Turbine repair process, repaired coating, and repaired turbine component
Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose
2015-11-03
A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.
Linsheng, Li; Guoxiang, Lin; Lihui, Li
2016-08-12
In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity.
NASA Astrophysics Data System (ADS)
Derrick, James; Rutherford, Michael; Davison, Thomas; Chapman, David; Eakins, Daniel; Collins, Gareth
2017-06-01
Chondritic meteorites were lithified during solar system formation by compaction of bimodal mixtures of mm-scale, spherical, solidified melt droplets (chondrules) surrounded by a porous matrix of much finer grained dust. A possible compaction mechanism is low-velocity planetesimal collisions, which were common in the early solar system. Mesoscale numerical simulations of such impacts indicate heterogeneous compaction, with large porosity and temperature variations over sub-mm scales in the matrix and chondrules largely unaffected. In particular, compaction and heating are enhanced in front of the chondrule and suppressed in its wake. Such observations may provide a new tool for interpreting evidence for impact in meteorites. Here we present impact experiments that replicate compaction surrounding an individual chondrule using analog materials: Soda Lime glass beads/rods and 70% porous silica powder matrix (Sipernat). Real-time, X-ray imaging of the experiments, combined with mesoscale modelling, provides experimental confirmation of anisotropic matrix compaction surrounding individual chondrules, aligned with the shock direction. JGD is supported by EPSRC studentship funding; GSC are supported by STFC Grant ST/N000803/1.
Viscoplastic Matrix Materials for Embedded 3D Printing.
Grosskopf, Abigail K; Truby, Ryan L; Kim, Hyoungsoo; Perazzo, Antonio; Lewis, Jennifer A; Stone, Howard A
2018-03-16
Embedded three-dimensional (EMB3D) printing is an emerging technique that enables free-form fabrication of complex architectures. In this approach, a nozzle is translated omnidirectionally within a soft matrix that surrounds and supports the patterned material. To optimize print fidelity, we have investigated the effects of matrix viscoplasticity on the EMB3D printing process. Specifically, we determine how matrix composition, print path and speed, and nozzle diameter affect the yielded region within the matrix. By characterizing the velocity and strain fields and analyzing the dimensions of the yielded regions, we determine that scaling relationships based on the Oldroyd number, Od, exist between these dimensions and the rheological properties of the matrix materials and printing parameters. Finally, we use EMB3D printing to create complex architectures within an elastomeric silicone matrix. Our methods and findings will both facilitate future characterization of viscoplastic matrices and motivate the development of new materials for EMB3D printing.
Process for the production of superconductor containing filaments
Tuominen, Olli P.; Hoyt, Matthew B.; Mitchell, David F.; Morgan, Carol W.; Roberts, Clyde Gordon; Tyler, Robert A.
2002-01-01
Superconductor containing filaments having embedments of superconducting material surrounded by a rayon matrix are formed by preparing a liquid suspension which contains at least 10 weight percent superconducting material; forming a multicomponent filament having a core of the suspension and a viscose sheath which contains cellulose xanthate; and thereafter, regenerating cellulose from the cellulose xanthate to form a rayon matrix.
A model for predicting high-temperature fatigue failure of a W/Cu composite
NASA Technical Reports Server (NTRS)
Verrilli, M. J.; Kim, Y.-S.; Gabb, T. P.
1991-01-01
The material studied, a tungsten-fiber-reinforced, copper-matrix composite, is a candidate material for rocket nozzle liner applications. It was shown that at high temperatures, fatigue cracks initiate and propagate inside the copper matrix through a process of initiation, growth, and coalescence of grain boundary cavities. The ductile tungsten fibers neck and rupture locally after the surrounding matrix fails, and complete failure of the composite then ensues. A simple fatigue life prediction model is presented for the tungsten/copper composite system.
Superconducting matrix fault current limiter with current-driven trigger mechanism
Yuan; Xing
2008-04-15
A modular and scalable Matrix-type Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. An inductor is connected in series with the trigger superconductor in the trigger matrix and physically surrounds the superconductor. The current surge during a fault will generate a trigger magnetic field in the series inductor to cause fast and uniform quenching of the trigger superconductor to significantly reduce burnout risk due to superconductor material non-uniformity.
Composite solid-state scintillators for neutron detection
Dai, Sheng; Im, Hee-Jung; Pawel, Michelle D.
2006-09-12
Applicant's present invention is a composite scintillator for neutron detection comprising a matrix material fabricated from an inorganic sol-gel precursor solution homogeneously doped with a liquid scintillating material and a neutron absorbing material. The neutron absorbing material yields at least one of an electron, a proton, a triton, an alpha particle or a fission fragment when the neutron absorbing material absorbs a neutron. The composite scintillator further comprises a liquid scintillating material in a self-assembled micelle formation homogeneously doped in the matrix material through the formation of surfactant-silica composites. The scintillating material is provided to scintillate when traversed by at least one of an electron, a proton, a triton, an alpha particle or a fission fragment. The scintillating material is configured such that the matrix material surrounds the micelle formation of the scintillating material. The composite scintillator is fabricated and applied as a thin film on substrate surfaces, a coating on optical fibers or as a glass material.
Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule.
Peled-Kamar, Mira; Hamilton, Patricia; Wilt, Fred H
2002-01-01
Biomineralized skeletal structures are composite materials containing mineral and matrix protein(s). The cell biological mechanisms that underlie the formation, secretion, and organization of the biomineralized materials are not well understood. Although the matrix proteins influence physical properties of the structures, little is known of the role of these matrix proteins in the actual formation of the biomineralized structure. We present here results using an antisense oligonucleotide directed against a spicule matrix protein, LSM34, present in spicules of embryos of Lytechinus pictus. After injection of anti-LSM34 into the blastocoel of a sea urchin embryo, LSM34 protein in the primary mesenchyme cells decreases and biomineralization ceases, demonstrating that LSM34 function is essential for the formation of the calcareous endoskeletal spicule of the embryo. Since LSM34 is found primarily in a specialized extracellular matrix surrounding the spicule, it is probable that this matrix is important for the biomineralization process.
1993-03-01
correlation was determined between the matrix microplastic flow and the global composite tensile stress-strain curve. Based on the knowledge of the...framentation of the elastic matrix to form remnant elastic pockets at Silw tip surrounded y the matrix plastic flow. The matrix microplasticity is also...Deformation of SiC-Al Composites.’ Mater. Sci. Engng., A131:55-68. 11. Hamann, R., P. F. Gobin, and R. Fougeres, 1990. "A Study of the Microplasticity of Some
Material properties of biofilms – key methods for understanding permeability and mechanics
Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina
2015-01-01
Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the three-dimensional biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gasses, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms. PMID:25719969
Material properties of biofilms—a review of methods for understanding permeability and mechanics
NASA Astrophysics Data System (ADS)
Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina
2015-02-01
Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the 3D biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gases, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms.
Wigner, E.P.; Szilard, L.; Christy, R.F.; Friedman, F.L.
1961-05-30
An irradiator designed to utilize the neutrons that leak out of a reactor around its periphery is described. It avoids wasting neutron energy and reduces interference with the core flux to a minimum. This is done by surrounding all or most of the core with removable segments of the material to be irradiated within a matrix of reflecting material.
Geometry of torn boudin-An indicator of relative viscosity
NASA Astrophysics Data System (ADS)
Samanta, Susanta Kumar; Basu Majumder, Debojyoti; Sarkar, Goutam
2017-11-01
The present study determines the role of viscosity on the development of rectangular torn boudin and its various types, defined by the curvature of their exterior and face margins. Numerical modeling was performed with the help of Finite Element Method considering Maxwell visco-elastic materials in commercial code ANSYS. Seven different viscosities were used and interchanged among the boudin, inter-boudin and matrix materials to understand the effect of viscosity ratios, specifically of relative viscosity of inter-boudin material. Results show that the viscosity of inter-boudin material has significant control on the shape of torn boudins apart from the viscosity ratio of boudin to matrix material. Bone-shaped boudin develops only when the inter-boudin is more competent than boudin and it becomes more prominent when matrix is also competent than boudin, but incompetent than inter-boudin. When boudins are stiffer than inter-boudin, barrel-shaped and fish-head boudins with concave faces develop. Exterior or face margins remain almost straight when boudin is relatively rigid compared to its surrounding matrix materials, or when there is no or very little viscosity contrast between boudin and inter-boudin material even in case of large boudin-matrix viscosity contrast. Therefore, the relative viscosity among the boudin, inter-boudin and matrix materials can be estimated qualitatively by studying the shape of boudin in the field.
NASA Astrophysics Data System (ADS)
Puljiz, Mate; Menzel, Andreas M.
2017-05-01
Embedding rigid inclusions into elastic matrix materials is a procedure of high practical relevance, for instance, for the fabrication of elastic composite materials. We theoretically analyze the following situation. Rigid spherical inclusions are enclosed by a homogeneous elastic medium under stick boundary conditions. Forces and torques are directly imposed from outside onto the inclusions or are externally induced between them. The inclusions respond to these forces and torques by translations and rotations against the surrounding elastic matrix. This leads to elastic matrix deformations, and in turn results in mutual long-ranged matrix-mediated interactions between the inclusions. Adapting a well-known approach from low-Reynolds-number hydrodynamics, we explicitly calculate the displacements and rotations of the inclusions from the externally imposed or induced forces and torques. Analytical expressions are presented as a function of the inclusion configuration in terms of displaceability and rotateability matrices. The role of the elastic environment is implicitly included in these relations. That is, the resulting expressions allow a calculation of the induced displacements and rotations directly from the inclusion configuration, without having to explicitly determine the deformations of the elastic environment. In contrast to the hydrodynamic case, compressibility of the surrounding medium is readily taken into account. We present the complete derivation based on the underlying equations of linear elasticity theory. In the future, the method will, for example, be helpful to characterize the behavior of externally tunable elastic composite materials, to accelerate numerical approaches, as well as to improve the quantitative interpretation of microrheological results.
Close, D.A.; Franks, L.A.; Kocimski, S.M.
1984-08-16
An invention is described that enables the quantitative simultaneous identification of the matrix materials in which fertile and fissile nuclides are embedded to be made along with the quantitative assay of the fertile and fissile materials. The invention also enables corrections for any absorption of neutrons by the matrix materials and by the measurement apparatus by the measurement of the prompt and delayed neutron flux emerging from a sample after the sample is interrogated by simultaneously applied neutrons and gamma radiation. High energy electrons are directed at a first target to produce gamma radiation. A second target receives the resulting pulsed gamma radiation and produces neutrons from the interaction with the gamma radiation. These neutrons are slowed by a moderator surrounding the sample and bathe the sample uniformly, generating second gamma radiation in the interaction. The gamma radiation is then resolved and quantitatively detected, providing a spectroscopic signature of the constituent elements contained in the matrix and in the materials within the vicinity of the sample. (LEW)
Partially degradable fibers and microvascular materials formed from the fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Hefei; Pety, Stephen J.; Sottos, Nancy R.
A partially degradable polymeric fiber includes a thermally degradable polymeric core and a coating surrounding at least a portion of the core. The thermally degradable polymeric core includes a polymeric matrix including a poly(hydroxyalkanoate), and a metal selected from the group consisting of an alkali earth metal and a transition metal, in the core polymeric matrix. The concentration of the metal in the polymeric matrix is at least 0.1 wt %. The partially degradable polymeric fiber may be used to form a microvascular system containing one or more microfluidic channels.
Proposed framework for thermomechanical life modeling of metal matrix composites
NASA Technical Reports Server (NTRS)
Halford, Gary R.; Lerch, Bradley A.; Saltsman, James F.
1993-01-01
The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMC's). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the plausibility of the proposed framework.
Homogenization Models for Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Muc, A.; Jamróz, M.
2004-03-01
Two homogenization models for evaluating Young's modulus of nanocomposites reinforced with single-walled and multi-walled carbon nanotubes are presented. The first model is based on a physical description taking into account the interatomic interaction and nanotube geometry. The elementary cell, here a nanotube with a surrounding resin layer, is treated as a homogeneous body — a material continuum. The second model, similar to a phenomenological engineering one, is obtained by combining the law of mixture with the Cox mechanical model. This model describes the stress distribution along stretched short fibers surrounded by a resin matrix. The similarities between composite materials reinforced with short fibers and nanotubes are elucidated. The results obtained are compared with those for classical microcomposites to demonstrate the advantages and disadvantages of both the composite materials.
Container and method for absorbing and reducing hydrogen concentration
Wicks, George G.; Lee, Myung W.; Heung, Leung K.
2001-01-01
A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.
Alteration and formation of rims on the CM parent body
NASA Technical Reports Server (NTRS)
Browning, Lauren B.; Mcsween, Harry Y., Jr.; Zolensky, Michael
1994-01-01
All types of coarse-grained components in CM chondrites are surrounded by fine-grained dust coatings, but the origin of these rims is not yet clear. Although a strictly nebular origin seems likely for rims in the relatively unaltered type 3 chondrites, the rims in CM chondrites are dominated by secondary alteration phases. It has been argued that either the coarse-grained cores accreted altered rim materials while still in the nebula or that alteration of primary rim phases occurred on the CM parent body. To constrain the origin of alteration phases in rim material, we have analyzed the textures and mineral associations from 10 CM chondritic falls by optical and scanning electron microscopy. Our results indicate that the secondary phases in CM chondritic rims were produced by parent body fluid-rock interactions which redefined some primary rim textures and may have produced, in some cases, both coarse-grained components and the rims that surround them. Textural features demonstrate the interactive exchange of alteration fluids between rims, matrix, and chondrules on the CM parent body. For example, most matrix-rim contacts are gradational, suggesting the synchronous alteration of both components. Several observations suggest the possibility of in situ rim production. For example, tochilinite and phyllosilicates commonly form rims around matrix carbonates, which are generally believed to have precipitated from alteration fluids on the CM parent body. This suggests that the rims surrounding matrix carbonates may also have been produced by alteration processes. Partially replaced chondrule olivines bear a striking resemblance to many rimmed olivines in the matrix which suggests, by analogy, that site-specific precipitation of S-bearing phases may also be responsible for the occurrence of many tochilinite-rich rims around isolated matrix olivines. Non-silicate rims precipitate around olivines of any composition, but the process is most effective for fayalitic olivines. Most of the remaining olivines in CM chondrites are relatively Mg-rich, which suggests that the precipitation of S-bearing rims on olivines may not have been an important process in the aqueous alteration of CM chondrites. We conclude that: (1) precursor rim materials in CM chondrites were subjected to pervasive aqueous alteration on the CM parent body; and (2) textures and mineral associations observed in CM chondrites also suggest the possibility of in situ rim production.
Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan
2018-05-09
As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.
Yu, Haitong; Liu, Dong; Duan, Yuanyuan; Wang, Xiaodong
2014-04-07
Opacified aerogels are particulate thermal insulating materials in which micrometric opacifier mineral grains are surrounded by silica aerogel nanoparticles. A geometric model was developed to characterize the spectral properties of such microsize grains surrounded by much smaller particles. The model represents the material's microstructure with the spherical opacifier's spectral properties calculated using the multi-sphere T-matrix (MSTM) algorithm. The results are validated by comparing the measured reflectance of an opacified aerogel slab against the value predicted using the discrete ordinate method (DOM) based on calculated optical properties. The results suggest that the large particles embedded in the nanoparticle matrices show different scattering and absorption properties from the single scattering condition and that the MSTM and DOM algorithms are both useful for calculating the spectral and radiative properties of this particulate system.
Method for immobilizing particulate materials in a packed bed
Even, W.R. Jr.; Guthrie, S.E.; Raber, T.N.; Wally, K.; Whinnery, L.L.; Zifer, T.
1999-02-02
The present invention pertains generally to immobilizing particulate matter contained in a packed bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that (a) the particulate retains its essential chemical nature, (b) the local movement of the particulate particles is not unduly restricted, (c) bulk powder migration and is prevented, (d) physical and chemical access to the particulate is unchanged over time, and (e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of an individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport. 4 figs.
Method for immobilizing particulate materials in a packed bed
Even, Jr., William R.; Guthrie, Stephen E.; Raber, Thomas N.; Wally, Karl; Whinnery, LeRoy L.; Zifer, Thomas
1999-01-01
The present invention pertains generally to immobilizing particulate matter contained in a "packed" bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that a) the particulate retains its essential chemical nature, b) the local movement of the particulate particles is not unduly restricted, c) bulk powder migration and is prevented, d) physical and chemical access to the particulate is unchanged over time, and e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport.
Measuring the Refractive Index of Bovine Corneal Stromal Cells Using Quantitative Phase Imaging
Gardner, Steven J.; White, Nick; Albon, Julie; Knupp, Carlo; Kamma-Lorger, Christina S.; Meek, Keith M.
2015-01-01
The cornea is the primary refractive lens in the eye and transmits >90% of incident visible light. It has been suggested that the development of postoperative corneal haze could be due to an increase in light scattering from activated corneal stromal cells. Quiescent keratocytes are thought to produce crystallins that match the refractive index of their cytoplasm to the surrounding extracellular material, reducing the amount of light scattering. To test this, we measured the refractive index (RI) of bovine corneal stromal cells, using quantitative phase imaging of live cells in vitro, together with confocal microscopy. The RI of quiescent keratocytes (RI = 1.381 ± 0.004) matched the surrounding matrix, thus supporting the hypothesis that keratocyte cytoplasm does not scatter light in the normal cornea. We also observed that the RI drops after keratocyte activation (RI = 1.365 ± 0.003), leading to a mismatch with the surrounding intercellular matrix. Theoretical scattering models showed that this mismatch would reduce light transmission in the cornea. We conclude that corneal transparency depends on the matching of refractive indices between quiescent keratocytes and the surrounding tissue, and that after surgery or wounding, the resulting RI mismatch between the activated cells and their surrounds significantly contributes to light scattering. PMID:26488650
The Extracellular Matrix of Fungal Biofilms.
Mitchell, Kaitlin F; Zarnowski, Robert; Andes, David R
A key feature of biofilms is their production of an extracellular matrix. This material covers the biofilm cells, providing a protective barrier to the surrounding environment. During an infection setting, this can include such offenses as host cells and products of the immune system as well as drugs used for treatment. Studies over the past two decades have revealed the matrix from different biofilm species to be as diverse as the microbes themselves. This chapter will review the composition and roles of matrix from fungal biofilms, with primary focus on Candida species, Saccharomyces cerevisiae, Aspergillus fumigatus, and Cryptococcus neoformans. Additional coverage will be provided on the antifungal resistance proffered by the Candida albicans matrix, which has been studied in the most depth. A brief section on the matrix produced by bacterial biofilms will be provided for comparison. Current tools for studying the matrix will also be discussed, as well as suggestions for areas of future study in this field.
On the influence of surface patterning on tissue self-assembly and mechanics.
Coppola, Valerio; Ventre, Maurizio; Natale, Carlo F; Rescigno, Francesca; Netti, Paolo A
2018-04-28
Extracellular matrix assembly and composition influence the biological and mechanical functions of tissues. Developing strategies to control the spatial arrangement of cells and matrix is of central importance for tissue engineering-related approaches relying on self-assembling and scaffoldless processes. Literature reports demonstrated that signals patterned on material surfaces are able to control cell positioning and matrix orientation. However, the mechanisms underlying the interactions between material signals and the structure of the de novo synthesized matrix are far from being thoroughly understood. In this work, we investigated the ordering effect provided by nanoscale topographic patterns on the assembly of tissue sheets grown in vitro. We stimulated MC3T3-E1 preosteoblasts to produce and assemble a collagen-rich matrix on substrates displaying patterns with long- or short-range order. Then, we investigated microstructural features and mechanical properties of the tissue in uniaxial tension. Our results demonstrate that patterned material surfaces are able to control the initial organization of cells in close contact to the surface; then cell-generated contractile forces profoundly remodel tissue structure towards mechanically stable spatial patterns. Such a remodelling effect acts both locally, as it affects cell and nuclear shape and globally, by affecting the gross mechanical response of the tissue. Such an aspect of dynamic interplay between cells and the surrounding matrix must be taken into account when designing material platform for the in vitro generation of tissue with specific microstructural assemblies. Copyright © 2018 John Wiley & Sons, Ltd.
Biomimetic materials for controlling bone cell responses.
Drevelle, Olivier; Faucheux, Nathalie
2013-01-01
Bone defects that cannot "heal spontaneously during life" will become an ever greater health problem as populations age. Harvesting autografts has several drawbacks, such as pain and morbidity at both donor and acceptor sites, the limited quantity of material available, and frequently its inappropriate shape. Researchers have therefore developed alternative strategies that involve biomaterials to fill bone defects. These biomaterials must be biocompatible and interact with the surrounding bone tissue to allow their colonization by bone cells and blood vessels. The latest generation biomaterials are not inert; they control cell responses like adhesion, proliferation and differentiation. These biomaterials are called biomimetic materials. This review focuses on the development of third generation materials. We first briefly describe the bone tissue with its cells and matrix, and then how bone cells interact with the extracellular matrix. The next section covers the materials currently used to repair bone defects. Finally, we describe the strategies employed to modify the surface of materials, such as coating with hydroxyapatite and grafting biomolecules.
Monroe, Jr., James E.
1977-08-09
A thermionic device for converting nuclear energy into electrical energy comprising a tubular anode spaced from and surrounding a cylindrical cathode, the cathode having an outer emitting surface of ruthenium, and nuclear fuel on the inner cylindrical surface. The nuclear fuel is a ceramic composition of fissionable material in a metal matrix. An axial void is provided to collect and contain fission product gases.
Normal and radial impact of composites with embedded penny-shaped cracks
NASA Technical Reports Server (NTRS)
Sih, G. C.
1979-01-01
A method is developed for the dynamic stress analysis of a layered composite containing an embedded penny-shaped crack and subjected to normal and radial impact. The material properties of the layers are chosen such that the crack lies in a layer of matrix material while the surrounding material possesses the average elastic properties of a two-phase medium consisting of a large number of fibers embedded in the matrix. Quantitatively, the time-dependent stresses near the crack border can be described by the dynamic stress intensity factors. Their magnitude depends on time, on the material properties of the composite and on the relative size of the crack compared to the composite local geometry. Results obtained show that, for the same material properties and geometry of the composite, the dynamic stress intensity factors for an embedded (penny-shaped) crack reach their peak values within a shorter period of time and with a lower magnitude than the corresponding dynamic stress intensity factors for a through-crack.
Preferential nucleation during polymorphic transformations
Sharma, H.; Sietsma, J.; Offerman, S. E.
2016-08-03
Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR’s) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR’s with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller – and thereforemore » nucleation more probable - with increasing number of special OR’s. As a result, these insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material.« less
Hogrebe, Nathaniel J; Reinhardt, James W; Tram, Nguyen K; Debski, Anna C; Agarwal, Gunjan; Reilly, Matthew A; Gooch, Keith J
2018-04-01
A cell's insoluble microenvironment has increasingly been shown to exert influence on its function. In particular, matrix stiffness and adhesiveness strongly impact behaviors such as cell spreading and differentiation, but materials that allow for independent control of these parameters within a fibrous, stromal-like microenvironment are very limited. In the current work, we devise a self-assembling peptide (SAP) system that facilitates user-friendly control of matrix stiffness and RGD (Arg-Gly-Asp) concentration within a hydrogel possessing a microarchitecture similar to stromal extracellular matrix. In this system, the RGD-modified SAP sequence KFE-RGD and the scrambled sequence KFE-RDG can be directly swapped for one another to change RGD concentration at a given matrix stiffness and total peptide concentration. Stiffness is controlled by altering total peptide concentration, and the unmodified base peptide KFE-8 can be included to further increase this stiffness range due to its higher modulus. With this tunable system, we demonstrate that human mesenchymal stem cell morphology and differentiation are influenced by both gel stiffness and the presence of functional cell binding sites in 3D culture. Specifically, cells 24 hours after encapsulation were only able to spread out in stiffer matrices containing KFE-RGD. Upon addition of soluble adipogenic factors, soft gels facilitated the greatest adipogenesis as determined by the presence of lipid vacuoles and PPARγ-2 expression, while increasing KFE-RGD concentration at a given stiffness had a negative effect on adipogenesis. This three-component hydrogel system thus allows for systematic investigation of matrix stiffness and RGD concentration on cell behavior within a fibrous, three-dimensional matrix. Physical cues from a cell's surrounding environment-such as the density of cell binding sites and the stiffness of the surrounding material-are increasingly being recognized as key regulators of cell function. Currently, most synthetic biomaterials used to independently tune these parameters lack the fibrous structure characteristic of stromal extracellular matrix, which can be important to cells naturally residing within stromal tissues. In this manuscript, we describe a 3D hydrogel encapsulation system that provides user-friendly control over matrix stiffness and binding site concentration within the context of a stromal-like microarchitecture. Binding site concentration and gel stiffness both influenced cell spreading and differentiation, highlighting the utility of this system to study the independent effects of these material properties on cell function. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters
NASA Technical Reports Server (NTRS)
Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.
1997-01-01
Surface plasmon resonance imaging has in the past been applied to the characterization of thin films. In this study we apply the surface plasmon technique not to determine macroscopic spatial variations but rather to determine average microscopic information. Specifically, we deduce the dielectric properties of the surrounding gel matrix and information concerning the dynamics of the gelation process from the visible absorption characteristics of colloidal metal nanoparticles contained in aerogel pores. We have fabricated aerogels containing gold and silver nanoparticles. Because the dielectric constant of the metal particles is linked to that of the host matrix at the surface plasmon resonance, any change 'in the dielectric constant of the material surrounding the metal nanoparticles results in a shift in the surface plasmon wavelength. During gelation the surface plasmon resonance shifts to the red as the average or effective dielectric constant of the matrix increases. Conversely, formation of an aerogel or xerogel through supercritical extraction or evaporation of the solvent produces a blue shift in the resonance indicating a decrease in the dielectric constant of the matrix. From the magnitude of this shift we deduce the average fraction of air and of silica in contact with the metal particles. The surface area of metal available for catalytic gas reaction may thus be determined.
Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Haiqing L.
2016-01-01
We developed a novel porous graphitic carbon nanofiber material using a synthesis strategy combining electrospinning and catalytic graphitization. RF hydrogel was used as carbon precursors, transition metal ions were successfully introduced into the carbon matrix by binding to the carboxylate groups of a resorcinol derivative. Transition metal particles were homogeneously distributed throughout the carbon matrix, which are used as in-situ catalysts to produce graphitic fullerene-like nanostructures surrounding the metals. The success design of graphitic carbons with enlarged interlayer spacing will enable the multivalent ion intercalation for the development of multivalent rechargeable batteries.
A unique set of micromechanics equations for high temperature metal matrix composites
NASA Technical Reports Server (NTRS)
Hopkins, D. A.; Chamis, C. C.
1985-01-01
A unique set of micromechanic equations is presented for high temperature metal matrix composites. The set includes expressions to predict mechanical properties, thermal properties and constituent microstresses for the unidirectional fiber reinforced ply. The equations are derived based on a mechanics of materials formulation assuming a square array unit cell model of a single fiber, surrounding matrix and an interphase to account for the chemical reaction which commonly occurs between fiber and matrix. A three-dimensional finite element analysis was used to perform a preliminary validation of the equations. Excellent agreement between properties predicted using the micromechanics equations and properties simulated by the finite element analyses are demonstrated. Implementation of the micromechanics equations as part of an integrated computational capability for nonlinear structural analysis of high temperature multilayered fiber composites is illustrated.
NASA Astrophysics Data System (ADS)
Moon, J. B.; Wardrop, D. H.; Smithwick, E. A.
2010-12-01
Although small in size, headwater wetland complexes provide a disproportionate share of microbially mediated ecosystem services to the surrounding landscape and hydroscape. Two services that are of current interest to scientists and managers, given their role in regulating climate and water quality, are the retention and transformation of carbon and nitrogen pools. Although it is the wetland complex’s geographic position between the landscape and hydroscape that creates these hotspots of ecosystem function, continuous shifts in the surrounding scapes can also affect the complex’s transformational capacity through changes to its natural hydrologic disturbance regime and subsequent material fluxes. We have begun to investigate the influence of surrounding land cover and associated differences in hydrology on wetland edaphic habitats and their associated microbial communities. These studies are taking place in wetland complexes located in the headwaters of the Chesapeake Bay Watershed, within the Ridge and Valley Region of central Pennsylvania. Within this region, surrounding land cover ranges from intact forested buffers to a matrix of land cover types (e.g., mixed forest, grassland, and impermeable surfaces). Over a preliminary six-month collection period we found higher frequency and intensity of hydrologic fluctuations in wetlands surrounded by a matrix of land cover types, compared to highly stable saturated conditions of wetland complexes with intact forested buffers. Differences were also found in both the abundances of edaphic habitats as well as in the types of habitats present within these surrounding land cover groups. Wetlands with intact forested buffers had (1) fresh organic residue soils with high overall microbial biomasses and relatively high abundances of microeukaryotic groups, (2) reduced muck soils with relatively large proportions of branched fatty acid microbial groups, and (3) carbon and nutrient depleted sandy mineral soils with relatively low microbial biomasses. Riparian wetland complexes surrounded by a matrix of land cover types had narrower ranges of soil properties and were predominately high pH clay loam soils dominated by bacterial groups. Although these wetland complexes had fewer edaphic habitat types than wetland complexes with intact forested buffers, preliminary investigations using the DeNitrification-DeComposition (DNDC) model showed that their higher pH levels and hydrological fluctuations could make them more suitable environments for higher rates of complete denitrification. However, depending on the depth of the water table, wetland complexes surrounded by a matrix of land cover types could also transition into hotspots of methanogenesis. These initial hypotheses will be further refined with additional hydrologic, climatic, vegetation, and soils data and tested over the next year using methods such as push-pull denitrification.
NASA Astrophysics Data System (ADS)
Kang, Zhitao; Banishev, Alexandr A.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Xiao, Pan; Christensen, James; Zhou, Min; Summers, Christopher J.; Dlott, Dana D.; Thadhani, Naresh N.
2016-07-01
The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Zhitao; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245; Banishev, Alexandr A.
The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersedmore » in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.« less
NASA Technical Reports Server (NTRS)
Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)
1991-01-01
A process for producing seamless metal-clad composite structures includes providing a hollow, metallic inner member and an outer sleeve to surround the inner member and define an inner space therebetween. A plurality of continuous reinforcing fibers is attached to the distal end of the outside diameter of the inner member, and the inner member is then introduced, distal end first, into one end of the outer sleeve. The inner member is then moved, distal end first, into the outer sleeve until the inner member is completely enveloped by the outer sleeve. A liquid matrix material is then injected into the space containing the reinforcing fibers between the inner member and the outer sleeve. Next a pressurized heat transfer medium is passed through the inner member to cure the liquid matrix material. Finally, the wall thickness of both the inner member and the outer sleeve are reduced to desired dimensions by chemical etching, which adjusts the thermal expansion coefficient of the metal-clad composite structure to a desired value.
Crocellà, Valentina; Groppo, Elena; Dani, Alessandro; Castellero, Alberto; Bordiga, Silvia; Zilio, Stefano; De Simone, Agnello; Vacca, Paolo
2017-10-01
The functional properties of a new composite material having water vapor getter properties have been investigated by a large arsenal of characterization techniques. The composite system is originated by combining two constituents having very different chemical natures, a magnesium perchlorate (Mg(ClO 4 ) 2 ) salt and a polymeric acrylic matrix. In particular, Fourier transform infrared (FT-IR) and Raman spectroscopy have been fundamental to understand the type of interactions between the salt and the matrix in different hydration conditions. It was found that in the anhydrous composite system the dispersed Mg(ClO 4 ) 2 salt retains its molecular structure, because Mg 2+ cations are still surrounded by their [ClO 4 ] - counter-anions; at the same time, the salt and the polymeric matrix chemically interact each other at the molecular level. These interactions gradually vanish in the presence of water, and disappear in the fully hydrated composite system, where the Mg 2+ cations are completely solvated by the water molecules.
Calkins, Noel C.
1991-01-01
An armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material. The glass may be in monolithic form or particles of ceramic may be dispersed in a glass matrix. The ceramic material may be in monolithic form or may be in the form of particles dispersed in glass or dispersed in said polymer.
Fire test method for graphite fiber reinforced plastics
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1980-01-01
A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fibers during accidential fires. Airborne, electrically conductive fibers originating from the burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A test method for assessing the burning characteristics of graphite fiber reinforced composites and the effectiveness of the composites in retaining the graphite fibers has been developed. The method utilizes a modified rate of heat release apparatus. The equipment and the testing procedure are described. The application of the test method to the assessment of composite materials is illustrated for two resin matrix/graphite composite systems.
Adhesion and Interphase Properties of Reinforced Polymeric Composites
NASA Astrophysics Data System (ADS)
Caldwell, Kyle Bernd
Reinforced polymeric composites are an increasingly utilized material with a wide range of applications. Fiber reinforced polymeric composites, in particular, possess impressive mechanical properties at a fraction of the weight of many other building materials. There will always, however, be a demand for producing lighter, stiffer, and stronger materials. Understanding the mechanism of adhesion and ways to engineer the reinforcement-matrix interphase can lead to the development of new materials with improved mechanical properties, and even impart additional functionality such as electrical conductivity. The performance of reinforced polymeric composites is critically dependent upon the adhesion between the reinforcement and the surrounding polymer. The relative adhesion between a filler and a thermoplastic matrix can be predicted using calculable thermodynamic quantities such as the Gibbs free energy of mixing. A recent model, COSMO-SAC, is capable of predicting the adhesion between organo-silane treated glass surfaces and several thermoplastic materials. COSMO-SAC uses information based on the charge distribution of a molecule's surface to calculate many thermodynamic properties. Density functional theory calculations, which are relative inexpensive computations, generate the information necessary to perform the COSMO-SAC analysis and can be performed on any given molecule. The flexibility of the COSMO-SAC model is one of the main advantages it possesses over other methods for calculating thermodynamic quantities. In many cases the adhesion between a reinforcing fiber and the surrounding matrix may be improved by incorporating interphase modifiers in the vicinity of the fiber surface. The modifiers can improve the fracture toughness and modulus of the interphase, which may improve the stress transfer from the matrix to the fiber. In addition, the interphase modifiers may improve the mechanical interlock between the fiber surface and the bulk polymer, leading to improved adhesion. In recent years, the use of so called "migrating agents" have been used to self-assemble nanoparticle reinforced fiber-matrix interphases in thermosetting resin systems. The inclusion of a modest amount of thermoplastic migrating agent can lead to the formation of a self-assembled interphase, without causing aggregation of nanoparticles in the bulk phase. Formulations containing excess migrating agent, however, can induce aggregation in the bulk of increasing severity with increasing migrating agent concentration. Several techniques were used to study the mechanism by which the migrating agents operate including, scanning electron microscopy, and in situ fluorescence microscopy. The self-assembly mechanism by which migrating agents operate is described well by depletion forces, which are depend on the geometry of the approaching objects, as well as the migrating agent molecular weight and concentration.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Freed, Alan D.; Arnold, Steven M.
1992-01-01
Examined here is the effect of fiber and interfacial layer morphologies on thermal fields in metal matrix composites (MMCs). A micromechanics model based on an arbitrarily layered concentric cylinder configuration is used to calculate thermal stress fields in MMCs subjected to spatially uniform temperature changes. The fiber is modelled as a layered material with isotropic or orthotropic elastic layers, whereas the surrounding matrix, including interfacial layers, is treated as a strain-hardening, elastoplastic, von Mises solid with temperature-dependent parameters. The solution to the boundary-value problem of an arbitrarily layered concentric cylinder under the prescribed thermal loading is obtained using the local/global stiffness matrix formulation originally developed for stress analysis of multilayered elastic media. Examples are provided that illustrate how the morphology of the SCS6 silicon carbide fiber and the use of multiple compliant layers at the fiber/matrix interface affect the evolution of residual stresses in SiC/Ti composites during fabrication cool-down.
Genetically Engineered Autologous Cells for Antiangiogenic Therapy of Breast Cancer
2004-07-01
consisted of a large, fragmented avascular center surrounded by a thin band of vascularized matrix material, itself covered by a capsule of connective tissue...contained dead cells that showed features of coagulation necrosis . The minimal inflammatory response consisted of neutrophils scattered within the...vascularize most likely contributed to the death (coagulation necrosis ) of implanted MSCs localized in the implant core and to the fragmentation of the
Ghanaati, Shahram; Kovács, Adorján; Barbeck, Mike; Lorenz, Jonas; Teiler, Anna; Sadeghi, Nader; Kirkpatrick, Charles James; Sader, Robert
2016-03-01
Classically skin defects are covered by split thickness skin grafts or by means of local or regional skin flaps. In the presented case series for the first time a bilayered, non-crossed-linked collagen matrix has been used in an off-label fashion in order to reconstruct facial skin defects following different types of skin cancer resection. The material is of porcine origin and consists of a spongy and a compact layer. The ratio of the two layers is 1:3 in favour of the spongy layer. The aim of the study was to investigate the potential of this matrix for skin regeneration as an alternative to the standard techniques of skin grafts or flaps. Six patients between 39 and 83 years old were included in the study based on a therapeutic trial. The collagen matrix was used in seven defects involving the nose, eyelid, forehead- and posterior scalp regions, and ranging from 1,2 to 6 cm in diameter. Two different head and neck surgeons at two different institutions performed the operations. Each used a different technique in covering the wound following surgery, i.e. with and without a latex-based sheet under the pressure dressing. In three cases cylindrical biopsies were taken after 14 days. In all cases the biomaterial application was performed without any complication and no adverse effects were observed. Clinically, the collagen matrix contributed to a tension-free skin regeneration, independent of the wound dressing used. The newly regenerated skin showed strong similarity to the adjacent normal tissue both in quality and colour. Histological analysis indicated that the spongy layer replaced the defective connective tissue, by providing stepwise integration into the surrounding implantation bed, while the compact layer was infiltrated by mononuclear cells and contributed to its epithelialization by means of a "conductive"process from the surrounding epithelial cells. The clinical and histological data demonstrate that the collagen bilayered matrix used in this series contributes to a "Guided-Integrative-Regeneration-Process", which still needs to be further understood. The biomimetic nature of this material seems to contribute to physiological matrix remodelling, which probably involves other matricellular proteins essential for soft tissue regeneration. A deeper understanding of the mechanism, involved in the tissue integration of this material and its contribution to soft tissue regeneration based on the direct and indirect effect of matricellular proteins could open new therapeutic avenues for biomaterial-based soft tissue regeneration as an alternative to traditional flap-based plastic surgery.
Method for modeling the gradual physical degradation of a porous material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, Greg
Cementitious and other engineered porous materials encountered in waste disposals may degrade over time due to one or more mechanisms. Physical degradation may take the form of cracking (fracturing) and/or altered (e.g. increased) porosity, depending on the material and underlying degradation mechanism. In most cases, the hydraulic properties of degrading materials are expected to evolve due to physical changes occurring over roughly the pore to decimeter scale, which is conducive to calculating equivalent or effective material properties. The exact morphology of a degrading material in its end-state may or may not be known. In the latter case, the fully-degraded conditionmore » can be assumed to be similar to a more-permeable material in the surrounding environment, such as backfill soil. Then the fully-degraded waste form or barrier material is hydraulically neutral with respect to its surroundings, constituting neither a barrier to nor conduit for moisture flow and solute transport. Unless the degradation mechanism is abrupt, a gradual transition between the intact initial and fully-degraded final states is desired. Linear interpolation through time is one method for smoothly blending hydraulic properties between those of an intact matrix and those of a soil or other surrogate for the end-state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saputra, Hens; Othman, Raihan, E-mail: raihan@iium.edu.my; Sutjipto, A.G.E.
2012-03-15
Highlights: Black-Right-Pointing-Pointer MCM-41 material transforms gradually into MCM-50 lamellar gel upon controlled exposure to 6 M KOH. Black-Right-Pointing-Pointer The formation of MCM-50 ordered gel structure occurs at KOH weight content of 40-70 wt. %. Black-Right-Pointing-Pointer MCM gel phase shows pseudoplastic behavior and possesses homogeneous matrix texture. -- Abstract: MCM-41 material, prepared by sol-gel method, reveals gel-like properties in a caustic alkaline environment, i.e., 6 M potassium hydroxide (KOH) electrolyte. The gellation of MCM-41 starts at a KOH weight ratio of 40 wt.%. The structural change of the material is verified with X-Ray diffractograms and supported by observation using Scanning Electronmore » Microscope (SEM). As the KOH weight ratio increases, the MCM-41 hexagonal arrays structure gradually transforms into MCM-50 lamellar structure before disappearing completely at 80 wt.% KOH. The MCM gel phase is further characterized by rotational viscometry and texture analysis. The gel phase shows shear thinning or pseudoplastic behavior and possesses homogeneous matrix structure.« less
Bioinspired toughening mechanism: lesson from dentin.
An, Bingbing; Zhang, Dongsheng
2015-07-09
Inspired by the unique microstructure of dentin, in which the hard peritubular dentin surrounding the dentin tubules is embedded in the soft intertubular dentin, we explore the crack propagation in the bioinspired materials with fracture process zone possessing a dentin-like microstructure, i.e. the composite structure consisting of a soft matrix and hard reinforcements with cylindrical voids. A micromechanical model under small-scale yielding conditions is developed, and numerical simulations are performed, showing that the rising resistant curve (R-curve) is observed for crack propagation caused by the plastic collapse of the intervoid ligaments in the fracture process zone. The dentin-like microstructure in the fracture process zone exhibits enhanced fracture toughness, compared with the case of voids embedded in the homogeneous soft matrix. Further computational simulations show that the dentin-like microstructure can retard void growth, thereby promoting fracture toughness. The typical fracture mechanism of the bioinspired materials with fracture process zone possessing the dentin-like structure is void by void growth, while it is the multiple void interaction in the case of voids in the homogeneous matrix. Based on the results, we propose a bioinspired material design principle, which is that the combination of a hard inner material encompassing voids and a soft outer material in the fracture process zone can give rise to exceptional fracture toughness, achieving damage tolerance. It is expected that the proposed design principle could shed new light on the development of novel man-made engineering materials.
Diamond xenolith and matrix organic matter in the Sutter's Mill meteorite measured by C-XANES
NASA Astrophysics Data System (ADS)
Kebukawa, Yoko; Zolensky, Michael E.; Kilcoyne, A. L. David; Rahman, Zia; Jenniskens, Peter; Cody, George D.
2014-11-01
The Sutter's Mill (SM) meteorite fell in El Dorado County, California, on April 22, 2012. This meteorite is a regolith breccia composed of CM chondrite material and at least one xenolithic phase: oldhamite. The meteorite studied here, SM2 (subsample 5), was one of three meteorites collected before it rained extensively on the debris site, thus preserving the original asteroid regolith mineralogy. Two relatively large (10 μm sized) possible diamond grains were observed in SM2-5 surrounded by fine-grained matrix. In the present work, we analyzed a focused ion beam (FIB) milled thin section that transected a region containing these two potential diamond grains as well as the surrounding fine-grained matrix employing carbon and nitrogen X-ray absorption near-edge structure (C-XANES and N-XANES) spectroscopy using a scanning transmission X-ray microscope (STXM) (Beamline 5.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory). The STXM analysis revealed that the matrix of SM2-5 contains C-rich grains, possibly organic nanoglobules. A single carbonate grain was also detected. The C-XANES spectrum of the matrix is similar to that of insoluble organic matter (IOM) found in other CM chondrites. However, no significant nitrogen-bearing functional groups were observed with N-XANES. One of the possible diamond grains contains a Ca-bearing inclusion that is not carbonate. C-XANES features of the diamond-edges suggest that the diamond might have formed by the CVD process, or in a high-temperature and -pressure environment in the interior of a much larger parent body.
An experimental test of matrix permeability and corridor use by an endemic understory bird.
Castellón, Traci D; Sieving, Kathryn E
2006-02-01
Because of widespread habitat fragmentation, maintenance of landscape connectivity has become a major focus of conservation planning, but empirical tests of animal movement in fragmented landscapes remain scarce. We conducted a translocation experiment to test the relative permeability of three landscape elements (open habitat, shrubby secondary vegetation, and wooded corridors) to movement by the Chucao Tapaculo (Scelorchilus rubecula), a forest understory bird endemic to South American temperate rainforest. Forty-one radio-tagged subjects were translocated (individually) to three landscape treatments consisting of small release patches that were either entirely surrounded by open habitat (pasture), entirely surrounded by dense shrubs, or linked to other patches by wooded corridors that were otherwise surrounded by open matrix. The number of days subjects remained in release patches before dispersal (a measure of habitat resistance) was significantly longer for patches surrounded by open habitat than for patches adjoining corridors or surrounded by dense shrubs. These results indicate that open habitat significantly constrains Chucao dispersal, in accord with expectation, but dispersal occurs equally well through wooded corridors and shrub-dominated matrix. Thus, corridor protection or restoration and management of vegetation in the matrix (to encourage animal movement) may be equally feasible alternatives for maintaining connectivity.
In-situ Formation of Reinforcement Phases in Ultra High Temperature Ceramic Composites
NASA Technical Reports Server (NTRS)
Stackpoole, Margaret M (Inventor); Gasch, Matthew J (Inventor); Olson, Michael W (Inventor); Hamby, Ian W. (Inventor); Johnson, Sylvia M (Inventor)
2013-01-01
A tough ultra-high temperature ceramic (UHTC) composite comprises grains of UHTC matrix material, such as HfB.sub.2, ZrB.sub.2 or other metal boride, carbide, nitride, etc., surrounded by a uniform distribution of acicular high aspect ratio reinforcement ceramic rods or whiskers, such as of SiC, is formed from uniformly mixing a powder of the UHTC material and a pre-ceramic polymer selected to form the desired reinforcement species, then thermally consolidating the mixture by hot pressing. The acicular reinforcement rods may make up from 5 to 30 vol % of the resulting microstructure.
Fire test method for graphite fiber reinforced plastics
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1980-01-01
A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fibers during accidental fires. Airborne, electrically conductive fibers originating from the burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A test method for assessing the burning characteristics of graphite fiber reinforced composites and the effectiveness of the composites in retaining the graphite fibers has been developed. The method utilizes a modified Ohio State University Rate of Heat Release apparatus. The equipment and the testing procedure are described. The application of the test method to the assessment of composite materials is illustrated for two resin matrix/graphite composite systems.
Landscape ecology of interactions between seagrass and mobile epifauna: The matrix matters
NASA Astrophysics Data System (ADS)
Tanner, Jason E.
2006-07-01
There is increasing interest among ecologists about how the type of matrix surrounding a habitat patch influences the organisms living in that patch. This question is virtually unstudied in marine systems. In this paper I show that the mobile faunal assemblage in seagrass patches does depend on the surrounding matrix. Faunal assemblages in patches of Posidonia surrounded by sand are different than in those surrounded by Heterozostera, another seagrass, having more than double the abundance of both amphipods and polychaetes. However, the differences are not simply due to spillover from the matrix habitat, but rather are an emergent property of the patch context that cannot be predicted. Posidonia surrounded by sand actually has an assemblage that is intermediate between Heterozostera and Posidonia surrounded by Heterozostera. Differences in habitat structure do not account for this pattern, as seagrass biomass did not vary, and the same result was found in artificial seagrass. The faunal assemblage did not vary depending on the location within the patch (edge or centre) for Heterozostera, Posidonia or artificial seagrass. Patch size, however, did have an effect for Heterozostera, with smaller patches having 2-3 times as many isopods per sample as large, but less than half the number of some amphipod families. These results suggest that the landscape context is as important in marine systems as it is known to be in terrestrial systems.
Degradation in landscape matrix has diverse impacts on diversity in protected areas
Brotons, Lluís; Rajasärkkä, Ari; Tornberg, Risto
2017-01-01
Introduction A main goal of protected areas is to maintain species diversity and the integrity of biological assemblages. Intensifying land use in the matrix surrounding protected areas creates a challenge for biodiversity conservation. Earlier studies have mainly focused on taxonomic diversity within protected areas. However, functional and especially phylogenetic diversities are less studied phenomena, especially with respect to the impacts of the matrix that surrounds protected areas. Phylogenetic diversity refers to the range of evolutionary lineages, the maintenance of which ensures that future evolutionary potential is safeguarded. Functional diversity refers to the range of ecological roles that members of a community perform. For ecosystem functioning and long-term resilience, they are at least as important as taxonomic diversity. Aim We studied how the characteristics of protected areas and land use intensity in the surrounding matrix affect the diversity of bird communities in protected boreal forests. We used line-transect count and land-cover data from 91 forest reserves in Northern Finland, and land-cover data from buffer zones surrounding these reserves. We studied if habitat diversity and productivity inside protected areas, and intensity of forest management in the matrix have consistent effects on taxonomic, functional and phylogenetic diversities, and community specialization. Results We found that habitat diversity and productivity inside protected areas have strong effects on all diversity metrics, but matrix effects were inconsistent. The proportion of old forest in the matrix, reflecting low intensity forest management, had positive effects on community specialization. Interestingly, functional diversity increased with increasing logging intensity in the matrix. Conclusions Our results indicate that boreal forest reserves are not able to maintain their species composition and abundances if embedded in a severely degraded matrix. Our study also highlights the importance of focusing on different aspects of biodiversity. PMID:28950017
Nadell, Carey D; Ricaurte, Deirdre; Yan, Jing; Drescher, Knut; Bassler, Bonnie L
2017-01-13
Bacteria often live in biofilms, which are microbial communities surrounded by a secreted extracellular matrix. Here, we demonstrate that hydrodynamic flow and matrix organization interact to shape competitive dynamics in Pseudomonas aeruginosa biofilms. Irrespective of initial frequency, in competition with matrix mutants, wild-type cells always increase in relative abundance in planar microfluidic devices under simple flow regimes. By contrast, in microenvironments with complex, irregular flow profiles - which are common in natural environments - wild-type matrix-producing and isogenic non-producing strains can coexist. This result stems from local obstruction of flow by wild-type matrix producers, which generates regions of near-zero shear that allow matrix mutants to locally accumulate. Our findings connect the evolutionary stability of matrix production with the hydrodynamics and spatial structure of the surrounding environment, providing a potential explanation for the variation in biofilm matrix secretion observed among bacteria in natural environments.
Muriel, Sandra B; Kattan, Gustavo H
2009-08-01
Determining the permeability of different types of landscape matrices to animal movement is essential for conserving populations in fragmented landscapes. We evaluated the effects of habitat patch size and matrix type on diversity, isolation, and dispersal of ithomiine butterflies in forest fragments surrounded by coffee agroecosystems in the Colombian Andes. Because ithomiines prefer a shaded understory, we expected the highest diversity and abundance in large fragments surrounded by shade coffee and the lowest in small fragments surrounded by sun coffee. We also thought shade coffee would favor butterfly dispersal and immigration into forest patches. We marked 9675 butterflies of 39 species in 12 forest patches over a year. Microclimate conditions were more similar to the forest interior in the shade-coffee matrix than in the sun-coffee matrix, but patch size and matrix type did not affect species richness and abundance in forest fragments. Furthermore, age structure and temporal recruitment patterns of the butterfly community were similar in all fragments, independent of patch size or matrix type. There were no differences in the numbers of butterflies flying in the matrices at two distances from the forest patch, but their behavior differed. Flight in the sun-coffee matrix was rapid and directional, whereas butterflies in shade-coffee matrix flew slowly. Seven out of 130 recaptured butterflies immigrated into patches in the shade-coffee matrix, and one immigrated into a patch surrounded by sun coffee. Although the shade-coffee matrix facilitated movement in the landscape, sun-coffee matrix was not impermeable to butterflies. Ithomiines exhibited behavioral plasticity in habitat use and high mobility. These traits favor their persistence in heterogeneous landscapes, opening opportunities for their conservation. Understanding the dynamics and resource requirements of different organisms in rural landscapes is critical for identifying management options that address both animals' and farmers' needs.
Are calcifying matrix vesicles in atherosclerotic lesions of cellular origin?
Bobryshev, Yuri V; Killingsworth, Murray C; Huynh, Thuan G; Lord, Reginald S A; Grabs, Anthony J; Valenzuela, Stella M
2007-03-01
Over recent years, the role of matrix vesicles in the initial stages of arterial calcification has been recognized. Matrix calcifying vesicles have been isolated from atherosclerotic arteries and the biochemical composition of calcified vesicles has been studied. No studies have yet been carried out to examine the fine structure of matrix vesicles in order to visualize the features of the consequent stages of their calcification in arteries. In the present work, a high resolution ultrastructural analysis has been employed and the study revealed that matrix vesicles in human atherosclerotic lesions are heterogeneous with two main types which we classified. Type I calcified vesicles were presented by vesicles surrounded by two electron-dense layers and these vesicles were found to be resistant to the calcification process in atherosclerotic lesions in situ. Type II matrix vesicles were presented by vesicles surrounded by several electron-dense layers and these vesicles were found to represent calcifying vesicles in atherosclerotic lesions. To test the hypothesis that calcification of matrix vesicles surrounded by multilayer sheets may occur simply as a physicochemical process, independently from the cell regulation, we produced multilamellar liposomes and induced their calcification in vitro in a manner similar to that occurring in matrix vesicles in atherosclerotic lesions in situ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girand, C.; Lormand, G.; Fougeres, R.
In metal matrix composites (MMCs), the mechanical 1 of the reinforcement-matrix interface is an important parameter because it governs the load transfer from matrix to particles, from which the mechanical properties of these materials are derived. Therefore, it would be useful to set out an experimental method able to characterize the interface and the adjacent matrix behaviors. Thus, a study has been undertaken by means of internal damping (I.D.) measurements, which are well known to be very sensitive for studying irreversible displacements at the atomic scale. More especially, this investigation is based on the fact that, during cooling of MMC's,more » stress concentrations originating from differences in coefficients of thermal expansion (C.T.E.) of matrix and particles should induce dislocation movements in the matrix surrounding the reinforcement; that is, local microplastic strains occur. Therefore, during I.D. measurements vs temperature these movements should contribute to MMCs I.D. in a process similar to those involved around first order phase transitions in solids. The aim of this paper is to present, in the case of Al/SiC particulate composites, new developments of this approach that has previously led to promising results in the case of Al-Si alloys.« less
Evidence of multimicrometric coherent γ' precipitates in a hot-forged γ-γ' nickel-based superalloy.
Charpagne, M-A; Vennéguès, P; Billot, T; Franchet, J-M; Bozzolo, N
2016-07-01
This paper demonstrates the existence of large γ' precipitates (several micrometres in diameter) that are coherent with their surrounding matrix grain in a commercial γ-γ' nickel-based superalloy. The use of combined energy dispersive X-ray spectrometry and electron backscattered diffraction (EBSD) analyses allowed for revealing that surprising feature, which was then confirmed by transmission electron microscopy (TEM). Coherency for such large second-phase particles is supported by a very low crystal lattice misfit between the two phases, which was confirmed thanks to X-ray diffractograms and TEM selected area electron diffraction patterns. Dynamic recrystallization of polycrystalline γ-γ' nickel-based superalloys has been extensively studied in terms of mechanisms and kinetics. As in many materials with low stacking fault energy, under forging conditions, the main softening mechanism is discontinuous dynamic recrystallization. This mechanism occurs with preferential nucleation on the grain boundaries of the deformed matrix. The latter is then being consumed by the growth of the newly formed grains of low energy and by nucleation that keeps generating new grains. In the case of sub-solvus forging, large γ' particles usually pin the migrating boundaries and thus limit grain growth to a size which is determined by the distribution of second-phase particles, in good agreement with the Smith-Zener model. Under particular circumstances, the driving force associated with the difference in stored energy between the growing grains and the matrix can be large enough that the pinning forces can be overcome, and some grains can then reach much larger grain sizes. In the latter exceptional case, some intragranular primary γ' particles can be observed, although they are almost exclusively located on grain boundaries and triple junctions otherwise. In both cases, primary precipitates have no special orientation relationship with the surrounding matrix grain(s). This paper demonstrates the existence of high fractions of large γ' precipitate (several micrometres in diameter) that are coherent with their surrounding matrix grain, in a commercial γ-γ' nickel-based superalloy. Such a configuration is very surprising, because there is apparently no reason for the coherency of such particles. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Strain fields induced by kink band propagation in Cu-Nb nanolaminate composites
Nizolek, T. J.; Begley, M. R.; McCabe, R. J.; ...
2017-07-01
Kink band formation is a common deformation mode for anisotropic materials and has been observed in polymer matrix fiber composites, single crystals, geological formations, and recently in metallic nanolaminates. While numerous studies have been devoted to kink band formation, the majority do not consider the often rapid and unstable process of kink band propagation. In this paper, we take advantage of stable kink band formation in Cu-Nb nanolaminates to quantitatively map the local strain fields surrounding a propagating kink band during uniaxial compression. Kink bands are observed to initiate at specimen edges, propagate across the sample during a rising globalmore » stress, and induce extended strain fields in the non-kinked material surrounding the propagating kink band. Finally, it is proposed that these stress/strain fields significantly contribute to the total energy dissipated during kinking and, analogous to crack tip stress/strain fields, influence the direction of kink propagation and therefore the kink band inclination angle.« less
Fricain, J C; Aid, R; Lanouar, S; Maurel, D B; Le Nihouannen, D; Delmond, S; Letourneur, D; Amedee Vilamitjana, J; Catros, S
2018-04-07
Polysaccharide-based composite matrices consisting of natural polysaccharides, pullulan and dextran supplemented with hydroxyapatite (Matrix-HA) have recently been developed. The principal objective of this study was to evaluate the capacities of this composite material to promote new bone formation in a sinus lift model in the sheep. Secondary objectives were to evaluate in vitro properties of the material regarding cell adhesion and proliferation. In this report, once such composite matrix was prepared as injectable beads after dispersion in a physiological buffer, and evaluated using a large animal model (sheep) for a sinus lift procedure. In vitro studies revealed that these microbeads (250-550μm in diameter) allow vascular cell adhesion and proliferation of Endothelial Cells (EC) after 1 and 7 days of culture. In vivo studies were performed in 12 adult sheep, and newly formed tissue was analyzed by Cone Beam Computed Tomography (CBCT scanning electron microscopy (SEM) and by histology 3 and 6 months post-implantation. CBCT analyses at the implantation time revealed the radiolucent properties of these matrices. Quantitative analysis showed an increase of a dense mineralized tissue in the Matrix-HA group up to 3 months of implantation. The mineralized volume over total volume after 6 months reached comparable values to those obtained for Bio-Oss ® used as positive control. Histological examination confirmed that the Matrix-HA did not induce any long term inflammatory events, and promoted direct contact between the osteoid tissue and lamellar bone structures and beads. After 6 months, we observed a dense network of osteocytes surrounding both biomaterials as well as a newly vascularized formed tissue in close contact to the biomaterials. In conclusion, the absence of animal components in Matrix-HA, the osteoconductive property of Matrix-HA in sheep, resulting in a dense bone and vascularized tissue, and the initial radiolucent property to follow graft integration offer great promises of this composite material for clinical use. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells.
