/s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Dielectric properties of dog brain tissue measured in vitro across the 0.3-3 GHz band.

    PubMed

    Mohammed, Beadaa; Bialkowski, Konstanty; Abbosh, Amin; Mills, Paul C; Bradley, Andrew P

    2016-09-22

    Dielectric properties of dead Greyhound female dogs' brain tissues at different ages were measured at room temperature across the frequency range of 0.3-3 GHz. Measurements were made on excised tissues, in vitro in the laboratory, to carry out dielectric tests on sample tissues. Each dataset for a brain tissue was parametrized using the Cole-Cole expression, and the relevant Cole-Cole parameters for four tissue types are provided. A comparison was made with the database available in literature for other animals and human brain tissue. Results of two types of tissues (white matter and skull) showed systematic variation in dielectric properties as a function of animal age, whereas no significant change related to age was noticed for other tissues. Results provide critical information regarding dielectric properties of animal tissues for a realistic animal head model that can be used to verify the validity and reliability of a microwave head scanner for animals prior to testing on live animals. Bioelectromagnetics. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Brain tissue segmentation based on DTI data

    PubMed Central

    Liu, Tianming; Li, Hai; Wong, Kelvin; Tarokh, Ashley; Guo, Lei; Wong, Stephen T.C.

    2008-01-01

    We present a method for automated brain tissue segmentation based on the multi-channel fusion of diffusion tensor imaging (DTI) data. The method is motivated by the evidence that independent tissue segmentation based on DTI parametric images provides complementary information of tissue contrast to the tissue segmentation based on structural MRI data. This has important applications in defining accurate tissue maps when fusing structural data with diffusion data. In the absence of structural data, tissue segmentation based on DTI data provides an alternative means to obtain brain tissue segmentation. Our approach to the tissue segmentation based on DTI data is to classify the brain into two compartments by utilizing the tissue contrast existing in a single channel. Specifically, because the apparent diffusion coefficient (ADC) values in the cerebrospinal fluid (CSF) are more than twice that of gray matter (GM) and white matter (WM), we use ADC images to distinguish CSF and non-CSF tissues. Additionally, fractional anisotropy (FA) images are used to separate WM from non-WM tissues, as highly directional white matter structures have much larger fractional anisotropy values. Moreover, other channels to separate tissue are explored, such as eigenvalues of the tensor, relative anisotropy (RA), and volume ratio (VR). We developed an approach based on the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm that combines these two-class maps to obtain a complete tissue segmentation map of CSF, GM, and WM. Evaluations are provided to demonstrate the performance of our approach. Experimental results of applying this approach to brain tissue segmentation and deformable registration of DTI data and spoiled gradient-echo (SPGR) data are also provided. PMID:17804258

  13. Accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue.

    PubMed

    Zhang, Jing; Fan, Yimeng; He, Min; Ma, Xuelei; Song, Yanlin; Liu, Ming; Xu, Jianguo

    2017-05-30

    Raman spectroscopy could be applied to distinguish tumor from normal tissues. This meta-analysis was conducted to assess the accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue. PubMed and Embase were searched to identify suitable studies prior to Jan 1st, 2016. We estimated the pooled sensitivity, specificity, positive and negative likelihood ratios (LR), diagnostic odds ratio (DOR), and constructed summary receiver operating characteristics (SROC) curves to identity the accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue. A total of six studies with 1951 spectra were included. For glioma, the pooled sensitivity and specificity of Raman spectroscopy were 0.96 (95% CI 0.94-0.97) and 0.99 (95% CI 0.98-0.99), respectively. The area under the curve (AUC) was 0.9831. For meningioma, the pooled sensitivity and specificity were 0.98 (95% CI 0.94-1.00) and 1.00 (95% CI 0.98-1.00), respectively. The AUC was 0.9955. This meta-analysis suggested that Raman spectroscopy could be an effective and accurate tool for differentiating glioma and meningioma from normal brain tissue, which would help us both avoid removal of normal tissue and minimize the volume of residual tumor.

  14. The Identification of Aluminum in Human Brain Tissue Using Lumogallion and Fluorescence Microscopy

    PubMed Central

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2016-01-01

    Aluminum in human brain tissue is implicated in the etiologies of neurodegenerative diseases including Alzheimer’s disease. While methods for the accurate and precise measurement of aluminum in human brain tissue are widely acknowledged, the same cannot be said for the visualization of aluminum. Herein we have used transversely-heated graphite furnace atomic absorption spectrometry to measure aluminum in the brain of a donor with Alzheimer’s disease, and we have developed and validated fluorescence microscopy and the fluor lumogallion to show the presence of aluminum in the same tissue. Aluminum is observed as characteristic orange fluorescence that is neither reproduced by other metals nor explained by autofluorescence. This new and relatively simple method to visualize aluminum in human brain tissue should enable more rigorous testing of the aluminum hypothesis of Alzheimer’s disease (and other neurological conditions) in the future. PMID:27472886

  15. Neural tube programming and craniofacial cleft formation. I. The neuromeric organization of the head and neck.

    PubMed

    Carstens, Michael H

    2004-01-01

    This review presents a brief synopsis of neuromeric theory. Neuromeres are developmental units of the nervous system with specific anatomic content. Outlying each neuromere are tissues of ectoderm, mesoderm and endoderm that bear an anatomic relationship to the neuromere in three basic ways. This relationship is physical in that motor and sensory connections exist between a given neuromeric level and its target tissues. The relationship is also developmental because the target cells exit during gastrulation precisely at that same level. Finally the relationship is chemical because the genetic definition of a neuromere is shared with those tissues with which it interacts. The model developed by Puelles and Rubenstein is used to describe the neuroanatomy of the neuromeres. Although important details of the model are currently being refined it has immediate clinical relevance for practicing clinicians because it permits us to understand many pathologic states as relationships between the brain and the surrounding tissues. Relationships between the processes of neurulation and gastrulation have been presented to demonstrate the manner in which neuromeric anatomy is established in the embryo. We are now in a position to describe in detail the static anatomic structures that result from this system. The neuromeric 'map' of craniofacial bones, dermis, dura, muscles, and fascia will be the subject of the next part of this series.

  16. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  17. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    PubMed

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  18. P14.05 How far can they grow... - Two clinical examples

    PubMed Central

    Espírito Santo, V.; Mendes, M.; Almendra, R.; Veiga, A.; Velon, A.; Guimarães, P.

    2017-01-01

    Abstract Introduction: Cerebral metastases are the most common form of central nervous system (CNS) tumours in adults. However, malignant neoplasm may also involve structures external to the brain, such as tissue surrounding the base of the skull, and then metastasize to the brain either by direct invasion or by spreading by the cranial nerves. CASE1: A 74 year-old man, with a past history of chronic kidney disease due to renal artery thrombosis and hypertension, was admitted in the emergency room (ER) complaining of persisting pain in the superior half of the right hemiface and frontal region, refractory to analgesia, with 2 months of evolution. He also referred diplopia in the right eye, homolateral hearing loss and asthenia. Neurological examination revealed psychomotor retardation, right VI cranial nerve paralysis, right sensorineural hypoacusis and dysphagia. Brain and neck MRI showed a lesion in right nasopharynx that invaded the bony structures of the base of the skull, in particular the petrous apex, clivus and great sphenoid wing. It also had an endocranial soft tissue component that occupied the cistern of Gasser’s ganglion. He was diagnosed with a nasopharynx malignant neoplasm. His clinical status deteriorated rapidly and he died 1 month later. CASE2: A 68 year-old woman, with a past history of left great sphenoid wing meningioma that was removed 2 years ago, was admitted in the ER complaining of tinnitus and hearing loss in the left ear and dizziness. Neurological examination revealed peripheral left facial paralysis, which the patient claims to have arisen shortly after the previous surgery and left conductive hypoacusis. Brain MRI showed a lesion in the left parotid gland that invaded the petrous bone, infiltrating the jugular foramen and carotid canal, causing deformation of these vascular structures. She was diagnosed with a parotid gland malignant neoplasm that slowly grow in the last 2 years. By this moment, she is still waiting for a decision about the best treatment plan. Conclusions: With this work, we intend to exemplify two cases in which two different soft tissue tumours slowly grow until they caused symptoms due to direct invasion of base of the skull structures, which significantly complicate their treatment and these patients’ survival.

  19. Quantitative analysis of cell columns in the cerebral cortex.

    PubMed

    Buxhoeveden, D P; Switala, A E; Roy, E; Casanova, M F

    2000-04-01

    We present a quantified imaging method that describes the cell column in mammalian cortex. The minicolumn is an ideal template with which to examine cortical organization because it is a basic unit of function, complete in itself, which interacts with adjacent and distance columns to form more complex levels of organization. The subtle details of columnar anatomy should reflect physiological changes that have occurred in evolution as well as those that might be caused by pathologies in the brain. In this semiautomatic method, images of Nissl-stained tissue are digitized or scanned into a computer imaging system. The software detects the presence of cell columns and describes details of their morphology and of the surrounding space. Columns are detected automatically on the basis of cell-poor and cell-rich areas using a Gaussian distribution. A line is fit to the cell centers by least squares analysis. The line becomes the center of the column from which the precise location of every cell can be measured. On this basis several algorithms describe the distribution of cells from the center line and in relation to the available surrounding space. Other algorithms use cluster analyses to determine the spatial orientation of every column.

  20. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    DOEpatents

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  1. Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains.

    PubMed

    Bricq, S; Collet, Ch; Armspach, J P

    2008-12-01

    In the frame of 3D medical imaging, accurate segmentation of multimodal brain MR images is of interest for many brain disorders. However, due to several factors such as noise, imaging artifacts, intrinsic tissue variation and partial volume effects, tissue classification remains a challenging task. In this paper, we present a unifying framework for unsupervised segmentation of multimodal brain MR images including partial volume effect, bias field correction, and information given by a probabilistic atlas. Here-proposed method takes into account neighborhood information using a Hidden Markov Chain (HMC) model. Due to the limited resolution of imaging devices, voxels may be composed of a mixture of different tissue types, this partial volume effect is included to achieve an accurate segmentation of brain tissues. Instead of assigning each voxel to a single tissue class (i.e., hard classification), we compute the relative amount of each pure tissue class in each voxel (mixture estimation). Further, a bias field estimation step is added to the proposed algorithm to correct intensity inhomogeneities. Furthermore, atlas priors were incorporated using probabilistic brain atlas containing prior expectations about the spatial localization of different tissue classes. This atlas is considered as a complementary sensor and the proposed method is extended to multimodal brain MRI without any user-tunable parameter (unsupervised algorithm). To validate this new unifying framework, we present experimental results on both synthetic and real brain images, for which the ground truth is available. Comparison with other often used techniques demonstrates the accuracy and the robustness of this new Markovian segmentation scheme.

  2. In vivo evaluation of needle force and friction stress during insertion at varying insertion speed into the brain.

    PubMed

    Casanova, Fernando; Carney, Paul R; Sarntinoranont, Malisa

    2014-11-30

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in tissue damage which can promote flowback along the needle track and improper targeting. The goal of this study was to evaluate friction stress (calculated from needle insertion force) as a measure of tissue contact and damage during needle insertion for varying insertion speeds. Forces and surface dimpling during needle insertion were measured in rat brain in vivo. Needle retraction forces were used to calculate friction stresses. These measures were compared to track damage from a previous study. Differences between brain tissues and soft hydrogels were evaluated for varying insertion speeds: 0.2, 2, and 10mm/s. In brain tissue, average insertion force and surface dimpling increased with increasing insertion speed. Average friction stress along the needle-tissue interface decreased with insertion speed (from 0.58 ± 0.27 to 0.16 ± 0.08 kPa). Friction stress varied between brain regions: cortex (0.227 ± 0.27 kPa), external capsule (0.222 ± 0.19 kPa), and CPu (0.383 ± 0.30 kPa). Hydrogels exhibited opposite trends for dimpling and friction stress with insertion speed. Previously, increasing needle damage with insertion speed has been measured with histological methods. Friction stress appears to decrease with increasing tissue damage and decreasing tissue contact, providing the potential for in vivo and real time evaluation along the needle track. Force derived friction stress decreased with increasing insertion speed and was smaller within white matter regions. Hydrogels exhibited opposite trends to brain tissue. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors

    NASA Astrophysics Data System (ADS)

    Giese, A.; Böhringer, H. J.; Leppert, J.; Kantelhardt, S. R.; Lankenau, E.; Koch, P.; Birngruber, R.; Hüttmann, G.

    2006-02-01

    Optical coherence tomography (OCT) is a non-invasive imaging technique with a micrometer resolution. It allows non-contact / non-invasive analysis of central nervous system tissues with a penetration depth of 1-3,5 mm reaching a spatial resolution of approximately 4-15 μm. We have adapted spectral-domain OCT (SD-OCT) and time-domain OCT (TD-OCT) for intraoperative detection of residual tumor during brain tumor surgery. Human brain tumor tissue and areas of the resection cavity were analyzed during the resection of gliomas using this new technology. The site of analysis was registered using a neuronavigation system and biopsies were taken and submitted to routine histology. We have used post image acquisition processing to compensate for movements of the brain and to realign A-scan images for calculation of a light attenuation factor. OCT imaging of normal cortex and white matter showed a typical light attenuation profile. Tumor tissue depending on the cellularity of the specimen showed a loss of the normal light attenuation profile resulting in altered light attenuation coefficients compared to normal brain. Based on this parameter and the microstructure of the tumor tissue, which was entirely absent in normal tissue, OCT analysis allowed the discrimination of normal brain tissue, invaded brain, solid tumor tissue, and necrosis. Following macroscopically complete resections OCT analysis of the resection cavity displayed the typical microstructure and light attenuation profile of tumor tissue in some specimens, which in routine histology contained microscopic residual tumor tissue. We have demonstrated that this technology may be applied to the intraoperative detection of residual tumor during resection of human gliomas.

  4. Evidence for Decreased Brain Parenchymal Volume After Large Intracerebral Hemorrhages: a Potential Mechanism Limiting Intracranial Pressure Rises.

    PubMed

    Williamson, Michael R; Colbourne, Frederick

    2017-08-01

    Potentially fatal intracranial pressure (ICP) rises commonly occur after large intracerebral hemorrhages (ICH). We monitored ICP after infusing 100-160 μL of autologous blood (vs. 0 μL control) into the striatum of rats in order to test the validity of this common model with regard to ICP elevations. Other endpoints included body temperature, behavioral impairment, lesion volume, and edema. Also, we evaluated hippocampal CA1 sector and somatosensory cortical neuron morphology to assess whether global ischemic injury occurred. Despite massive blood infusions, ICP only modestly increased (160 μL 10.8 ± 2.1 mmHg for <36 h vs. control 3.4 ± 0.5 mmHg), with little peri-hematoma edema at 3 days. Body temperature was not affected. Behavioral deficits and tissue loss were infusion volume-dependent. There was no histological evidence of hippocampal or cortical injury, indicating that cell death was confined to the hematoma and closely surrounding tissue. Surprisingly, the most severe hemorrhages significantly increased cell density (~15-20%) and reduced cell body size (~30%) in regions outside the injury site. Additionally, decreased cell size and increased density were observed after collagenase-induced ICH. Parenchymal volume is seemingly reduced after large ICH. Thus, in addition to well-known compliance mechanisms (e.g., displacement of cerebrospinal fluid and cerebral blood), reduced brain parenchymal volume appears to limit ICP rises in rodents with very large mass lesions.

  5. Enhancement of Sexual Behavior in Female Rats by Neonatal Transplantation of Brain Tissue from Males

    NASA Astrophysics Data System (ADS)

    Arendash, Gary W.; Gorski, Roger A.

    1982-09-01

    Transplantation of preoptic tissue from male rat neonates into the preoptic area of female littermates increased masculine and feminine sexual behavior in the recipients during adulthood. This suggests that functional connections develop between the transplanted neural tissue and the host brain. A new intraparenchymal brain transplantation technique was used to achieve these results.

  6. Multimodal optical coherence tomography for in vivo imaging of brain tissue structure and microvascular network at glioblastoma

    NASA Astrophysics Data System (ADS)

    Yashin, Konstantin S.; Kiseleva, Elena B.; Gubarkova, Ekaterina V.; Matveev, Lev A.; Karabut, Maria M.; Elagin, Vadim V.; Sirotkina, Marina A.; Medyanik, Igor A.; Kravets, L. Y.; Gladkova, Natalia D.

    2017-02-01

    In the case of infiltrative brain tumors the surgeon faces difficulties in determining their boundaries to achieve total resection. The aim of the investigation was to evaluate the performance of multimodal OCT (MM OCT) for differential diagnostics of normal brain tissue and glioma using an experimental model of glioblastoma. The spectral domain OCT device that was used for the study provides simultaneously two modes: cross-polarization and microangiographic OCT. The comparative analysis of the both OCT modalities images from tumorous and normal brain tissue areas concurrently with histologic correlation shows certain difference between when accordingly to morphological and microvascular tissue features.

  7. Influence of strain rate on indentation response of porcine brain.

    PubMed

    Qian, Long; Zhao, Hongwei; Guo, Yue; Li, Yuanshang; Zhou, Mingxing; Yang, Liguo; Wang, Zhiwei; Sun, Yifan

    2018-06-01

    Knowledge of brain tissue mechanical properties may be critical for formulating hypotheses about some specific diseases mechanisms and its accurate simulations such as traumatic brain injury (TBI) and tumor growth. Compared to traditional tests (e.g. tensile and compression), indentation shows superiority by virtue of its pinpoint and nondestructive/quasi-nondestructive. As a viscoelastic material, the properties of brain tissue depend on the strain rate by definition. However most efforts focus on the aspect of velocity in the field of brain indentation, rather than strain rate. The influence of strain rate on indentation response of brain tissue is taken little attention. Further, by comparing different results from literatures, it is also obvious that strain rate rather than velocity is more appropriate to characterize mechanical properties of brain. In this paper, to systematically characterize the influence of strain rate, a series of indentation-relaxation tests n = 210) are performed on the cortex of porcine brain using a custom-designed indentation device. The mechanical response that correlates with indenter diameters, depths of indentation and velocities, is revealed for the indentation portion, and elastic behavior of brain tissue is analyzed as the function of strain rate. Similarly, a linear viscoelastic model with a Prony series is employed for the indentation-relaxation portion, wherein the brain tissue shows more viscous and responds more quickly with increasing strain rate. Understanding the effect of strain rate on mechanical properties of brain indentation may be far-reaching for brain injury biomechanics and accurate simulations, but be important for bridging between indentation results of different literatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Near infrared Raman spectra of human brain lipids

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Neudert, Lars; Simat, Thomas; Salzer, Reiner

    2005-05-01

    Human brain tissue, in particular white matter, contains high lipid content. These brain lipids can be divided into three principal classes: neutral lipids including the steroid cholesterol, phospholipids and sphingolipids. Major lipids in normal human brain tissue are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, sphingomyelin, galactocerebrosides, gangliosides, sulfatides and cholesterol. Minor lipids are cholesterolester and triacylglycerides. During transformation from normal brain tissue to tumors, composition and concentration of lipids change in a specific way. Therefore, analysis of lipids might be used as a diagnostic parameter to distinguish normal tissue from tumors and to determine the tumor type and tumor grade. Raman spectroscopy has been suggested as an analytical tool to detect these changes even under intra-operative conditions. We recorded Raman spectra of the 12 major and minor brain lipids with 785 nm excitation in order to identify their spectral fingerprints for qualitative and quantitative analyses.

  9. VA's National PTSD Brain Bank: a National Resource for Research.

    PubMed

    Friedman, Matthew J; Huber, Bertrand R; Brady, Christopher B; Ursano, Robert J; Benedek, David M; Kowall, Neil W; McKee, Ann C

    2017-08-25

    The National PTSD Brain Bank (NPBB) is a brain tissue biorepository established to support research on the causes, progression, and treatment of PTSD. It is a six-part consortium led by VA's National Center for PTSD with participating sites at VA medical centers in Boston, MA; Durham, NC; Miami, FL; West Haven, CT; and White River Junction, VT along with the Uniformed Services University of Health Sciences. It is also well integrated with VA's Boston-based brain banks that focus on Alzheimer's disease, ALS, chronic traumatic encephalopathy, and other neurological disorders. This article describes the organization and operations of NPBB with specific attention to: tissue acquisition, tissue processing, diagnostic assessment, maintenance of a confidential data biorepository, adherence to ethical standards, governance, accomplishments to date, and future challenges. Established in 2014, NPBB has already acquired and distributed brain tissue to support research on how PTSD affects brain structure and function.

  10. Fingolimod inhibits brain atrophy and promotes brain-derived neurotrophic factor in an animal model of multiple sclerosis.

    PubMed

    Smith, Paul A; Schmid, Cindy; Zurbruegg, Stefan; Jivkov, Magali; Doelemeyer, Arno; Theil, Diethilde; Dubost, Valérie; Beckmann, Nicolau

    2018-05-15

    Longitudinal brain atrophy quantification is a critical efficacy measurement in multiple sclerosis (MS) clinical trials and the determination of No Evidence of Disease Activity (NEDA). Utilising fingolimod as a clinically validated therapy we evaluated the use of repeated brain tissue volume measures during chronic experimental autoimmune encephalomyelitis (EAE) as a new preclinical efficacy measure. Brain volume changes were quantified using magnetic resonance imaging (MRI) at 7 Tesla and correlated to treatment-induced brain derived neurotrophic factor (BDNF) measured in blood, cerebrospinal fluid, spinal cord and brain. Serial brain MRI measurements revealed slow progressive brain volume loss in vehicle treated EAE mice despite a stable clinical score. Fingolimod (1 mg/kg) significantly ameliorated brain tissue atrophy in the cerebellum and striatum when administered from established EAE disease onwards. Fingolimod-dependent tissue preservation was associated with induction of BDNF specifically within the brain and co-localized with neuronal soma. In contrast, therapeutic teriflunomide (3 mg/kg) treatment failed to inhibit CNS autoimmune mediated brain degeneration. Finally, weekly anti-IL-17A antibody (15 mg/kg) treatment was highly efficacious and preserved whole brain, cerebellum and striatum volume. Fingolimod-mediated BDNF increases within the CNS may contribute to limiting progressive tissue loss during chronic neuroinflammation. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Quantifying structural alterations in Alzheimer's disease brains using quantitative phase imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2017-02-01

    Imaging brain tissues is an essential part of neuroscience because understanding brain structure provides relevant information about brain functions and alterations associated with diseases. Magnetic resonance imaging and positron emission tomography exemplify conventional brain imaging tools, but these techniques suffer from low spatial resolution around 100 μm. As a complementary method, histopathology has been utilized with the development of optical microscopy. The traditional method provides the structural information about biological tissues to cellular scales, but relies on labor-intensive staining procedures. With the advances of illumination sources, label-free imaging techniques based on nonlinear interactions, such as multiphoton excitations and Raman scattering, have been applied to molecule-specific histopathology. Nevertheless, these techniques provide limited qualitative information and require a pulsed laser, which is difficult to use for pathologists with no laser training. Here, we present a label-free optical imaging of mouse brain tissues for addressing structural alteration in Alzheimer's disease. To achieve the mesoscopic, unlabeled tissue images with high contrast and sub-micrometer lateral resolution, we employed holographic microscopy and an automated scanning platform. From the acquired hologram of the brain tissues, we could retrieve scattering coefficients and anisotropies according to the modified scattering-phase theorem. This label-free imaging technique enabled direct access to structural information throughout the tissues with a sub-micrometer lateral resolution and presented a unique means to investigate the structural changes in the optical properties of biological tissues.

  12. In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)

    NASA Astrophysics Data System (ADS)

    Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-01-01

    New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.

  13. Effects of positive end-expiratory pressure on brain tissue oxygen pressure of severe traumatic brain injury patients with acute respiratory distress syndrome: A pilot study.

    PubMed

    Nemer, Sérgio Nogueira; Caldeira, Jefferson B; Santos, Ricardo G; Guimarães, Bruno L; Garcia, João Márcio; Prado, Darwin; Silva, Ricardo T; Azeredo, Leandro M; Faria, Eduardo R; Souza, Paulo Cesar P

    2015-12-01

    To verify whether high positive end-expiratory pressure levels can increase brain tissue oxygen pressure, and also their effects on pulse oxygen saturation, intracranial pressure, and cerebral perfusion pressure. Twenty traumatic brain injury patients with acute respiratory distress syndrome were submitted to positive end-expiratory pressure levels of 5, 10, and 15 cm H2O progressively. The 3 positive end-expiratory pressure levels were used during 20 minutes for each one, whereas brain tissue oxygen pressure, oxygen saturation, intracranial pressure, and cerebral perfusion pressure were recorded. Brain tissue oxygen pressure and oxygen saturation increased significantly with increasing positive end-expiratory pressure from 5 to 10 and from 10 to 15 cm H2O (P=.0001 and P=.0001 respectively). Intracranial pressure and cerebral perfusion pressure did not differ significantly with increasing positive end-expiratory pressure from 5 to 10 and from 10 to 15 cm H2O (P=.16 and P=.79 respectively). High positive end-expiratory pressure levels increased brain tissue oxygen pressure and oxygen saturation, without increase in intracranial pressure or decrease in cerebral perfusion pressure. High positive end-expiratory pressure levels can be used in severe traumatic brain injury patients with acute respiratory distress syndrome as a safe alternative to improve brain oxygenation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Pharmacokinetics and brain penetration of carbapenems in mice.

    PubMed

    Matsumoto, Kazuaki; Kurihara, Yuji; Kuroda, Yuko; Hori, Seiji; Kizu, Junko

    2016-05-01

    An adverse effect associated with the administration of carbapenems is central nervous system (CNS) toxicity, with higher brain concentrations of carbapenems being linked to an increased risk of seizures. However, the pharmacokinetics and brain penetration of carbapenems have not yet been examined. Thus, the aim of this in vivo investigation was to determine the pharmacokinetics and brain penetration of carbapenems in mice. Blood samples and brain tissue samples were obtained 10, 20, 30, 60, and 120 min after the subcutaneous administration of carbapenems (91 mg/kg). We obtained the following values for the pharmacokinetic parameters of carbapenems in mice: 1.20-1.71 L/h/kg for CLtotal/F, 1.41-2.03 h(-1) for Ke, 0.34-0.51 h for T1/2, 0.66-0.95 L/kg for Vss/F, 0.49-0.73 h for MRT, 83.46-110.58 μg/mL for Cmax, plasma, and 0.28-0.83 μg/g for Cmax, brain tissue. The AUC0-∞ of the carbapenems tested in plasma were in the following order: doripenem > meropenem > biapenem > imipenem, and in brain tissue were: imipenem > doripenem > meropenem > biapenem. The degrees of brain tissue penetration, defined as the AUC0-∞, brain tissue/fAUC0-∞, plasma ratio, were 0.016 for imipenem, 0.004 for meropenem, 0.002 for biapenem, and 0.008 for doripenem. The results of the present study demonstrated that, of the carbapenems examined, imipenem penetrated brain tissue to the greatest extent. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  15. Correspondence of DNA Methylation Between Blood and Brain Tissue and Its Application to Schizophrenia Research.

    PubMed

    Walton, Esther; Hass, Johanna; Liu, Jingyu; Roffman, Joshua L; Bernardoni, Fabio; Roessner, Veit; Kirsch, Matthias; Schackert, Gabriele; Calhoun, Vince; Ehrlich, Stefan

    2016-03-01

    Given the difficulty of procuring human brain tissue, a key question in molecular psychiatry concerns the extent to which epigenetic signatures measured in more accessible tissues such as blood can serve as a surrogate marker for the brain. Here, we aimed (1) to investigate the blood-brain correspondence of DNA methylation using a within-subject design and (2) to identify changes in DNA methylation of brain-related biological pathways in schizophrenia.We obtained paired blood and temporal lobe biopsy samples simultaneously from 12 epilepsy patients during neurosurgical treatment. Using the Infinium 450K methylation array we calculated similarity of blood and brain DNA methylation for each individual separately. We applied our findings by performing gene set enrichment analyses (GSEA) of peripheral blood DNA methylation data (Infinium 27K) of 111 schizophrenia patients and 122 healthy controls and included only Cytosine-phosphate-Guanine (CpG) sites that were significantly correlated across tissues.Only 7.9% of CpG sites showed a statistically significant, large correlation between blood and brain tissue, a proportion that although small was significantly greater than predicted by chance. GSEA analysis of schizophrenia data revealed altered methylation profiles in pathways related to precursor metabolites and signaling peptides.Our findings indicate that most DNA methylation markers in peripheral blood do not reliably predict brain DNA methylation status. However, a subset of peripheral data may proxy methylation status of brain tissue. Restricting the analysis to these markers can identify meaningful epigenetic differences in schizophrenia and potentially other brain disorders. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Predicting Intracranial Pressure and Brain Tissue Oxygen Crises in Patients With Severe Traumatic Brain Injury.

    PubMed

    Myers, Risa B; Lazaridis, Christos; Jermaine, Christopher M; Robertson, Claudia S; Rusin, Craig G

    2016-09-01

    To develop computer algorithms that can recognize physiologic patterns in traumatic brain injury patients that occur in advance of intracranial pressure and partial brain tissue oxygenation crises. The automated early detection of crisis precursors can provide clinicians with time to intervene in order to prevent or mitigate secondary brain injury. A retrospective study was conducted from prospectively collected physiologic data. intracranial pressure, and partial brain tissue oxygenation crisis events were defined as intracranial pressure of greater than or equal to 20 mm Hg lasting at least 15 minutes and partial brain tissue oxygenation value of less than 10 mm Hg for at least 10 minutes, respectively. The physiologic data preceding each crisis event were used to identify precursors associated with crisis onset. Multivariate classification models were applied to recorded data in 30-minute epochs of time to predict crises between 15 and 360 minutes in the future. The neurosurgical unit of Ben Taub Hospital (Houston, TX). Our cohort consisted of 817 subjects with severe traumatic brain injury. Our algorithm can predict the onset of intracranial pressure crises with 30-minute advance warning with an area under the receiver operating characteristic curve of 0.86 using only intracranial pressure measurements and time since last crisis. An analogous algorithm can predict the start of partial brain tissue oxygenation crises with 30-minute advanced warning with an area under the receiver operating characteristic curve of 0.91. Our algorithms provide accurate and timely predictions of intracranial hypertension and tissue hypoxia crises in patients with severe traumatic brain injury. Almost all of the information needed to predict the onset of these events is contained within the signal of interest and the time since last crisis.

  17. Detection of Human Brain Cancer Infiltration ex vivo and in vivo Using Quantitative Optical Coherence Tomography*

    PubMed Central

    Kut, Carmen; Chaichana, Kaisorn L.; Xi, Jiefeng; Raza, Shaan M.; Ye, Xiaobu; McVeigh, Elliot R.; Rodriguez, Fausto J.; Quinones-Hinojosa, Alfredo; Li, Xingde

    2015-01-01

    More complete brain cancer resection can prolong survival and delay recurrence. However, it is challenging to distinguish cancer from non-cancer tissues intraoperatively, especially at the transitional, infiltrative zones. This is especially critical in eloquent regions (e.g. speech and motor areas). This study tested the feasibility of label-free, quantitative optical coherence tomography (OCT) for differentiating cancer from non-cancer in human brain tissues. Fresh ex vivo human brain tissues were obtained from 32 patients with grades II-IV brain cancer and 5 patients with non-cancer brain pathologies. Based on volumetric OCT imaging data, pathologically confirmed brain cancer tissues (both high-grade and low-grade) had significantly lower optical attenuation values at both cancer core and infiltrated zones when compared with non-cancer white matter, and OCT achieved high sensitivity and specificity at an attenuation threshold of 5.5 mm-1 for brain cancer patients. We also used this attenuation threshold to confirm the intraoperative feasibility of performing in vivo OCT-guided surgery using a murine model harboring human brain cancer. Our OCT system was capable of processing and displaying a color-coded optical property map in real time at a rate of 110-215 frames per second, or 1.2-2.4 seconds for an 8-16 mm3 tissue volume, thus providing direct visual cues for cancer versus non-cancer areas. Our study demonstrates the translational and practical potential of OCT in differentiating cancer from non-cancer tissue. Its intraoperative use may facilitate safe and extensive resection of infiltrative brain cancers and consequently lead to improved outcomes when compared with current clinical standards. PMID:26084803

  18. [Differential expression genes of bone tissues surrounding implants in diabetic rats by gene chip].

    PubMed

    Wang, Xin-xin; Ma, Yue; Li, Qing; Jiang, Bao-qi; Lan, Jing

    2012-10-01

    To compare mRNA expression profiles of bone tissues surrounding implants between normal rats and rats with diabetes using microarray technology. Six Wistar rats were randomly selected and divided into normal model group and diabetic group. Diabetic model condition was established by injecting Streptozotocin into peritoneal space. Titanium implants were implanted into the epiphyseal end of the rats' tibia. Bone tissues surrounding implant were harvested and sampled after 3 months to perform comprehensive RNA gene expression profiling, including 17983 for genome-wide association study.GO analysis was used to compare different gene expression and real-time PCR was used to confirm the results on core samples. The results indicated that there were 1084 differential gene expression. In the diabetic model, there were 352 enhanced expression genes, 732 suppressed expression genes. GO analysis involved 1154 different functional type. Osteoblast related gene expressions in bone tissue samples of diabetic rats were decreased, and lipid metabolism pathway related gene expression was increased.

  19. Remote acoustic sensing as a safety mechanism during exposure of metal implants to alternating magnetic fields

    PubMed Central

    Chatzinoff, Yonatan; Szczepanski, Debby; Bing, Chenchen; Shaikh, Sumbul; Wyman, Omar; Perry, Cameron E.; Richardson, James A.; Burns, Dennis K.; Evers, Bret M.; Greenberg, David E.; Chopra, Rajiv

    2018-01-01

    Treatment of prosthetic joint infections often involves multiple surgeries and prolonged antibiotic administration, resulting in a significant burden to patients and the healthcare system. We are exploring a non-invasive method to eradicate biofilm on metal implants utilizing high-frequency alternating magnetic fields (AMF) which can achieve surface induction heating. Although proof-of-concept studies demonstrate the ability of AMF to eradicate biofilm in vitro, there is a legitimate safety concern related to the potential for thermal damage to surrounding tissues when considering heating implanted metal objects. The goal of this study was to explore the feasibility of detecting acoustic emissions associated with boiling at the interface between a metal implant and surrounding soft tissue as a wireless safety sensing mechanism. Acoustic emissions generated during in vitro and in vivo AMF exposures were captured with a hydrophone, and the relationship with surface temperature analyzed. The effect of AMF exposure power, surrounding media composition, implant location within the AMF transmitter, and implant geometry on acoustic detection during AMF therapy was also evaluated. Acoustic emissions were reliably identified in both tissue-mimicking phantom and mouse studies, and their onset coincided with the implant temperature reaching the boiling threshold. The viscosity of the surrounding medium did not impact the production of acoustic emissions; however, emissions were not present when the medium was oil due to the higher boiling point. Results of simulations and in vivo studies suggest that short-duration, high-power AMF exposures combined with acoustic sensing can be used to minimize the amount of thermal damage in surrounding tissues. These studies support the hypothesis that detection of boiling associated acoustic emissions at a metal/tissue interface could serve as a real-time, wireless safety indicator during AMF treatment of biofilm on metallic implants. PMID:29746579

  20. Remote acoustic sensing as a safety mechanism during exposure of metal implants to alternating magnetic fields.

    PubMed

    Cheng, Bingbing; Chatzinoff, Yonatan; Szczepanski, Debby; Bing, Chenchen; Shaikh, Sumbul; Wyman, Omar; Perry, Cameron E; Richardson, James A; Burns, Dennis K; Evers, Bret M; Greenberg, David E; Chopra, Rajiv

    2018-01-01

    Treatment of prosthetic joint infections often involves multiple surgeries and prolonged antibiotic administration, resulting in a significant burden to patients and the healthcare system. We are exploring a non-invasive method to eradicate biofilm on metal implants utilizing high-frequency alternating magnetic fields (AMF) which can achieve surface induction heating. Although proof-of-concept studies demonstrate the ability of AMF to eradicate biofilm in vitro, there is a legitimate safety concern related to the potential for thermal damage to surrounding tissues when considering heating implanted metal objects. The goal of this study was to explore the feasibility of detecting acoustic emissions associated with boiling at the interface between a metal implant and surrounding soft tissue as a wireless safety sensing mechanism. Acoustic emissions generated during in vitro and in vivo AMF exposures were captured with a hydrophone, and the relationship with surface temperature analyzed. The effect of AMF exposure power, surrounding media composition, implant location within the AMF transmitter, and implant geometry on acoustic detection during AMF therapy was also evaluated. Acoustic emissions were reliably identified in both tissue-mimicking phantom and mouse studies, and their onset coincided with the implant temperature reaching the boiling threshold. The viscosity of the surrounding medium did not impact the production of acoustic emissions; however, emissions were not present when the medium was oil due to the higher boiling point. Results of simulations and in vivo studies suggest that short-duration, high-power AMF exposures combined with acoustic sensing can be used to minimize the amount of thermal damage in surrounding tissues. These studies support the hypothesis that detection of boiling associated acoustic emissions at a metal/tissue interface could serve as a real-time, wireless safety indicator during AMF treatment of biofilm on metallic implants.

  1. Extracellular Nucleotides in Exercise: Possible Effect on Brain Metabolism.

    ERIC Educational Resources Information Center

    Forrester, Tom

    1979-01-01

    A review of experiments which demonstrate the release of ATP from skeletal muscle, cardiac muscle, and active brain tissue. Effects of exogenously applied ATP to brain tissue are discussed in relation to whole body exercise. (Author/SA)

  2. A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation

    PubMed Central

    Habas, Piotr A.; Kim, Kio; Corbett-Detig, James M.; Rousseau, Francois; Glenn, Orit A.; Barkovich, A. James; Studholme, Colin

    2010-01-01

    Modeling and analysis of MR images of the developing human brain is a challenge due to rapid changes in brain morphology and morphometry. We present an approach to the construction of a spatiotemporal atlas of the fetal brain with temporal models of MR intensity, tissue probability and shape changes. This spatiotemporal model is created from a set of reconstructed MR images of fetal subjects with different gestational ages. Groupwise registration of manual segmentations and voxelwise nonlinear modeling allow us to capture the appearance, disappearance and spatial variation of brain structures over time. Applying this model to atlas-based segmentation, we generate age-specific MR templates and tissue probability maps and use them to initialize automatic tissue delineation in new MR images. The choice of model parameters and the final performance are evaluated using clinical MR scans of young fetuses with gestational ages ranging from 20.57 to 24.71 weeks. Experimental results indicate that quadratic temporal models can correctly capture growth-related changes in the fetal brain anatomy and provide improvement in accuracy of atlas-based tissue segmentation. PMID:20600970

  3. Chemical Probes for Visualizing Intact Animal and Human Brain Tissue.

    PubMed

    Lai, Hei Ming; Ng, Wai-Lung; Gentleman, Steve M; Wu, Wutian

    2017-06-22

    Newly developed tissue clearing techniques can be used to render intact tissues transparent. When combined with fluorescent labeling technologies and optical sectioning microscopy, this allows visualization of fine structure in three dimensions. Gene-transfection techniques have proved very useful in visualizing cellular structures in animal models, but they are not applicable to human brain tissue. Here, we discuss the characteristics of an ideal chemical fluorescent probe for use in brain and other cleared tissues, and offer a comprehensive overview of currently available chemical probes. We describe their working principles and compare their performance with the goal of simplifying probe selection for neuropathologists and stimulating probe development by chemists. We propose several approaches for the development of innovative chemical labeling methods which, when combined with tissue clearing, have the potential to revolutionize how we study the structure and function of the human brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Intrinsic protective mechanisms of the neuron-glia network against glioma invasion.

    PubMed

    Iwadate, Yasuo; Fukuda, Kazumasa; Matsutani, Tomoo; Saeki, Naokatsu

    2016-04-01

    Gliomas arising in the brain parenchyma infiltrate into the surrounding brain and break down established complex neuron-glia networks. However, mounting evidence suggests that initially the network microenvironment of the adult central nervous system (CNS) is innately non-permissive to glioma cell invasion. The main players are inhibitory molecules in CNS myelin, as well as proteoglycans associated with astrocytes. Neural stem cells, and neurons themselves, possess inhibitory functions against neighboring tumor cells. These mechanisms have evolved to protect the established neuron-glia network, which is necessary for brain function. Greater insight into the interaction between glioma cells and the surrounding neuron-glia network is crucial for developing new therapies for treating these devastating tumors while preserving the important and complex neural functions of patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. In vitro terahertz spectroscopy of gelatin-embedded human brain tumors: a pilot study

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, N. V.; Gavdush, A. A.; Beshplav, S.-I. T.; Malakhov, K. M.; Kucheryavenko, A. S.; Katyba, G. M.; Dolganova, I. N.; Goryaynov, S. A.; Karasik, V. E.; Spektor, I. E.; Kurlov, V. N.; Yurchenko, S. O.; Komandin, G. A.; Potapov, A. A.; Tuchin, V. V.; Zaytsev, K. I.

    2018-04-01

    We have performed the in vitro terahertz (THz) spectroscopy of human brain tumors. In order to fix tissues for the THz measurements, we have applied the gelatin embedding. It allows for preserving tissues from hydration/dehydration and sustaining their THz response similar to that of the freshly-excised tissues for a long time after resection. We have assembled an experimental setup for the reflection-mode measurements of human brain tissues based on the THz pulsed spectrometer. We have used this setup to study in vitro the refractive index and the amplitude absorption coefficient of 2 samples of malignant glioma (grade IV), 1 sample of meningioma (grade I), and samples of intact tissues. We have observed significant differences between the THz responses of normal and pathological tissues of the brain. The results of this paper highlight the potential of the THz technology in the intraoperative neurodiagnosis of tumors relying on the endogenous labels of tumorous tissues.

  6. Database of normal human cerebral blood flow measured by SPECT: II. Quantification of I-123-IMP studies with ARG method and effects of partial volume correction.

    PubMed

    Inoue, Kentaro; Ito, Hiroshi; Shidahara, Miho; Goto, Ryoi; Kinomura, Shigeo; Sato, Kazunori; Taki, Yasuyuki; Okada, Ken; Kaneta, Tomohiro; Fukuda, Hiroshi

    2006-02-01

    The limited spatial resolution of SPECT causes a partial volume effect (PVE) and can lead to the significant underestimation of regional tracer concentration in the small structures surrounded by a low tracer concentration, such as the cortical gray matter of an atrophied brain. The aim of the present study was to determine, using 123I-IMP and SPECT, normal CBF of elderly subjects with and without PVE correction (PVC), and to determine regional differences in the effect of PVC and their association with the regional tissue fraction of the brain. Quantitative CBF SPECT using 123I-IMP was performed in 33 healthy elderly subjects (18 males, 15 females, 54-74 years old) using the autoradiographic method. We corrected CBF for PVE using segmented MR images, and analyzed quantitative CBF and regional differences in the effect of PVC using tissue fractions of gray matter (GM) and white matter (WM) in regions of interest (ROIs) placed on the cortical and subcortical GM regions and deep WM regions. The mean CBF in GM-ROIs were 31.7 +/- 6.6 and 41.0 +/- 8.1 ml/100 g/min for males and females, and in WM-ROIs, 18.2 +/- 0.7 and 22.9 +/- 0.8 ml/100 g/min for males and females, respectively. The mean CBF in GM-ROIs after PVC were 50.9 +/- 12.8 and 65.8 +/- 16.1 ml/100 g/min for males and females, respectively. There were statistically significant differences in the effect of PVC among ROIs, but not between genders. The effect of PVC was small in the cerebellum and parahippocampal gyrus, and it was large in the superior frontal gyrus, superior parietal lobule and precentral gyrus. Quantitative CBF in GM recovered significantly, but did not reach values as high as those obtained by invasive methods or in the H2(15)O PET study that used PVC. There were significant regional differences in the effect of PVC, which were considered to result from regional differences in GM tissue fraction, which is more reduced in the frontoparietal regions in the atrophied brain of the elderly.

  7. Gene expression profiles help identify the tissue of origin for metastatic brain cancers.

    PubMed

    Wu, Alan H B; Drees, Julia C; Wang, Hangpin; VandenBerg, Scott R; Lal, Anita; Henner, William D; Pillai, Raji

    2010-04-26

    Metastatic brain cancers are the most common intracranial tumor and occur in about 15% of all cancer patients. In up to 10% of these patients, the primary tumor tissue remains unknown, even after a time consuming and costly workup. The Pathwork Tissue of Origin Test (Pathwork Diagnostics, Redwood City, CA, USA) is a gene expression test to aid in the diagnosis of metastatic, poorly differentiated and undifferentiated tumors. It measures the expression pattern of 1,550 genes in these tumors and compares it to the expression pattern of a panel of 15 known tumor types. The purpose of this study was to evaluate the performance of the Tissue of Origin Test in the diagnosis of primary sites for metastatic brain cancer patients. Fifteen fresh-frozen metastatic brain tumor specimens of known origins met specimen requirements. These specimens were entered into the study and processed using the Tissue of Origin Test. Results were compared to the known primary site and the agreement between the two results was assessed. Fourteen of the fifteen specimens produced microarray data files that passed all quality metrics. One originated from a tissue type that was off-panel. Among the remaining 13 cases, the Tissue of Origin Test accurately predicted the available diagnosis in 12/13 (92.3%) cases. This study demonstrates the accuracy of the Tissue of Origin Test when applied to predict the tissue of origin of metastatic brain tumors. This test could be a very useful tool for pathologists as they classify metastatic brain cancers.

  8. Gene expression profiles help identify the Tissue of Origin for metastatic brain cancers

    PubMed Central

    2010-01-01

    Background Metastatic brain cancers are the most common intracranial tumor and occur in about 15% of all cancer patients. In up to 10% of these patients, the primary tumor tissue remains unknown, even after a time consuming and costly workup. The Pathwork® Tissue of Origin Test (Pathwork Diagnostics, Redwood City, CA, USA) is a gene expression test to aid in the diagnosis of metastatic, poorly differentiated and undifferentiated tumors. It measures the expression pattern of 1,550 genes in these tumors and compares it to the expression pattern of a panel of 15 known tumor types. The purpose of this study was to evaluate the performance of the Tissue of Origin Test in the diagnosis of primary sites for metastatic brain cancer patients. Methods Fifteen fresh-frozen metastatic brain tumor specimens of known origins met specimen requirements. These specimens were entered into the study and processed using the Tissue of Origin Test. Results were compared to the known primary site and the agreement between the two results was assessed. Results Fourteen of the fifteen specimens produced microarray data files that passed all quality metrics. One originated from a tissue type that was off-panel. Among the remaining 13 cases, the Tissue of Origin Test accurately predicted the available diagnosis in 12/13 (92.3%) cases. Discussion This study demonstrates the accuracy of the Tissue of Origin Test when applied to predict the tissue of origin of metastatic brain tumors. This test could be a very useful tool for pathologists as they classify metastatic brain cancers. PMID:20420692

  9. Temperature-controlled radiofrequency ablation of different tissues using two-compartment models.

    PubMed

    Singh, Sundeep; Repaka, Ramjee

    2016-08-30

    This study aims to analyse the efficacy of temperature-controlled radiofrequency ablation (RFA) in different tissues. A three-dimensional, 12 cm cubical model representing the healthy tissue has been studied in which spherical tumour of 2.5 cm has been embedded. Different body sites considered in the study are liver, kidney, lung and breast. The thermo-electric analysis has been performed to estimate the temperature distribution and ablation volume. A programmable temperature-controlled RFA has been employed by incorporating the closed-loop feedback PID controller. The model fidelity and integrity have been evaluated by comparing the numerical results with the experimental in vitro results obtained during RFA of polyacrylamide tissue-mimicking phantom gel. The results revealed that significant variations persist among the input voltage requirements and the temperature distributions within different tissues of interest. The highest ablation volume has been produced in hypovascular lungs whereas least ablation volume has been produced in kidney being a highly perfused tissue. The variation in optimal treatment time for complete necrosis of tumour along with quantification of damage to the surrounding healthy tissue has also been reported. The results show that the surrounding tissue environment significantly affects the ablation volume produced during RFA. The optimal treatment time for complete tumour ablation can play a critical role in minimising the damage to the surrounding healthy tissue and ensuring safe and risk free application of RFA. The obtained results emphasise the need for developing organ-specific clinical protocols and systems during RFA of tumour.

  10. Effect of baculovirus P35 protein on apoptosis in brain tissue of rats with acute cerebral infarction.

    PubMed

    Ji, J F; Ma, X H

    2015-08-10

    We explored the effect of baculovirus P35 protein on apoptosis in the brain tissue of rats with acute cerebral infarction (ACI). A rat model of middle cerebral artery infarction was created. The rats were randomly divided into sham, model, and treatment groups. Baculovirus P35 protein was injected into the intracranial arteries of the treatment group rats. The rats in the model group were given an equal volume of phosphate-buffered saline. The rats were sacrificed after 72 h and the brain tissue was separated. The levels of caspase-3, Bcl-2, and Bax mRNA, the brain cell apoptosis index, and the infarct size were determined. After 72 h, the levels of caspase-3 and Bax mRNA in the model and treatment groups were significantly greater than in the sham group, and the levels of Bcl-2 mRNA were significantly smaller (P < 0.05). The levels of caspase-3 and Bax mRNA were significantly lower in the treatment group than in the model group, and the level of Bcl-2 mRNA was significantly greater (P < 0.05). Compared with the sham group, the brain tissue apoptosis index and the cerebral infarction area increased significantly in the model and treatment groups (P < 0.05). The brain tissue apoptosis index and cerebral infarction area in the treatment group were significantly lower than in the model group (P < 0.05). Baculovirus P35 protein can effectively inhibit brain cell apoptosis in rats with ACI. It delayed apoptosis and necrosis in subjects with ACI tissue and had a protective effect on brain tissue.

  11. Quantitative assessment of brain tissue oxygenation in porcine models of cardiac arrest and cardiopulmonary resuscitation using hyperspectral near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lotfabadi, Shahin S.; Toronov, Vladislav; Ramadeen, Andrew; Hu, Xudong; Kim, Siwook; Dorian, Paul; Hare, Gregory M. T.

    2014-03-01

    Near-infrared spectroscopy (NIRS) is a non-invasive tool to measure real-time tissue oxygenation in the brain. In an invasive animal experiment we were able to directly compare non-invasive NIRS measurements on the skull with invasive measurements directly on the brain dura matter. We used a broad-band, continuous-wave hyper-spectral approach to measure tissue oxygenation in the brain of pigs under the conditions of cardiac arrest, cardiopulmonary resuscitation (CPR), and defibrillation. An additional purpose of this research was to find a correlation between mortality due to cardiac arrest and inadequacy of the tissue perfusion during attempts at resuscitation. Using this technique we measured the changes in concentrations of oxy-hemoglobin [HbO2] and deoxy-hemoglobin [HHb] to quantify the tissue oxygenation in the brain. We also extracted cytochrome c oxidase changes Δ[Cyt-Ox] under the same conditions to determine increase or decrease in cerebral oxygen delivery. In this paper we proved that applying CPR, [HbO2] concentration and tissue oxygenation in the brain increase while [HHb] concentration decreases which was not possible using other measurement techniques. We also discovered a similar trend in changes of both [Cyt-Ox] concentration and tissue oxygen saturation (StO2). Both invasive and non-invasive measurements showed similar results.