Ishikawa, Makoto; Sawada, Yu; Yoshitomi, Takeshi
2015-04-01
The interphotoreceptor matrix (IPM) is a highly organized structure with interconnected domains surrounding cone and rod photoreceptor cells and extends throughout the subretinal space. Based on known roles of the extracellular matrix in other tissues, the IPM is thought to have several prominent functions including serving as a receptor for growth factors, regulating retinoid transport, participating in cytoskeletal organization in surrounding cells, and regulation of oxygen and nutrient transport. In addition, a number of studies suggest that the IPM also may play a significant role in the etiology of retinal degenerative disorders. In this review, we describe the present knowledge concerning the structure and function of the IPM under physiological and pathological conditions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Room temperature triplet state spectroscopy of organic semiconductors.
Reineke, Sebastian; Baldo, Marc A
2014-01-21
Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.
Patel, Deepak K; Waas, Anthony M
2016-07-13
This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391-1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre-matrix concentric cylinder model is extended to fibre and (N-1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1-48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1572). This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).
Salvi, M; Velluti, C; Misasi, M; Bartolozzi, P; Quacci, D; Dell'Orbo, C
1991-04-01
Light- and electron-microscopic investigations were performed on two failed Dacron ligaments that had been removed from 2 patients shortly after failure of the implant 2-3 years after reconstruction of the anterior cruciate ligament. Two different cell populations and matrices were correlated with closeness to the Dacron threads. Fibroblasts surrounded by connective tissue with collagen fibrils were located far from the Dacron threads. Roundish cells, appearing to be myofibroblasts surrounded by a more lax connective tissue and elastic fibers, were found close to the Dacron threads. The presence of myofibroblasts and the matrix differentiation could be attributed to the different mechanical forces acting on the Dacron and on the connective tissue because of their different coefficients of elasticity. The sparse occurrence of inflammatory cells in the synovial membrane and in the connective tissue surrounding the Dacron supports the biologic inertness of this artificial material. However, the repair tissue was not structured to resist tension stresses.
NASA Astrophysics Data System (ADS)
Bourg, S.; Péron, F.; Lacquement, J.
2007-01-01
The structure of the fuels for the future Gen IV nuclear reactors will be totally different from those of PWR, especially for the GFR concept including a closed cycle. In these reactors, fissile materials (carbides or nitrides of actinides) should be surrounded by an inert matrix. In order to build a reprocessing process scheme, the behavior of the potential inert matrices (silicon carbide, titanium nitride, and zirconium carbide and nitride) was studied by hydro- and pyrometallurgy. This paper deals with the chlorination results at high temperature by pyrometallurgy. For the first time, the reactivity of the matrix towards chlorine gas was assessed in the gas phase. TiN, ZrN and ZrC are very reactive from 400 °C whereas it is necessary to be over 900 °C for SiC to be as fast. In molten chloride melts, the bubbling of chlorine gas is less efficient than in gas phase but it is possible to attack the matrices. Electrochemical methods were also used to dissolve the refractory materials, leading to promising results with TiN, ZrN and ZrC. The massive SiC samples used were not conductive enough to be studied and in this case specific SiC-coated carbon electrodes were used. The key point of these studies was to find a method to separate the matrix compounds from the fissile material in order to link the head to the core of the process (electrochemical separation or liquid-liquid reductive extraction in the case of a pyrochemical reprocessing).
Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)
1999-01-01
A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.
Matrix remodeling between cells and cellular interactions with collagen bundle
NASA Astrophysics Data System (ADS)
Kim, Jihan; Sun, Bo
When cells are surrounded by complex environment, they continuously probe and interact with it by applying cellular traction forces. As cells apply traction forces, they can sense rigidity of their local environment and remodel the matrix microstructure simultaneously. Previous study shows that single human carcinoma cell (MDA-MB-231) remodeled its surrounding extracellular matrix (ECM) and the matrix remodeling was reversible. In this study we examined the matrix microstructure between cells and cellular interaction between them using quantitative confocal microscopy. The result shows that the matrix microstructure is the most significantly remodeled between cells consisting of aligned, and densified collagen fibers (collagen bundle)., the result shows that collagen bundle is irreversible and significantly change micromechanics of ECM around the bundle. We further examined cellular interaction with collagen bundle by analyzing dynamics of actin and talin formation along with the direction of bundle. Lastly, we analyzed dynamics of cellular protrusion and migrating direction of cells along the bundle.
Kroh, M; Hendriks, H; Kirby, E G; Sassen, M M
1976-08-01
Development of haploid meiospores of Allomyces arbuscula into germling cells with rhizoids and hyphae was followed during incubation in complete growth medium. The surface structure of encysted meiospores, rhizoids and hyphae before and after extraction of amorphous materials with ethanolic KOH was studied by means of carbon-platinum replicas. After 2--3 min incubation in complete medium 10% of the meiospores were surrounded by a cell wall containing microfibrils embedded in a matrix. Structure of cell walls of encysted meiospores, rhizoids, and hyphae differ from one another by the location of amorphous materials and by the arrangement of chitin microfibrils.
Engineering Interfaces in Metal Matrix Composites (Volume 3)
1988-06-10
Howard S. Landis and James A. Cornie Interfaces with Controlled Toughness as Mechanical Fuses to Isolate Fibers from Damage -Vijay Gupta, All S. Argon and...protect the re- inforcing fiber from damage resulting from fracture of surrounding fibers or from misfitting reaction products between the matrix and...properties to govern the decoupling of the fiber from its damaging surroundings, while maintaining full wetting contact along the interface between
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkes, Douglas E.; Senor, David J.; Casella, Andrew M.
Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. The current paper extends a failure model originally developed for UO2-stainless steel dispersion fuels and used currently available thermal-mechanical property information for the materials ofmore » interest in the current proposed design. A number of fabrication and irradiation parameters were investigated to understand the conditions at which failure of the matrix, classified as pore formation in the matrix, might occur. The results compared well with experimental observations published as part of the Reduced Enrichment for Research and Test Reactors (RERTR)-6 and -7 mini-plate experiments. Fission rate, a function of the 235U enrichment, appeared to be the most influential parameter in premature failure, mainly as a result of increased interaction layer formation and operational temperature, which coincidentally decreased the yield strength of the matrix and caused more rapid fission gas production and recoil into the surrounding matrix material. Addition of silicon to the matrix appeared effective at reducing the rate of interaction layer formation and can extend the performance of a fuel plate under a certain set of irradiation conditions, primarily moderate heat flux and burnup. Increasing the dispersed fuel particle diameter may also be effective, but only when combined with other parameters, e.g., lower enrichment and increased Si concentration. The model may serve as a valuable tool in initial experimental design.« less
Impurity precipitation in atomized particles evidenced by nano x-ray diffraction computed tomography
NASA Astrophysics Data System (ADS)
Bonnin, Anne; Wright, Jonathan P.; Tucoulou, Rémi; Palancher, Hervé
2014-08-01
Performances and physical properties of high technology materials are influenced or even determined by their initial microstructure and by the behavior of impurity phases. Characterizing these impurities and their relations with the surrounding matrix is therefore of primary importance but it unfortunately often requires a destructive approach, with the risk of misinterpreting the observations. The improvement we have done in high resolution X-ray diffraction computed tomography combined with the use of an X-ray nanoprobe allows non-destructive crystallographic description of materials with microscopic heterogeneous microstructure (with a grain size between 10 nm and 10 μm). In this study, the grain localization in a 2D slice of a 20 μm solidified atomized γU-Mo particle is shown and a minority U(C,O) phase (1 wt. %) with sub-micrometer sized grains was characterized inside. Evidence is presented showing that the onset of U(C,O) grain crystallization can be described by a precipitation mechanism since one single U-Mo grain has direct orientation relationship with more than one surrounding U(C,O) grains.
Jiang, Hong; Zuo, Yi; Zhang, Li; Li, Jidong; Zhang, Aiming; Li, Yubao; Yang, Xiaochao
2014-03-01
Each approach for artificial cornea design is toward the same goal: to develop a material that best mimics the important properties of natural cornea. Accordingly, the selection and optimization of corneal substitute should be based on their physicochemical properties. In this study, three types of polyvinyl alcohol (PVA) hydrogels with different polymerization degree (PVA1799, PVA2499 and PVA2699) were prepared by freeze-thawing techniques. After characterization in terms of transparency, water content, water contact angle, mechanical property, root-mean-square roughness and protein adsorption behavior, the optimized PVA2499 hydrogel with similar properties of natural cornea was selected as a matrix material for artificial cornea. Based on this, a biomimetic artificial cornea was fabricated with core-and-skirt structure: a transparent PVA hydrogel core, surrounding by a ringed PVA-matrix composite skirt that composed of graphite, Fe-doped nano hydroxyapatite (n-Fe-HA) and PVA hydrogel. Different ratio of graphite/n-Fe-HA can tune the skirt color from dark brown to light brown, which well simulates the iris color of Oriental eyes. Moreover, morphologic and mechanical examination showed that an integrated core-and-skirt artificial cornea was formed from an interpenetrating polymer network, no phase separation appeared on the interface between the core and the skirt.
Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.
Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong
2015-10-05
Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.
Constrained ceramic-filled polymer armor
Sandstrom, Donald J.; Calkins, Noel C.; Gac, Frank D.
1990-01-01
An armor system in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix.
Release of Self-Healing Agents in a Material: What Happens Next?
Lee, Min Wook; Yoon, Sam S; Yarin, Alexander L
2017-05-24
A microfluidic chip-like setup consisting of a vascular system of microchannels alternatingly filled with either a resin monomer or a curing agent is used to study the intrinsic physical healing mechanism in self-healing materials. It is observed that, as a prenotched crack propagates across the chip, the resin and curing agent are released from the damaged channels. Subsequently, both the resin and the curing agent wet the surrounding polydimethylsiloxane (PDMS) matrix and spread over the crack banks until the two blobs come in contact, mix, and polymerize through an organometallic cross-linking reaction. Moreover, the polymerized domains form a system of pillars, which span the crack banks on the opposite side. This "stitching" phenomenon prevents further propagation of the crack.
Patel, Deepak K.
2016-01-01
This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391–1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre–matrix concentric cylinder model is extended to fibre and (N−1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1–48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware. Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1572). This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242294
Magnetic shielding of 3-phase current by a composite material at low frequencies
NASA Astrophysics Data System (ADS)
Livesey, K. L.; Camley, R. E.; Celinski, Z.; Maat, S.
2017-05-01
Electromagnetic shielding at microwave frequencies (MHz and GHz) can be accomplished by attenuating the waves using ferromagnetic resonance and eddy currents in conductive materials. This method is not as effective at shielding the quasi-static magnetic fields produced by low-frequency (kHz) currents. We explore theoretically the use of composite materials - magnetic nanoparticles embedded in a polymer matrix - as a shielding material surrounding a 3-phase current source. We develop several methods to estimate the permeability of a single magnetic nanoparticle at low frequencies, several hundred kHz, and find that the relative permeability can be as high as 5,000-20,000. We then use two analytic effective medium theories to find the effective permeability of a collection of nanoparticles as a function of the volume filling fraction. The analytic calculations provide upper and lower bounds on the composite permeability, and we use a numerical solution to calculate the effective permeability for specific cases. The field-pattern for the 3-phase current is calculated using a magnetic scalar potential for each of the three wires surrounded by a cylinder with the effective permeability found above. For a cylinder with an inner radius of 1 cm and an outer radius of 1.5 cm and an effective permeability of 50, one finds a reduction factor of about 8 in the field strength outside the cylinder.
Hidden secrets of deformation: Impact-induced compaction within a CV chondrite
NASA Astrophysics Data System (ADS)
Forman, L. V.; Bland, P. A.; Timms, N. E.; Collins, G. S.; Davison, T. M.; Ciesla, F. J.; Benedix, G. K.; Daly, L.; Trimby, P. W.; Yang, L.; Ringer, S. P.
2016-10-01
The CV3 Allende is one of the most extensively studied meteorites in worldwide collections. It is currently classified as S1-essentially unshocked-using the classification scheme of Stöffler et al. (1991), however recent modelling suggests the low porosity observed in Allende indicates the body should have undergone compaction-related deformation. In this study, we detail previously undetected evidence of impact through use of Electron Backscatter Diffraction mapping to identify deformation microstructures in chondrules, AOAs and matrix grains. Our results demonstrate that forsterite-rich chondrules commonly preserve crystal-plastic microstructures (particularly at their margins); that low-angle boundaries in deformed matrix grains of olivine have a preferred orientation; and that disparities in deformation occur between chondrules, surrounding and non-adjacent matrix grains. We find heterogeneous compaction effects present throughout the matrix, consistent with a highly porous initial material. Given the spatial distribution of these crystal-plastic deformation microstructures, we suggest that this is evidence that Allende has undergone impact-induced compaction from an initially heterogeneous and porous parent body. We suggest that current shock classifications (Stöffler et al., 1991) relying upon data from chondrule interiors do not constrain the complete shock history of a sample.
Design and characterization of a plastic optical fiber pH sensor
NASA Astrophysics Data System (ADS)
Ferreira, Licínio; Simões, Pedro; Carvalho, Rui S.; Lopes, Paulo; Ferreira, Mário
2013-11-01
In this paper are present the design and characterization of a pH sensor using plastic optical fiber (POF) technology and a material produced by the sol-gel process with TEOS (tetraethyl orthosilicate) to immobilize universal indicator of pH (comprised of Thymol Blue, Methyl Red, Bromothymol Blue and Phenolphthalein) inside the silica matrix. This matrix is positioned between two extensions of plastic optical fiber tightly positioned at each side with both fibers aligned and sharing a common optical axis. This set will work as a pH sensor since the matrix embedded with indicator and in the presence of a solution (basic or acid solution) will change the optical transmittance properties. The optical source is a superluminescent white LED and the receiver is a photodiode having a good and linear responsivity in the visible spectrum. This pH sensitive matrix has large pores which allow the diffusion of the surrounding fluid molecules into the matrix and thus the close contact of these to the indicator molecules. This contact causes the change of color of the whole matrix allowing proper colorimetric detection by the photodiode. This variation of color associated with the detector wavelength linear response is the base of operation of the proposed device. This pH sensor presents many advantages over the standard and commercial pH meters namely, lightweight, portability and a low cost.
Cao, Li; Guilak, Farshid; Setton, Lori A
2011-02-01
Nucleus pulposus (NP) cells of the intervertebral disk (IVD) have unique morphological characteristics and biologic responses to mechanical stimuli that may regulate maintenance and health of the IVD. NP cells reside as single cell, paired or multiple cells in a contiguous pericellular matrix (PCM), whose structure and properties may significantly influence cell and extracellular matrix mechanics. In this study, a computational model was developed to predict the stress-strain, fluid pressure and flow fields for cells and their surrounding PCM in the NP using three-dimensional (3D) finite element models based on the in situ morphology of cell-PCM regions of the mature rat NP, measured using confocal microscopy. Three-dimensional geometries of the extracellular matrix and representative cell-matrix units were used to construct 3D finite element models of the structures as isotropic and biphasic materials. In response to compressive strain of the extracellular matrix, NP cells and PCM regions were predicted to experience volumetric strains that were 1.9-3.7 and 1.4-2.1 times greater than the extracellular matrix, respectively. Volumetric and deviatoric strain concentrations were generally found at the cell/PCM interface, while von Mises stress concentrations were associated with the PCM/extracellular matrix interface. Cell-matrix units containing greater cell numbers were associated with higher peak cell strains and lower rates of fluid pressurization upon loading. These studies provide new model predictions for micromechanics of NP cells that can contribute to an understanding of mechanotransduction in the IVD and its changes with aging and degeneration.
NASA Astrophysics Data System (ADS)
Hwang, Geelsu; Liu, Yuan; Kim, Dongyeop; Sun, Victor; Aviles-Reyes, Alejandro; Kajfasz, Jessica K.; Lemos, Jose A.; Koo, Hyun
2016-09-01
Biofilms are comprised of bacterial-clusters (microcolonies) enmeshed in an extracellular matrix. Streptococcus mutans can produce exopolysaccharides (EPS)-matrix and assemble microcolonies with acidic microenvironments that can cause tooth-decay despite the surrounding neutral-pH found in oral cavity. How the matrix influences the pH and bacterial activity locally remains unclear. Here, we simultaneously analyzed in situ pH and gene expression within intact biofilms and measured the impact of damage to the surrounding EPS-matrix. The spatiotemporal changes of these properties were characterized at a single-microcolony level following incubation in neutral-pH buffer. The middle and bottom-regions as well as inner-section within the microcolony 3D structure were resistant to neutralization (vs. upper and peripheral-region), forming an acidic core. Concomitantly, we used a green fluorescent protein (GFP) reporter to monitor expression of the pH-responsive atpB (PatpB::gfp) by S. mutans within microcolonies. The atpB expression was induced in the acidic core, but sharply decreased at peripheral/upper microcolony regions, congruent with local pH microenvironment. Enzymatic digestion of the surrounding matrix resulted in nearly complete neutralization of microcolony interior and down-regulation of atpB. Altogether, our data reveal that biofilm matrix facilitates formation of an acidic core within microcolonies which in turn activates S. mutans acid-stress response, mediating both the local environment and bacterial activity in situ.
Keating, M; Kurup, A; Alvarez-Elizondo, M; Levine, A J; Botvinick, E
2017-07-15
Bulk tissue stiffness has been correlated with regulation of cellular processes and conversely cells have been shown to remodel their pericellular tissue according to a complex feedback mechanism critical to development, homeostasis, and disease. However, bulk rheological methods mask the dynamics within a heterogeneous fibrous extracellular matrix (ECM) in the region proximal to a cell (pericellular region). Here, we use optical tweezers active microrheology (AMR) to probe the distribution of the complex material response function (α=α'+α″, in units of µm/nN) within a type I collagen ECM, a biomaterial commonly used in tissue engineering. We discovered cells both elastically and plastically deformed the pericellular material. α' is wildly heterogeneous, with 1/α' values spanning three orders of magnitude around a single cell. This was observed in gels having a cell-free 1/α' of approximately 0.5nN/µm. We also found that inhibition of cell contractility instantaneously softens the pericellular space and reduces stiffness heterogeneity, suggesting the system was strain hardened and not only plastically remodeled. The remaining regions of high stiffness suggest cellular remodeling of the surrounding matrix. To test this hypothesis, cells were incubated within the type I collagen gel for 24-h in a media containing a broad-spectrum matrix metalloproteinase (MMP) inhibitor. While pericellular material maintained stiffness asymmetry, stiffness magnitudes were reduced. Dual inhibition demonstrates that the combination of MMP activity and contractility is necessary to establish the pericellular stiffness landscape. This heterogeneity in stiffness suggests the distribution of pericellular stiffness, and not bulk stiffness alone, must be considered in the study of cell-ECM interactions and design of complex biomaterial scaffolds. Collagen is a fibrous extracellular matrix (ECM) protein widely used to study cell-ECM interactions. Stiffness of ECM has been shown to instruct cells, which can in turn modify their ECM, as has been shown in the study of cancer and regenerative medicine. Here we measure the stiffness of the collagen microenvironment surrounding cells and quantitatively measure the dependence of pericellular stiffness on MMP activity and cytoskeletal contractility. Competent cell-mediated stiffening results in a wildly heterogeneous micromechanical topography, with values spanning orders of magnitude around a single cell. We speculate studies must consider this notable heterogeneity generated by cells when testing theories regarding the role of ECM mechanics in health and disease. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Lithification opf gas-rich chondrite regolith breccias by grain boundary and localized shock melting
NASA Technical Reports Server (NTRS)
Bischoff, A.; Rubin, A. E.; Keil, K.; Stoeffler, D.
1983-01-01
The fine-grained matrices (less than 150 microns) of 14 gas-rich ordinary chondrile regolith breccias were studied in an attempt to decipher the nature of the lithification process that converted loose regolith material into consolidated breccias. It is found that there is a continuouos gradation in matrix textures from nearly completely clastic (class A) to highly cemented (class C) breccias in which the remining clasts are completely surrounded by interstitial, shock-melted material. It is concluded that this interstitial material is formed by shock melting in the porous regolith. In general, the abundances of solar-wind-implanted He-4 and Ne-20 are inversely correlated with the abundance of intenstitial, shock-melted, feldspathic material. Chondrites with the highest abundance of interstitial, melted material (class C) experienced the highest shock pressures and temperatures and suffered the most extensive degassing. It is this interstitial, feldspathic melt that lithifies and cements the breccias together; those breccias with very little interstitial melt (class A) are the most porous and least consolidated.
Reducing Actinide Production Using Inert Matrix Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deinert, Mark
2017-08-23
The environmental and geopolitical problems that surround nuclear power stem largely from the longlived transuranic isotopes of Am, Cm, Np and Pu that are contained in spent nuclear fuel. New methods for transmuting these elements into more benign forms are needed. Current research efforts focus largely on the development of fast burner reactors, because it has been shown that they could dramatically reduce the accumulation of transuranics. However, despite five decades of effort, fast reactors have yet to achieve industrial viability. A critical limitation to this, and other such strategies, is that they require a type of spent fuel reprocessingmore » that can efficiently separate all of the transuranics from the fission products with which they are mixed. Unfortunately, the technology for doing this on an industrial scale is still in development. In this project, we explore a strategy for transmutation that can be deployed using existing, current generation reactors and reprocessing systems. We show that use of an inert matrix fuel to recycle transuranics in a conventional pressurized water reactor could reduce overall production of these materials by an amount that is similar to what is achievable using proposed fast reactor cycles. Furthermore, we show that these transuranic reductions can be achieved even if the fission products are carried into the inert matrix fuel along with the transuranics, bypassing the critical separations hurdle described above. The implications of these findings are significant, because they imply that inert matrix fuel could be made directly from the material streams produced by the commercially available PUREX process. Zirconium dioxide would be an ideal choice of inert matrix in this context because it is known to form a stable solid solution with both fission products and transuranics.« less
NASA Astrophysics Data System (ADS)
Penniston-Dorland, Sarah C.; Kohn, Matthew J.; Piccoli, Philip M.
2018-01-01
The Catalina Schist contains a spectacular, km-scale amphibolite facies mélange zone, thought to be part of a Cretaceous convergent margin plate interface. In this setting, blocks ranging from centimeters up to ≥100 m in diameter are surrounded by finer-grained matrix that is derived from the blocks. Blocks throughout the mélange represent a diversity of protoliths derived from basalts, cherts and other sediments, and hydrated mantle, but all contain assemblages consistent with upper amphibolite-facies conditions, suggesting a relatively restricted range of depths and temperatures over which material within the mélange was metamorphosed. This apparent uniformity of metamorphic grade contrasts with other mélanges, such as the Franciscan Complex, where coexisting rocks with highly variable peak metamorphic grade suggest extensive mixing of materials along the subduction interface. This mixing has been ascribed to flow of material within relatively low viscosity matrix. The Zr content of rutile in samples from across the amphibolite facies mélange of the Catalina Schist was measured to determine peak metamorphic temperatures, identify whether these temperatures were different among blocks, and whether the spatial distribution of temperatures throughout the mélange was systematic or random. Resolvably different Zr contents, between 290 and 720 (±10-40) ppm, are found among the blocks, corresponding to different peak metamorphic temperatures of 650 to 730 (±2-16) °C at an assumed pressure of 1 GPa. These results are broadly consistent with previous thermobarometric estimates. No systematic distribution of temperatures was found, however. Like other mélange zones, material flow within the Catalina Schist mélange was likely chaotic, but appears to have occurred on a more restricted scale compared to some other localities. Progressive metamorphism of mélange matrix is expected to produce rheologically stiffer matrix minerals (such as amphiboles and pyroxenes) at the expense of weaker matrix minerals (sheet silicates), affecting the overall rheological behavior of the mélange, and dictating the scale of flow. The Catalina Schist amphibolite facies mélange matrix appears to provide a snapshot of hotter, stiffer portions of a subduction interface, perhaps more representative of rheological behavior at depths approaching the subarc than is found in some other exhumed mélange zones.
Fundamental analysis of the failure of polymer-based fiber reinforced composites
NASA Technical Reports Server (NTRS)
Kanninen, M. F.; Rybicki, E. F.; Griffith, W. I.; Broek, D.
1975-01-01
A mathematical model predicting the strength of unidirectional fiber reinforced composites containing known flaws and with linear elastic-brittle material behavior was developed. The approach was to imbed a local heterogeneous region surrounding the crack tip into an anisotropic elastic continuum. This (1) permits an explicit analysis of the micromechanical processes involved in the fracture, and (2) remains simple enough to be useful in practical computations. Computations for arbitrary flaw size and orientation under arbitrary applied loads were performed. The mechanical properties were those of graphite epoxy. With the rupture properties arbitrarily varied to test the capabilities of the model to reflect real fracture modes, it was shown that fiber breakage, matrix crazing, crack bridging, matrix-fiber debonding, and axial splitting can all occur during a period of (gradually) increasing load prior to catastrophic failure. The calculations also reveal the sequential nature of the stable crack growth process proceding fracture.
Process for making ceramic hot gas filter
Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam
2001-01-01
A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.
Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam
1999-01-01
A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.
Structural and compositional characterization of the adhesive produced by reef building oysters.
Alberts, Erik M; Taylor, Stephen D; Edwards, Stephanie L; Sherman, Debra M; Huang, Chia-Ping; Kenny, Paul; Wilker, Jonathan J
2015-04-29
Oysters have an impressive ability to overcome difficulties of life within the stressful intertidal zone. These shellfish produce an adhesive for attaching to each other and building protective reef communities. With their reefs often exceeding kilometers in length, oysters play a major role in balancing the health of coastal marine ecosystems. Few details are available to describe oyster adhesive composition or structure. Here several characterization methods were applied to describe the nature of this material. Microscopy studies indicated that the glue is comprised of organic fiber-like and sheet-like structures surrounded by an inorganic matrix. Phospholipids, cross-linking chemistry, and conjugated organics were found to differentiate this adhesive from the shell. Symbiosis in material synthesis could also be present, with oysters incorporating bacterial polysaccharides into their adhesive. Oyster glue shows that an organic-inorganic composite material can provide adhesion, a property especially important when constructing a marine ecosystem.
NASA Astrophysics Data System (ADS)
Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung
2015-04-01
Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.
Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.
1999-05-11
A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.
Constrained ceramic-filled polymer armor
Sandstrom, D.J.; Calkins, N.C.; Gac, F.D.
1990-11-13
An armor system is disclosed in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y. B.; Budai, J. D.; Tischler, J. Z.
How boundaries surrounding recrystallization grains migrate through the 3D network of dislocation boundaries in deformed crystalline materials is unknown and critical for the resulting recrystallized crystalline materials. Furthermore, by using X-ray Laue diffraction microscopy, we show for the first time the migration pattern of a typical recrystallization boundary through a well-characterized deformation matrix. The data provide a unique possibility to investigate effects of both boundary misorientation and plane normal on the migration, information which cannot be accessed with any other techniques. Our results show that neither of these two parameters can explain the observed migration behavior. Instead we suggest thatmore » the subdivision of the deformed microstructure ahead of the boundary plays the dominant role. Our experimental observations challenge the assumptions of existing recrystallization theories, and set the stage for determination of mobilities of recrystallization boundaries.« less
NASA Astrophysics Data System (ADS)
Ryzhov, V. A.; Lashkul, A. V.; Matveev, V. V.; Molkanov, P. L.; Kurbakov, A. I.; Kiselev, I. A.; Lisunov, K. G.; Galimov, D.; Lähderanta, E.
2018-01-01
Two porous glassy carbon-based samples doped with Au and Co were investigated. The magnetization study as well as measurements of the nonlinear longitudinal response to a weak ac field (NLR) and electron magnetic resonance give evidences for a presence of magnetic nanoparticles (MNPs) embedded in paramagnetic/ferromagnetic matrix respectively, both samples being in magnetically phase-separated state at temperatures above 300 K. Matrix, forming by paramagnetic centers located in matrix outside the MNPs, reveals exchange interactions providing its ferromagnetic (FM) ordering below TC ≈ 210 K in Au-doped sample and well above 350 K in Co-doped one. For the former, NLR data suggest a percolation character of the matrix long-range FM order, which is mainly caused by a porous amorphous sample structure. Temperature dependence of the magnetization in the Au-doped sample evidences presence of antiferromagnetic (AF) interactions of MNPs with surrounding matrix centers. At magnetic ordering below TC these interactions promote origination of "domains" involving matrix fragment and surrounding MNPs with near opposite orientation of their moments that decreases the magnetostatic energy. On further cooling, the domains exhibit AF ordering below Tcr ∼ 140 K < TC, resulting in formation of a peculiar "ferrimagnet". The porous amorphous structure leads to absence of translational and other symmetry features through the samples that allows canted ordering of magnetic moments in domains and in whole sample providing "canted ferrimagnetism". At low temperatures Ttr ∼ 3 K, "order-oder" transition, evidencing the non-Heisenberg character of this magnetic material, occurs from ordering like "canted ferrimagnet" to FM alignment, which is stimulated by external magnetic field. The data for Co-doped sample imply the similar evolution of magnetic state but at higher temperatures above 350 K. This state exhibits more homogeneous arrangement of the FM nanoparticles and the FM matrix. Order-order transition occurs in it at higher Ttr ∼ 10-15 K as well and followed by formation of long-range FM ordering found earlier by neutron diffraction. Doping of carbon-based nanomaterials by magnetic metals provides advantages for their possible practical applications as Co-doped sample with higher TC (>350 K) and larger remanent magnetization evidences.
Morphometric analysis of the location and activity of cytokines in the tissue implant response.
Butler, Kenneth R; Benghuzzi, Hamed A; Tucci, Michelle A; Puckett, Aaron
2014-01-01
The objective of this investigation was to evaluate the location and activity of cytokines in the fibrous tissue surrounding tricalcium phosphate (TCP) implants loaded with androgenic hormones. Sixteen animals in four experimental groups (n = 4/group) were implanted with one TCP implant each: Group I (control), Group II (testosterone), Group III (dihydrotestosterone), and Group IV (androstenedione). At 90 days post-implantation, the fibrous tissue surrounding the implants were evaluated following staining with antibodies to IL-1ß, IL-2, IL-6, and TNF?. Data were collected on the presence and distribution of cytokines within the fibrous tissue surrounding all four groups. IL-1ß was primarily found intercellular and associated with fibroblasts and macrophages of Groups I-III. IL-2 was present in the extracellular matrix and was sporadically found on the surface of macrophages in Groups I-III. IL-6 was found primarily concentrated in the fibroblast and collagen rich portions of the fibrous tissue matrix in Groups I-III. TNF-? was present in the extracellular matrix of the fibrous tissue of all four groups and was strongly associated with fibroblast and macrophage rich areas. The results of this study confirm activity of cytokines on target cells and indicate their actions may vary in their effect within the fibrous tissue surrounding TCP implants loaded with androgens.
Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djaka, Komlan Senam; Villani, Aurelien; Taupin, Vincent
Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen a surge in interest in the mechanics of materials community. The present work addresses the critical question of determining accurate local mechanical fields using FFT methods without artificial fluctuations arising from materials and defects induced discontinuities. Precisely, this work introduces a numerical approach based on intrinsic discrete Fourier transforms for the simultaneous treatment of material discontinuities arising from the presence of dislocations and from elastic stiffness heterogeneities. To this end, the elasto-static equations of the field dislocation mechanics theory for periodic heterogeneous materials are numerically solved with FFT inmore » the case of dislocations in proximity of inclusions of varying stiffness. An optimal intrinsic discrete Fourier transform method is sought based on two distinct schemes. A centered finite difference scheme for differential rules are used for numerically solving the Poisson-type equation in the Fourier space, while centered finite differences on a rotated grid is chosen for the computation of the modified Fourier–Green’s operator associated with the Lippmann–Schwinger-type equation. By comparing different methods with analytical solutions for an edge dislocation in a composite material, it is found that the present spectral method is accurate, devoid of any numerical oscillation, and efficient even for an infinite phase elastic contrast like a hole embedded in a matrix containing a dislocation. The present FFT method is then used to simulate physical cases such as the elastic fields of dislocation dipoles located near the matrix/inclusion interface in a 2D composite material and the ones due to dislocation loop distributions surrounding cubic inclusions in 3D composite material. In these configurations, the spectral method allows investigating accurately the elastic interactions and image stresses due to dislocation fields in the presence of elastic inhomogeneities.« less
Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach
Djaka, Komlan Senam; Villani, Aurelien; Taupin, Vincent; ...
2017-03-01
Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen a surge in interest in the mechanics of materials community. The present work addresses the critical question of determining accurate local mechanical fields using FFT methods without artificial fluctuations arising from materials and defects induced discontinuities. Precisely, this work introduces a numerical approach based on intrinsic discrete Fourier transforms for the simultaneous treatment of material discontinuities arising from the presence of dislocations and from elastic stiffness heterogeneities. To this end, the elasto-static equations of the field dislocation mechanics theory for periodic heterogeneous materials are numerically solved with FFT inmore » the case of dislocations in proximity of inclusions of varying stiffness. An optimal intrinsic discrete Fourier transform method is sought based on two distinct schemes. A centered finite difference scheme for differential rules are used for numerically solving the Poisson-type equation in the Fourier space, while centered finite differences on a rotated grid is chosen for the computation of the modified Fourier–Green’s operator associated with the Lippmann–Schwinger-type equation. By comparing different methods with analytical solutions for an edge dislocation in a composite material, it is found that the present spectral method is accurate, devoid of any numerical oscillation, and efficient even for an infinite phase elastic contrast like a hole embedded in a matrix containing a dislocation. The present FFT method is then used to simulate physical cases such as the elastic fields of dislocation dipoles located near the matrix/inclusion interface in a 2D composite material and the ones due to dislocation loop distributions surrounding cubic inclusions in 3D composite material. In these configurations, the spectral method allows investigating accurately the elastic interactions and image stresses due to dislocation fields in the presence of elastic inhomogeneities.« less
Thermal effects on an embedded grating sensor in an FRP structure
NASA Astrophysics Data System (ADS)
Lau, Kin-tak; Yuan, Libo; Zhou, Li-min
2001-08-01
Much research has been carried out in the field of using optical fibre sensors as internal strain and temperature measuring devices for advanced composite structures in recent years. The specific application is the use of embedded optical fibre sensors for smart composite reinforcement for strain monitoring in an innovative civil engineering structure, particularly for the structure after rehabilitation. Researchers have also paid attention to using the optical fibre sensor for monitoring the condition of composite materials during manufacturing and curing processes. However, heat induced in the curing process may influence the accuracy of measurement and eventuate in causing damage at the bond interface between the optical fibre and the surrounding matrix material because of the different thermal properties of silica fibre and composite materials. In this paper, a simple theoretical model is introduced to determine the interfacial properties of the embedded optical fibre system in composite laminates with different values of the coefficient of thermal expansion under different temperature environments. A finite-element method is used to compare the result from the theoretical prediction. The results show that the maximum shear stress in the coating layer decreases with increasing surrounding temperature when the optical fibre is embedded into carbon and Kevlar fibre composites. In contrast, increasing the temperature when the optical fibre is embedded into glass fibre composite results in the increase of maximum shear stress of the material. The compaction pressure distribution along the circumference of the coating layer also varies with temperature.
Guimarães, George Furtado; de Araújo, Vera Cavalcanti; Nery, James Carlos; Peruzzo, Daiane Cristina; Soares, Andresa Borges
2015-01-01
Enamel matrix derivative (EMD) is commonly used in periodontal therapy and has been used successfully for periodontal regeneration. In addition, this material has a possible angiogenic effect that has been associated with enhanced wound healing. The aim of this study was to evaluate the effect of EMD on microvessel density (angiogenesis) on the soft tissues surrounding newly placed implants after 14 days. Five patients were selected, each requiring at least one implant on each side of the maxilla, in a split-mouth experimental design. The implants were placed in a two-stage procedure. Each side was then randomized as test or control. On the test side, 0.1 mL of EMD was topically applied to the soft tissues surrounding the implants, while the control side did not receive any treatment. Second-stage surgery was performed after 14 days. A 6-mm punch biopsy was performed for each implant, with the samples subsequently prepared for histology and immunohistochemistry. Quantitative vascularization analysis was performed, which involved counting three areas or "hotspots" containing vessels strongly positive for CD34 and CD105, a pan-endothelial and new vessel marker, respectively. There was no significant difference between test and control groups when evaluating the formation of new blood vessels. The total number of blood vessels, however, was significantly higher in the group treated with EMD (test group). Within the limits of the present study, it can be concluded that topical application of EMD on the soft tissues surrounding newly placed implants resulted in an increased number of blood vessels at 14 days, suggesting that EMD may play a beneficial role in this aspect of wound healing.
Efficient low static-volume water heater
NASA Technical Reports Server (NTRS)
Brown, R. L.
1976-01-01
Calrod heating element is surrounded by matrix of fused sintered copper or brass balls, and assembly is then installed in piping of water system. As water flows through matrix, sintered balls cause turbulent flow and heating. Applications include laundromats, laboratories, and photographic labs.
Self-healing fiber-reinforced composite
NASA Astrophysics Data System (ADS)
Lee, Minwook; Yoon, Sam; Yarin, Alexander
In the present work two parts of the healing agent (commercially available epoxy resin and hardener) are encapsulated in separate polymeric nanofibers. The fibers are generated by a single-step dual coaxial solution blowing. The core-shell fibers with the diameters in the 200-2600 nm range are encased in the PDMS (polydimethyl siloxane) matrix to form a self-healing composite material. Under fatigue conditions, the core-shell fibers inside the composite material are ruptured and the healing agents released into the surrounding matrix. Various fatigue conditions including repeated bending and stretching are used to damage the composites and the degree of self-healing is quantified after that. Also, an incision resembling a crack is pre-notched and crack propagation is studied. It is found that the presence of the self-healing agents in the fibers significantly retards crack propagation due to curing by the epoxy at the ruptured site. The stiffness of the composites is also measured for the samples containing self-healing fibers inside them before and after the fatigue tests. A novel theory of crack propagation is proposed, which explains the observed jump-like growth of sub-critical cracks. This work was supported by the International Collaboration Program funded by the Agency for Defense Development.
Controlling the Degradation of Bioresorbable Polymers
NASA Astrophysics Data System (ADS)
Moritz, Istvan; Crowley, Brian; Brundage, Elizabeth; Rende, Deniz; Ozisik, Rahmi
Bioresorbable polymers play a vital role in the development of implantable materials that are used in surgical procedures, controlled drug delivery systems; and tissue engineering scaffolds. The half-life of common bioresorbable polymers ranges from 3 to over 12 months and slow bioresorption rates of these polymers restrict their use to a limited set of applications. The use of embedded enzymes was previously proposed to control the degradation rate of bioresorbable polymers, and was shown to decrease average degradation time to about 0.5 months. In this study, electromagnetic actuation of iron oxide magnetic nanoparticles embedded in an encapsulant polymer, poly(ethyleneoxide), PEO, was employed to initiate enzyme assisted degradation of bioresorbable polymer poly(caprolactone), PCL. Results indicate that the internal temperature of iron oxide magnetic nanoparticle doped PEO samples can be increased via an alternating magnetic field, and temperature increase depends strongly on nanoparticle concentration and magnetic field parameters. The temperature achieved is sufficient to relax the PEO matrix and to enable the diffusion of enzymes from PEO to a surrounding PCL matrix. Current studies are directed at measuring the degradation rate of PCL due to the diffused enzyme. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.
Proceedings of the Tri-Service Conference on Corrosion (1987)
1987-05-01
designated S1 and S2 exhibited preferential local attack. The corrosion in these alloys occur between tungsten particles where matrix alloy precipitated ...surrounded by a matrix alloy of Fe-Ni-W. The EDAX examination of the precipitated matrix alloy between the tungsten particles in sample K1 showed the...the precipitated matrix alloy between the tungsten particles . For alloy Sl, the corrosion was observed at preferential local sites. The SEM
Beller Lectureship Talk: Active response of biological cells to mechanical stress
NASA Astrophysics Data System (ADS)
Safran, Samuel
2009-03-01
Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. We present a simple and generic theoretical model for the active response of biological cells to mechanical stress. The theory includes cell activity and mechanical forces as well as random forces as factors that determine the polarizability that relates cell orientation to stress. This allows us to explain the puzzling observation of parallel (or sometimes random) alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency and compare the theory with recent experiments. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material distinguishes cells whose activity is controlled by stress from those controlled by strain. We have extended the theory to generalize the treatment of elastic inclusions in solids to ''living'' inclusions (cells) whose active polarizability, analogous to the polarizability of non-living matter, results in the feedback of cellular forces that develop in response to matrix stresses. We use this to explain recent observations of the non-monotonic dependence of stress-fiber polarization in stem cells on matrix rigidity. These findings provide a mechanical correlate for the existence of an optimal substrate elasticity for cell differentiation and function. [3pt] *In collaboration with R. De (Brown University), Y. Biton (Weizmann Institute), and A. Zemel (Hebrew University) and the experimental groups: Max Planck Institute, Stuttgart: S. Jungbauer, R. Kemkemer, J. Spatz; University of Pennsylvania: A. Brown, D. Discher, F. Rehfeldt.
A simple radiocarbon dating method for determining the age and growth rate of deep-sea sponges
NASA Astrophysics Data System (ADS)
Fallon, S. J.; James, K.; Norman, R.; Kelly, M.; Ellwood, M. J.
2010-04-01
The ability to reliably age siliceous sponges is explored using radiocarbon dating of several hexactinellid sponge specimens including Rossella racovitzaeracovitzae Topsent, 1901 ( C. Hexactinellida: O. Lyssacinosida: F. Rossellidae), collected from the Ross Sea, Antarctica. The optimal pretreatment was found to consist of both sequential acid digestion and pre-roasting at temperatures >400 °C. Subsequent combustion at 900 °C liberated the proteinaceous material within the spicule matrix and once the reservoir age of the surrounding water was accounted for, a linear extension rate was calculated to be around 2.9 mm yr -1, aging the sponge at ˜440 years old.
Hybrid matrix fiber composites
Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.
2003-07-15
Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.
Semisolid Metal Processing Techniques for Nondendritic Feedstock Production
Mohammed, M. N.; Omar, M. Z.; Salleh, M. S.; Alhawari, K. S.; Kapranos, P.
2013-01-01
Semisolid metal (SSM) processing or thixoforming is widely known as a technology that involves the formation of metal alloys between solidus and liquidus temperatures. For the procedure to operate successfully, the microstructure of the starting material must consist of solid near-globular grains surrounded by a liquid matrix and a wide solidus-to-liquidus transition area. Currently, this process is industrially successful, generating a variety of products with high quality parts in various industrial sectors. Throughout the years since its inception, a number of technologies to produce the appropriate globular microstructure have been developed and applied worldwide. The main aim of this paper is to classify the presently available SSM technologies and present a comprehensive review of the potential mechanisms that lead to microstructural alterations during the preparation of feedstock materials for SSM processing. PMID:24194689
Repair process and a repaired component
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, III, Herbert Chidsey; Simpson, Stanley F.
Matrix composite component repair processes are disclosed. The matrix composite repair process includes applying a repair material to a matrix composite component, securing the repair material to the matrix composite component with an external securing mechanism and curing the repair material to bond the repair material to the matrix composite component during the securing by the external securing mechanism. The matrix composite component is selected from the group consisting of a ceramic matrix composite, a polymer matrix composite, and a metal matrix composite. In another embodiment, the repair process includes applying a partially-cured repair material to a matrix composite component,more » and curing the repair material to bond the repair material to the matrix composite component, an external securing mechanism securing the repair material throughout a curing period, In another embodiment, the external securing mechanism is consumed or decomposed during the repair process.« less
FUEL-BREEDER FUEL ELEMENT FOR NUCLEAR REACTOR
Abbott, W.E.; Balent, R.
1958-09-16
A fuel element design to facilitate breeding reactor fuel is described. The fuel element is comprised of a coatainer, a central core of fertile material in the container, a first bonding material surrounding the core, a sheet of fissionable material immediately surrounding the first bonding material, and a second bonding material surrounding the fissionable material and being in coniact with said container.
Superelastic stress-strain behavior in ferrogels with different types of magneto-elastic coupling
NASA Astrophysics Data System (ADS)
Cremer, Peet; Löwen, Hartmut; Menzel, Andreas M.
Colloidal magnetic particles embedded in an elastic polymer matrix constitute a smart material called ferrogel. It responds to an applied external magnetic field by changes in elastic properties, which can be exploited for various applications like dampers, vibration absorbers, or actuators. Under appropriate conditions, the stress-strain behavior of a ferrogel can display a fascinating feature: superelasticity, the capability to reversibly deform by a huge amount while barely altering the applied load. In a previous work, using numerical simulations, we investigated this behavior assuming that the magnetic moments carried by the embedded particles can freely reorient to minimize their magnetic interaction energy. Here, we extend the analysis to ferrogels where restoring torques by the surrounding matrix hinder rotations towards a magnetically favored configuration. For example, the particles can be chemically cross-linked into the polymer matrix and the magnetic moments can be fixed to the particle axes. We demonstrate that these systems still feature a superelastic regime. As before, the nonlinear stress-strain behavior can be reversibly tailored during operation by external magnetic fields. Yet, the different coupling of the magnetic moments causes different types of response to external stimuli. For instance, an external magnetic field applied parallel to the stretching axis hardly affects the superelastic regime but stiffens the system beyond it. Other smart materials featuring superelasticity, e.g. metallic shape-memory alloys, have already found widespread applications. Our soft polymer systems offer many additional advantages like a typically higher deformability and enhanced biocompatibility combined with high tunability.
Method of producing a hybrid matrix fiber composite
Deteresa, Steven J [Livermore, CA; Lyon, Richard E [Absecon, NJ; Groves, Scott E [Brentwood, CA
2006-03-28
Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.
del-Val, Ek; Armesto, Juan J; Barbosa, Olga; Marquet, Pablo A
2007-09-01
The landscape (matrix) surrounding habitat fragments critically affects the biodiversity of those fragments due to biotic interchange and physical effects. However, to date, there have been only a limited number of studies on plant-animal interactions in fragmented landscapes, particularly on how tree seedling herbivory is affected by fragmentation. We have examined this question in a fog-dependent mosaic of rainforest fragments located on coastal mountaintops of semiarid Chile (30 degrees S), where the effects of the surrounding semiarid matrix and forest patch size (0.1-22 ha) on tree seedling survival were simultaneously addressed. The rainforest is strongly dominated by the endemic evergreen tree species Aextoxicon punctatum (Olivillo, approx. 80% of basal area). To assess the magnitudes and causes of Olivillo seedling mortality, we set up a field experiment where 512 tree seedlings of known age were transplanted into four forest fragments of different sizes in four 1.5 x 3-m plots per patch; one-half of each plot was fenced off with chicken wire to exclude small mammals. The plots were monitored for 22 months. Overall, 50% of the plants died during the experiment. The exclusion of small mammals from the plots increased seedling survival by 25%, with the effect being greater in smaller patches where matrix-dwelling herbivores are more abundant. This experiment highlights the important role of the surrounding matrix in affecting the persistence of trees in forest fragments. Because herbivores from the matrix cause greater tree seedling mortality in small patches, their effects must be taken into account in forest conservation-restoration plans.
Scarano, Antonio; Barros, Raquel R M; Iezzi, Giovanna; Piattelli, Adriano; Novaes, Arthur B
2009-02-01
The aim of this study was to evaluate clinically, histologically, and ultrastructurally the integration process of the acellular dermal matrix used to increase the band of keratinized tissue while achieving gingival inflammation control. Ten patients exhibiting a mucogingival problem with bands of keratinized tissue
Xie, Jing; Hou, Yanhua; Fu, Na; Cai, Xiaoxiao; Li, Guo; Peng, Qiang; Lin, Yunfeng
2015-10-01
Titanium (Ti)-wear particles, formed at the bone-implant interface, are responsible for aseptic loosening, which is a main cause of total joint replacement failure. There have been many studies on Ti particle-induced function changes in mono-cultured osteoblasts and synovial cells. However, little is known on extracellular matrix remodeling displayed by osteoblasts when in coexistence with Synovial cells. To further mimic the bone-implant interface environment, we firstly established a nanoscaled-Ti particle-induced aseptic loosening system by co-culturing osteoblasts and Synovial cells. We then explored the impact of the Synovial cells on Ti particle-engulfed osteoblasts in the mimicked flamed niche. The matrix metalloproteinases and lysyl oxidases expression levels, two protein families which are critical in osseointegration, were examined under induction by tumor necrosis factor-alpha. It was found that the co-culture between the osteoblasts and Synovial cells markedly increased the migration and proliferation of the osteoblasts, even in the Ti-particle engulfed osteoblasts. Importantly, the Ti-particle engulfed osteoblasts, induced by TNF-alpha after the co-culture, enhanced the release of the matrix metalloproteinases and reduced the expressions of lysyl oxidases. The regulation of extracellular matrix remodeling at the protein level was further assessed by investigations on gene expression of the matrix metalloproteinases and lysyl oxidases, which also suggested that the regulation started at the genetic level. Our research work has therefore revealed the critical role of multi cell-type interactions in the extracellular matrix remodeling within the peri-prosthetic tissues, which provides new insights on aseptic loosening and brings new clues about incomplete osseointegration between the implantation materials and their surrounding bones.
NASA Astrophysics Data System (ADS)
Heinze, Karsta; Frank, Xavier; Lullien-Pellerin, Valérie; George, Matthieu; Radjai, Farhang; Delenne, Jean-Yves
2017-06-01
Wheat grains can be considered as a natural cemented granular material. They are milled under high forces to produce food products such as flour. The major part of the grain is the so-called starchy endosperm. It contains stiff starch granules, which show a multi-modal size distribution, and a softer protein matrix that surrounds the granules. Experimental milling studies and numerical simulations are going hand in hand to better understand the fragmentation behavior of this biological material and to improve milling performance. We present a numerical study of the effect of granule size distribution on the strength of such a cemented granular material. Samples of bi-modal starch granule size distribution were created and submitted to uniaxial tension, using a peridynamics method. We show that, when compared to the effects of starch-protein interface adhesion and voids, the granule size distribution has a limited effect on the samples' yield stress.
Indicating disturbance content and context for preserved areas
N. Zaccarelli; K.H. Riitters; I. Petrosillo; G. Zurlini
2007-01-01
An accepted goal of conservation is to build a conservation network that is resilient to environmental change. The conceptual patch-corridor-matrix model views individual conservation areas as connected components of a regional network capable of sustaining metapopulations and biodiversity, and assessment of contextual conditions in the matrix surrounding conservation...
A new approach for modeling composite materials
NASA Astrophysics Data System (ADS)
Alcaraz de la Osa, R.; Moreno, F.; Saiz, J. M.
2013-03-01
The increasing use of composite materials is due to their ability to tailor materials for special purposes, with applications evolving day by day. This is why predicting the properties of these systems from their constituents, or phases, has become so important. However, assigning macroscopical optical properties for these materials from the bulk properties of their constituents is not a straightforward task. In this research, we present a spectral analysis of three-dimensional random composite typical nanostructures using an Extension of the Discrete Dipole Approximation (E-DDA code), comparing different approaches and emphasizing the influences of optical properties of constituents and their concentration. In particular, we hypothesize a new approach that preserves the individual nature of the constituents introducing at the same time a variation in the optical properties of each discrete element that is driven by the surrounding medium. The results obtained with this new approach compare more favorably with the experiment than previous ones. We have also applied it to a non-conventional material composed of a metamaterial embedded in a dielectric matrix. Our version of the Discrete Dipole Approximation code, the EDDA code, has been formulated specifically to tackle this kind of problem, including materials with either magnetic and tensor properties.
Strain distribution of confined Ge/GeO2 core/shell nanoparticles engineered by growth environments
NASA Astrophysics Data System (ADS)
Wei, Wenyan; Yuan, Cailei; Luo, Xingfang; Yu, Ting; Wang, Gongping
2016-02-01
The strain distributions of Ge/GeO2 core/shell nanoparticles confined in different host matrix grown by surface oxidation are investigated. The simulated results by finite element method demonstrated that the strains of the Ge core and the GeO2 shell strongly depend on the growth environments of the nanoparticles. Moreover, it can be found that there is a transformation of the strain on Ge core from tensile to compressive strain during the growth of Ge/GeO2 core/shell nanoparticles. And, the transformation of the strain is closely related with the Young's modulus of surrounding materials of Ge/GeO2 core/shell nanoparticles.
The combined effect of glass buffer strips and stitching on the damage tolerance of composites
NASA Technical Reports Server (NTRS)
Kullerd, Susan M.
1993-01-01
Recent research has demonstrated that through-the-thickness stitching provides major improvements in the damage tolerance of composite laminates loaded in compression. However, the brittle nature of polymer matrix composites makes them susceptible to damage propagation, requiring special material applications and designs to limit damage growth. Glass buffer strips, embedded within laminates, have shown the potential for improving the damage tolerance of unstitched composite laminates loaded in tension. The glass buffer strips, less stiff than the surrounding carbon fibers, arrest crack growth in composites under tensile loads. The present study investigates the damage tolerance characteristics of laminates that contain both stitching and glass buffer strips.
Linking a completely three-dimensional nanostrain to a structural transformation eigenstrain.
Tirry, Wim; Schryvers, Dominique
2009-09-01
Ni-Ti is one of the most popular shape-memory alloys, a phenomenon resulting from a martensitic transformation. Commercial Ni-Ti-based alloys are often thermally treated to contain Ni(4)Ti(3) precipitates. The presence of these precipitates can introduce an extra transformation step related to the so-called R-phase. It is believed that the strain field surrounding the precipitates, caused by the matrix-precipitate lattice mismatch, lies at the origin of this intermediate transformation step. Atomic-resolution transmission electron microscopy in combination with geometrical phase analysis is used to measure the elastic strain field surrounding these precipitates. By combining measurements from two different crystallographic directions, the three-dimensional strain matrix is determined from two-dimensional measurements. Comparison of the measured strain matrix to the eigenstrain of the R-phase shows that both are very similar and that the introduction of the R-phase might indeed compensate the elastic strain introduced by the precipitate.
Linking a completely three-dimensional nanostrain to a structural transformation eigenstrain
NASA Astrophysics Data System (ADS)
Tirry, Wim; Schryvers, Dominique
2009-09-01
Ni-Ti is one of the most popular shape-memory alloys, a phenomenon resulting from a martensitic transformation. Commercial Ni-Ti-based alloys are often thermally treated to contain Ni4Ti3 precipitates. The presence of these precipitates can introduce an extra transformation step related to the so-called R-phase. It is believed that the strain field surrounding the precipitates, caused by the matrix-precipitate lattice mismatch, lies at the origin of this intermediate transformation step. Atomic-resolution transmission electron microscopy in combination with geometrical phase analysis is used to measure the elastic strain field surrounding these precipitates. By combining measurements from two different crystallographic directions, the three-dimensional strain matrix is determined from two-dimensional measurements. Comparison of the measured strain matrix to the eigenstrain of the R-phase shows that both are very similar and that the introduction of the R-phase might indeed compensate the elastic strain introduced by the precipitate.
Laser notching ceramics for reliable fracture toughness testing
Barth, Holly D.; Elmer, John W.; Freeman, Dennis C.; ...
2015-09-19
A new method for notching ceramics was developed using a picosecond laser for fracture toughness testing of alumina samples. The test geometry incorporated a single-edge-V-notch that was notched using picosecond laser micromachining. This method has been used in the past for cutting ceramics, and is known to remove material with little to no thermal effect on the surrounding material matrix. This study showed that laser-assisted-machining for fracture toughness testing of ceramics was reliable, quick, and cost effective. In order to assess the laser notched single-edge-V-notch beam method, fracture toughness results were compared to results from other more traditional methods, specificallymore » surface-crack in flexure and the chevron notch bend tests. Lastly, the results showed that picosecond laser notching produced precise notches in post-failure measurements, and that the measured fracture toughness results showed improved consistency compared to traditional fracture toughness methods.« less
Joining and Integration of Silicon Carbide for Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay; Coddington, Bryan; Asthana, Rajiv
2010-01-01
The critical need for ceramic joining and integration technologies is becoming better appreciated as the maturity level increases for turbine engine components fabricated from ceramic and ceramic matrix composite materials. Ceramic components offer higher operating temperatures and reduced cooling requirements. This translates into higher efficiencies and lower emissions. For fabricating complex shapes, diffusion bonding of silicon carbide (SiC) to SiC is being developed. For the integration of ceramic parts to the surrounding metallic engine system, brazing of SiC to metals is being developed. Overcoming the chemical, thermal, and mechanical incompatibilities between dissimilar materials is very challenging. This presentation will discuss the types of ceramic components being developed by researchers and industry and the benefits of using ceramic components. Also, the development of strong, crack-free, stable bonds will be discussed. The challenges and progress in developing joining and integration approaches for a specific application, i.e. a SiC injector, will be presented.
Boundary migration in a 3D deformed microstructure inside an opaque sample
Zhang, Y. B.; Budai, J. D.; Tischler, J. Z.; ...