  12. Emerging Patterns in the Distribution of Trace Elements in Ovarian, Invasive and In-Situ Breast Cancer

    NASA Astrophysics Data System (ADS)

    Al-Ebraheem, A.; Dao, E.; Geraki, K.; Farquharson, M. J.

    2014-04-01

    Breast cancer is the most common cancer and ovarian cancer is the 8th most common cancer affecting women worldwide. This study highlights the changes of trace element levels accompanied by the progression from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) of the breast, using micro probe Synchrotron Radiation X-ray Fluorescence (μSRXRF). The average values for the increase in Ca, Fe and Zn in tumour regions with respect to surrounding regions for the DCIS samples were significantly higher compared to the increase in the IDC samples (P <0.01).This study was also carried out to find a connection between ovarian cancer and breast cancer with respect to the cellular distribution of Ca, Cu, Fe, and Zn. For IDC, DCIS and ovarian cases, the statistical analysis reveals a significant increase in the levels of Ca, Cu and Zn concentrations in cancer tissue when compared to the normal surrounding tissue. For Fe, the differences between tumour regions with respect to surrounding regions were found to be not significant in IDC and ovarian cases. In DCIS cases, the results reveal a significant increase in the levels of Fe in cancer tissue when compared to the surrounding normal breast tissue (P <0.01).

  13. Multimodality instrument for tissue characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2004-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration. The use of this system will make surgical procedures safer, more accurate, and more efficient. Other applications of this system include the detection, prognosis and treatment of breast cancer, prostate cancer, spinal diseases, and use in general exploratory surgery.

  14. Therapeutic Ultrasound Enhancement of Drug Delivery to Soft Tissues

    NASA Astrophysics Data System (ADS)

    Lewis, George; Wang, Peng; Lewis, George; Olbricht, William

    2009-04-01

    Effects of exposure to 1.58 MHz focused ultrasound on transport of Evans Blue Dye (EBD) in soft tissues are investigated when an external pressure gradient is applied to induce convective flow through the tissue. The magnitude of the external pressure gradient is chosen to simulate conditions in brain parenchyma during convection-enhanced drug delivery (CED) to the brain. EBD uptake and transport are measured in equine brain, avian muscle and agarose brain-mimicking phantoms. Results show that ultrasound enhances EBD uptake and transport, and the greatest enhancement occurs when the external pressure gradient is applied. The results suggest that exposure of the brain parenchyma to ultrasound could enhance penetration of material infused into the brain during CED therapy.

  15. Development of an experimental model of brain tissue heterotopia in the lung

    PubMed Central

    Quemelo, Paulo Roberto Veiga; Sbragia, Lourenço; Peres, Luiz Cesar

    2007-01-01

    Summary The presence of heterotopic brain tissue in the lung is a rare abnormality. The cases reported thus far are usually associated with neural tube defects (NTD). As there are no reports of experimental models of NTD that present this abnormality, the objective of the present study was to develop a surgical method of brain tissue heterotopia in the lung. We used 24 pregnant Swiss mice divided into two groups of 12 animals each, denoted 17GD and 18GD according to the gestational day (GD) when caesarean section was performed to collect the fetuses. Surgery was performed on the 15th GD, one fetus was removed by hysterectomy and its brain tissue was cut into small fragments and implanted in the lung of its litter mates. Thirty-four live fetuses were obtained from the 17GD group. Of these, eight (23.5%) were used as control (C), eight (23.5%) were sham operated (S) and 18 (52.9%) were used for pulmonary brain tissue implantation (PBI). Thirty live fetuses were obtained from the females of the 18GD group. Of these, eight (26.6%) were C, eight (26.6%) S and 14 (46.6%) were used for PBI. Histological examination of the fetal trunks showed implantation of GFAP-positive brain tissue in 85% of the fetuses of the 17GD group and in 100% of those of the 18GD group, with no significant difference between groups for any of the parameters analysed. The experimental model proved to be efficient and of relatively simple execution, showing complete integration of the brain tissue with pulmonary and pleural tissue and thus representing a model that will permit the study of different aspects of cell implantation and interaction. PMID:17877535

  16. Biochemical Fractionation and Stable Isotope Dilution Liquid Chromatography-mass Spectrometry for Targeted and Microdomain-specific Protein Quantification in Human Postmortem Brain Tissue*

    PubMed Central

    MacDonald, Matthew L.; Ciccimaro, Eugene; Prakash, Amol; Banerjee, Anamika; Seeholzer, Steven H.; Blair, Ian A.; Hahn, Chang-Gyu

    2012-01-01

    Synaptic architecture and its adaptive changes require numerous molecular events that are both highly ordered and complex. A majority of neuropsychiatric illnesses are complex trait disorders, in which multiple etiologic factors converge at the synapse via many signaling pathways. Investigating the protein composition of synaptic microdomains from human patient brain tissues will yield valuable insights into the interactions of risk genes in many disorders. These types of studies in postmortem tissues have been limited by the lack of proper study paradigms. Thus, it is necessary not only to develop strategies to quantify protein and post-translational modifications at the synapse, but also to rigorously validate them for use in postmortem human brain tissues. In this study we describe the development of a liquid chromatography-selected reaction monitoring method, using a stable isotope-labeled neuronal proteome standard prepared from the brain tissue of a stable isotope-labeled mouse, for the multiplexed quantification of target synaptic proteins in mammalian samples. Additionally, we report the use of this method to validate a biochemical approach for the preparation of synaptic microdomain enrichments from human postmortem prefrontal cortex. Our data demonstrate that a targeted mass spectrometry approach with a true neuronal proteome standard facilitates accurate and precise quantification of over 100 synaptic proteins in mammalian samples, with the potential to quantify over 1000 proteins. Using this method, we found that protein enrichments in subcellular fractions prepared from human postmortem brain tissue were strikingly similar to those prepared from fresh mouse brain tissue. These findings demonstrate that biochemical fractionation methods paired with targeted proteomic strategies can be used in human brain tissues, with important implications for the study of neuropsychiatric disease. PMID:22942359

  17. Three-dimensional conformal versus non-graphic radiation treatment planning for apocrine gland adenocarcinoma of the anal sac in 18 dogs (2002-2007).

    PubMed

    Keyerleber, M A; Gieger, T L; Erb, H N; Thompson, M S; McEntee, M C

    2012-12-01

    Differences in dose homogeneity and irradiated volumes of target and surrounding normal tissues between 3D conformal radiation treatment planning and simulated non-graphic manual treatment planning were evaluated in 18 dogs with apocrine gland adenocarcinoma of the anal sac. Overall, 3D conformal treatment planning resulted in more homogenous dose distribution to target tissues with lower hot spots and dose ranges. Dose homogeneity and guarantee of not under-dosing target tissues with 3D conformal planning came at the cost, however, of delivering greater mean doses of radiation and of irradiating greater volumes of surrounding normal tissue structures. © 2011 Blackwell Publishing Ltd.

  18. Cranial irradiation increases tumor growth in experimental breast cancer brain metastasis.

    PubMed

    Hamilton, Amanda M; Wong, Suzanne M; Wong, Eugene; Foster, Paula J

    2018-05-01

    Whole-brain radiotherapy is the standard of care for patients with breast cancer with multiple brain metastases and, although this treatment has been essential in the management of existing brain tumors, there are many known negative consequences associated with the irradiation of normal brain tissue. In our study, we used in vivo magnetic resonance imaging analysis to investigate the influence of radiotherapy-induced damage of healthy brain on the arrest and growth of metastatic breast cancer cells in a mouse model of breast cancer brain metastasis. We observed that irradiated, but otherwise healthy, neural tissue had an increased propensity to support metastatic growth compared with never-irradiated controls. The elucidation of the impact of irradiation on normal neural tissue could have implications in clinical patient management, particularly in patients with residual systemic disease or with residual radio-resistant brain cancer. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Effects of acupuncture on tissue oxygenation of the rat brain.

    PubMed

    Chen, G S; Erdmann, W

    1978-04-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by smypathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture points (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible and was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase in inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes increased brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients.

  20. Metals in tissues of migrant semipalmated sandpipers (Calidris pusilla) from Delaware Bay, New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, Joanna, E-mail: burger@biology.rutgers.edu; Environmental and Occupational Health Sciences Institute; Gochfeld, Michael

    2014-08-15

    There is an abundance of field data on levels of metals for feathers in a variety of birds, but relatively few data for tissues, especially for migrant species from one location. In this paper we examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in muscle, liver, brain, fat and breast feathers from migrant semipalmated sandpipers (Calidris pusilla) collected from Delaware Bay, New Jersey. Our primary objectives were to (1) examine variation as a function of tissue, (2) determine the relationship of metal levels among tissues, and (3) determine the selenium:mercury molar ratio in different tissues sincemore » selenium is thought to protect against mercury toxicity. We were also interested in whether the large physiological changes that occur while shorebirds are on Delaware Bay (e.g. large weight gains in 2–3 weeks) affected metal levels, especially in the brain. There were significant differences among tissues for all metals. The brain had the lowest levels of arsenic and cadmium, and was tied for the lowest levels of all other metals except lead and selenium. Correlations among metals in tissues were varied, with mercury levels being positively correlated for muscle and brain, and for liver and breast feathers. Weights vary among individuals at the Delaware Bay stopover, as they arrive light, and gain weight prior to migration north. Bird weight and levels of arsenic, cadmium, and selenium in the brain were negatively correlated, while they were positively correlated for lead. There was no positive correlation for mercury in the brain as a function of body weight. The selenium:mercury molar ratio varied significantly among tissues, with brain (ratio of 141) and fat having the highest ratios, and liver and breast feathers having the lowest. In all cases, the ratio was above 21, suggesting the potential for amelioration of mercury toxicity. - Highlights: • Metal levels were examined for migrant semipalmated sandpipers. • There were differences in metal levels among internal tissues. • Brain had the lowest levels of arsenic and cadmium. • Bird weight and arsenic, cadmium, and selenium levels in brain were negatively correlated. • Selenium:mercury molar ratio varied among tissues (21–141, suggesting protection)« less

  1. Compression stiffening of brain and its effect on mechanosensing by glioma cells

    NASA Astrophysics Data System (ADS)

    Pogoda, Katarzyna; Chin, LiKang; Georges, Penelope C.; Byfield, FitzRoy J.; Bucki, Robert; Kim, Richard; Weaver, Michael; Wells, Rebecca G.; Marcinkiewicz, Cezary; Janmey, Paul A.

    2014-07-01

    Many cell types, including neurons, astrocytes and other cells of the central nervous system, respond to changes in the extracellular matrix or substrate viscoelasticity, and increased tissue stiffness is a hallmark of several disease states, including fibrosis and some types of cancers. Whether the malignant tissue in brain, an organ that lacks the protein-based filamentous extracellular matrix of other organs, exhibits the same macroscopic stiffening characteristic of breast, colon, pancreatic and other tumors is not known. In this study we show that glioma cells, like normal astrocytes, respond strongly in vitro to substrate stiffness in the range of 100 to 2000 Pa, but that macroscopic (mm to cm) tissue samples isolated from human glioma tumors have elastic moduli in the order of 200 Pa that are indistinguishable from those of normal brain. However, both normal brain and glioma tissues increase their shear elastic moduli under modest uniaxial compression, and glioma tissue stiffens more strongly under compression than normal brain. These findings suggest that local tissue stiffness has the potential to alter glial cell function, and that stiffness changes in brain tumors might arise not from increased deposition or crosslinking of the collagen-rich extracellular matrix, but from pressure gradients that form within the tumors in vivo.

  2. Mary Jane Hogue (1883-1962): A pioneer in human brain tissue culture.

    PubMed

    Zottoli, Steven J; Seyfarth, Ernst-August

    2018-05-16

    The ability to maintain human brain explants in tissue culture was a critical step in the use of these cells for the study of central nervous system disorders. Ross G. Harrison (1870-1959) was the first to successfully maintain frog medullary tissue in culture in 1907, but it took another 38 years before successful culture of human brain tissue was accomplished. One of the pioneers in this achievement was Mary Jane Hogue (1883-1962). Hogue was born into a Quaker family in 1883 in West Chester, Pennsylvania, and received her undergraduate degree from Goucher College in Baltimore, Maryland. Research with the developmental biologist Theodor Boveri (1862-1915) in Würzburg, Germany, resulted in her Ph.D. (1909). Hogue transitioned from studying protozoa to the culture of human brain tissue in the 1940s and 1950s, when she was one of the first to culture cells from human fetal, infant, and adult brain explants. We review Hogue's pioneering contributions to the study of human brain cells in culture, her putative identification of progenitor neuroblast and/or glioblast cells, and her use of the cultures to study the cytopathogenic effects of poliovirus. We also put Hogue's work in perspective by discussing how other women pioneers in tissue culture influenced Hogue and her research.

  3. For whom the bells knell.

    PubMed Central

    Heim, M; Steinbach, T

    1988-01-01

    A 72-year-old widowed woman known to have an organic brain syndrome was hospitalised owing to gangrene of her lower limbs. The gangrene had been caused by an adduction contracture of her hip resulting in pressure on the medial surface of her left leg. In addition she had pressure sores over both trochanters and the sacrum. The smell of putrefication could be sensed from a distance and on examination large white worms could be seen slithering in the decomposing tissue. The patient was pyrexial, oblivious of her surroundings, and without pain. Surgery--limb amputations--would not restore the patient to a cognitive state nor improve here quality of life, but abstinence posed an inherent threat of sepsis, and revulsion to the attendants. The sacral pressure sore was so large that surgical closure was impossible. The question of surgical intervention is discussed. PMID:3184134

  4. Mimicking brain tissue binding in an in vitro model of the blood-brain barrier illustrates differences between in vitro and in vivo methods for assessing the rate of brain penetration.

    PubMed

    Heymans, Marjolein; Sevin, Emmanuel; Gosselet, Fabien; Lundquist, Stefan; Culot, Maxime

    2018-06-01

    Assessing the rate of drug delivery to the central nervous system (CNS) in vitro has been used for decades to predict whether CNS drug candidates are likely to attain their pharmacological targets, located within the brain parenchyma, at an effective dose. The predictive value of in vitro blood-brain barrier (BBB) models is therefore frequently assessed by comparing in vitro BBB permeability, usually quoted as the endothelial permeability coefficient (P e ) or apparent permeability (P app ), to their rate of BBB permeation measured in vivo, the latter being commonly assessed in rodents. In collaboration with AstraZeneca (DMPK department, Södertälje, Sweden), the in vitro BBB permeability (P app and P e ) of 27 marketed CNS drugs has been determined using a bovine in vitro BBB model and compared to their in vivo permeability (P vivo ), obtained by rat in-situ brain perfusion. The latter was taken from published data from Summerfield et al. (2007). This comparison confirmed previous reports, showing a strong in vitro/in vivo correlation for hydrophilic compounds, characterized by low brain tissue binding and a weak correlation for lipophilic compounds, characterized by high brain tissue binding. This observation can be explained by the influence of brain tissue binding on the uptake of drugs into the CNS in vivo and the absence of possible brain tissue binding in vitro. The use of glial cells (GC) in the in vitro BBB model to mimic brain tissue binding and the introduction of a new calculation method for in vitro BBB permeability (P vitro ) resulted in a strong correlation between the in vitro and in vivo rate of BBB permeation for the whole set of compounds. These findings might facilitate further in vitro to in vivo extrapolation for CNS drug candidates. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Development and Validation of a Method for Alcohol Analysis in Brain Tissue by Headspace Gas Chromatography with Flame Ionization Detector

    PubMed Central

    Chun, Hao-Jung; Poklis, Justin L.; Poklis, Alphonse; Wolf, Carl E.

    2016-01-01

    Ethanol is the most widely used and abused drug. While blood is the preferred specimen for analysis, tissue specimens such as brain serve as alternative specimens for alcohol analysis in post-mortem cases where blood is unavailable or contaminated. A method was developed using headspace gas chromatography with flame ionization detection (HS-GC-FID) for the detection and quantification of ethanol, acetone, isopropanol, methanol and n-propanol in brain tissue specimens. Unfixed volatile-free brain tissue specimens were obtained from the Department of Pathology at Virginia Commonwealth University. Calibrators and controls were prepared from 4-fold diluted homogenates of these brain tissue specimens, and were analyzed using t-butanol as the internal standard. The chromatographic separation was performed with a Restek BAC2 column. A linear calibration was generated for all analytes (mean r2 > 0.9992) with the limits of detection and quantification of 100–110 mg/kg. Matrix effect from the brain tissue was determined by comparing the slopes of matrix prepared calibration curves with those of aqueous calibration curves; no significant differences were observed for ethanol, acetone, isopropanol, methanol and n-propanol. The bias and the CVs for all volatile controls were ≤10%. The method was also evaluated for carryover, selectivity, interferences, bench-top stability and freeze-thaw stability. The HS-GC-FID method was determined to be reliable and robust for the analysis of ethanol, acetone, isopropanol, methanol and n-propanol concentrations in brain tissue, effectively expanding the specimen options for post-mortem alcohol analysis. PMID:27488829

  6. Hyper- and viscoelastic modeling of needle and brain tissue interaction.

    PubMed

    Lehocky, Craig A; Yixing Shi; Riviere, Cameron N

    2014-01-01

    Deep needle insertion into brain is important for both diagnostic and therapeutic clinical interventions. We have developed an automated system for robotically steering flexible needles within the brain to improve targeting accuracy. In this work, we have developed a finite element needle-tissue interaction model that allows for the investigation of safe parameters for needle steering. The tissue model implemented contains both hyperelastic and viscoelastic properties to simulate the instantaneous and time-dependent responses of brain tissue. Several needle models were developed with varying parameters to study the effects of the parameters on tissue stress, strain and strain rate during needle insertion and rotation. The parameters varied include needle radius, bevel angle, bevel tip fillet radius, insertion speed, and rotation speed. The results will guide the design of safe needle tips and control systems for intracerebral needle steering.

  7. Numerical analysis of the diffusive mass transport in brain tissues with applications to optical sensors

    NASA Astrophysics Data System (ADS)

    Neculae, Adrian P.; Otte, Andreas; Curticapean, Dan

    2013-03-01

    In the brain-cell microenvironment, diffusion plays an important role: apart from delivering glucose and oxygen from the vascular system to brain cells, it also moves informational substances between cells. The brain is an extremely complex structure of interwoven, intercommunicating cells, but recent theoretical and experimental works showed that the classical laws of diffusion, cast in the framework of porous media theory, can deliver an accurate quantitative description of the way molecules are transported through this tissue. The mathematical modeling and the numerical simulations are successfully applied in the investigation of diffusion processes in tissues, replacing the costly laboratory investigations. Nevertheless, modeling must rely on highly accurate information regarding the main parameters (tortuosity, volume fraction) which characterize the tissue, obtained by structural and functional imaging. The usual techniques to measure the diffusion mechanism in brain tissue are the radiotracer method, the real time iontophoretic method and integrative optical imaging using fluorescence microscopy. A promising technique for obtaining the values for characteristic parameters of the transport equation is the direct optical investigation using optical fibers. The analysis of these parameters also reveals how the local geometry of the brain changes with time or under pathological conditions. This paper presents a set of computations concerning the mass transport inside the brain tissue, for different types of cells. By measuring the time evolution of the concentration profile of an injected substance and using suitable fitting procedures, the main parameters characterizing the tissue can be determined. This type of analysis could be an important tool in understanding the functional mechanisms of effective drug delivery in complex structures such as the brain tissue. It also offers possibilities to realize optical imaging methods for in vitro and in vivo measurements using optical fibers. The model also may help in radiotracer biomarker models for the understanding of the mechanism of action of new chemical entities.

  8. The effect of nimodipine on cerebral oxygenation in patients with poor-grade subarachnoid hemorrhage.

    PubMed

    Stiefel, Michael F; Heuer, Gregory G; Abrahams, John M; Bloom, Stephanie; Smith, Michelle J; Maloney-Wilensky, Eileen; Grady, M Sean; LeRoux, Peter D

    2004-10-01

    Nimodipine has been shown to improve neurological outcome after subarachnoid hemorrhage (SAH); the mechanism of this improvement, however, is uncertain. In addition, adverse systemic effects such as hypotension have been described. The authors investigated the effect of nimodipine on brain tissue PO2. Patients in whom Hunt and Hess Grade IV or V SAH had occurred who underwent aneurysm occlusion and had stable blood pressure were prospectively evaluated using continuous brain tissue PO2 monitoring. Nimodipine (60 mg) was delivered through a nasogastric or Dobhoff tube every 4 hours. Data were obtained from 11 patients and measurements of brain tissue PO2, intracranial pressure (ICP), mean arterial blood pressure (MABP), and cerebral perfusion pressure (CPP) were recorded every 15 minutes. Nimodipine resulted in a significant reduction in brain tissue PO2 in seven (64%) of 11 patients. The baseline PO2 before nimodipine administration was 38.4+/-10.9 mm Hg. The baseline MABP and CPP were 90+/-20 and 84+/-19 mm Hg, respectively. The greatest reduction in brain tissue PO2 occurred 15 minutes after administration, when the mean pressure was 26.9+/-7.7 mm Hg (p < 0.05). The PO2 remained suppressed at 30 minutes (27.5+/-7.7 mm Hg [p < 0.05]) and at 60 minutes (29.7+/-11.1 mm Hg [p < 0.05]) after nimodipine administration but returned to baseline levels 2 hours later. In the seven patients in whom brain tissue PO2 decreased, other physiological variables such as arterial saturation, end-tidal CO2, heart rate, MABP, ICP, and CPP did not demonstrate any association with the nimodipine-induced reduction in PO2. In four patients PO2 remained stable and none of these patients had a significant increase in brain tissue PO2. Although nimodipine use is associated with improved outcome following SAH, in some patients it can temporarily reduce brain tissue PO2.

  9. Advantages of analyzing postmortem brain samples in routine forensic drug screening-Case series of three non-natural deaths tested positive for lysergic acid diethylamide (LSD).

    PubMed

    Mardal, Marie; Johansen, Sys Stybe; Thomsen, Ragnar; Linnet, Kristian

    2017-09-01

    Three case reports are presented, including autopsy findings and toxicological screening results, which were tested positive for the potent hallucinogenic drug lysergic acid diethylamide (LSD). LSD and its main metabolites were quantified in brain tissue and femoral blood, and furthermore hematoma and urine when available. LSD, its main metabolite 2-oxo-3-hydroxy-LSD (oxo-HO-LSD), and iso-LSD were quantified in biological samples according to a previously published procedure involving liquid-liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). LSD was measured in the brain tissue of all presented cases at a concentration level from 0.34-10.8μg/kg. The concentration level in the target organ was higher than in peripheral blood. Additional psychoactive compounds were quantified in blood and brain tissue, though all below toxic concentration levels. The cause of death in case 1 was collision-induced brain injury, while it was drowning in case 2 and 3 and thus not drug intoxication. However, the toxicological findings could help explain the decedent's inability to cope with brain injury or drowning incidents. The presented findings could help establish reference concentrations in brain samples and assist in interpretation of results from forensic drug screening in brain tissue. This is to the author's knowledge the first report of LSD, iso-LSD, and oxo-HO-LSD measured in brain tissue samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Targeting therapeutics across the blood brain barrier (BBB), prerequisite towards thrombolytic therapy for cerebrovascular disorders-an overview and advancements.

    PubMed

    Pulicherla, K K; Verma, Mahendra Kumar

    2015-04-01

    Cerebral tissues possess highly selective and dynamic protection known as blood brain barrier (BBB) that regulates brain homeostasis and provides protection against invading pathogens and various chemicals including drug molecules. Such natural protection strictly monitors entry of drug molecules often required for the management of several diseases and disorders including cerebral vascular and neurological disorders. However, in recent times, the ischemic cerebrovascular disease and clinical manifestation of acute arterial thrombosis are the most common causes of mortality and morbidity worldwide. The management of cerebral Ischemia requires immediate infusion of external thrombolytic into systemic circulation and must cross the blood brain barrier. The major challenge with available thrombolytic is their poor affinity towards the blood brain barrier and cerebral tissue subsequently. In the clinical practice, a high dose of thrombolytic often prescribed to deliver drugs across the blood brain barrier which results in drug dependent toxicity leading to damage of neuronal tissues. In recent times, more emphasis was given to utilize blood brain barrier transport mechanism to deliver drugs in neuronal tissue. The blood brain barrier expresses a series of receptor on membrane became an ideal target for selective drug delivery. In this review, the author has given more emphasis molecular biology of receptor on blood brain barrier and their potential as a carrier for drug molecules to cerebral tissues. Further, the use of nanoscale design and real-time monitoring for developed therapeutic to encounter drug dependent toxicity has been reviewed in this study.

  11. Better diet quality relates to larger brain tissue volumes: The Rotterdam Study.

    PubMed

    Croll, Pauline H; Voortman, Trudy; Ikram, M Arfan; Franco, Oscar H; Schoufour, Josje D; Bos, Daniel; Vernooij, Meike W

    2018-05-16

    To investigate the relation of diet quality with structural brain tissue volumes and focal vascular lesions in a dementia-free population. From the population-based Rotterdam Study, 4,447 participants underwent dietary assessment and brain MRI scanning between 2005 and 2015. We excluded participants with an implausible energy intake, prevalent dementia, or cortical infarcts, leaving 4,213 participants for the current analysis. A diet quality score (0-14) was calculated reflecting adherence to Dutch dietary guidelines. Brain MRI was performed to obtain information on brain tissue volumes, white matter lesion volume, lacunes, and cerebral microbleeds. The associations of diet quality score and separate food groups with brain structures were assessed using multivariable linear and logistic regression. We found that better diet quality related to larger brain volume, gray matter volume, white matter volume, and hippocampal volume. Diet quality was not associated with white matter lesion volume, lacunes, or microbleeds. High intake of vegetables, fruit, whole grains, nuts, dairy, and fish and low intake of sugar-containing beverages were associated with larger brain volumes. A better diet quality is associated with larger brain tissue volumes. These results suggest that the effect of nutrition on neurodegeneration may act via brain structure. More research, in particular longitudinal research, is needed to unravel direct vs indirect effects between diet quality and brain health. © 2018 American Academy of Neurology.

  12. Permeabilization of brain tissue in situ enables multiregion analysis of mitochondrial function in a single mouse brain.

    PubMed

    Herbst, Eric A F; Holloway, Graham P

    2015-02-15

    Mitochondrial function in the brain is traditionally assessed through analysing respiration in isolated mitochondria, a technique that possesses significant tissue and time requirements while also disrupting the cooperative mitochondrial reticulum. We permeabilized brain tissue in situ to permit analysis of mitochondrial respiration with the native mitochondrial morphology intact, removing the need for isolation time and minimizing tissue requirements to ∼2 mg wet weight. The permeabilized brain technique was validated against the traditional method of isolated mitochondria and was then further applied to assess regional variation in the mouse brain with ischaemia-reperfusion injuries. A transgenic mouse model overexpressing catalase within mitochondria was applied to show the contribution of mitochondrial reactive oxygen species to ischaemia-reperfusion injuries in different brain regions. This technique enhances the accessibility of addressing physiological questions in small brain regions and in applying transgenic mouse models to assess mechanisms regulating mitochondrial function in health and disease. Mitochondria function as the core energy providers in the brain and symptoms of neurodegenerative diseases are often attributed to their dysregulation. Assessing mitochondrial function is classically performed in isolated mitochondria; however, this process requires significant isolation time, demand for abundant tissue and disruption of the cooperative mitochondrial reticulum, all of which reduce reliability when attempting to assess in vivo mitochondrial bioenergetics. Here we introduce a method that advances the assessment of mitochondrial respiration in the brain by permeabilizing existing brain tissue to grant direct access to the mitochondrial reticulum in situ. The permeabilized brain preparation allows for instant analysis of mitochondrial function with unaltered mitochondrial morphology using significantly small sample sizes (∼2 mg), which permits the analysis of mitochondrial function in multiple subregions within a single mouse brain. Here this technique was applied to assess regional variation in brain mitochondrial function with acute ischaemia-reperfusion injuries and to determine the role of reactive oxygen species in exacerbating dysfunction through the application of a transgenic mouse model overexpressing catalase within mitochondria. Through creating accessibility to small regions for the investigation of mitochondrial function, the permeabilized brain preparation enhances the capacity for examining regional differences in mitochondrial regulation within the brain, as the majority of genetic models used for unique approaches exist in the mouse model. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated networkmore » (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.« less

  14. Changes in calcium and iron levels in the brains of rats during kainate induced epilepsy

    NASA Astrophysics Data System (ADS)

    Ren, Min-Qin; Ong, Wei-Yi; Makjanic, Jagoda; Watt, Frank

    1999-10-01

    Epilepsy is a recurrent disorder of cerebral function characterised by sudden brief attacks of altered consciousness, motor activity or sensory phenomena, and affects approximately 1% of the population. Kainic acid injection induces neuronal degeneration in rats, is associated with glial hypertrophy and proliferation in the CA3-CA4 fields of hippocampal complex, and is a model for temporal lobe epilepsy. In this study we have applied Nuclear Microscopy to the investigation of the elemental changes within the hippocampus and the cortex areas of the rat brain following kainate injection. Analyses of unstained freeze dried tissue sections taken at 1 day and 1, 2, 3 and 4 weeks following injection were carried out using the Nuclear Microscopy facility at the Research Centre for Nuclear Microscopy, National University of Singapore. Quantitative analysis and elemental mapping indicates that there are significant changes in the calcium levels and distributions in the hippocampus as early as 1 day following injection. Preliminary results indicate a rapid increase in cellular calcium. High levels of calcium can activate calcium dependent proteins and phospholipases. Activation of phospholipase A 2 can be harmful to surrounding neurons through free radical damage. In addition to observed increases in calcium, there was evidence of increases in iron levels. This is consistent with measurements in other degenerative brain disorders, and may signal a late surge in free radical production.

  15. [Peritumoral hemorrhage immediately after radiosurgery for metastatic brain tumor].

    PubMed

    Uchino, Masafumi; Kitajima, Satoru; Miyazaki, Chikao; Otsuka, Takashi; Seiki, Yoshikatsu; Shibata, Iekado

    2003-08-01

    We report a case of a 44-year-old woman with metastatic brain tumors who suffered peri-tumoral hemorrhage soon after stereotactic radiosurgery (SRS). She had been suffering from breast cancer with multiple systemic metastasis. She started to have headache, nausea, dizziness and speech disturbance 1 month before admission. There was no bleeding tendency in the hematological examination and the patient was normotensive. Neurological examination disclosed headache and slightly aphasia. Magnetic resonance imaging showed a large round mass lesion in the left temporal lobe. It was a well-demarcated, highly enhanced mass, 45 mm in diameter. SRS was performed on four lesions in a single session (Main mass: maximum dose was 30 Gy in the center and 20 Gy in the margin of the tumor. Others: maximum 25 Gy margin 20 Gy). After radiosurgery, she had severe headache, nausea and vomiting and showed progression of aphasia. CT scan revealed a peritumoral hemorrhage. Conservative therapy was undertaken and the patient's symptoms improved. After 7 days, she was discharged, able to walk. The patient died of extensive distant metastasis 5 months after SRS. Acute transient swelling following conventional radiotherapy is a well-documented phenomenon. However, the present case indicates that such an occurrence is also possible in SRS. We have hypothesized that acute reactions such as brain swelling occur due to breakdown of the fragile vessels of the tumor or surrounding tissue.

  16. Automatic falx cerebri and tentorium cerebelli segmentation from magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Glaister, Jeffrey; Carass, Aaron; Pham, Dzung L.; Butman, John A.; Prince, Jerry L.

    2017-03-01

    The falx cerebri and tentorium cerebelli are dural structures found in the brain. Due to the roles both structures play in constraining brain motion, the falx and tentorium must be identified and included in finite element models of the head to accurately predict brain dynamics during injury events. To date there has been very little research work on automatically segmenting these two structures, which is understandable given that their 1) thin structure challenges the resolution limits of in vivo 3D imaging, and 2) contrast with respect to surrounding tissue is low in standard magnetic resonance imaging. An automatic segmentation algorithm to find the falx and tentorium which uses the results of a multi-atlas segmentation and cortical reconstruction algorithm is proposed. Gray matter labels are used to find the location of the falx and tentorium. The proposed algorithm is applied to five datasets with manual delineations. 3D visualizations of the final results are provided, and Hausdorff distance (HD) and mean surface distance (MSD) is calculated to quantify the accuracy of the proposed method. For the falx, the mean HD is 43.84 voxels and the mean MSD is 2.78 voxels, with the largest errors occurring at the frontal inferior falx boundary. For the tentorium, the mean HD is 14.50 voxels and mean MSD is 1.38 voxels.

  17. Automatic falx cerebri and tentorium cerebelli segmentation from Magnetic Resonance Images.

    PubMed

    Glaister, Jeffrey; Carass, Aaron; Pham, Dzung L; Butman, John A; Prince, Jerry L

    2017-02-01

    The falx cerebri and tentorium cerebelli are dural structures found in the brain. Due to the roles both structures play in constraining brain motion, the falx and tentorium must be identified and included in finite element models of the head to accurately predict brain dynamics during injury events. To date there has been very little research work on automatically segmenting these two structures, which is understandable given that their 1) thin structure challenges the resolution limits of in vivo 3D imaging, and 2) contrast with respect to surrounding tissue is low in standard magnetic resonance imaging. An automatic segmentation algorithm to find the falx and tentorium which uses the results of a multi-atlas segmentation and cortical reconstruction algorithm is proposed. Gray matter labels are used to find the location of the falx and tentorium. The proposed algorithm is applied to five datasets with manual delineations. 3D visualizations of the final results are provided, and Hausdorff distance (HD) and mean surface distance (MSD) is calculated to quantify the accuracy of the proposed method. For the falx, the mean HD is 43.84 voxels and the mean MSD is 2.78 voxels, with the largest errors occurring at the frontal inferior falx boundary. For the tentorium, the mean HD is 14.50 voxels and mean MSD is 1.38 voxels.

  18. Assessing Amide Proton Transfer (APT) MRI Contrast Origins in 9 L Gliosarcoma in the Rat Brain Using Proteomic Analysis.

    PubMed

    Yan, Kun; Fu, Zongming; Yang, Chen; Zhang, Kai; Jiang, Shanshan; Lee, Dong-Hoon; Heo, Hye-Young; Zhang, Yi; Cole, Robert N; Van Eyk, Jennifer E; Zhou, Jinyuan

    2015-08-01

    To investigate the biochemical origin of the amide photon transfer (APT)-weighted hyperintensity in brain tumors. Seven 9 L gliosarcoma-bearing rats were imaged at 4.7 T. Tumor and normal brain tissue samples of equal volumes were prepared with a coronal rat brain matrix and a tissue biopsy punch. The total tissue protein and the cytosolic subproteome were extracted from both samples. Protein samples were analyzed using two-dimensional gel electrophoresis, and the proteins with significant abundance changes were identified by mass spectrometry. There was a significant increase in the cytosolic protein concentration in the tumor, compared to normal brain regions, but the total protein concentrations were comparable. The protein profiles of the tumor and normal brain tissue differed significantly. Six cytosolic proteins, four endoplasmic reticulum proteins, and five secreted proteins were considerably upregulated in the tumor. Our experiments confirmed an increase in the cytosolic protein concentration in tumors and identified several key proteins that may cause APT-weighted hyperintensity.

  19. Dexamethasone increases production of C-type natriuretic peptide in the sheep brain.

    PubMed

    Wilson, Michele O; McNeill, Bryony A; Barrell, Graham K; Prickett, Timothy C R; Espiner, Eric A

    2017-10-01

    Although C-type natriuretic peptide (CNP) has high abundance in brain tissues and cerebrospinal fluid (CSF), the source and possible factors regulating its secretion within the central nervous system (CNS) are unknown. Here we report the dynamic effects of a single IV bolus of dexamethasone or saline solution on plasma, CSF, CNS and pituitary tissue content of CNP products in adult sheep, along with changes in CNP gene expression in selected tissues. Both CNP and NTproCNP (the amino-terminal product of proCNP) in plasma and CSF showed dose-responsive increases lasting 12-16 h after dexamethasone, whereas other natriuretic peptides were unaffected. CNS tissue concentrations of CNP and NTproCNP were increased by dexamethasone in all of the 12 regions examined. Abundance was highest in limbic tissues, pons and medulla oblongata. Relative to controls, CNP gene expression ( NPPC ) was upregulated by dexamethasone in 5 of 7 brain tissues examined. Patterns of responses differed in pituitary tissue. Whereas the abundance of CNP in both lobes of the pituitary gland greatly exceeded that of brain tissues, neither CNP nor NTproCNP concentration was affected by dexamethasone, despite an increase in NPPC expression. This is the first report of enhanced production and secretion of CNP in brain tissues in response to a corticosteroid. Activation of CNP secretion within CNS tissues by dexamethasone, not exhibited by other natriuretic peptides, suggests an important role for CNP in settings of acute stress. Differential findings in pituitary tissues likely relate to altered processing of proCNP storage and secretion. © 2017 Society for Endocrinology.

  20. In vivo bone tissue response to a canasite glass-ceramic.

    PubMed

    da Rocha Barros, V M; Salata, L A; Sverzut, C E; Xavier, S P; van Noort, R; Johnson, A; Hatton, P V

    2002-07-01

    The aim of this study was to determine the biocompatibility and osteoconductive potential of a high-strength canasite glass ceramic. Glass-ceramic rods were produced using the lost-wax casting technique and implanted in the mid-shafts rabbit femurs. Implants were harvested at 4, 13 and 22 weeks and prepared for light and electron microscopy. Hydroxyapatite was used as a control material. Hydroxyapatite implants were surrounded by new mineralised bone tissue after 4 weeks of implantation. The amount of bone surrounding the implant increased slightly at 13 weeks. In contrast, canasite glass and glass ceramic implants were almost entirely surrounded by soft tissue during all the time periods. Close contact between bone and canasite glass-ceramic implant without the intervening fibrous tissue was observed in only a few regions. The canasite formulation evaluated was not osteoconductive and appeared to degrade in the biological environment. It was therefore concluded that the canasite formulation used was unsuitable for use as implant. Further work is required to improve the biocompatibility of these materials with bone tissue. It is possible that this could be achieved by reducing the solubility of the glass and glass ceramic.

  1. Induction of angiogenesis and neovascularization in adjacent tissue of plasma-collagen-coated silicone implants.

    PubMed

    Ring, Andrej; Langer, Stefan; Tilkorn, Daniel; Goertz, Ole; Henrich, Lena; Stricker, Ingo; Steinau, Hans-Ulrich; Steinstraesser, Lars; Hauser, Joerg

    2010-09-28

    Formation of encapsulating, avascular fibrous tissue is deemed to decrease implant's biocompatibility and versatility. We investigated whether plasma-mediated collagen coating possesses the ability to enhance neovascularization in the vicinity of silicone implants. Plasma-treated collagen-I-coated silicone samples were placed into the dorsal skinfold chambers of female balb/c mice (n = 10). Conventional silicone served as control (n = 10). Intravital microscopy was performed within implant's surrounding tissue on days 1, 5, and 10. Functional vessel density, intervascular distance, vessel diameter, microvascular permeability, red blood cell velocity, and leukocyte-endothelium interaction were determined. Enhanced angiogenesis in the tissue surrounding plasma-pretreated collagen-coated implants was noted. Significant increase of functional vessel density due to vascular new development was observed (t test, P < .05). Analyses of microvascular permeability and red blood cell velocity displayed stable perfusion of the vascular network neighboring the surface-modified implants. Intensified vascularity due to induced angiogenesis and neovascularization in the tissue surrounding plasma-collagen-coated samples were observed. These results indicate that plasma-mediated collagen coating might be a promising technology in order to improve the biocompatibility and versatility of silicone implants.

  2. Induction of Angiogenesis and Neovascularization in Adjacent Tissue of Plasma-Collagen–Coated Silicone Implants

    PubMed Central

    Ring, Andrej; Langer, Stefan; Tilkorn, Daniel; Goertz, Ole; Henrich, Lena; Stricker, Ingo; Steinau, Hans-Ulrich; Steinstraesser, Lars; Hauser, Joerg

    2010-01-01

    Objective: Formation of encapsulating, avascular fibrous tissue is deemed to decrease implant's biocompatibility and versatility. We investigated whether plasma-mediated collagen coating possesses the ability to enhance neovascularization in the vicinity of silicone implants. Methods: Plasma-treated collagen-I–coated silicone samples were placed into the dorsal skinfold chambers of female balb/c mice (n = 10). Conventional silicone served as control (n = 10). Intravital microscopy was performed within implant's surrounding tissue on days 1, 5, and 10. Functional vessel density, intervascular distance, vessel diameter, microvascular permeability, red blood cell velocity, and leukocyte-endothelium interaction were determined. Results: Enhanced angiogenesis in the tissue surrounding plasma-pretreated collagen-coated implants was noted. Significant increase of functional vessel density due to vascular new development was observed (t test, P < .05). Analyses of microvascular permeability and red blood cell velocity displayed stable perfusion of the vascular network neighboring the surface-modified implants. Conclusion: Intensified vascularity due to induced angiogenesis and neovascularization in the tissue surrounding plasma-collagen–coated samples were observed. These results indicate that plasma-mediated collagen coating might be a promising technology in order to improve the biocompatibility and versatility of silicone implants. PMID:20936137

  3. Two-dimensional real-time blood flow and temperature of soft tissue around maxillary anterior implants.

    PubMed

    Nakamoto, Tetsuji; Kanao, Masato; Kondo, Yusuke; Kajiwara, Norihiro; Masaki, Chihiro; Takahashi, Tetsu; Hosokawa, Ryuji

    2012-12-01

    The aims of this study were to (1) evaluate the basic nature of soft tissue surrounding maxillary anterior implants by simultaneous measurements of blood flow and surface temperature and (2) analyze differences with and without bone grafting associated with implant placement to try to detect the signs of surface morphology change. Twenty maxillary anterior implant patients, 10 bone grafting and 10 graftless, were involved in this clinical trial. Soft tissue around the implant was evaluated with 2-dimensional laser speckle imaging and a thermograph. Blood flow was significantly lower in attached gingiva surrounding implants in graftless patients (P = 0.0468). On the other hand, it was significantly lower in dental papillae (P = 0.0254), free gingiva (P = 0.0198), and attached gingiva (P = 0.00805) in bone graft patients. Temperature was significantly higher in free gingiva (P = 0.00819) and attached gingiva (P = 0.00593) in graftless patients, whereas it was significantly higher in dental papilla and free gingiva in implants with bone grafting. The results suggest that simultaneous measurements of soft-tissue blood flow and temperature is a useful technique to evaluate the microcirculation of soft tissue surrounding implants.

  4. Over-expression of thymosin β4 in granulomatous lung tissue with active pulmonary tuberculosis.

    PubMed

    Kang, Yun-Jeong; Jo, Jin-Ok; Ock, Mee Sun; Yoo, Young-Bin; Chun, Bong-Kwon; Oak, Chul-Ho; Cha, Hee-Jae

    2014-05-01

    Recent studies have shown that thymosin β4 (Tβ4) stimulates angiogenesis by inducing vascular endothelial growth factor (VEGF) expression and stabilizing hypoxia inducible factor-1α (HIF-1α) protein. Pulmonary tuberculosis (TB), a type of granulomatous disease, is accompanied by intense angiogenesis and VEGF levels have been reported to be elevated in serum or tissue inflamed by pulmonary tuberculosis. We investigated the expression of Tβ4 in granulomatous lung tissues at various stages of active pulmonary tuberculosis, and we also examined the expression patterns of VEGF and HIF-1α to compare their Tβ4 expression patterns in patients' tissues and in the tissue microarray of TB patients. Tβ4 was highly expressed in both granulomas and surrounding lymphocytes in nascent granulomatous lung tissue, but was expressed only surrounding tissues of necrotic or caseous necrotic regions. The expression pattern of HIF-1α was similar to that of Tβ4. VEGF was expressed in both granulomas and blood vessels surrounding granulomas. The expression pattern of VEGF co-localized with CD31 (platelet endothelial cell adhesion molecule, PECAM-1), a blood endothelial cell marker, and partially co-localized with Tβ4. However, the expression of Tβ4 did not co-localize with alveolar macrophages. Stained alveolar macrophages were present surrounding regions of granuloma highly expressing Tβ4. We also analyzed mRNA expression in the sputum of 10 normal and 19 pulmonary TB patients. Expression of Tβ4 was significantly higher in patients with pulmonary tuberculosis than in normal controls. These data suggest that Tβ4 is highly expressed in granulomatous lung tissue with active pulmonary TB and is associated with HIF-1α- and VEGF-mediated inflammation and angiogenesis. Furthermore, the expression of Tβ4 in the sputum of pulmonary tuberculosis patients can be used as a potential marker for diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Detection of titanium in human tissues after craniofacial surgery.

    PubMed

    Jorgenson, D S; Mayer, M H; Ellenbogen, R G; Centeno, J A; Johnson, F B; Mullick, F G; Manson, P N

    1997-04-01

    Generally, titanium fixation plates are not removed after osteosynthesis, because they have high biocompatability and high corrosion resistance characteristics. Experiments with laboratory animals, and limited studies of analyses of human tissues, have reported evidence of titanium release into local and distant tissues. This study summarizes our results of the analysis of soft tissues for titanium in four patients with titanium microfixation plates. Energy dispersive x-ray analysis, scanning electron microscopy, and electrothermal atomic absorption spectrophotometry were used to detect trace amounts of titanium in surrounding soft tissues. A single metal inclusion was detected by scanning electron microscopy and energy dispersive x-ray analysis in one patient, whereas, electrothermal atomic absorption spectrophotometry analyses revealed titanium present in three of four specimens in levels ranging from 7.92 to 31.8 micrograms/gm of dry tissue. Results from this study revealed trace amounts of titanium in tissues surrounding craniofacial plates. At the atomic level, electrothermal atomic absorption spectrophotometry appears to be a sensitive tool to quantitatively detect ultra-trace amounts of metal in human tissue.

  6. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    PubMed Central

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  7. MEASUREMENT OF SMALL MECHANICAL VIBRATIONS OF BRAIN TISSUE EXPOSED TO EXTREMELY-LOW-FREQUENCY ELECTRIC FIELDS

    EPA Science Inventory

    Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposur...

  8. Gaussian beam in two-photon fluorescence imaging of rat brain microvessel

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Alfano, Robert R.

    2014-12-01

    The critical optical properties of a Gaussian laser beam in two-photon or multiphoton fluorescence imaging, including the beam spot size, depth of focus, and intensity profile, are investigated for spatially locating nanoscale solutes in and surrounding the microvessels of rat brain.

  9. Spatio-spectral classification of hyperspectral images for brain cancer detection during surgical operations.

    PubMed

    Fabelo, Himar; Ortega, Samuel; Ravi, Daniele; Kiran, B Ravi; Sosa, Coralia; Bulters, Diederik; Callicó, Gustavo M; Bulstrode, Harry; Szolna, Adam; Piñeiro, Juan F; Kabwama, Silvester; Madroñal, Daniel; Lazcano, Raquel; J-O'Shanahan, Aruma; Bisshopp, Sara; Hernández, María; Báez, Abelardo; Yang, Guang-Zhong; Stanciulescu, Bogdan; Salvador, Rubén; Juárez, Eduardo; Sarmiento, Roberto

    2018-01-01

    Surgery for brain cancer is a major problem in neurosurgery. The diffuse infiltration into the surrounding normal brain by these tumors makes their accurate identification by the naked eye difficult. Since surgery is the common treatment for brain cancer, an accurate radical resection of the tumor leads to improved survival rates for patients. However, the identification of the tumor boundaries during surgery is challenging. Hyperspectral imaging is a non-contact, non-ionizing and non-invasive technique suitable for medical diagnosis. This study presents the development of a novel classification method taking into account the spatial and spectral characteristics of the hyperspectral images to help neurosurgeons to accurately determine the tumor boundaries in surgical-time during the resection, avoiding excessive excision of normal tissue or unintentionally leaving residual tumor. The algorithm proposed in this study to approach an efficient solution consists of a hybrid framework that combines both supervised and unsupervised machine learning methods. Firstly, a supervised pixel-wise classification using a Support Vector Machine classifier is performed. The generated classification map is spatially homogenized using a one-band representation of the HS cube, employing the Fixed Reference t-Stochastic Neighbors Embedding dimensional reduction algorithm, and performing a K-Nearest Neighbors filtering. The information generated by the supervised stage is combined with a segmentation map obtained via unsupervised clustering employing a Hierarchical K-Means algorithm. The fusion is performed using a majority voting approach that associates each cluster with a certain class. To evaluate the proposed approach, five hyperspectral images of surface of the brain affected by glioblastoma tumor in vivo from five different patients have been used. The final classification maps obtained have been analyzed and validated by specialists. These preliminary results are promising, obtaining an accurate delineation of the tumor area.

  10. Spatio-spectral classification of hyperspectral images for brain cancer detection during surgical operations

    PubMed Central

    Kabwama, Silvester; Madroñal, Daniel; Lazcano, Raquel; J-O’Shanahan, Aruma; Bisshopp, Sara; Hernández, María; Báez, Abelardo; Yang, Guang-Zhong; Stanciulescu, Bogdan; Salvador, Rubén; Juárez, Eduardo; Sarmiento, Roberto

    2018-01-01

    Surgery for brain cancer is a major problem in neurosurgery. The diffuse infiltration into the surrounding normal brain by these tumors makes their accurate identification by the naked eye difficult. Since surgery is the common treatment for brain cancer, an accurate radical resection of the tumor leads to improved survival rates for patients. However, the identification of the tumor boundaries during surgery is challenging. Hyperspectral imaging is a non-contact, non-ionizing and non-invasive technique suitable for medical diagnosis. This study presents the development of a novel classification method taking into account the spatial and spectral characteristics of the hyperspectral images to help neurosurgeons to accurately determine the tumor boundaries in surgical-time during the resection, avoiding excessive excision of normal tissue or unintentionally leaving residual tumor. The algorithm proposed in this study to approach an efficient solution consists of a hybrid framework that combines both supervised and unsupervised machine learning methods. Firstly, a supervised pixel-wise classification using a Support Vector Machine classifier is performed. The generated classification map is spatially homogenized using a one-band representation of the HS cube, employing the Fixed Reference t-Stochastic Neighbors Embedding dimensional reduction algorithm, and performing a K-Nearest Neighbors filtering. The information generated by the supervised stage is combined with a segmentation map obtained via unsupervised clustering employing a Hierarchical K-Means algorithm. The fusion is performed using a majority voting approach that associates each cluster with a certain class. To evaluate the proposed approach, five hyperspectral images of surface of the brain affected by glioblastoma tumor in vivo from five different patients have been used. The final classification maps obtained have been analyzed and validated by specialists. These preliminary results are promising, obtaining an accurate delineation of the tumor area. PMID:29554126

  11. Three-dimensional inversion recovery manganese-enhanced MRI of mouse brain using super-resolution reconstruction to visualize nuclei involved in higher brain function.