2017-06-30
How boundaries surrounding recrystallization grains migrate through the 3D network of dislocation boundaries in deformed crystalline materials is unknown and critical for the resulting recrystallized crystalline materials. Furthermore, by using X-ray Laue diffraction microscopy, we show for the first time the migration pattern of a typical recrystallization boundary through a well-characterized deformation matrix. The data provide a unique possibility to investigate effects of both boundary misorientation and plane normal on the migration, information which cannot be accessed with any other techniques. Our results show that neither of these two parameters can explain the observed migration behavior. Instead we suggest thatmore » the subdivision of the deformed microstructure ahead of the boundary plays the dominant role. Our experimental observations challenge the assumptions of existing recrystallization theories, and set the stage for determination of mobilities of recrystallization boundaries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrington, Stephen P.
Systems, methods, and software for measuring the spatially variable relative dielectric permittivity of materials along a linear or otherwise configured sensor element, and more specifically the spatial variability of soil moisture in one dimension as inferred from the dielectric profile of the soil matrix surrounding a linear sensor element. Various methods provided herein combine advances in the processing of time domain reflectometry data with innovations in physical sensing apparatuses. These advancements enable high temporal (and thus spatial) resolution of electrical reflectance continuously along an insulated waveguide that is permanently emplaced in contact with adjacent soils. The spatially resolved reflectance ismore » directly related to impedance changes along the waveguide that are dominated by electrical permittivity contrast due to variations in soil moisture. Various methods described herein are thus able to monitor soil moisture in profile with high spatial resolution.« less
High-efficiency neutron detectors and methods of making same
McGregor, Douglas S.; Klann, Raymond
2007-01-16
Neutron detectors, advanced detector process techniques and advanced compound film designs have greatly increased neutron-detection efficiency. One embodiment of the detectors utilizes a semiconductor wafer with a matrix of spaced cavities filled with one or more types of neutron reactive material such as 10B or 6LiF. The cavities are etched into both the front and back surfaces of the device such that the cavities from one side surround the cavities from the other side. The cavities may be etched via holes or etched slots or trenches. In another embodiment, the cavities are different-sized and the smaller cavities extend into the wafer from the lower surfaces of the larger cavities. In a third embodiment, multiple layers of different neutron-responsive material are formed on one or more sides of the wafer. The new devices operate at room temperature, are compact, rugged, and reliable in design.
Schneider, Kai; Lieboldt, Matthias; Liebscher, Marco; Fröhlich, Maik; Hempel, Simone; Butler, Marko; Schröfl, Christof; Mechtcherine, Viktor
2017-03-29
Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving.
Schneider, Kai; Lieboldt, Matthias; Liebscher, Marco; Fröhlich, Maik; Hempel, Simone; Butler, Marko; Schröfl, Christof; Mechtcherine, Viktor
2017-01-01
Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving. PMID:28772719
Space Survivability of Main-Chain and Side-Chain POSS-Kapton Polyimides
NASA Astrophysics Data System (ADS)
Tomczak, Sandra J.; Wright, Michael E.; Guenthner, Andrew J.; Pettys, Brian J.; Brunsvold, Amy L.; Knight, Casey; Minton, Timothy K.; Vij, Vandana; McGrath, Laura M.; Mabry, Joseph M.
2009-01-01
Kapton® polyimde (PI) is extensively used in solar arrays, spacecraft thermal blankets, and space inflatable structures. Upon exposure to atomic oxygen (AO) in low Earth orbit (LEO), Kapton® is severely degraded. An effective approach to prevent this erosion is chemically bonding polyhedral oligomeric silsesquioxane (POSS) into the polyimide matrix by copolymerization of POSS-diamine with the polyimide monomers. POSS is a silicon and oxygen cage-like structure surrounded by organic groups and can be polymerizable. The copolymerization of POSS provides Si and O in the polymer matrix on the nano level. During POSS polyimide exposure to atomic oxygen, organic material is degraded and a silica passivation layer is formed. This silica layer protects the underlying polymer from further degradation. Ground-based studies and MISSE-1 and MISSE-5 flight results have shown that POSS polyimides are resistant to atomic-oxygen attack in LEO. In fact, 3.5 wt% Si8O11 main-chain POSS polyimide eroded about 2 μm during the 3.9 year flight in LEO, whereas 32 μm of 0 wt% POSS polyimide would have eroded within 4 mos. The atomic-oxygen exposure of main-chain POSS polyimides and new side-chain POSS polyimides has shown that copolymerized POSS imparts similar AO resistance to polyimide materials regardless of POSS monomer structure.
Holcomb, Matthew J.
1999-01-01
A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.
Romanos, G E; Strub, J R
1998-03-05
Fibrin sealants are very useful in different surgical fields. Fixation of free gingival grafts, root coverage procedures, and other techniques increasing connective tissue attachment may be associated with the application of Tissucol in periodontology. The aim of this study was to evaluate the influence of the fibrin sealant in the extracellular matrix, as well as alterations of the connective tissue matrix during wound-healing processes. In the back dermis of 15 Net male rats, Tissucol was implanted after intraperitoneal anesthesia. The implant material was placed in subcutaneous pockets (2 cm in length) which were sutured with interproximal sutures (test and control pockets). At 4, 7, 14, 21, and 28 days after surgery, biopsies of the healed and surrounding tissues were taken, frozen in liquid nitrogen, and examined histologically and immunohistochemically with antibodies against collagen types I, III, IV, V, VI, and VII. The findings showed thick and thin collagen type I and III fibers, respectively, with different orientations localized around the implant material. An increased amount of blood vessels and capillaries (their basement membranes containing collagen type IV) was observed during wound healing which may be associated with the implantation of the sealant. Collagen type V fibers were localized from the first days to the 4th postoperative week and, without any inflammatory reaction (according to histologic staining), formed a fibrillar extracellular matrix with high collagenase resistance. Collagen type VI showed a microfibrillar pattern of distribution, and collagen type VII was localized in the dermo epidermo junction and very deep in the connective tissue in the form of anchoring fibers (only in the test group) during the 4 postoperative weeks of healing. The data showed that Tissucol is a biocompatible component which cannot produce any extensive inflammatory reaction in the matrix. New blood vessel formation, an epithelial-connective tissue interface with high stability, as well as matrix alterations with high resistance in the proteolytic enzymes (i.e., collagenases) can be induced in the connective tissue after use of a fibrin sealant. All of these characteristics may be of great importance in connective tissue healing in periodontal surgical procedures.
NASA Astrophysics Data System (ADS)
Lopez Garcia, Maria Del Carmen
Microfluidics platforms are employed in: "sperm motion in a microfluidic device" and "mechanical interactions of mammary gland cells with their surrounding three dimensional extra-cellular matrix". Microfluidics has shown promise as a new platform for assisted reproduction. Sperm and fluid motion in microchannels was studied to understand the flow characteristics in the device, how sperm interacted with this flow, and how sperm-oocyte attachment occurs in the device. A threshold fluid velocity was found where sperm transition from traveling with the fluid to a regime in which they can move independently. A population of sperm remained in the inlet well area. There was also the tendency of sperm to travel along surface contours. These observations provide an improved understanding of sperm motion in microchannels and a basis for improved device designs. The effort to understand the development of breast cancer motivates the study of mammary gland cells and their interactions with the extra-cellular matrix. Mammographic density is a risk factor for breast cancer which correlates with collagen density affects cell behavior. Collagen gels with concentrations of 1.3, 2, and 3 mg/mL, were tensile tested to obtain the Young's modulus, E, at low displacement rates of 0.01, 0.1, and 1 mm/min. Local strain measurement in the gage section were used for both strain and strain rate determination. Local strain rates were on the order of cellular generated strain rate. A power law fitting described the relationship between Young's modulus and local strain rate. Mammary gland cells were seeded with collagen and fluorescent beads into microchannels and observed via four-dimensional imaging. The displacements of the beads were used to calculate strains. The Young's modulus due to the rate at which the cell was straining the collagen was obtained from the aforementioned fittings. Three-dimensional elastic theory for an isotropic material was employed to calculate the stress. The cells in the more compliant gels achieved higher strains. The stresses portrayed a fluctuating behavior. This technique adds to the field of measuring cell generated stresses by providing the capability of measuring 3D stresses locally around the single cell and using physiologically relevant materials properties for analysis.
NASA Astrophysics Data System (ADS)
Kashfuddoja, Mohammad; Prasath, R. G. R.; Ramji, M.
2014-11-01
In this work, the experimental characterization of polymer-matrix and polymer based carbon fiber reinforced composite laminate by employing a whole field non-contact digital image correlation (DIC) technique is presented. The properties are evaluated based on full field data obtained from DIC measurements by performing a series of tests as per ASTM standards. The evaluated properties are compared with the results obtained from conventional testing and analytical models and they are found to closely match. Further, sensitivity of DIC parameters on material properties is investigated and their optimum value is identified. It is found that the subset size has more influence on material properties as compared to step size and their predicted optimum value for the case of both matrix and composite material is found consistent with each other. The aspect ratio of region of interest (ROI) chosen for correlation should be the same as that of camera resolution aspect ratio for better correlation. Also, an open cutout panel made of the same composite laminate is taken into consideration to demonstrate the sensitivity of DIC parameters on predicting complex strain field surrounding the hole. It is observed that the strain field surrounding the hole is much more sensitive to step size rather than subset size. Lower step size produced highly pixilated strain field, showing sensitivity of local strain at the expense of computational time in addition with random scattered noisy pattern whereas higher step size mitigates the noisy pattern at the expense of losing the details present in data and even alters the natural trend of strain field leading to erroneous maximum strain locations. The subset size variation mainly presents a smoothing effect, eliminating noise from strain field while maintaining the details in the data without altering their natural trend. However, the increase in subset size significantly reduces the strain data at hole edge due to discontinuity in correlation. Also, the DIC results are compared with FEA prediction to ascertain the suitable value of DIC parameters towards better accuracy.
Harmonic elastic inclusions in the presence of point moment
NASA Astrophysics Data System (ADS)
Wang, Xu; Schiavone, Peter
2017-12-01
We employ conformal mapping techniques to design harmonic elastic inclusions when the surrounding matrix is simultaneously subjected to remote uniform stresses and a point moment located at an arbitrary position in the matrix. Our analysis indicates that the uniform and hydrostatic stress field inside the inclusion as well as the constant hoop stress along the entire inclusion-matrix interface (on the matrix side) are independent of the action of the point moment. In contrast, the non-elliptical shape of the harmonic inclusion depends on both the remote uniform stresses and the point moment.
Possible ferroelectricity in perovskite oxynitride SrTaO2N epitaxial thin films
Oka, Daichi; Hirose, Yasushi; Kamisaka, Hideyuki; Fukumura, Tomoteru; Sasa, Kimikazu; Ishii, Satoshi; Matsuzaki, Hiroyuki; Sato, Yukio; Ikuhara, Yuichi; Hasegawa, Tetsuya
2014-01-01
Compressively strained SrTaO2N thin films were epitaxially grown on SrTiO3 substrates using nitrogen plasma-assisted pulsed laser deposition. Piezoresponse force microscopy measurements revealed small domains (101–102 nm) that exhibited classical ferroelectricity, a behaviour not previously observed in perovskite oxynitrides. The surrounding matrix region exhibited relaxor ferroelectric-like behaviour, with remanent polarisation invoked by domain poling. First-principles calculations suggested that the small domains and the surrounding matrix had trans-type and a cis-type anion arrangements, respectively. These experiments demonstrate the promise of tailoring the functionality of perovskite oxynitrides by modifying the anion arrangements by using epitaxial strain.
Small-Scale Spectral and Color Analysis of Ritchey Crater Impact Materials
NASA Astrophysics Data System (ADS)
Bray, Veronica; Chojnacki, Matthew; McEwen, Alfred; Heyd, Rodney
2014-11-01
Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) analysis of Ritchey crater on Mars has allowed identification of the minerals uplifted from depth within its central peak as well as the dominant spectral signature of the crater fill materials which surround it. However, the 18m/px resolution of CRISM prevents full analysis of the nature of small-scale dykes, mega breccia blocks and finer scale crater-fill units. We extend our existing CRISM-based compositional mapping of the Ritchey crater interior to sub-CRISM pixel scales with the use of High Resolution Imaging Science Experiment (HiRISE) Color Ratio Products (CRPs). These CRPs are then compared to CRISM images; correlation between color ratio and CRISM spectral signature for a large bedrock unit is defined and used to suggest similar composition for a smaller unit with the same color ratio. Megabreccia deposits, angular fragments of rock in excess of 1 meter in diameter within a finer grained matrix, are common at Ritchey. The dominant spectral signature from each megabreccia unit varies with location around Ritchey and appears to reflect the matrix composition (based on texture and albedo similarities to surrounding rocks) rather than clast composition. In cases where the breccia block size is large enough for CRISM analysis, many different mineral compositions are noted (low calcium pyroxene (LCP) olivine (OL), alteration products) depending on the location. All block compositions (as inferred from CRPs) are observed down to the limit of HiRISE resolution. We have found a variety of dyke compositions within our mapping area. Correlation between CRP color and CRISM spectra in this area suggest that large 10 m wide) dykes within LCP-bearing bedrock close to the crater center tend to have similar composition to the host rock. Smaller dykes running non-parallel to the larger dykes are inferred to be OL-rich suggesting multiple phases of dyke formation within the Ritchey crater and its bedrock.
Ceramic matrix composite article and process of fabricating a ceramic matrix composite article
Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert
2016-01-12
A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.
Cornez, Gilles; ter Haar, Sita M.; Cornil, Charlotte A.; Balthazart, Jacques
2015-01-01
Large morphological sex differences in the vertebrate brain were initially identified in song control nuclei of oscines. Besides gross differences between volumes of nuclei in males and females, sex differences also concern the size and dendritic arborization of neurons and various neurochemical markers, such as the calcium-binding protein parvalbumin (PV). Perineuronal nets (PNN) of the extracellular matrix are aggregates of different compounds, mainly chondroitin sulfate proteoglycans, that surround subsets of neurons, often expressing PV. PNN develop in zebra finches song control nuclei around the end of the sensitive period for song learning and tutor deprivation, known to delay the end of the song learning sensitive period, decreases the numbers of PNN in HVC. We demonstrate here the existence in zebra finches of a major sex difference (males > females) affecting the number of PNN (especially those surrounding PV-positive cells) in HVC and to a smaller extent the robust nucleus of the arcopallium, RA, the two main nuclei controlling song production. These differences were not present in Area X and LMAN, the lateral magnocellular nucleus of the anterior nidopallium. A dense expression of material immunoreactive for chondroitin sulfate was also detected in several nuclei of the auditory and visual pathways. This material was often organized in perineuronal rings but quantification of these PNN did not reveal any sex difference with the exception that the percentage of PNN surrounding PV-ir cells in the dorsal lateral mesencephalic nucleus, MLd, was larger in females than in males, a sex difference in the opposite direction compared to what is seen in HVC and RA. These data confirm and extend previous studies demonstrating the sex difference affecting PNN in HVC-RA by showing that this sex difference is anatomically specific and does not concern visual or auditory pathways. PMID:25848776
NASA Astrophysics Data System (ADS)
Watanabe, Norihiro; Kolditz, Olaf
2015-07-01
This work reports numerical stability conditions in two-dimensional solute transport simulations including discrete fractures surrounded by an impermeable rock matrix. We use an advective-dispersive problem described in Tang et al. (1981) and examine the stability of the Crank-Nicolson Galerkin finite element method (CN-GFEM). The stability conditions are analyzed in terms of the spatial discretization length perpendicular to the fracture, the flow velocity, the diffusion coefficient, the matrix porosity, the fracture aperture, and the fracture longitudinal dispersivity. In addition, we verify applicability of the recently developed finite element method-flux corrected transport (FEM-FCT) method by Kuzmin () to suppress oscillations in the hybrid system, with a comparison to the commonly utilized Streamline Upwinding/Petrov-Galerkin (SUPG) method. Major findings of this study are (1) the mesh von Neumann number (Fo) ≥ 0.373 must be satisfied to avoid undershooting in the matrix, (2) in addition to an upper bound, the Courant number also has a lower bound in the fracture in cases of low dispersivity, and (3) the FEM-FCT method can effectively suppress the oscillations in both the fracture and the matrix. The results imply that, in cases of low dispersivity, prerefinement of a numerical mesh is not sufficient to avoid the instability in the hybrid system if a problem involves evolutionary flow fields and dynamic material parameters. Applying the FEM-FCT method to such problems is recommended if negative concentrations cannot be tolerated and computing time is not a strong issue.
Nutrient dynamics and plant assemblages of Macrotermes falciger mounds in a savanna ecosystem
NASA Astrophysics Data System (ADS)
Muvengwi, Justice; Ndagurwa, Hilton G. T.; Nyenda, Tatenda; Mbiba, Monicah
2016-10-01
Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3-) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant community assemblage may be a general property of mound building termites.
Non-cross-linked porcine acellular dermal matrices for abdominal wall reconstruction.
Burns, Nadja K; Jaffari, Mona V; Rios, Carmen N; Mathur, Anshu B; Butler, Charles E
2010-01-01
Non-cross-linked porcine acellular dermal matrices have been used clinically for abdominal wall repair; however, their biologic and mechanical properties and propensity to form visceral adhesions have not been studied. The authors hypothesized that their use would result in fewer, weaker visceral adhesions than polypropylene mesh when used to repair ventral hernias and form a strong interface with the surrounding musculofascia. Thirty-four guinea pigs underwent inlay repair of surgically created ventral hernias using polypropylene mesh, porcine acellular dermal matrix, or a composite of the two. The animals were killed at 4 weeks, and the adhesion tenacity grade and surface area of the repair site involved by adhesions were measured. Sections of the repair sites, including the implant-musculofascia interface, underwent histologic analysis and uniaxial mechanical testing. The incidence of bowel adhesions to the repair site was significantly lower with the dermal matrix (8 percent, p < 0.01) and the matrix/mesh combination (0 percent, p < 0.001) than with polypropylene mesh alone (70 percent). The repairs made with the matrix or the matrix/mesh combination, compared with the polypropylene mesh repairs, had significantly lower mean adhesion surface areas [12.8 percent (p < 0.001), 9.2 percent (p < 0.001), and 79.9 percent] and grades [0.6 (p < 0.001), 0.6 (p < 0.001), and 2.9]. The dermal matrix underwent robust cellular and vascular infiltration. The ultimate tensile strength at the implant-musculofascia interface was similar in all groups. Porcine acellular dermal matrix becomes incorporated into the host tissue and causes fewer adhesions to repair sites than does polypropylene mesh, with similar implant-musculofascia interface strength. It also inhibits adhesions to adjacent dermal matrix in the combination repairs. It has distinct advantages over polypropylene mesh for complex abdominal wall repairs, particularly when material placement directly over bowel is unavoidable.
NASA Astrophysics Data System (ADS)
Dunn, T. L.; Gross, J.; O'Hara, E. J.
2017-12-01
Carbonaceous chondrites (CCs) represent some of the most pristine solar system material, providing constraints on the early formation of planetesimals. The CK chondrites are the only group of CCs to exhibit the full range of thermal metamorphism (petrologic type 3 to 6). Most unequilibrated CK chondrites (CK3s) have been metamorphosed to petrologic subtype 3.8 or higher. However, homogeneity of olivine suggests that CK3 chondrite Northwest Africa (NWA) 5343 is less metamorphosed than the other CK3s. The presence of unrecrystallized matrix indicates that it is less than petrologic type 3.7. To better assess the lower limits of metamorphism on the CK chondrite parent body, we performed a detailed analysis of matrix material in NWA 5343. Ascertaining the lower limit of metamorphism in the CK chondrites is critical when addressing the CK-CV parent body debate (e.g., one vs. two parent bodies), and will shed light onto the evolution of metamorphosed CC parent bodies. We recognize two texturally distinct regions in the matrix of NWA 5343. Both have similar mineralogies (mostly olivine with lesser pyroxene and plagioclase), but differ in grain size, shape, and porosity. The porous region of the sample is characterized by subhedral-rounded olivine grains, typically < 40 µms, surrounded by empty pore space ( 10-14% porosity). Some small patches of matrix within the porous region contain angular olivine grains that are < 10 µms, similar to "clastic matrix" typically observed in some low petrologic type CCs and ordinary chondrites (OCs). In the glassy matrix region of NWA 5343 (3-7% porosity), olivine grains are larger (20-40 µms) and more anhedral. Skeletal pyroxene is also common. Original pore space is filled with a Ca-rich glass that appears to originate from an unusual vein in this region. Most interestingly, the extent of metamorphism varies within NWA 5343. Larger, anhedral olivine in the glassy region suggest that this region is more metamorphosed than the porous region. Even within the porous region there is a range of metamorphism, with small patches of granoblastic olivine intermixed with the clastic matrix. This suggests that NWA 5343 may represent a metamorphic breccia, a common occurrence in OCs and CCs of lower petrologic types, and provides insight into the evolution of the only completely metamorphosed CC parent body.
Velcro-Inspired SiC Fuzzy Fibers for Aerospace Applications.
Hart, Amelia H C; Koizumi, Ryota; Hamel, John; Owuor, Peter Samora; Ito, Yusuke; Ozden, Sehmus; Bhowmick, Sanjit; Syed Amanulla, Syed Asif; Tsafack, Thierry; Keyshar, Kunttal; Mital, Rahul; Hurst, Janet; Vajtai, Robert; Tiwary, Chandra Sekhar; Ajayan, Pulickel M
2017-04-19
The most recent and innovative silicon carbide (SiC) fiber ceramic matrix composites, used for lightweight high-heat engine parts in aerospace applications, are woven, layered, and then surrounded by a SiC ceramic matrix composite (CMC). To further improve both the mechanical properties and thermal and oxidative resistance abilities of this material, SiC nanotubes and nanowires (SiCNT/NWs) are grown on the surface of the SiC fiber via carbon nanotube conversion. This conversion utilizes the shape memory synthesis (SMS) method, starting with carbon nanotube (CNT) growth on the SiC fiber surface, to capitalize on the ease of dense surface morphology optimization and the ability to effectively engineer the CNT-SiC fiber interface to create a secure nanotube-fiber attachment. Then, by converting the CNTs to SiCNT/NWs, the relative morphology, advantageous mechanical properties, and secure connection of the initial CNT-SiC fiber architecture are retained, with the addition of high temperature and oxidation resistance. The resultant SiCNT/NW-SiC fiber can be used inside the SiC ceramic matrix composite for a high-heat turbo engine part with longer fatigue life and higher temperature resistance. The differing sides of the woven SiCNT/NWs act as the "hook and loop" mechanism of Velcro but in much smaller scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glicken, H.
Large volcanic debris avalanches are among the world's largest mass movements. The rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens produced a 2.8 km/sup 3/ deposit and is the largest historic mass movement. A Pleistocene debris avalanche at Mount Shasta produced a 26 km/sup 3/ deposit that may be the largest Quaternary mass movement. The hummocky deposits at both volcanoes consist of rubble divided into (1) block facies that comprises unconsolidated pieces of the old edifice transported relatively intact, and (2) matrix facies that comprises a mixture of rocks from the old mountain and material pickedmore » up from the surrounding terrain. At Mount St. Helens, the juvenile dacite is found in the matrix facies, indicating that matrix facies formed from explosions of the erupting magma as well as from disaggregation and mixing of blocks. The block facies forms both hummocks and interhummock areas in the proximal part of the St. Helens avalanche deposit. At Mount St. Helens, the density of the old cone is 21% greater than the density of the avalanche deposit. Block size decreases with distance. Clast size, measured in the field and by sieving, coverages about a mean with distance, which suggests that blocks disaggregated and mixed together during transport.« less
Toughening of a Particulate-Reinforced/Ceramic-Matrix Composite
1989-09-01
where two inhomogeneities (Q1X,2), with the misfit strains defined by eqs. (2) and (3) are replaced by the inclusions with eigenstrains of 9 1 in al...and *2 in C2. The thermal stresses in a composite can then be solved in terms of the eigenstrains . Detailed formulation for the thermal stresses in a...is a domain surrounded by the matrix and possesses the same properties as the matrix and also an eigenstrain 9* which is an inelastic strain.24 Thus
Cyclic Fiber Push-In Test Monitors Evolution of Interfacial Behavior in Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
1998-01-01
SiC fiber-reinforced ceramic matrix composites are being developed for high-temperature advanced jet engine applications. Obtaining a strong, tough composite material depends critically on optimizing the mechanical coupling between the reinforcing fibers and the surrounding matrix material. This has usually been accomplished by applying a thin C or BN coating onto the surface of the reinforcing fibers. The performance of these fiber coatings, however, may degrade under cyclic loading conditions or exposure to different environments. Degradation of the coating-controlled interfacial behavior will strongly affect the useful service lifetime of the composite material. Cyclic fiber push-in testing was applied to monitor the evolution of fiber sliding behavior in both C- and BN-coated small-diameter (15-mm) SiC-fiber-reinforced ceramic matrix composites. The cyclic fiber push-in tests were performed using a desktop fiber push-out apparatus. At the beginning of each test, the fiber to be tested was aligned underneath a 10- mm-diameter diamond punch; then, the applied load was cycled between selected maximum and minimum loads. From the measured response, the fiber sliding distance and frictional sliding stresses were determined for each cycle. Tests were performed in both room air and nitrogen. Cyclic fiber push-in tests of C-coated, SiC-fiber-reinforced SiC showed progressive increases in fiber sliding distances along with decreases in frictional sliding stresses for continued cycling in room air. This rapid degradation in interfacial response was not observed for cycling in nitrogen, indicating that moisture exposure had a large effect in immediately lowering the frictional sliding stresses of C-coated fibers. These results indicate that matrix cracks bridged by C-coated fibers will not be stable, but will rapidly grow in moisture-containing environments. In contrast, cyclic fiber push-in tests of both BN-coated, SiC-fiber-reinforced SiC and BNcoated, SiC-fiber-reinforced barium strontium aluminosilicate showed no significant changes in fiber sliding behavior with continued short-term cycling in either room air or nitrogen. Although the composites with BN-coated fibers showed stable short-term cycling behavior in both environments, long-term (several-week) exposure of debonded fibers to room air resulted in dramatically increased fiber sliding distances and decreased frictional sliding stresses. These results indicate that although matrix cracks bridged by BNcoated fibers will show short-term stability, such cracks will show substantial growth with long-term exposure to moisture-containing environments. Newly formulated BN coatings, with higher moisture resistance, will be tested in the near future.
Spore formation and toxin production in Clostridium difficile biofilms.
Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam
2014-01-01
The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.
Spore Formation and Toxin Production in Clostridium difficile Biofilms
Semenyuk, Ekaterina G.; Laning, Michelle L.; Foley, Jennifer; Johnston, Pehga F.; Knight, Katherine L.; Gerding, Dale N.; Driks, Adam
2014-01-01
The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection. PMID:24498186
Modeling of stresses at grain boundaries with respect to occurrence of stress corrosion cracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozaczek, K.J.; Sinharoy, A.; Ruud, C.O.
The distributions of elastic stresses/strains in the grain boundary regions were studied by the analytical and the finite element models. The grain boundaries represent the sites where stress concentration occurs as a result of discontinuity of elastic properties across the grain boundary and the presence of second phase particles elastically different from the surrounding matrix grains. A quantitative analysis of those stresses for steels and nickel based alloys showed that the stress concentrations in the grain boundary regions are high enough to cause a local microplastic deformation even when the material is in the macroscopic elastic regime. The stress redistributionmore » as a result of such a plastic deformation was discussed.« less
Surface functionalization of metal organic frameworks for mixed matrix membranes
Albenze, Erik; Lartey, Michael; Li, Tao; Luebke, David R.; Nulwala, Hunaid B.; Rosi, Nathaniel L.; Venna, Surendar R.
2017-03-21
Mixed Matrix Membrane (MMM) are composite membranes for gas separation and comprising a quantity of inorganic filler particles, in particular metal organic framework (MOF), dispersed throughout a polymer matrix comprising one or more polymers. This disclosure is directed to MOF functionalized through addition of a pendant functional group to the MOF, in order to improve interaction with a surrounding polymer matrix in a MMM. The improved interaction aids in avoiding defects in the MMM due to incompatible interfaces between the polymer matrix and the MOF particle, in turn increasing the mechanical and gas separation properties of the MMM. The disclosure is also directed to a MMM incorporating the surface functionalized MOF.
Heuijerjans, A; Wilson, W; Ito, K; van Donkelaar, C C
2017-12-01
The size of full-thickness focal cartilage defect is accepted to be predictive of its fate, but at which size threshold treatment is required is unclear. Clarification of the mechanism behind this threshold effect will help determining when treatment is required. The objective was to investigate the effect of defect size on strains in the collagen fibers and the non-fibrillar matrix of surrounding cartilage. These strains may indicate matrix disruption. Tissue deformation into the defect was expected, stretching adjacent superficial collagen fibers, while an osteochondral implant was expected to prevent these deformations. Finite element simulations of cartilage/cartilage contact for intact, 0.5 to 8mm wide defects and 8mm implant cases were performed. Impact, a load increase to 2MPa in 1ms, and creep loading, a constant load of 0.5MPa for 900s, scenarios were simulated. A composition-based material model for articular cartilage was employed. Impact loading caused low strain levels for all models. Creep loading increased deviatoric strains and collagen strains in the surrounding cartilage. Deviatoric strains increased gradually with defect size, but the surface area at which collagen fiber strains exceeded failure thresholds, abruptly increased for small increases of defect size. This was caused by a narrow distribution of collagen fiber strains resulting from the non-linear stiffness of the fibers. We postulate this might be the mechanism behind the existence of a critical defect size. Filling of the defect with an implant reduced deviatoric and collagen fiber strains towards values for intact cartilage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Grossi, João Ricardo Almeida; Bonacin, Rodrigo; Crivelaro, Viviane Rozeira; Giovanini, Allan Fernando; Zielak, João César; Deliberador, Tatiana Miranda
2016-12-01
The aim of this paper was to evaluate through histological analysis of the tissue reaction of deproteinized bovine bone matrix (DBBM) when inserted into the site of intramuscular ectopic sheep. In this study, 16 sheep received 3 groups and these were divided into 2 experimental times: Group 1-sham group, Group 2-particulate autogenous bone and Group 3-DBBM granules. All animals underwent surgical procedures for insertion of materials in an ectopic site (muscles of the lower back and after 3 and 6 months postoperatively, the samples were evaluated by histological analysis. The results indicated that the Sham group showed dense collagen fibers and thin, characterizing fibrosis at 3 and 6 months. In the autograft group there was a significant amount of collagen deposition and decreased inflammation at 6 months postoperatively. Group of DBBM, it was noted the presence of dense connective tissue and surrounding remaining particles was observed the formation of with osteoid characteristic tissue. The DBBM demonstrated biocompatibility, osteoconductivity and small osteogenesis capacity on ectopic site.
Mechanics and crack formation in the extracellular matrix with articular cartilage as a model system
NASA Astrophysics Data System (ADS)
Kearns, Sarah; Silverberg, Jesse; Bonassar, Lawrence; Cohen, Itai; Das, Moumita
We investigate the mechanical structure-function relations in the extracellular matrix (ECM) with focus on crack formation and failure. As a model system, our study focuses on the ECM in articular cartilage (AC), the tissue that covers the ends of bones, and distributes load in joints including in the knees, shoulders, and hips. The strength, toughness, and crack resistance of native articular cartilage is unparalleled in materials made by humankind. This mechanical response is mainly due to its ECM. The ECM in AC has two major mechanobiological components: a network of the biopolymer collagen and a flexible aggrecan gel. We model this system as a biopolymer network embedded in a swelling gel, and investigate the conditions for the formation and propagation of cracks using a combination of rigidity percolation theory and energy minimization approaches. Our results may provide useful insights into the design principles of the ECM as well as of biomimetic hydrogels that are mechanically robust and can, at the same time, easily adapt to cues in their surroundings. This work was partially supported by a Cottrell College Science Award.
Synthesis of Au microwires by selective oxidation of Au–W thin-film composition spreads
Hamann, Sven; Brunken, Hayo; Salomon, Steffen; Meyer, Robert; Savan, Alan; Ludwig, Alfred
2013-01-01
We report on the stress-induced growth of Au microwires out of a surrounding Au–W matrix by selective oxidation, in view of a possible application as ‘micro-Velcro’. The Au wires are extruded due to the high compressive stress in the tungsten oxide formed by oxidation of elemental W. The samples were fabricated as a thin-film materials library using combinatorial sputter deposition followed by thermal oxidation. Sizes and shapes of the Au microwires were investigated as a function of the W to Au ratio. The coherence length and stress state of the Au microwires were related to their shape and plastic deformation. Depending on the composition of the Au–W precursor, the oxidized samples showed regions with differently shaped Au microwires. The Au48W52 composition yielded wires with the maximum length to diameter ratio due to the high compressive stress in the tungsten oxide matrix. The values of wire length (35 μm) and diameter (2 μm) achieved at the Au48W52 composition are suitable for micro-Velcro applications. PMID:27877561
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokofiev, I.; Wiencek, T.; McGann, D.
1997-10-07
Powder metallurgy dispersions of uranium alloys and silicides in an aluminum matrix have been developed by the RERTR program as a new generation of proliferation-resistant fuels. Testing is done with miniplate-type fuel plates to simulate standard fuel with cladding and matrix in plate-type configurations. In order to seal the dispersion fuel plates, a diffusion bond must exist between the aluminum coverplates surrounding the fuel meat. Four different variations in the standard method for roll-bonding 6061 aluminum were studied. They included mechanical cleaning, addition of a getter material, modifications to the standard chemical etching, and welding methods. Aluminum test pieces weremore » subjected to a bend test after each rolling pass. Results, based on 400 samples, indicate that at least a 70% reduction in thickness is required to produce a diffusion bond using the standard rollbonding method versus a 60% reduction using the Type II method in which the assembly was welded 100% and contained open 9mm holes at frame corners.« less
Effect of landscape matrix type on nesting ecology of the Northern Cardinal
R.A. Sargent; J.C. Kilgo; B.R. Chapman; K.V. Miller
2015-01-01
Spatial distribution of forests relative to other habitats in a landscape may influence nest success of songbirds. For example, nest predation in mature forests increases as the percentage of clear-cut land in the surrounding matrix increases (Yahner and Scott 1988). Blake and Karr (1987) noted that birds breeding in forest fragments may incorporate adjacent habitats,...
Effectiveness of metal matrix and ceramic matrix composites as orbital debris shield materials
NASA Technical Reports Server (NTRS)
Mcgill, Preston B.; Mount, Angela R.
1992-01-01
The effectiveness of two metal matrix composites and one ceramic matrix material in defeating hypervelocity impacts at about 3.8 km/s are evaluated to determine the potential of these composites as spacecraft shield materials. The metal matrix composites investigated consist of SiC particles (70 percent by volume) in an aluminum matrix and Al2O3 particles (50 percent by volume) in an Al matrix. The ceramic composite consists of ZrB2 platelets in a ZrC matrix. Both the metal matrix and ceramic matrix composites are found to perform as well or better than 6061-T6 aluminum, which is presently used in the Whipple type bumper shield of Space Station Freedom. Test results indicate that the composites tested may have applications as micrometeoroid/orbital debris shield materials.
Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments
Crittenden, Jill R.; Graybiel, Ann M.
2011-01-01
The striatum is composed principally of GABAergic, medium spiny striatal projection neurons (MSNs) that can be categorized based on their gene expression, electrophysiological profiles, and input–output circuits. Major subdivisions of MSN populations include (1) those in ventromedial and dorsolateral striatal regions, (2) those giving rise to the direct and indirect pathways, and (3) those that lie in the striosome and matrix compartments. The first two classificatory schemes have enabled advances in understanding of how basal ganglia circuits contribute to disease. However, despite the large number of molecules that are differentially expressed in the striosomes or the extra-striosomal matrix, and the evidence that these compartments have different input–output connections, our understanding of how this compartmentalization contributes to striatal function is still not clear. A broad view is that the matrix contains the direct and indirect pathway MSNs that form parts of sensorimotor and associative circuits, whereas striosomes contain MSNs that receive input from parts of limbic cortex and project directly or indirectly to the dopamine-containing neurons of the substantia nigra, pars compacta. Striosomes are widely distributed within the striatum and are thought to exert global, as well as local, influences on striatal processing by exchanging information with the surrounding matrix, including through interneurons that send processes into both compartments. It has been suggested that striosomes exert and maintain limbic control over behaviors driven by surrounding sensorimotor and associative parts of the striatal matrix. Consistent with this possibility, imbalances between striosome and matrix functions have been reported in relation to neurological disorders, including Huntington’s disease, L-DOPA-induced dyskinesias, dystonia, and drug addiction. Here, we consider how signaling imbalances between the striosomes and matrix might relate to symptomatology in these disorders. PMID:21941467
Chemically Treated 3D Printed Polymer Scaffolds for Biomineral Formation.
Jackson, Richard J; Patrick, P Stephen; Page, Kristopher; Powell, Michael J; Lythgoe, Mark F; Miodownik, Mark A; Parkin, Ivan P; Carmalt, Claire J; Kalber, Tammy L; Bear, Joseph C
2018-04-30
We present the synthesis of nylon-12 scaffolds by 3D printing and demonstrate their versatility as matrices for cell growth, differentiation, and biomineral formation. We demonstrate that the porous nature of the printed parts makes them ideal for the direct incorporation of preformed nanomaterials or material precursors, leading to nanocomposites with very different properties and environments for cell growth. Additives such as those derived from sources such as tetraethyl orthosilicate applied at a low temperature promote successful cell growth, due partly to the high surface area of the porous matrix. The incorporation of presynthesized iron oxide nanoparticles led to a material that showed rapid heating in response to an applied ac magnetic field, an excellent property for use in gene expression and, with further improvement, chemical-free sterilization. These methods also avoid changing polymer feedstocks and contaminating or even damaging commonly used selective laser sintering printers. The chemically treated 3D printed matrices presented herein have great potential for use in addressing current issues surrounding bone grafting, implants, and skeletal repair, and a wide variety of possible incorporated material combinations could impact many other areas.
Chemically Treated 3D Printed Polymer Scaffolds for Biomineral Formation
2018-01-01
We present the synthesis of nylon-12 scaffolds by 3D printing and demonstrate their versatility as matrices for cell growth, differentiation, and biomineral formation. We demonstrate that the porous nature of the printed parts makes them ideal for the direct incorporation of preformed nanomaterials or material precursors, leading to nanocomposites with very different properties and environments for cell growth. Additives such as those derived from sources such as tetraethyl orthosilicate applied at a low temperature promote successful cell growth, due partly to the high surface area of the porous matrix. The incorporation of presynthesized iron oxide nanoparticles led to a material that showed rapid heating in response to an applied ac magnetic field, an excellent property for use in gene expression and, with further improvement, chemical-free sterilization. These methods also avoid changing polymer feedstocks and contaminating or even damaging commonly used selective laser sintering printers. The chemically treated 3D printed matrices presented herein have great potential for use in addressing current issues surrounding bone grafting, implants, and skeletal repair, and a wide variety of possible incorporated material combinations could impact many other areas. PMID:29732454
Duan, Yuanyuan; Griggs, Jason A
2015-06-01
Further investigations are required to evaluate the mechanical behaviour of newly developed polymer-matrix composite (PMC) blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The purpose of this study was to investigate the effect of elasticity on the stress distribution in dental crowns made of glass-ceramic and PMC materials using finite element (FE) analysis. Elastic constants of two materials were determined by ultrasonic pulse velocity using an acoustic thickness gauge. Three-dimensional solid models of a full-coverage dental crown on a first mandibular molar were generated based on X-ray micro-CT scanning images. A variety of load case-material property combinations were simulated and conducted using FE analysis. The first principal stress distribution in the crown and luting agent was plotted and analyzed. The glass-ceramic crown had stress concentrations on the occlusal surface surrounding the area of loading and the cemented surface underneath the area of loading, while the PMC crown had only stress concentration on the occlusal surface. The PMC crown had lower maximum stress than the glass-ceramic crown in all load cases, but this difference was not substantial when the loading had a lateral component. Eccentric loading did not substantially increase the maximum stress in the prosthesis. Both materials are resistant to fracture with physiological occlusal load. The PMC crown had lower maximum stress than the glass-ceramic crown, but the effect of a lateral loading component was more pronounced for a PMC crown than for a glass-ceramic crown. Knowledge of the stress distribution in dental crowns with low modulus of elasticity will aid clinicians in planning treatments that include such restorations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Osteoarthritis as a disease of the cartilage pericellular matrix.
Guilak, Farshid; Nims, Robert; Dicks, Amanda; Wu, Chia-Lung; Meulenbelt, Ingrid
2018-05-22
Osteoarthritis is a painful joint disease characterized by progressive degeneration of the articular cartilage as well as associated changes to the subchondral bone, synovium, and surrounding joint tissues. While the effects of osteoarthritis on the cartilage extracellular matrix (ECM) have been well recognized, it is now becoming apparent that in many cases, the onset of the disease may be initially reflected in the matrix region immediately surrounding the chondrocytes, termed the pericellular matrix (PCM). Growing evidence suggests that the PCM - which along with the enclosed chondrocytes are termed the "chondron" - acts as a critical transducer or "filter" of biochemical and biomechanical signals for the chondrocyte, serving to help regulate the homeostatic balance of chondrocyte metabolic activity in response to environmental signals. Indeed, it appears that alterations in PCM properties and cell-matrix interactions, secondary to genetic, epigenetic, metabolic, or biomechanical stimuli, could in fact serve as initiating or progressive factors for osteoarthritis. Here, we discuss recent advances in the understanding of the role of the PCM, with an emphasis on the reciprocity of changes that occur in this matrix region with disease, as well as how alterations in PCM properties could serve as a driver of ECM-based diseases such as osteoarthritis. Further study of the structure, function, and composition of the PCM in normal and diseased conditions may provide new insights into the understanding of the pathogenesis of osteoarthritis, and presumably new therapeutic approaches for this disease. Copyright © 2017. Published by Elsevier B.V.
Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.
2017-02-21
According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.
Ultrastructure of inclusion bodies in annulus cells in the degenerating human intervertebral disc.
Gruber, H E; Hanley, E N
2009-06-01
The rough endoplasmic reticulum (rER) of the cell has an architectural editing function that checks whether protein structure and three-dimensional assembly have occurred properly prior to export of newly synthesized material out of the cell. If these have been faulty, the material is retained within the rER as an inclusion body. Inclusion bodies have been identified previously in chondrocytes and osteoblasts in chondrodysplasias and osteogenesis imperfecta. Inclusion bodies in intervertebral disc cells, however, have only recently been recognized. Our objectives were to use transmission electron microscopy to analyze more fully inclusion bodies in the annulus pulposus and to study the extracellular matrix (ECM) surrounding cells containing inclusion bodies. ECM frequently encapsulated cells with inclusion bodies, and commonly contained prominent banded aggregates of Type VI collagen. Inclusion body material had several morphologies, including relatively smooth, homogeneous material, or a rougher, less homogeneous feature. Such findings expand our knowledge of the fine structure of the human disc cell and ECM during disc degeneration, and indicate the potential utility of ultrastructural identification of discs with intracellular inclusion bodies as a screening method for molecular studies directed toward identification of defective gene products in degenerating discs.
Flexible multiply towpreg and method of production therefor
NASA Technical Reports Server (NTRS)
Muzzy, John D. (Inventor); Varughese, Babu (Inventor)
1992-01-01
This invention relates to an improved flexible towpreg and a method of production therefor. The improved flexible towpreg comprises a plurality of towpreg plies which comprise reinforcing filaments and matrix forming material; the reinforcing filaments being substantially wetout by the matrix forming material such that the towpreg plies are substantially void-free composite articles, and the towpreg plies having an average thickness less than about 100 microns. The method of production for the improved flexible towpreg comprises the steps of spreading the reinforcing filaments to expose individually substantially all of the reinforcing filaments; coating the reinforcing filaments with the matrix forming material in a manner causing interfacial adhesion of the matrix forming material to the reinforcing filaments; forming the towpreg plies by heating the matrix forming material contacting the reinforcing filaments until the matrix forming material liquefies and coats the reinforcing filaments; and cooling the towpreg plies in a manner such that substantial cohesion between neighboring towpreg plies is prevented until the matrix forming material solidifies.
NASA Technical Reports Server (NTRS)
Muzzy, John D. (Inventor); Varughese, Babu (Inventor)
1992-01-01
This invention relates to an improved flexible towpreg and a method of production therefor. The improved flexible towpreg comprises a plurality of towpreg plies which comprise reinforcing filaments and matrix forming material; the reinforcing filaments being substantially wetout by the matrix forming material such that the towpreg plies are substantially void-free composite articles, and the towpreg plies having an average thickness less than about 100 microns. The method of production for the improved flexible towpreg comprises the steps of spreading the reinforcing filaments to expose individually substantially all of the reinforcing filaments; coating the reinforcing filaments with the matrix forming material in a manner causing interfacial adhesion of the matrix forming material to the reinforcing filaments; forming the towpreg plies by heating the matrix forming material contacting the reinforcing filaments until the matrix forming material liquifies and coats the reinforcing filaments; and cooling the towpreg plies in a manner such that substantial cohesion between neighboring towpreg plies is prevented until the matrix forming material solidifies.
Apparent Brecciation Gradient, Mount Desert Island, Maine
NASA Astrophysics Data System (ADS)
Hawkins, A. T.; Johnson, S. E.
2004-05-01
Mount Desert Island, Maine, comprises a shallow level, Siluro-Devonian igneous complex surrounded by a distinctive breccia zone ("shatter zone" of Gilman and Chapman, 1988). The zone is very well exposed on the southern and eastern shores of the island and provides a unique opportunity to examine subvolcanic processes. The breccia of the Shatter Zone shows wide variation in percent matrix and clast, and may represent a spatial and temporal gradient in breccia formation due to a single eruptive or other catastrophic volcanic event. The shatter zone was divided into five developmental stages based on the extent of brecciation: Bar Harbor Formation, Sols Cliffs breccia, Seeley Road breccia, Dubois breccia, and Great Head breccia. A digital camera was employed to capture scale images of representative outcrops using a 0.5 m square Plexiglas frame. Individual images were joined in Adobe Photoshop to create a composite image of each outcrop. The composite photo was then exported to Adobe Illustrator, which was used to outline the clasts and produce a digital map of the outcrop for analysis. The fractal dimension (Fd) of each clast was calculated using NIH Image and a Euclidean distance mapping method described by Bérubé and Jébrak (1999) to quantify the morphology of the fragments, or the complexity of the outline. The more complex the fragment outline, the higher the fractal dimension, indicating that the fragment is less "mature" or has had less exposure to erosional processes, such as the injection of an igneous matrix. Sols Cliffs breccia has an average Fd of 1.125, whereas Great Head breccia has an average Fd of 1.040, with the stages between having intermediate values. The more complex clasts of the Sols Cliffs breccia with a small amount (26.38%) of matrix material suggests that it is the first stage in a sequence of brecciation ending at the more mature, matrix-supported (71.37%) breccia of Great Head. The results of this study will be used to guide isotopic and geochemical analysis of the matrix igneous material in the attempt to better understand the dynamic processes that occur in subvolcanic environments and the mechanisms involved in breccia formation.
The controversial nuclear matrix: a balanced point of view.
Martelli, A M; Falcieri, E; Zweyer, M; Bortul, R; Tabellini, G; Cappellini, A; Cocco, L; Manzoli, L
2002-10-01
The nuclear matrix is defined as the residual framework after the removal of the nuclear envelope, chromatin, and soluble components by sequential extractions. According to several investigators the nuclear matrix provides the structural basis for intranuclear order. However, the existence itself and the nature of this structure is still uncertain. Although the techniques used for the visualization of the nuclear matrix have improved over the years, it is still unclear to what extent the isolated nuclear matrix corresponds to an in vivo existing structure. Therefore, considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the situation in living cells. Here, we summarize the experimental evidence in favor of, or against, the presence of a diffuse nucleoskeleton as a facilitating organizational nonchromatin structure of the nucleus.
2012-08-03
is unlimited. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites The views, opinions...12211 Research Triangle Park, NC 27709-2211 ballistics, composites, Kevlar , material models, microstructural defects REPORT DOCUMENTATION PAGE 11... Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites Report Title Fiber-reinforced polymer matrix composite materials display quite complex deformation
Punke, Christoph; Zehlicke, Thorsten; Boltze, Carsten; Pau, Hans Wilhelm
2008-09-01
In an initial preliminary study, the applicability of a new high-porosity hydroxyapatite (HA) ceramic for obliterating large open mastoid cavities was proven and tested in an animal model (bulla of guinea pig). Experimental study. NanoBone, a highly porous matrix consisting of 76% hydroxyl apatite and 24% silicone dioxide fabricated in a sol-gel technique, was administered unilaterally into the opened bullae of 30 guinea pigs. In each animal, the opposite bulla was filled with Bio-Oss, a bone substitute consisting of a portion of mineral bovine bone. Histologic evaluations were performed 1, 2, 3, 4, 5, and 12 weeks after the implantation. After an initial phase in which the ceramic granules were surrounded by inflammatory cells (1-2 wk), there were increasing signs of vascularization. Osteoneogenesis and-at the same time-resorption of the HA ceramic were observed after the third week. No major difference in comparison to the bovine bone material could be found. Our results confirm the favorable qualities of the new ceramic reported in association with current maxillofacial literature. Conventional HA granules used for mastoid obliteration to date often showed problems with prolonged inflammatory reactions and, finally, extrusions. In contrast to those ceramics, the new material seems to induce more osteoneogenesis and undergoes early resorption probably due to its high porosity. Overall, it is similar to the bovine bone substance tested on the opposite ear in each animal. Further clinical studies may reveal whether NanoBone can be an adequate material for obliterating open mastoid cavities in patients.
A new classification system for all-ceramic and ceramic-like restorative materials.
Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A
2015-01-01
Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.
NASA Astrophysics Data System (ADS)
Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; von Bojnicic-Kninski, Clemens M.; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A. R.; Breitling, Frank
2016-12-01
Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a ;solid; solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.
Modeling creep behavior of fiber composites
NASA Technical Reports Server (NTRS)
Chen, J. L.; Sun, C. T.
1988-01-01
A micromechanical model for the creep behavior of fiber composites is developed based on a typical cell consisting of a fiber and the surrounding matrix. The fiber is assumed to be linearly elastic and the matrix nonlinearly viscous. The creep strain rate in the matrix is assumed to be a function of stress. The nominal stress-strain relations are derived in the form of differential equations which are solved numerically for off-axis specimens under uniaxial loading. A potential function and the associated effective stress and effective creep strain rates are introduced to simplify the orthotropic relations.
Wave propagation of carbon nanotubes embedded in an elastic medium
NASA Astrophysics Data System (ADS)
Natsuki, Toshiaki; Hayashi, Takuya; Endo, Morinobu
2005-02-01
This paper presents analytical models of wave propagation in single- and double-walled carbon nanotubes, as well as nanotubes embedded in an elastic matrix. The nanotube structures are treated within the multilayer thin shell approximation with the elastic properties taken to be those of the graphene sheet. The double-walled nanotubes are coupled together through the van der Waals force between the inner and outer nanotubes. For carbon nanotubes embedded in an elastic matrix, the surrounding elastic medium can be described by a Winkler model. Tube wave propagation of both symmetrical and asymmetrical modes can be analyzed based on the present elastic continuum model. It is found that the asymmetrical wave behavior of single- and double-walled nanotubes is significantly different. The behavior is also different from that in the surrounding elastic medium.
NASA Astrophysics Data System (ADS)
Clarke, A. P.; Vannucchi, P.; Ougier-Simonin, A.; Morgan, J. P.
2017-12-01
Subduction zone interface layers are often conceived to be heterogeneous, polyrheological zones analogous to exhumed mélanges. Mélanges typically contain mechanically strong blocks within a weaker matrix. However, our geomechanical study of the Osa Mélange, SW Costa Rica shows that this mélange contains blocks of altered basalt which are now weaker in friction than their surrounding indurated volcanoclastic matrix. Triaxial deformation experiments were conducted on samples of both the altered basalt blocks and the indurated volcanoclastic matrix at confining pressures of 60 and 120 MPa. These revealed that the volcanoclastic matrix has a strength 7.5 times that of the altered basalt at 60 MPa and 4 times at 120 MPa, with the altered basalt experiencing multi-stage failure. The inverted strength relationship between weaker blocks and stronger matrix evolved during subduction and diagenesis of the melange unit by dewatering, compaction and diagenesis of the matrix and cataclastic brecciation and hydrothermal alteration of the basalt blocks. During the evolution of this material, the matrix progressively indurated until its plastic yield stress became greater than the brittle yield stress of the blocks. At this point, the typical rheological relationship found within melanges inverts and melange blocks can fail seismically as the weakest links along the subduction plate interface. The Osa Melange is currently in the forearc of the erosive Middle America Trench and is being incorporated into the subduction zone interface at the updip limit of seismogenesis. The presence of altered basalt blocks acting as weak inclusions within this rock unit weakens the mélange as a whole rock mass. Seismic fractures can nucleate at or within these weak inclusions and the size of the block may limit the size of initial microseismic rock failure. However, when fractures are able to bridge across the matrix between blocks, significantly larger rupture areas may be possible. While this mechanism is a promising candidate for the updip limit of the unusually shallow seismogenic zone beneath Osa, it remains to be seen whether analogous evolutionary strength-inversions control the updip limit of other subduction seismogenic zones.
Impact of fluid-rock chemical interactions on tracer transport in fractured rocks.
Mukhopadhyay, Sumit; Liu, H-H; Spycher, N; Kennedy, B M
2013-11-01
In this paper, we investigate the impact of chemical interactions, in the form of mineral precipitation and dissolution reactions, on tracer transport in fractured rocks. When a tracer is introduced in fractured rocks, it moves through the fracture primarily by advection and it also enters the stagnant water of the surrounding rock matrix through diffusion. Inside the porous rock matrix, the tracer chemically interacts with the solid materials of the rock, where it can precipitate depending on the local equilibrium conditions. Alternatively, it can be dissolved from the solid phase of the rock matrix into the matrix pore water, diffuse into the flowing fluids of the fracture and is advected out of it. We show that such chemical interactions between the fluid and solid phases have significant impact on tracer transport in fractured rocks. We invoke the dual-porosity conceptualization to represent the fractured rocks and develop a semi-analytical solution to describe the transient transport of tracers in interacting fluid-rock systems. To test the accuracy and stability of the semi-analytical solution, we compare it with simulation results obtained with the TOUGHREACT simulator. We observe that, in a chemically interacting system, the tracer breakthrough curve exhibits a pseudo-steady state, where the tracer concentration remains more or less constant over a finite period of time. Such a pseudo-steady condition is not observed in a non-reactive fluid-rock system. We show that the duration of the pseudo-state depends on the physical and chemical parameters of the system, and can be exploited to extract information about the fractured rock system, such as the fracture spacing and fracture-matrix interface area. © 2013.
Manning, Phillip L; Morris, Peter M; McMahon, Adam; Jones, Emrys; Gize, Andy; Macquaker, Joe H S; Wolff, George; Thompson, Anu; Marshall, Jim; Taylor, Kevin G; Lyson, Tyler; Gaskell, Simon; Reamtong, Onrapak; Sellers, William I; van Dongen, Bart E; Buckley, Mike; Wogelius, Roy A
2009-10-07
An extremely well-preserved dinosaur (Cf. Edmontosaurus sp.) found in the Hell Creek Formation (Upper Cretaceous, North Dakota) retains soft-tissue replacement structures and associated organic compounds. Mineral cements precipitated in the skin apparently follow original cell boundaries, partially preserving epidermis microstructure. Infrared and electron microprobe images of ossified tendon clearly show preserved mineral zonation, with silica and trapped carbon dioxide forming thin linings on Haversian canals within apatite. Furthermore, Fourier transform infrared spectroscopy (FTIR) of materials recovered from the skin and terminal ungual phalanx suggests the presence of compounds containing amide groups. Amino acid composition analyses of the mineralized skin envelope clearly differ from the surrounding matrix; however, intact proteins could not be obtained using protein mass spectrometry. The presence of endogenously derived organics from the skin was further demonstrated by pyrolysis gas chromatography mass spectrometry (Py-GCMS), indicating survival and presence of macromolecules that were in part aliphatic (see the electronic supplementary material).
Manning, Phillip L.; Morris, Peter M.; McMahon, Adam; Jones, Emrys; Gize, Andy; Macquaker, Joe H. S.; Wolff, George; Thompson, Anu; Marshall, Jim; Taylor, Kevin G.; Lyson, Tyler; Gaskell, Simon; Reamtong, Onrapak; Sellers, William I.; van Dongen, Bart E.; Buckley, Mike; Wogelius, Roy A.
2009-01-01
An extremely well-preserved dinosaur (Cf. Edmontosaurus sp.) found in the Hell Creek Formation (Upper Cretaceous, North Dakota) retains soft-tissue replacement structures and associated organic compounds. Mineral cements precipitated in the skin apparently follow original cell boundaries, partially preserving epidermis microstructure. Infrared and electron microprobe images of ossified tendon clearly show preserved mineral zonation, with silica and trapped carbon dioxide forming thin linings on Haversian canals within apatite. Furthermore, Fourier transform infrared spectroscopy (FTIR) of materials recovered from the skin and terminal ungual phalanx suggests the presence of compounds containing amide groups. Amino acid composition analyses of the mineralized skin envelope clearly differ from the surrounding matrix; however, intact proteins could not be obtained using protein mass spectrometry. The presence of endogenously derived organics from the skin was further demonstrated by pyrolysis gas chromatography mass spectrometry (Py-GCMS), indicating survival and presence of macromolecules that were in part aliphatic (see the electronic supplementary material). PMID:19570788
Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities
NASA Astrophysics Data System (ADS)
Graf, Arko; Tropf, Laura; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C.
2016-10-01
Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths.
Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin
We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi 0.5Mn 0.3Co 0.2O 2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted propertiesmore » of the active particles and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.« less
Hwang, Sung Hoon; Miller, Joseph B; Shahsavari, Rouzbeh
2017-10-25
Many natural materials, such as nacre and dentin, exhibit multifunctional mechanical properties via structural interplay between compliant and stiff constituents arranged in a particular architecture. Herein, we present, for the first time, the bottom-up synthesis and design of strong, tough, and self-healing composite using simple but universal spherical building blocks. Our composite system is composed of calcium silicate porous nanoparticles with unprecedented monodispersity over particle size, particle shape, and pore size, which facilitate effective loading and unloading with organic sealants, resulting in 258% and 307% increases in the indentation hardness and elastic modulus of the compacted composite. Furthermore, heating the damaged composite triggers the controlled release of the nanoconfined sealant into the surrounding area, enabling moderate recovery in strength and toughness. This work paves the path towards fabricating a novel class of biomimetic composites using low-cost spherical building blocks, potentially impacting bone-tissue engineering, insulation, refractory and constructions materials, and ceramic matrix composites.
Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries
Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin; ...
2016-03-09
We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi 0.5Mn 0.3Co 0.2O 2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted propertiesmore » of the active particles and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando
When bioactive coatings are applied to medical implants by means of sol-gel dip coating technique, the biological proprieties of the implant surface can be modified to match the properties of the surrounding tissues. In this study organo-inorganic nanocomposites materials were synthesized via sol-gel. They consisted of an inorganic zirconium-based and silica-based matrix, in which a biodegradable polymer (the poly-ε-caprolactone, PCL) was incorporated in different weight percentages. The synthesized materials, in sol phase, were used to dip-coat a substrate of commercially pure titanium grade 4 (CP Ti gr. 4) in order to improve its biological properties. A microstructural analysis of themore » obtained films was carried out by scanning electron microscopy (SEM) and attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR). Biological proprieties of the coated substrates were investigated by means of in vitro tests.« less
Advanced Ceramic Armor Materials
1990-05-11
materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies
3D cancer cell migration in a confined matrix
NASA Astrophysics Data System (ADS)
Alobaidi, Amani; Sun, Bo
Cancer cell migration is widely studied in 2D motion, which does not mimic the invasion processes in vivo. More recently, 3D cell migration studies have been performed. The ability of cancer cells to migrate within the extracellular matrix depends on the physical and biochemical features of the extracellular matrix. We present a model of cell motility in confined matrix geometry. The aim of the study is to study cancer migration in collagen matrix, as a soft tissue, to investigate their motility within the confined and surrounding collagen environment. Different collagen concentrations have been used to show the ability of these cancer cells to move through such a complex structure by measuring Cancer cell migration velocity as well as the displacement. Graduate student physics department.
Agricultural matrices affect ground ant assemblage composition inside forest fragments
Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Majer, Jonathan David; Vilela, Evaldo Ferreira
2018-01-01
The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was ‘generalist’ both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an ‘ocean of crops’. PMID:29791493
Agricultural matrices affect ground ant assemblage composition inside forest fragments.
Assis, Diego Santana; Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Barrios-Rojas, Katty Elena; Majer, Jonathan David; Vilela, Evaldo Ferreira
2018-01-01
The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.
Liu, Xuqian; Wang, Jie; Dong, Fusheng; Song, Peng; Tian, Songbo; Li, Hexiang; Hou, Yali
2017-10-01
Scaffold material provides a three-dimensional growing environment for seed cells in the research field of tissue engineering. In the present study, rabbit arterial blood vessel cells were chemically removed with trypsin and Triton X-100 to prepare rabbit acellular vascular matrix scaffold material. Observation by He&Masson staining revealed that no cellular components or nuclei existed in the vascular intima and media after decellularization. Human-like collagen I was combined with acellular vascular matrix by freeze-drying to prepare an acellular vascular matrix-0.25% human-like collagen I scaffold to compensate for the extracellular matrix loss during the decellularization process. We next performed a series of experiments to test the water absorbing quality, biomechanics, pressure resistance, cytotoxicity, and ultra-micro structure of the acellular vascular matrix composite material and natural rabbit artery and found that the acellular vascular matrix-0.25% human-like collagen I material behaved similarly to natural rabbit artery. In conclusion, the acellular vascular matrix-0.25% human-like collagen I composite material provides a new approach and lays the foundation for novel scaffold material research into tissue engineering of blood vessels.
NASA Technical Reports Server (NTRS)
Sanfeliz, Jose G.
1993-01-01
Micromechanical modeling via elastic-plastic finite element analyses were performed to investigate the effects that the residual stresses and the degree of matrix work hardening (i.e., cold-worked, annealed) have upon the behavior of a 9 vol percent, unidirectional W/Cu composite, undergoing tensile loading. The inclusion of the residual stress-containing state as well as the simulated matrix material conditions proved to be significant since the Cu matrix material exhibited plastic deformation, which affected the subsequent tensile response of the composite system. The stresses generated during cooldown to room temperature from the manufacturing temperature were more of a factor on the annealed-matrix composite, since they induced the softened matrix to plastically flow. This event limited the total load-carrying capacity of this matrix-dominated, ductile-ductile type material system. Plastic deformation of the hardened-matrix composite during the thermal cooldown stage was not considerable, therefore, the composite was able to sustain a higher stress before showing any appreciable matrix plasticity. The predicted room temperature, stress-strain response, and deformation stages under both material conditions represented upper and lower bounds characteristic of the composite's tensile behavior. The initial deformation stage for the hardened material condition showed negligible matrix plastic deformation while for the annealed state, its initial deformation stage showed extensive matrix plasticity. Both material conditions exhibited a final deformation stage where the fiber and matrix were straining plastically. The predicted stress-strain results were compared to the experimental, room temperature, tensile stress-strain curve generated from this particular composite system. The analyses indicated that the actual thermal-mechanical state of the composite's Cu matrix, represented by the experimental data, followed the annealed material condition.
Stormo, Keith E.
1996-07-02
A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.
CD44 in cancer progression: adhesion, migration and growth regulation.
Marhaba, R; Zöller, M
2004-03-01
It is well established that the large array of functions that a tumour cell has to fulfil to settle as a metastasis in a distant organ requires cooperative activities between the tumour and the surrounding tissue and that several classes of molecules are involved, such as cell-cell and cell-matrix adhesion molecules and matrix degrading enzymes, to name only a few. Furthermore, metastasis formation requires concerted activities between tumour cells and surrounding cells as well as matrix elements and possibly concerted activities between individual molecules of the tumour cell itself. Adhesion molecules have originally been thought to be essential for the formation of multicellular organisms and to tether cells to the extracellular matrix or to neighbouring cells. CD44 transmembrane glycoproteins belong to the families of adhesion molecules and have originally been described to mediate lymphocyte homing to peripheral lymphoid tissues. It was soon recognized that the molecules, under selective conditions, may suffice to initiate metastatic spread of tumour cells. The question remained as to how a single adhesion molecule can fulfil that task. This review outlines that adhesion is by no means a passive task. Rather, ligand binding, as exemplified for CD44 and other similar adhesion molecules, initiates a cascade of events that can be started by adherence to the extracellular matrix. This leads to activation of the molecule itself, binding to additional ligands, such as growth factors and matrix degrading enzymes, complex formation with additional transmembrane molecules and association with cytoskeletal elements and signal transducing molecules. Thus, through the interplay of CD44 with its ligands and associating molecules CD44 modulates adhesiveness, motility, matrix degradation, proliferation and cell survival, features that together may well allow a tumour cell to proceed through all steps of the metastatic cascade.
Composition for absorbing hydrogen
Heung, L.K.; Wicks, G.G.; Enz, G.L.
1995-05-02
A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.
Composition for absorbing hydrogen
Heung, Leung K.; Wicks, George G.; Enz, Glenn L.
1995-01-01
A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.
Cladding material, tube including such cladding material and methods of forming the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnier, John E.; Griffith, George W.
A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and highmore » temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.« less
Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN
2012-02-07
A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.
Identification of an Extremely 180-Rich Presolar Silicate Grain in Acfer 094
NASA Technical Reports Server (NTRS)
Nguyen, A. N.; Messenger, S.
2009-01-01
Presolar silicate grains have been abundantly identified since their first discovery less than a decade ago [1,2,3]. The O isotopic compositions of both silicate and oxide stardust indicate the vast majority (>90%) condensed around Orich asymptotic giant branch (AGB) stars. Though both presolar phases have average sizes of 300 nm, grains larger than 1 m are extremely uncommon for presolar silicates. Thus, while numerous isotopic systems have been measured in presolar oxide grains [4], very few isotopic analyses for presolar silicates exist outside of O and Si [2,5]. And still, these measurements suffer from isotopic dilution with surrounding matrix material [6]. We conduct a search for presolar silicates in the primitive carbonaceous chondrite Acfer 094 and in some cases obtain high spatial resolution, high precision isotopic ratios.
NASA Technical Reports Server (NTRS)
McManus, Hugh L.; Chamis, Christos C.
1996-01-01
This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.
Maity, Somsubhra; Wu, Wei-Chen; Xu, Chao; Tracy, Joseph B.; Gundogdu, Kenan; Bochinski, Jason R.; Clarke, Laura I.
2015-01-01
Heat emanates from gold nanorods (GNRs) under ultrafast optical excitation of the localized surface plasmon resonance. The steady state nanoscale temperature distribution formed within a polymer matrix embedded with GNRs undergoing pulsed femtosecond photothermal heating is determined experimentally using two independent ensemble optical techniques. Physical rotation of the nanorods reveals the average local temperature of the polymer melt in the immediate spatial volume surrounding them while fluorescence of homogeneously-distributed perylene molecules monitors temperature over sample regions at larger distances from the GNRs. Polarization-sensitive fluorescence measurements of the perylene probes provide an estimate of the average size of the quasi-molten region surrounding each nanorod (that is, the boundary between softened polymer and solid material as the temperature decreases radially away from each particle) and distinguishes the steady state temperature in the solid and melt regions. Combining these separate methods enables nanoscale spatial mapping of the average steady state temperature distribution caused by ultrafast excitation of the GNRs. These observations definitively demonstrate the presence of a steady-state temperature gradient and indicate that localized heating via the photothermal effect within materials enables nanoscale thermal manipulations without significantly altering the bulk sample temperature in these systems. These quantitative results are further verified by reorienting nanorods within a solid polymer nanofiber without inducing any morphological changes to the highly temperature-sensitive nanofiber surface. Temperature differences of 70 – 90 °C were observed over a distances of ~100 nm. PMID:25379775
NASA Astrophysics Data System (ADS)
Alves, Marta M.; Marques, Luísa M.; Nogueira, Isabel; Santos, Catarina F.; Salazar, Sara B.; Eugénio, Sónia; Mira, Nuno P.; Montemor, M. F.
2018-07-01
Zinc (Zn) has been proposed as an alternative metallic biodegradable material to support transient wound-healing processes. Once a Zn piece is implanted inside the organism the degradation will depend upon the physiological surrounding environment. This, by modulating the composition of the surface layers formed on Zn devices, will govern the subsequent interactions with the surrounding living cells (e.g. biocompatibility and/or antifungal behaviour). In silico simulation of an implanted Zn piece at bone-muscle interface or inside the bone yielded the preferential precipitation of simonkolleite or zincite, respectively. To study the impact of these surface layers in the in vitro behaviour of Zn biomaterials, simonkolleite and zincite where synthesised. The successful production of simonkolleite or zincite was confirmed by an extensive physicochemical characterization. An in vitro layer formed on the top of these surface layers revealed that simonkolleite was rather inert, while zincite yielded a complex matrix containing hydroxyapatite, an important bone analogue. When analysing the "anti-biofilm" activity simonkolleite stood out for its activity against an important pathogenic fungi involved in implant-device infections, Candida albicans. The possible physiological implications of these findings are discussed.
Ceramic superconductor/metal composite materials employing the superconducting proximity effect
Holcomb, Matthew J.
2002-01-01
Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.
Kojic, M; Milosevic, M; Kojic, N; Kim, K; Ferrari, M; Ziemys, A
2014-02-01
Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts.
Kojic, M.; Milosevic, M.; Kojic, N.; Kim, K.; Ferrari, M.; Ziemys, A.
2014-01-01
Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts. PMID:24578582
Extracellular matrix biomimicry for the creation of investigational and therapeutic devices.
Pellowe, Amanda S; Gonzalez, Anjelica L
2016-01-01
The extracellular matrix (ECM) is a web of fibrous proteins that serves as a scaffold for tissues and organs, and is important for maintaining homeostasis and facilitating cellular adhesion. Integrin transmembrane receptors are the primary adhesion molecules that anchor cells to the ECM, thus integrating cells with their microenvironments. Integrins play a critical role in facilitating cell-matrix interactions and promoting signal transduction, both from the cell to the ECM and vice versa, ultimately mediating cell behavior. For this reason, many advanced biomaterials employ biomimicry by replicating the form and function of fibrous ECM proteins. The ECM also acts as a reservoir for small molecules and growth factors, wherein fibrous proteins directly bind and present these bioactive moieties that facilitate cell activity. Therefore biomimicry can be enhanced by incorporating small molecules into ECM-like substrates. Biomimetic ECM materials have served as invaluable research tools for studying interactions between cells and the surrounding ECM, revealing that cell-matrix signaling is driven by mechanical forces, integrin engagement, and small molecules. Mimicking pathological ECMs has also elucidated disease specific cell behaviors. For example, biomimetic tumor microenvironments have been used to induce metastatic cell behaviors, and have thereby shown promise for in vitro cancer drug testing and targeting. Further, ECM-like substrates have been successfully employed for autologous cell recolonization for tissue engineering and wound healing. As we continue to learn more about the mechanical and biochemical characteristics of the ECM, these properties can be harnessed to develop new biomaterials, biomedical devices, and therapeutics. © 2015 Wiley Periodicals, Inc.
Method of tissue repair using a composite material
Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.
2016-03-01
A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.
Method of tissue repair using a composite material
Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M
2014-03-18
A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.
NASA Astrophysics Data System (ADS)
Henríquez, Paula; Donoso, Denise S.; Grez, Audrey A.
2009-11-01
Habitat fragmentation results in new environmental conditions that may stress resident populations. Such stress may be reflected in demographical or morphological changes in the individuals inhabiting those landscapes. This study evaluates the effects of fragmentation of the Maulino forest on population density, sex ratio, body size, and fluctuating asymmetry (FA) of the endemic carabid Ceroglossus chilensis. Individuals of C. chilensis were collected during 2006 in five locations at Los Queules National Reserve (continuous forest), in five forest fragments and in five areas of surrounding pine plantations (matrix). In each location, once a season, 40 pitfall traps (20 in the centre, 20 in the edge), were opened for 72 h. Population density of C. chilensis was higher in the small fragments than in the pine matrix, with intermediate densities in the continuous forest; sex ratio did not differ significantly from 1:1 in the three habitats. Individuals from the centre of fragments were smaller than those from the centre of continuous forest, and FA did not vary significantly among habitats. These results suggest that small forest fragments maintain dense populations of C. chilensis and therefore they must be considered in conservation strategies. Although the decrease of the body size suggests that small remnants should be connected by managing the structure of the surrounding matrix, facilitating the dispersion of this carabid across the landscape and avoiding possible antagonistic interactions inside small fragments.
Temperature dependent nonlinear metal matrix laminae behavior
NASA Technical Reports Server (NTRS)
Barrett, D. J.; Buesking, K. W.
1986-01-01
An analytical method is described for computing the nonlinear thermal and mechanical response of laminated plates. The material model focuses upon the behavior of metal matrix materials by relating the nonlinear composite response to plasticity effects in the matrix. The foundation of the analysis is the unidirectional material model which is used to compute the instantaneous properties of the lamina based upon the properties of the fibers and matrix. The unidirectional model assumes that the fibers properties are constant with temperature and assumes that the matrix can be modelled as a temperature dependent, bilinear, kinematically hardening material. An incremental approach is used to compute average stresses in the fibers and matrix caused by arbitrary mechanical and thermal loads. The layer model is incorporated in an incremental laminated plate theory to compute the nonlinear response of laminated metal matrix composites of general orientation and stacking sequence. The report includes comparisons of the method with other analytical approaches and compares theoretical calculations with measured experimental material behavior. A section is included which describes the limitations of the material model.
Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix
NASA Astrophysics Data System (ADS)
Nikitchenko, A. I.; Azovtsev, A. V.; Pertsev, N. A.
2018-01-01
Ferroelectric crystallites embedded into a dielectric matrix experience temperature-dependent elastic strains caused by differences in the thermal expansion of the crystallites and the matrix. Owing to the electrostriction, these lattice strains may affect polarization states of ferroelectric inclusions significantly, making them different from those of a stress-free bulk crystal. Here, using a nonlinear thermodynamic theory, we study the mechanical effect of elastic matrix on the phase states of embedded single-domain ferroelectric nanocrystals. Their equilibrium polarization states are determined by minimizing a special thermodynamic potential that describes the energetics of an ellipsoidal ferroelectric inclusion surrounded by a linear elastic medium. To demonstrate the stability ranges of such states for a given material combination, we construct a phase diagram, where the inclusion’s shape anisotropy and temperature are used as two parameters. The ‘shape-temperature’ phase diagrams are calculated numerically for PbTiO3 and BaTiO3 nanocrystals embedded into representative dielectric matrices generating tensile (silica glass) or compressive (potassium silicate glass) thermal stresses inside ferroelectric inclusions. The developed phase maps demonstrate that the joint effect of thermal stresses and matrix-induced elastic clamping of ferroelectric inclusions gives rise to several important features in the polarization behavior of PbTiO3 and BaTiO3 nanocrystals. In particular, the Curie temperature displays a nonmonotonic variation with the ellipsoid’s aspect ratio, being minimal for spherical inclusions. Furthermore, the diagrams show that the polarization orientation with respect to the ellipsoid’s symmetry axis is controlled by the shape anisotropy and the sign of thermal stresses. Under certain conditions, the mechanical inclusion-matrix interaction qualitatively alters the evolution of ferroelectric states on cooling, inducing a structural transition in PbTiO3 nanocrystals and suppressing in BaTiO3 inclusions some transformations occurring in their bulk counterpart. The constructed phase maps open the possibility to calculate dielectric properties of strained PbTiO3 and BaTiO3 nanocrystals and ferroelectric nanocomposites comprising such crystallites.
Densified waste form and method for forming
Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina
2015-08-25
Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.
Method of joining metallic and composite components
NASA Technical Reports Server (NTRS)
Semmes, Edmund B. (Inventor)
2010-01-01
A method is provided for joining a metallic member to a structure made of a composite matrix material. One or more surfaces of a portion of the metallic member that is to be joined to the composite matrix structure is provided with a plurality of outwardly projecting studs. The surface including the studs is brought into engagement with a portion of an uncured composite matrix material so that fibers of the composite matrix material intertwine with the studs, and the metallic member and composite structure form an assembly. The assembly is then companion cured so as to join the metallic member to the composite matrix material structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcmanus, H.L.; Chamis, C.C.
1996-01-01
This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) ismore » presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.« less
Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher
2013-10-08
In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating within a borehole an intermittent low frequency vibration that propagates as a tube wave longitudinally to the borehole and induces a nonlinear response in one or more features in the material that are substantially perpendicular to a longitudinal axis of the borehole; generating within the borehole a sequence of high frequency pulses directed such that they travel longitudinally to the borehole within the surrounding material; and receiving, at one or more receivers positionable in the borehole, a signal that includes components from the low frequency vibration and the sequence of high frequency pulses during intermittent generation of the low frequency vibration, to investigate the material surrounding the borehole.
Optimal matrix rigidity for stress fiber polarization in stem cells
Rehfeldt, F.; Brown, A. E. X.; Discher, D. E.; Safran, S. A.
2010-01-01
The shape and differentiation of human mesenchymal stem cells is especially sensitive to the rigidity of their environment; the physical mechanisms involved are unknown. A theoretical model and experiments demonstrate here that the polarization/alignment of stress-fibers within stem cells is a non-monotonic function of matrix rigidity. We treat the cell as an active elastic inclusion in a surrounding matrix whose polarizability, unlike dead matter, depends on the feedback of cellular forces that develop in response to matrix stresses. The theory correctly predicts the monotonic increase of the cellular forces with the matrix rigidity and the alignment of stress-fibers parallel to the long axis of cells. We show that the anisotropy of this alignment depends non-monotonically on matrix rigidity and demonstrate it experimentally by quantifying the orientational distribution of stress-fibers in stem cells. These findings offer a first physical insight for the dependence of stem cell differentiation on tissue elasticity. PMID:20563235
Matrix of educational and training materials in remote sensing
NASA Technical Reports Server (NTRS)
Lindenlaub, J. C.; Lube, B. M.
1976-01-01
Remote sensing educational and training materials developed by LARS have been organized in a matrix format. Each row in the matrix represents a subject area in remote sensing and the columns represent different types of instructional materials. This format has proved to be useful for displaying in a concise manner the subject matter content, prerequisite requirements and technical depth of each instructional module in the matrix. A general description of the matrix is followed by three examples designed to illustrate how the matrix can be used to synthesize training programs tailored to meet the needs of individual students. A detailed description of each of the modules in the matrix is contained in a catalog section.
NASA Technical Reports Server (NTRS)
Quade, Derek J.; Jana, Sadhan C.; Morscher, Gregory N.; Kannan, Manigandan; McCorkle, Linda S.
2017-01-01
Nickel-titanium (NiTi) shape memory alloy (SMA) sections were embedded within carbon fiber reinforced polymer matrix composite (CFRPPMC) laminates and their tensile properties were evaluated with simultaneous monitoring of modal acoustic emissions. The test specimens were fabricated in three different layup configurations and two different thin film adhesives were applied to bond the SMA with the PMC. A trio of acoustic sensors were attached to the specimens during tensile testing to monitor the modal acoustic emission (AE) as the materials experienced mechanical failure. The values of ultimate tensile strengths, strains, and moduli were obtained. Cumulative AE energy of events and specimen failure location were determined. In conjunction, optical and scanning electron microscopy techniques were used to examine the break areas of the specimens. The analysis of AE data revealed failure locations within the specimens which were validated from the microscopic images. The placement of 90 deg plies in the outer ply gave the strongest acoustic signals during break as well as the cleanest break of the samples tested. Overlapping 0 deg ply layers surrounding the SMA was found to be the best scenario to prevent failure of the specimen itself.
Xenon migration behaviour in titanium nitride
NASA Astrophysics Data System (ADS)
Gavarini, S.; Toulhoat, N.; Peaucelle, C.; Martin, P.; Mende, J.; Pipon, Y.; Jaffrezic, H.
2007-05-01
Titanium nitride is one of the inert matrixes proposed to surround the fuel in gas cooled fast reactor (GFR) systems. These reactors operate at high temperature and necessitate refractory materials presenting a high chemical stability and good mechanical properties. A total retention of the most volatile fission products, such as Xe, I or Cs, by the inert matrix is needed during the in pile process. The thermal migration of xenon in TiN was studied by implanting 800 keV Xe++ ions in sintered samples at an ion fluence of 5 × 1015 cm-2. Annealing was performed at temperatures ranging from 1673 to 1923 K for 1 and 3 h. Xenon concentration profiles were studied by Rutherford backscattering spectrometry (RBS) using 2.5 MeV α-particles. The migration behaviour of xenon corresponds to a gas migration model. It is dominated by a surface directed transport with a slight diffusion component. The mean activation energy corresponding to the diffusion component was found to be 2.2 ± 0.3 eV and corresponds to the Brownian motion of xenon bubbles. The directed Xe migration can be interpreted in term of bubble transport using Evans model. This last process is mostly responsible for xenon release from TiN.
NASA Astrophysics Data System (ADS)
Yamamoto, Tokujiro
2014-10-01
Microarea self-propagating high-temperature synthesis (microSHS) was ignited by the heat of mixing generated at the boundaries between an Al matrix and TiNi particles during plastic deformation at room temperature. The temperature of the boundaries was rapidly increased by microSHS; the temperature elevation resulted in local melting of the TiNi particle and the surrounding Al matrix, because the heat of mixing was localized in the vicinity of the TiNi particle although the amount of the heat of mixing was limited. Since the amount of the local melting region induced by microSHS is restricted, not only major elements (i.e. Al, Ti and Ni) but also impurities were involved in the solidification followed by local melting. As a result, ?FeNi nanoprecipitates, which have not been reported in SHS studies, were formed by inclusion of Fe, initially included as an impurity in raw materials. The formation mechanism of ?FeNi nanoprecipitates is discussed based on reference to the Al-Fe-Ni ternary alloy phase diagram. It is expected that local melting induced by microSHS is a key phenomonon for amorphization during severe plastic deformation of elemental sheets.
Chitosan nanoparticle based delivery systems for sustainable agriculture.
Kashyap, Prem Lal; Xiang, Xu; Heiden, Patricia
2015-01-01
Development of technologies that improve food productivity without any adverse impact on the ecosystem is the need of hour. In this context, development of controlled delivery systems for slow and sustained release of agrochemicals or genetic materials is crucial. Chitosan has emerged as a valuable carrier for controlled delivery of agrochemicals and genetic materials because of its proven biocompatibility, biodegradability, non-toxicity, and adsorption abilities. The major advantages of encapsulating agrochemicals and genetic material in a chitosan matrix include its ability to function as a protective reservoir for the active ingredients, protecting the ingredients from the surrounding environment while they are in the chitosan domain, and then controlling their release, allowing them to serve as efficient gene delivery systems for plant transformation or controlled release of pesticides. Despite the great progress in the use of chitosan in the area of medical and pharmaceutical sciences, there is still a wide knowledge gap regarding the potential application of chitosan for encapsulation of active ingredients in agriculture. Hence, the present article describes the current status of chitosan nanoparticle-based delivery systems in agriculture, and to highlight challenges that need to be overcome. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, R Z; Addadi, L; Weiner, S
1997-04-29
The teeth of sea urchins comprise a variety of different structural entities, all of which are composed of magnesium-bearing calcite together with a small amount of organic material. The teeth are worn down continuously, but in such a way that they remain sharp and functional. Here we describe aspects of the structural, compositional and micromechanical properties of the teeth of Paracentrotus lividus using scanning electron microscopy, infrared spectrometry, atomic absorption. X-ray diffraction and microindentation. The S-shaped single crystalline calcitic fibres are one of the main structural elements of the tooth. They extend from the stone part to the keel. The diameter of the fibres increases gradually from less than 1 micron at the stone tip to about 20 microns at the keel end, while their MgCO3 contents decrease from about 13 mol% to about 4.5 mol%. Each fibre is coated by a thin organic sheath and surrounded by polycrystalline calcitic discs containing as much as 35 mol% MgCO3. This structure constitutes a unique kind of gradient fibre-reinforced ceramic matrix composite, whose microhardness and toughness decrease gradually from the stone part to the keel. Primary plates are also important structural elements of the tooth. Each primary plate has a very unusual sandwich-like structure with a calcitic envelope surrounding a thin apparently amorphous CaCO3 layer. This central layer, together with the primary plate/disc interface, improves the toughness of this zone by stopping and blunting cracks. The self-sharpening function of the teeth is believed to result from the combination of the geometrical shape of the main structural elements and their spatial arrangement, the interfacial strength between structural elements, and the hardness gradient extending from the working stone part to the surrounding zones. The sea urchin tooth structure possesses an array of interesting functional design features, some of which may possibly be applicable to materials science.
Densified waste form and method for forming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina
Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate themore » temperature sensitive waste material in a physically densified matrix.« less
Process of producing a ceramic matrix composite article and article formed thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corman, Gregory Scot; McGuigan, Henry Charles; Brun, Milivoj Konstantin
A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heatedmore » to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.« less
Process of producing a ceramic matrix composite article and article formed thereby
Corman, Gregory Scot [Ballston Lake, NY; McGuigan, Henry Charles [Duanesburg, NY; Brun, Milivoj Konstantin [Ballston Lake, NY
2011-10-25
A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heated to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.
Chain and mirophase-separated structures of ultrathin polyurethane films
NASA Astrophysics Data System (ADS)
Kojio, Ken; Uchiba, Yusuke; Yamamoto, Yasunori; Motokucho, Suguru; Furukawa, Mutsuhisa
2009-08-01
Measurements are presented how chain and microphase-separated structures of ultrathin polyurethane (PU) films are controlled by the thickness. The film thickness is varied by a solution concentration for spin coating. The systems are PUs prepared from commercial raw materials. Fourier-transform infrared spectroscopic measurement revealed that the degree of hydrogen bonding among hard segment chains decreased and increased with decreasing film thickness for strong and weak microphase separation systems, respectively. The microphase-separated structure, which is formed from hard segment domains and a surrounding soft segment matrix, were observed by atomic force microscopy. The size of hard segment domains decreased with decreasing film thickness, and possibility of specific orientation of the hard segment chains was exhibited for both systems. These results are due to decreasing space for the formation of the microphase-separated structure.
Bond-strength inversion in (In,Ga)As semiconductor alloys
NASA Astrophysics Data System (ADS)
Eckner, Stefanie; Ritter, Konrad; Schöppe, Philipp; Haubold, Erik; Eckner, Erich; Rensberg, Jura; Röder, Robert; Ridgway, Mark C.; Schnohr, Claudia S.
2018-05-01
The atomic-scale structure and vibrational properties of semiconductor alloys are determined by the energy required for stretching and bending the individual bonds. Using temperature-dependent extended x-ray absorption fine-structure spectroscopy, we have determined the element-specific In-As and Ga-As effective bond-stretching force constants in (In,Ga)As as a function of the alloy composition. The results reveal a striking inversion of the bond strength where the originally stiffer bond in the parent materials becomes the softer bond in the alloy and vice versa. Our findings clearly demonstrate that changes of both the individual bond length and the surrounding matrix affect the bond-stretching force constants. We thus show that the previously used common assumptions about the element-specific force constants in semiconductor alloys do not reproduce the composition dependence determined experimentally for (In,Ga)As.
The fatigue life study of polyphenylene sulfide composites filled with continuous glass fibers
NASA Astrophysics Data System (ADS)
Ye, Junjie; Hong, Yun; Wang, Yongkun; Zhai, Zhi; Shi, Baoquan; Chen, Xuefeng
2018-04-01
In this study, an effective microscopic model is proposed to investigate the fatigue life of composites containing continuous glass fibers, which is surrounded by polyphenylene sulfide (PPS) matrix materials. The representative volume element is discretized by parametric elements. Moreover, the microscopic model is established by employing the relation between average surface displacements and average surface tractions. Based on the experimental data, the required fatigue failure parameters of the PPS are determined. Two different fiber arrangements are considered for comparisons. Numerical analyses indicated that the square edge packing provides a more accuracy. In addition, microscopic structural parameters (fiber volume fraction, fiber off-axis angle) effect on the fatigue life of Glass/PPS composites is further discussed. It is revealed that fiber strength degradation effects on the fatigue life of continuous fiber-reinforced composites can be ignored.
Growth of single crystals of BaFe12O19 by solid state crystal growth
NASA Astrophysics Data System (ADS)
Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia
2016-10-01
Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.
Structure for HTS composite conductors and the manufacture of same
Cotton, J.D.; Riley, G.N. Jr.
1999-06-01
A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (1) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (2) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer. 10 figs.
Structure for hts composite conductors and the manufacture of same
Cotton, James D.; Riley, Jr., Gilbert Neal
1999-01-01
A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.
Cytotoxic T Lymphocyte Trafficking and Survival in an Augmented Fibrin Matrix Carrier
Zou, Zhaoxia; Denny, Erin; Brown, Christine E.; Jensen, Michael C.; Li, Gang; Fujii, Tatsuhiro; Neman, Josh; Jandial, Rahul; Chen, Mike
2012-01-01
Cell-based therapies have intriguing potential for the treatment of a variety of neurological disorders. One such example is genetically engineered cytotoxic T lymphocytes (CTLs) that are being investigated in brain tumor clinical trials. The development of methods for CTL delivery is critical to their use in the laboratory and clinical setting. In our study, we determined whether CTLs can migrate through fibrin matrices and if their migration, survival, and function could be modulated by adding chemokines to the matrix. Our results indicated that CTLs can freely migrate through fibrin matrices. As expected, the addition of the monocyte chemotactic protein-1 (MCP-1), also known as chemokine C-C motif ligand 2 (CCL2), to the surrounding media increased egress of the CTLs out of the fibrin clot. Interleukin (IL) -2 and/or IL-15 embedded in the matrix enhanced T cell survival and further promoted T cell migration. The interleukin-13 receptor alpha 2 specific (IL-13R alpha2) T cells that traveled out of the fibrin clot retained the capacity to kill U251 glioma cells. In summary, CTLs can survive and migrate robustly in fibrin matrices. These processes can be influenced by modification of matrix constituents. We conclude that fibrin matrices may be suitable T cell carriers and can be used to facilitate understanding of T cell interaction with the surrounding microenvironment. PMID:22496835
Cytotoxic T lymphocyte trafficking and survival in an augmented fibrin matrix carrier.
Zou, Zhaoxia; Denny, Erin; Brown, Christine E; Jensen, Michael C; Li, Gang; Fujii, Tatsuhiro; Neman, Josh; Jandial, Rahul; Chen, Mike
2012-01-01
Cell-based therapies have intriguing potential for the treatment of a variety of neurological disorders. One such example is genetically engineered cytotoxic T lymphocytes (CTLs) that are being investigated in brain tumor clinical trials. The development of methods for CTL delivery is critical to their use in the laboratory and clinical setting. In our study, we determined whether CTLs can migrate through fibrin matrices and if their migration, survival, and function could be modulated by adding chemokines to the matrix. Our results indicated that CTLs can freely migrate through fibrin matrices. As expected, the addition of the monocyte chemotactic protein-1 (MCP-1), also known as chemokine C-C motif ligand 2 (CCL2), to the surrounding media increased egress of the CTLs out of the fibrin clot. Interleukin (IL) -2 and/or IL-15 embedded in the matrix enhanced T cell survival and further promoted T cell migration. The interleukin-13 receptor alpha 2 specific (IL-13R alpha2) T cells that traveled out of the fibrin clot retained the capacity to kill U251 glioma cells. In summary, CTLs can survive and migrate robustly in fibrin matrices. These processes can be influenced by modification of matrix constituents. We conclude that fibrin matrices may be suitable T cell carriers and can be used to facilitate understanding of T cell interaction with the surrounding microenvironment.
Fragment quality and matrix affect epiphytic performance in a Mediterranean forest landscape.
Belinchón, Rocío; Martínez, Isabel; Otálora, Mónica A G; Aragón, Gregorio; Dimas, Jesús; Escudero, Adrián
2009-11-01
Destruction and fragmentation of habitats represent one of the most important threats for biodiversity. Here, we examined the effects of fragmentation in Mediterranean forests on the epiphytic lichen Lobaria pulmonaria (Lobariaceae). We tested the hypothesis that not only the level of fragmentation affects L. pulmonaria populations, but also the quality of the habitat and the nature of the surrounding matrix affect them. The presence and abundance of the lichen was recorded on 2039 trees in a total of 31 stands. We recorded habitat quality and landscape variables at three hierarchical levels: tree, plot, and patch. We found that L. pulmonaria tends to occur in trees with larger diameters in two types of surveyed forests. In Quercus pyrenaica patches, the mean diameter of colonized trees was smaller, suggesting the importance of bark roughness. Factors affecting the presence and cover of the lichen in each type of forest were different. There was a strong positive influence of distance from a river in beech forests, whereas proximity to forest edge positively affected in oak forests. The influence of the surrounding matrix was also an important factor explaining the epiphytic lichen abundance.
Rollefson, Janet B.; Stephen, Camille S.; Tien, Ming; Bond, Daniel R.
2011-01-01
Transposon insertions in Geobacter sulfurreducens GSU1501, part of an ATP-dependent exporter within an operon of polysaccharide biosynthesis genes, were previously shown to eliminate insoluble Fe(III) reduction and use of an electrode as an electron acceptor. Replacement of GSU1501 with a kanamycin resistance cassette produced a similarly defective mutant, which could be partially complemented by expression of GSU1500 to GSU1505 in trans. The Δ1501 mutant demonstrated limited cell-cell agglutination, enhanced attachment to negatively charged surfaces, and poor attachment to positively charged poly-d-lysine- or Fe(III)-coated surfaces. Wild-type and mutant cells attached to graphite electrodes, but when electrodes were poised at an oxidizing potential inducing a positive surface charge (+0.24 V versus the standard hydrogen electrode [SHE]), Δ1501 mutant cells detached. Scanning electron microscopy revealed fibrils surrounding wild-type G. sulfurreducens which were absent from the Δ1501 mutant. Similar amounts of type IV pili and pilus-associated cytochromes were detected on both cell types, but shearing released a stable matrix of c-type cytochromes and other proteins bound to polysaccharides. The matrix from the mutant contained 60% less sugar and was nearly devoid of c-type cytochromes such as OmcZ. The addition of wild-type extracellular matrix to Δ1501 cultures restored agglutination and Fe(III) reduction. The polysaccharide binding dye Congo red preferentially bound wild-type cells and extracellular matrix material over mutant cells, and Congo red inhibited agglutination and Fe(III) reduction by wild-type cells. These results demonstrate a crucial role for the xap (extracellular anchoring polysaccharide) locus in metal oxide attachment, cell-cell agglutination, and localization of essential cytochromes beyond the Geobacter outer membrane. PMID:21169487
NASA Astrophysics Data System (ADS)
Greshake, Ansgar
2014-05-01
Hydrous carbonaceous microclasts are by far the most abundant foreign fragments in stony meteorites and mostly resemble CI1-, CM2-, or CR2-like material. Their occurrence is of great importance for understanding the distribution and migration of water-bearing volatile-rich matter in the solar system. This paper reports the first finding of a strongly hydrated microclast in a Rumuruti chondrite. The R3-6 chondrite Northwest Africa 6828 contains a 420 × 325 μm sized angular foreign fragment exhibiting sharp boundaries to the surrounding R-type matrix. The clast is dominantly composed of magnetite, pyrrhotite, rare Ca-carbonate, and very rare Mg-rich olivine set in an abundant fine-grained phyllosilicate-rich matrix. Phyllosilicates are serpentine and saponite. One region of the clast is dominated by forsteritic olivine (Fa<2) supported by a network of interstitial Ca-carbonate. The clast is crosscut by Ca-carbonate-filled veins and lacks any chondrules, calcium-aluminum-rich inclusions, or their respective pseudomorphs. The hydrous clast contains also a single grain of the very rare phosphide andreyivanovite. Comparison with CI1, CM2, and CR2 chondrites as well as with the ungrouped C2 chondrite Tagish Lake shows no positive match with any of these types of meteorites. The clast may, thus, either represent a fragment of an unsampled lithology of the hydrous carbonaceous chondrite parent asteroids or constitute a sample from an as yet unknown parent body, maybe even a comet. Rumuruti chondrites are a unique group of highly oxidized meteorites that probably accreted at a heliocentric distance >1 AU between the formation regions of ordinary and carbonaceous chondrites. The occurrence of a hydrous microclast in an R chondrite attests to the presence of such material also in this region at least at some point in time and documents the wide distribution of water-bearing (possibly zodiacal cloud) material in the solar system.
NASA Astrophysics Data System (ADS)
Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.
The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.
Simulation of Deformation, Momentum and Energy Coupling Particles Deformed by Intense Shocks
NASA Astrophysics Data System (ADS)
Lieberthal, B.; Stewart, D. S.; Bdzil, J. B.; Najjar, F. M.; Balachandar, S.; Ling, Y.
2011-11-01
Modern energetic materials have embedded solids and inerts in an explosive matrix. A detonation in condensed phase materials, generates intense shocks that deform particles as the incident shock diffracts around them. The post-shock flow generates a wake behind the particle that is influenced by the shape changes of the particle. The gasdynamic flow in the explosive products and its interaction with the deformation of the particle must be treated simultaneously. Direct numerical simulations are carried out that vary the particle-to-surrounding density and impedance ratios to consider heavier and lighter particle. The vorticity deposited on the interface due to shock interaction with the particle, the resulting particle deformation and the net momentum and energy transferred to the particle, on the acoustic and longer viscous time scale are considered. The LLNL multi-physics hydrodynamic code ALE3D is used to carry out the simulations. BL, DSS and JBB supported by AFRL/RW AF FA8651-10-1-0004 & DTRA, HDTRA1-10-1-0020 Off Campus. FMN's work supported by the U.S. DOE/ LLNL, Contract DE-AC52-07NA27344. LLNL-ABS-491794.
Dynamic interactions between cells and their extracellular matrix mediate embryonic development.
Goody, Michelle F; Henry, Clarissa A
2010-06-01
Cells and their surrounding extracellular matrix microenvironment interact throughout all stages of life. Understanding the continuously changing scope of cell-matrix interactions in vivo is crucial to garner insights into both congenital birth defects and disease progression. A current challenge in the field of developmental biology is to adapt in vitro tools and rapidly evolving imaging technology to study cell-matrix interactions in a complex 4-D environment. In this review, we highlight the dynamic modulation of cell-matrix interactions during development. We propose that individual cell-matrix adhesion proteins are best considered as complex proteins that can play multiple, often seemingly contradictory roles, depending upon the context of the microenvironment. In addition, cell-matrix proteins can also exert different short versus long term effects. It is thus important to consider cell behavior in light of the microenvironment because of the constant and dynamic reciprocal interactions occurring between them. Finally, we suggest that analysis of cell-matrix interactions at multiple levels (molecules, cells, tissues) in vivo is critical for an integrated understanding because different information can be acquired from all size scales. Copyright 2010 Wiley-Liss, Inc.
Modification of natural matrix lac-bagasse for matrix composite films
NASA Astrophysics Data System (ADS)
Nurhayati, Nanik Dwi; Widjaya, Karna; Triyono
2016-02-01
Material technology continues to be developed in order to a material that is more efficient with composite technology is a combination of two or more materials to obtain the desired material properties. The objective of this research was to modification and characterize the natural matrix lac-bagasse as composite films. The first step, natural matrix lac was changed from solid to liquid using an ethanol as a solvent so the matrix homogenly. Natural matrix lac was modified by adding citric acid with concentration variation. Secondly, the bagasse delignification using acid hydrolysis method. The composite films natural matrix lac-bagasse were prepared with optimum modified the addition citric acid 5% (v/v) and delignification bagasse optimum at 1,5% (v/v) in hot press at 80°C 6 Kg/cm-1. Thirdly, composite films without and with modification were characterized functional group analysis using FTIR spectrophotometer and mechanical properties using Universal Testing Machine. The result of research showed natural matrix lac can be modified by reaction with citric acid. FTIR spectra showed without and with modification had functional groups wide absorption 3448 cm-1 group -OH, C=O ester strong on 1712 cm-1 and the methylene group -CH2 on absorption 1465 cm-1. The mechanical properties showed tensile strength 0,55 MPa and elongation at break of 0,95 %. So that composite films natural matrix lac can be made with reinforcement bagasse for material application.
Rainer, Matthias; Qureshi, Muhammad Nasimullah; Bonn, Günther Karl
2011-06-01
The application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) for the analysis of low molecular weight (LMW) compounds, such as pharmacologically active constituents or metabolites, is usually hampered by employing conventional MALDI matrices owing to interferences caused by matrix molecules below 700 Da. As a consequence, interpretation of mass spectra remains challenging, although matrix suppression can be achieved under certain conditions. Unlike the conventional MALDI methods which usually suffer from background signals, matrix-free techniques have become more and more popular for the analysis of LMW compounds. In this review we describe recently introduced materials for laser desorption/ionization (LDI) as alternatives to conventionally applied MALDI matrices. In particular, we want to highlight a new method for LDI which is referred to as matrix-free material-enhanced LDI (MELDI). In matrix-free MELDI it could be clearly shown, that besides chemical functionalities, the material's morphology plays a crucial role regarding energy-transfer capabilities. Therefore, it is of great interest to also investigate parameters such as particle size and porosity to study their impact on the LDI process. Especially nanomaterials such as diamond-like carbon, C(60) fullerenes and nanoparticulate silica beads were found to be excellent energy-absorbing materials in matrix-free MELDI.
Danysh, Brian P.; Duncan, Melinda K.
2009-01-01
The lens capsule is a modified basement membrane that completely surrounds the ocular lens. It is known that this extracellular matrix is important for both the structure and biomechanics of the lens in addition to providing informational cues to maintain lens cell phenotype. This review covers the development and structure of the lens capsule, lens diseases associated with mutations in extracellular matrix genes and the role of the capsule in lens function including those proposed for visual accommodation, selective permeability to infectious agents, and cell signaling. PMID:18773892
Material Processing and Design of Biodegradable Metal Matrix Composites for Biomedical Applications.
Yang, Jingxin; Guo, Jason L; Mikos, Antonios G; He, Chunyan; Cheng, Guang
2018-06-04
In recent years, biodegradable metallic materials have played an important role in biomedical applications. However, as typical for the metal materials, their structure, general properties, preparation technology and biocompatibility are hard to change. Furthermore, biodegradable metals are susceptible to excessive degradation and subsequent disruption of their mechanical integrity; this phenomenon limits the utility of these biomaterials. Therefore, the use of degradable metals, as the base material to prepare metal matrix composite materials, it is an excellent alternative to solve the problems above described. Biodegradable metals can thus be successfully combined with other materials to form biodegradable metallic matrix composites for biomedical applications and functions. The present article describes the processing methods currently available to design biodegradable metal matrix composites for biomedical applications and provides an overview of the current existing biodegradable metal systems. At the end, the manuscript presents and discusses the challenges and future research directions for development of biodegradable metallic matrix composites for biomedical purposes.
Microcapsule and methods of making and using microcapsules
Okawa, David C.; Pastine, Stefan J.; Zettl, Alexander K.; Frechet, Jean M.J.
2014-09-02
An embodiment of a microcapsule includes a shell surrounding a space, a liquid within the shell, and a light absorbing material within the liquid. An embodiment of a method of making microcapsules includes forming a mixture of a light absorbing material and an organic solution. An emulsion of the mixture and an aqueous solution is then formed. A polymerization agent is added to the emulsion, which causes microcapsules to be formed. Each microcapsule includes a shell surrounding a space, a liquid within the shell, and light absorbing material within the liquid. An embodiment of a method of using microcapsules includes providing phototriggerable microcapsules within a bulk material. Each of the phototriggerable microcapsules includes a shell surrounding a space, a chemically reactive material within the shell, and a light absorbing material within the shell. At least some of the phototriggerable microcapsules are exposed to light, which causes the chemically reactive material to release from the shell and to come into contact with bulk material.
Hard tissue remodeling using biofabricated coralline biomaterials.
Vago, Razi; Plotquin, Daniel; Bunin, Alex; Sinelnikov, Igor; Atar, Dan; Itzhak, David
2002-01-04
Biotechnical and biomedical approaches were combined in an attempt to identify potential uses of biofabricated marine carbonate materials in biomedical applications, particularly as biomatrices for remodeling bone and cartilage tissue. After grafting, it is desirable for bone ingrowth to proceed as quickly as possible because the strength of the implanted region depends on a good mechanical bond forming between the implant and surrounding regions in the body. Ingrowth can take place as a result of growth of tissue and cells into the implanted porous material, or it may be promoted by transplanting cells seeded onto such a material. The rate at which ingrowth occurs is dependent on many factors, including pore size and the interconnectivity of the implanted structure. In vivo graftings into osteochondral defects demonstrated that our biofabricated porous material is highly biocompatible with cartilage and bone tissue. The biofabricated matrix was well incorporated into the biphasic osteochondral area. Resorption was followed by bone and cartilage formation, and after 4 months, the biomaterial had been replaced by new tissue. Ossification was induced and enhanced without introduction of additional factors. We believe that this is the first time that such biofabricated materials have been used for biomedical purposes. In face of the obvious environmental disadvantages of harvesting from limited natural resources, we propose the use of bioengineered coralline and other materials such as those cultured by our group under field and laboratory conditions as a possible biomatrix for hard tissue remodeling.
Metal matrix composite micromechanics: In-situ behavior influence on composite properties
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.
1989-01-01
Recent efforts in computational mechanics methods for simulating the nonlinear behavior of metal matrix composites have culminated in the implementation of the Metal Matrix Composite Analyzer (METCAN) computer code. In METCAN material nonlinearity is treated at the constituent (fiber, matrix, and interphase) level where the current material model describes a time-temperature-stress dependency of the constituent properties in a material behavior space. The composite properties are synthesized from the constituent instantaneous properties by virtue of composite micromechanics and macromechanics models. The behavior of metal matrix composites depends on fabrication process variables, in situ fiber and matrix properties, bonding between the fiber and matrix, and/or the properties of an interphase between the fiber and matrix. Specifically, the influence of in situ matrix strength and the interphase degradation on the unidirectional composite stress-strain behavior is examined. These types of studies provide insight into micromechanical behavior that may be helpful in resolving discrepancies between experimentally observed composite behavior and predicted response.
The organic matrix of gallstones
Sutor, D. June; Wooley, Susan E.
1974-01-01
Dissolution of gallstones consisting of cholesterol, calcium carbonate, or calcium phosphate in different solvents left an amorphous organic gel-like substance (the matrix). Matrix from cholesterol stones could be colourless but was usually orange, yellow, or brown while that from calcium carbonate and calcium phosphate stones was almost invariably coloured black or dark brown. These pigments were also shown to be organic and amorphous. The amount of matrix present and its structure varied with the texture of the crystalline material. Irrespective of their composition, laminated pieces of material yielded compact laminated matrix of the same shape as the original piece and areas of loose crystalline material gave small pieces of non-cohesive matrix. Only large cholesterol crystals which usually radiate from the stone nucleus had no associated matrix. ImagesFig 1Fig 2Fig 3Fig 4Fig 5 PMID:4854981
Soil manganese redox cycling in suboxic zones: Effects on soil carbon stability
Suboxic soil environments contain a disproportionately higher concentration of highly reactive free radicals relative to the surrounding soil matrix, which may have significant implications for soil organic matter cycling and stabilization. This study investigated how Mn-ozidizin...
Metal- and intermetallic-matrix composites for aerospace propulsion and power systems
NASA Astrophysics Data System (ADS)
Doychak, J.
1992-06-01
Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.
NASA Astrophysics Data System (ADS)
Lang, H. M.; Gilotti, J. A.
2005-12-01
Although paragneiss is not common in the North-East Greenland Eclogite Province (NEGEP), of the few paragneiss samples collected in the UHP zone, some contain inclusion-rich garnet megacrysts (to 2 cm) in an anatectic matrix. In the matrix, quartz ribbons are segregated from anatectic melt layers and lenses that contain plagioclase, antiperthitic alkali-feldspar, white mica, biotite, small garnets, rutile and minor kyanite. In addition to one-phase and two-phase inclusions of quartz, polycrystalline quartz (no definitive coesite-replacement textures), and phengitic white mica, the garnet megacrysts contain some relatively large polyphase inclusions with all or most of the following phases: kyanite, rutile, phengitic white mica, biotite, quartz, Na-rich plagioclase, K-feldspar and zircon. Textures in these complex, polyphase inclusions suggest that their constituent minerals crystallized from a melt. Crystals are randomly oriented with early crystallizing minerals (kyanite, rutile, micas) forming euhedral grains and later crystallizing minerals (quartz and feldspars) filling the interstitial spaces. The textures and mineral assemblages are consistent with dehydration melting of phengitic white mica + quartz (enclosed in garnet) during decompression of the rocks from UHP metamorphic conditions. Although anatectic minerals in the matrix may have experienced extensive retrograde re-equilibration subsequent to crystallizing from a melt, the minerals trapped in the crystallized melt inclusions in garnet are likely to preserve their original textures and compositions. Microtextures in the melt inclusions and surrounding garnet suggest that partial melting was accompanied by volume expansion and that some melt penetrated garnets. Some radial fractures extend from inclusion margins into surrounding garnet. Individual fractures may have formed by volume expansion on melting or expansion accompanying the coesite-quartz transformation. Small and large polycrystalline quartz inclusions are commonly rimmed by a moat of plagioclase + K-feldspar, which extends into apophyses in garnet. These feldspar rims indicate that the most mobile and volatile-rich portion of the melt was able to penetrate garnets and travel along garnet-inclusion boundaries. Possible melt inclusions have been described in natural garnets from other UHP terranes (Stockert, et al., 2001, Geology; Hwang, et al., 2001, Earth and Planetary Science Letters) and have been produced experimentally (Perchuk, et al., 2005, Terra Nova). In the experiments and at least one of the natural occurrences, patchy microstructures (attributed to high Ca) were observed in BSE images of garnet surrounding the melt inclusions. Although we observe no garnet zoning in BSE images, patchy high-Ca zoning is apparent on X-ray maps of garnet surrounding the melt inclusions in our samples. Small, euhedral, high-Ca garnets are abundant in melt lenses in the matrix, so crystallization or recrystallization of high-Ca garnet surrounding the melt inclusions is not surprising.
Condensed phase conversion and growth of nanorods and other materials instead of from vapor
Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong
2010-10-19
Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed phase matrix material instead of from vapor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.
Harvesting solar energy by means of charge-separating nanocrystals and their solids.
Diederich, Geoffrey; O'Connor, Timothy; Moroz, Pavel; Kinder, Erich; Kohn, Elena; Perera, Dimuthu; Lorek, Ryan; Lambright, Scott; Imboden, Martene; Zamkov, Mikhail
2012-08-23
Conjoining different semiconductor materials in a single nano-composite provides synthetic means for the development of novel optoelectronic materials offering a superior control over the spatial distribution of charge carriers across material interfaces. As this study demonstrates, a combination of donor-acceptor nanocrystal (NC) domains in a single nanoparticle can lead to the realization of efficient photocatalytic materials, while a layered assembly of donor- and acceptor-like nanocrystals films gives rise to photovoltaic materials. Initially the paper focuses on the synthesis of composite inorganic nanocrystals, comprising linearly stacked ZnSe, CdS, and Pt domains, which jointly promote photoinduced charge separation. These structures are used in aqueous solutions for the photocatalysis of water under solar radiation, resulting in the production of H2 gas. To enhance the photoinduced separation of charges, a nanorod morphology with a linear gradient originating from an intrinsic electric field is used. The inter-domain energetics are then optimized to drive photogenerated electrons toward the Pt catalytic site while expelling the holes to the surface of ZnSe domains for sacrificial regeneration (via methanol). Here we show that the only efficient way to produce hydrogen is to use electron-donating ligands to passivate the surface states by tuning the energy level alignment at the semiconductor-ligand interface. Stable and efficient reduction of water is allowed by these ligands due to the fact that they fill vacancies in the valence band of the semiconductor domain, preventing energetic holes from degrading it. Specifically, we show that the energy of the hole is transferred to the ligand moiety, leaving the semiconductor domain functional. This enables us to return the entire nanocrystal-ligand system to a functional state, when the ligands are degraded, by simply adding fresh ligands to the system. To promote a photovoltaic charge separation, we use a composite two-layer solid of PbS and TiO2 films. In this configuration, photoinduced electrons are injected into TiO2 and are subsequently picked up by an FTO electrode, while holes are channeled to a Au electrode via PbS layer. To develop the latter we introduce a Semiconductor Matrix Encapsulated Nanocrystal Arrays (SMENA) strategy, which allows bonding PbS NCs into the surrounding matrix of CdS semiconductor. As a result, fabricated solids exhibit excellent thermal stability, attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces, and show compelling light-harvesting performance in prototype solar cells.
Shih, Wenting; Yamada, Soichiro
2011-12-22
Traditionally, cell migration has been studied on two-dimensional, stiff plastic surfaces. However, during important biological processes such as wound healing, tissue regeneration, and cancer metastasis, cells must navigate through complex, three-dimensional extracellular tissue. To better understand the mechanisms behind these biological processes, it is important to examine the roles of the proteins responsible for driving cell migration. Here, we outline a protocol to study the mechanisms of cell migration using the epithelial cell line (MDCK), and a three-dimensional, fibrous, self-polymerizing matrix as a model system. This optically clear extracellular matrix is easily amenable to live-cell imaging studies and better mimics the physiological, soft tissue environment. This report demonstrates a technique for directly visualizing protein localization and dynamics, and deformation of the surrounding three-dimensional matrix. Examination of protein localization and dynamics during cellular processes provides key insight into protein functions. Genetically encoded fluorescent tags provide a unique method for observing protein localization and dynamics. Using this technique, we can analyze the subcellular accumulation of key, force-generating cytoskeletal components in real-time as the cell maneuvers through the matrix. In addition, using multiple fluorescent tags with different wavelengths, we can examine the localization of multiple proteins simultaneously, thus allowing us to test, for example, whether different proteins have similar or divergent roles. Furthermore, the dynamics of fluorescently tagged proteins can be quantified using Fluorescent Recovery After Photobleaching (FRAP) analysis. This measurement assays the protein mobility and how stably bound the proteins are to the cytoskeletal network. By combining live-cell imaging with the treatment of protein function inhibitors, we can examine in real-time the changes in the distribution of proteins and morphology of migrating cells. Furthermore, we also combine live-cell imaging with the use of fluorescent tracer particles embedded within the matrix to visualize the matrix deformation during cell migration. Thus, we can visualize how a migrating cell distributes force-generating proteins, and where the traction forces are exerted to the surrounding matrix. Through these techniques, we can gain valuable insight into the roles of specific proteins and their contributions to the mechanisms of cell migration.
Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers
NASA Technical Reports Server (NTRS)
DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)
2008-01-01
A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.
Comparison Of Models Of Metal-Matrix Composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.; Johnson, W. S.; Naik, R. A.
1994-01-01
Report presents comparative review of four mathematical models of micromechanical behaviors of fiber/metal-matrix composite materials. Models differ in various details, all based on properties of fiber and matrix constituent materials, all involve square arrays of fibers continuous and parallel and all assume complete bonding between constituents. Computer programs implementing models used to predict properties and stress-vs.-strain behaviors of unidirectional- and cross-ply laminated composites made of boron fibers in aluminum matrices and silicon carbide fibers in titanium matrices. Stresses in fiber and matrix constituent materials also predicted.
ERIC Educational Resources Information Center
Jacobs, James A.