    PubMed

    Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise

    2014-07-01

    The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Acute in vivo testing of a conformal polymer microelectrode array for multi-region hippocampal recordings

    NASA Astrophysics Data System (ADS)

    Xu, Huijing; Weltman Hirschberg, Ahuva; Scholten, Kee; Berger, Theodore William; Song, Dong; Meng, Ellis

    2018-02-01

    Objective. The success of a cortical prosthetic device relies upon its ability to attain resolvable spikes from many neurons in particular neural networks over long periods of time. Traditionally, lifetimes of neural recordings are greatly limited by the body’s immune response against the foreign implant which causes neuronal death and glial scarring. This immune reaction is posited to be exacerbated by micromotion between the implant, which is often rigid, and the surrounding, soft brain tissue, and attenuates the quality of recordings over time. Approach. In an attempt to minimize the foreign body response to a penetrating neural array that records from multiple brain regions, Parylene C, a flexible, biocompatible polymer was used as the substrate material for a functional, proof-of-concept neural array with a reduced elastic modulus. This probe array was designed and fabricated to have 64 electrodes positioned to match the anatomy of the rat hippocampus and allow for simultaneous recordings between two cell-body layers of interest. A dissolvable brace was used for deep-brain penetration of the flexible array. Main results. Arrays were electrochemically characterized at the benchtop, and a novel insertion technique that restricts acute insertion injury enabled accurate target placement of four, bare, flexible arrays to greater than 4 mm deep into the rat brain. Arrays were tested acutely and in vivo recordings taken intra-operatively reveal spikes in both targeted regions of the hippocampus with spike amplitudes and noise levels similar to those recorded with microwires. Histological staining of a sham array implanted for one month reveals limited astrocytic scarring and neuronal death around the implant. Significance. This work represents one of the first examples of a penetrating polymer probe array that records from individual neurons in structures that lie deep within the brain.

  13. Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses.

    PubMed

    Hall, Kelley D; Lifshitz, Jonathan

    2010-04-06

    Traumatic brain injury can initiate an array of chronic neurological deficits, effecting executive function, language and sensorimotor integration. Mechanical forces produce the diffuse pathology that disrupts neural circuit activation across vulnerable brain regions. The present manuscript explores the hypothesis that the extent of functional activation of brain-injured circuits is a consequence of initial disruption and consequent reorganization. In the rat, enduring sensory sensitivity to whisker stimulation directs regional analysis to the whisker barrel circuit. Adult, male rats were subjected to midline fluid percussion brain or sham injury and evaluated between 1day and 42days post-injury. Whisker somatosensory regions of the cortex and thalamus maintained cellular composition as visualized by Nissl stain. Within the first week post-injury, quantitatively less cFos activation was elicited by whisker stimulation, potentially due to axotomy within and surrounding the whisker circuit as visualized by amyloid precursor protein immunohistochemistry. Over six weeks post-injury, cFos activation after whisker stimulation showed a significant linear correlation with time in the cortex (r(2)=0.545; p=0.015), non-significant correlation in the thalamus (r(2)=0.326) and U-shaped correlation in the dentate gyrus (r(2)=0.831), all eventually exceeding sham levels. Ongoing neuroplastic responses in the cortex are evidenced by accumulating growth associated protein and synaptophysin gene expression. In the thalamus, the delayed restoration of plasticity markers may explain the broad distribution of neuronal activation extending into the striatum and hippocampus with whisker stimulation. The sprouting of diffuse-injured circuits into diffuse-injured tissue likely establishes maladaptive circuits responsible for behavioral morbidity. Therapeutic interventions to promote adaptive circuit restructuring may mitigate post-traumatic morbidity. Copyright 2010 Elsevier B.V. All rights reserved.

  14. A Study of the Focal Adhesion Kinase Inhibitor GSK2256098 in Patients with Recurrent Glioblastoma with Evaluation of Tumor Penetration of [11C]GSK2256098.

    PubMed

    Brown, Nicholas F; Williams, Matthew; Arkenau, Hendrik-Tobias; Fleming, Ronald A; Tolson, Jerry; Yan, Li; Zhang, Jianping; Swartz, Lisa; Singh, Rajendra; Auger, Kurt R; Lenox, Laurie; Cox, David; Lewis, Yvonne; Plisson, Christophe; Searle, Graham; Saleem, Azeem; Blagden, Sarah; Mulholland, Paul

    2018-05-17

    GSK2256098 is a novel oral focal adhesion kinase inhibitor. Preclinical studies demonstrate growth inhibition in glioblastoma cell lines. However, rodent studies indicate limited blood-brain barrier penetration. In this expansion cohort within a phase I study, the safety, tolerability, pharmacokinetics and clinical activity of GSK2256098 were evaluated in patients with recurrent glioblastoma. Biodistribution and kinetics of [11C]GSK2256098 were assessed in a sub-study using positron-emission tomography (PET). Patients were treated with GSK2256098 until disease progression or withdrawal due to adverse events (AEs). Serial pharmacokinetic samples were collected on Day 1. On a single day between Days 9-20, patients received a microdose of intravenous [11C]GSK2256098 and scanned with PET over 90 minutes with parallel PK sample collection. Response was assessed by MRI every six weeks. Thirteen patients were treated in three dose cohorts (1000 mg, 750 mg, 500 mg; all dosed twice-daily). The maximum tolerated dose was 1000 mg twice-daily. Dose-limiting toxicities were related to cerebral edema. Treatment-related AEs (>25%) were diarrhea, fatigue and nausea. Eight patients participated in the PET sub-study, with [11C]GSK2256098 VT estimates of 0.9 in tumor tissue, 0.5 in surrounding T2 enhancing areas, and 0.4 in normal brain,. Best response of stable disease was observed in three patients, including one patient on treatment for 11.3 months. GSK2256098 was tolerable in patients with relapsed glioblastoma. GSK2256098 crossed the blood-brain barrier at low levels into normal brain, but at markedly higher levels into tumor, consistent with tumor-associated blood-brain barrier disruption. Additional clinical trials of GSK2256098 are ongoing.

  15. EXPRESSION OF REELIN, ITS RECEPTORS AND ITS INTRACELLULAR SIGNALING PROTEIN, DISABLED-1 (DAB-1) IN THE CANARY BRAIN: RELATIONSHIPS WITH THE SONG CONTROL SYSTEM

    PubMed Central

    BALTHAZART, JACQUES; VOIGT, CORNELIA; BOSERET, GÉRALDINE; BALL, GREGORY F

    2008-01-01

    Songbirds produce learned vocalizations that are controlled by a specialized network of neural structures, the song control system. Several nuclei in this song control system demonstrate a marked degree of adult seasonal plasticity. Nucleus volume varies seasonally based on changes in cell size or spacing, and in the case of nucleus HVC and area X on the incorporation of new neurons. Reelin, a large glycoprotein defective in reeler mice, is assumed to determine the final location of migrating neurons in the developing brain. In mammals, reelin is also expressed in the adult brain but its functions are less well characterized. We investigated the relationships between the expression of reelin and/or its receptors and the dramatic seasonal plasticity in the canary (Serinus canaria) brain. We detected a broad distribution of the reelin protein, its messenger RNA and the mRNAs encoding for the reelin receptors (VLDLR and ApoER2) as well as for its intracellular signaling protein, Dab1. These different mRNAs and proteins did not display the same neuroanatomical distribution and were not clearly associated, in an exclusive manner, with telencephalic brain areas that incorporate new neurons in adulthood. Song control nuclei were associated with a particular specialized expression of reelin and its mRNA, with the reelin signal being either denser or lighter in the song nucleus than in the surrounding tissue. The density of reelin-ir structures did not seem to be affected by four weeks of treatment with exogenous testosterone. These observations do not provide conclusive evidence that reelin plays a prominent role in the positioning of new neurons in the adult canary brain but call for additional work on this protein analyzing its expression comparatively during development and in adulthood with a better temporal resolution at critical points in the reproductive cycle when brain plasticity is known to occur. PMID:18448255

  16. Detection of radiation-induced brain necrosis in live rats using label-free time-resolved fluorescence spectroscopy (TRFS) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hartl, Brad A.; Ma, Htet S. W.; Sridharan, Shamira; Hansen, Katherine; Klich, Melanie; Perks, Julian; Kent, Michael; Kim, Kyoungmi; Fragoso, Ruben; Marcu, Laura

    2017-02-01

    Differentiating radiation-induced necrosis from recurrent tumor in the brain remains a significant challenge to the neurosurgeon. Clinical imaging modalities are not able to reliably discriminate the two tissue types, making biopsy location selection and surgical management difficult. Label-free fluorescence lifetime techniques have previously been shown to be able to delineate human brain tumor from healthy tissues. Thus, fluorescence lifetime techniques represent a potential means to discriminate the two tissues in real-time during surgery. This study aims to characterize the endogenous fluorescence lifetime signatures from radiation induced brain necrosis in a tumor-free rat model. Fischer rats received a single fraction of 60 Gy of radiation to the right hemisphere using a linear accelerator. Animals underwent a terminal live surgery after gross necrosis had developed, as verified with MRI. During surgery, healthy and necrotic brain tissue was measured with a fiber optic needle connected to a multispectral fluorescence lifetime system. Measurements of the necrotic tissue showed a 48% decrease in intensity and 20% increase in lifetimes relative to healthy tissue. Using a support vector machine classifier and leave-one-out validation technique, the necrotic tissue was correctly classified with 94% sensitivity and 97% specificity. Spectral contribution analysis also confirmed that the primary source of fluorescence contrast lies within the redox and bound-unbound population shifts of nicotinamide adenine dinucleotide. A clinical trial is presently underway to measure these tissue types in humans. These results show for the first time that radiation-induced necrotic tissue in the brain contains significantly different metabolic signatures that are detectable with label-free fluorescence lifetime techniques.

  17. Light interference as a possible stressor altering HSP70 and its gene expression levels in brain and hepatic tissues of golden spiny mice.

    PubMed

    Ashkenazi, Lilach; Haim, Abraham

    2012-11-15

    Light at night and light interference (LI) disrupt the natural light:dark cycle, causing alterations at physiological and molecular levels, partly by suppressing melatonin (MLT) secretion at night. Heat shock proteins (HSPs) can be activated in response to environmental changes. We assessed changes in gene expression and protein level of HSP70 in brain and hepatic tissues of golden spiny mice (Acomys russatus) acclimated to LI for two (SLI), seven (MLI) and 21 nights (LLI). The effect of MLT treatment on LI-mice was also assessed. HSP70 levels increased in brain and hepatic tissues after SLI, whereas after MLI and LLI, HSP70 decreased to control levels. Changes in HSP70 levels as a response to MLT occurred after SLI only in hepatic tissue. However, hsp70 expression following SLI increased in brain tissue, but not in hepatic tissue. MLT treatment and SLI caused a decrease in hsp70 levels in brain tissue and an increase in hsp70 in hepatic tissue. SLI acclimation elicited a stress response in A. russatus, as expressed by increased HSP70 levels and gene expression. Longer acclimation decreases protein and gene expression to their control levels. We conclude that for brain and hepatic tissues of A. russatus, LI is a short-term stressor. Our results also revealed that A. russatus can acclimate to LI, possibly because of its circadian system plasticity, which allows it to behave both as a nocturnal and as a diurnal rodent. To the best of our knowledge, this is the first study showing the effect of LI as a stressor at the cellular level, by activating HSP70.

  18. Distribution of lead in the brain tissues from DNTC patients using synchrotron radiation microbeams

    NASA Astrophysics Data System (ADS)

    Ide-Ektessabi, Ari; Ota, Yukihide; Ishihara, Ryoko; Mizuno, Yutaka; Takeuchi, Tohru

    2005-12-01

    Diffuse neurofibrillary tangles with calcification (DNTC) is a form of dementia with certain characteristics. Its pathology is characterized by cerebrum atrophy, calcification on globus pallidus and dentate nucleus and diffuse neurofibrillary tangles without senile plaques. In the present study brain tissues were prepared from patients with patients DNTC, calcified and non-calcified Alzheimer's disease (AD) patients. The brain tissues were examined non-destructively by X-ray fluorescence (XRF) spectroscopy using synchrotron radiation (SR) microbeams for trace metallic elements Ca, Fe, Cu, Zn and Pb. The XRF analysis showed that there were Pb concentrations in the calcified areas in the brain tissues with both DNTC and AD but there was none in those with non-calcified AD.

  19. Brain Sex Matters: estrogen in cognition and Alzheimer’s disease

    PubMed Central

    Li, Rena; Cui, Jie; Shen, Yong

    2014-01-01

    Estrogens are the primary female sex hormones and play important roles in both reproductive and non-reproductive systems. Estrogens can be synthesized in non-reproductive tissues such as liver, heart, muscle, bone and the brain. During the past decade, increasing evidence suggests that brain estrogen can not only be synthesized by neurons, but also by astrocytes. Brain estrogen also works locally at the site of synthesis in paracrine and/or intracrine fashion to maintain important tissue-specific functions. Here, we will focus on the biology of brain estrogen and its impact on cognitive function and Alzheimer’s disease. This comprehensive review provides new insights into brain estrogens by presenting a better understanding of the tissue-specific estrogen effects and their roles in healthy ageing and cognitive function. PMID:24418360

  20. Expression of hypoxia-inducible carbonic anhydrases in brain tumors

    PubMed Central

    Proescholdt, Martin A.; Mayer, Christina; Kubitza, Marion; Schubert, Thomas; Liao, Shu-Yuan; Stanbridge, Eric J.; Ivanov, Sergey; Oldfield, Edward H.; Brawanski, Alexander; Merrill, Marsha J.

    2005-01-01

    Malignant brain tumors exhibit distinct metabolic characteristics. Despite high levels of lactate, the intracellular pH of brain tumors is more alkaline than normal brain. Additionally, with increasing malignancy, brain tumors display intratumoral hypoxia. Carbonic anhydrase (CA) IX and XII are transmembrane isoenzymes that are induced by tissue hypoxia. They participate in regulation of pH homeostasis by catalyzing the reversible hydration of carbon dioxide. The aim of our study was to investigate whether brain tumors of different histology and grade of malignancy express elevated levels of CA IX and XII as compared to normal brain. We analyzed 120 tissue specimens from brain tumors (primary and metastatic) and normal brain for CA IX and XII expression by immunohistochemistry, Western blot, and in situ hybridization. Whereas normal brain tissue showed minimal levels of CA IX and XII expression, expression in tumors was found to be upregulated with increased level of malignancy. Hemangioblastomas, from patients with von Hippel–Lindau disease, also displayed high levels of CA IX and XII expression. Comparison of CA IX and XII staining with HIF-1α staining revealed a similar microanatomical distribution, indicating hypoxia as a major, but not the only, induction factor. The extent of CA IX and XII staining correlated with cell proliferation, as indicated by Ki67 labeling. The results demonstrate that CA IX and XII are upregulated in intrinsic and metastatic brain tumors as compared to normal brain tissue. This may contribute to the management of tumor-specific acid load and provide a therapeutic target. PMID:16212811

  1. Noncontact optical coherence elastography of the posterior porcine sclera in situ as a function of IOP

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Nair, Achuth; Aglyamov, Salavat R.; Wu, Chen; Han, Zhaolong; Lafon, Ericka; Larin, Kirill V.

    2017-02-01

    Recent work has shown that the biomechanical properties of tissues in the posterior eye have are critical for understanding the etiology and progression of ocular diseases. For instance, the primary risk for glaucoma is an elevated intraocular pressure (IOP). Weak tissues will deform under the large pressure, causing damage to vital tissues. In addition, scleral elasticity can influence the shape of the eye-globe, altering the axial length. In this work, we utilize a noncontact form of optical coherence elastography (OCE) to quantify the spatial distribution of biomechanical properties of the optic nerve, its surrounding tissues, and posterior sclera on the exterior of in situ porcine eyes in the whole eyeglobe configuration. The OCE measurements were taken at various IOPs to evaluate the biomechanical properties of the tissues as a function of IOP. The air-pulse induced dynamic response of the tissues was linked to Young's modulus by a simple kinematic equation by quantified the damped natural frequency (DNF). The results show that the posterior sclera is not as stiff as the optic nerve and its surrounding tissues ( 460 Hz and 894 Hz at 10 mmHg IOP, respectively). Moreover, the scleral stiffness was generally unaffected by IOP ( 460 Hz at 10 mmHg IOP as compared to 516 Hz at 20 mmHg), whereas the optic nerve and its surrounding tissues stiffened as IOP was increased ( 894 Hz at 10 mmHg to 1221 Hz at 20 mmHg).

  2. Tumor proliferation and diffusion on percolation clusters.

    PubMed

    Jiang, Chongming; Cui, Chunyan; Zhong, Weirong; Li, Gang; Li, Li; Shao, Yuanzhi

    2016-10-01

    We study in silico the influence of host tissue inhomogeneity on tumor cell proliferation and diffusion by simulating the mobility of a tumor on percolation clusters with different homogeneities of surrounding tissues. The proliferation and diffusion of a tumor in an inhomogeneous tissue could be characterized in the framework of the percolation theory, which displays similar thresholds (0.54, 0.44, and 0.37, respectively) for tumor proliferation and diffusion in three kinds of lattices with 4, 6, and 8 connecting near neighbors. Our study reveals the existence of a critical transition concerning the survival and diffusion of tumor cells with leaping metastatic diffusion movement in the host tissues. Tumor cells usually flow in the direction of greater pressure variation during their diffusing and infiltrating to a further location in the host tissue. Some specific sites suitable for tumor invasion were observed on the percolation cluster and around these specific sites a tumor can develop into scattered tumors linked by some advantage tunnels that facilitate tumor invasion. We also investigate the manner that tissue inhomogeneity surrounding a tumor may influence the velocity of tumor diffusion and invasion. Our simulation suggested that invasion of a tumor is controlled by the homogeneity of the tumor microenvironment, which is basically consistent with the experimental report by Riching et al. as well as our clinical observation of medical imaging. Both simulation and clinical observation proved that tumor diffusion and invasion into the surrounding host tissue is positively correlated with the homogeneity of the tissue.

  3. Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors.

    PubMed

    Snuderl, Matija; Wirth, Dennis; Sheth, Sameer A; Bourne, Sarah K; Kwon, Churl-Su; Ancukiewicz, Marek; Curry, William T; Frosch, Matthew P; Yaroslavsky, Anna N

    2013-01-01

    Intraoperative diagnosis plays an important role in accurate sampling of brain tumors, limiting the number of biopsies required and improving the distinction between brain and tumor. The goal of this study was to evaluate dye-enhanced multimodal confocal imaging for discriminating gliomas from nonglial brain tumors and from normal brain tissue for diagnostic use. We investigated a total of 37 samples including glioma (13), meningioma (7), metastatic tumors (9) and normal brain removed for nontumoral indications (8). Tissue was stained in 0.05 mg/mL aqueous solution of methylene blue (MB) for 2-5 minutes and multimodal confocal images were acquired using a custom-built microscope. After imaging, tissue was formalin fixed and paraffin embedded for standard neuropathologic evaluation. Thirteen pathologists provided diagnoses based on the multimodal confocal images. The investigated tumor types exhibited distinctive and complimentary characteristics in both the reflectance and fluorescence responses. Images showed distinct morphological features similar to standard histology. Pathologists were able to distinguish gliomas from normal brain tissue and nonglial brain tumors, and to render diagnoses from the images in a manner comparable to haematoxylin and eosin (H&E) slides. These results confirm the feasibility of multimodal confocal imaging for intravital intraoperative diagnosis. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  4. NASA Robotic Neurosurgery Testbed

    NASA Technical Reports Server (NTRS)

    Mah, Robert

    1997-01-01

    The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations, In neurosurgery, the needle used in the standard stereotactic CT or MRI guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled "Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification" is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.

  5. NASA Robotic Neurosurgery Testbed

    NASA Technical Reports Server (NTRS)

    Mah, Robert

    1997-01-01

    The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations. In neurosurgery, the needle used in the standard stereotactic CT (Computational Tomography) or MRI (Magnetic Resonance Imaging) guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled 'Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification' is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.

  6. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder

    PubMed Central

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain. PMID:27057543

  7. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder.

    PubMed

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.

  8. [Effects of Geometrical Dimensions and Material Properties on the Rotation Characteristics of Head].

    PubMed

    Chen, Yue; Cui, Shihai; Li, Haiyan; Ruan, Shijie

    2016-08-01

    The validated finite element head model(FEHM)of a 3-year-old child,a 6-year-old child and a 50 th percentile adult were used to investigate the effects of head dimension and material parameters of brain tissues on the head rotational responses based on experimental design.Results showed that the effects of head dimension and directions of rotation on the head rotational responses were not significant under the same rotational loading condition,and the same results appeared in the viscoelastic material parameters of brain tissues.However,the head rotational responses were most sensitive to the shear modulus(G)of brain tissues relative to decay constant(β)and bulk modulus(K).Therefore,the selection of material parameters of brain tissues is most important to the accuracy of simulation results,especially in the study of brain injury criterion under the rotational loading conditions.

  9. The biochemical, nanomechanical and chemometric signatures of brain cancer

    NASA Astrophysics Data System (ADS)

    Abramczyk, Halina; Imiela, Anna

    2018-01-01

    Raman spectroscopy and imaging combined with AFM topography and mechanical indentation by AFM have been shown to be an effective tool for analysis and discrimination of human brain tumors from normal structures. Raman methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n = 5) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma (IV grade), and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational spectra and Raman images we provide a real-time feedback that is label-free method to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, and proteins. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have shown that the ratio of Raman intensities I2930/I2845 at 2930 and 2845 cm- 1 is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the lipid and protein contents of tumorous brain tissue compared to the non-tumor tissue. Almost all brain tumors have the Raman intensity ratios significantly higher (1.99 ± 0.026) than that found in non-tumor brain tissue, which is 1.456 ± 0.02, and indicates that the relative amount of lipids compared to proteins is significantly higher in the normal brain tissue. Mechanical indentation using AFM on sliced human brain tissues (medulloblastoma, grade IV) revealed that the mechanical properties of this tissue are strongly heterogeneous, between 1.8 and 75.7 kPa, and the mean of 27.16 kPa. The sensitivity and specificity obtained directly from PLSDA and cross validation gives a sensitivity and specificity of 98.5% and 96% and 96.3% and 92% for cross-validation, respectively. The high sensitivity and specificity demonstrates usefulness for a proper decision for a Raman diagnostic test on biochemical alterations monitored by Raman spectroscopy related to brain cancer development.

  10. Age dependence of dielectric properties of bovine brain and ocular tissues in the frequency range of 400 MHz to 18 GHz

    NASA Astrophysics Data System (ADS)

    Schmid, Gernot; Überbacher, Richard

    2005-10-01

    In order to identify possible age-dependent dielectric properties of brain and eye tissues in the frequency range of 400 MHz to 18 GHz, measurements on bovine grey and white matter as well as on cornea, lens (cortical) and the vitreous body were performed using a commercially available open-ended coaxial probe and a computer-controlled vector network analyser. Freshly excised tissues of 52 animals of two age groups (42 adult animals, i.e. 16-24 month old and 10 young animals, i.e. 4-6 month old calves) were examined within 8 min (brain tissue) and 15 min (eye tissue), respectively, of the animals' death. Tissue temperatures for the measurements were 32 ± 1 °C and 25 ± 1 °C for brain and eye tissues, respectively. Statistical analysis of the measured data revealed significant differences in the dielectric properties of white matter and cortical lens tissue between the adult and the young group. In the case of white matter the mean values of conductivity and permittivity of young tissue were 15%-22% and 12%-15%, respectively, higher compared to the adult tissue in the considered frequency range. Similarly, young cortical lens tissue was 25%-76% higher in conductivity and 27%-39% higher in permittivity than adult cortical lens tissue.

  11. Zika Virus RNA Replication and Persistence in Brain and Placental Tissue

    PubMed Central

    Rabeneck, Demi B.; Martines, Roosecelis B.; Reagan-Steiner, Sarah; Ermias, Yokabed; Estetter, Lindsey B.C.; Suzuki, Tadaki; Ritter, Jana; Keating, M. Kelly; Hale, Gillian; Gary, Joy; Muehlenbachs, Atis; Lambert, Amy; Lanciotti, Robert; Oduyebo, Titilope; Meaney-Delman, Dana; Bolaños, Fernando; Saad, Edgar Alberto Parra; Shieh, Wun-Ju; Zaki, Sherif R.

    2017-01-01

    Zika virus is causally linked with congenital microcephaly and may be associated with pregnancy loss. However, the mechanisms of Zika virus intrauterine transmission and replication and its tropism and persistence in tissues are poorly understood. We tested tissues from 52 case-patients: 8 infants with microcephaly who died and 44 women suspected of being infected with Zika virus during pregnancy. By reverse transcription PCR, tissues from 32 (62%) case-patients (brains from 8 infants with microcephaly and placental/fetal tissues from 24 women) were positive for Zika virus. In situ hybridization localized replicative Zika virus RNA in brains of 7 infants and in placentas of 9 women who had pregnancy losses during the first or second trimester. These findings demonstrate that Zika virus replicates and persists in fetal brains and placentas, providing direct evidence of its association with microcephaly. Tissue-based reverse transcription PCR extends the time frame of Zika virus detection in congenital and pregnancy-associated infections. PMID:27959260

  12. Gene expression changes with age in skin, adipose tissue, blood and brain.

    PubMed

    Glass, Daniel; Viñuela, Ana; Davies, Matthew N; Ramasamy, Adaikalavan; Parts, Leopold; Knowles, David; Brown, Andrew A; Hedman, Asa K; Small, Kerrin S; Buil, Alfonso; Grundberg, Elin; Nica, Alexandra C; Di Meglio, Paola; Nestle, Frank O; Ryten, Mina; Durbin, Richard; McCarthy, Mark I; Deloukas, Panagiotis; Dermitzakis, Emmanouil T; Weale, Michael E; Bataille, Veronique; Spector, Tim D

    2013-07-26

    Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age. Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues. Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.

  13. Tissue-like Neural Probes for Understanding and Modulating the Brain.

    PubMed

    Hong, Guosong; Viveros, Robert D; Zwang, Theodore J; Yang, Xiao; Lieber, Charles M

    2018-03-19

    Electrophysiology tools have contributed substantially to understanding brain function, yet the capabilities of conventional electrophysiology probes have remained limited in key ways because of large structural and mechanical mismatches with respect to neural tissue. In this Perspective, we discuss how the general goal of probe design in biochemistry, that the probe or label have a minimal impact on the properties and function of the system being studied, can be realized by minimizing structural, mechanical, and topological differences between neural probes and brain tissue, thus leading to a new paradigm of tissue-like mesh electronics. The unique properties and capabilities of the tissue-like mesh electronics as well as future opportunities are summarized. First, we discuss the design of an ultraflexible and open mesh structure of electronics that is tissue-like and can be delivered in the brain via minimally invasive syringe injection like molecular and macromolecular pharmaceuticals. Second, we describe the unprecedented tissue healing without chronic immune response that leads to seamless three-dimensional integration with a natural distribution of neurons and other key cells through these tissue-like probes. These unique characteristics lead to unmatched stable long-term, multiplexed mapping and modulation of neural circuits at the single-neuron level on a year time scale. Last, we offer insights on several exciting future directions for the tissue-like electronics paradigm that capitalize on their unique properties to explore biochemical interactions and signaling in a "natural" brain environment.

  14. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    PubMed

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  15. Positron emission tomography-computed tomography and 4-hydroxynonenal-histidine immunohistochemistry reveal differential onset of lipid peroxidation in primary lung cancer and in pulmonary metastasis of remote malignancies.

    PubMed

    Živković, Nevenka Piskač; Petrovečki, Mladen; Lončarić, Čedna Tomasović; Nikolić, Igor; Waeg, Georg; Jaganjac, Morana; Žarković, Kamelija; Žarković, Neven

    2017-04-01

    The Aim of the study was to reveal if PET-CT analysis of primary and of secondary lung cancer could be related to the onset of lipid peroxidation in cancer and in surrounding non-malignant lung tissue. Nineteen patients with primary lung cancer and seventeen patients with pulmonary metastasis were involved in the study. Their lungs were analyzed by PET-CT scanning before radical surgical removal of the cancer. Specific immunohistochemistry for the major bioactive marker of lipid peroxidation, 4-hydroxynonenal (HNE), was done for the malignant and surrounding non-malignant lung tissue using genuine monoclonal antibody specific for the HNE-histidine adducts. Both the intensity of the PET-CT analysis and the HNE-immunohistochemistry were in correlation with the size of the tumors analyzed, while primary lung carcinomas were larger than the metastatic tumors. The intensity of the HNE-immunohistochemistry in the surrounding lung tissue was more pronounced in the metastatic than in the primary tumors, but it was negatively correlated with the cancer volume determined by PET-CT. The appearance of HNE was more pronounced in non-malignant surrounding tissue than in cancer or stromal cells, both in case of primary and metastatic tumors. Both PET-CT and HNE-immunohistochemistry reflect the size of the malignant tissue. However, lipid peroxidation of non-malignant lung tissue in the vicinity of cancer is more pronounced in metastatic than in primary malignancies and might represent the mechanism of defense against cancer, as was recently revealed also in case of human liver cancer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Phase congruency map driven brain tumour segmentation

    NASA Astrophysics Data System (ADS)

    Szilágyi, Tünde; Brady, Michael; Berényi, Ervin

    2015-03-01

    Computer Aided Diagnostic (CAD) systems are already of proven value in healthcare, especially for surgical planning, nevertheless much remains to be done. Gliomas are the most common brain tumours (70%) in adults, with a survival time of just 2-3 months if detected at WHO grades III or higher. Such tumours are extremely variable, necessitating multi-modal Magnetic Resonance Images (MRI). The use of Gadolinium-based contrast agents is only relevant at later stages of the disease where it highlights the enhancing rim of the tumour. Currently, there is no single accepted method that can be used as a reference. There are three main challenges with such images: to decide whether there is tumour present and is so localize it; to construct a mask that separates healthy and diseased tissue; and to differentiate between the tumour core and the surrounding oedema. This paper presents two contributions. First, we develop tumour seed selection based on multiscale multi-modal texture feature vectors. Second, we develop a method based on a local phase congruency based feature map to drive level-set segmentation. The segmentations achieved with our method are more accurate than previously presented methods, particularly for challenging low grade tumours.

  17. Temperature measurement on neurological pulse generators during MR scans

    PubMed Central

    Kainz, Wolfgang; Neubauer, Georg; Überbacher, Richard; Alesch, François; Chan, Dulciana Dias

    2002-01-01

    According to manufacturers of both magnetic resonance imaging (MRI) machines, and implantable neurological pulse generators (IPGs), MRI is contraindicated for patients with IPGs. A major argument for this restriction is the risk to induce heat in the leads due to the electromagnetic field, which could be dangerous for the surrounding brain parenchyma. The temperature change on the surface of the case of an ITREL-III (Medtronic Inc., Minneapolis, MN) and the lead tip during MRI was determined. An anatomical realistic and a cubic phantom, filled with phantom material mimicking human tissue, and a typical lead configuration were used to imitate a patient who carries an IPG for deep brain stimulation. The measurements were performed in a 1.5 T and a 3.0 T MRI. 2.1°C temperature increases at the lead tip uncovered the lead tip as the most critical part concerning heating problems in IPGs. Temperature increases in other locations were low compared to the one at the lead tip. The measured temperature increase of 2.1°C can not be considered as harmful to the patient. Comparison with the results of other studies revealed the avoidance of loops as a practical method to reduce heating during MRI procedures. PMID:12437766

  18. Remote acute demyelination after focal proton radiation therapy for optic nerve meningioma.

    PubMed

    Redjal, Navid; Agarwalla, Pankaj K; Dietrich, Jorg; Dinevski, Nikolaj; Stemmer-Rachamimov, Anat; Nahed, Brian V; Loeffler, Jay S

    2015-08-01

    We present a unique patient with delayed onset, acute demyelination that occurred distant to the effective field of radiation after proton beam radiotherapy for an optic nerve sheath meningioma. The use of stereotactic radiotherapy as an effective treatment modality for some brain tumors is increasing, given technological advances which allow for improved targeting precision. Proton beam radiotherapy improves the precision further by reducing unnecessary radiation to surrounding tissues. A 42-year-old woman was diagnosed with an optic nerve sheath meningioma after initially presenting with vision loss. After biopsy of the lesion to establish diagnosis, the patient underwent stereotactic proton beam radiotherapy to a small area localized to the tumor. Subsequently, the patient developed a large enhancing mass-like lesion with edema in a region outside of the effective radiation field in the ipsilateral frontal lobe. Given imaging features suggestive of possible primary malignant brain tumor, biopsy of this new lesion was performed and revealed an acute demyelinating process. This patient illustrates the importance of considering delayed onset acute demyelination in the differential diagnosis of enhancing lesions in patients previously treated with radiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Evidence for brain glucose dysregulation in Alzheimer's disease.

    PubMed

    An, Yang; Varma, Vijay R; Varma, Sudhir; Casanova, Ramon; Dammer, Eric; Pletnikova, Olga; Chia, Chee W; Egan, Josephine M; Ferrucci, Luigi; Troncoso, Juan; Levey, Allan I; Lah, James; Seyfried, Nicholas T; Legido-Quigley, Cristina; O'Brien, Richard; Thambisetty, Madhav

    2018-03-01

    It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis. Within the autopsy cohort of the Baltimore Longitudinal Study of Aging, we measured brain glucose concentration and assessed the ratios of the glycolytic amino acids, serine, glycine, and alanine to glucose. We also quantified protein levels of the neuronal (GLUT3) and astrocytic (GLUT1) glucose transporters. Finally, we assessed the relationships between plasma glucose measured before death and brain tissue glucose. Higher brain tissue glucose concentration, reduced glycolytic flux, and lower GLUT3 are related to severity of AD pathology and the expression of AD symptoms. Longitudinal increases in fasting plasma glucose levels are associated with higher brain tissue glucose concentrations. Impaired glucose metabolism due to reduced glycolytic flux may be intrinsic to AD pathogenesis. Abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms. Copyright © 2017 the Alzheimer's Association. All rights reserved.

  20. Brain abscess mimicking lung cancer metastases; a case report.

    PubMed

    Asano, Michiko; Fujimoto, Nobukazu; Fuchimoto, Yasuko; Ono, Katsuichiro; Ozaki, Shinji; Kimura, Fumiaki; Kishimoto, Takumi

    2013-01-01

    A 76-year-old woman came to us because of staggering, fever, dysarthria, and appetite loss. Magnetic resonance imaging (MRI) of the brain revealed multiple masses with surrounding edema. Chest X-ray and computed tomography demonstrated a mass-like lesion in the left lung and left pleural effusion. Lung cancer and multiple brain metastases were suspected. However, the brain lesions demonstrated a high intensity through diffusion-weighted MRI. The finding was an important key to differentiate brain abscesses from lung cancer metastases. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Laser Desorption/Ionization Mass Spectrometric Imaging of Endogenous Lipids from Rat Brain Tissue Implanted with Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Muller, Ludovic; Baldwin, Kathrine; Barbacci, Damon C.; Jackson, Shelley N.; Roux, Aurélie; Balaban, Carey D.; Brinson, Bruce E.; McCully, Michael I.; Lewis, Ernest K.; Schultz, J. Albert; Woods, Amina S.

    2017-08-01

    Mass spectrometry imaging (MSI) of tissue implanted with silver nanoparticulate (AgNP) matrix generates reproducible imaging of lipids in rodent models of disease and injury. Gas-phase production and acceleration of size-selected 8 nm AgNP is followed by controlled ion beam rastering and soft landing implantation of 500 eV AgNP into tissue. Focused 337 nm laser desorption produces high quality images for most lipid classes in rat brain tissue (in positive mode: galactoceramides, diacylglycerols, ceramides, phosphatidylcholines, cholesteryl ester, and cholesterol, and in negative ion mode: phosphatidylethanolamides, sulfatides, phosphatidylinositol, and sphingomyelins). Image reproducibility in serial sections of brain tissue is achieved within <10% tolerance by selecting argentated instead of alkali cationized ions. The imaging of brain tissues spotted with pure standards was used to demonstrate that Ag cationized ceramide and diacylglycerol ions are from intact, endogenous species. In contrast, almost all Ag cationized fatty acid ions are a result of fragmentations of numerous lipid types having the fatty acid as a subunit. Almost no argentated intact fatty acid ions come from the pure fatty acid standard on tissue.

  2. In vivo three-photon microscopy of subcortical structures within an intact mouse brain

    NASA Astrophysics Data System (ADS)

    Horton, Nicholas G.; Wang, Ke; Kobat, Demirhan; Clark, Catharine G.; Wise, Frank W.; Schaffer, Chris B.; Xu, Chris

    2013-03-01

    Two-photon fluorescence microscopy enables scientists in various fields including neuroscience, embryology and oncology to visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue. However, tissue scattering limits the maximum imaging depth of two-photon fluorescence microscopy to the cortical layer within mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue or the insertion of optical probes. Here, we demonstrate non-invasive, high-resolution, in vivo imaging of subcortical structures within an intact mouse brain using three-photon fluorescence microscopy at a spectral excitation window of 1,700 nm. Vascular structures as well as red fluorescent protein-labelled neurons within the mouse hippocampus are imaged. The combination of the long excitation wavelength and the higher-order nonlinear excitation overcomes the limitations of two-photon fluorescence microscopy, enabling biological investigations to take place at a greater depth within tissue.

  3. The national DBS brain tissue network pilot study: need for more tissue and more standardization.

    PubMed

    Vedam-Mai, V; Krock, N; Ullman, M; Foote, K D; Shain, W; Smith, K; Yachnis, A T; Steindler, D; Reynolds, B; Merritt, S; Pagan, F; Marjama-Lyons, J; Hogarth, P; Resnick, A S; Zeilman, P; Okun, M S

    2011-08-01

    Over 70,000 DBS devices have been implanted worldwide; however, there remains a paucity of well-characterized post-mortem DBS brains available to researchers. We propose that the overall understanding of DBS can be improved through the establishment of a Deep Brain Stimulation-Brain Tissue Network (DBS-BTN), which will further our understanding of DBS and brain function. The objectives of the tissue bank are twofold: (a) to provide a complete (clinical, imaging and pathological) database for DBS brain tissue samples, and (b) to make available DBS tissue samples to researchers, which will help our understanding of disease and underlying brain circuitry. Standard operating procedures for processing DBS brains were developed as part of the pilot project. Complete data files were created for individual patients and included demographic information, clinical information, imaging data, pathology, and DBS lead locations/settings. 19 DBS brains were collected from 11 geographically dispersed centers from across the U.S. The average age at the time of death was 69.3 years (51-92, with a standard deviation or SD of 10.13). The male:female ratio was almost 3:1. Average post-mortem interval from death to brain collection was 10.6 h (SD of 7.17). The DBS targets included: subthalamic nucleus, globus pallidus interna, and ventralis intermedius nucleus of the thalamus. In 16.7% of cases the clinical diagnosis failed to match the pathological diagnosis. We provide neuropathological findings from the cohort, and perilead responses to DBS. One of the most important observations made in this pilot study was the missing data, which was approximately 25% of all available data fields. Preliminary results demonstrated the feasibility and utility of creating a National DBS-BTN resource for the scientific community. We plan to improve our techniques to remedy omitted clinical/research data, and expand the Network to include a larger donor pool. We will enhance sample preparation to facilitate advanced molecular studies and progenitor cell retrieval.

  4. Organization of brain tissue - Is the brain a noisy processor.

    NASA Technical Reports Server (NTRS)

    Adey, W. R.

    1972-01-01

    This paper presents some thoughts on functional organization in cerebral tissue. 'Spontaneous' wave and unit firing are considered as essential phenomena in the handling of information. Various models are discussed which have been suggested to describe the pseudorandom behavior of brain cells, leading to a view of the brain as an information processor and its role in learning, memory, remembering and forgetting.

  5. Relationship between concentrations of lutein and StARD3 among pediatric and geriatric human brain tissue

    USDA-ARS?s Scientific Manuscript database

    Lutein, a dietary carotenoid, selectively accumulates in human retina and brain. While many epidemiological studies show evidence of a relationship between lutein status and cognitive health, lutein's selective uptake in human brain tissue and its potential function in early neural development and c...

  6. Time-resolved fluorescence spectroscopy of human brain tumors

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.

    2002-05-01

    Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.

  7. Medical diagnosis imaging systems: image and signal processing applications aided by fuzzy logic

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka

    2010-04-01

    First, we describe an automated procedure for segmenting an MR image of a human brain based on fuzzy logic for diagnosing Alzheimer's disease. The intensity thresholds for segmenting the whole brain of a subject are automatically determined by finding the peaks of the intensity histogram. After these thresholds are evaluated in a region growing, the whole brain can be identified. Next, we describe a procedure for decomposing the obtained whole brain into the left and right cerebral hemispheres, the cerebellum and the brain stem. Our method then identified the whole brain, the left cerebral hemisphere, the right cerebral hemisphere, the cerebellum and the brain stem. Secondly, we describe a transskull sonography system that can visualize the shape of the skull and brain surface from any point to examine skull fracture and some brain diseases. We employ fuzzy signal processing to determine the skull and brain surface. The phantom model, the animal model with soft tissue, the animal model with brain tissue, and a human subjects' forehead is applied in our system. The all shapes of the skin surface, skull surface, skull bottom, and brain tissue surface are successfully determined.

  8. Non-destructive optical clearing technique enhances optical coherence tomography (OCT) for real-time, 3D histomorphometry of brain tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Paul, Akshay; Chang, Theodore H.; Chou, Li-Dek; Ramalingam, Tirunelveli S.

    2016-03-01

    Evaluation of neurodegenerative disease often requires examination of brain morphology. Volumetric analysis of brain regions and structures can be used to track developmental changes, progression of disease, and the presence of transgenic phenotypes. Current standards for microscopic investigation of brain morphology are limited to detection of superficial structures at a maximum depth of 300μm. While histological techniques can provide detailed cross-sections of brain structures, they require complicated tissue preparation and the ultimate destruction of the sample. A non-invasive, label-free imaging modality known as Optical Coherence Tomography (OCT) can produce 3-dimensional reconstructions through high-speed, cross-sectional scans of biological tissue. Although OCT allows for the preservation of intact samples, the highly scattering and absorbing properties of biological tissue limit imaging depth to 1-2mm. Optical clearing agents have been utilized to increase imaging depth by index matching and lipid digestion, however, these contemporary techniques are expensive and harsh on tissues, often irreversibly denaturing proteins. Here we present an ideal optical clearing agent that offers ease-of-use and reversibility. Similar to how SeeDB has been effective for microscopy, our fructose-based, reversible optical clearing technique provides improved OCT imaging and functional immunohistochemical mapping of disease. Fructose is a natural, non-toxic sugar with excellent water solubility, capable of increasing tissue transparency and reducing light scattering. We will demonstrate the improved depth-resolving performance of OCT for enhanced whole-brain imaging of normal and diseased murine brains following a fructose clearing treatment. This technique potentially enables rapid, 3-dimensional evaluation of biological tissues at axial and lateral resolutions comparable to histopathology.

  9. Evaluation of chlorpyrifos toxicity through a 28-day study: Cholinesterase activity, oxidative stress responses, parent compound/metabolite levels, and primary DNA damage in blood and brain tissue of adult male Wistar rats.

    PubMed

    Kopjar, Nevenka; Žunec, Suzana; Mendaš, Gordana; Micek, Vedran; Kašuba, Vilena; Mikolić, Anja; Lovaković, Blanka Tariba; Milić, Mirta; Pavičić, Ivan; Čermak, Ana Marija Marjanović; Pizent, Alica; Lucić Vrdoljak, Ana; Želježić, Davor

    2018-01-05

    In this 28 day-study, we evaluated the effects of the insecticide chlorpyrifos orally administered to Wistar rats at doses 0.160, 0.015, and 0.010 mg/kg b. w./day. Following treatment, total cholinesterase activity and activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were measured. Oxidative stress responses were evaluated using a battery of endpoints to establish lipid peroxidation, changes in total antioxidant capacity, level of reactive oxygen species (ROS), glutathione (GSH) level and activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase. Using HPLC-UV DAD analysis, levels of the parent compound and its main metabolite 3,5,6-trichloro-2-pyridinol in plasma and brain tissue were measured. The genotoxic effect was estimated using alkaline comet assay in leukocytes and brain tissue. The exposure did not result in significant effects on total cholinesterase, AChE and BChE activity in plasma and brain tissue. Lipid peroxidation slightly increased both in plasma and brain tissue. Total antioxidant capacity, ROS and GSH levels were marginally influenced by the exposure. Treatment led to significant increases of GSH-Px activity in blood, SOD activity in erythrocytes and a slight increase of catalase activity in plasma. HPLC-UV DAD analysis revealed the presence of both the parent compound and its main metabolite in the plasma of all of the experimental animals and brain tissue of the animals treated at the two higher doses. All of the tested doses of chlorpyrifos were slightly genotoxic, both to leukocytes and brain tissue. Our results call for further research using other sensitive biomarkers of effect, along with different exposure scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development of solid-phase microextraction coupled with liquid chromatography for analysis of tramadol in brain tissue using its molecularly imprinted polymer.

    PubMed

    Habibi-Khorasani, Monireh; Mohammadpour, Amir Hooshang; Mohajeri, Seyed Ahmad

    2017-02-01

    In this work, performance of a molecularly imprinted polymer (MIP) as a selective solid-phase microextraction sorbent for the extraction and enrichment of tramadol in aqueous solution and rabbit brain tissue, is described. Binding properties of MIPs were studied in comparison with their nonimprinted polymer (NIP). Ten milligrams of the optimized MIP was then evaluated as a sorbent, for preconcentration, in molecularly imprinted solid-phase microextraction (MISPME) of tramadol from aqueous solution and rabbit brain tissue. The analytical method was calibrated in the range of 0.004 ppm (4 ng mL -1 ) and 10 ppm (10 μg mL -1 ) in aqueous media and in the ranges of 0.01 and 10 ppm in rabbit brain tissue, respectively. The results indicated significantly higher binding affinity of MIPs to tramadol, in comparison with NIP. The MISPME procedure was developed and optimized with a recovery of 81.12-107.54% in aqueous solution and 76.16-91.20% in rabbit brain tissue. The inter- and intra-day variation values were <8.24 and 5.06%, respectively. Finally the calibrated method was applied for determination of tramadol in real rabbit brain tissue samples after administration of a lethal dose. Our data demonstrated the potential of MISPME for rapid, sensitive and cost-effective sample analysis. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Tissue Probability Map Constrained 4-D Clustering Algorithm for Increased Accuracy and Robustness in Serial MR Brain Image Segmentation

    PubMed Central

    Xue, Zhong; Shen, Dinggang; Li, Hai; Wong, Stephen

    2010-01-01

    The traditional fuzzy clustering algorithm and its extensions have been successfully applied in medical image segmentation. However, because of the variability of tissues and anatomical structures, the clustering results might be biased by the tissue population and intensity differences. For example, clustering-based algorithms tend to over-segment white matter tissues of MR brain images. To solve this problem, we introduce a tissue probability map constrained clustering algorithm and apply it to serial MR brain image segmentation, i.e., a series of 3-D MR brain images of the same subject at different time points. Using the new serial image segmentation algorithm in the framework of the CLASSIC framework, which iteratively segments the images and estimates the longitudinal deformations, we improved both accuracy and robustness for serial image computing, and at the mean time produced longitudinally consistent segmentation and stable measures. In the algorithm, the tissue probability maps consist of both the population-based and subject-specific segmentation priors. Experimental study using both simulated longitudinal MR brain data and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data confirmed that using both priors more accurate and robust segmentation results can be obtained. The proposed algorithm can be applied in longitudinal follow up studies of MR brain imaging with subtle morphological changes for neurological disorders. PMID:26566399

  12. Soft Tissue Phantoms for Realistic Needle Insertion: A Comparative Study.

    PubMed

    Leibinger, Alexander; Forte, Antonio E; Tan, Zhengchu; Oldfield, Matthew J; Beyrau, Frank; Dini, Daniele; Rodriguez Y Baena, Ferdinando

    2016-08-01

    Phantoms are common substitutes for soft tissues in biomechanical research and are usually tuned to match tissue properties using standard testing protocols at small strains. However, the response due to complex tool-tissue interactions can differ depending on the phantom and no comprehensive comparative study has been published to date, which could aid researchers to select suitable materials. In this work, gelatin, a common phantom in literature, and a composite hydrogel developed at Imperial College, were matched for mechanical stiffness to porcine brain, and the interactions during needle insertions within them were analyzed. Specifically, we examined insertion forces for brain and the phantoms; we also measured displacements and strains within the phantoms via a laser-based image correlation technique in combination with fluorescent beads. It is shown that the insertion forces for gelatin and brain agree closely, but that the composite hydrogel better mimics the viscous nature of soft tissue. Both materials match different characteristics of brain, but neither of them is a perfect substitute. Thus, when selecting a phantom material, both the soft tissue properties and the complex tool-tissue interactions arising during tissue manipulation should be taken into consideration. These conclusions are presented in tabular form to aid future selection.

  13. Surgical Ablation Assay for Studying Eye Regeneration in Planarians.

    PubMed

    Morton, Jacob M; Saad, Marwa A; Beane, Wendy S

    2017-04-14

    In the study of adult stem cells and regenerative mechanisms, planarian flatworms are a staple in vivo model system. This is due in large part to their abundant pluripotent stem cell population and ability to regenerate all cell and tissue types after injuries that would be catastrophic for most animals. Recently, planarians have gained popularity as a model for eye regeneration. Their ability to regenerate the entire eye (comprised of two tissue types: pigment cells and photoreceptors) allows for the dissection of the mechanisms regulating visual system regeneration. Eye ablation has several advantages over other techniques (such as decapitation or hole punch) for examining eye-specific pathways and mechanisms, the most important of which is that regeneration is largely restricted to eye tissues alone. The purpose of this video article is to demonstrate how to reliably remove the planarian optic cup without disturbing the brain or surrounding tissues. The handling of worms and maintenance of an established colony is also described. This technique uses a 31 G, 5/16-inch insulin needle to surgically scoop out the optic cup of planarians immobilized on a cold plate. This method encompasses both single and double eye ablation, with eyes regenerating within 1-2 weeks, allowing for a wide range of applications. In particular, this ablation technique can be easily combined with pharmacological and genetic (RNA interference) screens for a better understanding of regenerative mechanisms and their evolution, eye stem cells and their maintenance, and phototaxic behavioral responses and their neurological basis.

  14. Utilizing commercial microwave for rapid and effective immunostaining.

    PubMed

    Owens, Katrina; Park, Ji H; Kristian, Tibor

    2013-09-30

    There is an accumulating literature demonstrating the application of microwaves across a wide spectrum of histological techniques. Although exposure to microwaves for short periods resulted in substantial acceleration of all procedures this technique still is not adopted widely. In part, this may be due to concerns over solutions that will avoid induction of thermal damage to the tissue when using standard microwave. Here, we offer a cooling setup that can be used with conventional microwave ovens. We utilized dry ice for effective cooling during microwave irradiation of tissue samples. To prevent overheating, the cups with tissue during exposure to microwaves were surrounded with powdered dry ice. Since the dry ice does not touch the walls of the cups, freezing is prevented. Overheating is avoided by alternating the microwave treatment with 1-2 min time periods when the cups are cooled outside of the microwave oven. This technique was used on mouse brain sections that were immunostained with microglia-specific CD68 antiserum and astrocyte labeling GFAP antibody. Both standard and microwave-assisted immonolabeling gave comparable results visualizing cells with fine processes and low background signal. Short incubation time in the microwave requires high concentrations of antibody for tissue immunostaining. We show that by prolonging the microwaving procedure we were able to reduce the antibody concentration to the levels used in standard immunostaining protocol. In summary, our technique gives a possibility to use a conventional microwave for rapid and effective immunolabeling resulting in reduced amount of antibody required for satisfactory immunostaining. Published by Elsevier B.V.