1994-01-01
This learning module on composites such as polymer matrix, metal matrix, ceramic matrix, particulate, and laminar includes a design brief giving context, objectives, evaluation, student outcomes, and quiz. (SK)
2013-08-01
remediation, ISCO, permanganate , persistence, DNAPL 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF...focus on the lower-K zone 2 and surrounding higher-K matrix sand during the constant permanganate injection………………………… 45 Figure 5.1.3-3...Photographic image of the lower-K zone 2 and surrounding area after permanganate injection, exhibiting the shadow zone downgradient of the lower-K zone
Wang, Xi; Wang, Kai; Zhang, Wei; Qiang, Ming; Luo, Ying
2017-09-01
Ectopic transplantation of islets provides a beta cell-replacement approach that may allow the recovery of physiological regulation of the blood sugar level in patients with Type I diabetes (T1D). In development of new extrahepatic islet transplantation protocols in support of the islet engraftment, it is pivotal to develop scaffold materials with multifaceted functions to provide beneficial microenvironment, mediate host response in favor of vascularization/islet integration and maintain long-term islet function at the transplantation site. In this study, a new composite bilaminar decellularized scaffold (CDS) was fabricated with differential structural, degradation and mechanical properties by the combination of a fast-degrading porous collagen matrix and a mechanically supportive porcine pericardium. When investigated in the epididymal fat pad in syngeneic mouse models, it was shown that CDS could serve as superior scaffolds to promote islet adhesion and viability, and islet-CDS constructs also allowed rapid reversal of the hyperglycemic condition in the host. The engraftment and effects of islets were achieved at low islet numbers, accompanied by minimal adverse tissue reactions and optimal islet integration with the surrounding fat tissue. The bioactive surface, mechanical/chemical durability and biocompatibility of the CDS may all have played important roles in facilitating the engraftment of islets. Our study provided new insights into scaffold's function in the interplay of cells, materials and host tissue and the extracellular matrix-based scaffolds have potential for clinical translation in the beta cell-replacement therapy to treat T1D. Copyright © 2017 Elsevier Ltd. All rights reserved.
Problem-Solving Test: Submitochondrial Localization of Proteins
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2011-01-01
Mitochondria are surrounded by two membranes (outer and inner mitochondrial membrane) that separate two mitochondrial compartments (intermembrane space and matrix). Hundreds of proteins are distributed among these submitochondrial components. A simple biochemical/immunological procedure is described in this test to determine the localization of…
Mueller matrix imaging polarimetry in dermatology
NASA Astrophysics Data System (ADS)
Smith, Matthew H.; Burke, Paul D.; Lompado, Arthur; Tanner, Elizabeth A.; Hillman, Lloyd W.
2000-05-01
Recent studies have indicated that polarized light may be useful in the discrimination between benign and malignant moles. In fact, imaging polarimetry could provide noninvasive diagnosis of a range of dermatological disease states. However, in order to design an efficacious sensor for clinical use, the complete polarization-altering properties of a particular disease must be well understood. We present Mueller matrix imaging polarimetry as a technique for characterizing various dermatological diseases. Preliminary Mueller matrix imagery at 633 nm suggests that both malignant moles and lupus lesions may be identified through polarimetric measurements. Malignant moles are found to be less depolarizing than the surrounding tissue, and lupus lesions are found to have rapidly varying retardance orientation.
NASA Technical Reports Server (NTRS)
Melis, M. E.
1994-01-01
A significant percentage of time spent in a typical finite element analysis is taken up in the modeling and assignment of loads and constraints. This process not only requires the analyst to be well-versed in the art of finite element modeling, but also demands familiarity with some sort of preprocessing software in order to complete the task expediently. COMGEN (COmposite Model GENerator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or "session files" to be submitted to the finite element pre- and post-processor program, PATRAN. (PDA Engineering, Costa Mesa, CA.) In modeling a composite material, COMGEN assumes that its constituents can be represented by a "unit cell" of a fiber surrounded by matrix material. Two basic cell types are available. The first is a square packing arrangement where the fiber is positioned in the center of a square matrix cell. The second type, hexagonal packing, has the fiber centered in a hexagonal matrix cell. Different models can be created using combinations of square and hexagonal packing schemes. Variations include two- and three- dimensional cases, models with a fiber-matrix interface, and different constructions of unit cells. User inputs include fiber diameter and percent fiber-volume of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned to the models within COMGEN. The PATRAN program then uses a COMGEN session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC. COMGEN is written in FORTRAN 77 and has been implemented on DEC VAX series computers under VMS and SGI IRIS series workstations under IRIX. If the user has the PATRAN package available, the output can be graphically displayed. Without PATRAN, the output is tabular. The VAX VMS version is available on a 5.25 inch 360K MS-DOS format diskette (standard distribution media) or a 9-track 1600 BPI DEC VAX FILES-11 format magnetic tape, and it requires about 124K of main memory. The standard distribution media for the IRIS version is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The memory requirement for the IRIS version is 627K. COMGEN was developed in 1990. DEC, VAX and VMS are trademarks of Digital Equipment Corporation. PATRAN is a registered trademark of PDA Engineering. SGI IRIS and IRIX are trademarks of Silicon Graphics, Inc. MS-DOS is a registered trademark of Microsoft Corporation. UNIX is a registered trademark of AT&T.
NASA Astrophysics Data System (ADS)
Ronald, Terence M. F.
1991-12-01
Structural materials for the NASP X-30 experimental vehicle are briefly reviewed including titanium alloys, titanium-based metal-matrix composites, carbon-carbon composites, ceramic-matrix composites, and copper-matrix composites. Areas of application of these materials include the airframe where these materials would be used as lightweight skin panels for honeycomb-core, truss-core, or integrally stiffened thin sheet configuration; and the engine, where they would be used in the hot gas path of the ramjet/scramjet, and in the inlet and nozzle areas.
NASA Astrophysics Data System (ADS)
Liu, Pingwei; Jin, Zhong; Katsukis, Georgios; Drahushuk, Lee William; Shimizu, Steven; Shih, Chih-Jen; Wetzel, Eric D.; Taggart-Scarff, Joshua K.; Qing, Bo; Van Vliet, Krystyn J.; Li, Richard; Wardle, Brian L.; Strano, Michael S.
2016-07-01
Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction.
Liu, Pingwei; Jin, Zhong; Katsukis, Georgios; Drahushuk, Lee William; Shimizu, Steven; Shih, Chih-Jen; Wetzel, Eric D; Taggart-Scarff, Joshua K; Qing, Bo; Van Vliet, Krystyn J; Li, Richard; Wardle, Brian L; Strano, Michael S
2016-07-22
Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction. Copyright © 2016, American Association for the Advancement of Science.
Dynamics of superconducting qubits in open transmission lines
NASA Astrophysics Data System (ADS)
Juan Jose, Garcia-Ripoll; Zueco, David; Porras, Diego; Peropadre, Borja
2014-03-01
The time and space resolved dynamics of a superconducting qubit with an Ohmic coupling to propagating 1D photons is studied, from weak coupling to the ultrastrong coupling regime (USC). A nonperturbative study based on Matrix Product States (MPS) shows the following results: (i) The ground state of the combined systems contains excitations of both the qubit and the surrounding bosonic field. (ii) An initially excited qubit equilibrates through spontaneous emission to a state, which under certain conditions, is locally close to that ground state, both in the qubit and the field. (iii) The resonances of the combined qubit-photon system match those of the spontaneous emission process and also the predictions of the adiabatic renormalisation. These results set the foundations for future studies and engineering of the interactions between superconducting qubits and propagating photons, as well as the design of photon-photon interactions based on artificial materials built from these qubits.
NASA Astrophysics Data System (ADS)
Zavala, Mitchel
Metal-matrix composites (MMCs) are engineered combinations of two or more materials. Tailored properties are achieved by systematic combinations of different constituents. Specialized design and synthesis procedures allow unique sets of material properties in composites. Covetics are a new type of metal-matrix nano-composite (MMnC) material. These materials are formed from FCC metals which are super-saturated with up to 10 wt. % of activated nano-carbon powder. The idea is that the nano-carbon particles will enhance the material properties of the base metal matrix, however most of the physical and mechanical properties of covetics have not been well characterized. The foci of this study are to optimize the covetic casting synthesis process under controlled conditions, to understand and analyze the microstructures of the synthesized copper and aluminum covetic, to provide a thorough analysis of the chemical composition of the synthesized covetic materials, and to characterize physical and mechanical properties of both of these materials using meticulously prepared samples and test procedures.
Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method.
Wang, Yifeng; Dong, Meng; Guo, Mengmeng; Wang, Xia; Zhou, Jing; Lei, Jian; Guo, Chuanhang; Qin, Chaoran
2017-08-01
We present a simple and environmentally-friendly method to generate an agar/gelatin bilayer gel matrix for further biomedical applications. In this method, the thermally responsive sol-gel transitions of agar and gelatin combined with the different transition temperatures are exquisitely employed to fabricate the agar/gelatin bilayer gel matrix and achieve separate loading for various materials (e.g., drugs, fluorescent materials, and nanoparticles). Importantly, the resulting bilayer gel matrix provides two different biopolymer environments (a polysaccharide environment vs a protein environment) with a well-defined border, which allows the loaded materials in different layers to retain their original properties (e.g., magnetism and fluorescence) and reduce mutual interference. In addition, the loaded materials in the bilayer gel matrix exhibit an interesting release behavior under the control of thermal stimuli. Consequently, the resulting agar/gelatin bilayer gel matrix is a promising candidate for biomedical applications in drug delivery, controlled release, fluorescence labeling, and bio-imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials
NASA Technical Reports Server (NTRS)
Jordan, William
1998-01-01
Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).
Ferreira, Rosana Gomes; Monteiro, Mychelle Alves; Pereira, Mararlene Ulberg; da Costa, Rafaela Pinto; Spisso, Bernardete Ferraz; Calado, Veronica
2016-08-01
The aim of this work was to study the feasibility of producing an egg matrix candidate reference material for salinomycin. Preservation techniques investigated were freeze-drying and spray drying dehydration. Homogeneity and stability studies of the produced batches were conducted according to ISO Guides 34 and 35. The results showed that all produced batches were homogeneous and both freeze-drying and spray drying techniques were suitable for matrix dehydrating, ensuring the material stability. In order to preserve the material integrity, it must be transported within the temperature range of -20 up to 25°C. The results constitute an important step towards the development of an egg matrix reference material for salinomycin is possible. Copyright © 2016 Elsevier B.V. All rights reserved.
pH regulators in invadosomal functioning: proton delivery for matrix tasting.
Brisson, Lucie; Reshkin, Stephan J; Goré, Jacques; Roger, Sébastien
2012-01-01
Invadosomes are actin-rich finger-like cellular structures sensing and interacting with the surrounding extracellular matrix (ECM) and involved in its proteolytic remodeling. Invadosomes are structures distinct from other adhesion complexes, and have been identified in normal cells that have to cross tissue barriers to fulfill their function such as leukocytes, osteoclasts and endothelial cells. They also represent features of highly aggressive cancer cells, allowing them to escape from the primary tumor, to invade surrounding tissues and to reach systemic circulation. They are localized to the ventral membrane of cells grown under 2-dimensional conditions and are supposed to be present all around cells grown in 3-dimensional matrices. Indeed invadosomes are key structures in physiological processes such as inflammation and the immune response, bone remodeling, tissue repair, but also in pathological conditions such as osteopetrosis and the development of metastases. Invadosomes are subdivided into podosomes, found in normal cells, and into invadopodia specific for cancer cells. While these two structures exhibit differences in organization, size, number and half-life, they share similarities in molecular composition, participation in cell-matrix adhesion and promoting matrix degradation. A key determinant in invadosomal function is the recruitment and release of proteases, such as matrix metalloproteinases (MMPs), serine proteases and cysteine cathepsins, together with their activation in a tightly controlled and highly acidic microenvironment. Therefore numerous pH regulators such as V-ATPases and Na(+)/H(+) exchangers, are found in invadosomes and are directly involved in their constitution as well as their functioning. This review focuses on the participation of pH regulators in invadosome function in physiological and pathological conditions, with a particular emphasis on ECM remodeling by osteoclasts during bone resorption and by cancer cells. Copyright © 2012 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Tao; Peng, Wenhong; Zhu, Shenmin; Zhang, Di
2016-03-01
When the constitutive materials of photonic crystals (PCs) are stimuli-responsive, the resultant PCs exhibit optical properties that can be tuned by the stimuli. This can be exploited for promising applications in colour displays, biological and chemical sensors, inks and paints, and many optically active components. However, the preparation of the required photonic structures is the first issue to be solved. In the past two decades, approaches such as microfabrication and self-assembly have been developed to incorporate stimuli-responsive materials into existing periodic structures for the fabrication of PCs, either as the initial building blocks or as the surrounding matrix. Generally, the materials that respond to thermal, pH, chemical, optical, electrical, or magnetic stimuli are either soft or aggregate, which is why the manufacture of three-dimensional hierarchical photonic structures with responsive properties is a great challenge. Recently, inspired by biological PCs in nature which exhibit both flexible and responsive properties, researchers have developed various methods to synthesize metals and metal oxides with hierarchical structures by using a biological PC as the template. This review will focus on the recent developments in this field. In particular, PCs with biological hierarchical structures that can be tuned by external stimuli have recently been successfully fabricated. These findings offer innovative insights into the design of responsive PCs and should be of great importance for future applications of these materials.
Sherrit, Stewart; Masys, Tony J; Wiederick, Harvey D; Mukherjee, Binu K
2011-09-01
We present a procedure for determining the reduced piezoelectric, dielectric, and elastic coefficients for a C(∞) material, including losses, from a single disk sample. Measurements have been made on a Navy III lead zirconate titanate (PZT) ceramic sample and the reduced matrix of coefficients for this material is presented. In addition, we present the transform equations, in reduced matrix form, to other consistent material constant sets. We discuss the propagation of errors in going from one material data set to another and look at the limitations inherent in direct calculations of other useful coefficients from the data.
Investigation of embedded perovskite nanoparticles for enhanced capacitor permittivities.
Krause, Andreas; Weber, Walter M; Pohl, Darius; Rellinghaus, Bernd; Verheijen, Marcel; Mikolajick, Thomas
2014-11-26
Growth experiments show significant differences in the crystallization of ultrathin CaTiO3 layers on polycrystalline Pt surfaces. While the deposition of ultrathin layers below crystallization temperature inhibits the full layer crystallization, local epitaxial growth of CaTiO3 crystals on top of specific oriented Pt crystals occurs. The result is a formation of crystals embedded in an amorphous matrix. An epitaxial alignment of the cubic CaTiO3 ⟨111⟩ direction on top of the underlying Pt {111} surface has been observed. A reduced forming energy is attributed to an interplay of surface energies at the {111} interface of both materials and CaTiO3 nanocrystallites facets. The preferential texturing of CaTiO3 layers on top of Pt has been used in the preparation of ultrathin metal-insulator-metal capacitors with 5-30 nm oxide thickness. The effective CaTiO3 permittivity in the capacitor stack increases to 55 compared to capacitors with amorphous layers and a permittivity of 28. The isolated CaTiO3 crystals exhibit a passivation of the CaTiO3 grain surfaces by the surrounding amorphous matrix, which keeps the capacitor leakage current at ideally low values comparable for those of amorphous thin film capacitors.
Wang, Xingrun; Zhang, Fengsong; Nong, Zexi
2014-01-01
To investigate the effect of sintering temperature and sintering time on arsenic volatility and arsenic leaching in the sinter, we carried out experimental works and studied the structural changes of mineral phases and microstructure observation of the sinter at different sintering temperatures. Raw materials were shaped under the pressure of 10 MPa and sintered at 1000~1350°C for 45 min with air flow rate of 2000 mL/min. The results showed that different sintering temperatures and different sintering times had little impact on the volatilization of arsenic, and the arsenic fixed rate remained above 90%; however, both factors greatly influenced the leaching concentration of arsenic. Considering the product's environmental safety, the best sintering temperature was 1200°C and the best sintering time was 45 min. When sintering temperature was lower than 1000°C, FeAsS was oxidized into calcium, aluminum, and iron arsenide, mainly Ca3(AsO4)2 and AlAsO4, and the arsenic leaching was high. When it increased to 1200°C, arsenic was surrounded by a glass matrix and became chemically bonded inside the matrix, which lead to significantly lower arsenic leaching. PMID:24723798
Delivery of Prolamins to the Protein Storage Vacuole in Maize Aleurone Cells[W
Reyes, Francisca C.; Chung, Taijoon; Holding, David; Jung, Rudolf; Vierstra, Richard; Otegui, Marisa S.
2011-01-01
Zeins, the prolamin storage proteins found in maize (Zea mays), accumulate in accretions called protein bodies inside the endoplasmic reticulum (ER) of starchy endosperm cells. We found that genes encoding zeins, α-globulin, and legumin-1 are transcribed not only in the starchy endosperm but also in aleurone cells. Unlike the starchy endosperm, aleurone cells accumulate these storage proteins inside protein storage vacuoles (PSVs) instead of the ER. Aleurone PSVs contain zein-rich protein inclusions, a matrix, and a large system of intravacuolar membranes. After being assembled in the ER, zeins are delivered to the aleurone PSVs in atypical prevacuolar compartments that seem to arise at least partially by autophagy and consist of multilayered membranes and engulfed cytoplasmic material. The zein-containing prevacuolar compartments are neither surrounded by a double membrane nor decorated by AUTOPHAGY RELATED8 protein, suggesting that they are not typical autophagosomes. The PSV matrix contains glycoproteins that are trafficked through a Golgi-multivesicular body (MVB) pathway. MVBs likely fuse with the multilayered, autophagic compartments before merging with the PSV. The presence of similar PSVs also containing prolamins and large systems of intravacuolar membranes in wheat (Triticum aestivum) and barley (Hordeum vulgare) starchy endosperm suggests that this trafficking mechanism may be common among cereals. PMID:21343414
Active formation of `chaos terrain' over shallow subsurface water on Europa
NASA Astrophysics Data System (ADS)
Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.
2011-11-01
Europa, the innermost icy satellite of Jupiter, has a tortured young surface and sustains a liquid water ocean below an ice shell of highly debated thickness. Quasi-circular areas of ice disruption called chaos terrains are unique to Europa, and both their formation and the ice-shell thickness depend on Europa's thermal state. No model so far has been able to explain why features such as Conamara Chaos stand above surrounding terrain and contain matrix domes. Melt-through of a thin (few-kilometre) shell is thermodynamically improbable and cannot raise the ice. The buoyancy of material rising as either plumes of warm, pure ice called diapirs or convective cells in a thick (>10 kilometres) shell is insufficient to produce the observed chaos heights, and no single plume can create matrix domes. Here we report an analysis of archival data from Europa, guided by processes observed within Earth's subglacial volcanoes and ice shelves. The data suggest that chaos terrains form above liquid water lenses perched within the ice shell as shallow as 3kilometres. Our results suggest that ice-water interactions and freeze-out give rise to the diverse morphologies and topography of chaos terrains. The sunken topography of Thera Macula indicates that Europa is actively resurfacing over a lens comparable in volume to the Great Lakes in North America.
Engineered Nanomaterials for Energy Harvesting and Storage Applications
NASA Astrophysics Data System (ADS)
Gullapalli, Hemtej
Energy harvesting and storage are independent mechanisms, each having their own significance in the energy cycle. Energy is generally harvested from temperature variations, mechanical vibrations and other phenomena which are inherently sporadic in nature, harvested energy stands a better chance of efficient utilization if it can be stored and used later, depending on the demand. In essence a comprehensive device that can harness power from surrounding environment and provide a steady and reliable source of energy would be ideal. Towards realizing such a system, for the harvesting component, a piezoelectric nano-composite material consisting of ZnO nanostructures embedded into the matrix of 'Paper' has been developed. Providing a flexible backbone to a brittle material makes it a robust architecture. Energy harvesting by scavenging both mechanical and thermal fluctuations using this flexible nano-composite is discussed in this thesis. On the energy storage front, Graphene based materials developed with a focus towards realizing ultra-thin lithium ion batteries and supercapacitors are introduced. Efforts for enhancing the energy storage performance of such graphitic carbon are detailed. Increasing the rate capability by direct CVD synthesis of graphene on current collectors, enhancing its electrochemical capacity through doping and engineering 3D metallic structures to increase the areal energy density have been studied.
NASA Astrophysics Data System (ADS)
Olszta, Matthew J.; Schreiber, Daniel K.; Thomas, Larry E.; Bruemmer, Stephen M.
Analytical electron microscopy and three-dimensional atom probe tomography (ATP) examinations of surface and near-surface oxidation have been performed on Ni-30%Cr alloy 690 materials after exposure to high-temperature, simulated PWR primary water. The oxidation nanostructures have been characterized at crack walls after stress-corrosion crack growth tests and at polished surfaces of unstressed specimens for the same alloys. Localized oxidation was discovered for both crack walls and surfaces as continuous filaments (typically <10 nm in diameter) extending from the water interface into the alloy 690 matrix reaching depths of 500 nm. These filaments consisted of discrete, plate-shaped Cr2O3 particles surrounded by a distribution of nanocrystalline, rock-salt (Ni-Cr-Fe) oxide. The oxide-containing filament depth was found to increase with exposure time and, at longer times, the filaments became very dense at the surface leaving only isolated islands of metal. Individual dislocations were oxidized in non-deformed materials, while the oxidation path appeared to be along more complex dislocation substructures in heavily deformed materials. This paper will highlight the use of high resolution scanning and transmission electron microscopy in combination with APT to better elucidate the microstructure and microchemistry of the filamentary oxidation.
NASA Astrophysics Data System (ADS)
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.; Duan, Yunda
2016-09-01
An exact analytical solution is presented for the effective dynamic transverse shear modulus in a heterogeneous fluid-filled porous solid containing cylindrical inclusions. The complex and frequency-dependent properties of the dynamic shear modulus are caused by the physical mechanism of mesoscopic-scale wave-induced fluid flow whose scale is smaller than wavelength but larger than the size of pores. Our model consists of three phases: a long cylindrical inclusion, a cylindrical shell of poroelastic matrix material with different mechanical and/or hydraulic properties than the inclusion and an outer region of effective homogeneous medium of laterally infinite extent. The behavior of both the inclusion and the matrix is described by Biot's consolidation equations, whereas the surrounding effective medium which is used to describe the effective transverse shear properties of the inner poroelastic composite is assumed to be a viscoelastic solid whose complex transverse shear modulus needs to be determined. The determined effective transverse shear modulus is used to quantify the S-wave attenuation and velocity dispersion in heterogeneous fluid-filled poroelastic rocks. The calculation shows the relaxation frequency and relative position of various fluid saturation dispersion curves predicted by this study exhibit very good agreement with those of a previous 2-D finite-element simulation. For the double-porosity model (inclusions having a different solid frame than the matrix but the same pore fluid as the matrix) the effective shear modulus also exhibits a size-dependent characteristic that the relaxation frequency moves to lower frequencies by two orders of magnitude if the radius of the cylindrical poroelastic composite increases by one order of magnitude. For the patchy-saturation model (inclusions having the same solid frame as the matrix but with a different pore fluid from the matrix), the heterogeneity in pore fluid cannot cause any attenuation in the transverse shear modulus at all. A comparison with the case of spherical inclusions illustrates that the transverse shear modulus for the cylindrical inclusion exhibits more S-wave attenuation than spherical inclusions.
Improving Thermomechanical Properties of SiC/SiC Composites
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; Bhatt, Ramakrishna T.
2006-01-01
Today, a major thrust toward improving the thermomechanical properties of engine components lies in the development of fiber-reinforced silicon carbide matrix composite materials, including SiC-fiber/SiC-matrix composites. These materials are lighter in weight and capable of withstanding higher temperatures, relative to state-of-the-art metallic alloys and oxide-matrix composites for which maximum use temperatures are in the vicinity of 1,100 C. In addition, the toughness or damage tolerance of the SiC-matrix composites is significantly greater than that of unreinforced silicon-based monolithic ceramics. For successful application in advanced engine systems, the SiC-matrix composites should be able to withstand component service stresses and temperatures for the desired component lifetimes. Inasmuch as the high-temperature structural lives of ceramic materials are typically limited by creep-induced growth of flaws, a key property required of such composite materials is high resistance to creep under conditions of use. Also, the thermal conductivity of the materials should be as high as possible so as to minimize component thermal gradients and thermal stresses. A state-of-the-art SiC-matrix composite is typically fabricated in a three-step process: (1) fabrication of a component-shaped architectural preform reinforced by thermally stable high-performance fibers, (2) chemical-vapor infiltration (CVI) of a fiber-coating material such as boron nitride (BN) into the preform, and (3) infiltration of an SiC-based matrix into the remaining porosity in the preform. Generally, the matrices of the highest-performing composites are fabricated by initial use of a CVI SiC matrix component that is typically more thermally stable and denser than matrix components formed by processes other than CVI. As such, the initial SiC matrix component made by CVI provides better environmental protection to the coated fibers embedded within it. Also, the denser CVI SiC imparts to the composite better resistance to propagation of cracks, enhanced thermal conductivity, and higher creep resistance.
A wrinkle in flight: the role of elastin fibres in the mechanical behaviour of bat wing membranes
Cheney, Jorn A.; Konow, Nicolai; Bearnot, Andrew; Swartz, Sharon M.
2015-01-01
Bats fly using a thin wing membrane composed of compliant, anisotropic skin. Wing membrane skin deforms dramatically as bats fly, and its three-dimensional configurations depend, in large part, on the mechanical behaviour of the tissue. Large, macroscopic elastin fibres are an unusual mechanical element found in the skin of bat wings. We characterize the fibre orientation and demonstrate that elastin fibres are responsible for the distinctive wrinkles in the surrounding membrane matrix. Uniaxial mechanical testing of the wing membrane, both parallel and perpendicular to elastin fibres, is used to distinguish the contribution of elastin and the surrounding matrix to the overall membrane mechanical behaviour. We find that the matrix is isotropic within the plane of the membrane and responsible for bearing load at high stress; elastin fibres are responsible for membrane anisotropy and only contribute substantially to load bearing at very low stress. The architecture of elastin fibres provides the extreme extensibility and self-folding/self-packing of the wing membrane skin. We relate these findings to flight with membrane wings and discuss the aeromechanical significance of elastin fibre pre-stress, membrane excess length, and how these parameters may aid bats in resisting gusts and preventing membrane flutter. PMID:25833238
A wrinkle in flight: the role of elastin fibres in the mechanical behaviour of bat wing membranes.
Cheney, Jorn A; Konow, Nicolai; Bearnot, Andrew; Swartz, Sharon M
2015-05-06
Bats fly using a thin wing membrane composed of compliant, anisotropic skin. Wing membrane skin deforms dramatically as bats fly, and its three-dimensional configurations depend, in large part, on the mechanical behaviour of the tissue. Large, macroscopic elastin fibres are an unusual mechanical element found in the skin of bat wings. We characterize the fibre orientation and demonstrate that elastin fibres are responsible for the distinctive wrinkles in the surrounding membrane matrix. Uniaxial mechanical testing of the wing membrane, both parallel and perpendicular to elastin fibres, is used to distinguish the contribution of elastin and the surrounding matrix to the overall membrane mechanical behaviour. We find that the matrix is isotropic within the plane of the membrane and responsible for bearing load at high stress; elastin fibres are responsible for membrane anisotropy and only contribute substantially to load bearing at very low stress. The architecture of elastin fibres provides the extreme extensibility and self-folding/self-packing of the wing membrane skin. We relate these findings to flight with membrane wings and discuss the aeromechanical significance of elastin fibre pre-stress, membrane excess length, and how these parameters may aid bats in resisting gusts and preventing membrane flutter. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Chen, Guobao; Lv, Yonggang; Guo, Pan; Lin, Chongwen; Zhang, Xiaomei; Yang, Li; Xu, Zhiling
2013-07-01
Stem cells have the ability to self-renew and to differentiate into multiple mature cell types during early life and growth. Stem cells adhesion, proliferation, migration and differentiation are affected by biochemical, mechanical and physical surface properties of the surrounding matrix in which stem cells reside and stem cells can sensitively feel and respond to the microenvironment of this matrix. More and more researches have proven that three dimensional (3D) culture can reduce the gap between cell culture and physiological environment where cells always live in vivo. This review summarized recent findings on the studies of matrix mechanics that control stem cells (primarily mesenchymal stem cells (MSCs)) fate in 3D environment, including matrix stiffness and extracellular matrix (ECM) stiffness. Considering the exchange of oxygen and nutrients in 3D culture, the effect of fluid shear stress (FSS) on fate decision of stem cells was also discussed in detail. Further, the difference of MSCs response to matrix stiffness between two dimensional (2D) and 3D conditions was compared. Finally, the mechanism of mechanotransduction of stem cells activated by matrix mechanics and FSS in 3D culture was briefly pointed out.
Pan, Yanhong; Zheng, Wenxia; Moyer, Alison E; O'Connor, Jingmai K; Wang, Min; Zheng, Xiaoting; Wang, Xiaoli; Schroeter, Elena R; Zhou, Zhonghe; Schweitzer, Mary H
2016-12-06
Microbodies associated with feathers of both nonavian dinosaurs and early birds were first identified as bacteria but have been reinterpreted as melanosomes. Whereas melanosomes in modern feathers are always surrounded by and embedded in keratin, melanosomes embedded in keratin in fossils has not been demonstrated. Here we provide multiple independent molecular analyses of both microbodies and the associated matrix recovered from feathers of a new specimen of the basal bird Eoconfuciusornis from the Early Cretaceous Jehol Biota of China. Our work represents the oldest ultrastructural and immunological recognition of avian beta-keratin from an Early Cretaceous (∼130-Ma) bird. We apply immunogold to identify protein epitopes at high resolution, by localizing antibody-antigen complexes to specific fossil ultrastructures. Retention of original keratinous proteins in the matrix surrounding electron-opaque microbodies supports their assignment as melanosomes and adds to the criteria employable to distinguish melanosomes from microbial bodies. Our work sheds new light on molecular preservation within normally labile tissues preserved in fossils.
Pan, Yanhong; Zheng, Wenxia; Moyer, Alison E.; O’Connor, Jingmai K.; Zheng, Xiaoting; Wang, Xiaoli; Schroeter, Elena R.; Zhou, Zhonghe; Schweitzer, Mary H.
2016-01-01
Microbodies associated with feathers of both nonavian dinosaurs and early birds were first identified as bacteria but have been reinterpreted as melanosomes. Whereas melanosomes in modern feathers are always surrounded by and embedded in keratin, melanosomes embedded in keratin in fossils has not been demonstrated. Here we provide multiple independent molecular analyses of both microbodies and the associated matrix recovered from feathers of a new specimen of the basal bird Eoconfuciusornis from the Early Cretaceous Jehol Biota of China. Our work represents the oldest ultrastructural and immunological recognition of avian beta-keratin from an Early Cretaceous (∼130-Ma) bird. We apply immunogold to identify protein epitopes at high resolution, by localizing antibody–antigen complexes to specific fossil ultrastructures. Retention of original keratinous proteins in the matrix surrounding electron-opaque microbodies supports their assignment as melanosomes and adds to the criteria employable to distinguish melanosomes from microbial bodies. Our work sheds new light on molecular preservation within normally labile tissues preserved in fossils. PMID:27872291
Plastic scintillator with effective pulse shape discrimination for neutron and gamma detection
Zaitseva, Natalia P.; Carman, M Leslie; Cherepy, Nerine; Glenn, Andrew M.; Hamel, Sebastien; Payne, Stephen A.; Rupert, Benjamin L.
2016-04-12
In one embodiment, a scintillator material includes a polymer matrix; and a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 5 wt % or more; wherein the scintillator material exhibits an optical response signature for neutrons that is different than an optical response signature for gamma rays. In another embodiment, a scintillator material includes a polymer matrix; and a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount greater than 10 wt %.
NASA Astrophysics Data System (ADS)
Gardner, Robyn; Piazolo, Sandra; Daczko, Nathan
2015-04-01
Pinch and swell structures occur from microscopic to landscape scales where a more competent layer in a weaker matrix is deformed by pure shear, often in rifting environments. The Anita Shear Zone (ASZ) in Fiordland, New Zealand has an example of landscape scale (1 km width) asymmetric pinch and swell structures developed in ultramafic rocks. Field work suggests that the asymmetry is a result of variations in the surrounding 'matrix' flow properties as the ultramafic band is surrounded to the east by an orthogneiss (Milford Orthogneiss) and to the west by a paragneiss (Thurso Paragneiss). In addition, there is a narrow and a much wider shear zone between the ultramafics and the orthogneiss and paragneiss, respectively. Detailed EBSD analysis of samples from a traverse across the pinch and swell structure indicate the ultramafics in the shear zone on the orthogneiss side have larger grain size than the ultramafics in the shear zone on the paragneiss side. Ultramafic samples from the highly strained paragneiss and orthogneiss shear zones show dislocation creep behaviour, and, on the paragneiss side, also significant deformation by grain boundary sliding. To test if asymmetry of pinch and swell structures can be used to derive the rheological properties of not only the pinch and swell lithologies, but also of the matrix, numerical simulations were performed. Numerical modelling of pure shear (extension) was undertaken with (I) initially three layers and then (II) five layers by adding soft high strain zones on both sides of the rheological hard layer. The matrix was given first symmetric, then asymmetric viscosity. Matrix viscosity was found to impact the formation of pinch and swell structures with the weaker layer causing increased tortuosity of the competent layer edge due to increased local differential stress. Results highlight that local, rheologically soft layers and the relative viscosity of matrix both impact significantly the shape and symmetry of developing pinch and swell structures.
Acoustic emission as a screening tool for ceramic matrix composites
NASA Astrophysics Data System (ADS)
Ojard, Greg; Goberman, Dan; Holowczak, John
2017-02-01
Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.
Perovic, Sava V; Sansalone, Salvatore; Djinovic, Rados; Ferlosio, Amedeo; Vespasiani, Giuseppe; Orlandi, Augusto
2010-09-01
Autologous tissue engineering with biodegradable scaffolds is a new treatment option for real penile girth enhancement. The aim of this article is to evaluate tissue remodeling after penile girth enhancement using this technique. Between June 2005 and May 2007, a group of 12 patients underwent repeated penile widening using biodegradable scaffolds enriched with expanded autologous scrotal dartos cells. Clinical monitoring was parallel to histological investigation of tissue remodeling. During second surgical procedure, biopsies were obtained 10-14 months after first surgery (mean 12 months, N=6) and compared with those obtained after 22-24 months (mean 23 months, N=6), and control biopsies from patients who underwent circumcision (N=5). Blind evaluation of histomorphometrical and immunohistochemical finding was performed in paraffin sections. Penile girth gain in a flaccid state ranged between 1.5 and 3.8 cm (mean 2.1 ± 0.28 cm) and in full erection between 1.2 and 4 cm (mean 1.9 ± 0.28 cm). Patients' satisfaction, defined by a questionnaire, was good (25%) and very good (75%). In biopsies obtained 10-14 months after first surgery, highly vascularized loose tissue with collagen deposition associated with small foci of mild chronic and granulomatous inflammation surrounding residual amorphous material was observed. Fibroblast-like hyperplasia and small vessel neoangiogenesis occurred intimately associated with the progressive growth of vascular-like structures from accumulation of CD34 and alpha-smooth muscle actin-positive cells surrounding residual scaffold-like amorphous material. Capillary neoangiogenesis occurred inside residual amorphous material. In biopsies obtained after 22-24 months, inflammation almost disappeared and tissue closely resembled that of the dartos fascia of control group. Autologous tissue engineering using expanded scrotal dartos cells with biodegradable scaffolds is a new and promising method for penile widening that generates progressive accumulation of stable collagen-rich, highly vascularized tissue matrix that closely resemble deep dartos fascia. © 2009 International Society for Sexual Medicine.
NASA Technical Reports Server (NTRS)
Welhart, E. K.
1976-01-01
This design note presents typical mechanical properties tabulated from industrial and governmental agencies' test programs. All data are correlated to specific products and all of the best known products are presented. The data include six epoxies, eight polyimides and one polyquinoxaline matrix material. Bron and graphite are the fiber reinforcements. Included are forty-two summaries of advanced (resin matrix) composite programs in existence in the United States. It is concluded that the selection of appropriate matrices, the geometric manner in which the fibers are incorporated in the matrix and the durability of the bond between fiber and matrix establish the end properties of the composite material and the performance of the fabricated structure.
Condensed phase conversion and growth of nanorods instead of from vapor
Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong
2005-08-02
Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed chase matrix material instead of from vacor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.
Microstructure, Friction and Wear of Aluminum Matrix Composites
NASA Astrophysics Data System (ADS)
Florea, R. M.
2018-06-01
MMCs are made by dispersing a reinforcing material into a metal matrix. They are prepared by casting, although several technical challenges exist with casting technology. Achieving a homogeneous distribution of reinforcement within the matrix is one such challenge, and this affects directly on the properties and quality of composite. The aluminum alloy composite materials consist of high strength, high stiffness, more thermal stability, more corrosion and wear resistance, and more fatigue life. Aluminum alloy materials found to be the best alternative with its unique capacity of designing the materials to give required properties. In this work a composite is developed by adding silicon carbide in Aluminum metal matrix by mass ratio 5%, 10% and 15%. Mechanical tests such as hardness test and microstructure test are conducted.
NASA Glenn Research Center UEET (Ultra-Efficient Engine Technology) Program: Agenda and Abstracts
NASA Technical Reports Server (NTRS)
Manthey, Lri
2001-01-01
Topics discussed include: UEET Overview; Technology Benefits; Emissions Overview; P&W Low Emissions Combustor Development; GE Low Emissions Combustor Development; Rolls-Royce Low Emissions Combustor Development; Honeywell Low Emissions Combustor Development; NASA Multipoint LDI Development; Stanford Activities In Concepts for Advanced Gas Turbine Combustors; Large Eddy Simulation (LES) of Gas Turbine Combustion; NASA National Combustion Code Simulations; Materials Overview; Thermal Barrier Coatings for Airfoil Applications; Disk Alloy Development; Turbine Blade Alloy; Ceramic Matrix Composite (CMC) Materials Development; Ceramic Matrix Composite (CMC) Materials Characterization; Environmental Barrier Coatings (EBC) for Ceramic Matrix Composite (CMC) Materials; Ceramic Matrix Composite Vane Rig Testing and Design; Ultra-High Temperature Ceramic (UHTC) Development; Lightweight Structures; NPARC Alliance; Technology Transfer and Commercialization; and Turbomachinery Overview; etc.
Electrolyte matrix for molten carbonate fuel cells
Huang, C.M.; Yuh, C.Y.
1999-02-09
A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.
Electrolyte matrix for molten carbonate fuel cells
Huang, Chao M.; Yuh, Chao-Yi
1999-01-01
A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.
Effects of Control Mode and R-Ratio on the Fatigue Behavior of a Metal Matrix Composite
NASA Technical Reports Server (NTRS)
2005-01-01
Composite Because of their high specific stiffness and strength at elevated temperatures, continuously reinforced metal matrix composites (MMC's) are under consideration for a future generation of aeropropulsion systems. Since components in aeropropulsion systems experience substantial cyclic thermal and mechanical loads, the fatigue behavior of MMC's is of great interest. Almost without exception, previous investigations of the fatigue behavior of MMC's have been conducted in a tension-tension, load-controlled mode. This has been due to the fact that available material is typically less than 2.5-mm thick and, therefore, unable to withstand high compressive loads without buckling. Since one possible use of MMC's is in aircraft skins, this type of testing mode may be appropriate. However, unlike aircraft skins, most engine components are thick. In addition, the transient thermal gradients experienced in an aircraft engine will impose tension-compression loading on engine components, requiring designers to understand how the MMC will behave under fully reversed loading conditions. The increased thickness of the MMC may also affect the fatigue life. Traditionally, low-cycle fatigue (LCF) tests on MMC's have been performed in load control. For monolithic alloys, low-cycle fatigue tests are more typically performed in strain control. Two reasons justify this choice: (1) the critical volume from which cracks initiate and grow is generally small and elastically constrained by the larger surrounding volume of material, and (2) load-controlled, low-cycle fatigue tests of monolithics invariably lead to unconstrained ratcheting and localized necking--an undesired material response because the failure mechanism is far more severe than, and unrelated to, the fatigue mechanism being studied. It is unknown if this is the proper approach to composite testing. However, there is a lack of strain-controlled data on which to base any decisions. Consequently, this study addresses the isothermal, LCF behavior of a [0]_32 MMC tested under strain- and load-controlled conditions for both zero-tension and tension-compression loading conditions. These tests were run at 427 C on thick specimens of SiC-reinforced Ti-15-3. For the fully-reversed tests, no difference was observed in the lives between the load- and strain-controlled tests. However, for the zero-tension tests, the strain-controlled tests had longer lives by a factor of 3 in comparison to the load-controlled tests. This was due to the fact that under strain-control the specimens cyclically softened, reducing the cracking potential. In contrast, the load-controlled tests ratcheted toward larger tensile strains leading to an eventual overload of the fibers. Fatigue tests revealed that specimens tested under fully-reversed conditions had lives approximately an order of magnitude longer than for those specimens tested under zero tension. When examined on a strain-range basis, the fully reversed specimens had similar, but still shorter lives than those of the unreinforced matrix material. However, the composite had a strain limitation at short lives because of the limited strain capacity of the brittle ceramic fiber. The composite also suffered at very high lives because of the lack of an apparent fatigue limit in comparison to the unreinforced matrix. The value of adding fibers to the matrix is apparent when the fatigue lives are plotted as a function of stress range. Here, the composite is far superior to the unreinforced matrix because of the additional load-carrying capacity of the fibers.
The Bioactivity of Cartilage Extracellular Matrix in Articular Cartilage Regeneration
Sutherland, Amanda J.; Converse, Gabriel L.; Hopkins, Richard A.; Detamore, Michael S.
2014-01-01
Cartilage matrix is a particularly promising acellular material for cartilage regeneration given the evidence supporting its chondroinductive character. The ‘raw materials’ of cartilage matrix can serve as building blocks and signals for enhanced tissue regeneration. These matrices can be created by chemical or physical methods: physical methods disrupt cellular membranes and nuclei but may not fully remove all cell components and DNA, whereas chemical methods when combined with physical methods are particularly effective in fully decellularizing such materials. Critical endpoints include no detectable residual DNA or immunogenic antigens. It is important to first delineate between the sources of the cartilage matrix, i.e., derived from matrix produced by cells in vitro or from native tissue, and then to further characterize the cartilage matrix based on the processing method, i.e., decellularization or devitalization. With these distinctions, four types of cartilage matrices exist: decellularized native cartilage (DCC), devitalized native cartilage (DVC), decellularized cell derived matrix (DCCM), and devitalized cell derived matrix (DVCM). Delivery of cartilage matrix may be a straightforward approach without the need for additional cells or growth factors. Without additional biological additives, cartilage matrix may be attractive from a regulatory and commercialization standpoint. Source and delivery method are important considerations for clinical translation. Only one currently marketed cartilage matrix medical device is decellularized, although trends in filed patents suggest additional decellularized products may be available in the future. To choose the most relevant source and processing for cartilage matrix, qualifying testing needs to include targeting the desired application, optimizing delivery of the material, identify relevant FDA regulations, assess availability of raw materials, and immunogenic properties of the product. PMID:25044502
NASA Technical Reports Server (NTRS)
Rietmeijer, F. J. M.
1989-01-01
Olivine-rich chondritic interplanetary dust particles (IDPs) are an important subset of fluffy chondritic IDPs collected in the earth's stratosphere. Particles in this subset are characterized by a matrix of nonporous, ultrafine-grained granular units. Euhedral single crystals, crystals fragments, and platey single crystals occur dispersed in the matrix. Analytical electron microscopy of granular units reveals predominant magnesium-rich olivines and FeNi-sulfides embedded in amorphous carbonaceous matrix material. The variable ratio of ultrafine-grained minerals vs. carbonaceous matrix material in granular units support variable C/Si ratios, and some fraction of sulfur is associated with carbonaceous matrix material. The high Mg/(Mg+Fe) ratios in granular units is similar to this distribution in P/Comet Halley dust. The chondritic composition of fine-grained, polycrystalline IDPs gradually breaks down into nonchondritic, and ultimately, single mineral compositions as a function of decreased particle mass. The relationship between particle mass and composition in the matrix of olivine-rich chondritic IDPs is comparable with the relationship inferred for P/Comet Halley dust.
Genetic Relationships Between Chondrules, Rims and Matrix
NASA Technical Reports Server (NTRS)
Huss, G. R.; Alexander, C. M. OD.; Palme, H.; Bland, P. A.; Wasson, J. T.
2004-01-01
The most primitive chondrites are composed of chondrules and chondrule fragments, various types of inclusions, discrete mineral grains, metal, sulfides, and fine-grained materials that occur as interchondrule matrix and as chondrule/inclusion rims. Understanding how these components are related is essential for understanding how chondrites and their constituents formed and were processed in the solar nebula. For example, were the first generations of chondrules formed by melting of matrix or matrix precursors? Did chondrule formation result in appreciable transfer of chondrule material into the matrix? Here, we consider three types of data: 1) compositional data for bulk chondrites and matrix, 2) mineralogical and textural information, and 3) the abundances and characteristics of presolar materials that reside in the matrix and rims. We use these data to evaluate the roles of evaporation and condensation, chondrule formation, mixing of different nebular components, and secondary processing both in the nebula and on the parent bodies. Our goal is to identify the things that are reasonably well established and to point out the areas that need additional work.
Emerging low-cost LED thermal management materials
NASA Astrophysics Data System (ADS)
Zweben, Carl H.
2004-10-01
As chip size and power levels continue to increase, thermal management, thermal stresses and cost have become key LED packaging issues. Until recently, low-coefficient-of-thermal-expansion (CTE) materials, which are needed to minimize thermal stresses, had thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. Copper, which has a higher thermal conductivity (400 W/m-K), also has a high CTE, which can cause severe thermal stresses. We now have over a dozen low-CTE materials with thermal conductivities ranging between 400 and 1700 W/m-K, and almost a score with thermal conductivities at least 50% greater than that of aluminum. Some of these materials are low cost. Others have the potential to be low cost in high volume production. Emphasizing low cost, this paper reviews traditional packaging materials and the six categories of advanced materials: polymer matrix-, metal matrix-, ceramic matrix-, and carbon matrix composites; monolithic carbonaceous materials; and metal-metal composites/alloys. Topics include properties, status, applications, cost and likely future directions of new advanced materials, including carbon nanotubes and inexpensive graphite nanoplatelets.
Celsian Glass-Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Dicarlo, James A.
1996-01-01
Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.
Parametric Study Of A Ceramic-Fiber/Metal-Matrix Composite
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.
1992-01-01
Report describes computer-model parametric study of effects of degradation of constituent materials upon mechanical properties of ceramic-fiber/metal-matrix composite material. Contributes to understanding of weakening effects of large changes in temperature and mechanical stresses in fabrication and use. Concerned mainly with influences of in situ fiber and matrix properties upon behavior of composite. Particular attention given to influence of in situ matrix strength and influence of interphase degradation.
JTEC panel on display technologies in Japan
NASA Technical Reports Server (NTRS)
Tannas, Lawrence E., Jr.; Glenn, William E.; Credelle, Thomas; Doane, J. William; Firester, Arthur H.; Thompson, Malcolm
1992-01-01
This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work).
Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material
NASA Technical Reports Server (NTRS)
Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)
1994-01-01
A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.
Application of the matrix exponential kernel
NASA Technical Reports Server (NTRS)
Rohach, A. F.
1972-01-01
A point matrix kernel for radiation transport, developed by the transmission matrix method, has been used to develop buildup factors and energy spectra through slab layers of different materials for a point isotropic source. Combinations of lead-water slabs were chosen for examples because of the extreme differences in shielding properties of these two materials.
ECM remodeling and its plasticity
NASA Astrophysics Data System (ADS)
Feng, Jingchen; Jones, Christopher A. R.; Cibula, Matthew; Mao, Xiaoming; Sander, Leonard M.; Levine, Herbert; Sun, Bo
The mechanical interactions between cells and Extracellular Matrix (ECM) are of great importance in many cellular processes. These interactions are reciprocal, i.e. contracting cells pull and reorganize the surrounding matrix, while the remodeled matrix feeds back to regulate cell activities. Recent experiments show in collagen gels with densely distributed cells, aligned fiber bundles are formed in the direction between neighboring cells. Fibers flow into the center region between contracting cell pairs in this process, which causes the concentration of fibers in the fiber bundles to become significantly enhanced. Using an extended lattice-based model, we show that viscoelasticity plays an essential role in ECM remodeling and contributes to the enhanced concentration in fiber bundles. We further characterize ECM plasticity within our model and verify our results with rheometer experiments.
2017-12-04
34High-Concentration III-V Multijunction Solar Cells," 2017, <http://www.nrel.gov/ pv /high-concentration-iii-v-multijunction- solar - cells.html>. O. K...AFRL-RV-PS- AFRL-RV-PS- TR-2017-0174 TR-2017-0174 ELECTRODEPOSITION OF METAL MATRIX COMPOSITES AND MATERIALS CHARACTERIZATION FOR THIN-FILM SOLAR ...0242 Electrodeposition of Metal Matrix Composites and Materials Characterization for Thin-Film Solar Cells 5b. GRANT NUMBER 5c. PROGRAM ELEMENT
Highly defective oxides as sinter resistant thermal barrier coating
Subramanian, Ramesh
2005-08-16
A thermal barrier coating material formed of a highly defective cubic matrix structure having a concentration of a stabilizer sufficiently high that the oxygen vacancies created by the stabilizer interact within the matrix to form multi-vacancies, thereby improving the sintering resistance of the material. The concentration of stabilizer within the cubic matrix structure is greater than that concentration of stabilizer necessary to give the matrix a peak ionic conductivity value. The concentration of stabilizer may be at least 30 wt. %. Embodiments include a cubic matrix of zirconia stabilized by at least 30-50 wt. % yttria, and a cubic matrix of hafnia stabilized by at least 30-50 wt. % gadolinia.
NASA Technical Reports Server (NTRS)
Park, Cheol; Wise, Kristopher E.; Kang, Jin Ho; Kim, Jae-Woo; Sauti, Godfrey; Lowther, Sharon E.; Lillehei, Peter T.; Smith, Michael W.; Siochi, Emilie J.; Harrison, Joycelyn S.;
2008-01-01
Multifunctional structural materials can enable a novel design space for advanced aerospace structures. A promising route to multifunctionality is the use of nanotubes possessing the desired combination of properties to enhance the characteristics of structural polymers. Recent nanotube-polymer nanocomposite studies have revealed that these materials have the potential to provide structural integrity as well as sensing and/or actuation capabilities. Judicious selection or modification of the polymer matrix to promote donor acceptor and/or dispersion interactions can improve adhesion at the interface between the nanotubes and the polymer matrix significantly. The effect of nanotube incorporation on the modulus and toughness of the polymer matrix will be presented. Very small loadings of single wall nanotubes in a polyimide matrix yield an effective sensor material that responds to strain, stress, pressure, and temperature. These materials also exhibit significant actuation in response to applied electric fields. The objective of this work is to demonstrate that physical properties of multifunctional material systems can be tailored for specific applications by controlling nanotube treatment (different types of nanotubes), concentration, and degree of alignment.
Microscopic Scale Simulation of the Ablation of Fibrous Materials
NASA Technical Reports Server (NTRS)
Lachaud, Jean Romain; Mansour, Nagi N.
2010-01-01
Ablation by oxidation of carbon-fiber preforms impregnated in carbonized phenolic matrix is modeled at microscopic scale. Direct numerical simulations show that the carbonized phenolic matrix ablates in volume leaving the carbon fibers exposed. This is due to the fact that the reactivity of carbonized phenolic is higher than the reactivity of carbon fibers. After the matrix is depleted, the fibers ablate showing progressive reduction of their diameter. The overall material recession occurs when the fibers are consumed. Two materials with the same carbon-fiber preform, density and chemical composition, but with different matrix distributions are studied. These studies show that at moderate temperatures (< 1000 K) the microstructure of the material influences its recession rate; a fact that is not captured by current models that are based on chemical composition only. Surprisingly, the response of these impregnated-fiber materials is weakly dependent on the microstructure at very high temperatures (e.g., Stardust peak heating conditions: 3360K).
Scierski, Wojciech; Polok, Aleksandra; Namysłowski, Grzegorz; Nozyński, Jerzy; Turecka, Lucyna; Urbaniec, Natalia; Pamuła, Elzbieta
2009-09-01
The surgical treatment of large cartilage defects in the region of head and neck is often impossible because of the atrophy of surrounding tissues and lack of suitable material for reconstruction. In the surgical treatment many of methods and reconstructive materials have been used. For many years the suitable synthetic material for the cartilage defects reconstruction has been searched for. Was to evaluate two different biomaterials with proper mechanical and biological features for the cartilage replacement. Two type of biomaterials in this study were used: resorbable polymer - poly(L-lactide-co-glycolide) (PLG) acting as a supportive matrix. A thin layer of sodium hyaluronate (Hyal) was also deposited on the surface as well in the pore walls of PLG scaffolds in order to provide biologically active molecules promoting differentiation and regeneration of the tissue. The studies were performed on the 50 animals--rabbits divided into 2 groups. The animals were operated in the general anaesthesia. The incision was done along the edge of the rabbit's auricle. Perichondrium and cartilage of the auricle on the surface 4 x 3 cm were prepared. Subperichondrically 1 x 1 cm fragment of the cartilage was removed by the scissors. This fragment was then replaced by the biomaterials: PLG in first group of 25 rabbits and PLG-Hyal in second group 25 rabbits. The tissues were sutured with polyglycolide Safil 3-0. The animals obtained Enrofloxacin for three days after the operation. Then 1, 4 and 12 weeks after the surgery the animals were painlessly euthanized by an overdose of Morbital. Implants and surrounding tissues were excised and observed macroscopically and using an optical microscope. In all the observation periods we observed proper macroscopic healing process of biomaterials. We didn't stated strong inflammatory process and necrosis around the implanted biomaterials. The histological and macroscopic examinations indicated that both materials developed in this study have properties similar to cartilaginous tissue and seem to be good for her restoration. Although the quickest tissue regeneration was found after implantation of PLG-Hyal.
Extracellular matrix directions estimation of the heart on micro-focus x-ray CT volumes
NASA Astrophysics Data System (ADS)
Oda, Hirohisa; Oda, Masahiro; Kitasaka, Takayuki; Akita, Toshiaki; Mori, Kensaku
2017-03-01
In this paper we propose an estimation method of extracellular matrix directions of the heart. Myofiber are surrounded by the myocardial cell sheets whose directions have strong correspondence between heart failure. Estimation of the myocardial cell sheet directions is difficult since they are very thin. Therefore, we estimate the extracellular matrices which are touching to the sheets as if piled up. First, we perform a segmentation of the extracellular matrices by using the Hessian analysis. Each extracellular matrix region has sheet-like shape. We estimate the direction of each extracellular matrix region by the principal component analysis (PCA). In our experiments, mean inclination angles of two normal canine hearts were 50.6 and 46.2 degrees, while the angle of a failing canine heart was 57.4 degrees. This results well fit the anatomical knowledge that failing hearts tend to have vertical myocardical cell sheets.
Biomineralization of the spicules of sea urchin embryos.
Wilt, Fred H
2002-03-01
The formation of calcareous skeletal elements by various echinoderms, especially sea urchins, offers a splendid opportunity to learn more about some processes involved in the formation of biominerals. The spicules of larvae of euechinoids have been the focus of considerable work, including their developmental origins. The spicules are composed of a single optical crystal of high magnesium calcite and variable amounts of amorphous calcium carbonate. Occluded within the spicule is a proteinaceous matrix, most of which is soluble; this matrix constitutes about 0.1% of the mass. The spicules are also enclosed by an extracellular matrix and are almost completely surrounded by cytoplasmic cords. The spicules are deposited by primary mesenchyme cells (PMCs), which accumulate calcium and secrete calcium carbonate. A number of proteins specific, or highly enriched, in PMCs, have been cloned and studied. Recent work supports the hypothesis that proteins found in the extracellular matrix of the spicule are important for biomineralization.
NASA Astrophysics Data System (ADS)
Latré, S.; Desplentere, F.; De Pooter, S.; Seveno, D.
2017-10-01
Nanoscale materials showing superior thermal properties have raised the interest of the building industry. By adding these materials to conventional construction materials, it is possible to decrease the total thermal conductivity by almost one order of magnitude. This conductivity is mainly influenced by the dispersion quality within the matrix material. At the industrial scale, the main challenge is to control this dispersion to reduce or even eliminate thermal bridges. This allows to reach an industrially relevant process to balance out the high material cost and their superior thermal insulation properties. Therefore, a methodology is required to measure and describe these nanoscale distributions within the inorganic matrix material. These distributions are either random or normally distributed through thickness within the matrix material. We show that the influence of these distributions is meaningful and modifies the thermal conductivity of the building material. Hence, this strategy will generate a thermal model allowing to predict the thermal behavior of the nanoscale particles and their distributions. This thermal model will be validated by the hot wire technique. For the moment, a good correlation is found between the numerical results and experimental data for a randomly distributed form of nanoparticles in all directions.
Effects of Heat Treatment on SiC-SiC Ceramic Matrix Composites
NASA Astrophysics Data System (ADS)
Knauf, Michael W.