  15. High-contrast differentiation resolution 3D imaging of rodent brain by X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Zikmund, T.; Novotná, M.; Kavková, M.; Tesařová, M.; Kaucká, M.; Szarowská, B.; Adameyko, I.; Hrubá, E.; Buchtová, M.; Dražanová, E.; Starčuk, Z.; Kaiser, J.

    2018-02-01

    The biomedically focused brain research is largely performed on laboratory mice considering a high homology between the human and mouse genomes. A brain has an intricate and highly complex geometrical structure that is hard to display and analyse using only 2D methods. Applying some fast and efficient methods of brain visualization in 3D will be crucial for the neurobiology in the future. A post-mortem analysis of experimental animals' brains usually involves techniques such as magnetic resonance and computed tomography. These techniques are employed to visualize abnormalities in the brains' morphology or reparation processes. The X-ray computed microtomography (micro CT) plays an important role in the 3D imaging of internal structures of a large variety of soft and hard tissues. This non-destructive technique is applied in biological studies because the lab-based CT devices enable to obtain a several-micrometer resolution. However, this technique is always used along with some visualization methods, which are based on the tissue staining and thus differentiate soft tissues in biological samples. Here, a modified chemical contrasting protocol of tissues for a micro CT usage is introduced as the best tool for ex vivo 3D imaging of a post-mortem mouse brain. This way, the micro CT provides a high spatial resolution of the brain microscopic anatomy together with a high tissue differentiation contrast enabling to identify more anatomical details in the brain. As the micro CT allows a consequent reconstruction of the brain structures into a coherent 3D model, some small morphological changes can be given into context of their mutual spatial relationships.

  16. Early brain response to low-dose radiation exposure involves molecular networks and pathways associated with cognitive functions, advanced aging and Alzheimer's disease.

    PubMed

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J

    2009-01-01

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy and environmental nuclear contamination as well as for Earth-orbit and space missions. Analyses of transcriptome profiles of mouse brain tissue after whole-body irradiation showed that low-dose exposures (10 cGy) induced genes not affected by high-dose radiation (2 Gy) and that low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues and pathways that were specific for brain tissue. Low-dose genes clustered into a saturated network (P < 10(-53)) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down-regulated in normal human aging and Alzheimer's disease.

  17. Time-dependent diffuse reflectance spectroscopy for in vivo characterization of pediatric epileptogenic brain lesions

    NASA Astrophysics Data System (ADS)

    Oh, Sanghoon; Ragheb, John; Bhatia, Sanjiv; Sandberg, David; Johnson, Mahlon; Fernald, Bradley; Lin, Wei-Chiang

    2008-02-01

    Optical spectroscopy for in vivo tissue diagnosis is performed traditionally in a static manner; a snap shot of the tissue biochemical and morphological characteristics is captured through the interaction between light and the tissue. This approach does not capture the dynamic nature of a living organ, which is critical to the studies of brain disorders such as epilepsy. Therefore, a time-dependent diffuse reflectance spectroscopy system with a fiber-optic probe was designed and developed. The system was designed to acquire broadband diffuse reflectance spectra (240 ~ 932 nm) at an acquisition rate of 33 Hz. The broadband spectral acquisition feature allows simultaneous monitoring of various physiological characteristics of tissues. The utility of such a system in guiding pediatric epilepsy surgery was tested in a pilot clinical study including 13 epilepsy patients and seven brain tumor patients. The control patients were children undergoing suregery for brain tumors in which measurements were taken from normal brain exposed during the surgery. Diffuse reflectance spectra were acquired for 12 seconds from various parts of the brain of the patients during surgery. Recorded spectra were processed and analyzed in both spectral and time domains to gain insights into the dynamic changes in, for example, hemodynamics of the investigated brain tissue. One finding from this pilot study is that unsynchronized alterations in local blood oxygenation and local blood volume were observed in epileptogenic cortex. These study results suggest the advantage of using a time-dependent diffuse reflectance spectroscopy system to study epileptogenic brain in vivo.

  18. Mucopolysaccharide complexes in the fibrous tissue surrounding hydrophilic polymers in subcutaneous implantation.

    PubMed

    Sprincl, L; Terescenko, T L; Kálal, J; Lipatova, T E; Kopecek, J; Pchakadze, G A

    1976-01-01

    The biocompatibility of three types of hydrophilic poly-(glycol methacrylate) gels--homogeneous, microporous and macroporous--was investigated in an experimental subcutaneous implantation. The occurrence of mucopolysaccharide complexes formed by both hyaluronic acid and chondroitine sulphates was examined in the fibrous tissue which surrounds the implant and penetrates into it in the case of a macroporous polymer. In an early stage of investigation hyaluronic acid prevails, but with proceeding collagenization the chondroitine sulphate part becomes predominant.

  19. Intraoperative application of thermal camera for the assessment of during surgical resection or biopsy of human's brain tumors

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Piatkowski, T.; Polakowski, H.; Kaczmarska, K.; Czernicki, Z.; Bogucki, J.; Zebala, M.

    2014-05-01

    Motivation to undertake research on brain surface temperature in clinical practice is based on a strong conviction that the enormous progress in thermal imaging techniques and camera design has a great application potential. Intraoperative imaging of pathological changes and functionally important areas of the brain is not yet fully resolved in neurosurgery and remains a challenge. A study of temperature changes across cerebral cortex was performed for five patients with brain tumors (previously diagnosed using magnetic resonance or computed tomography) during surgical resection or biopsy of tumors. Taking into account their origin and histology the tumors can be divided into the following types: gliomas, with different degrees of malignancy (G2 to G4), with different metabolic activity and various temperatures depending on the malignancy level (3 patients), hypervascular tumor associated with meninges (meningioma), metastatic tumor - lung cancer with a large cyst and noticeable edema. In the case of metastatic tumor with large edema and a liquid-filled space different temperature of a cerebral cortex were recorded depending on metabolic activity. Measurements have shown that the temperature on the surface of the cyst was on average 2.6 K below the temperature of surrounding areas. It has been also observed that during devascularization of a tumor, i.e. cutting off its blood vessels, the tumor temperature lowers significantly in spite of using bipolar coagulation, which causes additional heat emission in the tissue. The results of the measurements taken intra-operatively confirm the capability of a thermal camera to perform noninvasive temperature monitoring of a cerebral cortex. As expected surface temperature of tumors is different from surface temperature of tissues free from pathological changes. The magnitude of this difference depends on histology and the origin of the tumor. These conclusions lead to taking on further experimental research, implementation and further verification of the thermal imaging method and its usefulness in clinical practice. In particular the research will be undertaken on intraoperative temperature changes of active cerebral cortex areas in post-anesthetic recovery.

  20. [Effects of mercazolyl and L-thyroxine on the antiedematous activity of immunotropic preparations during development of toxic brain edema and swelling].

    PubMed

    Platonov, I A; Anashchenkova, T A; Andreeva, T A

    2008-01-01

    Dysfunction of thyroid gland plays an important role in the pathogenesis of brain edema and swelling. Toxic brain edema and swelling was modeled under condition of hypo- and hyperfunction of thyroid gland. Mercazolyl and L-thyroxine ambiguously influence the development of toxic brain edema and swelling in rats. L-thyroxin (35.7 microg/kg) favors increase in the water content in brain tissue, which can be considered as synergism with the edematous factor and the formation of brain tissue susceptibility to the development of brain edema and swelling. The administration of mercazolyl (5 mg/kg) and L-thyroxin (35.7 microg/kg) with thymogen (10 microg/kg), thymalin (1.2 mg/kg), cycloferon (0.5 mg/kg) results in decreasing brain tissue density as compared to intact animals. Dysfunction of the thyroid gland leads to changes in pharmacodynamics of immune preparations, which results in a decrease of their antiedematous activity.

  1. In vivo assessment of the structure of skin microcirculation by reflectance confocal-laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Sugata, Keiichi; Osanai, Osamu; Kawada, Hiromitsu

    2012-02-01

    One of the major roles of the skin microcirculation is to supply oxygen and nutrition to the surrounding tissue. Regardless of the close relationship between the microcirculation and the surrounding tissue, there are few non-invasive methods that can evaluate both the microcirculation and its surrounding tissue at the same site. We visualized microcapillary plexus structures in human skin using in vivo reflectance confocal-laser-scanning microscopy (CLSM), Vivascope 3000® (Lucid Inc., USA) and Image J software (National Institutes of Health, USA) for video image processing. CLSM is a non-invasive technique that can visualize the internal structure of the skin at the cellular level. In addition to internal morphological information such as the extracellular matrix, our method reveals capillary structures up to the depth of the subpapillary plexus at the same site without the need for additional optical systems. Video images at specific depths of the inner forearm skin were recorded. By creating frame-to-frame difference images from the video images using off-line video image processing, we obtained images that emphasize the brightness depending on changes of intensity coming from the movement of blood cells. Merging images from different depths of the skin elucidates the 3-dimensional fine line-structure of the microcirculation. Overall our results show the feasibility of a non-invasive, high-resolution imaging technique to characterize the skin microcirculation and the surrounding tissue.

  2. Increased lipoprotein lipase activity in non-small cell lung cancer tissue predicts shorter patient survival.

    PubMed

    Trost, Zoran; Sok, Miha; Marc, Janja; Cerne, Darko

    2009-07-01

    Cumulative evidence suggests the involvement of lipoprotein lipase (LPL) in tumor progression. We tested the hypothesis that increased LPL activity in resectable non-small cell lung cancer (NSCLC) tissue and the increased LPL gene expression in the surrounding non-cancer lung tissue found in our previous study are predictors of patient survival. Forty two consecutive patients with resected NSCLC were enrolled in the study. Paired samples of lung cancer tissue and adjacent non-cancer lung tissue were collected from resected specimens for baseline LPL activity and gene expression estimation. During a 4-year follow-up, 21 patients died due to tumor progression. One patient died due to a non-cancer reason and was not included in Cox regression analysis. High LPL activity in cancer tissue (relative to the adjacent non-cancer lung tissue) predicted shorter survival, independently of standard prognostic factors (p=0.003). High gene expression in the non-cancer lung tissue surrounding the tumor had no predictive value. Our study further underlines the involvement of cancer tissue LPL activity in tumor progression.

  3. Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat

    PubMed Central

    Williams, Anthony J; Wei, Hans H; Dave, Jitendra R; Tortella, Frank C

    2007-01-01

    Background Neuroinflammation following acute brain trauma is considered to play a prominent role in both the pathological and reconstructive response of the brain to injury. Here we characterize and contrast both an acute and delayed phase of inflammation following experimental penetrating ballistic brain injury (PBBI) in rats out to 7 days post-injury. Methods Quantitative real time PCR (QRT-PCR) was used to evaluate changes in inflammatory gene expression from the brain tissue of rats exposed to a unilateral frontal PBBI. Brain histopathology was assessed using hematoxylin and eosin (H&E), silver staining, and immunoreactivity for astrocytes (GFAP), microglia (OX-18) and the inflammatory proteins IL-1β and ICAM-1. Results Time course analysis of gene expression levels using QRT-PCR indicated a peak increase during the acute phase of the injury between 3–6 h for the cytokines TNF-α (8–11 fold), IL-1β (11–13 fold), and IL-6 (40–74 fold) as well as the cellular adhesion molecules VCAM (2–3 fold), ICAM-1 (7–15 fold), and E-selectin (11–13 fold). Consistent with the upregulation of pro-inflammatory genes, peripheral blood cell infiltration was a prominent post-injury event with peak levels of infiltrating neutrophils (24 h) and macrophages (72 h) observed throughout the core lesion. In regions of the forebrain immediately surrounding the lesion, strong immunoreactivity for activated astrocytes (GFAP) was observed as early as 6 h post-injury followed by prominent microglial reactivity (OX-18) at 72 h and resolution of both cell types in cortical brain regions by day 7. Delayed thalamic inflammation (remote from the primary lesion) was also observed as indicated by both microglial and astrocyte reactivity (72 h to 7 days) concomitant with the presence of fiber degeneration (silver staining). Conclusion In summary, PBBI induces both an acute and delayed neuroinflammatory response occurring in distinct brain regions, which may provide useful diagnostic information for the treatment of this type of brain injury. PMID:17605820

  4. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    PubMed

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539). Copyright © 2013 by the Research Society on Alcoholism.

  5. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age

    PubMed Central

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2013-01-01

    The New South Wales Tissue Resource Centre (NSW TRC) at the University of Sydney, Australia is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain disease (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951–61) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539–52). PMID:24033426

  6. Simultaneous measurement of brain tissue oxygen partial pressure, temperature, and global oxygen consumption during hibernation, arousal, and euthermy in non-sedated and non-anesthetized Arctic ground squirrels.

    PubMed

    Ma, Yilong; Wu, Shufen

    2008-09-30

    This study reports an online temperature correction method for determining tissue oxygen partial pressure P(tO2) in the striatum and a novel simultaneous measurement of brain P(tO2) and temperature (T(brain)) in conjunction with global oxygen consumption V(O2) in non-sedated and non-anesthetized freely moving Arctic ground squirrels (AGS, Spermophilus parryii). This method fills an important research gap-the lack of a suitable method for physiologic studies of tissue P(O2) in hibernating or other cool-blooded species. P(tO2) in AGS brain during euthermy (21.22+/-2.06 mmHg) is significantly higher (P=0.016) than during hibernation (13.21+/-0.46 mmHg) suggests brain oxygenation in the striatum is normoxic during euthermy and hypoxic during hibernation. These results in P(tO2) are different from blood oxygen partial pressure P(aO2) in AGS, which are significantly lower during euthermy than during hibernation and are actually hypoxic during euthermy and normoxic during hibernation in our previous study. This intriguing difference between the P(O2) of brain tissue and blood during these two physiological states suggests that regional mechanisms in the brain play a role in maintaining tissue oxygenation and protect against hypoxia during hibernation.

  7. Distribution of eastern equine encephalomyelitis viral protein and nucleic acid within central nervous tissue lesions in white-tailed deer (Odocoileus virginianus).

    PubMed

    Kiupel, M; Fitzgerald, S D; Pennick, K E; Cooley, T M; O'Brien, D J; Bolin, S R; Maes, R K; Del Piero, F

    2013-11-01

    An outbreak of eastern equine encephalomyelitis (EEE) occurred in Michigan free-ranging white-tailed deer (Odocoileus virginianus) during late summer and fall of 2005. Brain tissue from 7 deer with EEE, as confirmed by reverse transcriptase polymerase chain reaction, was studied. Detailed microscopic examination, indirect immunohistochemistry (IHC), and in situ hybridization (ISH) were used to characterize the lesions and distribution of the EEE virus within the brain. The main lesion in all 7 deer was a polioencephalomyelitis with leptomeningitis, which was more prominent within the cerebral cortex, thalamus, hypothalamus, and brainstem. In 3 deer, multifocal microhemorrhages surrounded smaller vessels with or without perivascular cuffing, although vasculitis was not observed. Neuronal necrosis, associated with perineuronal satellitosis and neutrophilic neuronophagia, was most prominent in the thalamus and the brainstem. Positive IHC labeling was mainly observed in the perikaryon, axons, and dendrites of necrotic and intact neurons and, to a much lesser degree, in glial cells, a few neutrophils in the thalamus and the brainstem, and occasionally the cerebral cortex of the 7 deer. There was minimal IHC-based labeling in the cerebellum and hippocampus. ISH labeling was exclusively observed in the cytoplasm of neurons, with a distribution similar to IHC-positive neurons. Neurons positive by IHC and ISH were most prominent in the thalamus and brainstem. The neuropathology of EEE in deer is compared with other species. Based on our findings, EEE has to be considered a differential diagnosis for neurologic disease and meningoencephalitis in white-tailed deer.

  8. Hybrid Monte Carlo-Diffusion Method For Light Propagation in Tissue With a Low-Scattering Region

    NASA Astrophysics Data System (ADS)

    Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji

    2003-06-01

    The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.

  9. Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region.

    PubMed

    Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji

    2003-06-01

    The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.

  10. Epigenetics of the Developing Brain

    ERIC Educational Resources Information Center

    Champagne, Frances A.

    2015-01-01

    Advances in understanding of the dynamic molecular interplay between DNA and its surrounding proteins suggest that epigenetic mechanisms are a critical link between early life experiences (e.g., prenatal stress, parent-offspring interactions) and long-term changes in brain and behavior. Although much of this evidence comes from animal studies,…

  11. Frozen tissue preparation for high-resolution multiplex histological analyses of human brain specimens.

    PubMed

    Shao, Fangjie; Jiang, Wenhong; Gao, Qingqing; Li, Baizhou; Sun, Chongran; Wang, Qiyuan; Chen, Qin; Sun, Bing; Shen, Hong; Zhu, Keqing; Zhang, Jianmin; Liu, Chong

    2017-10-01

    The availability of a comprehensive tissue library is essential for elucidating the function and pathology of human brains. Considering the irreplaceable status of the formalin-fixation-paraffin-embedding (FFPE) preparation in routine pathology and the advantage of ultra-low temperature to preserve nucleic acids and proteins for multi-omics studies, these methods have become major modalities for the construction of brain tissue libraries. Nevertheless, the use of FFPE and snap-frozen samples is limited in high-resolution histological analyses because the preparation destroys tissue integrity and/or many important cellular markers. To overcome these limitations, we detailed a protocol to prepare and analyze frozen human brain samples that is particularly suitable for high-resolution multiplex immunohistological studies. As an alternative, we offered an optimized procedure to rescue snap-frozen tissues for the same purpose. Importantly, we provided a guideline to construct libraries of frozen tissue with minimal effort, cost and space. Taking advantage of this new tissue preparation modality to nicely preserve the cellular information that was otherwise damaged using conventional methods and to effectively remove tissue autofluorescence, we described the high-resolution landscape of the cellular composition in both lower-grade gliomas and glioblastoma multiforme samples. Our work showcases the great value of fixed frozen tissue in understanding the cellular mechanisms of CNS functions and abnormalities.

  12. Grey and white matter differences in brain energy metabolism in first episode schizophrenia: 31P-MRS chemical shift imaging at 4 Tesla.

    PubMed

    Jensen, J Eric; Miller, Jodi; Williamson, Peter C; Neufeld, Richard W J; Menon, Ravi S; Malla, Ashok; Manchanda, Rahul; Schaefer, Betsy; Densmore, Maria; Drost, Dick J

    2006-03-31

    Altered high energy and membrane metabolism, measured with phosphorus magnetic resonance spectroscopy (31P-MRS), has been inconsistently reported in schizophrenic patients in several anatomical brain regions implicated in the pathophysiology of this illness, with little attention to the effects of brain tissue type on the results. Tissue regression analysis correlates brain tissue type to measured metabolite levels, allowing for the extraction of "pure" estimated grey and white matter compartment metabolite levels. We use this tissue analysis technique on a clinical dataset of first episode schizophrenic patients and matched controls to investigate the effect of brain tissue specificity on altered energy and membrane metabolism. In vivo brain spectra from two regions, (a) the fronto-temporal-striatal region and (b) the frontal-lobes, were analyzed from 12 first episode schizophrenic patients and 11 matched controls from a (31)P chemical shift imaging (CSI) study at 4 Tesla (T) field strength. Tissue regression analyses using voxels from each region were performed relating metabolite levels to tissue content, examining phosphorus metabolite levels in grey and white matter compartments. Compared with controls, the first episode schizophrenic patient group showed significantly increased adenosine triphosphate levels (B-ATP) in white matter and decreased B-ATP levels in grey matter in the fronto-temporal-striatal region. No significant metabolite level differences were found in grey or white matter compartments in the frontal cortex. Tissue regression analysis reveals grey and white matter specific aberrations in high-energy phosphates in first episode schizophrenia. Although past studies report inconsistent regional differences in high-energy phosphate levels in schizophrenia, the present analysis suggests more widespread differences that seem to be strongly related to tissue type. Our data suggest that differences in grey and white matter tissue content between past studies may account for some of the variance in the literature.

  13. [Alterations of glial fibrillary acidic protein in rat brain after gamma knife irradiation].

    PubMed

    Ma, Z M; Jiang, B; Ma, J R

    2001-08-28

    To study glial fibrillary acidic protein (GFAP) immunoreactivity in different time and water content of the rat brain treated with gamma knife radiotherapy and to understand the alteration course of the brain lesion after a single high dose radiosurgical treatment. In the brains of the normal rats were irradiated by gamma knife with 160 Gy-high dose. The irradiated rats were then killed on the 1st day, 7th day, 14th day, and 28th day after radiotherapy, respectively. The positive cells of GFAP in brain tissue were detected by immunostaining; the water content of the brain tissue was measured by microgravimetry. The histological study of the irradiated brain tissue was performed with H.E. and examined under light microscope. The numbers of GFAP-positive astrocytes began to increase on the 1st day after gamma knife irradiation. It was enlarged markedly in the number and size of GFAP-stained astrocytes over the irradiated areas. Up to the 28th day, circumscribed necrosis foci (4 mm in diameter) was seen in the central area of the target. In the brain tissue around the necrosis, GFAP-positive astrocytes significantly increased (P < 0.01, compared with the control group). The swelling of cells in irradiated region was observed on the 1st day; after irradiation endothelial cells degenerated and red blood cells escaped from blood vessel on the 7th day; leakage of Evans blue dye was observed in the target region on the 14th day. There was a significant decrease of specific gravity in the irradiated brain tissue the 14th and 28th day after irradiation. The results suggest that GFAP can be used as a marker for the radiation-induced brain injury. The brain edema and disruption of brain-blood barrier can be occurred during the acute stage after irradiation.

  14. Effects of tissue optical properties on time-resolved fluorescence measurements from brain tumors: an experimental and computational study

    NASA Astrophysics Data System (ADS)

    Butte, Pramod V.; Vishwanath, Karthik; Pikul, Brian K.; Mycek, Mary-Ann; Marcu, Laura

    2003-07-01

    Time-Resolved Laser-Induced Fluorescence Spectroscopy (tr-LIFS) offers the potential for intra-operative diagnosis of primary brain tumors. However, both the intrinsic properties of endogenous fluorophores and the optical properties of brain tissue could affect the fluorescence measurements from brain. Scattering has been demonstrated to increase, for instance, detected lifetimes by 10-20% in media less scattering than the brain. The overall goal of this study is to investigate experimentally and computationally how optical properties of distinct types of brain tissue (normal porcine white and gray matter) affect the propagation of the excitation pulse and fluorescent transients and the detected fluorescence lifetime. A time-domain tr-LIFS apparatus (fast digitizer and gated detection) was employed to measure the propagation of ultra-short pulsed light through brain specimens (1-2.5-mm source-detector separation; 0.100-mm increment). A Monte Carlo model for semi-infinite turbid media was used to simulate time-resolved light propagation for arbitrary source-detector fiber geometries and optical fiber specifications; and to record spatially- and temporally resolved information. We determined a good correlation between experimental and computational results. Our findings provide means for quantification of time-resolved fluorescence spectra from healthy and diseased brain tissue.

  15. Bioavailability and tissue distribution of Dechloranes in wild frogs (Rana limnocharis) from an e-waste recycling area in Southeast China.

    PubMed

    Li, Long; Wang, Wenyue; Lv, Quanxia; Ben, Yujie; Li, Xinghong

    2014-03-01

    Dechlorane Plus (DP), a flame retardant used as an alternative to decabromodiphenylether, has been frequently detected in organisms, indicating its bioaccumulation and biomagnification potential in aquatic and terrestrial species. However, little data is available on the bioaccumulation of DP in amphibians. Dechlorane Plus and its analogs (DPs) were detected in the liver, muscle and brain tissues of wild frogs (Rana limnocharis), which were collected from an e-waste recycling site, Southeast China. DP, Mirex, Dec 602 and a dechlorinated compound of DP (anti-Cl11-DP) varied in the range of 2.01-291, 0.650-179, 0.260-12.4, and not detected (nd)-8.67 ng/g lipid weight, respectively. No difference of tissue distribution was found for syn-DP, Mirex and Dec 602 between the liver and muscle tissue (liver/muscle concentration ratio close to 1, p > 0.05). However, higher retention was observed for anti-DP and anti-Cl11-DP in the frog muscle relative to the liver tissue (liver/muscle concentration ratio < 1, p < 0.05). Additionally, the blood-brain barrier was found to work efficiently to suppress these compounds entering brain tissues in this species (liver/brain concentration ratio > 1, p < 0.05), and the molecular weight was a key factor impacting the extent of the blood-brain barrier. Compared to levels in the muscle and brain tissue, a preferential enrichment of syn-DP was observed in the liver tissue, suggesting the occurrence of stereo-selective bioaccumulation in the wild frog. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  16. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators.

    PubMed

    Lamba, Vishal; Yasuda, Kazuto; Lamba, Jatinder K; Assem, Mahfoud; Davila, Julio; Strom, Stephen; Schuetz, Erin G

    2004-09-15

    To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues.

  17. A combination of experimental measurement, constitutive damage model, and diffusion tensor imaging to characterize the mechanical properties of the human brain.

    PubMed

    Karimi, Alireza; Rahmati, Seyed Mohammadali; Razaghi, Reza

    2017-09-01

    Understanding the mechanical properties of the human brain is deemed important as it may subject to various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the frontal lobe of the human brain. The constrained nonlinear minimization method was employed to identify the brain coefficients according to the axial and transversal compressive data. The pseudo-elastic damage model data was also well compared with that of the experimental data and it not only up to the primary loading but also the discontinuous softening could well address the mechanical behavior of the brain tissue.

  18. Syringomyelia

    MedlinePlus

    ... which brain tissue protrudes into your spinal canal (Chiari malformation). Other causes of syringomyelia include spinal cord tumors, ... protrusion of brain tissue into your spinal canal (Chiari malformation), symptoms generally may begin between ages 25 and ...

  19. Dedicated mobile high resolution prostate PET imager with an insertable transrectal probe

    DOEpatents

    Majewski, Stanislaw; Proffitt, James

    2010-12-28

    A dedicated mobile PET imaging system to image the prostate and surrounding organs. The imaging system includes an outside high resolution PET imager placed close to the patient's torso and an insertable and compact transrectal probe that is placed in close proximity to the prostate and operates in conjunction with the outside imager. The two detector systems are spatially co-registered to each other. The outside imager is mounted on an open rotating gantry to provide torso-wide 3D images of the prostate and surrounding tissue and organs. The insertable probe provides closer imaging, high sensitivity, and very high resolution predominately 2D view of the prostate and immediate surroundings. The probe is operated in conjunction with the outside imager and a fast data acquisition system to provide very high resolution reconstruction of the prostate and surrounding tissue and organs.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emin, David, E-mail: emin@unm.edu; Akhtari, Massoud; Ellingson, B. M.

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  1. POWER DENSITY, FIELD INTENSITY, AND CARRIER FREQUENCY DETERMINANTS OF RF-ENERGY-INDUCED CALCIUM-ION EFFLUX FROM BRAIN TISSUE

    EPA Science Inventory

    To explain a carrier frequency dependence reported for radiofrequency (RF)-induced calcium-ion efflux from brain tissue, a chick-brain hemisphere bathed in buffer solution is modeled as a sphere within the uniform field of the incident electromagnetic wave. Calculations on a sphe...

  2. Optical imaging characterizing brain response to thermal insult in injured rodent

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Shaul, Oren; Meitav, Omri; Pinhasi, Gadi A.

    2018-02-01

    We used spatially modulated optical imaging system to assess the effect of temperature elevation on intact brain tissue in a mouse heatstress model. Heatstress or heatstroke is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological and hematological changes. During experiments, brain temperature was measured concurrently with a thermal camera while core body temperature was monitored with rectal thermocouple probe. Changes in a battery of macroscopic brain physiological parameters, such as hemoglobin oxygen saturation level, cerebral water content, as well as intrinsic tissue optical properties were monitored during temperature elevation. These concurrent changes reflect the pathophysiology of the brain during heatstress and demonstrate successful monitoring of thermoregulation mechanisms. In addition, the variation of tissue refractive index was calculated showing a monotonous decrease with increasing wavelength. We found increased temperature to greatly affect both the scattering properties and refractive index which represent cellular and subcellular swelling indicative of neuronal damage. The overall trends detected in brain tissue parameters were consistent with previous observations using conventional medical devices and optical modalities.

  3. Fluorescence laminar optical tomography for brain imaging: system implementation and performance evaluation.

    PubMed

    Azimipour, Mehdi; Sheikhzadeh, Mahya; Baumgartner, Ryan; Cullen, Patrick K; Helmstetter, Fred J; Chang, Woo-Jin; Pashaie, Ramin

    2017-01-01

    We present our effort in implementing a fluorescence laminar optical tomography scanner which is specifically designed for noninvasive three-dimensional imaging of fluorescence proteins in the brains of small rodents. A laser beam, after passing through a cylindrical lens, scans the brain tissue from the surface while the emission signal is captured by the epi-fluorescence optics and is recorded using an electron multiplication CCD sensor. Image reconstruction algorithms are developed based on Monte Carlo simulation to model light–tissue interaction and generate the sensitivity matrices. To solve the inverse problem, we used the iterative simultaneous algebraic reconstruction technique. The performance of the developed system was evaluated by imaging microfabricated silicon microchannels embedded inside a substrate with optical properties close to the brain as a tissue phantom and ultimately by scanning brain tissue in vivo. Details of the hardware design and reconstruction algorithms are discussed and several experimental results are presented. The developed system can specifically facilitate neuroscience experiments where fluorescence imaging and molecular genetic methods are used to study the dynamics of the brain circuitries.

  4. White matter hyperintensities and normal-appearing white matter integrity in the aging brain.

    PubMed

    Maniega, Susana Muñoz; Valdés Hernández, Maria C; Clayden, Jonathan D; Royle, Natalie A; Murray, Catherine; Morris, Zoe; Aribisala, Benjamin S; Gow, Alan J; Starr, John M; Bastin, Mark E; Deary, Ian J; Wardlaw, Joanna M

    2015-02-01

    White matter hyperintensities (WMH) of presumed vascular origin are a common finding in brain magnetic resonance imaging of older individuals and contribute to cognitive and functional decline. It is unknown how WMH form, although white matter degeneration is characterized pathologically by demyelination, axonal loss, and rarefaction, often attributed to ischemia. Changes within normal-appearing white matter (NAWM) in subjects with WMH have also been reported but have not yet been fully characterized. Here, we describe the in vivo imaging signatures of both NAWM and WMH in a large group of community-dwelling older people of similar age using biomarkers derived from magnetic resonance imaging that collectively reflect white matter integrity, myelination, and brain water content. Fractional anisotropy (FA) and magnetization transfer ratio (MTR) were significantly lower, whereas mean diffusivity (MD) and longitudinal relaxation time (T1) were significantly higher, in WMH than NAWM (p < 0.0001), with MD providing the largest difference between NAWM and WMH. Receiver operating characteristic analysis on each biomarker showed that MD differentiated best between NAWM and WMH, identifying 94.6% of the lesions using a threshold of 0.747 × 10(-9) m(2)s(-1) (area under curve, 0.982; 95% CI, 0.975-0.989). Furthermore, the level of deterioration of NAWM was strongly associated with the severity of WMH, with MD and T1 increasing and FA and MTR decreasing in NAWM with increasing WMH score, a relationship that was sustained regardless of distance from the WMH. These multimodal imaging data indicate that WMH have reduced structural integrity compared with surrounding NAWM, and MD provides the best discriminator between the 2 tissue classes even within the mild range of WMH severity, whereas FA, MTR, and T1 only start reflecting significant changes in tissue microstructure as WMH become more severe. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Ganoderma Lucidum Protects Rat Brain Tissue Against Trauma-Induced Oxidative Stress.

    PubMed

    Özevren, Hüseyin; İrtegün, Sevgi; Deveci, Engin; Aşır, Fırat; Pektanç, Gülsüm; Deveci, Şenay

    2017-10-01

    Traumatic brain injury causes tissue damage, breakdown of cerebral blood flow and metabolic regulation. This study aims to investigate the protective influence of antioxidant Ganoderma lucidum ( G. lucidum ) polysaccharides (GLPs) on brain injury in brain-traumatized rats. Sprague-Dawley conducted a head-traumatized method on rats by dropping off 300 g weight from 1 m height. Groups were categorized as control, G. lucidum , trauma, trauma+ G. lucidum (20 mL/kg per day via gastric gavage). Brain tissues were dissected from anesthetized rats 7 days after injury. For biochemical analysis, malondialdehyde, glutathione and myeloperoxidase values were measured. In histopathological examination, neuronal damage in brain cortex and changes in blood brain barrier were observed. In the analysis of immunohistochemical and western blot, p38 mitogen-activated protein kinase, vascular endothelial growth factor and cluster of differentiation 68 expression levels were shown. These analyzes demonstrated the beneficial effects of GLPs on brain injury. We propose that GLPs treatment after brain injury could be an alternative treatment to decraseing inflammation and edema, preventing neuronal and glial cells degeneration if given in appropriate dosage and in particular time intervals.

  6. Evaluating Temperature Changes of Brain Tissue Due to Induced Heating of Cell Phone Waves.

    PubMed

    Forouharmajd, Farhad; Pourabdian, Siamak; Ebrahimi, Hossein

    2018-01-01

    Worries have recently been increased in the absorption of radiofrequency waves and their destructing effects on human health by increasing use of cell phones (mobile phones). This study performed to determine the thermal changes due to mobile phone radio frequency waves in gray and white brain tissue. This study is an empirical study, where the thermal changes of electromagnetic waves resulted from cell phones (900 MHZ, specific absorption rate for head 1.18 w/kg) on the 15 brain tissue of a cow were analyzed in a compartment with three different thickness of 2 mm, 12 mm, and 22 mm, for 15 min. The Lutron thermometer (model: MT-917) with 0.01°C precision was used for measuring the tissue temperature. For each thickness was measured three times. Data analysis is done by Lutron and MATLAB software packages. In confronting of the tissue with the cell phone, the temperature was increased by 0.53°C in the 2 mm thickness that is the gray matter of the brain, increased by 0.99°C in the 12 mm thickness, and also increased by 0.92°C in the 22 mm thickness. Brain temperature showed higher rates than the base temperature after 15 min of confrontation with cell phone waves in all the three thicknesses. Cell phone radiated radio frequency waves were effective on increasing brain tissue temperature, and this temperature increase has cumulative effect on the tissue, being higher, for some time after the confrontation than the time with no confrontation.

  7. Evaluating Temperature Changes of Brain Tissue Due to Induced Heating of Cell Phone Waves

    PubMed Central

    Forouharmajd, Farhad; Pourabdian, Siamak; Ebrahimi, Hossein

    2018-01-01

    Background: Worries have recently been increased in the absorption of radiofrequency waves and their destructing effects on human health by increasing use of cell phones (mobile phones). This study performed to determine the thermal changes due to mobile phone radio frequency waves in gray and white brain tissue. Methods: This study is an empirical study, where the thermal changes of electromagnetic waves resulted from cell phones (900 MHZ, specific absorption rate for head 1.18 w/kg) on the 15 brain tissue of a cow were analyzed in a compartment with three different thickness of 2 mm, 12 mm, and 22 mm, for 15 min. The Lutron thermometer (model: MT-917) with 0.01°C precision was used for measuring the tissue temperature. For each thickness was measured three times. Data analysis is done by Lutron and MATLAB software packages. Results: In confronting of the tissue with the cell phone, the temperature was increased by 0.53°C in the 2 mm thickness that is the gray matter of the brain, increased by 0.99°C in the 12 mm thickness, and also increased by 0.92°C in the 22 mm thickness. Brain temperature showed higher rates than the base temperature after 15 min of confrontation with cell phone waves in all the three thicknesses. Conclusions: Cell phone radiated radio frequency waves were effective on increasing brain tissue temperature, and this temperature increase has cumulative effect on the tissue, being higher, for some time after the confrontation than the time with no confrontation. PMID:29861880

  8. The sensitivity of normal brain and intracranially implanted VX2 tumour to interstitial photodynamic therapy.

    PubMed Central

    Lilge, L.; Olivo, M. C.; Schatz, S. W.; MaGuire, J. A.; Patterson, M. S.; Wilson, B. C.

    1996-01-01

    The applicability and limitations of a photodynamic threshold model, used to describe quantitatively the in vivo response of tissues to photodynamic therapy, are currently being investigated in a variety of normal and malignant tumour tissues. The model states that tissue necrosis occurs when the number of photons absorbed by the photosensitiser per unit tissue volume exceeds a threshold. New Zealand White rabbits were sensitised with porphyrin-based photosensitisers. Normal brain or intracranially implanted VX2 tumours were illuminated via an optical fibre placed into the tissue at craniotomy. The light fluence distribution in the tissue was measured by multiple interstitial optical fibre detectors. The tissue concentration of the photosensitiser was determined post mortem by absorption spectroscopy. The derived photodynamic threshold values for normal brain are significantly lower than for VX2 tumour for all photosensitisers examined. Neuronal damage is evident beyond the zone of frank necrosis. For Photofrin the threshold decreases with time delay between photosensitiser administration and light treatment. No significant difference in threshold is found between Photofrin and haematoporphyrin derivative. The threshold in normal brain (grey matter) is lowest for sensitisation by 5 delta-aminolaevulinic acid. The results confirm the very high sensitivity of normal brain to porphyrin photodynamic therapy and show the importance of in situ light fluence monitoring during photodynamic irradiation. Images Figure 1 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8562339

  9. Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification

    PubMed Central

    Desroches, Joannie; Jermyn, Michael; Mok, Kelvin; Lemieux-Leduc, Cédric; Mercier, Jeanne; St-Arnaud, Karl; Urmey, Kirk; Guiot, Marie-Christine; Marple, Eric; Petrecca, Kevin; Leblond, Frédéric

    2015-01-01

    A detailed characterization study is presented of a Raman spectroscopy system designed to maximize the volume of resected cancer tissue in glioma surgery based on in vivo molecular tissue characterization. It consists of a hand-held probe system measuring spectrally resolved inelastically scattered light interacting with tissue, designed and optimized for in vivo measurements. Factors such as linearity of the signal with integration time and laser power, and their impact on signal to noise ratio, are studied leading to optimal data acquisition parameters. The impact of ambient light sources in the operating room is assessed and recommendations made for optimal operating conditions. In vivo Raman spectra of normal brain, cancer and necrotic tissue were measured in 10 patients, demonstrating that real-time inelastic scattering measurements can distinguish necrosis from vital tissue (including tumor and normal brain tissue) with an accuracy of 87%, a sensitivity of 84% and a specificity of 89%. PMID:26203368

  10. Aluminium in brain tissue in familial Alzheimer's disease.

    PubMed

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2017-03-01

    The genetic predispositions which describe a diagnosis of familial Alzheimer's disease can be considered as cornerstones of the amyloid cascade hypothesis. Essentially they place the expression and metabolism of the amyloid precursor protein as the main tenet of disease aetiology. However, we do not know the cause of Alzheimer's disease and environmental factors may yet be shown to contribute towards its onset and progression. One such environmental factor is human exposure to aluminium and aluminium has been shown to be present in brain tissue in sporadic Alzheimer's disease. We have made the first ever measurements of aluminium in brain tissue from 12 donors diagnosed with familial Alzheimer's disease. The concentrations of aluminium were extremely high, for example, there were values in excess of 10μg/g tissue dry wt. in 5 of the 12 individuals. Overall, the concentrations were higher than all previous measurements of brain aluminium except cases of known aluminium-induced encephalopathy. We have supported our quantitative analyses using a novel method of aluminium-selective fluorescence microscopy to visualise aluminium in all lobes of every brain investigated. The unique quantitative data and the stunning images of aluminium in familial Alzheimer's disease brain tissue raise the spectre of aluminium's role in this devastating disease. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  11. Effects of acupuncture on tissue-oxygenation of the rat brain.

    PubMed

    Chen, G S; Erdmann, W

    1977-01-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by sympathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex of the animals through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture loci (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible. The effect was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase of inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes an increase of brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients. Dilatation of cerebral vascular vessels and improvement of autoregulation in the brain by acupuncture stimulation may also explain the effectiveness of acupuncture in the treatment of migraine headache.

  12. SU-E-T-587: Optimal Volumetric Modulated Arc Radiotherapy Treatment Planning Technique for Multiple Brain Metastases with Increasing Number of Arcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeling, V; Hossain, S; Hildebrand, K

    Purpose: To show improvements in dose conformity and normal brain tissue sparing using an optimal planning technique (OPT) against clinically acceptable planning technique (CAP) in the treatment of multiple brain metastases. Methods: A standardized international benchmark case with12 intracranial tumors was planned using two different VMAT optimization methods. Plans were split into four groups with 3, 6, 9, and 12 targets each planned with 3, 5, and 7 arcs using Eclipse TPS. The beam geometries were 1 full coplanar and half non-coplanar arcs. A prescription dose of 20Gy was used for all targets. The following optimization criteria was used (OPTmore » vs. CAP): (No upper limit vs.108% upper limit for target volume), (priority 140–150 vs. 75–85 for normal-brain-tissue), and (selection of automatic sparing Normal-Tissue-Objective (NTO) vs. Manual NTO). Both had priority 50 to critical structures such as brainstem and optic-chiasm, and both had an NTO priority 150. Normal-brain-tissue doses along with Paddick Conformity Index (PCI) were evaluated. Results: In all cases PCI was higher for OPT plans. The average PCI (OPT,CAP) for all targets was (0.81,0.64), (0.81,0.63), (0.79,0.57), and (0.72,0.55) for 3, 6, 9, and 12 target plans respectively. The percent decrease in normal brain tissue volume (OPT/CAP*100) achieved by OPT plans was (reported as follows: V4, V8, V12, V16, V20) (184, 343, 350, 294, 371%), (192, 417, 380, 299, 360%), and (235, 390, 299, 281, 502%) for the 3, 5, 7 arc 12 target plans, respectively. The maximum brainstem dose decreased for the OPT plan by 4.93, 4.89, and 5.30 Gy for 3, 5, 7 arc 12 target plans, respectively. Conclusion: Substantial increases in PCI, critical structure sparing, and decreases in normal brain tissue dose were achieved by eliminating upper limits from optimization, using automatic sparing of normal tissue function with high priority, and a high priority to normal brain tissue.« less

  13. Protection of cortex by overlying meninges tissue during dynamic indentation of the adolescent brain.

    PubMed

    MacManus, David B; Pierrat, Baptiste; Murphy, Jeremiah G; Gilchrist, Michael D

    2017-07-15

    Traumatic brain injury (TBI) has become a recent focus of biomedical research with a growing international effort targeting material characterization of brain tissue and simulations of trauma using computer models of the head and brain to try to elucidate the mechanisms and pathogenesis of TBI. The meninges, a collagenous protective tri-layer, which encloses the entire brain and spinal cord has been largely overlooked in these material characterization studies. This has resulted in a lack of accurate constitutive data for the cranial meninges, particularly under dynamic conditions such as those experienced during head impacts. The work presented here addresses this lack of data by providing for the first time, in situ large deformation material properties of the porcine dura-arachnoid mater composite under dynamic indentation. It is demonstrated that this tissue is substantially stiffer (shear modulus, μ=19.10±8.55kPa) and relaxes at a slower rate (τ 1 =0.034±0.008s, τ 2 =0.336±0.077s) than the underlying brain tissue (μ=6.97±2.26kPa, τ 1 =0.021±0.007s, τ 2 =0.199±0.036s), reducing the magnitudes of stress by 250% and 65% for strains that arise during indentation-type deformations in adolescent brains. We present the first mechanical analysis of the protective capacity of the cranial meninges using in situ micro-indentation techniques. Force-relaxation tests are performed on in situ meninges and cortex tissue, under large strain dynamic micro-indentation. A quasi-linear viscoelastic model is used subsequently, providing time-dependent mechanical properties of these neural tissues under loading conditions comparable to what is experienced in TBI. The reported data highlights the large differences in mechanical properties between these two tissues. Finite element simulations of the indentation experiments are also performed to investigate the protective capacity of the meninges. These simulations show that the meninges protect the underlying brain tissue by reducing the overall magnitude of stress by 250% and up to 65% for strains. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Biochemical label-free tissue imaging with subcellular-resolution synchrotron FTIR with focal plane array detector.

    PubMed

    Kastyak-Ibrahim, M Z; Nasse, M J; Rak, M; Hirschmugl, C; Del Bigio, M R; Albensi, B C; Gough, K M

    2012-03-01

    The critical questions into the cause of neural degeneration, in Alzheimer disease and other neurodegenerative disorders, are closely related to the question of why certain neurons survive. Answers require detailed understanding of biochemical changes in single cells. Fourier transform infrared microspectroscopy is an excellent tool for biomolecular imaging in situ, but resolution is limited. The mid-infrared beamline IRENI (InfraRed ENvironmental Imaging) at the Synchrotron Radiation Center, University of Wisconsin-Madison, enables label-free subcellular imaging and biochemical analysis of neurons with an increase of two orders of magnitude in pixel spacing over current systems. With IRENI's capabilities, it is now possible to study changes in individual neurons in situ, and to characterize their surroundings, using only the biochemical signatures of naturally-occurring components in unstained, unfixed tissue. We present examples of analyses of brain from two transgenic mouse models of Alzheimer disease (TgCRND8 and 3xTg) that exhibit different features of pathogenesis. Data processing on spectral features for nuclei reveals individual hippocampal neurons, and neurons located in the proximity of amyloid plaque in TgCRND8 mouse. Elevated lipids are detected surrounding and, for the first time, within the dense core of amyloid plaques, offering support for inflammatory and aggregation roles. Analysis of saturated and unsaturated fatty acid ester content in retina allows characterization of neuronal layers. IRENI images also reveal spatially-resolved data with unprecedented clarity and distinct spectral variation, from sub-regions including photoreceptors, neuronal cell bodies and synapses in sections of mouse retina. Biochemical composition of retinal layers can be used to study changes related to disease processes and dietary modification. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex.

    PubMed Central

    Mato, M; Ookawara, S; Sakamoto, A; Aikawa, E; Ogawa, T; Mitsuhashi, U; Masuzawa, T; Suzuki, H; Honda, M; Yazaki, Y; Watanabe, E; Luoma, J; Yla-Herttuala, S; Fraser, I; Gordon, S; Kodama, T

    1996-01-01

    The transport of solutes between blood and brain is regulated by a specific barrier. Capillary endothelial cells of brain are known to mediate barrier function and facilitate transport. Here we report that specific cells surrounding arterioles, known as Mato's fluorescent granular perithelial (FGP) cells or perivascular microglial cells, contribute to the barrier function. Immunohistochemical and in situ hybridization studies indicate that, in normal brain cortex, type I and type II macrophage scavenger receptors are expressed only in FGP/perivascular microglial cells, and surface markers of macrophage lineage are also detected on them. These cells mediate the uptake of macromolecules, including modified low density lipoprotein, horseradish peroxidase, and ferritin injected either into the blood or into the cerebral ventricles. Accumulation of scavenged materials with aging or after the administration of a high-fat diet results in the formation of honeycomb-like foam cells and the narrowing of the lumen of arterioles in the brain cortex. These results indicate involvement of FGP/perivascular microglial cells in the barrier and scavenger functions in the central nervous system. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:8622926

  16. Brain herniation

    MedlinePlus

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  17. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, P; Park, P; Li, H

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated withmore » PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.« less

  18. Effect of dietary docosahexaenoic acid (DHA) in phospholipids or triglycerides on brain DHA uptake and accretion.

    PubMed

    Kitson, Alex P; Metherel, Adam H; Chen, Chuck T; Domenichiello, Anthony F; Trépanier, Marc-Olivier; Berger, Alvin; Bazinet, Richard P

    2016-07-01

    Tracer studies suggest that phospholipid DHA (PL-DHA) more effectively targets the brain than triglyceride DHA (TAG-DHA), although the mechanism and whether this translates into higher brain DHA concentrations are not clear. Rats were gavaged with [U-(3)H]PL-DHA and [U-(3)H]TAG-DHA and blood sampled over 6h prior to collection of brain regions and other tissues. In another experiment, rats were supplemented for 4weeks with TAG-DHA (fish oil), PL-DHA (roe PL) or a mixture of both for comparison to a low-omega-3 diet. Brain regions and other tissues were collected, and blood was sampled weekly. DHA accretion rates were estimated using the balance method. [U-(3)H]PL-DHA rats had higher radioactivity in cerebellum, hippocampus and remainder of brain, with no differences in other tissues despite higher serum lipid radioactivity in [U-(3)H]TAG-DHA rats. TAG-DHA, PL-DHA or a mixture were equally effective at increasing brain DHA. There were no differences between DHA-supplemented groups in brain region, whole-body, or tissue DHA accretion rates except heart and serum TAG where the PL-DHA/TAG-DHA blend was higher than TAG-DHA. Apparent DHA β-oxidation was not different between DHA-supplemented groups. This indicates that more labeled DHA enters the brain when consumed as PL; however, this may not translate into higher brain DHA concentrations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    PubMed

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site. © 2014 Wiley Periodicals, Inc.

  20. The Effects of Changing Water Content, Relaxation Times, and Tissue Contrast on Tissue Segmentation and Measures of Cortical Anatomy in MR Images

    PubMed Central

    Bansal, Ravi; Hao, Xuejun; Liu, Feng; Xu, Dongrong; Liu, Jun; Peterson, Bradley S.

    2013-01-01

    Water content is the dominant chemical compound in the brain and it is the primary determinant of tissue contrast in magnetic resonance (MR) images. Water content varies greatly between individuals, and it changes dramatically over time from birth through senescence of the human life span. We hypothesize that the effects that individual- and age-related variations in water content have on contrast of the brain in MR images also has important, systematic effects on in vivo, MRI-based measures of regional brain volumes. We also hypothesize that changes in water content and tissue contrast across time may account for age-related changes in regional volumes, and that differences in water content or tissue contrast across differing neuropsychiatric diagnoses may account for differences in regional volumes across diagnostic groups. We demonstrate in several complementary ways that subtle variations in water content across age and tissue compartments alter tissue contrast, and that changing tissue contrast in turn alters measures of the thickness and volume of the cortical mantle: (1) We derive analytic relations describing how age-related changes in tissue relaxation times produce age-related changes in tissue gray-scale intensity values and tissue contrast; (2) We vary tissue contrast in computer-generated images to assess its effects on tissue segmentation and volumes of gray matter and white matter; and (3) We use real-world imaging data from adults with either Schizophrenia or Bipolar Disorder and age- and sex-matched healthy adults to assess the ways in which variations in tissue contrast across diagnoses affects group differences in tissue segmentation and associated volumes. We conclude that in vivo MRI-based morphological measures of the brain, including regional volumes and measures of cortical thickness, are a product of, or at least are confounded by, differences in tissue contrast across individuals, ages, and diagnostic groups, and that differences in tissue contrast in turn likely derive from corresponding differences in water content of the brain across individuals, ages, and diagnostic groups. PMID:24055410

Top