Residual stresses resulting from the manufacturing process found within a silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite were thoroughly investigated through the use of high-energy X-ray diffraction and Raman microspectroscopy. The material system studied was a Rolls-Royce composite produced with Hi-Nicalon fibers woven into a five harness satin weave, coated with boron nitride and silicon carbide interphases, and subsequently infiltrated with silicon carbide particles and a silicon matrix. Constituent stress states were measured before, during, and after heat treatments ranging from 900 °C to 1300 °C for varying times between one and sixty minutes. Stress determination methods developed through these analyses can be utilized in the development of ceramic matrix composites and other materials employing boron-doped silicon. X-ray diffraction experiments were performed at the Argonne National Laboratory Advanced Photon Source to investigate the evolution of constituent stresses through heat treatment, and determine how stress states are affected at high temperature through in situ measurements during heat treatments up to 1250 °C for 30 minutes. Silicon carbide particles in the as-received condition exhibited a nearly isotropic stress state with average tensile stresses of approximately 300 MPa. The silicon matrix exhibited a complimentary average compressive stress of approximately 300 MPa. Strong X-ray diffraction evidence is presented demonstrating solid state boron diffusion and increased boron solubility found in silicon throughout heat treatment. While the constituent stress states did evolve through the heat treatment cycles, including approaching nearly stress-free conditions at temperatures close to the manufacturing temperature, no permanent relaxation of stress was observed. Raman spectroscopy was utilized to investigate stresses found within silicon carbide particles embedded within the matrix and the silicon matrix as an alternate method of measurement. The stresses determined through Raman spectroscopy were comparable to those determined through X-ray diffraction. Neither silicon carbide particles nor silicon were significantly affected through heat treatment, corroborating the X-ray diffraction results. Silicon present near fibers exhibited less compressive stress than the majority of silicon found throughout the matrix. Measurements were taken in situ and ex situ to determine the temporal evolution of the stress state at various temperatures. Heat treatments up to 1300 °C for one hour failed to produce significant changes in the residual stress state of the composite constituents. A strong trend was identified in the Raman silicon signal manifesting a continuously decreasing wavenumber with increasing heat treatment temperature between 1100 °C and 1300 °C in timeframes of less than one minute. This was found to be due to a continuously increasing electronic activation of boron within the silicon matrix, stemming from an increase of boron atoms occupying substitutional silicon lattice sites while covalently bonded to surrounding silicon. A methodology to determine the residual stress state of silicon exhibiting varying degrees of boron dopant is proposed by accounting for the changes in the Raman profile parameters. This method also allows for observing activated boron segregation in various matrix areas; wavenumber gradients in these areas exist which have been misconstrued in literature as large variations in stress, while in fact the variability is likely relatively benign.
Discrimination of poorly exposed lithologies in AVIRIS data
NASA Technical Reports Server (NTRS)
Farrand, William H.; Harsanyi, Joseph C.
1993-01-01
One of the advantages afforded by imaging spectrometers such as AVIRIS is the capability to detect target materials at a sub-pixel scale. This paper presents several examples of the identification of poorly exposed geologic materials - materials which are either subpixel in scale or which, while having some surface expression over several pixels, are partially covered by vegetation or other materials. Sabol et al. (1992) noted that a primary factor in the ability to distinguish sub-pixel targets is the spectral contrast between the target and its surroundings. In most cases, this contrast is best expressed as an absorption feature or features present in the target but absent in the surroundings. Under such circumstances, techniques such as band depth mapping (Clark et al., 1992) are feasible. However, the only difference between a target material and its surroundings is often expressed solely in the continuum. We define the 'continuum' as the reflectance or radiance spanning spectral space between spectral features. Differences in continuum slope and shape can only be determined by reduction techniques which considers the entire spectral range; i.e., techniques such as spectral mixture analysis (Adams et al., 1989) and recently developed techniques which utilize an orthogonal subspace projection operator (Harsanyi, 1993). Two of the three examples considered herein deal with cases where the target material differs from its surroundings only by such a subtle continuum change.
NASA Technical Reports Server (NTRS)
Sottos, Nancy R. (Inventor); Keller, Michael W. (Inventor); White, Scott R. (Inventor)
2009-01-01
A composite material includes an elastomer matrix, a set of first capsules containing a polymerizer, and a set of second capsules containing a corresponding activator for the polymerizer. The polymerizer may be a polymerizer for an elastomer. The composite material may be prepared by combining a first set of capsules containing a polymerizer, a second set of capsules containing a corresponding activator for the polymerizer, and a matrix precursor, and then solidifying the matrix precursor to form an elastomeric matrix.
Effect of neutron-irradiation on optical properties of SiO2-Na2O-MgO-Al2O3 glasses
NASA Astrophysics Data System (ADS)
Sandhu, Amanpreet Kaur; Singh, Surinder; Pandey, Om Prakash
2009-07-01
Silica based glasses are used as nuclear shielding materials. The effect of radiation on these glasses varies as per the constituents used in these glasses. Glasses of different composition of SiO2-Na2OMgO-Al2O3 were made by melt casting techniques. These glasses were irradiated with neutrons of different fluences. Optical absorption measurements of neutron-irradiated silica based glasses were performed at room temperature (RT) to detect and characterize the induced radiation damage in these materials. The absorption band found for neutron-irradiated glasses are induced by hole type color centers related to non-bridging oxygen ions (NBO) located in different surroundings of glass matrix. Decrease in the transmittance indicates the formation of color-center defects. Values for band gap energy and the width of the energy tail above the mobility gap have been measured before and after irradiation. The band gap energy has been found to decrease with increasing fluence while the Urbach energy shows an increase. The effects of the composition of the glasses on these parameters have been discussed in detail in this paper.
40Ar/39Ar Ages of Carbonaceous Xenoliths in 2 HED Meteorites
NASA Technical Reports Server (NTRS)
Turrin, B.; Lindsay, F. N.; Park, J.; Herzog, G. F.; Delaney, J. S.; Swisher, C. C., III; Johnson, J.; Zolensky, M.
2016-01-01
The generally young K/Ar and 40Ar/39Ar ages of CM chondrites made us wonder whether carbonaceous xenoliths (CMX) entombed in Howardite–Eucrite–Diogenite (HED) meteorites might retain more radiogenic 40Ar than do ‘free-range’ CM-chondrites. To find out, we selected two HED breccias with carbonaceous inclusions in order to compare the 40Ar/39Ar release patterns and ages of the inclusions with those of nearby HED material. Carbonaceous inclusions (CMXs) in two HED meteorites lost a greater fraction of radiogenic 40Ar than did surrounding host material, but a smaller fraction of it than did free-range CM-chondrites such as Murchison or more heavily altered ones. Importantly, however, the siting of the CMXs in HED matrix did not prevent the 40Ar loss of about 40 percent of the radiogenic 40Ar, even from phases that degas at high laboratory temperatures. We infer that carbonaceous asteroids with perihelia of 1 astronomical unit probably experience losses of at least this size. The usefulness of 40Ar/39Ar dating for samples returned from C-type asteroids may hinge, therefore, on identifying and analyzing separately small quantities of the most retentive phases of carbonaceous chondrites.
Optical fingerprint of non-covalently functionalized transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Feierabend, Maja; Malic, Ermin; Knorr, Andreas; Berghäuser, Gunnar
2017-09-01
Atomically thin transition metal dichalcogenides (TMDs) hold promising potential for applications in optoelectronics. Due to their direct band gap and the extraordinarily strong Coulomb interaction, TMDs exhibit efficient light-matter coupling and tightly bound excitons. Moreover, large spin orbit coupling in combination with circular dichroism allows for spin and valley selective optical excitation. As atomically thin materials, they are very sensitive to changes in the surrounding environment. This motivates a functionalization approach, where external molecules are adsorbed to the materials surface to tailor its optical properties. Here, we apply the density matrix theory to investigate the potential of non-covalently functionalized monolayer TMDs. Considering exemplary molecules with a strong dipole moment, we predict spectral redshifts and the appearance of an additional side peak in the absorption spectrum of functionalized TMDs. We show that the molecular characteristics, e.g. coverage, orientation and dipole moment, crucially influence the optical properties of TMDs, leaving a unique optical fingerprint in the absorption spectrum. Furthermore, we find that the molecular dipole moments open a channel for coherent intervalley coupling between the high-symmetry K and K\\prime points which may create new possibilities for spin-valleytronics application.
Metal Nanoparticle Aerogel Composites
NASA Technical Reports Server (NTRS)
Smith, David D.; Sibille, Laurent; Ignont, Erica; Snow, Lanee; Rose, M. Franklin (Technical Monitor)
2000-01-01
We have fabricated sol-gels containing gold and silver nanoparticles. Formation of an aerogel produces a blue shift in the surface plasmon resonance as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping this blue shift does not obey effective medium theories. Annealing the samples in a reducing atmosphere at 400 C eliminates this discrepancy and results in narrowing and further blue shifting of the plasmon resonance. Metal particle aggregation also results in a deviation from the predictions of effective medium theories, but can be controlled through careful handling and by avoiding the use of alcohol. By applying effective medium theories to the heterogeneous interlayer surrounding each metal particle, we extend the technique of immersion spectroscopy to inhomogeneous materials characterized by spatially dependent dielectric constants, such as aerogels. We demonstrate that the shift in the surface plasmon wavelength provides the average fractional composition of each component (air and silica) in this inhomogeneous layer, i.e. the porosity of the aerogel or equivalently, for these materials, the catalytic dispersion. Additionally, the kinetics suggest that collective particle interactions in coagulated metal clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.
Method of making molten carbonate fuel cell ceramic matrix tape
Maricle, Donald L.; Putnam, Gary C.; Stewart, Jr., Robert C.
1984-10-23
A method of making a thin, flexible, pliable matrix material for a molten carbonate fuel cell is described. The method comprises admixing particles inert in the molten carbonate environment with an organic polymer binder and ceramic particle. The composition is applied to a mold surface and dried, and the formed compliant matrix material removed.
Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques
NASA Technical Reports Server (NTRS)
Clancy, Thomas C.; Gates, Thomas S.
2005-01-01
The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.
Anode materials for lithium-ion batteries
Manthiram, Arumugam; Applestone, Danielle; Yoon, Sukeun
2017-03-21
The current disclosure relates to an anode material with the general formula M.sub.ySb-M'O.sub.x--C, where M and M' are metals and M'O.sub.x--C forms a matrix containing M.sub.ySb. It also relates to an anode material with the general formula M.sub.ySn-M'C.sub.x--C, where M and M' are metals and M'C.sub.x--C forms a matrix containing M.sub.ySn. It further relates to an anode material with the general formula Mo.sub.3Sb.sub.7--C, where --C forms a matrix containing Mo.sub.3Sb.sub.7. The disclosure also relates to an anode material with the general formula M.sub.ySb-M'C.sub.x--C, where M and M' are metals and M'C.sub.x--C forms a matrix containing M.sub.ySb. Other embodiments of this disclosure relate to anodes or rechargeable batteries containing these materials as well as methods of making these materials using ball-milling techniques and furnace heating.
Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher
2013-11-05
In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating a first low frequency acoustic wave within the borehole, wherein the first low frequency acoustic wave induces a linear and a nonlinear response in one or more features in the material that are substantially perpendicular to a radius of the borehole; directing a first sequence of high frequency pulses in a direction perpendicularly with respect to the longitudinal axis of the borehole into the material contemporaneously with the first acoustic wave; and receiving one or more second high frequency pulses at one or more receivers positionable in the borehole produced by an interaction between the first sequence of high frequency pulses and the one or more features undergoing linear and nonlinear elastic distortion due to the first low frequency acoustic wave to investigate the material surrounding the borehole.
ERIC Educational Resources Information Center
Digital Equipment Corp., Maynard, MA.
The curriculum materials and computer programs in this booklet introduce the idea of a matrix. They go on to discuss matrix operations of addition, subtraction, multiplication by a scalar, and matrix multiplication. The last section covers several contemporary applications of matrix multiplication, including problems of communication…
The role of fiber and matrix in crash energy absorption of composite materials
NASA Technical Reports Server (NTRS)
Farley, G. L.; Bird, R. K.; Modlin, J. T.
1986-01-01
Static crushing tests were conducted on tube specimens fabricated from graphite/epoxy, Kevlar/epoxy and hybrid combinations of graphite-Kevlar/epoxy to examine the influence the fiber and matrix constitutive properties and laminate architecture have on energy absorption. Fiber and matrix ultimate failure strain were determined to significantly effect energy absorption. The energy absorption capability of high ultimate failure strain materials (AS-6/F185 and AS-6/HST-7) was less than materials having lower ultimate failure strain. Lamina stacking sequence had up to a 300 percent change in energy absorption for the materials tested. Hybridizing with graphite and Kevlar reinforcements resulted in materials with high energy absorption capabilities that have postcrushing integrity.
NASA Technical Reports Server (NTRS)
Fischbach, D. B.; Uptegrove, D. R.; Srinivasagopalan, S.
1974-01-01
The microstructure and some microstructural effects of oxidation have been investigated for laminar carbon fiber cloth/cloth binder matrix composite materials. It was found that cloth wave is important in determining the macrostructure of the composites X-ray diffraction analysis showed that the composites were more graphitic than the constituent fiber phases, indicating a graphitic binder matrix phase. Various tests which were conducted to investigate specific properties of the material are described. It was learned that under the moderate temperature and oxidant flow conditions studied, C-700, 730 materials exhibit superior oxidation resistance primarily because of the inhibiting influence of the graphitized binder matrix.
NASA Astrophysics Data System (ADS)
Dandliker, Richard B.
The development of alloys with high glass forming ability allows fabrication of bulk samples of amorphous metal. This capability makes these materials available for applications which require significant material thickness in all three dimensions. Superior mechanical properties and advantages in processing make metallic glass a choice candidate as a matrix material for composites. This study reports techniques for making composites by melt-infiltration casting using the alloy Zrsb{41.2}Tisb{13.8}Cusb{12.5}Nisb{10.0}Besb{22.5} (VitreloyspTM 1) as a matrix material. Composite rods 5 cm in length and 7 mm in diameter were made and found to have a nearly fully amorphous matrix; there was less than 3 volume percent crystallized matrix material. The samples were reinforced by continuous metal wires, tungsten powder, or silicon carbide particulate preforms. The most easily processed samples were made with uniaxially aligned tungsten and carbon steel continuous wire reinforcement; the majority of the analysis presented is of these samples. The measured porosity was typically less than 3%. The results also indicate necessary guidelines for developing processing techniques for large scale production, new reinforcement materials, and other metallic glass compositions. Analysis of the microstructure of the tungsten wire and steel wire reinforced composites was performed by x-ray diffraction, scanning electron microscopy, scanning Auger microscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. The most common phase in the crystallized matrix is most likely a Laves phase with the approximate formula Besb{12}Zrsb3TiNiCu. In tungsten-reinforced composites, a crystalline reaction layer 240 nm thick of tungsten nanocrystals in an amorphous matrix formed. In the steel reinforced composites, the reaction layer was primarily composed of a mixed metal carbide, mainly ZrC. One promising application of the metallic glass matrix composite is as a kinetic energy penetrator material. Ballistic tests show that a composite of 80 volume percent uniaxially aligned tungsten wires and a VitreloyspTM 1 matrix has self-sharpening behavior, which is a necessary characteristic of superior penetrator materials. Small-scale tests with both aluminum and steel targets show that this composite performs better than tungsten heavy alloys typically used for penetrator applications, and comparably with depleted uranium.
Microstructure of Matrix in UHTC Composites
NASA Technical Reports Server (NTRS)
Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael I.; Chavez-Garia Jose; Doxtad, Evan
2011-01-01
Approaches to controlling the microstructure of Ultra High Temperature Ceramics (UHTCs) are described.. One matrix material has been infiltrated into carbon weaves to make composite materials. The microstructure of these composites is described.
Oxidation behaviour of zirconium alloys and their precipitates - A mechanistic study
NASA Astrophysics Data System (ADS)
Proff, C.; Abolhassani, S.; Lemaignan, C.
2013-01-01
The precipitate oxidation behaviour of binary zirconium alloys containing 1 wt.% Fe, Ni, Cr or 0.6 wt.% Nb was characterised in TEM on FIB prepared transverse sections of the oxide and reported in previous studies [1,2]. In the present study the following alloys: Zr1%Cu, Zr0.5%Cu0.5%Mo and pure Zr are analysed to add to the available information. In all cases, the observed precipitate oxidation behaviour in the oxide close to the metal-oxide interface could be described either with delayed oxidation with respect to the matrix or simultaneous oxidation as the surrounding zirconium matrix. Attempt was made to explain these observations, with different parameters such as precipitate size and structure, composition and thermodynamic properties. It was concluded that the thermodynamics with the new approach presented could explain most precisely their behaviour, considering the precipitate stoichiometry and the free energy of oxidation of the constituting elements. The surface topography of the oxidised materials, as well as the microstructure of the oxide presenting microcracks have been examined. A systematic presence of microcracks above the precipitates exhibiting delayed oxidation has been found; the height of these crack calculated using the Pilling-Bedworth ratios of different phases present, can explain their origin. The protrusions at the surface in the case of materials containing large precipitates can be unambiguously correlated to the presence of these latter, and the height can be correlated to the Pilling-Bedworth ratios of the phases present as well as the diffusion of the alloying elements to the surface and their subsequent oxidation. This latter behaviour was much more considerable in the case of Fe and Cu with Fe showing systematically diffusion to the outer surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jason M. Harp; Paul A. Demkowicz
2014-10-01
In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10 -4 to 10 -5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materialsmore » is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.« less
Plastic scintillators with high loading of one or more metal carboxylates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherepy, Nerine; Sanner, Robert Dean
According to one embodiment, a method includes incorporating a metal carboxylate complex into a polymeric matrix to form an optically transparent material. According to another embodiment, a material includes at least one metal carboxylate complex incorporated into a polymeric matrix, where the material is optically transparent.
Removable, hermetically-sealing, filter attachment system for hostile environments
Mayfield, Glenn L [Richland, WA
1983-01-01
A removable and reusable filter attachment system. A filter medium is fixed o, and surrounded by, a filter frame having a coaxial, longitudinally extending, annular rim. The rim engages an annular groove which surrounds the opening of a filter housing. The annular groove contains a fusible material and a heating mechanism for melting the fusible material. Upon resolidifying, the fusible material forms a hermetic bond with the rim and groove. Remelting allows detachment and replacement of the filter frame.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, W.; Zhang, J.; Wang, Z.
1995-10-01
The relationship between microstructure and propagation behavior of fatigue crack in TiB{sub 2} particulate reinforced ZA-8 Zn alloy and in the corresponding constituent matrix material was studied in three point bending fatigue tests with well-polished and pre-etched specimens. Special attention was paid to the observation of microstructure along the crack path as well as on the fracture surface. Mechanism for the difference in fatigue crack growth behavior of the two materials was investigated. The present results indicate that the addition of reinforcement modified the solidification process of the matrix material leading to a considerable change in the matrix microstructure. Thismore » change in the matrix microstructure and the presence of reinforcing particles considerably affected the fatigue crack propagation behavior in the material.« less
MacEwan, Matthew R; MacEwan, Sarah; Kovacs, Tamas R; Batts, Joel
2017-10-02
Wound matrix materials are used to improve the regeneration of dermal and epidermal layers in both acute and chronic wounds. Contemporary wound matrices are primarily composed of biologic materials such as processed xenogeneic and allogeneic tissues. Unfortunately, existing biologic wound matrices possess multiple limitations including poor longevity, durability, strength, and enzymatic resistance required for persistent support for new tissue formation. A fully-synthetic, resorbable electrospun material (Restrata Wound Matrix, Acera, St.Louis, Missouri ) that exhibits structural similarities to the native extracellular matrix offers a new approach to the treatment of acute and chronic wounds. This novel matrix is the first product to combine the advantages of synthetic construction (e.g. resistance to enzymatic degradation, excellent biocompatibility, strength/durability and controlled degradation) with the positive attributes of biologic materials (e.g. biomimetic architecture similar to human extracellular matrix (ECM), fibrous architecture optimized to support cellular migration and proliferation, engineered porosity to encourage tissue ingrowth and vascularization). These features allow RWM to achieve rapid and complete healing of full-thickness wounds that, in preclinical studies, is comparable to Integra Bilayer Wound Matrix (Integra LifeSciences, Plainsboro, New Jersey), a gold standard biologic material with diverse clinical indications in the wound care. Together, this review suggests that the RWM offers a unique fully-synthetic alternative to existing biologic matrices that is effective, widely available, easy to store, simple to apply and low cost.
Graphene-Reinforced Metal and Polymer Matrix Composites
NASA Astrophysics Data System (ADS)
Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.
2018-03-01
Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.
Graphene-Reinforced Metal and Polymer Matrix Composites
NASA Astrophysics Data System (ADS)
Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.
2018-06-01
Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.
NASA Astrophysics Data System (ADS)
Gupta, Nikhil; Paramsothy, Muralidharan
2014-06-01
The special topic "Metal- and Polymer-Matrix Composites" is intended to capture the state of the art in the research and practice of functional composites. The current set of articles related to metal-matrix composites includes reviews on functionalities such as self-healing, self-lubricating, and self-cleaning capabilities; research results on a variety of aluminum-matrix composites; and investigations on advanced composites manufacturing methods. In addition, the processing and properties of carbon nanotube-reinforced polymer-matrix composites and adhesive bonding of laminated composites are discussed. The literature on functional metal-matrix composites is relatively scarce compared to functional polymer-matrix composites. The demand for lightweight composites in the transportation sector is fueling the rapid development in this field, which is captured in the current set of articles. The possibility of simultaneously tailoring several desired properties is attractive but very challenging, and it requires significant advancements in the science and technology of composite materials. The progress captured in the current set of articles shows promise for developing materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications.
Molybdenum disilicide alloy matrix composite
Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott
1991-01-01
Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.
Fuel cell with electrolyte matrix assembly
Kaufman, Arthur; Pudick, Sheldon; Wang, Chiu L.
1988-01-01
This invention is directed to a fuel cell employing a substantially immobilized electrolyte imbedded therein and having a laminated matrix assembly disposed between the electrodes of the cell for holding and distributing the electrolyte. The matrix assembly comprises a non-conducting fibrous material such as silicon carbide whiskers having a relatively large void-fraction and a layer of material having a relatively small void-fraction.
NASA Technical Reports Server (NTRS)
Brearley, Adrian J.
2002-01-01
Energy filtered TEM (Transmission Electron Microscopy) has been used to study the location of carbonaceous material in situ in Murchison matrix. Carbon occurs frequently as narrow rims around sulfide grains, but is rare in regions of matrix that are dominated by phyllosilicates. Additional information is contained in the original extended abstract.
Advanced High-Temperature Engine Materials Technology Progresses
NASA Technical Reports Server (NTRS)
1995-01-01
The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis-developed matrix, VCAP. The compressor case, which will reduce weight by 30 percent and costs by 50 percent, is scheduled to be engine tested in the near future.
Najam-ul-Haq, M; Rainer, M; Szabó, Z; Vallant, R; Huck, C W; Bonn, G K
2007-03-10
At present, carbon nano-materials are being utilized in various procedures, especially in laser desorption/ionization-mass spectrometry (LDI-MS) for analyzing a range of analytes, which include peptides, proteins, metabolites, and polymers. Matrix-oriented LDI-MS techniques are very well established, with weak organic acids as energy-absorbing substances. Carbon materials, such as nano-tubes and fullerenes are being successfully applied in the small-mass range, where routine matrices have strong background signals. In addition, the role of carbon nano-materials is very well established in the fractionation and purification fields. Modified diamond powder and surfaces are utilized in binding peptides and proteins from complex biological fluids and analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). Polylysine-coated diamond is used for solid-phase extraction to pre-concentrate DNA oligonucleotides. Graphite is useful for desalting, pre-concentration, and as energy-absorbing material (matrix) in desorption/ionization. Carbon nano-tubes in their different derivatized forms are used as matrix materials for the analysis of a range of analytes, such as carbohydrates, amino acids, peptides, proteins, and some environmental samples by LDI-MS. Fullerenes are modified in different ways to bind serum entities analyzed through MALDI/TOF-MS and are subsequently utilized in their identifications. In addition, the fullerenes are a promising matrix in LDI-MS, but improvements are needed.
Optimization of dielectric matrix for ZnO nanowire based nanogenerators
NASA Astrophysics Data System (ADS)
Kannan, Santhosh; Parmar, Mitesh; Tao, Ran; Ardila, Gustavo; Mouis, Mireille
2016-11-01
This paper reports the role of selection of suitable dielectric layer in nanogenerator (NG) structure and its influence on the output performance. The basic NG structure is a composite material integrating hydrothermally grown vertical piezoelectric zinc oxide (ZnO) nanowires (NWs) into a dielectric matrix. To accomplish this study, three materials - poly methyl methacrylate (PMMA), silicon nitride (Si3N4) and aluminium oxide (Al2O3) are selected, processed and used as matrix dielectric in NGs. Scanning electron microscopy (SEM) analysis shows the well-aligned NWs with a diameter of 200±50 nm and length of 3.5±0.3 μm. This was followed by dielectric material deposition as a matrix material. After fabricating NG devices, the output generated voltage under manual and automatic bending were recorded, observed and analyzed for the selection of the best dielectric material to obtain an optimum output. The maximum peak-to-peak open-circuit voltage output for PMMA, Si3N4 and Al2O3 under manual bending was recorded as approximately 880 mV, 1.2 V and 2.1 V respectively. These preliminary results confirm the predicted effect of using more rigid dielectrics as matrix material for the NGs. The generated voltage is increased by about 70% using Si3N4 or Al2O3, instead of a less rigid material as PMMA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Celeste M.; Bissell, Mina J.
2006-03-09
The microenvironment surrounding cells influences gene expression, such that a cell's behavior is largely determined by its interactions with the extracellular matrix, neighboring cells, and soluble cues released locally or by distant tissues. We describe the essential role of context and organ structure in directing mammary gland development and differentiated function, and in determining response to oncogenic insults including mutations. We expand on the concept of 'dynamic reciprocity' to present an integrated view of development, cancer, and aging, and posit that genes are like piano keys: while essential, it is the context that makes the music.
In vivo and in vitro investigations of a nanostructured coating material – a preclinical study
Adam, Martin; Ganz, Cornelia; Xu, Weiguo; Sarajian, Hamid-Reza; Götz, Werner; Gerber, Thomas
2014-01-01
Immediate loading of dental implants is only possible if a firm bone-implant anchorage at early stages is developed. This implies early and high bone apposition onto the implant surface. A nanostructured coating material based on an osseoinductive bone grafting is investigated in relation to the osseointegration at early stages. The goal is to transmit the structure (silica matrix with embedded hydroxyapatite) and the properties of the bone grafting into a coating material. The bone grafting substitute offers an osseoinductive potential caused by an exchange of the silica matrix in vivo accompanied by vascularization. X-ray diffraction and transmission electron microscopy analysis show that the coating material consists of a high porous silica matrix with embedded nanocrystalline hydroxyapatite with the same morphology as human hydroxyapatite. An in vitro investigation shows the early interaction between coating and human blood. Energy-dispersive X-ray analysis showed that the silica matrix was replaced by an organic matrix within a few minutes. Uncoated and coated titanium implants were inserted into the femora of New Zealand White rabbits. The bone-to-implant contact (BIC) was measured after 2, 4, and 6 weeks. The BIC of the coated implants was increased significantly at 2 and 4 weeks. After 6 weeks, the BIC was decreased to the level of the control group. A histological analysis revealed high bone apposition on the coated implant surface after 2 and 4 weeks. Osteoblastic and osteoclastic activities on the coating material indicated that the coating participates in the bone-remodeling process. The nanostructure of the coating material led to an exchange of the silica matrix by an autologous, organic matrix without delamination of the coating. This is the key issue in understanding initial bone formation on a coated surface. PMID:24627631
Fossil Signatures Using Elemental Abundance Distributions and Bayesian Probabilistic Classification
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Storrie-Lombardi, Michael C.
2004-01-01
Elemental abundances (C6, N7, O8, Na11, Mg12, Al3, P15, S16, Cl17, K19, Ca20, Ti22, Mn25, Fe26, and Ni28) were obtained for a set of terrestrial fossils and the rock matrix surrounding them. Principal Component Analysis extracted five factors accounting for the 92.5% of the data variance, i.e. information content, of the elemental abundance data. Hierarchical Cluster Analysis provided unsupervised sample classification distinguishing fossil from matrix samples on the basis of either raw abundances or PCA input that agreed strongly with visual classification. A stochastic, non-linear Artificial Neural Network produced a Bayesian probability of correct sample classification. The results provide a quantitative probabilistic methodology for discriminating terrestrial fossils from the surrounding rock matrix using chemical information. To demonstrate the applicability of these techniques to the assessment of meteoritic samples or in situ extraterrestrial exploration, we present preliminary data on samples of the Orgueil meteorite. In both systems an elemental signature produces target classification decisions remarkably consistent with morphological classification by a human expert using only structural (visual) information. We discuss the possibility of implementing a complexity analysis metric capable of automating certain image analysis and pattern recognition abilities of the human eye using low magnification optical microscopy images and discuss the extension of this technique across multiple scales.
Carbon Nanotube Sheet Scrolled Fiber Composite for Enhanced Interfacial Mechanical Properties
NASA Astrophysics Data System (ADS)
Kokkada Ravindranath, Pruthul
The high tensile strength of Polymer Matrix Composites (PMC) is derived from the high tensile strength of the embedded carbon fibers. However, their compressive strength is significantly lower than their tensile strength, as they tend to fail through micro-buckling, under compressive loading. Fiber misalignment and the presence of voids created during the manufacturing processes, add to the further reduction in the compressive strength of the composites. Hence, there is more scope for improvement. Since, the matrix is primarily responsible for the shear load transfer and dictating the critical buckling load of the fibers by constraining the fibers from buckling, to improve the interfacial mechanical properties of the composite, it is important to modify the polymer matrix, fibers and/or the interface. In this dissertation, a novel approach to enhance the polymer matrix-fiber interface region has been discussed. This approach involves spiral wrapping carbon nanotube (CNT) sheet around individual carbon fiber or fiber tow, at room temperature at a prescribed wrapping angle (bias angle), and then embed the scrolled fiber in a resin matrix. The polymer infiltrates into the nanopores of the multilayer CNT sheet to form CNT/polymer nanocomposite surrounding fiber, and due to the mechanical interlocking, provides reinforcement to the interface region between fiber and polymer matrix. This method of nano-fabrication has the potential to improve the mechanical properties of the fiber-matrix interphase, without degrading the fiber properties. The effect of introducing Multi-Walled Carbon Nanotubes (MWNT) in the polymer matrix was studied by analyzing the atomistic model of the epoxy (EPON-862) and the embedded MWNTs. A multi-scale method was utilized by using molecular dynamics (MD) simulations on the nanoscale model of the epoxy with and without the MWNTs to calculate compressive strength of the composite and predict the enhancement in the composite material. The influence of the bias/over wrapping angle of the MWNT sheets on the carbon fiber was also studied. The predicted compressive strength from the MD results and the multiscale approach for baseline Epoxy case was shown to be in good relation with the experimental results for Epon-862. On adding MWNTs to the epoxy system, a significant improvement in the compressive strength of the PMC was observed. Further, the effect of bias angle of MWNT wrapped over carbon fiber was compared for 0°, 45° and 90°. This is further verified by making use of the Halpin-Tsai.
Advanced composites: Fabrication processes for selected resin matrix materials
NASA Technical Reports Server (NTRS)
Welhart, E. K.
1976-01-01
This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.
Caldwell, J.T.; Herrera, G.C.; Hastings, R.D.; Shunk, E.R.; Kunz, W.E.
1987-08-28
Apparatus and method for performing corrections for matrix material effects on the neutron measurements generated from analysis of transuranic waste drums using the differential-dieaway technique. By measuring the absorption index and the moderator index for a particular drum, correction factors can be determined for the effects of matrix materials on the ''observed'' quantity of fissile and fertile material present therein in order to determine the actual assays thereof. A barrel flux monitor is introduced into the measurement chamber to accomplish these measurements as a new contribution to the differential-dieaway technology. 9 figs.
Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency.
Zhou, Chenkun; Lin, Haoran; Tian, Yu; Yuan, Zhao; Clark, Ronald; Chen, Banghao; van de Burgt, Lambertus J; Wang, Jamie C; Zhou, Yan; Hanson, Kenneth; Meisner, Quinton J; Neu, Jennifer; Besara, Tiglet; Siegrist, Theo; Lambers, Eric; Djurovich, Peter; Ma, Biwu
2018-01-21
Single crystalline zero-dimensional (0D) organic-inorganic hybrid materials with perfect host-guest structures have been developed as a new generation of highly efficient light emitters. Here we report a series of lead-free organic metal halide hybrids with a 0D structure, (C 4 N 2 H 14 X) 4 SnX 6 (X = Br, I) and (C 9 NH 20 ) 2 SbX 5 (X = Cl), in which the individual metal halide octahedra (SnX 6 4- ) and quadrangular pyramids (SbX 5 2- ) are completely isolated from each other and surrounded by the organic ligands C 4 N 2 H 14 X + and C 9 NH 20 + , respectively. The isolation of the photoactive metal halide species by the wide band gap organic ligands leads to no interaction or electronic band formation between the metal halide species, allowing the bulk materials to exhibit the intrinsic properties of the individual metal halide species. These 0D organic metal halide hybrids can also be considered as perfect host-guest systems, with the metal halide species periodically doped in the wide band gap matrix. Highly luminescent, strongly Stokes shifted broadband emissions with photoluminescence quantum efficiencies (PLQEs) of close to unity were realized, as a result of excited state structural reorganization of the individual metal halide species. Our discovery of highly luminescent single crystalline 0D organic-inorganic hybrid materials as perfect host-guest systems opens up a new paradigm in functional materials design.
In-situ composite formation of damage tolerant coatings utilizing laser
Blue, Craig A [Knoxville, TN; Wong, Frank [Livermore, CA; Aprigliano, Louis F [Berlin, MD; Engleman, Peter G [Knoxville, TN; Peter, William H [Knoxville, TN; Rozgonyi, Tibor G [Golden, CO; Ozdemir, Levent [Golden, CO
2011-05-10
A coating steel component with a pattern of an iron based matrix with crystalline particles metallurgically bound to the surface of a steel substrate for use as disc cutters or other components with one or more abrading surfaces that can experience significant abrasive wear, high point loads, and large shear stresses during use. The coated component contains a pattern of features in the shape of freckles or stripes that are laser formed and fused to the steel substrate. The features can display an inner core that is harder than the steel substrate but generally softer than the matrix surrounding the core, providing toughness and wear resistance to the features. The features result from processing an amorphous alloy where the resulting matrix can be amorphous, partially devitrified or fully devitrified.
In-situ composite formation of damage tolerant coatings utilizing laser
Blue, Craig A; Wong, Frank; Aprigliano, Louis F; Engleman, Peter G; Rozgonyi, Tibor G; Ozdemir, Levent
2014-03-18
A coating steel component with a pattern of an iron based matrix with crystalline particles metallurgically bound to the surface of a steel substrate for use as disc cutters or other components with one or more abrading surfaces that can experience significant abrasive wear, high point loads, and large shear stresses during use. The coated component contains a pattern of features in the shape of freckles or stripes that are laser formed and fused to the steel substrate. The features can display an inner core that is harder than the steel substrate but generally softer than the matrix surrounding the core, providing toughness and wear resistance to the features. The features result from processing an amorphous alloy where the resulting matrix can be amorphous, partially devitrified or fully devitrified.
Virumbrales, Maider; Saez-Puche, Regino; Torralvo, María José; Blanco-Gutierrez, Veronica
2017-01-01
NiFe2O4 and ZnFe2O4 nanoparticles have been prepared encased in the MCM (Mobile Composition of Matter) type matrix. Their magnetic behavior has been studied and compared with that corresponding to particles of the same composition and of a similar size (prepared and embedded in amorphous silica or as bare particles). This study has allowed elucidation of the role exerted by the matrix and interparticle interactions in the magnetic behavior of each ferrite system. Thus, very different superparamagnetic behavior has been found in ferrite particles of similar size depending on the surrounding media. Also, the obtained results clearly provide evidence of the vastly different magnetic behavior for each ferrite system. PMID:28640197
In-situ composite formation of damage tolerant coatings utilizing laser
Blue, Craig A.; Wong, Frank; Aprigliano, Louis F.; Engleman, Peter G.; Peter, William H.; Rozgonyi, Tibor G.; Ozdemir, Levent
2016-05-24
A coating steel component with a pattern of an iron based matrix with crystalline particles metallurgically bound to the surface of a steel substrate for use as disc cutters or other components with one or more abrading surfaces that can experience significant abrasive wear, high point loads, and large shear stresses during use. The coated component contains a pattern of features in the shape of freckles or stripes that are laser formed and fused to the steel substrate. The features can display an inner core that is harder than the steel substrate but generally softer than the matrix surrounding the core, providing toughness and wear resistance to the features. The features result from processing an amorphous alloy where the resulting matrix can be amorphous, partially devitrified or fully devitrified.
Weakly shocked and deformed CM microxenoliths in the Pułtusk H chondrite
NASA Astrophysics Data System (ADS)
KrzesińSka, Agata; Fritz, JöRg
2014-04-01
The Pułtusk meteorite is a brecciated H4-5 chondrite cut by darkened cataclastic zones. Within the breccia, relict type IA, IB, and IIA chondrules, and microxenoliths of carbonaceous CM chondrite lithology occur. This is the first description of foreign clasts in the Pułtusk meteorite. The matrix of the xenoliths was identified by usage of microprobe and Raman spectroscopic analyses. Raman spectra show distinct bands related to the presence of slightly ordered carbonaceous matter at approximately 1320 and 1580-1584 cm-1. Bands related to serpentine group minerals are also visible, especially a peak at 692 cm-1 and moreover other weak bands are interpreted as evidence for tochilinite. We decipher the metamorphic and deformational history of the xenoliths. They experienced aqueous alteration before being incorporated into the unaltered and well-equilibrated parent rock of the Pułtusk chondrite. The xenoliths are weakly shocked as indicated by defects in the crystal structure of silicates and carbonates, but hydrated minerals (serpentine and tochilinite) are still present in the matrix. The carbonaceous matter within the clasts' matrix displays first order D and G Raman bands that suggests it is only slightly ordered as a result of mild thermal processing. Distinct shear bands are present in both the xenoliths and the surrounding rock, which testifies that the xenoliths were affected by a deformational event along with host rock. The host rock was brittly deformed, but the clasts experienced more ductile deformation revealed by semibrittle faulting of minerals, kinking of the tochilinite-cronstedtite matrix, and injections of xenolithic material into the adjacent breccia. We argue that both processes, the high strain-rate shear deformation and the incorporation of the xenoliths into the host Pułtusk breccia, could have been impact-related. The Pułtusk xenoliths are, thus, rather spalled collisional fragments, than trapped fossil micrometeorites.
Diffusion-controlled garnet growth in siliceous dolomites of the Adamello contact aureole, N-Italy
NASA Astrophysics Data System (ADS)
Muller, T.; Fiebich, E.; Foster, C. T.
2012-12-01
Texture forming processes are controlled by many factors, such as material transport through polycrystalline materials, surface kinetics, fluid flow, and many others. In metamorphic rocks, texture forming processes typically involve local reactions linked to net mass transfer which allows constraining the actual reaction path in more detail. In this study, we present geochemical data combined with textural modeling to constrain the conditions and reaction mechanism during contact metamorphic garnet growth in siliceous dolomites in the southern Adamello Massif, Italy. The metamorphic garnet porphyroblasts are poikiloblastic and idiomorphic in shape with a typical grain size ranging between 0.6-1 cm in diameter sitting in a matrix of calcite+diopside+anorthite+wollastonite. Inclusions in the grossular-rich garnets are almost uniquely diopside. On the hand specimen, garnets are surrounded by visible rims of about 0.6 mm indicating a diffusion-limited reaction mechanism to be responsible for the garnet formation. In the course of this study samples have been characterized by polarization microscopy, element x-ray maps using EMPA, cathodulominescence images and stable isotope analyses of carbon and oxygen of matrix carbonates. In addition, pseudosections have been calculated using the software package PerpleX (Connolly, 2005) based on the bulk chemistry of collected samples. Results indicate that the visible margin consists of a small rim (< 1 mm) purely consisting of recrystallized calcite adjacent to the garnet edge. The major part of the observed halo, however, is characterized by the absence of anorthite and wollastonite. The observed texture of garnet porphyroblasts growing and simultaneously forming an anorthite and wollastonite free margin can successfully be reproduced using the SEG program (Foster, 1993), which assumes diffusive mass transport. Therefore the model constrains the diffusive fluxes of Ca, Mg, Al and Si by mass balance and the local Gibbs-Duhem equations on the reaction site. Assuming that the pore fluid is not saturated in CO2, which is justified for the assumption of fluid-infiltration during contact metamorphism, the model predicts the wollastonite halo to be about the same size as the anorthite halo. Interestingly, the model also predicts the small diopside-free calcite margin surrounding the garnet interface, which is also observed in the thin section of the natural sample. Taken together, we interpret the garnet growth to be the consequence of the breakdown of anorthite + wollastonite + calcite at water-rich (XCO2 < 0.2) conditions around 600 °C. Preliminary modeling results suggest that the effective relative diffusion coefficients for Si, Mg and Al are not equal producing the diopside-free calcite rim surrounding the garnet edge. Connolly, J.A.D., 2005, Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. EPSL, 236 : p. 524-541. Foster, C.T., 1993, SEG93: A program to model metamorphic textures: Geological Society of America Abstracts with Programs, v. 25, no. 6, p. A264.
Greeley, R.; Figueredo, P.H.; Williams, D.A.; Chuang, F.C.; Klemaszewski, J.E.; Kadel, S.D.; Prockter, L.M.; Pappalardo, R.T.; Head, J. W.; Collins, G.C.; Spaun, N.A.; Sullivan, R.J.; Moore, Johnnie N.; Senske, D.A.; Tufts, B.R.; Johnson, T.V.; Belton, M.J.S.; Tanaka, K.L.
2000-01-01
Galileo data enable the major geological units, structures, and surface features to be identified on Europa. These include five primary units (plains, chaos, band, ridge, and crater materials) and their subunits, along with various tectonic structures such as faults. Plains units are the most widespread. Ridged plains material spans a wide range of geological ages, including the oldest recognizable features on Europa, and appears to represent a style of tectonic resurfacing, rather than cryovolcanism. Smooth plains material typically embays other terrains and units, possibly as a type of fluid emplacement, and is among the youngest material units observed. At global scales, plains are typically mapped as undifferentiated plains material, although in some areas differences can be discerned in the near infrared which might be related to differences in ice grain size. Chaos material is composed of plains and other preexisting materials that have been severely disrupted by inferred internal activity; chaos is characterized by blocks of icy material set in a hummocky matrix. Band material is arrayed in linear, curvilinear, wedge-shaped, or cuspate zones with contrasting albedo and surface textures with respect to the surrounding terrain. Bilateral symmetry observed in some bands and the relationships with the surrounding units suggest that band material forms by the lithosphere fracturing, spreading apart, and infilling with material derived from the subsurface. Ridge material is mapped as a unit on local and some regional maps but shown with symbols at global scales. Ridge material includes single ridges, doublet ridges, and ridge complexes. Ridge materials are considered to represent tectonic processes, possibly accompanied by the extrusion or intrusion of subsurface materials, such as diapirs. The tectonic processes might be related to tidal flexing of the icy lithosphere on diurnal or longer timescales. Crater materials include various interior (smooth central, rough inner, and annular massif) and exterior (continuous ejecta) subunits. Structural features and landforms are shown with conventional symbols. Type localities for the units are identified, along with suggestions for portraying the features on geological maps, including colors and letter abbreviations for material units. Implementing these suggestions by the planetary mapping community would facilitate comparisons of maps for different parts of Europa and contribute to an eventual global synthesis of its complex geology. On the basis of initial mapping results, a stratigraphic sequence is suggested in which ridged plains form the oldest unit on Europa, followed by development of band material and individual ridges. Band materials tend to be somewhat older than ridges, but in many areas the two units formed simultaneously. Similarly, the formation of most chaos follows the development of ridged plains; although chaos is among the youngest materials on Europa, some chaos units might have formed contemporaneously with ridged plains. Smooth plains generally embay all other units and are late-stage in the evolution of the surface. C1 craters are superposed on ridged plains but are crosscut by other materials, including bands and ridges. Most c2 craters postdate all other units, but a few c2 craters are cut by ridge material. C3 craters constitute the youngest recognizable material on Europa. Copyright 2000 by the American Geophysical Union.
Zemtsova, Elena
2014-01-01
We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology. PMID:24695459
Zemtsova, Elena; Yurchuk, Denis; Smirnov, Vladimir
2014-01-01
We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1-50 nm. This material can be represented as the material type "frame in the frame" that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology.
Characterization of NIST food-matrix Standard Reference Materials for their vitamin C content.
Thomas, Jeanice B; Yen, James H; Sharpless, Katherine E
2013-05-01
The vitamin C concentrations in three food-matrix Standard Reference Materials (SRMs) from the National Institute of Standards and Technology (NIST) have been determined by liquid chromatography (LC) with absorbance detection. These materials (SRM 1549a Whole Milk Powder, SRM 1849a Infant/Adult Nutritional Formula, and SRM 3233 Fortified Breakfast Cereal) have been characterized to support analytical measurements made by food processors that are required to provide information about their products' vitamin C content on the labels of products distributed in the United States. The SRMs are primarily intended for use in validating analytical methods for the determination of selected vitamins, elements, fatty acids, and other nutrients in these materials and in similar matrixes. They can also be used for quality assurance in the characterization of test samples or in-house control materials, and for establishing measurement traceability. Within-day precision of the LC method used to measure vitamin C in the food-matrix SRMs characterized in this study ranged from 2.7% to 6.5%.
Process to remove actinides from soil using magnetic separation
Avens, Larry R.; Hill, Dallas D.; Prenger, F. Coyne; Stewart, Walter F.; Tolt, Thomas L.; Worl, Laura A.
1996-01-01
A process of separating actinide-containing components from an admixture including forming a slurry including actinide-containing components within an admixture, said slurry including a dispersion-promoting surfactant, adjusting the pH of the slurry to within a desired range, and, passing said slurry through a pretreated matrix material, said matrix material adapted to generate high magnetic field gradients upon the application of a strong magnetic field exceeding about 0.1 Tesla whereupon a portion of said actinide-containing components are separated from said slurry and remain adhered upon said matrix material is provided.
NASA's high-temperature engine materials program for civil aeronautics
NASA Technical Reports Server (NTRS)
Gray, Hugh R.; Ginty, Carol A.
1992-01-01
The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.
Polymeric matrix materials for infrared metamaterials
Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar
2014-04-22
A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.
A continuing controversy: Has the cometary nucleus been resolved?
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1976-01-01
Evidence is presented for classifying cometary nuclei into two basic types, described by core mantle and coreless models. Mass loss related nongravitational effects in a comet's motion as a function of time are included in considering gradual evaporation of an icy envelope surrounding the meteoric matrix in the core of the nucleus.
Role of the ECM in notochord formation, function and disease.
Trapani, Valeria; Bonaldo, Paolo; Corallo, Diana
2017-10-01
The notochord is a midline structure common to all chordate animals; it provides mechanical and signaling cues for the developing embryo. In vertebrates, the notochord plays key functions during embryogenesis, being a source of developmental signals that pattern the surrounding tissues. It is composed of a core of vacuolated cells surrounded by an epithelial-like sheath of cells that secrete a thick peri-notochordal basement membrane made of different extracellular matrix (ECM) proteins. The correct deposition and organization of the ECM is essential for proper notochord morphogenesis and function. Work carried out in the past two decades has allowed researchers to dissect the contribution of different ECM components to this embryonic tissue. Here, we will provide an overview of these genetic and mechanistic studies. In particular, we highlight the specific functions of distinct matrix molecules in regulating notochord development and notochord-derived signals. Moreover, we also discuss the involvement of ECM synthesis and its remodeling in the pathogenesis of chordoma, a malignant bone cancer that originates from remnants of notochord remaining after embryogenesis. © 2017. Published by The Company of Biologists Ltd.
Hashir, Muhammad Ahsan; Stecher, Guenther; Bakry, Rania; Kasemsook, Saowapak; Blassnig, Bernhard; Feuerstein, Isabel; Abel, Gudrun; Popp, Michael; Bobleter, Ortwin; Bonn, Guenther K
2007-01-01
Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) is a sensitive mass spectrometric technique which utilises acidic materials as matrices for laser energy absorption, desorption and ionisation of analytes. These matrix materials produce background signals particularly in the low-mass range and make the detection and identification of small molecules difficult and nearly impossible. To overcome this problem this paper introduces matrix-free material-enhanced laser desorption/ionisation mass spectrometry (mf-MELDI-MS) for the screening and analysis of small molecules such as carbohydrates. For this purpose, 4,4'-azo-dianiline was immobilised on silica gel enabling the absorption of laser energy sufficient for successful desorption and ionisation of low molecular weight compounds. The particle and pore sizes, the solvent system for suspension and the sample preparation procedures have been optimised. The newly synthesised MELDI material delivered excellent spectra with regard to signal-to-noise ratio and detection sensitivity. Finally, wheat straw degradation products and Salix alba L. plant extracts were analysed proving the high performance and excellent behaviour of the introduced material. Copyright (c) 2007 John Wiley & Sons, Ltd.
Evidence for Extended Aqueous Alteration in CR Carbonaceous Chondrites
NASA Technical Reports Server (NTRS)
Trigo-Rodriquez, J. M.; Moyano-Cambero, C. E.; Mestres, N.; Fraxedas, J.; Zolensky, M.; Nakamura, T.; Martins, Z.
2013-01-01
We are currently studying the chemical interrelationships between the main rockforming components of carbonaceous chondrites (hereafter CC), e.g. silicate chondrules, refractory inclusions and metal grains, and the surrounding meteorite matrices. It is thought that the fine-grained materials that form CC matrices are representing samples of relatively unprocessed protoplanetary disk materials [1-3]. In fact, modern non-destructive analytical techniques have shown that CC matrices host a large diversity of stellar grains from many distinguishable stellar sources [4]. Aqueous alteration has played a role in homogeneizing the isotopic content that allows the identification of presolar grains [5]. On the other hand, detailed analytical techniques have found that the aqueously-altered CR, CM and CI chondrite groups contain matrices in which the organic matter has experienced significant processing concomitant to the formation of clays and other minerals. In this sense, clays have been found to be directly associated with complex organics [6, 7]. CR chondrites are particularly relevant in this context as this chondrite group contains abundant metal grains in the interstitial matrix, and inside glassy silicate chondrules. It is important because CR are known for exhibiting a large complexity of organic compounds [8-10], and only metallic Fe is considered essential in Fischer-Tropsch catalysis of organics [11-13]. Therefore, CR chondrites can be considered primitive materials capable to provide clues on the role played by aqueous alteration in the chemical evolution of their parent asteroids.
Molybdenum disilicide alloy matrix composite
Petrovic, J.J.; Honnell, R.E.; Gibbs, W.S.
1991-12-03
Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions are disclosed. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms. 3 figures.
Fatigue behavior of a ceramic matrix composite (CMC), 2D C{sub fiber}/SiC{sub matrix}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, P.A.; Rosa, L.G.; Steen, M.
The material described in this study is a 2D CMC of continuous carbon fibers embedded in a SiC matrix. This work presents the tensile behaviour of the material at room temperature (RT) and 1200{degrees}C. Results of uniaxial tension-tension fatigue tests carried out at both temperatures (RT and 1200{degrees}C) are also presented.
Fracture of a Brittle-Particle Ductile Matrix Composite with Applications to a Coating System
NASA Astrophysics Data System (ADS)
Bianculli, Steven J.
In material systems consisting of hard second phase particles in a ductile matrix, failure initiating from cracking of the second phase particles is an important failure mechanism. This dissertation applies the principles of fracture mechanics to consider this problem, first from the standpoint of fracture of the particles, and then the onset of crack propagation from fractured particles. This research was inspired by the observation of the failure mechanism of a commercial zinc-based anti-corrosion coating and the analysis was initially approached as coatings problem. As the work progressed it became evident that failure mechanism was relevant to a broad range of composite material systems and research approach was generalized to consider failure of a system consisting of ellipsoidal second phase particles in a ductile matrix. The starting point for the analysis is the classical Eshelby Problem, which considered stress transfer from the matrix to an ellipsoidal inclusion. The particle fracture problem is approached by considering cracks within particles and how they are affected by the particle/matrix interface, the difference in properties between the particle and matrix, and by particle shape. These effects are mapped out for a wide range of material combinations. The trends developed show that, although the particle fracture problem is very complex, the potential for fracture among a range of particle shapes can, for certain ranges in particle shape, be considered easily on the basis of the Eshelby Stress alone. Additionally, the evaluation of cracks near the curved particle/matrix interface adds to the existing body of work of cracks approaching bi-material interfaces in layered material systems. The onset of crack propagation from fractured particles is then considered as a function of particle shape and mismatch in material properties between the particle and matrix. This behavior is mapped out for a wide range of material combinations. The final section of this dissertation qualitatively considers an approach to determine critical particle sizes, below which crack propagation will not occur for a coating system that exhibited stable cracks in an interfacial layer between the coating and substrate.
NASA Technical Reports Server (NTRS)
Ward, Stanley W.
1988-01-01
Thread-mounted thermocouple developed to accurately measure temperature of surrounding material. Comprised of threaded rod or bolt drilled along length, dual-hole ceramic insulator rod, thermocouple wire, optional ceramic filler, and epoxy resin. In contact with and takes average temperature of, surrounding material. Fabricated easily in size and metal to suit particular application. Because of simplicity and ability to measure average temperature, widespread use of design foreseen in varity of applications.
Active formation of 'chaos terrain' over shallow subsurface water on Europa.
Schmidt, B E; Blankenship, D D; Patterson, G W; Schenk, P M
2011-11-16
Europa, the innermost icy satellite of Jupiter, has a tortured young surface and sustains a liquid water ocean below an ice shell of highly debated thickness. Quasi-circular areas of ice disruption called chaos terrains are unique to Europa, and both their formation and the ice-shell thickness depend on Europa's thermal state. No model so far has been able to explain why features such as Conamara Chaos stand above surrounding terrain and contain matrix domes. Melt-through of a thin (few-kilometre) shell is thermodynamically improbable and cannot raise the ice. The buoyancy of material rising as either plumes of warm, pure ice called diapirs or convective cells in a thick (>10 kilometres) shell is insufficient to produce the observed chaos heights, and no single plume can create matrix domes. Here we report an analysis of archival data from Europa, guided by processes observed within Earth's subglacial volcanoes and ice shelves. The data suggest that chaos terrains form above liquid water lenses perched within the ice shell as shallow as 3 kilometres. Our results suggest that ice-water interactions and freeze-out give rise to the diverse morphologies and topography of chaos terrains. The sunken topography of Thera Macula indicates that Europa is actively resurfacing over a lens comparable in volume to the Great Lakes in North America. ©2011 Macmillan Publishers Limited. All rights reserved
Laser direct marking applied to rasterizing miniature Data Matrix Code on aluminum alloy
NASA Astrophysics Data System (ADS)
Li, Xia-Shuang; He, Wei-Ping; Lei, Lei; Wang, Jian; Guo, Gai-Fang; Zhang, Teng-Yun; Yue, Ting
2016-03-01
Precise miniaturization of 2D Data Matrix (DM) Codes on Aluminum alloy formed by raster mode laser direct part marking is demonstrated. The characteristic edge over-burn effects, which render vector mode laser direct part marking inadequate for producing precise and readable miniature codes, are minimized with raster mode laser marking. To obtain the control mechanism for the contrast and print growth of miniature DM code by raster laser marking process, the temperature field model of long pulse laser interaction with material is established. From the experimental results, laser average power and Q frequency have an important effect on the contrast and print growth of miniature DM code, and the threshold of laser average power and Q frequency for an identifiable miniature DM code are respectively 3.6 W and 110 kHz, which matches the model well within normal operating conditions. In addition, the empirical model of correlation occurring between laser marking parameters and module size is also obtained, and the optimal processing parameter values for an identifiable miniature DM code of different but certain data size are given. It is also found that an increase of the repeat scanning number effectively improves the surface finish of bore, the appearance consistency of modules, which has benefit to reading. The reading quality of miniature DM code is greatly improved using ultrasonic cleaning in water by avoiding the interference of color speckles surrounding modules.
2013-01-01
This is a descriptive study of tendon pathology with different structural appearances of repair tissue correlated to immunolocalization of cartilage oligomeric matrix protein (COMP) and type I and III collagens and expression of COMP mRNA. The material consists of nine tendons from seven horses (5–25 years old; mean age of 10 years) with clinical tendinopathy and three normal tendons from horses (3, 3, and 13 years old) euthanized for non-orthopedic reasons. The injured tendons displayed different repair-tissue appearances with organized and disorganized fibroblastic regions as well as areas of necrosis. The normal tendons presented distinct immunoreactivity for COMP and expression of COMP mRNA and type I collagen in the normal aligned fiber structures, but no immunolabeling of type III collagen. However, immunoreactivity for type III collagen was present in the endotenon surrounding the fiber bundles, where no expression of COMP could be seen. Immunostaining for type I and III collagens was present in all of the pathologic regions indicating repair tissue. Interestingly, the granulation tissues showed immunostaining for COMP and expression of COMP mRNA, indicating a role for COMP in repair and remodeling of the tendon after fiber degeneration and rupture. The present results suggest that not only type III collagen but also COMP is involved in the repair and remodeling processes of the tendon. PMID:23020676
Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.
2000-01-01
The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.
2006-02-21
The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.
2004-08-24
The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
Properties of five toughened matrix composite materials
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Dow, Marvin B.
1992-01-01
The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.
Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation
NASA Astrophysics Data System (ADS)
Jiang, Suihe; Wang, Hui; Wu, Yuan; Liu, Xiongjun; Chen, Honghong; Yao, Mengji; Gault, Baptiste; Ponge, Dirk; Raabe, Dierk; Hirata, Akihiko; Chen, Mingwei; Wang, Yandong; Lu, Zhaoping
2017-04-01
Next-generation high-performance structural materials are required for lightweight design strategies and advanced energy applications. Maraging steels, combining a martensite matrix with nanoprecipitates, are a class of high-strength materials with the potential for matching these demands. Their outstanding strength originates from semi-coherent precipitates, which unavoidably exhibit a heterogeneous distribution that creates large coherency strains, which in turn may promote crack initiation under load. Here we report a counterintuitive strategy for the design of ultrastrong steel alloys by high-density nanoprecipitation with minimal lattice misfit. We found that these highly dispersed, fully coherent precipitates (that is, the crystal lattice of the precipitates is almost the same as that of the surrounding matrix), showing very low lattice misfit with the matrix and high anti-phase boundary energy, strengthen alloys without sacrificing ductility. Such low lattice misfit (0.03 ± 0.04 per cent) decreases the nucleation barrier for precipitation, thus enabling and stabilizing nanoprecipitates with an extremely high number density (more than 1024 per cubic metre) and small size (about 2.7 ± 0.2 nanometres). The minimized elastic misfit strain around the particles does not contribute much to the dislocation interaction, which is typically needed for strength increase. Instead, our strengthening mechanism exploits the chemical ordering effect that creates backstresses (the forces opposing deformation) when precipitates are cut by dislocations. We create a class of steels, strengthened by Ni(Al,Fe) precipitates, with a strength of up to 2.2 gigapascals and good ductility (about 8.2 per cent). The chemical composition of the precipitates enables a substantial reduction in cost compared to conventional maraging steels owing to the replacement of the essential but high-cost alloying elements cobalt and titanium with inexpensive and lightweight aluminium. Strengthening of this class of steel alloy is based on minimal lattice misfit to achieve maximal precipitate dispersion and high cutting stress (the stress required for dislocations to cut through coherent precipitates and thus produce plastic deformation), and we envisage that this lattice misfit design concept may be applied to many other metallic alloys.
NASA Astrophysics Data System (ADS)
Seurer, Bradley
Polyhedral oligomeric silsesquioxanes (POSS) are molecularly precise isotropic particles with average diameters of 1-2 nm. A typical T 8 POSS nanoparticle has an inorganic Si8O12 core surrounded by eight aliphatic or aromatic groups attached to the silicon vertices of the polyhedron promoting solubility in conventional solvents. Previously, efficient synthetic methods have been developed whereby one of the aliphatic groups on the periphery is substituted by a functional group capable of undergoing either homo- or copolymerization. In the current investigations, preparative methods for the chemical incorporation of POSS macromonomers in a series elastomers have been developed. Analysis of the copolymers using WAXD reveals that pendant POSS groups off the polymer backbones aggregate, and can crystallize as nanocrystals. From both line-broadening of the diffraction maxima, and also the oriented diffraction in a drawn material, the individual POSS sub-units are crystallizing as anisotropically shaped crystallites. The formation of POSS particle aggregation is strongly dependent on the nature of the polymeric matrix and the POSS peripheral group. X-ray studies show aggregation of POSS in ethylene-propylene elastomers occurred only with a phenyl periphery, whereas POSS particles with isobutyl and ethyl peripheries disperse within the polymer matrix. By altering the polymer matrix to one containing chain repulsive fluorine units, aggregation is observed with both the phenyl and isobutyl peripheries. Altering the polymer chain to poly(dimethylcyclooctadiene), POSS aggregates with isobutyl, ethyl, cyclopentyl, and phenyl peripheries. The formation of POSS nanocrystals increases the mechanical properties of these novel thermoplastic elastomers, including an increase in the tensile storage modulus and formation of a rubbery plateau region. Tensile tests of these elastomers show an increase in elastic modulus with increasing POSS loading. The elongation at break was as high as 720%. Cyclic tensile test show some hysteresis of the elastomers. However, the curves show Mullins effect behavior, commonly seen in elastomers. Elastomers with POSS dispersion, however, show poor mechanical properties. These results demonstrate the novel material property gains by the incorporation and aggregation of POSS in thermoplastic elastomers, as well as the influence of the POSS periphery.
Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.
Jiang, Suihe; Wang, Hui; Wu, Yuan; Liu, Xiongjun; Chen, Honghong; Yao, Mengji; Gault, Baptiste; Ponge, Dirk; Raabe, Dierk; Hirata, Akihiko; Chen, Mingwei; Wang, Yandong; Lu, Zhaoping
2017-04-27
Next-generation high-performance structural materials are required for lightweight design strategies and advanced energy applications. Maraging steels, combining a martensite matrix with nanoprecipitates, are a class of high-strength materials with the potential for matching these demands. Their outstanding strength originates from semi-coherent precipitates, which unavoidably exhibit a heterogeneous distribution that creates large coherency strains, which in turn may promote crack initiation under load. Here we report a counterintuitive strategy for the design of ultrastrong steel alloys by high-density nanoprecipitation with minimal lattice misfit. We found that these highly dispersed, fully coherent precipitates (that is, the crystal lattice of the precipitates is almost the same as that of the surrounding matrix), showing very low lattice misfit with the matrix and high anti-phase boundary energy, strengthen alloys without sacrificing ductility. Such low lattice misfit (0.03 ± 0.04 per cent) decreases the nucleation barrier for precipitation, thus enabling and stabilizing nanoprecipitates with an extremely high number density (more than 10 24 per cubic metre) and small size (about 2.7 ± 0.2 nanometres). The minimized elastic misfit strain around the particles does not contribute much to the dislocation interaction, which is typically needed for strength increase. Instead, our strengthening mechanism exploits the chemical ordering effect that creates backstresses (the forces opposing deformation) when precipitates are cut by dislocations. We create a class of steels, strengthened by Ni(Al,Fe) precipitates, with a strength of up to 2.2 gigapascals and good ductility (about 8.2 per cent). The chemical composition of the precipitates enables a substantial reduction in cost compared to conventional maraging steels owing to the replacement of the essential but high-cost alloying elements cobalt and titanium with inexpensive and lightweight aluminium. Strengthening of this class of steel alloy is based on minimal lattice misfit to achieve maximal precipitate dispersion and high cutting stress (the stress required for dislocations to cut through coherent precipitates and thus produce plastic deformation), and we envisage that this lattice misfit design concept may be applied to many other metallic alloys.
NASA Technical Reports Server (NTRS)
Coguill, Scott L.; Adams, Donald F.
1989-01-01
The mechanical and physical properties of three neat matrix materials, i.e., PEEK (polyetheretherketone) thermoplastic, Hexcel F155 rubber-toughened epoxy and Hercules 8551-7 rubber-toughened epoxy, were experimentally determined. Twelve unidirectional carbon fiber composites, incorporating matrix materials characterized in this or earlier studies (with one exception; the PISO(sub 2)-TPI matrix itself was not characterized), were also tested. These composite systems included AS4/2220-1, AS4/2220-3, T500/R914, IM6/HX1504, T300/4901A (MDA), T700/4901A (MDA), T300/4901B (MPDA), T700/4901B (MPDA), APC2 (AS4/PEEK, ICI), APC2 (AS4/PEEK, Langley Research Center), AS4/8551-7, and AS4/PISO(sub 2)-TPI. For the neat matrix materials, the tensile, shear, fracture toughness, coefficient of thermal expansion, and coefficient of moisture expansion properties were measured as a function of both temperature and moisture content. For the unidirectional composites, axial and transverse tensile, longitudinal shear, coefficient of thermal expansion, and coefficient of moisture expansion properties were determined, at room temperature and 100 C.
Omland, Silje Haukali; Wettergren, Erika Elgstrand; Mollerup, Sarah; Asplund, Maria; Mourier, Tobias; Hansen, Anders Johannes; Gniadecki, Robert
2017-10-07
Cutaneous basal cell carcinoma (BCC) is the commonest cancer worldwide. BCC is locally invasive and the surrounding stromal microenvironment is pivotal for tumourigenesis. Cancer associated fibroblasts (CAFs) in the microenvironment are essential for tumour growth in a variety of neoplasms but their role in BCC is poorly understood. Material included facial BCC and control skin from the peritumoural area and from the buttocks. With next-generation sequencing (NGS) we compared mRNA expression between BCC and peritumoural skin. qRT-PCR, immunohistochemical and immunofluorescent staining were performed to validate the NGS results and to investigate CAF-related cyto-and chemokines. NGS revealed upregulation of 65 genes in BCC coding for extracellular matrix components pointing at CAF-related matrix remodeling. qRT-PCR showed increased mRNA expression of CAF markers FAP-α, PDGFR-β and prolyl-4-hydroxylase in BCC. Peritumoural skin (but not buttock skin) also exhibited high expression of PDGFR-β and prolyl-4-hydroxylase but not FAP-α. We found a similar pattern for the CAF-associated chemokines CCL17, CCL18, CCL22, CCL25, CXCL12 and IL6 with high expression in BCC and peritumoural skin but absence in buttock skin. Immunofluorescence revealed correlation between FAP-α and PDGFR-β and CXCL12 and CCL17. Matrix remodeling is the most prominent molecular feature of BCC. CAFs are present within BCC stroma and associated with increased expression of chemokines involved in tumour progression and immunosuppression (CXCL12, CCL17). Fibroblasts from chronically sun-exposed skin near tumours show gene expression patterns resembling that of CAFs, indicating that stromal fibroblasts in cancer-free surgical BCC margins exhibit a tumour promoting phenotype.
NASA Astrophysics Data System (ADS)
Acharya, Sanghamitra; Ray, J.; Patro, T. U.; Alegaonkar, Prashant; Datar, Suwarna
2018-03-01
The key factors to consider when designing microwave absorber materials for eradication of electromagnetic (EM) pollution are absorption of incident EM waves and good impedance matching. By keeping these things in mind, flexible microwave absorber composite films can be fabricated by simple gel casting techniques using reduced graphene oxide (RGO) and strontium ferrite (SF) in a poly(methyl methacrylate) (PMMA) matrix. SF nanoparticles are synthesized by the well known sol-gel method. Subsequently, reduced graphene oxide (RGO) and SF nanocomposite (RGOSF) are prepared through a chemical reduction method using hydrazine. The structure, morphology, chemical composition, thermal stability and magnetic properties of the nanocomposite are characterized in detail by various techniques. The SF particles are found to be nearly 500 nm and decorated on RGO sheets as revealed by field emission scanning electron microscopy and transmission electron microscopy analysis. Fourier transform infrared and and Raman spectroscopy clearly show the presence of SF in the graphene sheet by the lower peak positions. Finally, ternary polymer composites of RGO/SF/PMMA are prepared by an in situ polymerization method. Magnetic and dielectric studies of the composite reveal that the presence of RGO/SF/PMMA lead to polarization effects contributing to dielectric loss. Also, RGO surrounding SF provides a conductive network in the polymer matrix which is in turn responsible for the magnetic loss in the composite. Thus, the permittivity as well as the permeability of the composite can be controlled by an appropriate combination of RGO and SF in PMMA. More than 99% absorption efficiency is achieved by a suitable combination of magneto-dielectric coupling in the X-band frequency range by incorporating 9 wt% of RGO and 1 wt% of SF in the polymer matrix.
Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating.
Van Nieuwenhove, Ine; Salamon, Achim; Peters, Kirsten; Graulus, Geert-Jan; Martins, José C; Frankel, Daniel; Kersemans, Ken; De Vos, Filip; Van Vlierberghe, Sandra; Dubruel, Peter
2016-11-05
The present work aims at constructing the ideal scaffold matrix of which the physico-chemical properties can be altered according to the targeted tissue regeneration application. Ideally, this scaffold should resemble the natural extracellular matrix (ECM) as close as possible both in terms of chemical composition and mechanical properties. Therefore, hydrogel films were developed consisting of methacrylamide-modified gelatin and starch-pentenoate building blocks because the ECM can be considered as a crosslinked hydrogel network consisting of both polysaccharides and structural, signaling and cell-adhesive proteins. For the gelatin hydrogels, three different substitution degrees were evaluated including 31%, 72% and 95%. A substitution degree of 32% was applied for the starch-pentenoate building block. Pure gelatin hydrogels films as well as interpenetrating networks with gelatin and starch were developed. Subsequently, these films were characterized using gel fraction and swelling experiments, high resolution-magic angle spinning (1)H NMR spectroscopy, rheology, infrared mapping and atomic force microscopy. The results indicate that both the mechanical properties and the swelling extent of the developed hydrogel films can be controlled by varying the chemical composition and the degree of substitution of the methacrylamide-modified gelatin applied. The storage moduli of the developed materials ranged between 14 and 63kPa. Phase separation was observed for the IPNs for which separated starch domains could be distinguished located in the surrounding gelatin matrix. Furthermore, we evaluated the affinity of aggrecan for gelatin by atomic force microscopy and radiolabeling experiments. We found that aggrecan can be applied as a bioactive coating for gelatin hydrogels by a straightforward physisorption procedure. Thus, we achieved distinct fine-tuning of the physico-chemical properties of these hydrogels which render them promising candidates for tissue engineering approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cammas, Laura; Wolfe, Jordan; Choi, Sue-Yeon; Dedhar, Shoukat; Beggs, Hilary E
2012-01-01
Purpose. The lens is a powerful model system to study integrin-mediated cell-matrix interaction in an in vivo context, as it is surrounded by a true basement membrane, the lens capsule. To characterize better the function of integrin-linked kinase (ILK), we examined the phenotypic consequences of its deletion in the developing mouse lens. Methods. ILK was deleted from the embryonic lens either at the time of placode invagination using the Le-Cre line or after initial lens formation using the Nestin-Cre line. Results. Early deletion of ILK leads to defects in extracellular matrix deposition that result in lens capsule rupture at the lens vesicle stage (E13.5). If ILK was deleted at a later time-point after initial establishment of the lens capsule, rupture was prevented. Instead, ILK deletion resulted in secondary fiber migration defects and, most notably, in cell death of the anterior epithelium (E18.5 − P0). Remarkably, dying cells did not stain positively for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or activated-caspase 3, suggesting that they were dying from a non-apoptotic mechanism. Moreover, cross to a Baxfl/fl/Bak−/− mouse line that is resistant to most forms of apoptosis failed to promote cell survival in the ILK-deleted lens epithelium. Electron microscopy revealed the presence of numerous membranous vacuoles containing degrading cellular material. Conclusions. Our study reveals a role for ILK in extracellular matrix organization, fiber migration, and cell survival. Furthermore, to our knowledge we show for the first time that ILK disruption results in non-apoptotic cell death in vivo. PMID:22491404
Tajiri, Shinichiro; Kanamaru, Taro; Kamada, Makoto; Makoto, Kamada; Konno, Tsutomu; Nakagami, Hiroaki
2010-01-04
The objective of the present work is to develop an extended-release dosage form of cevimeline. Two types of extended-release tablets (simple matrix tablets and press-coated tablets) were prepared and their potential as extended-release dosage forms were assessed. Simple matrix tablets have a large amount of hydroxypropylcellulose as a rate-controlling polymer and the matrix is homogeneous throughout the tablet. The press-coated tablets consisted of a matrix core tablet, which was completely surrounded by an outer shell containing a large amount of hydroxypropylcellulose. The simple matrix tablets could not sustain the release of cevimeline effectively. In contrast, the press-coated tablets showed a slower dissolution rate compared with simple matrix tablets and the release curve was nearly linear. The dissolution of cevimeline from the press-coated tablets was not markedly affected by the pH of the dissolution medium or by a paddle rotating speed over the range of 50-200 rpm. Furthermore, cevimeline was constantly released from the press-coated tablets in the gastrointestinal tract and the steady-state plasma drug levels were maintained in beagle dogs. These results suggested that the designed PC tablets have a potential for extended-release dosage forms.
2012-01-01
We propose a tripartite biochemical mechanism for memory. Three physiologic components are involved, namely, the neuron (individual and circuit), the surrounding neural extracellular matrix, and the various trace metals distributed within the matrix. The binding of a metal cation affects a corresponding nanostructure (shrinking, twisting, expansion) and dielectric sensibility of the chelating node (address) within the matrix lattice, sensed by the neuron. The neural extracellular matrix serves as an electro-elastic lattice, wherein neurons manipulate multiple trace metals (n > 10) to encode, store, and decode coginive information. The proposed mechanism explains brains low energy requirements and high rates of storage capacity described in multiples of Avogadro number (NA = 6 × 1023). Supportive evidence correlates memory loss to trace metal toxicity or deficiency, or breakdown in the delivery/transport of metals to the matrix, or its degradation. Inherited diseases revolving around dysfunctional trace metal metabolism and memory dysfunction, include Alzheimer's disease (Al, Zn, Fe), Wilson’s disease (Cu), thalassemia (Fe), and autism (metallothionein). The tripartite mechanism points to the electro-elastic interactions of neurons with trace metals distributed within the neural extracellular matrix, as the molecular underpinning of “synaptic plasticity” affecting short-term memory, long-term memory, and forgetting. PMID:23050060
Rispoli, L A; Payton, R R; Gondro, C; Saxton, A M; Nagle, K A; Jenkins, B W; Schrick, F N; Edwards, J L
2013-08-01
When the effects of heat stress are detrimental during maturation, cumulus cells are intimately associated with the oocyte. To determine the extent to which heat stress affects these cells, in this study, transcriptome profiles of the cumulus that surrounded control and heat-stressed oocytes (41 °C during the first 12 h only and then shifted back to 38.5 °C) during in vitro maturation (IVM) were compared using Affymetrix bovine microarrays. The comparison of cumulus-derived profiles revealed a number of transcripts whose levels were increased (n=11) or decreased (n=13) ≥ twofold after heat stress exposure (P<0.01), sufficient to reduce the development of blastocysts by 46.4%. In a separate study, quantitative PCR (qPCR) was used to confirm heat-induced differences in the relative abundances of the transcripts of five different genes (caveolin 1, matrix metallopeptidase 9, FSH receptor, Indian hedgehog homolog, and inducible nitric oxide synthase). Heat stress exposure resulted in >1.7-fold decrease in the protein levels of latent matrix metallopeptidase 9 (proMMP9). Heat-induced reductions in transcript levels were noted at 6 h IVM with reductions in proMMP9 protein levels at 18 h IVM (P=0.0002). Independent of temperature, proMMP9 levels at 24 h IVM were positively correlated with the development rate of blastocysts (R²=0.36; P=0.002). The production of progesterone increased during maturation; heat-induced increases were evident by 12 h IVM (P=0.002). Both MMP9 and progesterone are associated with the developmental competence of the oocyte; thus, it seems plausible for some of the negative consequences of heat stress on the cumulus-oocyte complex to be mediated through heat-induced perturbations occurring in the surrounding cumulus.
A three dimensional micropatterned tumor model for breast cancer cell migration studies.
Peela, Nitish; Sam, Feba S; Christenson, Wayne; Truong, Danh; Watson, Adam W; Mouneimne, Ghassan; Ros, Robert; Nikkhah, Mehdi
2016-03-01
Breast cancer cell invasion is a highly orchestrated process driven by a myriad of complex microenvironmental stimuli, making it difficult to isolate and assess the effects of biochemical or biophysical cues (i.e. tumor architecture, matrix stiffness) on disease progression. In this regard, physiologically relevant tumor models are becoming instrumental to perform studies of cancer cell invasion within well-controlled conditions. Herein, we explored the use of photocrosslinkable hydrogels and a novel, two-step photolithography technique to microengineer a 3D breast tumor model. The microfabrication process enabled precise localization of cell-encapsulated circular constructs adjacent to a low stiffness matrix. To validate the model, breast cancer cell lines (MDA-MB-231, MCF7) and non-tumorigenic mammary epithelial cells (MCF10A) were embedded separately within the tumor model, all of which maintained high viability throughout the experiments. MDA-MB-231 cells exhibited extensive migratory behavior and invaded the surrounding matrix, whereas MCF7 or MCF10A cells formed clusters that stayed confined within the circular tumor regions. Additionally, real-time cell tracking indicated that the speed and persistence of MDA-MB-231 cells were substantially higher within the surrounding matrix compared to the circular constructs. Z-stack imaging of F-actin/α-tubulin cytoskeletal organization revealed unique 3D protrusions in MDA-MB-231 cells and an abundance of 3D clusters formed by MCF7 and MCF10A cells. Our results indicate that gelatin methacrylate (GelMA) hydrogel, integrated with the two-step photolithography technique, has great promise in the development of 3D tumor models with well-defined architecture and tunable stiffness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Field investigation into unsaturated flow and transport in a fault: Model analyses
Liu, H.-H.; Salve, R.; Wang, J.-S.; Bodvarsson, G.S.; Hudson, D.
2004-01-01
Results of a fault test performed in the unsaturated zone of Yucca Mountain, Nevada, were analyzed using a three-dimensional numerical model. The fault was explicitly represented as a discrete feature and the surrounding rock was treated as a dual-continuum (fracture-matrix) system. Model calibration against seepage and water-travel-velocity data suggests that lithophysal cavities connected to fractures can considerably enhance the effective fracture porosity and therefore retard water flow in fractures. Comparisons between simulation results and tracer concentration data also indicate that matrix diffusion is an important mechanism for solute transport in unsaturated fractured rock. We found that an increased fault-matrix and fracture-matrix interface areas were needed to match the observed tracer data, which is consistent with previous studies. The study results suggest that the current site-scale model for the unsaturated zone of Yucca Mountain may underestimate radionuclide transport time within the unsaturated zone, because an increased fracture-matrix interface area and the increased effective fracture porosity arising from lithophysal cavities are not considered in the current site-scale model. ?? 2004 Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Myriounis, Dimitrios
Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperatures and aerospace applications. Metal matrix composites combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical properties of structural components by replacing existing superalloys.The satisfactory performance of metal matrix composites depends critically on their integrity, the heart of which is the quality of the matrix-reinforcement interface. The nature of the interface depends on the processing of the metal matrix composite component. At the micro-level the development of local stress concentration gradients around the ceramic reinforcement, as the metal matrix attempts to deform during processing, can be very different to the nominal conditions and play a crucial role in important microstructural events such as segregation and precipitation at the matrix-reinforcement interface. These events dominate the cohesive strength and subsequent mechanical properties of the interface.At present the relationship between the strength properties of metal matrix composites and the details of the thermo-mechanical forming processes is not well understood.The purpose of the study is to investigate several strengthening mechanisms and the effect of thermo-mechanical processing of SiCp reinforced A359 aluminium alloy composites on the particle-matrix interface and the overall mechanical properties of the material. From experiments performed on composite materials subjected to various thermo-mechanical conditions and by observation using SEM microanalysis and mechanical testing, data were obtained, summarised and mathematically/statistically analysed upon their significance.The Al/SiCp composites studied, processed in specific thermo-mechanical conditions in order to attain higher values of interfacial fracture strength, due to precipitation hardening and segregation mechanisms, also exhibited enhanced bulk mechanical and fracture resistant properties.An analytical model to predict the interfacial fracture strength in the presence of material segregation was also developed during this research effort. Its validity was determined based on the data gathered from the experiments.The tailoring of the properties due to the microstructural modification of the composites was examined in relation to the experimental measurements obtained, which define the macroscopical behaviour of the material.
Modifying Matrix Materials to Increase Wetting and Adhesion
NASA Technical Reports Server (NTRS)
Zhong, Katie
2011-01-01
In an alternative approach to increasing the degrees of wetting and adhesion between the fiber and matrix components of organic-fiber/polymer matrix composite materials, the matrix resins are modified. Heretofore, it has been common practice to modify the fibers rather than the matrices: The fibers are modified by chemical and/or physical surface treatments prior to combining the fibers with matrix resins - an approach that entails considerable expense and usually results in degradation (typically, weakening) of fibers. The alternative approach of modifying the matrix resins does not entail degradation of fibers, and affords opportunities for improving the mechanical properties of the fiber composites. The alternative approach is more cost-effective, not only because it eliminates expensive fiber-surface treatments but also because it does not entail changes in procedures for manufacturing conventional composite-material structures. The alternative approach is best described by citing an example of its application to a composite of ultra-high-molecular- weight polyethylene (UHMWPE) fibers in an epoxy matrix. The epoxy matrix was modified to a chemically reactive, polarized epoxy nano-matrix to increase the degrees of wetting and adhesion between the fibers and the matrix. The modification was effected by incorporating a small proportion (0.3 weight percent) of reactive graphitic nanofibers produced from functionalized nanofibers into the epoxy matrix resin prior to combining the resin with the UHMWPE fibers. The resulting increase in fiber/matrix adhesion manifested itself in several test results, notably including an increase of 25 percent in the maximum fiber pullout force and an increase of 60-65 percent in fiber pullout energy. In addition, it was conjectured that the functionalized nanofibers became involved in the cross linking reaction of the epoxy resin, with resultant enhancement of the mechanical properties and lower viscosity of the matrix.
Wang, Ye; He, Honghui; Chang, Jintao; Zeng, Nan; Liu, Shaoxiong; Li, Migao; Ma, Hui
2015-12-01
Polarized light imaging can provide rich microstructural information of samples, and has been applied to the detections of various abnormal tissues. In this paper, we report a polarized light microscope based on Mueller matrix imaging by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission optical microscope. The maximum errors for the absolute values of Mueller matrix elements are reduced to 0.01 after calibration. This Mueller matrix microscope has been used to examine human cervical and liver cancerous tissues with fibrosis. Images of the transformed Mueller matrix parameters provide quantitative assessment on the characteristic features of the pathological tissues. Contrast mechanism of the experimental results are backed up by Monte Carlo simulations based on the sphere-cylinder birefringence model, which reveal the relationship between the pathological features in the cancerous tissues at the cellular level and the polarization parameters. Both the experimental and simulated data indicate that the microscopic transformed Mueller matrix parameters can distinguish the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for liver cancer. With its simple structure, fast measurement and high precision, polarized light microscope based on Mueller matrix shows a good diagnosis application prospect. Copyright © 2015 Elsevier Ltd. All rights reserved.
2013-03-01
of coarser-scale materials and structures containing Kevlar fibers (e.g., yarns, fabrics, plies, lamina, and laminates ). Journal of Materials...Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar -Fiber-Reinforced Polymer-Matrix Composites M. Grujicic, B. Pandurangan, J.S...extensive set of molecular-level computational analyses regarding the role of various microstructural/morphological defects on the Kevlar fiber
Metal-matrix radiation-protective composite materials based on aluminum
NASA Astrophysics Data System (ADS)
Cherdyntsev, V. V.; Gorshenkov, M. V.; Danilov, V. D.; Kaloshkin, S. D.; Gul'bin, V. N.
2013-05-01
A method of mechanical activation providing a homogeneous distribution of reinforcing boron-bearing components and tungsten nanopowder in the matrix is recommended for making an aluminum-based radiation- protective material. Joint mechanical activation and subsequent extrusion are used to produce aluminum- based composites. The structure and the physical, mechanical and tribological characteristics of the composite materials are studied.
Mechanical behaviour of degradable phosphate glass fibres and composites-a review.
Colquhoun, R; Tanner, K E
2015-12-23
Biodegradable materials are potentially an advantageous alternative to the traditional metallic fracture fixation devices used in the reconstruction of bone tissue defects. This is due to the occurrence of stress shielding in the surrounding bone tissue that arises from the absence of mechanical stimulus to the regenerating bone due to the mismatch between the elastic modulus of bone and the metal implant. However although degradable polymers may alleviate such issues, these inert materials possess insufficient mechanical properties to be considered as a suitable alternative to current metallic devices at sites of sufficient mechanical loading. Phosphate based glasses are an advantageous group of materials for tissue regenerative applications due to their ability to completely degrade in vivo at highly controllable rates based on the specific glass composition. Furthermore the release of the glass's constituent ions can evoke a therapeutic stimulus in vivo (i.e. osteoinduction) whilst also generating a bioactive response. The processing of these materials into fibres subsequently allows them to act as reinforcing agents in degradable polymers to simultaneously increase its mechanical properties and enhance its in vivo response. However despite the various review articles relating to the compositional influences of different phosphate glass systems, there has been limited work summarising the mechanical properties of different phosphate based glass fibres and their subsequent incorporation as a reinforcing agent in degradable composite materials. As a result, this review article examines the compositional influences behind the development of different phosphate based glass fibre compositions intended as composite reinforcing agents along with an analysis of different potential composite configurations. This includes variations in the fibre content, matrix material and fibre architecture as well as other novel composites designs.
A 3/D finite element approach for metal matrix composites based on micromechanical models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svobodnik, A.J.; Boehm, H.J.; Rammerstorfer, F.G.
Based on analytical considerations by Dvorak and Bahel-El-Din, a 3/D finite element material law has been developed for the elastic-plastic analysis of unidirectional fiber-reinforced metal matrix composites. The material law described in this paper has been implemented in the finite element code ABAQUS via the user subroutine UMAT. A constitutive law is described under the assumption that the fibers are linear-elastic and the matrix is of a von Mises-type with a Prager-Ziegler kinematic hardening rule. The uniaxial effective stress-strain relationship of the matrix in the plastic range is approximated by a Ramberg-Osgood law, a linear hardening rule or a nonhardeningmore » rule. Initial yield surface of the matrix material and for the fiber reinforced composite are compared to show the effect of reinforcement. Implementation of this material law in a finite element program is shown. Furthermore, the efficiency of substepping schemes and stress corrections for the numerical integration of the elastic-plastic stress-strain relations for anisotropic materials are investigated. The results of uniaxial monotonic tests of a boron/aluminum composite are compared to some finite element analyses based on micromechanical considerations. Furthermore a complete 3/D analysis of a tensile test specimen made of a silicon-carbide/aluminum MMC and the analysis of an MMC inlet inserted in a homogenous material are shown. 12 refs.« less
Zhang, Boyang; Montgomery, Miles; Chamberlain, M Dean; Ogawa, Shinichiro; Korolj, Anastasia; Pahnke, Aric; Wells, Laura A; Massé, Stéphane; Kim, Jihye; Reis, Lewis; Momen, Abdul; Nunes, Sara S; Wheeler, Aaron R; Nanthakumar, Kumaraswamy; Keller, Gordon; Sefton, Michael V; Radisic, Milica
2016-06-01
We report the fabrication of a scaffold (hereafter referred to as AngioChip) that supports the assembly of parenchymal cells on a mechanically tunable matrix surrounding a perfusable, branched, three-dimensional microchannel network coated with endothelial cells. The design of AngioChip decouples the material choices for the engineered vessel network and for cell seeding in the parenchyma, enabling extensive remodelling while maintaining an open-vessel lumen. The incorporation of nanopores and micro-holes in the vessel walls enhances permeability, and permits intercellular crosstalk and extravasation of monocytes and endothelial cells on biomolecular stimulation. We also show that vascularized hepatic tissues and cardiac tissues engineered by using AngioChips process clinically relevant drugs delivered through the vasculature, and that millimetre-thick cardiac tissues can be engineered in a scalable manner. Moreover, we demonstrate that AngioChip cardiac tissues implanted with direct surgical anastomosis to the femoral vessels of rat hindlimbs establish immediate blood perfusion.
Traction forces during collective cell motion.
Gov, N S
2009-08-01
Collective motion of cell cultures is a process of great interest, as it occurs during morphogenesis, wound healing, and tumor metastasis. During these processes cell cultures move due to the traction forces induced by the individual cells on the surrounding matrix. A recent study [Trepat, et al. (2009). Nat. Phys. 5, 426-430] measured for the first time the traction forces driving collective cell migration and found that they arise throughout the cell culture. The leading 5-10 rows of cell do play a major role in directing the motion of the rest of the culture by having a distinct outwards traction. Fluctuations in the traction forces are an order of magnitude larger than the resultant directional traction at the culture edge and, furthermore, have an exponential distribution. Such exponential distributions are observed for the sizes of adhesion domains within cells, the traction forces produced by single cells, and even in nonbiological nonequilibrium systems, such as sheared granular materials. We discuss these observations and their implications for our understanding of cellular flows within a continuous culture.
Borochowitz, Z; Langer, L O; Gruber, H E; Lachman, R; Katznelson, M B; Rimoin, D L
1993-02-01
We report on a "new" severe short-limb bone dysplasia which can be labeled descriptively a spondylo-meta-epiphyseal dysplasia. The 3 patients were born to 2 unrelated Sepharadic Jewish families and a Puerto Rican family. Clinical abnormalities include small stature with short limbs including short hands, a short nose with wide nasal bridge and wide nostrils, a long philtrum, ocular hypertelorism, retro/micrognathia, and a narrow chest. Radiological abnormalities include platyspondyly, short tubular bones with very abnormal metaphyses and epiphyses beyond early infancy, short ribs, and a typical evolution of bony changes over time. Chondroosseous morphology and ultrastructure document sparse matrix and degenerating chondrocytes surrounded by dense amorphous material in the 1 patient studied. Consanguinity is present in 1 family. In addition to the described patient, 2 other short-limb sibs, who did not survive infancy, were born into this family. Even in the absence of any photographic or radiologic documentation of these other 2 infants, autosomal recessive mode of inheritance seems probable.
NASA Astrophysics Data System (ADS)
Zhang, Boyang; Montgomery, Miles; Chamberlain, M. Dean; Ogawa, Shinichiro; Korolj, Anastasia; Pahnke, Aric; Wells, Laura A.; Massé, Stéphane; Kim, Jihye; Reis, Lewis; Momen, Abdul; Nunes, Sara S.; Wheeler, Aaron R.; Nanthakumar, Kumaraswamy; Keller, Gordon; Sefton, Michael V.; Radisic, Milica
2016-06-01
We report the fabrication of a scaffold (hereafter referred to as AngioChip) that supports the assembly of parenchymal cells on a mechanically tunable matrix surrounding a perfusable, branched, three-dimensional microchannel network coated with endothelial cells. The design of AngioChip decouples the material choices for the engineered vessel network and for cell seeding in the parenchyma, enabling extensive remodelling while maintaining an open-vessel lumen. The incorporation of nanopores and micro-holes in the vessel walls enhances permeability, and permits intercellular crosstalk and extravasation of monocytes and endothelial cells on biomolecular stimulation. We also show that vascularized hepatic tissues and cardiac tissues engineered by using AngioChips process clinically relevant drugs delivered through the vasculature, and that millimetre-thick cardiac tissues can be engineered in a scalable manner. Moreover, we demonstrate that AngioChip cardiac tissues implanted with direct surgical anastomosis to the femoral vessels of rat hindlimbs establish immediate blood perfusion.
Biodegradable composite scaffolds: a strategy to modulate stem cell behaviour.
Armentano, Ilaria; Fortunati, Elena; Mattioli, Samantha; Rescignano, Nicolatta; Kenny, José M
2013-04-01
The application of new biomaterial technologies offers the potential to direct the stem cell fate, targeting the delivery of cells and reducing immune rejection, thereby supporting the development of regenerative medicine. Cells respond to their surrounding structure and with nanostructures exhibit unique proliferative and differentiation properties. This review presents the relevance, the promising perspectives and challenges of current biodegradable composite scaffolds in terms of material properties, processing technology and surface modification, focusing on significant recent patents in these fields. It has been reported how biodegradable porous composite scaffolds can be engineered with initial properties that reproduce the anisotropy, viscoelasticity, tension-compression non-linearity of different tissues by introducing specific nanostructures. Moreover the modulation of electrical, morphological, surface and topographic scaffold properties enables specific stem cell response. Recent advances in nanotechnology have allowed to engineer novel biomaterials with these complexity levels. Understanding the specific biological response triggered by various aspects of the fibrous environment is important in guiding the design and engineering of novel substrates that mimic the native cell matrix interactions in vivo.
NASA Astrophysics Data System (ADS)
Drera, Saleem S.; Hofman, Gerard L.; Kee, Robert J.; King, Jeffrey C.
2014-10-01
Low-enriched uranium (LEU) fuel plates for high power materials test reactors (MTR) are composed of nominally spherical uranium-molybdenum (U-Mo) particles within an aluminum matrix. Fresh U-Mo particles typically range between 10 and 100 μm in diameter, with particle volume fractions up to 50%. As the fuel ages, reaction-diffusion processes cause the formation and growth of interaction layers that surround the fuel particles. The growth rate depends upon the temperature and radiation environment. The cellular automaton algorithm described in this paper can synthesize realistic random fuel-particle structures and simulate the growth of the intermetallic interaction layers. Examples in the present paper pack approximately 1000 particles into three-dimensional rectangular fuel structures that are approximately 1 mm on each side. The computational approach is designed to yield synthetic microstructures consistent with images from actual fuel plates and is validated by comparison with empirical data on actual fuel plates.
High resolution monitoring of strain fields in concrete during hydraulic fracturing processes.
Chen, Rongzhang; Zaghloul, Mohamed A S; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C; Zolfaghari, Navid; Bunger, Andrew P; Li, Ming-Jun; Chen, Kevin P
2016-02-22
We present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this paper provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.
Modification of Fe-B based metallic glasses using swift heavy ions
NASA Astrophysics Data System (ADS)
Rodriguez, M. D.; Trautmann, C.; Toulemonde, M.; Afra, B.; Bierschenk, T.; Giulian, R.; Kirby, N.; Kluth, P.
2012-10-01
We report on small-angle x-ray scattering (SAXS) measurements of amorphous Fe80B20, Fe85B15, Fe81B13.5Si3.5C2, and Fe40Ni40B20 metallic alloys irradiated with 11.1 MeV/u 132Xe, 152Sm, 197Au, and 8.2 MeV/u 238U ions. SAXS experiments are nondestructive and give evidence for ion track formation including quantitative information about the size of the track radius. The measurements also indicate a cylindrical track structure with a sharp transition to the undamaged surrounding matrix material. Results are compared with calculations using an inelastic thermal spike model to deduce the critical energy loss for the track formation threshold. The damage recovery of ion tracks produced in Fe80B20 by 11.1 MeV/u 197Au ions was studied by means of isochronal annealing yielding an activation energy of 0.4 ± 0.1 eV
High resolution monitoring of strain fields in concrete during hydraulic fracturing processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong
Here, we present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this papermore » provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.« less
Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations
NASA Technical Reports Server (NTRS)
Hinkley, J.A.; Clancy, T.C.; Frankland, S.J.V.
2009-01-01
Atomistic models of epoxy polymers were built in order to assess the effect of structure at the nanometer scale on the resulting bulk properties such as elastic modulus and thermal conductivity. Atomistic models of both bulk polymer and carbon nanotube polymer composites were built. For the bulk models, the effect of moisture content and temperature on the resulting elastic constants was calculated. A relatively consistent decrease in modulus was seen with increasing temperature. The dependence of modulus on moisture content was less consistent. This behavior was seen for two different epoxy systems, one containing a difunctional epoxy molecule and the other a tetrafunctional epoxy molecule. Both epoxy structures were crosslinked with diamine curing agents. Multifunctional properties were calculated with the nanocomposite models. Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between the carbon nanotube and the surrounding epoxy matrix. These estimated values were used in a multiscale model in order to predict the thermal conductivity of a nanocomposite as a function of the nanometer scaled molecular structure.
High resolution monitoring of strain fields in concrete during hydraulic fracturing processes
Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; ...
2016-02-17
Here, we present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this papermore » provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.« less
Disseminating technological information on remote sensing to potential users
NASA Technical Reports Server (NTRS)
Russell, J. D.; Lindenlaub, J. C.
1977-01-01
The Laboratory for Applications of Remote Sensing developed materials and programs which range from short tutorial brochures to post-doctoral research programs which may span several years. To organize both the content and the instructional techniques, a matrix of instructional materials was conceptualized. Each row in the matrix represents a subject area in remote sensing and each column in the matrix represents a different type media or instructional strategy.
Liu, Junjie; Zhu, Wenqing; Yu, Zhongliang; Wei, Xiaoding
2018-07-01
Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve surprisingly with "low-grade" matrix materials, and discontinuities (often regarded as "defects") may play an important role in energy dissipation. Counter-intuitive as it may seem, our work helps understanding the secrets of the outstanding dynamic properties of some biological materials, and inspire novel ideas for man-made composites. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Razzaq, Alaa Mohammed; Majid, Dayang Laila Abang Abdul; Ishak, M. R.; B, Uday M.
2017-05-01
The development of new methods for addition fine ceramic powders to Al aluminium alloy melts, which would lead to more uniform distribution and effective incorporation of the reinforcement particles into the aluminium matrix alloy. Recently the materials engineering research has moved to composite materials from monolithic, adapting to the global need for lightweight, low cost, quality, and high performance advanced materials. Among the different methods, stir casting is one of the simplest ways of making aluminium matrix composites. However, it suffers from poor distribution and combination of the reinforcement ceramic particles in the metal matrix. These problems become significantly effect to reduce reinforcement size, more agglomeration and tendency with less wettability for the ceramic particles in the melt process. Many researchers have carried out different studies on the wettability between the metal matrix and dispersion phase, which includes added wettability agents, fluxes, preheating the reinforcement particles, coating the reinforcement particles, and use composting techniques. The enhancement of wettability of ceramic particles by the molten matrix alloy and the reinforcement particles distribution improvement in the solidified matrix is the main objective for many studies that will be discussed in this paper.
Friedman, Lisa; Kolter, Roberto
2004-01-01
Pseudomonas aeruginosa forms biofilms, which are cellular aggregates encased in an extracellular matrix. Molecular genetics studies of three common autoaggregative phenotypes, namely wrinkled colonies, pellicles, and solid-surface-associated biofilms, led to the identification of two loci, pel and psl, that are involved in the production of carbohydrate-rich components of the biofilm matrix. The pel gene cluster is involved in the production of a glucose-rich matrix material in P. aeruginosa strain PA14 (L. Friedman and R. Kolter, Mol. Microbiol. 51:675-690, 2004). Here we investigate the role of the pel gene cluster in P. aeruginosa strain ZK2870 and identify a second genetic locus, termed psl, involved in the production of a mannose-rich matrix material. The 11 predicted protein products of the psl genes are homologous to proteins involved in carbohydrate processing. P. aeruginosa is thus able to produce two distinct carbohydrate-rich matrix materials. Either carbohydrate-rich matrix component appears to be sufficient for mature biofilm formation, and at least one of them is required for mature biofilm formation in P. aeruginosa strains PA14 and ZK2870. PMID:15231777
Friedman, Lisa; Kolter, Roberto
2004-07-01
Pseudomonas aeruginosa forms biofilms, which are cellular aggregates encased in an extracellular matrix. Molecular genetics studies of three common autoaggregative phenotypes, namely wrinkled colonies, pellicles, and solid-surface-associated biofilms, led to the identification of two loci, pel and psl, that are involved in the production of carbohydrate-rich components of the biofilm matrix. The pel gene cluster is involved in the production of a glucose-rich matrix material in P. aeruginosa strain PA14 (L. Friedman and R. Kolter, Mol. Microbiol. 51:675-690, 2004). Here we investigate the role of the pel gene cluster in P. aeruginosa strain ZK2870 and identify a second genetic locus, termed psl, involved in the production of a mannose-rich matrix material. The 11 predicted protein products of the psl genes are homologous to proteins involved in carbohydrate processing. P. aeruginosa is thus able to produce two distinct carbohydrate-rich matrix materials. Either carbohydrate-rich matrix component appears to be sufficient for mature biofilm formation, and at least one of them is required for mature biofilm formation in P. aeruginosa strains PA14 and ZK2870. Copyright 2004 American Society for Microbiology
Advanced ceramic matrix composites for TPS
NASA Technical Reports Server (NTRS)
Rasky, Daniel J.
1992-01-01
Recent advances in ceramic matrix composite (CMC) technology provide considerable opportunity for application to future aircraft thermal protection system (TPS), providing materials with higher temperature capability, lower weight, and higher strength and stiffness than traditional materials. The Thermal Protection Material Branch at NASA Ames Research Center has been making significant progress in the development, characterization, and entry simulation (arc-jet) testing of new CMC's. This protection gives a general overview of the Ames Thermal Protection Materials Branch research activities, followed by more detailed descriptions of recent advances in very-high temperature Zr and Hf based ceramics, high temperature, high strength SiC matrix composites, and some activities in polymer precursors and ceramic coating processing. The presentation closes with a brief comparison of maximum heat flux capabilities of advanced TPS materials.
Computational modeling of three-dimensional ECM-rigidity sensing to guide directed cell migration.
Kim, Min-Cheol; Silberberg, Yaron R; Abeyaratne, Rohan; Kamm, Roger D; Asada, H Harry
2018-01-16
Filopodia have a key role in sensing both chemical and mechanical cues in surrounding extracellular matrix (ECM). However, quantitative understanding is still missing in the filopodial mechanosensing of local ECM stiffness, resulting from dynamic interactions between filopodia and the surrounding 3D ECM fibers. Here we present a method for characterizing the stiffness of ECM that is sensed by filopodia based on the theory of elasticity and discrete ECM fiber. We have applied this method to a filopodial mechanosensing model for predicting directed cell migration toward stiffer ECM. This model provides us with a distribution of force and displacement as well as their time rate of changes near the tip of a filopodium when it is bound to the surrounding ECM fibers. Aggregating these effects in each local region of 3D ECM, we express the local ECM stiffness sensed by the cell and explain polarity in the cellular durotaxis mechanism.
Stewart, H.B.
1958-12-23
A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.
Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method
Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.
1999-05-11
A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.
Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method
Yoon, Woo Y.; Jones, James L.; Nigg, David W.; Harker, Yale D.
1999-01-01
A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.
Novel, inorganic composites using porous, alkali-activated, aluminosilicate binders
NASA Astrophysics Data System (ADS)
Musil, Sean
Geopolymers are an inorganic polymeric material composed of alumina, silica, and alkali metal oxides. Geopolymers are chemical and fire resistant, can be used as refractory adhesives, and are processed at or near ambient temperature. These properties make geopolymer an attractive choice as a matrix material for elevated temperature composites. This body of research investigated numerous different reinforcement possibilities and variants of geopolymer matrix material and characterized their mechanical performance in tension, flexure and flexural creep. Reinforcements can then be chosen based on the resulting properties to tailor the geopolymer matrix composites to a specific application condition. Geopolymer matrix composites combine the ease of processing of polymer matrix composites with the high temperature capability of ceramic matrix composites. This study incorporated particulate, unidirectional fiber and woven fiber reinforcements. Sodium, potassium, and cesium based geopolymer matrices were evaluated with cesium based geopolymer showing great promise as a high temperature matrix material. It showed the best strength retention at elevated temperature, as well as a very low coefficient of thermal expansion when crystallized into pollucite. These qualities made cesium geopolymer the best choice for creep resistant applications. Cesium geopolymer binders were combined with unidirectional continuous polycrystalline mullite fibers (Nextel(TM) 720) and single crystal mullite fibers, then the matrix was crystallized to form cubic pollucite. Single crystal mullite fibers were obtained by the internal crystallization method and show excellent creep resistance up to 1400°C. High temperature flexural strength and flexural creep resistance of pollucite and polycrystalline/single-crystal fibers was evaluated at 1000-1400°C.
Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure.
Zhang, Lei; Le Coz-Botrel, Ronan; Beddoes, Charlotte; Sjöström, Terje; Su, Bo
2017-01-17
Titanium is a material commonly used for dental and orthopaedic implants. However, due to large differences in properties between the titanium metal and the natural bone, stress shielding has been observed in the surrounding area, resulting in bone atrophy, and thus has raised concerns of the use of this material. Ideally implant materials should possess similar properties to the surrounding tissues in order to distribute the load as the joint would naturally, while also possessing a similar porous structure to the bone to enable interaction with the surrounding material. In this paper we report the formation of aligned porous titanium alloy scaffolds with the use of unidirectional freeze casting with a temperature gradient. The resulting scaffolds had a dense bottom part with sufficient strength for loading, while the top part remaining porous in order to allow bone growth in the scaffold and fully integrating with the surrounding tissue. The anisotropic nature of the pores within the titanium alloy samples were observed via micro computed tomography, where a gradient structure similar to bone was observed. The compressive strength of the fabricated scaffolds was found to be up to 427 MPa when measured with the pores aligned with the applied load, depending on the pore density. This is within the range of cortical bone.
ASTM and VAMAS activities in titanium matrix composites test methods development
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Harmon, D. M.; Bartolotta, P. A.; Russ, S. M.
1994-01-01
Titanium matrix composites (TMC's) are being considered for a number of aerospace applications ranging from high performance engine components to airframe structures in areas that require high stiffness to weight ratios at temperatures up to 400 C. TMC's exhibit unique mechanical behavior due to fiber-matrix interface failures, matrix cracks bridged by fibers, thermo-viscoplastic behavior of the matrix at elevated temperatures, and the development of significant thermal residual stresses in the composite due to fabrication. Standard testing methodology must be developed to reflect the uniqueness of this type of material systems. The purpose of this paper is to review the current activities in ASTM and Versailles Project on Advanced Materials and Standards (VAMAS) that are directed toward the development of standard test methodology for titanium matrix composites.
NASA Astrophysics Data System (ADS)
Zhang, Ruiyun; Xu, Shisen; Cheng, Jian; Wang, Hongjian; Ren, Yongqiang
2017-07-01
Low-cost and high-performance matrix materials used in mass production of molten carbonate fuel cell (MCFC) were prepared by automatic casting machine with α-LiAlO2 powder material synthesized by gel-solid method, and distilled water as solvent. The single cell was assembled for generating test, and the good performance of the matrix was verified. The paper analyzed the factors affecting aqueous tape casting matrix preparation, such as solvent content, dispersant content, milling time, blade height and casting machine running speed, providing a solid basis for the mass production of large area environment-friendly matrix used in molten carbonate fuel cell.
Zhang, Yang; Tang, Liguo; Tian, Hua; Wang, Jiyang; Cao, Wenwu; Zhang, Zhongwu
2017-08-15
Resonant ultrasound spectroscopy (RUS) was used to determine the temperature dependence of full matrix material constants of PZT-8 piezoceramics from room temperature to 100 °C. Property variations from sample to samples can be eliminated by using only one sample, so that data self-consistency can be guaranteed. The RUS measurement system error was estimated to be lower than 2.35%. The obtained full matrix material constants at different temperatures all have excellent self-consistency, which can help accurately predict device performance at high temperatures using finite element simulations.
Gas Permeable Chemochromic Compositions for Hydrogen Sensing
NASA Technical Reports Server (NTRS)
Mohajeri, Nahid (Inventor); Muradov, Nazim (Inventor); Tabatabaie-Raissi, Ali (Inventor); Bokerman, Gary (Inventor)
2013-01-01
A (H2) sensor composition includes a gas permeable matrix material intermixed and encapsulating at least one chemochromic pigment. The chemochromic pigment produces a detectable change in color of the overall sensor composition in the presence of H2 gas. The matrix material provides high H2 permeability, which permits fast permeation of H2 gas. In one embodiment, the chemochromic pigment comprises PdO/TiO2. The sensor can be embodied as a two layer structure with the gas permeable matrix material intermixed with the chemochromic pigment in one layer and a second layer which provides a support or overcoat layer.
Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory
NASA Astrophysics Data System (ADS)
Fiala, Lukáš; Jerman, Miloš; Reiterman, Pavel; Černý, Robert
2018-02-01
Silicate materials have an irreplaceable role in the construction industry. They are mainly represented by cement-based- or lime-based materials, such as concrete, cement mortar, or lime plaster, and consist of three phases: the solid matrix and air and water present in the pores. Therefore, their effective thermal conductivity depends on thermal conductivities of the involved phases. Due to the time-consuming experimental determination of the effective thermal conductivity, its calculation by means of homogenization techniques presents a reasonable alternative. In the homogenization theory, both volumetric content and particular property of each phase need to be identified. For porous materials the most problematic part is to accurately identify thermal conductivity of the solid matrix. Due to the complex composition of silicate materials, the thermal conductivity of the matrix can be determined only approximately, based on the knowledge of thermal conductivities of its major compounds. In this paper, the thermal conductivity of silicate matrix is determined using the measurement of a sufficiently large set of experimental data. Cement pastes with different open porosities are prepared, dried, and their effective thermal conductivity is determined using a transient heat-pulse method. The thermal conductivity of the matrix is calculated by means of extrapolation of the effective thermal conductivity versus porosity functions to zero porosity. Its practical applicability is demonstrated by calculating the effective thermal conductivity of a three-phase silicate material and comparing it with experimental data.
Evaluation of matrix metalloproteinase-9 expressions in nasopharyngeal carcinoma patients
NASA Astrophysics Data System (ADS)
Farhat; Asnir, R. A.; Yudhistira, A.; Daulay, E. R.; Puspitasari, D.; Yulius, S.
2018-03-01
Nasopharyngeal carcinoma (NPC) is one of head and neck cancer with a poor prognosis because of the position of the tumor adjacent to the skull base and vital structures. Degradation of extracellular matrix that will cause tumor cells to invade surrounding tissues, vascular or lymphatic vessels. One that plays a role in the extracellular matrix degradation process is matrix metalloproteinase-9 (MMP-9). MMP-9 plays a role in tumor invasion process, metastasis and induction of tumor tissue vascularization. To determine the expression of MMP-9 in patients with nasopharyngeal carcinoma, a descriptive study was conducted by examining immunohistochemistry MMP-9 in 30 NPC tissues that had never received radiotherapy, chemotherapy or combination. Frequency distribution of NPC patient mostly in the age group 41-50 years old and 51-60 years were nine people (30.0%); men (73.3%) and non-keratinizing squamous cell carcinoma (53.3%) histopathology type. The overexpression of MMP-9 in patients with nasopharyngeal carcinoma were mostly found in advance stage.
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
1990-01-01
Aluminide-base intermetallic matrix composites are currently being considered as potential high-temperature materials. One of the key factors in the selection of a reinforcement material is its chemical stability in the matrix. In this study, chemical interactions between iron aluminides and several potential reinforcement materials, which include carbides, oxides, borides, and nitrides, are analyzed from thermodynamic considerations. Several chemically compatible reinforcement materials are identified for the iron aluminides with Al concentrations ranging from 40 to 50 at. pct.
Fracture surface analysis in composite and titanium bonding
NASA Technical Reports Server (NTRS)
Devilbiss, T. A.; Wightman, J. P.
1985-01-01
To understand the mechanical properties of fiber-reinforced composite materials, it is necessary to understand the mechanical properties of the matrix materials and of the reinforcing fibers. Another factor that can affect the mechanical properties of a composite material is the interaction between the fiber and the matrix. In general, composites with strong fiber matrix bonding will give higher modulus, lower toughness composites. Composites with weak bonding will have a lower modulus and more ductility. The situation becomes a bit more complex when all possibilities are examined. To be considered are the following: the properties of the surface layer on the fiber, the interactive forces between polymer and matrix, the surface roughness and porosity of the fiber, and the morphology of the matrix polymer at the fiber surface. In practice, the surface of the fibers is treated to enhance the mechanical properties of a composite. These treatments include anodization, acid etching, high temperature oxidation, and plasma oxidation, to name a few. The goal is to be able to predict the surface properties of carbon fibers treated in various ways, and then to relate surface properties to fiber matrix bonding.
Micromechanics and effective elastoplastic behavior of two-phase metal matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, J.W.; Chen, T.M.
A micromechanical framework is presented to predict effective (overall) elasto-(visco-)plastic behavior of two-phase particle-reinforced metal matrix composites (PRMMC). In particular, the inclusion phase (particle) is assumed to be elastic and the matrix material is elasto-(visco-)plastic. Emanating from Ju and Chen's (1994a,b) work on effective elastic properties of composites containing many randomly dispersed inhomogeneities, effective elastoplastic deformations and responses of PRMMC are estimated by means of the effective yield criterion'' derived micromechanically by considering effects due to elastic particles embedded in the elastoplastic matrix. The matrix material is elastic or plastic, depending on local stress and deformation, and obeys general plasticmore » flow rule and hardening law. Arbitrary (general) loadings and unloadings are permitted in the framework through the elastic predictor-plastic corrector two-step operator splitting methodology. The proposed combined micromechanical and computational approach allows one to estimate overall elastoplastic responses of PRMMCs by accounting for the microstructural information (such as the spatial distribution and micro-geometry of particles), elastic properties of constituent phases, and the plastic behavior of the matrix-only materials.« less
Methods and apparatuses for the development of microstructured nuclear fuels
Jarvinen, Gordon D [Los Alamos, NM; Carroll, David W [Los Alamos, NM; Devlin, David J [Santa Fe, NM
2009-04-21
Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.
Physical Training Methods For Mine Rescuers In 2015
NASA Astrophysics Data System (ADS)
Marin, Laurentiu; Pavel, Topala; Marin, Catalina Daniela; Sandu, Teodor
2015-07-01
Research and development activities presented were aimed at obtaining a nanocomposite polyurethane matrix with special anti-wear, anti-slip and fire-resistant properties. Research and development works were materialized by obtaining polyurethane nanocomposite matrix, by its physico-chemical modification in order to give the desired technological properties and by characterization of the obtained material. Polyurethane nanocomposite matrix was obtained by reacting a PETOL 3 type polyetherpolyol (having a molecular weight of 5000 UAM) with a diisocyanate under well-established reaction conditions. Target specific technological properties were obtained by physical and chemical modification of polyurethane nanocomposite matrix. The final result was getting a pellicle material based on modified nanocomposite polyurethane, with anti-wear, anti-slip and fire-resistant properties, compatible with most substrates encountered in civil and industrial construction: wood, concrete, metal.
Double Cantilever Beam Fracture Toughness Testing of Several Composite Materials
NASA Technical Reports Server (NTRS)
Kessler, Jeff A.; Adams, Donald F.
1992-01-01
Double-cantilever beam fracture toughness tests were performed by the Composite Materials Research Group on several different unidirectional composite materials provided by NASA Langley Research Center. The composite materials consisted of Hercules IM-7 carbon fiber and various matrix resin formulations. Multiple formulations of four different families of matrix resins were tested: LaRC - ITPI, LaRC - IA, RPT46T, and RP67/RP55. Report presents the materials tested and pertinent details supplied by NASA. For each material, three replicate specimens were tested. Multiple crack extensions were performed on each replicate.
Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites
Podtburg, E.R.
1999-06-22
An oxide superconductor composite having improved texture and durability is disclosed. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor. 1 fig.
Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites
Podtburg, Eric R.
1999-01-01
An oxide superconductor composite having improved texture and durability. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor.
HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness
Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.; ...
2016-05-26
Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less
HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.
Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less
Mechanical behavior of glass and Blackglas{reg_sign} ceramic matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stawovy, R.H.; Kampe, S.L.; Curtin, W.A.
Room temperature tensile tests are reported on two low-cost ceramic matrix composite materials, comprised of matrices of Blackglas{reg_sign} and a proprietary glass composition each reinforced with Nicalon{reg_sign} SiC-based fibers. The measured mechanical behaviors, supplemented by post-fracture analysis of fiber pullout and fiber fracture mirrors, are compared in detail to the performance predicted theoretically. This allows for an assessment of the roles of the matrix, fiber strength, residual stresses, fiber geometry, and the fiber/matrix interfacial properties in determining mechanical response. The Blackglas{reg_sign} matrix cracks extensively during processing, and so the mechanical response is controlled by the deformation and fracture of themore » fiber bundle. The interfacial sliding resistance, {tau}, is determined to be {approx} 17 MPa and the in-situ (post-processed) fiber characteristic strength, {sigma}{sub c} is found to be {approx} 2.0 GPa, both similar to values reported in the literature for Nicalon{reg_sign}/CAS-glass systems. For the glass matrix, the unidirectional and cross-ply materials show marked differences in mechanical behavior. In the cross-ply composites, {tau} {approx} 14 MPa and {sigma}{sub c} {approx} 2.9 GPa; in the unidirectional variants, these values were 1.7 MPa and 1.6 GPa, respectively. With these data and other derived micromechanical parameters, the stress-strain and failure point of these materials was predicted using existing models, and excellent agreement with the experiments was obtained. These materials thus perform as expected given the in-situ fiber and interface properties. Notably, the cross-ply glass matrix composites exhibit high fiber strength retention and hence show tensile strengths that are better than other Nicalon{reg_sign}-based materials tested to date.« less
Network analysis of wildfire transmission and implications for risk governance
Alan A. Ager; Cody R. Evers; Michelle A. Day; Haiganoush K. Preisler; Ana M. G. Barros; Max Nielsen-Pincus
2017-01-01
We characterized wildfire transmission and exposure within a matrix of large land tenures (federal, state, and private) surrounding 56 communities within a 3.3 million ha fire prone region of central Oregon US. Wildfire simulation and network analysis were used to quantify the exchange of fire among land tenures and communities and analyze the relative contributions of...
NASA Technical Reports Server (NTRS)
Voronov, Oleg A (Inventor); Street, Kenneth (Inventor); Kear, Bernard H (Inventor)
2017-01-01
Systems, methods, and articles of manufacture related to composite materials are discussed herein. These materials can be based on a mixture of diamond particles with a matrix and fibers or fabrics. The matrix can be formed into the composite material through optional pressurization and via heat treatment. These materials display exceptionally low friction coefficient and superior wear resistance in extreme environments.
Tensile failure criteria for fiber composite materials
NASA Technical Reports Server (NTRS)
Rosen, B. W.; Zweben, C. H.
1972-01-01
The analysis provides insight into the failure mechanics of these materials and defines criteria which serve as tools for preliminary design material selection and for material reliability assessment. The model incorporates both dispersed and propagation type failures and includes the influence of material heterogeneity. The important effects of localized matrix damage and post-failure matrix shear stress transfer are included in the treatment. The model is used to evaluate the influence of key parameters on the failure of several commonly used fiber-matrix systems. Analyses of three possible failure modes were developed. These modes are the fiber break propagation mode, the cumulative group fracture mode, and the weakest link mode. Application of the new model to composite material systems has indicated several results which require attention in the development of reliable structural composites. Prominent among these are the size effect and the influence of fiber strength variability.
Graphene nanocomposites for electrochemical cell electrodes
Zhamu, Aruna; Jang, Bor Z.; Shi, Jinjun
2015-11-19
A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 .mu.m; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.
González-Serrano, José; López-Pintor, Rosa María; Sanz-Sánchez, Ignacio; Paredes, Víctor Manuel; Casañas, Elisabeth; de Arriba, Lorenzo; Vallejo, Gonzalo Hernández
A 35-year-old woman was referred to the Department of Oral Medicine and Orofacial Surgery after several recurrences of an ossifying fibroma (OF) that affected the free and attached gingiva of the maxillary right central incisor. Surgery was performed with a complete excision of the lesion together with the surrounding healthy tissue up to the bone. To guide the healing of the anterior esthetic framework and the excised tissues, a porcine collagen matrix as an alternative to connective tissue graft was used. After an 18-month follow-up, the lesion had not recurred and keratinized gingiva had formed around the area.
A practical guide to density matrix embedding theory in quantum chemistry
Wouters, Sebastian; Jimenez-Hoyos, Carlos A.; Sun, Qiming; ...
2016-05-09
Density matrix embedding theory (DMET) (Knizia, G.; Chan, G. K.-L. Phys. Rev. Lett. 2012, 109, 186404) provides a theoretical framework to treat finite fragments in the presence of a surrounding molecular or bulk environment, even when there is significant correlation or entanglement between the two. In this work, we give a practically oriented and explicit description of the numerical and theoretical formulation of DMET. Here, we also describe in detail how to perform self-consistent DMET optimizations. We explore different embedding strategies with and without a self-consistency condition in hydrogen rings, beryllium rings, and a sample SN2 reaction.
Modeling of Damage Initiation and Progression in a SiC/SiC Woven Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
The goal of an ongoing project at NASA Glenn is to investigate the effects of the complex microstructure of a woven ceramic matrix composite and its variability on the effective properties and the durability of the material. Detailed analysis of these complex microstructures may provide clues for the material scientists who `design the material? or to structural analysts and designers who `design with the material? regarding damage initiation and damage propagation. A model material system, specifically a five-harness satin weave architecture CVI SiC/SiC composite composed of Sylramic-iBN fibers and a SiC matrix, has been analyzed. Specimens of the material were serially sectioned and polished to capture the detailed images of fiber tows, matrix and porosity. Open source analysis tools were used to isolate various constituents and finite elements models were then generated from simplified models of those images. Detailed finite element analyses were performed that examine how the variability in the local microstructure affected the macroscopic behavior as well as the local damage initiation and progression. Results indicate that the locations where damage initiated and propagated is linked to specific microstructural features.
Composite Materials Characterization and Development at AFWAL
NASA Technical Reports Server (NTRS)
Browning, C. E.
1984-01-01
The development of test methodology for characterizing matrix dominated failure modes is discussed emphasizing issues of matrix cracking, delamination under static loading, and the relationship of composite properties to matrix properties. Both strength characterization and classical techniques of linear elastic fracture mechanics were examined. Materials development studies are also discussed. Major areas of interest include acetylene-terminated and bismaleimide resins for 350 to 450 deg use, thermoplastics development, and failure resistant composite concepts.
Evaluation of a Variable-Impedance Ceramic Matrix Composite Acoustic Liner
NASA Technical Reports Server (NTRS)
Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.
2014-01-01
As a result of significant progress in the reduction of fan and jet noise, there is growing concern regarding core noise. One method for achieving core noise reduction is via the use of acoustic liners. However, these liners must be constructed with materials suitable for high temperature environments and should be designed for optimum absorption of the broadband core noise spectrum. This paper presents results of tests conducted in the NASA Langley Liner Technology Facility to evaluate a variable-impedance ceramic matrix composite acoustic liner that offers the potential to achieve each of these goals. One concern is the porosity of the ceramic matrix composite material, and whether this might affect the predictability of liners constructed with this material. Comparisons between two variable-depth liners, one constructed with ceramic matrix composite material and the other constructed via stereolithography, are used to demonstrate this material porosity is not a concern. Also, some interesting observations are noted regarding the orientation of variable-depth liners. Finally, two propagation codes are validated via comparisons of predicted and measured acoustic pressure profiles for a variable-depth liner.
Rotation of hard particles in a soft matrix
NASA Astrophysics Data System (ADS)
Yang, Weizhu; Liu, Qingchang; Yue, Zhufeng; Li, Xiaodong; Xu, Baoxing
Soft-hard materials integration is ubiquitous in biological materials and structures in nature and has also attracted growing attention in the bio-inspired design of advanced functional materials, structures and devices. Due to the distinct difference in their mechanical properties, the rotation of hard phases in soft matrixes upon deformation has been acknowledged, yet is lack of theory in mechanics. In this work, we propose a theoretical mechanics framework that can describe the rotation of hard particles in a soft matrix. The rotation of multiple arbitrarily shaped, located and oriented particles with perfectly bonded interfaces in an elastic soft matrix subjected to a far-field tensile loading is established and analytical solutions are derived by using complex potentials and conformal mapping methods. Strong couplings and competitions of the rotation of hard particles among each other are discussed by investigating numbers, relative locations and orientations of particles in the matrix at different loading directions. Extensive finite element analyses are performed to validate theoretical solutions and good agreement of both rotation and stress field between them are achieved. Possible extensions of the present theory to non-rigid particles, viscoelastic matrix and imperfect bonding are also discussed. Finally, by taking advantage of the rotation of hard particles, we exemplify an application in a conceptual design of soft-hard material integrated phononic crystal and demonstrate that phononic band gaps can be successfully tuned with a high accuracy through the mechanical tension-induced rotation of hard particles. The present theory established herein is expected to be of immediate interests to the design of soft-hard materials integration based functional materials, structures and devices with tunable performance via mechanical rotation of hard phases.
Investigations on the Impact of Material-Integrated Sensors with the Help of FEM-Based Modeling
Dumstorff, Gerrit; Lang, Walter
2015-01-01
We present investigations on the impact of material-integrated sensors with the help of finite element-based modeling. A sensor (inlay) integrated with a material (matrix) is always a foreign body in the material, which can lead to a “wound effect”, that is degradation of the macroscopic behavior of a material. By analyzing the inlay's impact on the material in terms of mechanical load, heat conduction, stress during integration and other impacts of integration, this wound effect is analyzed. For the mechanical load, we found out that the inlay has to be at least as stretchable and bendable as the matrix. If there is a high thermal load during integration, the coefficients of the thermal expansion of the inlay have to be matched to the matrix. In the case of a high thermal load during operation, the inlay has to be as thin as possible or its thermal conductivity has to be adapted to the thermal conductivity of the matrix. To have a general view of things, the results are dimensionless and independent of the geometry. In each section, the results are illustrated by examples. Based on all of the results, we present our idea for the fabrication of future material-integrated sensors. PMID:25621607
Method of thermal strain hysteresis reduction in metal matrix composites
NASA Technical Reports Server (NTRS)
Dries, Gregory A. (Inventor); Tompkins, Stephen S. (Inventor)
1987-01-01
A method is disclosed for treating graphite reinforced metal matrix composites so as to eliminate thermal strain hysteresis and impart dimensional stability through a large thermal cycle. The method is applied to the composite post fabrication and is effective on metal matrix materials using graphite fibers manufactured by both the hot roll bonding and diffusion bonding techniques. The method consists of first heat treating the material in a solution anneal oven followed by a water quench and then subjecting the material to a cryogenic treatment in a cryogenic oven. This heat treatment and cryogenic stress reflief is effective in imparting a dimensional stability and reduced thermal strain hysteresis in the material over a -250.degree. F. to +250.degree. F. thermal cycle.
Improved C/SiC Ceramic Composites Made Using PIP
NASA Technical Reports Server (NTRS)
Easler, Timothy
2007-01-01
Improved carbon-fiber-reinforced SiC ceramic-matrix composite (C/SiC CMC) materials, suitable for fabrication of thick-section structural components, are producible by use of a combination of raw materials and processing conditions different from such combinations used in the prior art. In comparison with prior C/SiC CMC materials, these materials have more nearly uniform density, less porosity, and greater strength. The majority of raw-material/processing-condition combinations used in the prior art involve the use of chemical vapor infiltration (CVI) for densifying the matrix. In contrast, in synthesizing a material of the present type, one uses a combination of infiltration with, and pyrolysis of, a preceramic polymer [polymer infiltration followed by pyrolysis (PIP)]. PIP processing is performed in repeated, tailored cycles of infiltration followed by pyrolysis. Densification by PIP processing takes less time and costs less than does densification by CVI. When one of these improved materials was tested by exposure to a high-temperature, inert-gas environment that caused prior C/SiC CMCs to lose strength, this material did not lose strength. (Information on the temperature and exposure time was not available at the time of writing this article.) A material of the present improved type consists, more specifically, of (1) carbon fibers coated with an engineered fiber/matrix interface material and (2) a ceramic matrix, containing SiC, derived from a pre-ceramic polymer with ceramic powder additions. The enhancements of properties of these materials relative to those of prior C/SiC CMC materials are attributable largely to engineering of the fiber/ matrix interfacial material and the densification process. The synthesis of a material of this type includes processing at an elevated temperature to a low level of open porosity. The approach followed in this processing allows one to fabricate not only simple plates but also more complexly shaped parts. The carbon fiber reinforcement in a material of this type can be in any of several alternative forms, including tow, fabric, or complex preforms containing fibers oriented in multiple directions.
Wedges for ultrasonic inspection
Gavin, Donald A.
1982-01-01
An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.
NASA Astrophysics Data System (ADS)
Dehbashi, Reza; Shahabadi, Mahmoud
2013-12-01
The commonly used coordinate transformation for cylindrical cloaks is generalized. This transformation is utilized to determine an anisotropic inhomogeneous diagonal material tensors of a shell type cloak for various material types, i.e., double-positive (DPS: ɛ, μ > 0), double-negative (DNG: ɛ, μ < 0), ɛ-negative (ENG), and μ-negative (MNG). To obtain conditions of perfect cloaking for various material types, a rigorous analysis is performed. It is shown that perfect cloaking will be achieved for same type material for the cloak and its surrounding medium. Moreover, material losses are included in the analysis to demonstrate that perfect cloaking for lossy materials can be achieved for identical loss tangent of the cloak and its surrounding material. Sensitivity of the cloaking performance to losses for different material types is also investigated. The obtained analytical results are verified using a Finite-Element computational analysis.
The importance of reference materials in doping-control analysis.
Mackay, Lindsey G; Kazlauskas, Rymantas
2011-08-01
Currently a large range of pure substance reference materials are available for calibration of doping-control methods. These materials enable traceability to the International System of Units (SI) for the results generated by World Anti-Doping Agency (WADA)-accredited laboratories. Only a small number of prohibited substances have threshold limits for which quantification is highly important. For these analytes only the highest quality reference materials that are available should be used. Many prohibited substances have no threshold limits and reference materials provide essential identity confirmation. For these reference materials the correct identity is critical and the methods used to assess identity in these cases should be critically evaluated. There is still a lack of certified matrix reference materials to support many aspects of doping analysis. However, in key areas a range of urine matrix materials have been produced for substances with threshold limits, for example 19-norandrosterone and testosterone/epitestosterone (T/E) ratio. These matrix-certified reference materials (CRMs) are an excellent independent means of checking method recovery and bias and will typically be used in method validation and then regularly as quality-control checks. They can be particularly important in the analysis of samples close to threshold limits, in which measurement accuracy becomes critical. Some reference materials for isotope ratio mass spectrometry (IRMS) analysis are available and a matrix material certified for steroid delta values is currently under production. In other new areas, for example the Athlete Biological Passport, peptide hormone testing, designer steroids, and gene doping, reference material needs still need to be thoroughly assessed and prioritised.
Feasibility study on development of metal matrix composite by microwave stir casting
NASA Astrophysics Data System (ADS)
Lingappa, S. M.; Srinath, M. S.; Amarendra, H. J.
2018-04-01
Need for better service oriented materials has boosted the demand for metal matrix composite materials, which can be developed to have necessary properties. One of the most widely utilized metal matrix composite is Al-SiC, which is having a matrix made of aluminium metal and SiC as reinforcement. Lightweight and conductivity of aluminium, when combined with hardness and wear resistance of SiC provides an excellent platform for various applications in the field of electronics, automotives, and aerospace and so on. However, uniform distribution of reinforcement particles is an issue and has to be addressed. The present study is an attempt made to develop Al-SiC metal matrix composite by melting base metal using microwave hybrid heating technique, followed by addition of reinforcement and stirring the mixture for obtaining homogenous mixture. X-Ray Diffraction analysis shows the presence of aluminium and SiC in the cast material. Further, microstructural study shows the distribution of SiC particles in the grain boundaries.
Sakhavand, Navid; Shahsavari, Rouzbeh
2015-03-16
Many natural and biomimetic platelet-matrix composites--such as nacre, silk, and clay-polymer-exhibit a remarkable balance of strength, toughness and/or stiffness, which call for a universal measure to quantify this outstanding feature given the structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures. Here we report the development of a unified framework to construct universal composition-structure-property diagrams that decode the interplay between various geometries and inherent material features in both platelet-matrix composites and stacked heterostructures. We study the effects of elastic and elastic-perfectly plastic matrices, overlap offset ratio and the competing mechanisms of platelet versus matrix failures. Validated by several 3D-printed specimens and a wide range of natural and synthetic materials across scales, the proposed universally valid diagrams have important implications for science-based engineering of numerous platelet-matrix composites and stacked heterostructures.
NASA Astrophysics Data System (ADS)
Luo, Y.; Wu, S. C.; Hu, Y. N.; Fu, Y. N.
2018-03-01
Damage accumulation and failure behaviors are crucial concerns during the design and service of a critical component, leading researchers and engineers to thoroughly identifying the crack evolution. Third-generation synchrotron radiation X-ray computed microtomography can be used to detect the inner damage evolution of a large-density material or component. This paper provides a brief review of studying the crack initiation and propagation inside lightweight materials with advanced synchrotron three-dimensional (3D) X-ray imaging, such as aluminum materials. Various damage modes under both static and dynamic loading are elucidated for pure aluminum, aluminum alloy matrix, aluminum alloy metal matrix composite, and aluminum alloy welded joint. For aluminum alloy matrix, metallurgical defects (porosity, void, inclusion, precipitate, etc.) or artificial defects (notch, scratch, pit, etc.) strongly affect the crack initiation and propagation. For aluminum alloy metal matrix composites, the fracture occurs either from the particle debonding or voids at the particle/matrix interface, and the void evolution is closely related with fatigued cycles. For the hybrid laser welded aluminum alloy, fatigue cracks usually initiate from gas pores located at the surface or sub-surface and gradually propagate to a quarter ellipse or a typical semi-ellipse profile.
Mapping the coupled role of structure and materials in mechanics of platelet-matrix composites
NASA Astrophysics Data System (ADS)
Farzanian, Shafee; Shahsavari, Rouzbeh
2018-03-01
Despite significant progresses on understanding and mimicking the delicate nano/microstructure of biomaterials such as nacre, decoding the indistinguishable merger of materials and structures in controlling the tradeoff in mechanical properties has been long an engineering pursuit. Herein, we focus on an archetype platelet-matrix composite and perform ∼400 nonlinear finite element simulations to decode the complex interplay between various structural features and material characteristics in conferring the balance of mechanical properties. We study various combinatorial models expressed by four key dimensionless parameters, i.e. characteristic platelet length, matrix plasticity, platelet dissimilarity, and overlap offset, whose effects are all condensed in a new unifying parameter, defined as the multiplication of strength, toughness, and stiffness over composite volume. This parameter, which maximizes at a critical characteristic length, controls the transition from intrinsic toughening (matrix plasticity driven without crack growths) to extrinsic toughening phenomena involving progressive crack propagations. This finding, combined with various abstract volumetric and radar plots, will not only shed light on decoupling the complex role of structure and materials on mechanical performance and their trends, but provides important guidelines for designing lightweight staggered platelet-matrix composites while ensuring the best (balance) of their mechanical properties.
Armour, Alexis D; Fish, Joel S; Woodhouse, Kimberly A; Semple, John L
2006-03-01
Dermal substitutes derived from xenograft materials require elaborate processing at a considerable cost. Acellularized porcine dermis is a readily available material associated with minimal immunogenicity. The objective of this study was to evaluate acellularized pig dermis as a scaffold for human fibroblasts. In vitro methods were used to evaluate fibroblast adherence, proliferation, and migration on pig acellularized dermal matrix. Acellular human dermis was used as a control. Pig acellularized dermal matrix was found to be inferior to human acellularized dermal matrix as a scaffold for human fibroblasts. Significantly more samples of human acellularized dermal matrix (83 percent, n = 24; p < 0.05) demonstrated fibroblast infiltration below the cell-seeded surface than pig acellularized dermal matrix (31 percent, n = 49). Significantly more (p < 0.05) fibroblasts infiltrated below the surface of human acellularized dermal matrix (mean, 1072 +/- 80 cells per section; n = 16 samples) than pig acellularized dermal matrix (mean, 301 +/- 48 cells per section; n = 16 samples). Fibroblasts migrated significantly less (p < 0.05) distance from the cell-seeded pig acellularized dermal matrix surface than in the human acellularized dermal matrix (78.8 percent versus 38.3 percent cells within 150 mum from the surface, respectively; n = 5). Fibroblasts proliferated more rapidly (p < 0.05) on pig acellularized dermal matrix (n = 9) than on the human acellularized dermal matrix (7.4-fold increase in cell number versus 1.8-fold increase, respectively; n = 9 for human acellularized dermal matrix). There was no difference between the two materials with respect to fibroblast adherence (8120 versus 7436 average adherent cells per section, for pig and human acellularized dermal matrix, respectively; n = 20 in each group; p > 0.05). Preliminary findings suggest that substantial differences may exist between human fibroblast behavior in cell-matrix interactions of porcine and human acellularized dermis.
Evaluation of hydrophobic materials as matrices for controlled-release drug delivery.
Quadir, Mohiuddin Abdul; Rahman, M Sharifur; Karim, M Ziaul; Akter, Sanjida; Awkat, M Talat Bin; Reza, Md Selim
2003-07-01
The present study was undertaken to evaluate the effect of different insoluble and erodable wax-lipid based materials and their content level on the release profile of drug from matrix systems. Matrix tablets of theophylline were prepared using carnauba wax, bees wax, stearic acid, cetyl alcohol, cetostearyl alcohol and glyceryl monostearate as rate-retarding agents by direct compression process. The release of theophylline from these hydrophobic matrices was studied over 8-hours in buffer media of pH 6.8. Statistically significant difference was found among the drug release profile from different matrices. The release kinetics was found to be governed by the type and content of hydrophobic materials in the matrix. At lower level of wax matrices (25%), a potential burst release was observed with all the materials being studied. Bees wax could not exert any sustaining action while an extensive burst release was found with carnauba wax at this hydrophobic load. Increasing the concentration of fat-wax materials significantly decreased the burst effect of drug from the matrix. At higher hydrophobic level (50% of the matrix), the rate and extent of drug release was significantly reduced due to increased tortuosity and reduced porosity of the matrix. Cetostearyl alcohol imparted the strongest retardation of drug release irrespective of fat-wax level. Numerical fits indicate that the Higuchi square root of time model was the most appropriate one for describing the release profile of theophylline from hydrophobic matrices. The release mechanism was also explored and explained with biexponential equation. Application of this model indicates that Fickian or case I kinetics is the predominant mechanism of drug release from these wax-lipid matrices. The mean dissolution time (MDT) was calculated for all the formulations and the highest MDT value was obtained with cetostearyl matrix. The greater sustaining activity of cetostearyl alcohol can be attributed to some level of swelling and erosion within this matrix at lower fat-wax level which is also supported by release exponent values and Fickian fraction release against time profile of this agent. The results generated in this study showed that proper selection of these hydrophobic materials based on their physico-chemical properties is important in designing wax matrix tablets with desired dissolution profile.
An Innovative Carbonate Fuel Cell Matrix, Abstract #188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilmi, Abdelkader; Surendranath, Arun; Yuh, Chao-Yi
2015-05-28
The electrolyte matrix in direct carbonate fuel cell (DFC) is a microporous ceramic structure sandwiched between the electrodes to isolate the fuel from the oxidant, store electrolyte and facilitate ionic transport. FCE has advanced DFC electrolyte matrix over the years and demonstrated that the matrix meets the requirements for greater than 5 year life based on accelerated tests and field stack operations. However, development of advanced designs and materials that can further increase the performance and extend cell life will enable accelerated MCFC deployment. This paper will report the progress on the development of an unique and innovative matrix designmore » that offers numerous benefits to the carbonate fuel cell performance and durability. In addition, this paper will also review parameters that affect matrix material stability and approaches to extend cell life.« less
Time-dependent deformation of titanium metal matrix composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.; Bahei-El-din, Y. A.; Mirdamadi, M.
1995-01-01
A three-dimensional finite element program called VISCOPAC was developed and used to conduct a micromechanics analysis of titanium metal matrix composites. The VISCOPAC program uses a modified Eisenberg-Yen thermo-viscoplastic constitutive model to predict matrix behavior under thermomechanical fatigue loading. The analysis incorporated temperature-dependent elastic properties in the fiber and temperature-dependent viscoplastic properties in the matrix. The material model was described and the necessary material constants were determined experimentally. Fiber-matrix interfacial behavior was analyzed using a discrete fiber-matrix model. The thermal residual stresses due to the fabrication cycle were predicted with a failed interface, The failed interface resulted in lower thermal residual stresses in the matrix and fiber. Stresses due to a uniform transverse load were calculated at two temperatures, room temperature and an elevated temperature of 650 C. At both temperatures, a large stress concentration was calculated when the interface had failed. The results indicate the importance of accuracy accounting for fiber-matrix interface failure and the need for a micromechanics-based analytical technique to understand and predict the behavior of titanium metal matrix composites.
Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering
NASA Astrophysics Data System (ADS)
Grover, Gregory N.; Rao, Nikhil; Christman, Karen L.
2014-01-01
Similar to other protein-based hydrogels, extracellular matrix (ECM) based hydrogels, derived from decellularized tissues, have a narrow range of mechanical properties and are rapidly degraded. These hydrogels contain natural cellular adhesion sites, form nanofibrous networks similar to native ECM, and are biodegradable. In this study, we expand the properties of these types of materials by incorporating poly(ethylene glycol) (PEG) into the ECM network. We use decellularized myocardial matrix as an example of a tissue specific ECM derived hydrogel. Myocardial matrix-PEG hybrids were synthesized by two different methods, cross-linking the proteins with an amine-reactive PEG-star and photo-induced radical polymerization of two different multi-armed PEG-acrylates. We show that both methods allow for conjugation of PEG to the myocardial matrix by gel electrophoresis and infrared spectroscopy. Scanning electron microscopy demonstrated that the hybrid materials still contain a nanofibrous network similar to unmodified myocardial matrix and that the fiber diameter is changed by the method of PEG incorporation and PEG molecular weight. PEG conjugation also decreased the rate of enzymatic degradation in vitro, and increased material stiffness. Hybrids synthesized with amine-reactive PEG had gelation rates of 30 min, similar to the unmodified myocardial matrix, and incorporation of PEG did not prevent cell adhesion and migration through the hydrogels, thus offering the possibility to have an injectable ECM hydrogel that degrades more slowly in vivo. The photo-polymerized radical systems gelled in 4 min upon irradiation, allowing 3D encapsulation and culture of cells, unlike the soft unmodified myocardial matrix. This work demonstrates that PEG incorporation into ECM-based hydrogels can expand material properties, thereby opening up new possibilities for in vitro and in vivo applications.
Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Marshall, Kenneth L.; Kosc, Tanya Z.
2010-05-11
Doped electrically actuatable (electrically addressable or switchable) polymer flakes have enhanced and controllable electric field induced motion by virtue of doping a polymer material that functions as the base flake matrix with either a distribution of insoluble dopant particles or a dopant material that is completely soluble in the base flake matrix. The base flake matrix may be a polymer liquid crystal material, and the dopants generally have higher dielectric permittivity and/or conductivity than the electrically actuatable polymer base flake matrix. The dopant distribution within the base flake matrix may be either homogeneous or non-homogeneous. In the latter case, the non-homogeneous distribution of dopant provides a dielectric permittivity and/or conductivity gradient within the body of the flakes. The dopant can also be a carbon-containing material (either soluble or insoluble in the base flake matrix) that absorbs light so as to reduce the unpolarized scattered light component reflected from the flakes, thereby enhancing the effective intensity of circularly polarized light reflected from the flakes when the flakes are oriented into a light reflecting state. Electro-optic devices contain these doped flakes suspended in a host fluid can be addressed with an applied electric field, thus controlling the orientation of the flakes between a bright reflecting state and a non-reflecting dark state.
Ultrastructure and biological function of matrix vesicles in bone mineralization.
Hasegawa, Tomoka
2018-04-01
Bone mineralization is initiated by matrix vesicles, small extracellular vesicles secreted by osteoblasts, inducing the nucleation and subsequent growth of calcium phosphate crystals inside. Although calcium ions (Ca 2+ ) are abundant throughout the tissue fluid close to the matrix vesicles, the influx of phosphate ions (PO4 3- ) into matrix vesicles is a critical process mediated by several enzymes and transporters such as ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), ankylosis (ANK), and tissue nonspecific alkaline phosphatase (TNSALP). The catalytic activity of ENPP1 in osteoblasts generates inorganic pyrophosphate (PPi) intracellularly and extracellularly, and ANK may allow the intracellular PPi to pass through the plasma membrane to the outside of the osteoblasts. Although the extracellular PPi binds to growing hydroxyapatite crystals to prevent crystal overgrowth, TNSALP on the osteoblasts and matrix vesicles hydrolyzes PPi into PO4 3- monomers: the prevention of crystal growth is blocked, and PO4 3- monomers are supplied to matrix vesicles. In addition, PHOSPHO1 is thought to function inside matrix vesicles to catalyze phosphocoline, a constituent of the plasma membrane, consequently increasing PO4 3- in the vesicles. Accumulation of Ca 2+ and PO4 3- inside the matrix vesicles then initiates crystalline nucleation associated with the inner leaflet of the matrix vesicles. Calcium phosphate crystals elongate radially, penetrate the matrix vesicle's membrane, and finally grow out of the vesicles to form calcifying nodules, globular assemblies of needle-shaped mineral crystals retaining some of those transporters and enzymes. The subsequent growth of calcifying nodules appears to be regulated by surrounding organic compounds, finally leading to collagen mineralization.
NASA Technical Reports Server (NTRS)
Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.
2013-01-01
A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.
Chinni, Federico; Spizzo, Federico; Montoncello, Federico; Mattarello, Valentina; Maurizio, Chiara; Mattei, Giovanni; Del Bianco, Lucia
2017-01-01
One fundamental requirement in the search for novel magnetic materials is the possibility of predicting and controlling their magnetic anisotropy and hence the overall hysteretic behavior. We have studied the magnetism of Au:Co films (~30 nm thick) with concentration ratios of 2:1, 1:1, and 1:2, grown by magnetron sputtering co-deposition on natively oxidized Si substrates. They consist of a AuCo ferromagnetic alloy in which segregated ultrafine Co particles are dispersed (the fractions of Co in the AuCo alloy and of segregated Co increase with decreasing the Au:Co ratio). We have observed an unexpected hysteretic behavior characterized by in-plane anisotropy and crossed branches in the loops measured along the hard magnetization direction. To elucidate this phenomenon, micromagnetic calculations have been performed for a simplified system composed of two exchange-coupled phases: a AuCo matrix surrounding a Co cluster, which represents an aggregate of particles. The hysteretic features are qualitatively well reproduced provided that the two phases have almost orthogonal anisotropy axes. This requirement can be plausibly fulfilled assuming a dominant magnetoelastic character of the anisotropy in both phases. The achieved conclusions expand the fundamental knowledge on nanocomposite magnetic materials, offering general guidelines for tuning the hysteretic properties of future engineered systems. PMID:28773075
Scattering of ultrasonic waves from porous piezoelectric multilayered structures immersed in a fluid
NASA Astrophysics Data System (ADS)
Vashishth, Anil K.; Gupta, Vishakha
2012-12-01
The interest in porous piezoelectric materials is due to the demand for low-frequency hydrophone/actuator devices for use in underwater acoustic systems and other oceanographic applications. Porosity decreases the acoustic impedance, thus improving the transfer of acoustic energy to water or biological tissues. The impedance mismatching problem between the dense piezoelectric materials and the surrounding medium can be solved by inclusion of porosity in dense piezoceramics. The complete description of acoustic propagation in a multilayered system is of great interest in a variety of applications, such as non-destructive evaluation and acoustic design, and there is need for a flexible model that can describe the reflection and transmission of ultrasonic waves in these media. The present paper elaborates a theoretical model, based on the transfer matrix method, for describing reflection and transmission of plane elastic waves through a porous piezoelectric laminated plate, immersed in a fluid. The analytical expressions for the reflection coefficient, transmission coefficient and acoustic impedance are derived. The effects of frequency, angle of incidence, number of layers, layer thickness and porosity are observed numerically for different configurations. The results obtained are deduced for the piezoelectric laminated structure, piezoelectric layer and poro-elastic layer immersed in a fluid, which are in agreement with earlier established results and experimental studies.
Surface tension mediated conversion of light to work
Okawa, David; Pastine, Stefan J; Zettl, Alexander K; Frechet, Jean M. J
2014-12-02
Disclosed are a method and apparatus for converting light energy to mechanical energy by modification of surface tension on a supporting fluid. The apparatus comprises an object which may be formed as a composite object comprising a support matrix and a highly light absorptive material. The support matrix may comprise a silicon polymer. The highly light absorptive material may comprise vertically aligned carbon nanotubes (VANTs) embedded in the support matrix. The composite object is supported on a fluid. By exposing the highly light absorptive material to light, heat is generated, which changes the surface tension of the composite object, causing it to move physically within the fluid.
Engineered glass seals for solid-oxide fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surdoval, Wayne; Lara-Curzio, Edgar; Stevenson, Jeffry
2017-02-07
A seal for a solid oxide fuel cell includes a glass matrix having glass percolation therethrough and having a glass transition temperature below 650.degree. C. A deformable second phase material is dispersed in the glass matrix. The second phase material can be a compliant material. The second phase material can be a crushable material. A solid oxide fuel cell, a precursor for forming a seal for a solid oxide fuel cell, and a method of making a seal for a solid oxide fuel cell are also disclosed.
Advanced materials for space nuclear power systems
NASA Technical Reports Server (NTRS)
Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.
1991-01-01
The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janicki, G.; Bailey, V.; Schjelderup, H.
The present conference discusses topics in the fields of ultralightweight structures, producibility of thermoplastic composites, innovation in sandwich structures, composite failure processes, toughened materials, metal-matrix composites, advanced materials for future naval systems, thermoplastic polymers, automated composites manufacturers, advanced adhesives, emerging processes for aerospace component fabrication, and modified resin systems. Also discussed are matrix behavior for damage tolerance, composite materials repair, testing for damage tolerance, composite strength analyses, materials workplace health and safety, cost-conscious composites, bismaleimide systems, and issues facing advanced composite materials suppliers.
Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron
NASA Astrophysics Data System (ADS)
Benati, Davi Munhoz; Ito, Kazuhiro; Kohama, Kazuyuki; Yamamoto, Hajime; Zoqui, Eugenio José
2017-10-01
The development of high-quality semisolid raw materials requires an understanding of the phase transformations that occur as the material is heated up to the semisolid state, i.e., its melting behavior. The microstructure of the material plays a very important role during semisolid processing as it determines the flow behavior of the material when it is formed, making a thorough understanding of the microstructural evolution essential. In this study, the phase transformations and microstructural evolution in Fe2.5C1.5Si gray cast iron specially designed for thixoforming processes as it was heated to the semisolid state were observed using in situ high-temperature confocal laser scanning microscopy. At room temperature, the alloy has a matrix of pearlite and ferrite with fine interdendritic type D flake graphite. During heating, the main transformations observed were graphite precipitation inside the grains and at the austenite grain boundaries; graphite flakes and graphite precipitates growing and becoming coarser with the increasing temperature; and the beginning of melting at around 1413 K to 1423 K (1140 °C to 1150 °C). Melting begins with the eutectic phase ( i.e., the carbon-rich phase) and continues with the primary phase (primary austenite), which is consumed as the temperature increases. Melting of the eutectic phase composed by coarsened interdendritic graphite flakes produced a semi-continuous liquid network homogeneously surrounding and wetting the dendrites of the solid phase, causing grains to detach from each other and producing the intended solid globules immersed in liquid.
Failure of Ceramic Composites in Non-Uniform Stress Fields
NASA Astrophysics Data System (ADS)
Rajan, Varun P.
Continuous-fiber ceramic matrix composites (CMCs) are of interest as hot-section components in gas turbine engines due to their refractoriness and low density relative to metallic alloys. In service, CMCs will be subjected to spatially inhomogeneous temperature and stress fields. Robust tools that enable prediction of deformation and fracture under these conditions are therefore required for component design and analysis. Such tools are presently lacking. The present work helps to address this deficiency by developing models for CMC mechanical behavior at two length scales: that of the constituents and that of the components. Problems of interest are further divided into two categories: '1-D loadings,' in which the stresses are aligned with the fiber axes, and '2-D loadings,' in which the stress state is more general. For the former class of problems, the major outstanding issue is material fracture, not deformation. A fracture criterion based on the attainment of a global load maximum is developed, which yields results for pure bending of CMCs in reasonable agreement with available experimental data. For the latter class of problems, the understanding of both the micro-scale and macro-scale behavior is relatively immature. An approach based upon analysis of a unit cell (a single fiber surrounded by a matrix jacket) is pursued. Stress fields in the constituents of the composite are estimated using analytical models, the accuracy of which is confirmed using finite element analysis. As part of a fracture mechanics analysis, these fields enable estimation of the steady-state matrix cracking stress for arbitrary in-plane loading of a unidirectional ply. While insightful at the micro-scale, unit cell models are difficult to extend to coarser scales. Instead, material deformation is typically predicted using phenomenological constitutive models. One such model for CMC laminates is investigated and found to predict material instability where none should exist. Remedies to the model to correct this deficiency are proposed; the remediated model is subsequently utilized in conjunction with an analytical model to probe stress fields adjacent to holes and notches in CMC panels. However, even the revised model is incapable of capturing the range of experimental behavior reported for CMCs with both stiff and compliant matrices. To ameliorate this deficiency, a new elastic-plastic constitutive model is developed. It extends the deformation theory of plasticity from metals to CMCs, and its predictions of near-notch strain fields in an open-hole tension test compare favorably to strains measured using digital image correlation. Based on these developments, future experimental and modeling work is proposed. With respect to the latter, cohesive interface simulations seem particularly suited for capturing multiple interacting damage mechanisms at multiple length scales in a physically sensible manner. In principle, they can function as virtual tests, guiding both engineering design and materials development.
Guo, Xingmei; Song, Yan; Nan, Junmin
2018-02-01
The leaching characteristics of hazardous materials from Ni-Cd batteries immersed in four typical water samples, i.e., water with NaCl, river water, tap water, and deionized water, were investigated to evaluate the potential environmental harm of spent Ni-Cd batteries in the water surroundings. It is shown that four water surroundings all could leach hazardous materials from the Ni-Cd batteries. The water with NaCl concentration of 66.7 mg L -1 had the highest leaching ability, the hazardous materials were leached after only approximately 50 days (average time, with a standard deviation of 4.1), while less than 100 days were needed in the others. An electrochemical corrosion is considered to be the main leaching mechanism leading to battery breakage, while the dissolution-deposition process and the powder route result in the leakage and transference of nickel and cadmium materials from the electrodes. The anions, i.e., SO 4 2- and Cl - , and dissolved oxygen in water were demonstrated to be the vital factors that influence the leaching processes. Thus, it is proposed that spent Ni-Cd batteries must be treated properly to avoid potential danger to the environment.
NASA Astrophysics Data System (ADS)
Bishay, Peter L.
This study presents a new family of highly accurate and efficient computational methods for modeling the multi-physics of multifunctional materials and composites in the micro-scale named "Multi-Physics Computational Grains" (MPCGs). Each "mathematical grain" has a random polygonal/polyhedral geometrical shape that resembles the natural shapes of the material grains in the micro-scale where each grain is surrounded by an arbitrary number of neighboring grains. The physics that are incorporated in this study include: Linear Elasticity, Electrostatics, Magnetostatics, Piezoelectricity, Piezomagnetism and Ferroelectricity. However, the methods proposed here can be extended to include more physics (thermo-elasticity, pyroelectricity, electric conduction, heat conduction, etc.) in their formulation, different analysis types (dynamics, fracture, fatigue, etc.), nonlinearities, different defect shapes, and some of the 2D methods can also be extended to 3D formulation. We present "Multi-Region Trefftz Collocation Grains" (MTCGs) as a simple and efficient method for direct and inverse problems, "Trefftz-Lekhnitskii Computational Gains" (TLCGs) for modeling porous and composite smart materials, "Hybrid Displacement Computational Grains" (HDCGs) as a general method for modeling multifunctional materials and composites, and finally "Radial-Basis-Functions Computational Grains" (RBFCGs) for modeling functionally-graded materials, magneto-electro-elastic (MEE) materials and the switching phenomena in ferroelectric materials. The first three proposed methods are suitable for direct numerical simulation (DNS) of the micromechanics of smart composite/porous materials with non-symmetrical arrangement of voids/inclusions, and provide minimal effort in meshing and minimal time in computations, since each grain can represent the matrix of a composite and can include a pore or an inclusion. The last three methods provide stiffness matrix in their formulation and hence can be readily implemented in a finite element routine. Several numerical examples are provided to show the ability and accuracy of the proposed methods to determine the effective material properties of different types of piezo-composites, and detect the damage-prone sites in a microstructure under certain loading types. The last method (RBFCGs) is also suitable for modeling the switching phenomena in ferro-materials (ferroelectric, ferromagnetic, etc.) after incorporating a certain nonlinear constitutive model and a switching criterion. Since the interaction between grains during loading cycles has a profound influence on the switching phenomena, it is important to simulate the grains with geometrical shapes that are similar to the real shapes of grains as seen in lab experiments. Hence the use of the 3D RBFCGs, which allow for the presence of all the six variants of the constitutive relations, together with the randomly generated crystallographic axes in each grain, as done in the present study, is considered to be the most realistic model that can be used for the direct mesoscale numerical simulation (DMNS) of polycrystalline ferro-materials.
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, D. H.; Harris, C. E.
1989-01-01
A mathematical model utilizing the internal state variable concept is proposed for predicting the upper bound of the reduced axial stiffnesses in cross-ply laminates with matrix cracks. The axial crack opening displacement is explicitly expressed in terms of the observable axial strain and the undamaged material properties. A crack parameter representing the effect of matrix cracks on the observable axial Young's modulus is calculated for glass/epoxy and graphite/epoxy material systems. The results show that the matrix crack opening displacement and the effective Young's modulus depend not on the crack length, but on its ratio to the crack spacing.
NASA Astrophysics Data System (ADS)
Goodman, William A.
2017-09-01
This paper provides a review of advances in 3D printing and additive manufacturing of ceramic and ceramic matrix composites for optical applications. Dr. Goodman has been pioneering additive manufacturing of ceramic matrix composites since 2008. He is the inventor of HoneySiC material, a zero-CTE additively manufactured carbon fiber reinforced silicon carbide ceramic matrix composite, briefly mentioned here. More recently Dr. Goodman has turned his attention to the direct printing of ceramics for optical applications via various techniques including slurry and laser sintering of silicon carbide and other ceramic materials.
NASA Technical Reports Server (NTRS)
Levine, Stanley R. (Editor)
1992-01-01
The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.
3D tensor-based blind multispectral image decomposition for tumor demarcation
NASA Astrophysics Data System (ADS)
Kopriva, Ivica; Peršin, Antun
2010-03-01
Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based decomposition methods (such as non-negative matrix factorization and independent component analysis) are used. Superior performance of the tensor-based image decomposition over matrix factorization-based decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1992-01-01
The scope of this dissertation is to develop and apply x ray attenuation measurement systems that are capable of: (1) characterizing density variations in high-temperature materials, e.g., monolithic ceramics, ceramic and intermetallic matrix composites, and (2) noninvasively monitoring damage accumulation and failure sequences in ceramic matrix composites under room temperature tensile testing. This dissertation results in the development of: (1) a point scan digital radiography system, and (2) an in-situ x ray material testing system. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. Further in-situ radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction bonded silicon nitride matrix. It is concluded that pretest, in-situ, and post test x ray imaging can provide for greater understanding of ceramic matrix composite mechanical behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voigts-Rhetz, P von; Czarnecki, D; Anton, M
Purpose: Alanine dosimeters are often used for in-vivo dosimetry purposes in radiation therapy. In a Monte Carlo study the influence of 20 different surrounding/phantom materials for alanine dosimeters was investigated. The investigations were performed in high-energy photon beams, covering the whole range from {sup 60}Co up to 25 MV-X. The aim of the study is the introduction of a perturbation correction k{sub env} for alanine dosimeters accounting for the environmental material. Methods: The influence of different surrounding materials on the response of alanine dosimeters was investigated with Monte Carlo simulations using the EGSnrc code. The photon source was adapted withmore » BEAMnrc to a {sup 60}Co unit and an Elekta (E{sub nom}=6, 10, 25 MV-X) linear accelerator. Different tissue-equivalent materials ranging from cortical bone to lung were investigated. In addition to available phantom materials, some material compositions were taken and scaled to different electron densities. The depth of the alanine detectors within the different phantom materials corresponds to 5 cm depth in water, i.e. the depth is scaled according to the electron density (n{sub e}/n{sub e,w}) of the corresponding phantom material. The dose was scored within the detector volume once for an alanine/paraffin mixture and once for a liquid water voxel. The relative response, the ratio of the absorbed dose to alanine to the absorbed dose to water, was calculated and compared to the corresponding ratio under reference conditions. Results: For each beam quality the relative response r and the correction factor for the environment kenv was calculated. k{sub env}=0.9991+0.0049 *((n{sub e}/n{sub e,w})−0.7659){sup 3} Conclusion: A perturbation correction factor k{sub env} accounting for the phantom environment has been introduced. The response of the alanine dosimeter can be considered independent of the surrounding material for relative electron densities (n{sub e}/n{sub e,w}) between 1 and 1.4. For denser materials such as bone or much less dense surroundings such as lung, a small correction would be appropriate.« less
Characterizing dielectric tensors of anisotropic materials from a single measurement
NASA Astrophysics Data System (ADS)
Smith, Paula Kay
Ellipsometry techniques look at changes in polarization states to measure optical properties of thin film materials. A beam reflected from a substrate measures the real and imaginary parts of the index of the material represented as n and k, respectively. Measuring the substrate at several angles gives additional information that can be used to measure multilayer thin film stacks. However, the outstanding problem in standard ellipsometry is that it uses a limited number of incident polarization states (s and p). This limits the technique to isotropic materials. The technique discussed in this paper extends the standard process to measure anisotropic materials by using a larger set of incident polarization states. By using a polarimeter to generate several incident polarization states and measure the polarization properties of the sample, ellipsometry can be performed on biaxial materials. Use of an optimization algorithm in conjunction with biaxial ellipsometry can more accurately determine the dielectric tensor of individual layers in multilayer structures. Biaxial ellipsometry is a technique that measures the dielectric tensors of a biaxial substrate, single-layer thin film, or multi-layer structure. The dielectric tensor of a biaxial material consists of the real and imaginary parts of the three orthogonal principal indices (n x + ikx, ny +iky and nz + i kz) as well as three Euler angles (alpha, beta and gamma) to describe its orientation. The method utilized in this work measures an angle-of-incidence Mueller matrix from a Mueller matrix imaging polarimeter equipped with a pair of microscope objectives that have low polarization properties. To accurately determine the dielectric tensors for multilayer samples, the angle-of-incidence Mueller matrix images are collected for multiple wavelengths. This is done in either a transmission mode or a reflection mode, each incorporates an appropriate dispersion model. Given approximate a priori knowledge of the dielectric tensor and film thickness, a Jones reflectivity matrix is calculated by solving Maxwell's equations at each surface. Converting the Jones matrix into a Mueller matrix provides a starting point for optimization. An optimization algorithm then finds the best fit dielectric tensor based on the measured angle-of-incidence Mueller matrix image. This process can be applied to polarizing materials, birefringent crystals and the multilayer structures of liquid crystal displays. In particular, the need for such accuracy in liquid crystal displays is growing as their applications in industry evolve.
John Butnor; Brian Roth; Kurt Johnsen
2005-01-01
Tree root systems are commonly evaluated via labor intensive, destructive, time-consuming excavations. Ground-penetrating radar (GPR) can be used to detect and monitor roots if there is sufficient electromagnetic contrast with the surrounding soil matrix. This methodology is commonly used in civil engineering for non-destructive testing of concrete as well as road and...
NASA Astrophysics Data System (ADS)
Weiersbye-Witkowski, I. M.; Przybylowicz, W. J.; Straker, C. J.; Mesjasz-Przybylowicz, J.
1997-07-01
Genotypes of the Southern African cucurbit, Lagenaria sphaerica, that are resistant to powdery-mildew ( Sphaerotheca fuliginea) exhibit foliar hypersensitive (HS) lesions on inoculation with this fungal pathogen. Elemental distributions across radially symmetrical HS lesions, surrounding unlesioned leaf tissue and uninoculated leaf tissue, were obtained using the true elemental imaging system (Dynamic Analysis) of the NAC Van de Graaff nuclear microprobe. Raster scans of 3 MeV protons were complemented by simultaneous PIXE and BS point analyses. The composition of cellulose (C 6H 10O 5) was used as constant matrix composition for scans, and the sample thickness was found from BS spectra. Si and elements heavier than Ca contributed to matrix composition within HS lesions and the locally elevated Ca raised the limits of detection for some trace metals of interest. In comparison to uninoculated tissue, inoculated tissue was characterised by higher overall concentrations of all measured elements except Cu. Fully developed, 6 day-old HS lesions and the surrounding tissue could be divided into five zones, centred on the fungal infection site. Each zone was characterized by distinct local elemental distributions (either depletion, or accumulation to potentially phytotoxic levels).
Aschenbrenner, Mathias; Kulozik, Ulrich; Foerst, Petra
2012-12-01
The aim of this work was to describe the temperature dependence of microbial inactivation for several storage conditions and protective systems (lactose, trehalose and dextran) in relation to the physical state of the sample, i.e. the glassy or non-glassy state. The resulting inactivation rates k were described by applying two models, Arrhenius and Williams-Landel-Ferry (WLF), in order to evaluate the relevance of diffusional limitation as a protective mechanism. The application of the Arrhenius model revealed a significant decrease in activation energy E(a) for storage conditions close to T(g). This finding is an indication that the protective effect of a surrounding glassy matrix can, at least, partly be ascribed to its inherent restricted diffusion and mobility. The application of the WLF model revealed that the temperature dependence of microbial inactivation above T(g) is significantly weaker than predicted by the universal coefficients. Thus, it can be concluded that microbial inactivation is not directly linked with the mechanical relaxation behavior of the surrounding matrix as it was reported for viscosity and crystallization phenomena in case of disaccharide systems. Copyright © 2012. Published by Elsevier Inc.
Material identification based on electrostatic sensing technology
NASA Astrophysics Data System (ADS)
Liu, Kai; Chen, Xi; Li, Jingnan
2018-04-01
When the robot travels on the surface of different media, the uncertainty of the medium will seriously affect the autonomous action of the robot. In this paper, the distribution characteristics of multiple electrostatic charges on the surface of materials are detected, so as to improve the accuracy of the existing electrostatic signal material identification methods, which is of great significance to help the robot optimize the control algorithm. In this paper, based on the electrostatic signal material identification method proposed by predecessors, the multi-channel detection circuit is used to obtain the electrostatic charge distribution at different positions of the material surface, the weights are introduced into the eigenvalue matrix, and the weight distribution is optimized by the evolutionary algorithm, which makes the eigenvalue matrix more accurately reflect the surface charge distribution characteristics of the material. The matrix is used as the input of the k-Nearest Neighbor (kNN)classification algorithm to classify the dielectric materials. The experimental results show that the proposed method can significantly improve the recognition rate of the existing electrostatic signal material recognition methods.
Receptor control in mesenchymal stem cell engineering
NASA Astrophysics Data System (ADS)
Dalby, Matthew J.; García, Andrés J.; Salmeron-Sanchez, Manuel
2018-03-01
Materials science offers a powerful tool to control mesenchymal stem cell (MSC) growth and differentiation into functional phenotypes. A complex interplay between the extracellular matrix and growth factors guides MSC phenotypes in vivo. In this Review, we discuss materials-based bioengineering approaches to direct MSC fate in vitro and in vivo, mimicking cell-matrix-growth factor crosstalk. We first scrutinize MSC-matrix interactions and how the properties of a material can be tailored to support MSC growth and differentiation in vitro, with an emphasis on MSC self-renewal mechanisms. We then highlight important growth factor signalling pathways and investigate various materials-based strategies for growth factor presentation and delivery. Integrin-growth factor crosstalk in the context of MSC engineering is introduced, and bioinspired material designs with the potential to control the MSC niche phenotype are considered. Finally, we summarize important milestones on the road to MSC engineering for regenerative medicine.
Solid-state radioluminescent compositions
Clough, Roger L.; Gill, John T.; Hawkins, Daniel B.; Renschler, Clifford L.; Shepodd, Timothy J.; Smith, Henry M.
1991-01-01
A solid state radioluminescent composition for light source comprises an optically clear polymer organic matrix containing tritiated organic materials and dyes capable of "red" shifting primary scintillation emissions from the polymer matrix. The tritiated organic materials are made by reducing, with tritium, an unsaturated organic compound that prior to reduction contains olefinic or alkynylic bonds.
Bone Formation is Affected by Matrix Advanced Glycation End Products (AGEs) In Vivo.
Yang, Xiao; Mostafa, Ahmed Jenan; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu
2016-10-01
Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Although previous evidence shows that the accumulation of AGEs in bone matrix may impose significant effects on bone cells, the effect of matrix AGEs on bone formation in vivo is still poorly understood. To address this issue, this study used a unique rat model with autograft implant to investigate the in vivo response of bone formation to matrix AGEs. Fluorochrome biomarkers were sequentially injected into rats to label the dynamic bone formation in the presence of elevated levels of matrix AGEs. After sacrificing animals, dynamic histomorphometry was performed to determine mineral apposition rate (MAR), mineralized surface per bone surface (MS/BS), and bone formation rate (BFR). Finally, nanoindentation tests were performed to assess mechanical properties of newly formed bone tissues. The results showed that MAR, MS/BS, and BFR were significantly reduced in the vicinity of implant cores with high concentration of matrix AGEs, suggesting that bone formation activities by osteoblasts were suppressed in the presence of elevated matrix AGEs. In addition, MAR and BFR were found to be dependent on the surrounding environment of implant cores (i.e., cortical or trabecular tissues). Moreover, MS/BS and BFR were also dependent on how far the implant cores were away from the growth plate. These observations suggest that the effect of matrix AGEs on bone formation is dependent on the biological milieu around the implants. Finally, nanoindentation test results indicated that the indentation modulus and hardness of newly formed bone tissues were not affected by the presence of elevated matrix AGEs. In summary, high concentration of matrix AGEs may slow down the bone formation process in vivo, while imposing little effects on bone mineralization.
Health monitoring method for composite materials
Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA
2011-04-12
An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.
Silicon carbide whisker-zirconia reinforced mullite and alumina ceramics
Becher, Paul F.; Tiegs, Terry N.
1987-01-01
The flexural strength and/or fracture toughness of SiC whisker-reinforced composites utilizing mullite or alumina as the matrix material for the composite are increased by the addition of zirconia in a monoclinic or tetragonal phase to the matrix. The zirconia addition also provides for a lower hot-pressing temperature and increases the flexural strength and/or fracture toughness of the SiC whisker-reinforced composites over SiC whisker-reinforced composites of the similar matrix materials reinforced with similar concentrations of SiC whiskers.
NASA Technical Reports Server (NTRS)
Bansal, Narottam P. (Inventor)
1995-01-01
A SrO-Al2O3-2SrO2 (SAS) glass ceramic matrix is reinforced with CVD SiC continuous fibers. This material is prepared by casting a slurry of SAS glass powder into tapes. Mats of continuous CVD-SiC fibers are alternately stacked with the matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite. Organic constituents are burned out of the 'green' composite, and the remaining interim material is hot pressed.
Silicon carbide fiber reinforced strontium aluminosilicate glass-ceramic matrix composite
NASA Technical Reports Server (NTRS)
Bansal, Narottam (Inventor)
1992-01-01
A SrO-Al2O3 - 2SrO2 (SAS) glass ceramic matrix is reinforced with CVD SiC continuous fibers. This material is prepared by casting a slurry of SAS glass powder into tapes. Mats of continuous CVD-SiC fibers are alternately stacked with the matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite. Organic constituents are burned out of the 'green' composite, and the remaining interim material is hot pressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chenock, T.A.Jr.; Heshmet, A.
1990-07-01
The effect of matrix material on the strength, toughness, and fracture behavior of two high temperature polyimide/carbon fiber composites has been studied and compared. The polyimide matrix resins under investigation are PMR-II-20, PMR-15. Each system was reinforced with epoxy sized Celion G30-500 carbon fabric (8HSW, 3K tow). Un-notched and notched specimens were tested under 4-point bend loading in both translaminar and crosslaminar directions.
Shear damage mechanisms in a woven, Nicalon-reinforced ceramic-matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keith, W.P.; Kedward, K.T.
The shear response of a Nicalon-reinforced ceramic-matrix composite was investigated using Iosipescu tests. Damage was characterized by X-ray, optical, and SEM techniques. The large inelastic strains which were observed were attributed to rigid body sliding of longitudinal blocks of material. These blocks are created by the development and extension of intralaminar cracks and ply delaminations. This research reveals that the debonding and sliding characteristics of the fiber-matrix interface control the shear strength, strain softening, and cyclic degradation of the material.
Nonlinear mechanical response of the extracellular matrix: learning from articular cartilage
NASA Astrophysics Data System (ADS)
Kearns, Sarah; Das, Moumita
2015-03-01
We study the mechanical structure-function relations in the extracellular matrix (ECM) with focus on nonlinear shear and compression response. As a model system, our study focuses on the ECM in articular cartilage tissue which has two major mechanobiological components: a network of the biopolymer collagen that acts as a stiff, reinforcing matrix, and a flexible aggrecan network that facilitates deformability. We model this system as a double network hydrogel made of interpenetrating networks of stiff and flexible biopolymers respectively. We study the linear and nonlinear mechanical response of the model ECM to shear and compression forces using a combination of rigidity percolation theory and energy minimization approaches. Our results may provide useful insights into the design principles of the ECM as well as biomimetic hydrogels that are mechanically robust and can, at the same time, easily adapt to cues in their surroundings.
De Geuser, F; Lefebvre, W
2011-03-01
In this study, we propose a fast automatic method providing the matrix concentration in an atom probe tomography (APT) data set containing two phases or more. The principle of this method relies on the calculation of the relative amount of isolated solute atoms (i.e., not surrounded by a similar solute atom) as a function of a distance d in the APT reconstruction. Simulated data sets have been generated to test the robustness of this new tool and demonstrate that rapid and reproducible results can be obtained without the need of any user input parameter. The method has then been successfully applied to a ternary Al-Zn-Mg alloy containing a fine dispersion of hardening precipitates. The relevance of this method for direct estimation of matrix concentration is discussed and compared with the existing methodologies. Copyright © 2010 Wiley-Liss, Inc.